
Designing Reconfigurable Intelligent
Systems with Markov Blankets

Boris Sedlak(B) , Victor Casamayor Pujol , Praveen Kumar Donta ,
and Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria
{b.sedlak,v.casamayor,pdonta,dustdar}@dsg.tuwien.ac.at

Abstract. Compute Continuum (CC) systems comprise a vast num-
ber of devices distributed over computational tiers. Evaluating business
requirements, i.e., Service Level Objectives (SLOs), requires collecting
data from all those devices; if SLOs are violated, devices must be recon-
figured to ensure correct operation. If done centrally, this dramatically
increases the number of devices and variables that must be considered,
while creating an enormous communication overhead. To address this,
we (1) introduce a causality filter based on Markov blankets (MB) that
limits the number of variables that each device must track, (2) evalu-
ate SLOs decentralized on a device basis, and (3) infer optimal device
configuration for fulfilling SLOs. We evaluated our methodology by ana-
lyzing video stream transformations and providing device configurations
that ensure the Quality of Service (QoS). The devices thus perceived
their environment and acted accordingly – a form of decentralized intel-
ligence.

Keywords: Intelligent Systems · Computing Continuum · Markov
Blankets · Sensory State · Service Level Objectives · Exact Inference

1 Introduction

Computing Continuum (CC) systems as envisioned in [2,5] are large-scale dis-
tributed systems composed of a wide variety of devices. Applications running in
the CC pose ambitious requirements, e.g., near real-time latency while dealing
with huge volumes of data. Additionally, requirements may change over time;
to provide the best possible service, the CC system must adapt. However, given
the highly distributed nature of the CC, it is a challenging task to dynamically
reconfigure all contained devices, while ensuring high-level system objectives.

In this regard, we envision CC systems employing decentralized intelligence,
which allows system parts to make decisions independently, in favor of the appli-
cation running on top. Smaller units in the CC (e.g., edge devices) would thus
obtain the ability to evaluate their own state to ensure requirements are ful-
filled. One promising option to model this, is the behavioral concept introduced

Funded by the European Union (TEADAL, 101070186).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Monti et al. (Eds.): ICSOC 2023, LNCS 14419, pp. 42–50, 2023.
https://doi.org/10.1007/978-3-031-48421-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48421-6_4&domain=pdf
http://orcid.org/0009-0001-2365-8265
http://orcid.org/0000-0003-2830-8368
http://orcid.org/0000-0002-8233-6071
http://orcid.org/0000-0001-6872-8821
https://doi.org/10.1007/978-3-031-48421-6_4


Designing Reconfigurable Intelligent Systems with Markov Blankets 43

by Friston et al. [6,8]. Essentially, it comprises sensory information and actions
within a Markov blanket (MB) [10], through which a thing interacts with its
environment. The MB shields the thing from all the variables it is conditionally
independent of. Therefore, to determine the state of the thing, only the variables
in the MB must be considered. Transferring this concept to the CC, you could
model each device’s behavior through MBs [11] and evaluate device requirements
by considering a limited amount of variables. Existing work [7,9,11], however,
assumes prior knowledge of how metrics are related to the system state; this
approach is not scalable if requirements change during operation or metric cor-
relations are unknown at design time. Thus, existing approaches would fail to
ensure the intricate requirements of CC systems.

Each tier in the CC poses its own requirements, which must be fulfilled to
create a composable and unified service. To model requirements, Cloud Comput-
ing introduced Service Level Objectives (SLOs) as a means to achieve business
agreements between infrastructure provider and application developer. However,
we propose to expand SLOs to requirements that directly influence the system
behavior and the application performance. Inspired by the work of Friston et al.,
and continuing the research agenda set in [3,5], we aim to leverage the behavioral
concept of MBs to represent SLOs throughout the CC. The causality filter of the
MB reduces the scope of variables that each device must analyze; thus, decreas-
ing the computational effort of analysis. This empowers resource-constrained
devices along the Edge to evaluate SLOs themselves.

In this paper, we propose to evaluate application requirements through MB-
based SLOs. The method constrains each SLO to a set of metrics and infers
configurations that fulfill them. Further, the output is explainable due to the
graphical model used. Hence, the contributions of this article are the following:

– A statistical reasoning model for analyzing conditional dependencies between
metrics in distributed systems. Whenever requirements change, the model
may thus itself answer which metrics are related to their fulfillment.

– The graphical representation of the device state as MB, which allows inter-
preting the device behavior. The state can be broken down into several SLOs;
in case any of them is violated, it can be explained why.

– A mechanism to infer optimal configurations from MBs given mutable system
requirements. It was evaluated under two scenarios in which our approach
provided the only configuration that did not violate any SLO.

2 Methodology

From a high-level perspective, we plan to analyze the device state, map selected
variables to the SLO fulfillment, and provide adaptive device configurations. Our
three-step methodology to achieve this is visualized in Fig. 1: Edge devices pro-
duce metrics about ongoing processing; then Bayesian Network Learning (#1) is
used to identify correlations between metrics and reflect the impact of environ-
mental changes (e.g., increased incoming requests). Next, we introduce system



44 B. Sedlak et al.

Fig. 1. Methodology for training Bayesian networks and extracting knowledge

requirements (i.e., SLOs) and extract a minimum subset of metrics for SLO ful-
fillment (#2). Ultimately, we use these MBs to estimate the probability of SLO
violations and (#3) infer the configuration with the highest compliance level.

While the proposed methodology describes a sequence of actions, the tools
themselves (e.g., algorithms for structure learning) can be optimized depend-
ing on the data. This three-step methodology will be our main mechanism for
predicting the probabilities of SLO violations given a device configuration. If
an SLO is violated due to an environmental change, e.g., a high request count
and thus exceeded application delay, we compare possible configurations and
provide the one with the highest probability of fulfilling the SLO. This matches
our envisioned level of intelligence, i.e., “understanding a situation and reacting
according to needs”, and neatly fits the principles of elastic computing [4].

3 Case Study

The following case study will be used to evaluate our methodology. In partic-
ular, we present two video streaming scenarios that require privacy-preserving
transformations. We analyze device metrics to build a Bayesian Network (BN),
specify SLOs that characterize the QoS, extract the MB around each SLO, and
finally, infer system configurations that have the lowest chance of violating SLOs.

3.1 Setup

Training a BN requires data; therefore, we use the framework introduced in
[12], which allows edge devices to detect privacy-violating patterns (e.g., screen,
face, or voice) in a stream and transform it continuously to resolve possible
privacy violations. As a workload, it fits our methodology because it (1) provides
an ample set of metrics reflecting the QoS of ongoing processing, (2) can be



Designing Reconfigurable Intelligent Systems with Markov Blankets 45

Table 1. (Parameterizable) Metrics captured during workload execution

Name Unit Description Param

delay ms processing time per frame No
CPU % utilization of the CPU No
memory % utilization of the system memory No
pixel num number of pixel contained in a frame Yes
fps num number of frames received per second Yes
bitrate num number of pixels transferred per second No
distance px relative distance of object between frames No
transformed T/F if the model detected a pattern (i.e., face) No
GPU T/F if the device employs a GPU No
config nominal mode in which the device operates Yes
consumption W energy pulled by the device No

parameterized, and (3) can be executed on edge devices. Using the framework,
we specify a privacy model that detects faces within a video stream and blurs
the respective region, a scenario useful for office monitoring or AR setups [1,
12]. During execution, 11 metrics are captured, which we introduce in Table 1.
Each row contains a short description, the measurement unit, and if it can be
parameterized. For example, pixel and fps are video stream properties; however,
the producer can adapt them to create a variable bitrate. Config determines
the device operation mode; devices such as Nvidia Jetson Xavier NX1 can thus
limit their energy consumption and the number of active CPU cores. It is worth
mentioning the metric distance, which tracks the relative position of a detected
face between frames, indicating how fluent/sluggish an object is tracked.

To explore correlations between metrics, we simulate an adaptive bitrate;
precisely, the producer periodically switches between different fps (12, 16, 20,
26, 30) and pixel (120p, 180p, 240p, 360p, 480p, 720p), while the edge device
moves through config modes. Current parameter assignments are part of the
metrics set, which is persisted with every processed frame. Metrics are directly
observable by the device; except for consumption, which is captured through an
external power plug2 over a telemetry period of 10 s. Metrics are accumulated
in a CSV file, which will contain 756,000 rows, captured within 2.5 h.

We identified five SLOs that describe the system state in terms of QoS and
Quality of Experience (QoE); however, each applicable scenario can have its own
subset of relevant SLOs. We assign a name to each SLO and highlight the metrics
from Table 1 (e.g., bitrate) that are used to evaluate the state of the SLO. Some
SLOs are constructed by combining metrics (i.e., within time), others are com-

1 https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/
JetsonXavierNxSeries.html, accessed June 13th 2023.

2 https://www.delock.com/produkt/11827/merkmale.html, accessed June 13th 2023.

https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/JetsonXavierNxSeries.html
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/JetsonXavierNxSeries.html
https://www.delock.com/produkt/11827/merkmale.html


46 B. Sedlak et al.

pared against a customizable threshold (e.g., pixel distance), while other SLOs
directly mimic the value (True/False) of the metric (i.e., transform success).

network usage Edge devices have limited network interfaces, and in some cases,
limited network bandwidth. Since video streams are transferred over the net-
work, bitrate is important to control network congestion.

energy cons Edge devices are restricted in terms of resources and thus must
economize or limit their energy consumption while ensuring compliance with
the remaining system requirements (i.e., other SLOs).

within timeVideo processing introduces a considerable streaming delay, which
can lead to dropping frames and consequently poorer QoE. Hence, the
stream’s fps can be adjusted to limit/avoid dropping frames.

pixel distance Measures the quality of the object tracking capacity; we expect
the tracked object not to jump, but to have a smooth trajectory. Hence, we
define a range for the acceptable distance.

transf success Private or confidential information must not be disclosed; there-
fore, it must maximize the number of transformed faces in the stream.

The workload was executed on the Jetson Xavier NX, which supports
GPU-accelerated video processing over NVIDIA CUDA. To explore correlations
between GPU and other metrics, we execute the entire workload twice on the
Xavier NX – once with and once without CUDA acceleration enabled.

3.2 Model Construction

For constructing the BN, we leverage pgmpy3, a Python-based framework that
supports an ample set of algorithms for structure and parameter learning, e.g.,
Hill-Climb Search (HCS) and Maximum Likelihood Estimation (MLE). We train
the BN with HCS and MLE on all captured metrics, which takes roughly 30 s
on the Xavier NX. After training the BN, we extract the MB for each SLO;
the resulting MBs are visualized in Figs. 2: The first three graphics show simple
SLOs, i.e., such that require exactly one metric for evaluation. For example,
energy cons must evaluate consumption to determine the state of the SLO.
Metrics that have an edge pointing to consumption (i.e., bitrate, config, and
GPU ) causally influence the variable and thus the SLO fulfillment. On the other
hand, within time, is composed of two metrics and thus features two MBs.
Complex SLOs [9] (i.e., such that consist of n metrics) would produce n MBs;
therefore, increasingly complex SLOs will require a sophisticated mechanism to
merge and compress MBs.

We argue that the MBs extracted for each SLO are plausible because con-
tained edges can be rationally explained. Further, all MB SLOs contain at least
one parameterizable metric within their sensory state, i.e., among the variables
that influence the SLO outcome. From a requirements perspective, this is essen-
tial because it allows a device to adapt dynamically to fulfill given SLOs.

3 https://pgmpy.org/, accessed June 14th, 2023.

https://pgmpy.org/


Designing Reconfigurable Intelligent Systems with Markov Blankets 47

Fig. 2. Markov blankets of the SLOs extracted from the Bayesian network

3.3 Device Configuration Inference

To infer device configurations that comply with the SLOs, we extract information
from the BN with Variable Elimination (VE). Instead of querying the entire BN,
we execute the queries on the minimum subset of relevant variables, i.e., the MB
of each SLO. Since the MBs of the SLOs contained all three parameterizable
metrics (i.e., fps, pixel, and config), a device must include these parameters in an
inferred configuration; otherwise, there is no full control over the SLOs. However,
suppose we would only trace a subset of the SLOs (e.g., network usage &
transf success), a configuration must only include the respective parameters
contained in the MBs, e.g., fps & pixel, but not config.

VE computes the probability of SLO violations for exactly one parameter
assignment; we repeatedly apply this approach for all assignments. To be precise,
the parameter space for (pixel : fps : config) consists of (5 : 6 : 3) possible
assignments. Iterating over 5∗6∗3 = 90 combinations and 5 SLO-MBs produces
5∗90 = 450 inference queries, which require roughly 700ms on the Jetson Xavier
NX. The result is a list of configurations that fulfill the given SLOs, e.g., one
could be (240p : 20fps : 4C_20W). To deal with changing requirements and
heterogeneous characteristics of CC devices, it is possible to provide additional
constraints to the VE (e.g., GPU=False), or customize SLOs to rank a metric
rather than limiting it (e.g. minimize consumption).

3.4 Evaluation

To evaluate the quality of inferred configurations, we compare the number of
SLO violations between devices that apply inferred or arbitrary configurations.
We envision two scenarios that are based on the workload for face blurring.
The scenarios are described below, while the corresponding SLO thresholds are
presented in Table 2. We intend to minimize energy cons for both scenarios
regardless of whether the energy supply would be constrained:
Scenario A: To create a virtual map (like Google Street View4), a camera-
equipped car captures street videos. The car has an edge device installed to
transform the stream; the result is directly rendered to a local map and only
accessed remotely in case of inspection, so network usage is of less importance.
We assume the rendering process to run in the background; therefore, the GPU

4 https://www.google.com/streetview/, accessed June 18th 2023.

https://www.google.com/streetview/


48 B. Sedlak et al.

is not available for processing. To create a detailed map, pixel distance must
be low, and within time fulfilled in most cases. However, the stream can be
re-rendered to blur undetected faces, thus transf success is less critical.
Scenario B: Within a smart factory, employees equipped with head-mounted
cameras conduct an audit. To protect privacy, the video stream is transformed on
an edge device before streaming to remote consumers. Video content is intended
for live inspection only; therefore, pixel distance and within time are less
important, while high transf success prevents privacy breaches. However, since
audits involve various providers and consumers, low network usage is desired.

Table 2. SLO thresholds that reflect the scenarios’ requirements

Scenario transf success distance network usage within time energy cons GPU

A ≥ 90% ≤ 35 ≤ 8.2 Mio. px/s ≥ 95% min(x) No

B ≥ 98% ≤ 60 ≤ 1.6 Mio. px/s ≥ 75% min(x) Yes

Table 3. List of configurations generated by exact inference or picked naively

Scenario Source Resolution FPS Mode GPU

A inferred 240p 20 4C_15W No
naive 360p 30 6C_20W
random #1 120p 16 6C_20W
random #2 720p 12 2C_10W

B inferred 240p 16 2C_10W Yes
naive 180p 26 4C_15W
random #1 360p 20 2C_15W
random #2 480p 30 6C_20W

We supply the SLO thresholds to the inference mechanism; the resulting
configurations are presented in Table 3: The first line contains the inferred con-
figuration, and the second line the naive assumption; the third and fourth lines
are randomly generated. To evaluate the number of SLO violations, we measured
each configuration’s performance over 10min; results are presented in Table 4.
Over the measurement course, the inferred configurations fulfilled the SLOs for
both scenarios. The naive assumption, on the other hand, violated one SLO
within each scenario (red cell), i.e., in Scenario A it failed to fulfill within time,
while in Scenario B transf success was violated. The randomly generated con-
figurations committed two SLO violations in Scenario A and one in Scenario B
each. The results show that our inferred configurations fulfilled all given SLOs
while also consuming the least energy.



Designing Reconfigurable Intelligent Systems with Markov Blankets 49

Table 4. Fulfillment of SLOs depending on scenario and configuration

Scenario Source transf success distance network usage within time energy cons

A

inferred 98% 15 (97%) 2.0 Mio. 100% 6.0W

naive 100% 10 (100%) 6.9 Mio. 92% 8.0W

random #1 4% 127 (2%) 0.4 Mio. 100% 7.0W

random #2 100% 28 (89%) 11 Mio. 100% 6.0W

B

inferred 98% 18(98%) 1.6 Mio. 100% 6.0W

naive 92% 11(99 %) 1.5 Mio. 100% 6.5W

random #1 99% 15 (100%) 4.6 Mio. 100% 6.0W

random #2 100% 10 (100%) 12.3 Mio. 97% 7.5W

4 Conclusion and Future Work

This paper proposed a statistical reasoning model for explaining causal relations
between metrics and the system state, which is reflected by a set of SLOs and
their MBs. Essentially, this provides individual edge devices with decentralized
intelligence, which helps to cope with the scale and complexity of CC systems.
Our methodology was able to provide configurations that would not commit
SLO violations; however, the scale of CC systems makes it necessary to assess
the impacts of increasingly large Bayesian networks in terms of performance
and precision. Furthermore, to cover heterogeneity among CC devices, we aim
to infer configurations for arbitrary devices.

References

1. Baniya, P., et al.: Towards policy-aware edge computing architectures. In: 2020
IEEE International Conference on Big Data (Big Data), December 2020

2. Beckman, P., et al.: Harnessing the computing continuum for programming our
world. In: Fog Computing, pp. 215–230. John Wiley & Sons, Ltd., April 2020

3. Casamayor Pujol, V., Raith, P., Dustdar, S.: Towards a new paradigm for manag-
ing computing continuum applications. In: IEEE 3rd International Conference on
Cognitive Machine Intelligence, CogMI 2021, pp. 180–188 (2021)

4. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
Internet Comput. IEEE 15, 66–71 (2011)

5. Dustdar, S., Pujol, V.C., Donta, P.K.: On distributed computing continuum sys-
tems. IEEE Trans. Knowl. Data Eng. 35(4), 4092–4105 (2023). https://doi.org/
10.1109/TKDE.2022.3142856

6. Friston, K.: Life as we know it. J. R. Soc. Inter. 10(86), 20130475 (2013). https://
doi.org/10.1098/rsif.2013.0475

7. Fürst, J., Fadel Argerich, M., Cheng, B., Papageorgiou, A.: Elastic services for
edge computing. In: 2018 14th International Conference on Network and Service
Management (CNSM), pp. 358–362, November 2018

8. Kirchhoff, M., Parr, T., Palacios, E., Friston, K., Kiverstein, J.: The Markov blan-
kets of life: autonomy, active inference and the free energy principle. J. R. Soc.
Inter. 15(138), 20170792 (2018)

https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1098/rsif.2013.0475
https://doi.org/10.1098/rsif.2013.0475


50 B. Sedlak et al.

9. Nastic, S., et al.: SLOC: service level objectives for next generation cloud com-
puting. IEEE Internet Comput. 24(3) (2020). https://doi.org/10.1109/MIC.2020.
2987739

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, California (1988)

11. Sedlak, B., Casamayor Pujol, V., Donta, P.K., Dustdar, S.: Controlling data gravity
and data friction: from metrics to multidimensional elasticity strategies. In: IEEE
SSE 2023, Chicago, IL, USA, July 2023

12. Sedlak, B., Murturi, I., Donta, P.K., Dustdar, S.: A privacy enforcing framework
for transforming data streams on the edge. IEEE Trans. Emerg. Top. Comput.
(2023). https://doi.org/10.1109/TETC.2023.3315131

https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1109/TETC.2023.3315131

	Designing Reconfigurable Intelligent Systems with Markov Blankets
	1 Introduction
	2 Methodology
	3 Case Study
	3.1 Setup
	3.2 Model Construction
	3.3 Device Configuration Inference
	3.4 Evaluation

	4 Conclusion and Future Work
	References


