
A Goal-driven Approach for Deploying
Self-adaptive IoT Systems*

Fahed Alkhabbas†, Ilir Murturi∗, Romina Spalazzese†, Paul Davidsson†, and Schahram Dustdar∗
†Internet of Things and People Research Center, Malmö University, Sweden

†Department of Computer Science and Media Technology, Malmö University, Sweden

{fahed.alkhabbas, romina.spalazzese, paul.davidsson}@mau.se
∗Distributed Systems Group, TU Wien, Austria

{imurturi, dustdar}@dsg.tuwien.ac.at

Abstract—Engineering Internet of Things (IoT) systems is a
challenging task partly due to the dynamicity and uncertainty of
the environment including the involvement of the human in the
loop. Users should be able to achieve their goals seamlessly in
different environments, and IoT systems should be able to cope
with dynamic changes. Several approaches have been proposed to
enable the automated formation, enactment, and self-adaptation
of goal-driven IoT systems. However, they do not address
deployment issues. In this paper, we propose a goal-driven
approach for deploying self-adaptive IoT systems in the Edge-
Cloud continuum. Our approach supports the systems to cope
with the dynamicity and uncertainty of the environment including
changes in their deployment topologies, i.e., the deployment nodes
and their interconnections. We describe the architecture and
processes of the approach and the simulations that we conducted
to validate its feasibility. The results of the simulations show
that the approach scales well when generating and adapting the
deployment topologies of goal-driven IoT systems in smart homes
and smart buildings.

Index Terms—Deploying Self-adaptive IoT Systems; Goal-
driven IoT Systems; Edge-Cloud Continuum; Software Archi-
tecture.

I. INTRODUCTION

The Internet of Things (IoT) has enabled objects and

devices, such as sensors, actuators, and appliances to connect

and collaborate to achieve user goals. This has opened up for

the development of novel types of applications in different

domains, such as building automation, transportation, logis-

tics, and health-care [4], [16]. Engineering IoT systems is a

challenging task partly due to the dynamicity and uncertainty
of the environment including involvement of the human in the
loop. Users should be able to achieve their goals seamlessly

in different environments. Also, IoT systems should be able to

cope with dynamic changes, such as the sudden unavailability

of devices and changes in their deployment topologies, i.e.,

the deployment nodes and their interconnections [7].

A Goal-Driven IoT System (GDS) is composed of a set

of devices with individual functionalities that connect and

cooperate temporally to achieve the user goal. In previous

studies, we referred to GDS as Emergent Configurations [1],

[10]. For instance, a GDS could be dynamically formed by

connecting a light sensor and two connected lamps to achieve

the goal “adjust the light level” in a smart meeting room.

Another GDS could be dynamically formed in a hotel room

by exploiting an available light sensor, a connected lamp, and

connected curtains to achieve the same goal of adjusting the

light level. A more complex example is to dynamically form

IoT systems to support users to evacuate a building during an

emergency (e.g., fire) based on available devices and data.
Several approaches have been proposed to enable the dy-

namic formation, enactment, and self-adaptation of GDS.

However, they do not address deployment issues, such as

the automated placement of the GDS functionalities within

a hardware infrastructure. Additionally, among the works that

focus on the deployment of IoT systems, very few aim at

enabling the systems to self-adapt to dynamic changes in their

deployment topologies, such as, the sudden unavailability of

the deployment nodes and the degradation of the quality of

their services or interconnections [7], [28].
In general, IoT systems can be deployed according to the

following models [3], [30]:

1) Everything in the Cloud model: In this model, the

software components of IoT systems are placed in the

Cloud. It is suitable when the systems require significant

elastic processing and storage capabilities or when their

constituents are scattered in various areas.

2) Everything in the Edge model: The software components

of IoT systems are placed in networks of more con-

strained devices with respect to the Cloud (e.g., local

servers and gateways) that are at the Edge of the network.

In this model, the computational capabilities are lower

than those within the Cloud-based model.

3) Hybrid Edge-Cloud model: The software components of

IoT systems are distributed across the Cloud and the

Edge of the network. Thus, it enables exploiting the

advantages of the other two models. For instance, it

supports deploying the components that should perform

processes with low latency in the Edge of the network,

and deploying those that perform resource-demanding

processes in the Cloud.

These deployment models have different properties in terms

of response time, availability, privacy, and other quality char-

acteristics [3].
The deployment of GDS is a complex process partly due

to the following reasons. The number and types of the things

that constitute a GDS formed to achieve a goal can be different

146

2020 IEEE International Conference on Software Architecture (ICSA)

978-1-7281-4659-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSA47634.2020.00022

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

from an environment to another based on the available devices.

Moreover, the dynamically formed GDS may have different

performance requirements based on the requested goals. Addi-

tionally, the hardware infrastructures in different environments

are heterogeneous with respect to their processing and storage

capabilities and interconnections. Furthermore, changes in

the status of the systems constituents and/or the deployment

topologies can happen suddenly.

To address the aforementioned challenges, we propose a

goal-driven approach for deploying GDS in the Edge-Cloud

model. Our approach consists of an architecture and processes
that enable the deployment of GDS and also support them to

self-adapt to dynamic changes in their deployment topologies

and in the status of the IoT things that constitute them. The

proposed approach is goal-driven as the placement of the

functionalities of the GDS on the dedicated hardware resources

should take into consideration the goals. For instance, more

powerful resources should be dedicated to supporting the evac-

uation of a building due to fire compared to those dedicated

to supporting a user to give a presentation. To validate the

feasibility of the approach, we implemented a prototype and

simulated the deployment of GDS in a smart home and a smart

building environments.

The remainder of this paper is organized as follows. Section

II discusses related work. Section III introduces the approach.

Section IV presents the prototype implementation. Section V

presents the simulations performed to validate the feasibility

of the approach. Section VI discusses the approach. Finally,

Section VII concludes the paper and outlines future work

directions.

II. RELATED WORK

Several approaches have been proposed to enable the dy-

namic formation and adaptation of goal-driven IoT systems.

Mayer et al. [25] proposed an approach where the capabil-

ities of IoT devices are modeled as semantically annotated

services to enable the dynamic composition of goal-driven IoT

mashups. The approach also supports the automated adaptation

of the mashups apropos the availability of the services. In [2],

we proposed an approach for enabling the automated forma-

tion and adaptation of goal-driven IoT systems by exploiting

context-awareness and AI-planning techniques. De Sanctis et

al. [12] proposed a service-based approach for dynamically

forming goal-driven IoT systems taking into consideration the

quality aspects of available things (e.g., energy consumption

and response time). Tsigkanos et al. [34] proposed a goal-

driven approach for engineering resource coordination at run-

time, tailored for the decentralized and pervasive systems. The

approach considers dependencies among IoT things in order to

achieve a particular goal. None of the existing approaches that

enable the dynamic formation and/or adaptation of goal-driven

IoT systems addresses deployment issues.

The challenges introduced in the Edge-Cloud contin-

uum [13], such as heterogeneity, resource-constrained, and

volatile environments have grabbed the attention of many

researchers, resulting in proposing various techniques for

addressing the resource management problem (i.e., application

placement [24] or resource discovery [27]). In Edge Com-

puting, the application placement problem has been widely

studied by considering various factors such as computation

and communication time [21], [36], data size [32], cost [18],

[20], and user-application context [11], [20]. Skarlat et al. [33]

introduced a novel approach on how to place IoT services on

Edge resources optimally by considering Quality-of-Service

(QoS) constraints like deadlines on the execution time of ap-

plications. The service placement problem is formulated as an

integration linear programming problem where the placement

solutions are evaluated in terms of the cost of execution and

QoS adherence. Consequently, the services are placed on Edge

nodes (if possible). In case of any failure, the services are

allocated to the Cloud.

Concerning the research papers mentioned above, the major-

ity of the proposed methodologies often rely on mathematical

approaches attempting to optimize different trade-offs (e.g.,

latency and resource utilization). In case of failures, in the

majority of the approaches, applications are deployed in the

Cloud. In contrast, our approach enables the dynamic gener-

ation of deployment topologies based on the complexity of

users’ goals, the performance requirements, and considering

available resources on the hand. Notably, this enables a more

efficient utilization of resources.

Very few works aim at enabling IoT systems to self-adapt

to dynamic changes in their deployment topologies [7], [28].

Contreras et al. [19] proposed an architecture for supporting

the availability of services in mobile and dynamic Edge envi-

ronments. When an Edge node (e.g., a laptop) that provides

a service moves, becomes unreachable, or is about to run out

of battery, the service consumers elect another node that runs

a replica of the service. The selection is made by performing

heuristics on the hardware capabilities and battery levels of

available nodes. Unlike our approach, the mentioned work

does not consider resources at the Cloud, network latency, and

performance requirements. Additionally, if two Edge nodes

have equal battery levels, a service will be deployed to the

node that has the highest computational capabilities, although

the other node might be able to run it satisfactorily. Our

approach enables more efficient utilization of the resources

in the Edge-Cloud continuum by evaluating the complexity of

the goals and generating deployment topologies accordingly.

Filiposka et al. [15] introduced a novel location-aware re-

source management technique for Edge Computing to support

the automated migration of live services when users or devices

move. The mentioned work and our approach are comple-

mentary to each other. In [5], the authors consider Edge in-

frastructures as resource-constrained environments where IoT

systems are modeled as directed acyclic graphs and deployed

in many nodes. The systems are deployed using a decentralized

algorithm that also enables the dynamic re-deployment of

their software components to meet Service Level Agreements

(SLAs). Unlike our approach, the mentioned work does not

support hybrid deployment models and is not goal-driven.

Similarly, Sahni et al. [31] proposed a novel task allocation

147

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of the approach

technique based on an improved genetic algorithm that aims at

optimizing the total energy consumption of all tasks deployed

at the Edge. Unlike our approach, the proposed technique does

not support IoT applications to adapt to the changes in their

deployment topologies.

To summarize, the novelty of our approach lies in enabling

the dynamic deployment of GDS considering the complexity

of the goals they aim to achieve and the performance re-

quirements. Also, our approach enables GDS to self-adapt in

response to dynamic changes in the status of their constituents

and also their deployment topologies.

III. THE APPROACH

Following an in-depth analysis of the related studies pre-

sented in Section II, in this section, we present the architecture

and processes of the goal-driven approach for deploying GDS.

The approach exploits the notion of Monitor-Analyze-Plan-

Execute plus Knowledge (MAPE-K) loop adopted from the

field of Self-adaptive Systems [22].

A. Architecture

Figure 1 illustrates the architecture of the approach.

It comprises seven main components as described in the

following.

User Agent. It is an application that runs on one (or

more) of the available smart devices (e.g., smartphone). It

enables users to express their goals and interact with the

system. Exploring this component is out of the scope of this

paper as we focus mainly on addressing deployment issues.

Some studies (e.g., [23], [25]) explore the design of user

agents. However, more efforts are needed to enable users to

interact with GDS effectively.

Goal Manager. This component comprises two sub-

components responsible for forming GDS that achieve users’

goals (if possible). The Goal Interpreter is responsible for

analyzing the goals in the context of their spatial boundaries

(e.g., room, building). The GDS Former is responsible for

dynamically forming GDS (if possible). More specifically,

based on the functionalities and the things available within a

goal’s spatial boundaries, the GDS former is responsible for

identifying: (i) the set of functionalities needed to achieve the

goal; (ii) the things that either can perform the functionalities

or their input is needed to enact them; (iii) the order in which

the functionalities should be enacted. For instance, to adjust

the light level in a room, the functionalities could be the

following:

1) Get the current light level: this functionality can be

performed by a light sensor.

2) Specify the suitable light level: this functionality can be

performed, for instance, by a camera and an application

that recognizes the ongoing activity (e.g., presentation)

and specifies the suitable light level accordingly.

3) Set the specified light level: this functionality can be

performed by actuators, such as connected curtains and/or

lamps.

To achieve the goal, the above functionalities should be

executed in the following order 1) then 2) and then 3).

As presented in Section II, several approaches have been

proposed to enable the dynamic formation of goal-driven

IoT systems by exploiting different techniques from different

domains. Thus, the exploration of this component is out of

the scope of this paper. In our prototype, we leveraged an

extended version of the ECo-IoT approach [2], which is well-

aligned with our vision and uses open source technologies to

realize GDS.

Deployment Planner. This component comprises two

sub-components responsible for planning the deployment

of GDS. The Goal Complexity Evaluator is responsible for

evaluating the complexity of users’ goals using the following

metrics [14], [17]:

148

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The process of deploying GDS

1) The number of the leaf sub-goals of a goal in the

ontology: Leaf goals are atomic goals that cannot be de-

composed. On this metric, a goal is considered primitive
if the number of its leaf sub-goals is less than or equal to

seven, and complex if the number is greater than seven.

2) The number of things within the spatial boundaries of

the goal: The knowledge base has information about

the locations of the things. On this metric, a goal is

considered primitive if the number of the things within

its spatial boundaries (e.g., room, building) is less than or

equal to fifty, and complex if the number is greater than

fifty.

3) The depth of the decomposition tree of the goal in

the ontology: The ontology represents the decomposition

trees of goals via the relation “has sub-goal” (see below).

On this metric, a goal is considered primitive if the depth

of its decomposition tree is less than or equal to three,

and complex if the depth is greater than three.

A goal is considered primitive, if it is primitive on all the above

metrics, otherwise it is considered complex. In this paper,

we consider these two options only, we plan to extend this

classification criteria to cover the option(s) between them.

The Topology Generator is responsible for generating

deployment topologies for the GDS. A topology specifies

the deployment nodes that run the GDS functionalities, the

communication links among the nodes, and the links between

the nodes and GDS things.

Context Manager. This component comprises two sub-

components responsible for maintaining and reasoning about

the context of GDS. In this paper, the Context Monitor
is responsible for monitoring hardware infrastructures and

updating the Knowledge base when changes occur. More

specifically, it monitors the following:

1) The availability status of Cloud and Edge nodes, their

QoS, and hardware utilization rates.

2) The availability status of the things, their locations, and

battery levels (when applicable).

3) The status and latency of the communication links.

We do not investigate how the monitoring services are imple-

mented, a study that addresses relevant aspects is presented in

[6]. The QoS of the deployment nodes is evaluated by com-

paring the time it takes the nodes to execute the functionalities

at runtime with the time specified in the knowledge base for

the different categories of software functionalities (see below).

The Reasoning Engine is responsible for analyzing the

changes in the context and triggering events that reflect them.

The reasoning engine can trigger two categories of events:

1) Category one (C1): This category comprises the following

types of events: a deployment node is not available; the

QoS of a node has degraded; a link is not available; a

link experiences a high latency.

2) Category two (C2): This category comprises the fol-

lowing types of events: a thing has moved out of the

spatial boundaries of a GDS that comprises it; a thing is

disconnected or turned off.

Enactment Engine. This component comprises two sub-

components responsible for deploying GDS and enacting

them. The Topology Deployer is responsible for deploying

GDS software functionalities within hardware infrastructures

as specified in the topologies generated by the deployment

planner. The Orchestrator is responsible for enacting the

functionalities of GDS in the order specified by the goal

manager.

Adaptation Manager. This is an event-driven component

that comprises two sub-components responsible for adapting

149

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE CLASSIFICATION OF THE SOFTWARE FUNCTIONALITIES BASED ON

THEIR HARDWARE REQUIREMENTS

Category CPUs RAM (GB) HDD (GB)
Small 1 1 10

Medium 2 3 30
Large >=4 >=4 >=40

GDS in response to the events triggered by the context

manager. The Event Monitor is responsible for monitoring

the knowledge base and identifying unprocessed events. The

Event Handler is responsible for analyzing how the detected

events affect the GDS whose enactment has not completed

and for triggering the appropriate adaptation processes.

Knowledge Base. This component is the container of the

GDS context. It comprises two sub-components, a Database
(DB) and a Goal Ontology. The DB has information about

the following:

1) Software functionalities: For each functionality, the DB

stores information about: the software dependencies and

the hardware requirements needed to enact it. For in-

stance, a functionality should be deployed to a node that

runs a Java Virtual Machine.

The hardware requirements are classified into minimal
and optimal. The former specifies the critical hardware

resources (i.e., CPU, RAM, and storage) needed to enact

the functionality. In contrast, the latter specifies the least

hardware resources that achieve maximum performance

(i.e., adding more resources will not improve the ex-

ecution time of the functionality). Each functionality

is automatically classified into one of the categories

presented in Table I based on the average of their minimal

and optimal hardware requirements. We assume that these

requirements are specified at design time.

2) Hardware infrastructures: The DB stores information

about the available Edge and Cloud nodes, available

things, and the communication links. For both Edge

and Cloud nodes, the DB stores information about the

software systems and applications that they run (e.g.,

operating systems and the installed frameworks), the set

of things connected to each node (See Figure 1), and the

approximate time needed for a node to execute small,

medium, and big software functionalities. Additionally,

for an Edge node, the DB stores information about its

type (e.g., a server or a gateway), hardware resources

(i.e., CPU cores, RAM, and storage), and the utilization

rates of those resources. The hardware capabilities of the

Cloud nodes are assumed to be unbounded as customers

can buy more processing power, RAM, and storage [8].

For each thing, the DB stores information about its

type (e.g., light sensor), availability status, location, and

battery level (when applicable). Finally, for each commu-

nication link, the DB stores information about its latency

and download and upload bandwidth.

3) Events: The DB stores the events triggered by the context

manager. For each event, it stores information about when

it was triggered, its type (e.g., node became unavailable),

category (i.e., C1 or C2), and if it was processed by

the adaptation manager. Additionally, based on the event

type, different metadata are considered. For instance, for

the types under the category C1, the related deployment

node or communication link are specified.

4) Deployed functionalities: The database stores information

about where the software functionalities of GDS are

deployed within a hardware infrastructure.

5) Locations: The DB stores information about the known

spatial boundaries (e.g., a room, building).

6) GDS: The DB stores information about the formed GDS

including the goals they aim to achieve, the goals’ spatial

boundaries, the identifiers of the things and the function-

alities that constitute the GDS, and the identifiers of the

used deployment nodes and communication links.

The Goal Ontology contains semantic knowledge about

users’ goals. It has one class called “Goal” that models the

goals’ types (e.g., adjust light level), and one object property

that models the relation “has sub-goal”. Moreover, it includes

an attribute that specifies the performance requirements, which

determine the maximum acceptable time for enacting a GDS.

More specifically, the specified time is the sum of the time

needed to execute the GDS functionalities and the latency

of all involved communication links. We chose to represent

this component as an ontology because of ontologies’ expres-

siveness in representing shared understanding of knowledge

among people, and the availability of several tools that support

their usage [29], [35].

B. Process

1) The Process of Deploying GDS: As illustrated in Figure

2, the process1 starts when a user expresses her/his goal

via the user agent. This means specifying at least the goal

type (e.g., adjust light level) and spatial boundaries (e.g.,

a meeting room). At this phase, this is achieved by asking

the user to select the goal type and spatial boundaries from

predefined lists of goals and locations (we plan to work on

a mixed-initiative approach as future work). Then, the goal

manager interprets the goal, retrieves from the knowledge base

the functionalities and the things available within the spatial

boundaries, and forms a GDS that can achieve the goal (if

possible).

If the goal is achievable, the goal manager forwards the set

of functionalities and related things that constitute the GDS

to the deployment planner, which evaluates the complexity

of the goal using the metrics presented in Section III-A. If

the goal is primitive, the minimal hardware requirements of

the specified functionalities are considered when generating a

deployment topology for the GDS. Instead, the optimal hard-

ware requirements are considered, if the goal is complex. After

1The processes in Figure 2 and Figure 3 are modeled using the standard
Business Process Model and Notation (BPMN) http://www.bpmn.org

150

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The deployment adaptation process

that, the deployment planner gets the status of the hardware

infrastructure from the knowledge base including the available

nodes, the software installed on them, their current hardware

utilization rates, and the latency of the communication links

among them.

Next, the deployment planner tries to generate a deployment

topology that maps the GDS functionalities to the available

deployment nodes taking into consideration the performance

requirements that the GDS should meet as specified in the

goal ontology. For this purpose, it runs a refined version of

the algorithm presented in [8]. More specifically, for each

functionality, it finds all the compatible deployment nodes

that meet the hardware and software requirements of the

functionality. A compatible node should also be connected

(directly or indirectly) to the set of things related to the

functionality.

After that, the deployment planner applies heuristics, based

on the available hardware resources (i.e., CPU, RAM, and disk

storage) of the candidate nodes and ranks them accordingly.

Then, it sorts the list of functionalities in ascending order

based on the number of the compatible nodes that can run

them. To form the topology, it starts mapping the functionali-

ties that have the least number of candidate nodes as follows.

If the requested goal is complex, a functionality is mapped to

the compatible node with the highest rank. Instead, if the goal

is primitive, the functionality is mapped to the node with the

lowest rank.

Then, the deployment planner estimates the total time re-

quired to enact the GDS using the selected nodes by summing

the time needed for the nodes to run the GDS functionalities

and the latency of the involved communication links. The

sum is performed considering the order of the functionalities

specified by the goal manager (see Section III-A). If the per-

formance requirements specified in the ontology cannot be met

and the goal is complex, the user is notified about the expected

delay in realizing her/his goal. If the goal is primitive, the

deployment planner tries to map the functionalities to nodes

that have higher ranks in the list of candidate nodes. Whenever

a functionality is re-mapped, the sum is recalculated. If the

performance requirements cannot be met, the user is notified

about the expected delay. Note that, whenever a functionality

is mapped to a node, the deployment planner anticipates the

remaining available resources on the node.

If a topology exists, the enactment engine deploys the

functionalities of the GDS in the deployment nodes. Also,

it updates the knowledge base by deducting the hardware

requirements of the functionalities from the consumable hard-

ware resources (i.e., RAM and disk storage) of the deployment

nodes. Similarly, it updates the available bandwidth of the

communication links specified in the topology. Moreover, it

updates the deployed functionalities repository to reflect where

each functionality is deployed, and it adds the GDS to the

151

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

GDS repository. Finally, it enacts the GDS by executing each

functionality in the order specified by the goal manager.
2) The Process of Adapting GDS: As illustrated in Figure 3,

the context manager continuously monitors the context, gener-

ates events when changes are detected, and stores those events

in the knowledge base. The adaptation manager continuously

monitors the events in the knowledge base and analyzes them.

This means identifying the set of GDS whose enactment has

not completed yet and are affected by the changes in the

context that are reflected by the events.
After identifying the set of affected GDS, the adaptation

manager triggers the proper adaptation process based on the

category of the detected event. If the event is of category C1

(e.g., deployment node became unavailable), the adaptation

manager tries to generate a new deployment topology for each

of the affected GDS, as explained in the deployment process

previously. For each GDS, if a new topology is generated,

the enactment engine rolls back the deployment of the unused

links and/or nodes of the old topology, deploys the new ones,

and enacts the GDS.
If the deployment planner cannot generate a deployment

topology for a GDS, or if the event is of category C2, the goal

manager is requested to form a new GDS that can maintain the

achievement of the goal (if possible). If a new GDS is formed,

the deployment planner generates a new deployment topology

for it (if possible). Then, the enactment engine rolls back the

deployment of the unused links and/or nodes of the previous

topology, deploys the new one, and enacts the GDS. If the goal

manager cannot form a new GDS or the deployment planner

cannot generate a deployment topology for the newly formed

GDS, the enactment engine rolls back the deployment of the

old topology and the user is informed that her/his goal is no

longer achievable.

IV. PROTOTYPE IMPLEMENTATION

In this section, we present some details about the prototype

we implemented and exploited to run simulations to validate

the feasibility of the approach. The prototype was implemented

in Java.
1) Goal Manager: We extended the ECo-IoT approach [2]

to simulate the dynamic formation of concurrent GDS. The

goal of a GDS is randomly selected from a list that contains

the goals in the knowledge base. The number of functionalities

of the GDS is also randomly specified and ranges between

two and nine. The generated functionalities were sequentially

linked. Additionally, for each functionality, the number of

related things is randomly specified and ranges between one

and three.
2) Deployment Planner: To implement the goal complexity

evaluator, we integrated the OWL-API (version 5.1.3)2 to

query the goal ontology. To implement the topology generator,

we refined and extended parts of the FogTorchΠ simulator

to generate deployment topologies for GDS. FogTorchΠ was

originally proposed to support IoT designers in making deci-

sions about where to deploy the functionalities of IoT systems.

2http://owlapi.sourceforge.net/

It finds eligible deployment topologies and provides analysis

of the resource consumption rate for each topology [8]. Note

that, unlike our approach, it considers a static set of things, it

is not goal-driven, and does not support the self-adaptation of

GDS in response to dynamic changes in their environments.
3) Context Manager: In this first prototype implementation,

the context manager was implemented as a couple of con-

tinuously running threads. The context monitor exposes APIs

to receive changes about the context including those at the

infrastructure level, and the reasoning engine analyzes those

changes and generates events that reflect them as explained

in Section III-A. None of the existing Java-based simulators

supports simulating the events we consider at the level of a

hardware infrastructure. Therefore, we implemented a simula-

tor that given a hardware infrastructure and a set of deployment

topologies, it randomly generates events of the categories C1

and C2.
4) Enactment Engine: In this first prototype implementa-

tion, the topology deployer and the orchestrator were imple-

mented as Java classes. They simulated the deployment and

enactment of GDS.
5) Adaptation Manager: Both the event analyzer and the

event handler were implemented as continuously running Java

threads.
6) Knowledge base: : The goal ontology was represented

using the Ontology Web Language OWL [26]. Other tech-

niques (e.g., Resource Description Framework (RDF)) could

also be used to realize the ontology. We chose OWL due to its

expressiveness and the high performance of the open-source

OWL-API. The DB component was realized as a PostgreSQL

relational database. The set of functionalities in the DB were

automatically generated. The minimal and optimal hardware

requirements of those functionalities were randomly specified

as follows. The minimal CPU cores are either 1 or 2, the mini-

mal required available RAM ranges between (0.2 — 0.9 GB),

and the minimal required available storage ranges between

(0.2 — 1.5 GB). The optimal CPU cores range between (2

— 4), the optimal required available RAM ranges between (1

— 3 GB), and the optimal required available storage ranges

between (1.5 — 4 GB). The software requirements of the

nodes that can run the generated functionalities were randomly

specified from a set that contains 10 software systems and

applications (e.g., Java, Linux, Microsoft Office).

V. VALIDATION

The dynamicity of the IoT environment and the involve-

ment of the human in the loop require the approach to be

responsive when deploying GDS. To validate the feasibility of

our approach, we simulated the deployment of GDS using the

implemented prototype. We simulated a smart home and smart

building environments, as explained below. The simulations

were conducted on a dual-core CPU running at 2.7 GHz, with

16 GB memory.

A. Simulating the Deployment of GDS in a Smart Home
Figure 4 illustrates the hardware infrastructure of the smart

home where we simulated the deployment of GDS. The infras-

152

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Smart home infrastructure

tructure comprises 10 gateways that are connected to 40 things,

an Edge server, and a Cloud node. For the gateways hardware

specifications, we considered the specifications of Raspberry

Pi3 and extended the storage capabilities of some of them to

reach 1 GB. Eight Gateways are connected to the Edge server,

while two gateways are connected to the Cloud node directly,

to simulate devices, such as Alexa4 and Google Nest hub5.

The QoS profiles for the communication links in the figure are

presented in Table II. Seven software systems and applications

that run on each node were randomly specified from the same

set that was used to specify the software requirements of

the functionalities. Moreover, the time required to run small,

medium, and big functionalities were specified for each node

based on its hardware capabilities.

TABLE II
THE QOS PROFILES OF COMMUNICATION LINKS [9]

Profile Latency Download Upload
4G 53 ms 22.67 Mbps 16.97 Mbps
VDSL 60 ms 60 Mbps 6 Mbps
WLAN 15 ms 32 Mbps 32 Mbps
Satellite 14M 40 ms 10.5 Mbps 4.5 Mbps
Fiber 5 ms 1000 Mbps 1000 Mbps

TABLE III
GENERATING DEPLOYMENT TOPOLOGIES FOR GDS

Number of
concurrent
GDS

Total number
of

functionalities

Total number
of things

Average
time/GDS

(ms)
5 30 41 63
10 48 75 72
15 81 115 83
20 100 156 92

Figure 5 illustrates the average time for generating deploy-

ment topologies for GDS by the deployment planner. Table

III provides the total number of functionalities and things that

constitute the simulated GDS. Note that, a thing can be related

3https://www.raspberrypi.org/products/raspberry-pi-4-model-
b/specifications/

4https://aws.amazon.com/iot/solutions/connected-home/iot-and-alexa/
5https://store.google.com/se/product/googlenesthub

Fig. 5. Generating deployment topologies for GDS in the simulated smart
home

to more than one functionality and be among the constituents

of multiple GDS. We also simulated the adaptation of the

GDS in response to dynamically triggered events. Figure 6

and Figure 7 illustrate the average time for adapting GDS in

response to events of the categories C1 and C2, respectively.

Table IV and Table V provide information about the number of

performed adaptations for each category. As can be noted, the

simulations show that deployment topologies were generated

and adapted in the scale of milliseconds.

Fig. 6. Adapting GDS in response to event of the category C1 in the simulated
smart home

Fig. 7. Adapting GDS in response to event of the category C2 in the simulated
smart home

153

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
SIMULATION RESULTS FOR ADAPTING GDS IN RESPONSE TO EVENTS OF

CATEGORY C1 IN THE SMART HOME

Number of
concurrent

GDS

Number of
events

Number of
performed
adaptations

Average
time/event

(ms)
5 1 2 72
10 3 5 96
15 5 9 102
20 7 11 116

TABLE V
SIMULATION RESULTS FOR ADAPTING GDS IN RESPONSE TO EVENTS OF

CATEGORY C2 IN THE SMART HOME

Number of
concurrent

GDS

Number of
events

Number of
performed
adaptations

Average
time/event

(ms)
5 2 4 48
10 5 9 56
15 8 14 68
20 11 23 83

B. Simulating the Deployment of GDS in a Smart Building

Fig. 8. Smart Building infrastructure

Figure 8 illustrates the hardware infrastructure of the smart

building where we simulated the deployment of GDS. The

building has 7 floors, each of them has an Edge server. Each

Edge server is connected to 81 gateways and each gateway

is connected to 4 things. Thus, the total number of included

things is 2268. Additionally, each Edge server is connected

to two Cloud nodes. The capabilities of the nodes in the

infrastructure and the settings of experiments are similar to

those presented in Section V-A. The QoS profiles for the

communication links in the figure are shown in Table II.

Figure 9 illustrates the average time for evaluating the

complexity of the randomly selected goals and generating
deployment topologies of the dynamically formed GDS to

achieve them. Table VI provides the total number of func-

tionalities and things that constitute the simulated GDS.

We also simulated the adaptation of the GDS in response

to dynamically triggered events. Figure 10 and Figure 11

illustrate the average time for adapting GDS in response to

Fig. 9. Generating deployment topologies for GDS in the simulated smart
building

TABLE VI
GENERATING DEPLOYMENT TOPOLOGIES FOR GDS IN THE SMART

BUILDING

Number of
concurrent

GDS

Total number
of

functionalities

Total number
of things

Average
time / GDS

(ms)
50 227 339 767
100 483 691 1350
150 669 1138 2077
200 928 1600 2587

Fig. 10. Adapting GDS in response to event of the category C1 in the
simulated smart building

Fig. 11. Adapting GDS in response to event of the category C2 in the
simulated smart building

events of the categories C1 and C2, respectively. Table VII

and Table VIII provide more information about the number of

performed adaptations in each simulation. As can be noted, the

154

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
SIMULATION RESULTS FOR ADAPTING GDS IN RESPONSE TO EVENTS OF

CATEGORY C1 IN THE SMART BUILDING

Number of
Concurrent

GDS

Number of
events

Number of
performed
adaptations

Average
time/event

(ms)
50 5 8 77

100 10 15 162
150 15 30 182
200 20 63 220

TABLE VIII
SIMULATION RESULTS FOR ADAPTING GDS IN RESPONSE TO EVENTS OF

CATEGORY C2 IN THE SMART BUILDING

Number of
Concurrent

GDS

Number of
events

Number of
performed
adaptations

Average
time/event

(ms)
50 20 13 90

100 30 22 180
150 40 32 450
200 50 74 900

simulations show that the approach can generate deployment

topologies for 200 GDS, which comprise in total 928 func-

tionalities and 1600 things, in an average time of 2.5 seconds.

Additionally, the simulations show that the approach enables

the adaptation of GDS in response to events of category C1 in

an average time of less than 250 milliseconds, when 20 events

are triggered concurrently. Moreover, the expirements reveal

that the approach enables the adaptation of GDS in response to

events of category C2 in an average time of 900 milliseconds,

when 50 events are triggered concurrently.

VI. DISCUSSION

Compared to the approaches discussed in Section II, our

approach enables the dynamic deployment of GDS in the

Edge-Cloud continuum considering the complexity of users’

goals and the performance requirements. Additionally, it sup-

ports the automated adaptation of those systems in response to

dynamic changes in their deployment topologies and the status

of their constituents. However, our approach does not guaran-

tee that the generated topologies are the most optimal ones

with respect to resource consumption rates and performance.

GDS are realized within well-defined spatial boundaries (e.g.,

building, room). Consequently, we do not expect the number

of the things available in those boundaries to be massive.

Under the assumptions that the leveraged components of

the FogTorchΠ simulator and the other components in our

approach meet their requirements, our approach generates

correct topologies and scales well at the level of smart homes

and (big) smart buildings, as shown in Section V.

In this paper, we assumed that the software components of

the proposed approach are deployed offline. At the smart city

scale, several instances of the approach would be needed to

be deployed. Those instances should be able to automatically

scale up to meet the performance requirements or down

to optimize the usage and the cost of using the available

resources. Multiple requirements can influence the decisions of

where to deploy GDS software functionalities within hardware

infrastructures. For instance, some resources at the Edge (e.g.,

smartphones) have limited energy resources. Moreover, some

users might be unwilling to process their private data in the

Cloud or to pay for the cost of using it. Furthermore, goals

might have different priorities. Thus, the GDS that aim to

achieve the goals with the highest priorities should be realized

before those having less priorities. We plan to address these

aspects in our future work.

Finally, our approach requires developers to construct the

goal ontology, specify the software requirements, and minimal

and optimal hardware requirements of available functionalities.

Moreover, they also need to model resources within available

hardware infrastructures. In our future work, we plan to evolve

the approach and enable it to automatically detect and monitor

the available resources in the Edge-Cloud continuum.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a goal-driven approach that

enables the automated deployment of GDS in the Edge-Cloud

continuum and the adaptation of those systems in response

to dynamic changes in their deployment topologies and the

status of their constituents. To validate the feasibility of

our approach, we simulated the generation and adaptation

of deployment topologies of GDS in a smart home and a

smart building. The results of the simulations reveal that the

approach scaled well in both cases.

In our future work, we plan to perform a more extensive

evaluation of the approach. Also, we will investigate how

to enable the proposed approach to scale to support the

realization of GDS in a large scale IoT environment (e.g.,

smart city). The approach can also be extended in other

directions as described in the following. To generate more

reliable deployment topologies for GDS, the approach can

be extended to consider the energy consumption of battery

powered Edge nodes. Other QoS attributes and constraints

that are also relevant include privacy, security, and cost. Also,

the approach can be evolved to automatically evaluate the

trade-offs among the QoS attributes and generate deployment

topologies accordingly. Moreover, it can be extended to enable

the deployment of GDS formed to achieve goals with different

priorities.

ACKNOWLEDGMENT

This work is partially financed by the Knowledge Founda-

tion through the Internet of Things and People research profile

(Malmö University, Sweden) and by the Research Cluster

“Smart Communities and Technologies (Smart CT)” at TU

Vienna.

REFERENCES

[1] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Architecting
Emergent Configurations in the Internet of Things. In 2017 IEEE
International Conference on Software Architecture (ICSA), pages 221–
224. IEEE, 2017.

155

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

[2] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. ECo-IoT:
An architectural Approach for Realizing Emergent Configurations in the
Internet of Things. In European Conference on Software Architecture,
pages 86–102. Springer, 2018.

[3] Majid Ashouri, Paul Davidsson, and Romina Spalazzese. Cloud, Edge,
or Both? Towards Decision Support for Designing IoT Applications.
In 2018 Fifth International Conference on Internet of Things: Systems,
Management and Security, pages 155–162. IEEE, 2018.

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A Survey. Computer Networks, 54(15):2787–2805, 2010.

[5] Cosmin Avasalcai and Schahram Dustdar. Latency-Aware Distributed
Resource Provisioning for Deploying IoT Applications at the Edge of
the Network. In Future of Information and Communication Conference,
pages 377–391. Springer, 2019.

[6] Antonio Brogi, Stefano Forti, and Marco Gaglianese. Measuring the Fog,
Gently. In International Conference on Service-Oriented Computing,
pages 523–538. Springer, 2019.

[7] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera. How
to Place Your Apps in the Fog-State of the Art and Open Challenges.
arXiv preprint arXiv:1901.05717, 2019.

[8] Antonio Brogi, Stefano Forti, and Ahmad Ibrahim. How to Best Deploy
your Fog Applications, Probably. In 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), pages 105–114.
IEEE, 2017.

[9] Antonio Brogi, Stefano Forti, and Ahmad Ibrahim. Deploying fog
applications: How much does it cost, by the way? In CLOSER, pages
68–77, 2018.

[10] Federico Ciccozzi and Romina Spalazzese. MDE4IoT: Supporting the
Internet of Things with Model-driven Engineering. In International
Symposium on Intelligent and Distributed Computing, pages 67–76.
Springer, 2016.

[11] Simone Cirani, Gianluigi Ferrari, Nicola Iotti, and Marco Picone. The
IoT Hub: A Fog Node for Seamless Management of Heterogeneous
Connected Smart Objects. In 2015 12th Annual IEEE International
Conference on Sensing, Communication, and Networking-Workshops
(SECON Workshops), pages 1–6. IEEE, 2015.

[12] Martina De Sanctis, Romina Spalazzese, and Catia Trubiani. QoS-
Based Formation of Software Architectures in the Internet of Things.
In European Conference on Software Architecture, pages 178–194.
Springer, 2019.

[13] Schahram Dustdar, Cosmin Avasalcai, and Ilir Murturi. Edge and Fog
Computing: Vision and Research Challenges. In 2019 IEEE Inter-
national Conference on Service-Oriented System Engineering (SOSE),
pages 96–9609. IEEE, 2019.

[14] Patrı́cia Espada, Miguel Goulão, and João Araújo. A Framework to
Evaluate Complexity and Completeness of KAOS Goal Models. In In-
ternational Conference on Advanced Information Systems Engineering,
pages 562–577. Springer, 2013.

[15] Sonja Filiposka, Anastas Mishev, and Katja Gilly. Mobile-aware
Dynamic Resource Management for Edge Computing. Transactions on
Emerging Telecommunications Technologies, page e3626.

[16] Daniel Giusto, Antonio Iera, Giacomo Morabito, and Luigi Atzori. The
Internet of Things: 20th Tyrrhenian Workshop on Digital Communica-
tions. Springer Science & Business Media, 2010.

[17] Catarina Gralha, João Araújo, and Miguel Goulão. Metrics for Measur-
ing Complexity and Completeness for Social Goal Models. Information
Systems, 53:346–362, 2015.

[18] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost
Efficient Resource Management in Fog Computing Supported Medical
Cyber-Physical System. IEEE Transactions on Emerging Topics in
Computing, 5(1):108–119, 2015.

[19] Gabriel Guerrero-Contreras, Jose Luis Garrido, Sara Balderas-Diaz, and
Carlos Rodrı́guez-Domı́nguez. A Context-aware Architecture Support-
ing Service Availability in Mobile Cloud Computing. IEEE Transactions
on Services Computing, 10(6):956–968, 2016.

[20] Mohammed A Hassan, Mengbai Xiao, Qi Wei, and Songqing Chen.
Help your Mobile Applications with Fog Computing. In 2015 12th
Annual IEEE International Conference on Sensing, Communication, and
Networking-Workshops (SECON Workshops), pages 1–6. IEEE, 2015.

[21] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S
Tucker. Fog Computing May Help to Save Energy in Cloud Computing.
IEEE Journal on Selected Areas in Communications, 34(5):1728–1739,
2016.

[22] Jeffrey O Kephart and David M Chess. The Vision of Autonomic
Computing. Computer, (1):41–50, 2003.

[23] In-Young Ko, Han-Gyu Ko, Angel Jimenez Molina, and Jung-Hyun
Kwon. SoIoT: Toward a User-Centric IoT-based Service Framework.
ACM Transactions on Internet Technology (TOIT), 16(2):8, 2016.

[24] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
Fog Computing: A Taxonomy, Survey and Future Directions. In Internet
of everything, pages 103–130. Springer, 2018.

[25] Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friedemann
Mattern. Smart Configuration of Smart Environments. IEEE Transac-
tions on Automation Science and Engineering, 13(3):1247–1255, 2016.

[26] Deborah L McGuinness, Frank Van Harmelen, et al. OWL Web
Ontology Language Overview. W3C recommendation, 10(10):2004,
2004.

[27] Ilir Murturi, Cosmin Avasalcai, Christos Tsigkanos, and Schahram
Dustdar. Edge-to-Edge Resource Discovery using Metadata Replication.
In 2019 IEEE 3rd International Conference on Fog and Edge Computing
(ICFEC), pages 1–6. IEEE, 2019.

[28] Phu Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane
Lavirotte, Jean-Yves Tigli, and Arnor Solberg. Advances in Deployment
and Orchestration Approaches for IoT-a Systematic Review. In 2019
IEEE International Congress on Internet of Things (ICIOT), pages 53–
60. IEEE, 2019.

[29] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context Aware Computing for the Internet of Things: A
Survey. IEEE communications surveys & tutorials, 16(1):414–454, 2013.

[30] M Reza Rahimi, Jian Ren, Chi Harold Liu, Athanasios V Vasilakos,
and Nalini Venkatasubramanian. Mobile Cloud Computing: A Survey,
State of Art and Future Directions. Mobile Networks and Applications,
19(2):133–143, 2014.

[31] Yuvraj Sahni, Jiannong Cao, Shigeng Zhang, and Lei Yang. Edge Mesh:
A New Paradigm to Enable Distributed Intelligence in Internet of Things.
IEEE access, 5:16441–16458, 2017.

[32] Heng Shi, Nan Chen, and Ralph Deters. Combining Mobile and Fog
Computing: Using COAP to link Mobile Device Clouds with Fog
Computing. In 2015 IEEE International Conference on Data Science
and Data Intensive Systems, pages 564–571. IEEE, 2015.

[33] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar.
Towards QoS-Aware Fog Service Placement. In 2017 IEEE 1st Interna-
tional Conference on Fog and Edge Computing (ICFEC), pages 89–96.
IEEE, 2017.

[34] Christos Tsigkanos, Ilir Murturi, and Schahram Dustdar. Dependable
Resource Coordination on the Edge at Runtime. Proceedings of the
IEEE, 2019.

[35] Xiaohang Wang, Daqing Zhang, Tao Gu, Hung Keng Pung, et al.
Ontology Based Context Modeling and Reasoning using OWL. In
Percom workshops, volume 18, page 22. Citeseer, 2004.

[36] Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint Op-
timization of Task Scheduling and Image Placement in Fog Computing
Supported Software-defined Embedded System. IEEE Transactions on
Computers, 65(12):3702–3712, 2016.

156

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on June 15,2020 at 13:55:58 UTC from IEEE Xplore. Restrictions apply.

