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Abstract—This paper offers a solution to generate concrete
goals for automating the fulfillment of user intents in the
computing continuum. The computing continuum guarantees a
flexible infrastructure for services at the cost of more complex
handling. Our proposed method innovates the state of the art,
helping build performative automated strategies through the
translation of service owner intents into concrete targets. We
improve on existing intent-based systems by offering support for
multi-domain infrastructures. Furthermore, we go beyond cur-
rent computing continuum management solutions, offering full
automation by generating concrete targets for the continuum of
automated agents. We achieve that through a multi-agent system
built on Large Language Models (LLMs) that translates high-
level business intents into executable Reinforcement Learning
(RL) environments. By leveraging infrastructure representations
in the form of Knowledge Graphs, the framework identifies which
system components require adaptation and estimates the target
metric values needed to fulfill the intent. We evaluate it on a
realistic use case with promising results. We can deploy a fully
working RL agent to manage network and computing resources,
achieving a success rate higher than 80% after preliminary
training.

Index Terms—intent translation, reward generation, reinforce-
ment learning, computing continuum, resource management

I. INTRODUCTION

The computing continuum allows the deployment of ap-
plications on the whole infrastructure spectrum, from the
smallest nodes to the cloud and from computing to network
components, allowing extreme flexibility. However, this design
significantly increases the effort required to maintain and
manage it [1]. Application owners must ensure the correct
functionality of their services and address non-functional re-
quirements such as availability, latency, and cost in a wider
and much more diverse platform. This scenario requires vast
expert knowledge, which is burdensome and expensive to
obtain. For example, smart city scenarios have strict real-
time demands, requiring complex optimization of the whole
computing continuum. In contrast, some services may instead
prioritize cost over latency. Therefore, a mechanism is needed
to evaluate and translate the application owner’s goals and
adapt the system architecture according to them.

Intent-based management aims at addressing this chal-
lenge [2]. In this approach, users define high-level objectives,
and the system autonomously interprets them and adapts

its configuration to meet these goals. The main advantage
of this paradigm is that it allows users to specify desired
outcomes (such as secure or reliable infrastructures) without
having to understand low-level details [3]. Current efforts
extend the intent paradigm, initially developed in the network
domain, to computing. [1], [4]–[6] All these solutions also
address the mission to develop strategies for enforcing the
application owners’ intents on the infrastructure. Typically,
they rely on Reinforcement Learning (RL) algorithms to
centrally instruct autoscaling or scheduling actions. In contrast,
recent research [7]–[10] envisions a distributed approach,
where the computing continuum is partitioned into logical
or geographical groups, each of which autonomously makes
decisions on its infrastructure slice. Such an approach calls
for a middleware, i.e., a coordinator, that ensures that each of
these partitions can work successfully to fulfill the intents.
This way, it is possible to achieve a modular and flexible
way of managing the continuum; each infrastructure instance,
whether it is computing, network, or storage, can use its
agents or models. The coordinator connects them with concrete
objectives that guarantee the application’s intent overall. Still,
both the coordinator and the infrastructure agents need to
have concrete goals for developing their strategies. Whether
the target is an RL algorithm or something else, this task
requires manual configuration, making it complex to have an
autonomous and scalable system management.

Our approach addresses the current gap by proposing
a method to convert business-level intents into actionable
learning objectives suitable for such coordination tools. We
achieve this by composing a multi-agent, LLM-based system
for information gathering and reasoning. We enrich the LLM
with domain-specific data in the form of Knowledge Graphs
(KGs) that represent the continuum infrastructure and the
target application, through Retrieval-Augmented Generation
with Graphs (GraphRAG) processes. In particular, given RL’s
broad adoption, we focus on providing an RL environment
as the output of the intent translation process. This method
returns service-relevant metrics as the observable state space,
possible system adjustments as the action space, and the user’s
custom intent as the reward function. In doing so, the full
scope of the manageable infrastructure—including compute,
network, and storage resources—is taken into account, along
with its continuous improvement through learning in dynamic979-8-3315-0376-5/25/$31.00 ©2025 IEEE

20
25

 IE
EE

 3
3r

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 N
et

w
or

k 
Pr

ot
oc

ol
s (

IC
N

P)
 | 

97
9-

8-
33

15
-0

37
6-

5/
25

/$
31

.0
0 

©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

N
P6

58
44

.2
02

5.
11

19
24

41

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 20,2026 at 08:05:00 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Workflow overview for translating high-level intent into an RL environment

environments. By testing it in a UAV-based use case, we
show encouraging results. We are able to generate a work-
ing, turnkey environment for the RL agent. Furthermore, the
approach is able to satisfy the intent for more than 80% of
the cases. Significantly, we show how we can learn, even with
little information from the infrastructure instances, goals, and
strategies for managing a multi-domain continuum.

To summarize, our main contribution involves addressing
the gap of how to instrument the computing continuum man-
agement algorithms by (I) developing a multi-agent, LLM-
based method for translating high-level intents into actionable
RL environments. Furthermore, (II) we extend the state-of-the-
art by offering a coordinator for multi-domain infrastructure,
where the infrastructure agents act autonomously in their
environment. Finally, (III), we show how this paradigm can
work empirically, without requiring low-level details on the
infrastructure components, displaying promising outcomes.

II. METHODOLOGY

In this section, we introduce the workflow for translating a
user’s high-level intent into an RL environment, illustrated in
Fig. 1.

A. Knowledge Graphs
Knowledge Graphs (KGs) are structured representations of

information expressed as subject–predicate–object triples. The
Knowledge Graphs utilize nodes and edges to model com-
plex relationships and uncover hidden dependencies, thereby
enabling both efficient querying and flexible data model-
ing. In our proposed framework, we incorporate Retrieval-
Augmented Generation with Graphs (GraphRAG) to inte-
grate the structured knowledge from KGs into the reason-
ing process of Large Language Models (LLMs). GraphRAG
extends the standard Retrieval-Augmented Generation (RAG)
approach—commonly used to supplement LLMs with external
context retrieved from documents, databases, images, and
other sources—by leveraging graph-based knowledge rep-
resentations. This integration allows the LLM to generate

responses based not only on its pre-trained parameters but
also on dynamic, contextually relevant information from the
KG, leading to improved accuracy and reliability in generated
outputs [11]. For graph storage and querying, we adopt Neo4j,
due to its compatibility with LangGraph1 and LangChain2

frameworks, and its support for expressive and LLM-friendly
reasoning queries. This choice is further supported by findings
in [12], which indicate that Neo4j-based reasoning and query
generation are more interpretable for LLMs compared to RDF-
based graph structures.

As part of our approach, we employ two distinct types of
knowledge graphs (KGs): the Infrastructure Knowledge Graph
and the Expert Knowledge Graph. The Infrastructure KG
captures the current state of the user’s cloud infrastructure.
It encodes information about available computational
resources and deployed applications, represented as nodes,
with edges denoting their logical or physical connections
(e.g.,(:Service)-[:RUNS_ON]->(:K8sCluster)).
Each application or infrastructure node is linked to :Metric
nodes, which represent key observable metrics and their
current values, such as CPU usage, memory utilization, and
service or network latency. In addition, each metric node has
an associated boolean parameter indicating whether its value
can be adapted and set as a target value for intent-based
management tools. The Expert KG encapsulates domain
knowledge to guide the reasoning process of the LLM agents.
It includes information such as dependencies between Service
Level Indicators (SLIs) or history of recommended actions
on previous intents.

B. Translation workflow

An overview of the translation workflow is shown in
Fig.2. The process is based on a multi-agent framework,
where each stage is handled by a specialized LLM agent
to provide more reliable and task-specific results. For cost

1https://www.langchain.com/langgraph
2https://www.langchain.com/
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Fig. 2: Detailed translation workflow

efficiency, gpt-4o-mini was used in all stages except
Step 5 (Diagnosis & Action Generation) and Step 6 (RL
Environment Generation). In these two stages, gpt-4.1 was
chosen for its better reasoning, reliable tool invocation, and
broad cross-domain knowledge, which are essential for pro-
ducing consistent diagnostic actions and valid RL environment
specifications. To coordinate the interactions among these
agents, we utilize LangGraph due to its stateful orchestration
capabilities and fine-grained control over agent execution flow
and communication.

The translation process begins with a high-level business
intent provided by the user in natural language. Following the
approach used in [13], we break down the complex tasks into
manageable subtasks for improved reasoning and modularity.
The initial input is handled by a query-refiner agent, which
decomposes the vague, high-level request into a set of more
specific sub-questions that guide further research.

Using the refined sub-questions and the schema of the
Infrastructure KG, the system identifies which node labels
and relationship types are relevant for answering the user’s
intent (Step 2) and generates natural language queries for
the KG (Step 3). Each of these queries is then translated
into a Cypher query using the GraphCypherQAChain module
from the LangChain library, which supports natural-language-
to-Cypher translation over a predefined graph schema. Then
a validation agent verifies the completeness of the extracted
relevant system state and, if necessary, generates additional
questions to retrieve any missing data. This multi-step re-
finement is essential. Attempting to directly convert a high-
level intent into a single Cypher query often results in either
overly broad queries that retrieve irrelevant information or
overly narrow ones that omit crucial context. The staged
decomposition enables more precise extraction of relevant
system state data from the Infrastructure KG.

Once the relevant system state is extracted, a domain-
specific ReAct agent—designed to impersonate a cloud-
continuum-management expert—is invoked. The agent ana-
lyzes the retrieved context and proposes corrective or opti-
mization actions, taking into account system constraints and
configurable parameters. Implemented according to the ReAct

paradigm, the agent combines reasoning with action: the LLM
generates intermediate reasoning steps and calls external tools
to support its decisions [14]. In our implementation, the agent
can invoke a web-search tool to retrieve additional, up-to-date
information and a GraphRAG interface over the Infrastructure
and Expert KGs to obtain verified domain knowledge. This
iterative loop continues until the agent gathers sufficient infor-
mation to formulate a response or reaches a predefined time-
out. The final output is a textual explanation of the problem’s
cause, recommended adaptation actions, and estimated target
values for key metrics, derived from the Infrastructure KG.
Once this response is generated, a validation agent reviews
it for correctness and soundness. If the response is found to
be insufficient, the process loops back for further refinement.
Otherwise, the validated recommendation is passed to an agent
responsible for translating it into executable code for a rein-
forcement learning environment—specifically, a Gymnasium-
compatible format, which ensures better interoperability and
standardization [15]. Utilizing the previously extracted system
state, the agent constructs an observation space composed
of metrics relevant to intent fulfillment. It also defines the
action space based on the identified configurable parameters,
enabling their adaptation while enforcing user-defined con-
straints. Moreover, the agent formulates a reward function that
aligns with the user’s business objectives. The final step of the
translation workflow is a second validation phase, where an
agent evaluates the generated code and refines it to ensure the
correctness and reliability of the program.

III. EVALUATION

We evaluate our translation workflow in a distributed drone
image classification scenario. In this setting, drones transmit
images to a Kubernetes cluster that hosts several services,
including object detection, black-and-white conversion, image
resizing, an alarm system, and a database service. The cluster
consists of one master node and three worker nodes, with
each service assigned to a dedicated host. Furthermore, each
host is connected to a network switch, which is part of the
overall network topology. Based on this infrastructure, we
created two knowledge graphs. The first KG includes detailed
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(a) Recall (b) Precision (c) Accuracy

Fig. 3: Recall, precision and accuracy for the retrieved relevant metrics

metrics and infrastructure information such as network and
service latency, service CPU limits, host CPU usage, service
memory limits, and concrete network topology. The second
KG is more abstract and includes only high-level metrics,
such as service and network latency and throughput. In both
KGs, metrics are modeled as separate nodes, and for the
scope of this work, their values are static, i.e., not derived
from live measurements. Furthermore, we distinguish between
observable and configurable metrics. A comparison of the two
KGs in terms of these metric types is shown in Table I.
Configurable metrics have the parameter tunable set to
true, indicating that they can be adjusted to meet estimated
values. Observable metrics, by contrast, are not part of the
action space; instead, they are used in the observation state,
the reward function, or to support the reasoning process during
the translation workflow. A key aspect of evaluating the trans-
lation workflow is assessing whether the system successfully
retrieves the relevant metrics for the given task and correctly
distinguishes between observable and configurable metrics. It
is worth noting that the number of configurable metrics is
the same in both the detailed and abstract KGs. Furthermore,
in the abstract KG, all observable metrics are also config-
urable. In our scenario, configurable metrics include network
latency, network throughput, and latency and throughput for
each service. For the translation workflow to be effective, it
must recognize the service that requires adaptation and take
into consideration both networking and computing resource
constraints.

TABLE I: Comparison of metrics in Abstract vs. Detailed KG

Type Abstract KG Detailed KG

Observable Metrics Service Latency,
Service Throughput,
Network Latency,
Network Throughput

Service Latency,
Service Throughput,
Service CPU Limit,
Service Memory Limit,
K8S Host CPU Usage,
Network Latency,
Network Throughput

Configurable Metrics Service Latency,
Service Throughput,
Network Latency,
Network Throughput

Service Latency,
Service Throughput,
Network Latency,
Network Throughput

To evaluate its performance, we ran 10 times the translation

workflow for the detailed KG and the abstract KG. In this sce-
nario, the user expresses a real-time performance requirement
for the object detection service in natural language:

“I am going to fly my drone in Vienna, and I need to be
sure that object detection classifications of people are sent to
my dashboard in real time without loss.”

As illustrated in Fig. 3a, our translation system demonstrates
high recall, indicating that most of the relevant configurable
or observable metrics are correctly identified and included in
the RL action space. Notably, the recall for retrieving relevant
configurable metrics is higher when using the detailed KG
compared to the abstract KG, suggesting that the presence
of more detailed metrics facilitates better identification of
relevant ones. In contrast, the recall for retrieving observable
metrics from the detailed KG is comparatively lower. This is
because the detailed KG contains a larger number of additional
observable metrics than the abstract KG. These additional met-
rics are not strictly required to fulfill the system’s operational
intent and instead serve to complement configurable metrics
by enriching the observation space, so the agent does not
recognize them as equally important.

Fig. 3b shows the system’s precision, reflecting its ability to
filter out irrelevant metrics. The observed variance in precision
is primarily due to cases where the agent mistakenly retrieved
latency and throughput values for all services instead of
restricting them to the object detection service relevant to
the intent. Despite this, the system achieves consistently high
accuracy across all configurations (Fig. 3c), where accuracy is
defined as the proportion of relevant metrics correctly identi-
fied as true positives (TP) and irrelevant metrics correctly ex-
cluded as true negatives (TN) out of the total metrics evaluated.
With most values clustered around 0.8, these results indicate
generally reliable identification of metrics for selection into the
generated RL environment’s action and observation spaces.

To evaluate the ability of the generated RL environments
to learn and converge toward optimal behavior, we selected
one environment for each knowledge graph and trained them
for 100,000 steps. As illustrated in Fig. 4a, both environments
effectively capture the user’s intent for real-time performance.
Through dynamic adaptation of network and service latencies,
the agents progressively reduce the overall end-to-end latency
over time. To assess how well the agents meet the required
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(a) Total latency over time

(b) Constraints satisfaction rate

Fig. 4: RL environment evaluation

constraints during training, we introduce the constraint sat-
isfaction rate metric, which reflects the agent’s ability to
consistently fulfill the system’s requirements defined within
the RL reward function. At each timestep, a binary value is
recorded: 1 if all constraints are met, and 0 otherwise. The
satisfaction rate is then computed as the average of these
values over a sliding window of recent rollouts (e.g., the last
30). An example reward function used to enforce these latency
and throughput constraints is shown in Fig. 5. It penalizes
violations of individual constraints—such as exceeding service
or network latency thresholds, or dropping below minimum
throughput levels—while also rewarding full constraint com-
pliance.

As shown in Fig. 4b, the RL agents demonstrate the ability
to reliably meet all defined constraints in the environment.
This result is particularly significant, as it indicates that latency
reductions are achieved within the specified resource bound-
aries—avoiding both overprovisioning and underprovisioning
of system components.

IV. RELATED WORK

A. Reward Function Generation in RL

Since the reward function is one of the core components
of the RL environment generated by our solution, designing
an effective reward is crucial for enabling agents to learn
behaviors that fulfill the user’s intent. In this section, we review

def calculate_reward(self, s_latency, n_latency,
s_through, n_through, end_to_end_latency):

reward = 0.0

if end_to_end_latency >
self.hard_constraint_latency:
reward -= 50.0

reward += -0.1 * max(s_latency - 150.0, 0)
reward += -0.1 * max(n_latency - 100.0, 0)
reward += -2.0 * max(30.0 - s_through, 0)
reward += -2.0 * max(1.0 - n_through, 0)
reward += 2.0 * (s_through >= 30.0)
reward += 2.0 * (n_through >= 1.0)

if (s_latency <= 150.0 and
n_latency <= 100.0 and
s_through >= 30.0 and
n_through >= 1.0 and
end_to_end_latency <=
self.hard_constraint_latency):
reward += 10.0

return reward

Fig. 5: Reward function generated by the translation workflow
using the Abstract KG

prior work aimed at automating the design of reward functions.
One foundational approach is Inverse Reinforcement Learn-
ing (IRL) [16], which infers reward functions from expert
demonstrations rather than manually specifying them. While
IRL has been influential, its effectiveness is often limited by
the quality and availability of expert data [17]. Recent work
has explored leveraging large language models (LLMs) to
address these limitations. Xie et al. [18] introduce a framework
that generates reward functions from natural language task
descriptions and structured Python environment specifications,
incorporating human-in-the-loop feedback to refine reward
quality. Sun et al. [19] extend this idea by introducing an
automated evaluation module, which eliminates the need for
human refinement by assessing reward quality through agent
performance and task success metrics. Further, Wang et al. [20]
propose a system that jointly generates reward functions and
state representations from natural language. These are used
during the RL training, and episode returns serve as feedback
for the LLM.

B. LLM Reasoning and Structured Knowledge Integration

Reasoning with LLMs is central to our translation work-
flow, particularly in interpreting structured knowledge. A
large body of research focuses on enhancing LLM reasoning
through prompting techniques, including in-context learning,
chain-of-thought (CoT), and few-shot prompting [21]. Role-
play prompting [22] further enriches this paradigm by en-
abling LLMs to adopt diverse perspectives, thereby improv-
ing context-aware reasoning. Extending this line of research,
multi-agent architectures have been explored, where LLMs
with specialized roles collaborate to solve complex tasks [23].
These frameworks are often enhanced with tool-augmented

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 20,2026 at 08:05:00 UTC from IEEE Xplore.  Restrictions apply. 



agents [24], capable of web search, computation, or domain-
specific operations. Wu et al. [25] demonstrate such a system
in the context of multi-step reasoning, combining tool-use
with KG-based mind maps to guide deductive processes. Li
et al. [26] similarly integrate LLMs with knowledge graphs
for question answering, allowing the model to extract task-
relevant subgraphs that augment the prompt with structured
contextual information.

While prior work explores reward synthesis from language
and structured data, it largely focuses on textual environments
or robotic control scenarios. In contrast, our approach in-
troduces a framework that constructs full RL environments
from domain-specific knowledge graphs, targeting cloud–edge
continuum management—a setting underexplored in exist-
ing literature. Our method builds upon the multi-agent and
GraphRAG strategies of [25] and [26], respectively, but ex-
tends them beyond answer generation. We integrate KG-
guided reasoning with LLM-driven translation to extract not
only reward functions but also observation and action spaces.
This results in executable RL environments tailored to in-
frastructure management intents, bridging structured domain
knowledge and autonomous learning workflows.

V. CONCLUSIONS

In this article, we introduced a workflow for translating
high-level business objectives into RL environment files tai-
lored for computing continuum management. We demon-
strated how, based on a provided infrastructure Knowledge
Graph, a user’s intent—expressed in natural language—can
be mapped to concrete resource-level metrics and used to
drive resource-level adaptation actions, while preserving the
global objective. Future work will focus on enhancing the
dynamic updating of the infrastructure KG to better capture
real-time metrics and system state changes. We also plan to
enable automatic extraction of KG triples from LLM outputs,
supporting continuous enrichment of the expert knowledge
graph. Lastly, we aim to validate our approach beyond sim-
ulated settings by applying our RL environment files in real-
world infrastructure scenarios, showcasing the capabilities of
our approach in practice.
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