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Abstract—This paper investigates the adversarial robustness
of Deep Neural Networks (DNNs) using Information Bottleneck
(IB) objectives for task-oriented communication systems. We
empirically demonstrate that while IB-based approaches pro-
vide baseline resilience against attacks targeting downstream
tasks, the reliance on generative models for task-oriented com-
munication introduces new vulnerabilities. Through extensive
experiments on several datasets, we analyze how bottleneck
depth and task complexity influence adversarial robustness. Our
key findings show that Shallow Variational Bottleneck Injection
(SVBI) provides less adversarial robustness compared to Deep
Variational Information Bottleneck (DVIB) approaches, with the
gap widening for more complex tasks. Additionally, we reveal that
IB-based objectives exhibit stronger robustness against attacks
focusing on salient pixels with high intensity compared to those
perturbing many pixels with lower intensity. Lastly, we demon-
strate that task-oriented communication systems that rely on gen-
erative models to extract and recover salient information have an
increased attack surface. The results highlight important security
considerations for next-generation communication systems that
leverage neural networks for goal-oriented compression.

Index Terms—Task-Oriented Communication, Goal-Oriented
Compression, Adversarial Machine Learning, Information Bot-
tleneck

I. INTRODUCTION

Intelligent tasks refer to programs that classical control

structures cannot compute tractably or with sufficient preci-

sions, which is common in visual applications, such as image

recognition. Deep Learning (DL) has repeatedly demonstrated

that it can solve recognition tasks reliably. Unsurprisingly,

applications with stringent performance criteria (e.g., remote

sensing, video analytics) increasingly offload requests to a

remotely deployed large Deep Neural Network (DNN). The

pervasiveness of DNNs exposes significant vulnerabilities to

adversarial attacks [1]. Another limitation is that continuous

offloading of high-dimensional visual data must compete for

limited bandwidth, which may lead to network congestion.

Task-oriented communication [2] has emerged as a paradigm

to meet the need for solving intelligent tasks. Compression for

task-oriented communication uses a semantic rate-distortion

objective to transmit only the most salient bits. Among the

earliest examples is the information bottleneck [3] (IB), which

is still the foundation of modern approaches. Notably, IB-

based objectives improve adversarial robustness for DNN

predictors [4]. The idea is that perturbations are intrinsically

redundant information, and the IB objective naturally enhances

the robustness of DNNs by learning to discard redundancy

more aggressively along their information processing path [5].

However, the established consensus on the value of IB-based

objectives is based on the assumption that the networks are

deep. Yet, task-oriented communication is feasible only when

paired with lightweight compression such that the codec

computational overhead is offset by the reduced transmission

costs [6], [7]. Moreover, there are additional constraints on

the encoder design. While a neural encoder may still be wide

enough to leverage parallelization from onboard AI accelera-

tors, meeting stringent latency requirements demands reducing

the number of sequential operations. Hence, envisioned future

communication networks that rely on neural encoding schemes

will realistically converge towards shallow networks.

To this end, this work investigates the robustness of methods

that apply an IB-based objective intended for task-oriented

communication. Specifically, we apply several common ad-

versarial attacks on recent approaches based on Shallow Vari-

ational Bottleneck Injection (SVBI) [8]–[12]). SVBI focuses

on information necessary only for practically relevant tasks

by targeting the shallow representation of foundational models

as a reconstruction target in the rate-distortion objective. Our

results show that deep networks trained with a traditional

IB objective exhibit higher adversarial robustness than SVBI.

However, a shallow variational encoder still provides a de-

fense mechanism that results in considerably more robust

models than purely discriminative models trained with non-

IB objectives. We finalize our experiments by accentuating

the increased attack surface of systems that rely on generative

models for communicating salient information with a simple

attack specifically targeting generative models. In other words,

the overall system is more vulnerable even if task-oriented

communication is intrinsically more robust than passing mes-

sages through conventional channels for downstream tasks. We

summarize our contributions as follows:

• Empirically demonstrating that task-oriented communica-

tion systems have an increased attack surface.

• Showing that adversarial robustness for task-oriented com-

munication systems requires a study distinct from general

research on security for DNNs.

• Determining the role of bottleneck depth for adversarial

robustness with IB-based objectives.

We hope our results and insights can facilitate research in

securing next-generation communication systems that rely on979-8-3503-5614-4/24/$31.00 © 2024 IEEE



otherwise easily exploitable neural networks.

II. BACKGROUND & RELATED WORK

A. Adversarial Attacks on DNNs

Adversarial attacks represent a significant challenge for

deploying AI systems. The susceptibility of DNNs to ad-

versarial examples was first investigated by Szegedy et al.

[13], who demonstrated that small, imperceptible perturba-

tions to input data can lead to significant misclassifications.

Adversarial attacks are classified into white-box and black-box

attacks. White-box attacks assume complete model knowledge,

including architecture and gradient calculation, allowing for

computing highly effective adversarial samples. In contrast,

black-box attacks assume no access to model details and are

generally more challenging but more realistic for real-world

scenarios. The following briefly describes the attacks we have

chosen due to their influence and being subject to numerous

follow-up studies. The focus is on white-box attacks due to

the open nature of ML research and the popularity of readily

available open-source weights for a wide range of tasks.

1) Fast Gradient Sign Method (FGSM): FGSM by Good-

fellow et al. [14] efficiently generates adversarial examples by

leveraging the gradient of the loss function. FGSM adjusts

the input along the gradient’s direction, with the perturbation

defined as:

xadv = x+ ϵ · sign (∇xJ(x, y)) (1)

where x is the input, ϵ controls perturbation magnitude, and

∇xJ(x, y) is the gradient of the loss concerning the input.

2) Carlini and Wagner (C & W): The attack by Carlini and

Wagner [15] minimizes the L2, L0, or L∞ distance between

the original input and the adversarial example, and a term

that penalizes classifications other than the desired target class

using the objective function:

J(x′) = α · ||x− x′||p + β · Lmcls(f(x
′), yt) (2)

where x′ is the perturbed input, α, β balance the terms, and

Lmcls is the missclassification loss. Notably, this attack is

shown to be highly effective against networks pre-trained on

ImageNet, which are commonly used to finetune by practical

recognition tasks.

3) Elastic-Net Attacks on DNNs (EAD): This method [16]

is particularly useful for producing sparse perturbations, which

can trick DNNs while maintaining minimal changes to the

input. It generates adversarial samples by minimizing the

objective

c · f(x, t) + β ∥x− x0∥1 + ∥x− x0∥
2

2
(3)

where f(x, t) is a target loss function and c, β ≥ 0 are the

regularization parameters. EAD’s dual-norm optimization is

an interesting alternative benchmark for evaluating how vari-

ational bottleneck injection handles diverse attack strategies.

4) Jacobian-based Saliency Map Attack (JSMA): The

JSMA attack by Papernot et al. [17] constructs adversarial

examples by identifying and perturbing input features most

critical to the classifier’s decision-making process. Unlike

gradient-based methods, JSMA uses forward derivatives to

create a saliency map, guiding perturbations to specific input

features. Given that variational bottleneck techniques may

alter feature representations, testing JSMA will allow us to

explore how bottleneck injection influences feature saliency

and adversarial resilience.

5) Targeting Generative Models: Lastly, we include the

attack introduced by Tabacof et al. [18] to demonstrate the

increased attack surface of communication systems that deploy

generative models. This attack disrupts reconstruction and

induce the encoder to produce a completely different target

image. This would undermine the potential defensive role

of autoencoders in de-noising classifier inputs. Note that the

efficacy of the attack towards the autoencoder is irrespective

of whether we map the latent to an approximation of the

original image (i.e., reconstruction) or use it for some image

recognition downstream task [9].

B. Information Bottleneck in Task-Oriented Compression

Using Shannon’s rate-distortion (r-d) theory [19], we seek

a mapping bound by a distortion constraint from a random

variable (r.v.) X to a r.v. Y , minimizing the bitrate of the

outcomes of X . More formally, given a distortion measure

D and a distortion constraint Dc, the minimal bitrate is

characterized by the rate-distortion function:

min
PY |X

I(X;Y ) s.t. D(X,Y ) ≤ Dc (4)

where I(X;Y ) is the mutual information and is defined as

I(X;Y ) =

∫ ∫

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy (5)

In lossy image compression, Y is typically an approximate

reconstruction of X . This objective lends itself to the Infor-

mation Bottleneck that maps X to a hidden representation Z,

which is minimally informative of X but is also maximally

informative about a target prediction task Y . In other words,

it is essentially a flavor of the lossy-source coding problem

using a different loss as a fidelity measure for the distortion

constraint.

1) Deep Variational Information Bottleneck (DVIB): Given

ground-truth labels Y from a joint distribution PX,Y , the Deep

Variational Information Bottleneck objective is to maximize

I(Z;Y )− βI(Z;X) (6)

where β is a Lagrange multiplier. To approximate I(Z;Y ) we

can apply the conditional cross entropy (CE) H(PY , PỸ |Z).
The first term is commonly referred to as the relevance and

the second as the complexity. While the original work [4]

considers the complexity term a regularizer, Singh et al. [20]

apply it as a rate term to end-to-end train a neural compression

model. Dubois et al. [21] generalize the information bottleneck



objective for compression that preserves salient pixels for a

set of tasks that share common properties. However, both

works rely on deep networks and place the bottleneck at the

penultimate layer or require a large pre-trained encoder.

2) Shallow Variational Bottleneck Injection (SVBI): Instead

of targeting a particular task Y , SVBI considers a foun-

dational model M, that supports a set of unknown tasks

Y = {Y1, Y2, . . . , Yt}. Moreover, it partitions M into two

disjoint sets of shallow and deep layers M = (T ,H), such

that for observations X , M(X) = T (H(X)), and H = H is

a shallow hidden representation of X . Further, assume a codec

c = (enc, dec), where dec(enc(X)) = H̃ is an approximation

of H . The idea is that if H̃ is a sufficient approximation of

H , then the compressed representation enc(X) is informative

enough of the entire set of tasks Y . While SVBI still uses task

performance as a fidelity measure, the compression model is

end-to-end optimized using Head Distillation (HD) [22], [23]

as the distortion term in the loss function. Figure 1 visually

explains the loss function. We refer to our earlier work [8],
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Fig. 1. Head Distillation Loss: The shallow features of pre-trained large
models are cut and used as a teacher network to train the compression model.

[9] for a detailed explanation. For this work (i.e., determining

adversarial robustness respective bottleneck location depth),

it is only relevant that the encoder is shallow with roughly

150, 000 parameters and that the method can significantly

reduce bitrate while ensuring task integrity without relying

on a labeled dataset. A general downside of lightweight

encoders and transmitting information intended to generalize

to a broader range of tasks is an increased bitrate relative to

deep IB methods.

III. PROBLEM STATEMENT & METHODOLOGY

A. Information Bottleneck for Adversarial Robustness

Based on the following two observations, we argue that

SVBI should still provide a certain level of adversarial ro-

bustness but significantly less than DVIB.

First, the depth, i.e., the large number of stacked layers up

until the bottleneck, may be an essential reason for the efficacy

of adversarial robustness using IB-based objectives. Consider

an n-layered feed-forward neural network as a Markov chain

of successive representations Ri, Ri+1 [24]:

I(X;Y ) ≥ I (R1;Y ) ≥ . . . ≥ I (Rn;Y ) ≥ I(Ỹ ;Y ) (7)

That is, discerning salient from redundant information is part

of transforming an input for prediction. A longer sequence of

operations permits the network to process the input with more

diverse views. Therefore, we reason that deeper models may

benefit more from the IB objective, as they can learn more

varied representations for filtering redundant information (i.e.,

adversarial noise).
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Fig. 2. Filtering Redundant Information for the ImageNet classification task
as the network transforms features. For each layer, we trained a separate
reconstruction network.

Second is the task specifity of the objective. Consider a

visual illustration of the information path equation in Figure 2.

The frog subset of ImageNet distinguishes between Tree

Frogs, Bullfrogs, and Tailed Frogs. Since these frog species

have distinct figures and dominant colors, the more delicate

characteristics of a tree frog are redundant for ImageNet

classification. In SVBI, we place the bottleneck in the first or

second marker region, whereas in DVIB, we place it around

the last marker. Clearly, when the target task is specifically

ImageNet, there is still a considerable amount of redundancy.

In other words, when we use an IB-based objective that aims

to generalize to a range of tasks, there is more ambiguity to

exploit.

B. Attack Surface of Task-Oriented Communication Systems

Figure 3 illustrates a simplified task-oriented communica-

tion system that relies on some form of generative method for

compression that can extract and recover salient information.

Before passing the input to a discriminative prediction model,

we process it with a generative compression model. We argue

that even if training the goal-oriented neural codec with an IB-

based objective improves adversarial robustness against attacks

intended for discriminative tasks, we are still increasing the

attack surface of our overal communication system due to

the generative components. Therefore, even if the system uses



the generative component only for extracting and recovering

salient information, exploiting generative components should

still be possible, such that it compromises the entire system.

Encoder

Semantic Decoder

Semantic Decoder

Model Task 

Model Task 

Model Task 

Semantic Decoder

DiscriminativeGenerative

Fig. 3. A simplified overview on a Task-Oriented Communication System.
Envisioned systems rely on generative models to encode, transmit and decode
salient information for downstream tasks using discriminative models.

C. Adversarial Attacks and Image Perturbations

We generate adversarial samples using the torchattacks [25]

library. Except for the Tabacof attack, we create samples

for CIFAR-10, SVHN, and ImageNet64 (i.e., downsampled

ImageNet but still using all original 1000 classes). Notably,

we choose JSMA as it may provide a different perspective

on model vulnerability by perturbing specific input features.

However, JSMA has high memory requirements, which we

cannot accommodate with our limited resources for Ima-

geNet64. Therefore, we implement a modified version of

JSMA (JSMAOnePixel) that is inspired by [26]. The OnePixel

variant identifies only a single pixel with the highest impact on

each iteration. Still, as Figure 4 exemplifies, the final perturbed

image is comparable between JSMA and JSMAOnePixel.

Fig. 4. In pairs, comparing JSMA (left) with JSMAOnePixel variant (right).

IV. EVALUATION

A. Adversarial Attacks and Image Perturbations

The aim is to design experiments that yield adequate em-

pirical evidence to conclude the baseline robustness we may

expect for the types of compression models used for task-

oriented communication. We perform the attacks described in

Section II-A for each model and task separately using the

datasets described in Section III-C. This is with the exception

of the Tabacof attack, where we use MNIST for simplicty

as the purpose is to demonstrate the widened attack surface

incurred by task-oriented communication.

B. Training Models with (Shallow) Bottlenecks

We train three sets of models, i.e., baseline models with

standard log-loss, models with a shallow bottleneck (SVBI),

and models with a deep bottleneck (DVIB). We perform

DVIB and SVBI as described in [20] and [8], respectively.

For DVIB, we place a bottleneck at the penultimate layer

and use a log-loss for the distortion term in the objective

function. For SVBI, we follow the “blueprint” encoder design

that replaces the layers until the first high-level block of the

network (roughly 1% of the total model parameters) with a

small variational autoencoder. We experimentally determine

the lowest possible bitrate for both bottleneck approaches

without sacrificing prediction performance.

Table I summarizes the model performances. The bits per

TABLE I
MODELS PREDICTION AND COMPRESSION PERFORMANCE

Dataset Acc@1 [%] Bpp (SVBI) Bpp (DVIB)
MNIST 97.36 ± 1.77 0.0829 0.0161
CIFAR-10 85.25 ± 1.40 0.5677 0.0308
SVHN 94.04 ± 0.69 0.4321 0.0086
ImageNet64 49.36 ± 1.12 1.2673 0.0115

pixel (bpp) is a lower bound we have empirically determined

for a bottleneck injected model to perform (near-)lossless

prediction as defined in [8], [9]. Naturally, DVIB has much

lower bitrates for reasons described in Section III-A.

C. Comparing Bottleneck Placements

Table II summarizes the effect on the adversarial samples

represented as percentage points (lower is better). Unsurpris-

ingly, base models trained using a standard log-loss have

a significant drop in accuracy. Relative to the accuracy on

the unperturbed dataset (Table I), all attacks completely tank

the model performance. In particular, for the SVHN task the

performance is at times worse than random guessing. As

conjectured in Section III-A, SVBI generally provides less

adversarial robustness than DVIB across all datasets. Notably,

task complexity apparently influences the gap in adversarial

robustness between SVBI and DVIB. Still, SVBI exhibits

considerably higher adversarial robustness over the baseline.

Additionally, notice that the model depth on the base model

does not considerably affect adversarial robustness. However,

for the DVIB model, depth seems to correlate positively with

adversarial robustness. Presumably, since deeper models have

longer information paths, end-to-end training models with an

IB objective have more opportunities to discard information

that does not contribute to task performance gradually.

D. Analyzing Pixel Perturbations

We observe that IB-based objectives exhibit stronger ro-

bustness against attacks that focus on a small subset of

salient pixels with strong intensity than attacks that perturb

many pixels with smaller intensity. Moreover, similarly to the

original work on deep variational IB [4], we observe that

attacks targeting IB-based models perturb pixels considerably



TABLE II
COMPARING PREDICTION PERFORMANCE DECREASE (% POINTS; LOWER IS BETTER) BETWEEN OBJECTIVES.

CIFAR-10 SVHN ImageNet64
Model Attack Base SVBI DVIB Base SVBI DVIB Base SVBI DVIB

FGSM 74.5621 48.7298 39.513 69.9521 55.8298 48.5728 37.7602 31.8935 28.9807
EAD 85.5256 9.6447 8.8592 89.9427 19.8432 13.5824 35.4344 9.2381 8.0993
C&W 87.0232 7.7732 6.7682 92.2149 22.9992 18.3259 37.9903 12.5742 10.2117

ResNet-18

JSMA 87.6210 20.7807 17.5784 91.5810 14.2348 11.1283 36.3821 11.1868 10.1935
FGSM 68.5621 42.8942 34.0803 68.2679 53.2118 45.1977 39.6985 28.9273 23.1021
EAD 85.1400 9.1258 7.8592 89.3852 18.0232 11.4375 32.6361 7.0377 4.8375
C&W 88.9231 7.2009 6.5408 93.3284 18.0931 15.3259 34.1083 9.9654 5.4281

ResNet-50

JSMA 85.1010 19.6333 16.0549 90.2838 13.9125 10.1283 34.4847 10.1351 5.5213
FGSM 69.3189 40.8912 32.1534 66.2082 40.4817 42.9004 38.4451 24.0620 20.9997
EAD 87.6557 8.0322 7.8592 88.3294 16.4385 9.5729 32.4148 6.1124 3.0489
C&W 87.4633 7.1819 6.0018 92.1923 17.3284 12.2482 38.0200 8.7985 2.9663

ResNet-101

JSMA 86.8781 19.439 15.2608 94.2933 11.2814 7.9833 36.6825 10.0382 1.4762

more than non-IB-based models. Nevertheless, since relative

values align across all models (i.e., attacks behave comparably

regardless of the model depth or objective), the following

reports average values due to space constraints.

Figure 5 visualizes the L0 norm by attack averaged over test

sets, i.e., it measures how many pixels an attack has perturbed.

While FGSM perturbs nearly all pixels, JSMA only perturbs
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Fig. 5. Average Percentage of pixels perturbed by an adversarial attack. More
complex tasks tend to have more salient pixels.

roughly 20% of the pixels. More interestingly, EAD and C&W

perturb fewer pixels for ImageNet than for the simpler tasks.

Generally, more complex tasks with many labels rely on

more fine-grained information, where just a small subset of

salient pixels can influence the decision boundaries. Figure 6

summarizes the magnitude of perturbations. Notice that JSMA
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Fig. 6. The average L2 measures the magnitude of perturbations. FSGSM
and JSMA incur considerably higher perturbation than EAD and C&W.

has a larger total magnitude in total perturbation than FGSM

despite JSMA focusing on a smaller subset of pixels. The

reason becomes apparent when examining the L∞ norm in

Figure 7. JSMA is more “pixel-efficient” by focusing on the
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Fig. 7. Average L∞ measure to quantify the magnitude of perturbation.
JSMA perturbs a small number of pixels with high intensity.

most salient pixels but relies on high-magnitude perturbations.

Figure 8 visually compares JSMA and FGSM. While FGSM

perturbs a large number of pixels, they are only faintly visible.

Conversely, JSMA has clearly visible perturbations. This

CIFAR-10 SVHN ImageNet64
JSMA Perturbations

CIFAR-10 SVHN ImageNet64
FGSM Perturbations

Fig. 8. Comparing magnitudes of pixels between JSMA and FGSM.

observation is consistent with the general objective of goal-

oriented communication, which is to focus on the most salient

information. Therefore, it may be reasonable to emphasize

evaluating defense strategies for task-oriented communication

against less perceptible attacks.

E. Targeted Autoencoder Attack

As described in Section III-B task-oriented communication

networks are powered by generative models for communi-

cation and discriminative models for high-level downstream



tasks, which incrases the attack surface. We show this by

performing the Tabacof [18] attack described in Section II-A5

and summarize the results in Table III. We choose the label

TABLE III
TABACOF ATTACK

Base DVIB
Model Acc@1 # Hits Acc@1 # Hits
Resnet-18 61.6 927 52.26 1802
Resnet-50 76.57 879 72.66 1126
Resnet-101 33.17 448 34.73 1641

“1” as the target, and the hits column indicates how often the

model has predicted “1” after the attack. Since the models

have near-perfect accuracy on MNIST, and the test set has

10 000 samples that are uniformly distributed, we can infer

the efficacy of the attack by the increase of predictions of

“1”. Figure 9 shows an example with a curated sample of

perturbed images. ResNet-101 is noticeably less robust toward

Fig. 9. Base images (bottom) and corresponding perturbation using the
Tabacof attack against DVIB (top). The target label is “1”. Examples depicting
the numbers two and four contain the most clearly visible perturbations to
match this target. The leftmost example showcases a “failed” attack, where
the network will likely missclassify the input, but not hit the intended target.

the attack. We explain the discrepancy by the simplicity of the

task and dataset size. Since ResNet-101 is significantly larger,

the model may have been fitted to the samples, making it more

susceptible to even slight perturbations. Still, when comparing

the performance of ResNet-18 and ResNet-50 shows that the

DVIB model is considerably less robust than the baseline

model. Notably, all DVIB models have a substantial increase

in predicting the target label, indicative of the attack’s efficacy.

V. CONCLUSION

This work investigated the role of IB-based objectives for

task-oriented communication systems and their implications

for adversarial robustness. We have shown that such ap-

proaches provide a degree of resilience against attacks tar-

geting downstream tasks. However, the reliance on generative

models for extracting and recovering salient bits introduces

a new attack surface. An attacker may bypass security for

prediction models by targeting the semantic layer of a com-

munication system. While research in adversarial attacks that

views generative and discriminative models in isolation is

essential, we find it indispensable for research to examines thei

interaction holistically. Additionally, an promising direction is

in methods that quantify the trade-off between generalization

and its adversarial robustness as an objective function for end-

to-end optimization of goal-oriented codecs.
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