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Abstract—With the increasing complexity, requirements, and
variability of cloud services, it is not always easy to find the
right static/dynamic thresholds for the optimal configuration of
low-level metrics for autoscaling resource management decisions.
A Service Level Objective (SLO) is a high-level commitment
to maintaining a specific state of a service in a given period,
within a Service Level Agreement (SLA): the goal is to respect
a given metric, like uptime or response time within given time
or accuracy constraints. In this paper, we show the advantages
and present the progress of an original SLO-aware autoscaler
for the Polaris framework. In addition, the paper contributes to
the literature in the field by proposing novel experimental results
comparing the Polaris autoscaling performance, based on high-
level latency SLO, and the performance of a low-level average
CPU-based SLO, implemented by the Kubernetes Horizontal Pod
Autoscaler.

Index Terms—Cloud, Edge, Computing, Autoscaling, Polaris,
Kubernetes, Performance, Evaluation, Horizontal, Pod, Au-
toscaler, Elasticity, High-level, SLO, Horizontal Pod Autoscaler

I. INTRODUCTION

With the recent and rapid diffusion of edge and cloud com-

puting technologies, virtualization techniques have become

the state-of-the-art of big ICT infrastructures, by enabling

high availability, high scalability, and high elasticity. Elasticity,

i.e., the ability to dynamically grow or shrink infrastructure

resources to autonomously adapt to workload changes, can

be enabled with three main approaches: vertical (increase

the system resources), horizontal (increase the number of

working replicas), or their combination [1]. In this context,

containerization techniques are the most widespread due to

their lightweight and portable solutions. One of the most

performing related orchestration tool is Kubernetes [2], which

has demonstrated to achieve good scalability and availability.

Kubernetes comes with different autoscaling add-ons that

enable elasticity among pods; among them, the most known

and utilized is the Horizontal Pod Autoscaler (HPA), which

comes out of the box with Kubernetes deployment [3] and can

monitor a given metric (like CPU usage) and consequently

scale-out the deployed system when the specified metric

overcomes a static threshold.

A Service Level Objective (SLO) [4] allows providers to

define expected performance in the given products and allows

consumers to know what to expect from the service itself. The

SLO is a “commitment to maintaining a particular state of the

service in a given period” [5] . Usually it relies on business-

relevant Key Performance Indicators (KPIs) or Service Level

Indicators (SLI). Tools like HPA only offer basic support

for SLOs and this means that customers must adapt their

SLO to measurable low-level metrics like CPU or memory

usage. Instead, new and more SLO-oriented frameworks for

QoS management, such as Polaris [6], allow to define flexible

scaling strategies, both horizontal and vertical, and to apply

them by monitoring both low-level and high-level metrics,

whose monitoring information is gathered via widespread and

state-of-the-art monitoring infrastructures such as Prometheus.

In this short paper, we first present the advantages of

high-level metrics for SLO-aware autoscaling, and then we

thoroughly evaluate the performance of Polaris as a high-level

metric-based pods autoscaler for Kubernetes. To this purpose,

we compare it to HPA, by showing how our proposed approach

can make more reactive decisions as the load changes and

can provide better service quality from the user perspective.

In particular, Section 2 motivates the need of high-level

metrics-based autoscaling mechanisms; Section 3 compares

our original approach in Polaris with state-of-the-art solutions

currently available in the literature; Section 4 introduces novel

SLOs for latency; and finally Section 5 reports about the

performance results achieved by our proposal vs. HPA based

on real in-the-field experimentation.

II. PROBLEM STATEMENT AND MOTIVATIONS

In cloud computing, it is common for providers and con-

sumers to agree on SLAs to define bounds within which a

certain cloud service has to operate [7]. The SLA is made of

one or more SLOs and allows to define high-level indicators

seen as a value or state to be maintained during the service

provisioning period. Since SLOs are guarantees given to the

customer, respecting SLOs is considered a crucial positive

feature for cloud providers. However, it is also important, from
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a service provider perspective, not to over-provision resource

allocation in a deployment environment while considering a

given SLO, as it would result in additional costs and non-

optimal resource utilization.

Autoscaling technologies allow to minimize the over- or

under- provisioning issues, by dynamically adapting the en-

forced/deployed configuration to the current specific require-

ments and situation. However, in most solutions, like the Ku-

bernetes HPA, they only allow to map the elasticity of a cloud

application to a low-level metric (i.e., a metric considering

low-level monitoring indicators such as CPU usage) and it is

hard for a service provider to control the agreed high-level

SLO [8]. Polaris overcomes this problem and allows cloud

providers to directly map their SLOs to higher level metrics.

As a result, elastic horizontal scaling strategies based on high-

level performance indicators such as latency have proven us to

be well-suited for highly-dynamic and interactive applications,

where our SLO is to maintain the agreed response time; this

will be also confirmed from the novel results later reported in

this paper (see Section V). We consider latency a high-level

metric because it can be perceived directly by the end user and

is not based only on the properties of the host machine but also

on the infrastructure ones. To develop and create additional

controllers, Polaris comes with SLO Script [9]: a language

and framework for developing complex SLOs and elasticity

strategies, based on one or more metrics that are configurable

and composable via the aggregation of different metrics.

III. RELATED WORK

This section explores the state of the art in terms of cloud

computing elasticity and its application. Al-Dhuraibi et al. [10]

released a survey discussing the state of the art of elasticity

in cloud computing, by focusing their work on VMs and

container-based elasticity. They present the various shapes

of elasticity in reference to cloud computing as policies,

methods, architectures, configurations, scopes, and enabling

technologies. In their work, they set a research challenge,

the ”Thresholds definition”: elasticity strategies are based on

thresholds for the measured metrics such as CPU or mem-

ory utilization. However, they claim that choosing a suitable

threshold is not an easy task due to the changes in workload,

application behavior, and the possible combination of the two.

Many commercial tools for elasticity in cloud computing

are currently present in the market. Most of them are from

big commercial cloud providers as AWS [11], Azure [12],

and Google [13]. They provide solutions for simple SLOs, plus

they are tied to the use of specific provider services. Others are

out-of-the-box solutions like HPA [3], Vertical Pod Autoscaler

[14] (VPA), and Cluster Autoscaler [15] (CA) that come

with the standard Kubernetes deployment [2]. These solutions

only allow, by default, to realize runtime resource scaling

based on low-level metrics, like CPU or memory usage. To

leverage custom metrics, they require setting up other custom

components. On the contrary, Polaris [6] is based on elasticity

strategies that can be vertical, horizontal, or custom. Polaris

realizes full decoupling between the elasticity strategy and

the SLO controller: these two components are connected by

the the user configuration, which is called SLO Mapping [9].

Polaris can integrate with Prometheus for gathering monitoring

indicators for its metrics and has a smart control loop to

apply scale in or scale out of replicas. Polaris SLOs can be

reconfigured by changing the given SLO Mapping without

changing the configuration of the deployed application-level

components.

IV. HIGH-LEVEL LATENCY-BASED SLO

In this section we present the policies and the middleware

components that we have implemented, deployed, and run in

order to execute our performance comparison between Polaris

and HPA, with the ultimate goal to verify and demonstrate

how scaling based on high-level metrics is feasible and can

achieve better results.

As shown in [6], the Polaris SLO Control Loop needs

two main entities. Firstly an SLO Controller, that evaluates

the SLO and computes an SLO Compliance value. Secondly,

an Elasticity Strategy Controller, that includes the policy to

scale the replicas. In our tests, we use a Horizontal Elasticity

Strategy Controller. Considering Rnew as the new replica

number, Rold as the old replica number and k as the SLO

Compliance value, we compute the new pods replica number

according to (1). The SLO Compliance value tells how much

we are currently respecting the SLO.

Rnew = �Rold ∗ k

100
� (1)

For example, when it has a value of 100, it means that the

provider perfectly fulfills the SLO. The output of the SLO

Controller, in our case a Latency SLO Controller, utilizes the

current and the target latency values for the calculation. Given

Lq the n-th percentile of the latency values in a given time

window, and θlatency the latency threshold that violates the

SLO, we compute the SLO Compliance value k according to

(2).

k = � Lq

θlatency
∗ 100� (2)

The Polaris solution for autoscaling provides a decoupled way

to create elastic services and the decoupling is enabled by the

generic SLO Compliance value that is not tied to a particular

SLO type. To this purpose, we developed the Latency SLO

Controller and the Elasticity Strategy Controller from scratch

with the SLO Script framework from Polaris. Furthermore, we

developed support for histogram quantile metric in SLO Script

to compute the percentiles for latency.

In addition, HPA is based on monitoring and scaling by

considering the average CPU utilization, due to its lack of

support for high-level SLOs. There is no decoupling between

what and when a strategy has to be applied. The number of

replicas to deploy is computed according to equation (3), as

stated in the official Kubernetes documentation [3].

Rnew = �Rold ∗ Mt

θcpuusage
� (3)
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where Mt is the measured average CPU utilization in the

instant t and θcpuusage is the target CPU usage.

V. EVALUATION

In order to show the benefits of using a high-level based

SLO scaling, we leverage a private cloud infrastructure to

deploy a Tensorserving inference service, with HPA and

Polaris managing its scaling for our benchmarking purposes.

Specifically, we are interested in showing how the Polaris

solution, based on high-level SLOs, can decrease latency and

be more reactive in scaling the system out, while still providing

good service quality and reducing costs even when the system

would tend to be over-provisioned according to the SLO

values.

A. Setup

In our experimentation work, we deployed a Kubernetes

cluster (Microk8s) composed by two nodes hosted in different

VMs with 24 vCPUs and 48 Gb of memory each. The

Kubernetes version used is 1.21.1 of both Kubernetes Client

and Server. The machines hosting the nodes are intercon-

nected with a gigabit Ethernet LAN. We deploy Polaris, HPA,

Prometheus, Grafana Dashboard, and Ingress-NGINX in our

Kubernetes Cluster. Prometheus, a dependency of Polaris, has

been used to gather metrics to let the SLO Controller compute

the SLO Compliance value. Grafana, an open-source analytics

and monitoring solution for databases, was used to evaluate

the metrics after the test runs. Ingress-NGINX, an Ingress

controller for Kubernetes using NGINX as a reverse proxy and

load balancer, creates a single ingress for the Tensorserving

pods and gathers the metrics about their latency. We deploy

Polaris, Grafana, and Ingress-NGINX with a helm chart with

the limit to use 100 milli-CPUs, the default value proposed

by the official documentations. The Tensorserving system is

deployed as a single pod, to be scaled by Polaris or HPA.

Tensorserving pods are limited to use 2 vCPUs maximum.

The model for inference is a MobileNetV2 [16] that proved

to be very well suited to create high computation load in the

Kubernetes cluster.

B. Metrics

The metrics that have been used in the following exper-

iments for performance evaluation are shown in the code

excerpts of Figures 1 and 2.

histogram_quantile(
<quantile_value>,
sum by (le)(
rate(
nginx_ingress_controller_request_duration_seconds_bucket{
ingress =˜ "$ingress"

}[1m]
)

)
)

Listing 1. Latency n-th Percentile

The PromQL query in Listing 1 has been used to evaluate

latency. In particular. it uses percentiles of values and the

network speed is neglected in these experiments as the worker

clients are placed in the same location of the virtual machines

(the latency is calculated only at the Ingress-NGINX level).

The percentiles that we use for the evaluation are 90th and

95th, as regularly used by commercial cloud providers to

measure metrics, like Amazon AWS does [17]. The request

volume in Listing 2 has also been considered to monitor the

network load that changes during provisioning.

sum by (path)(
rate(
nginx_ingress_controller_request_duration_seconds_count{
ingress =˜ "$ingress"

}[1m]
)

)

Listing 2. Request Volume

It is useful for the analysis to see how the load changes in the

network. Median latency (50th percentile latency) and replica

number have also been used for our evaluation.

C. Experiments

To prove how high-level metric-based scaling can be more

effective in maintaining a given SLO, we run a wide and

extensive set of stress tests. In the first set of tests, Polaris

SLO is set to 500ms latency on a 90th request percentile and

is compared with HPA set to 70% of CPU utilization. In the

second set of tests, the Polaris SLO is set to 600ms latency on

a 95th request percentile and is compared with HPA set to 50%

of CPU utilization. These CPU usage and latency values were

determined using the latency of an inference request made

while the overall infrastructure in the employed deployment

environment was idle. Both autoscaling systems have a stabi-

lization window of 45 seconds for scaling up replicas and 30

seconds for scaling down. During this stabilization window,

the autoscaling solutions cannot change the replica number.

In both tests, we code each worker-client as an infinite loop

of requests. It sends a png image, encoded as UInt8Array,

to the Tensorserving REST interface, exposed by Ingress-

NGINX. We limit the rate at which workers can make requests

to 2 requests per second to avoid high traffic density and

degradation of requests. The semantic of clients requests is

synchronous blocking, this means that each request waits for

the previous one to be completed before sending. The tests

last around 30 minutes each and the worker number starts

from 1 and grows to a maximum of 8. The number of workers

increases every 4 minutes. Before reaching two workers it is

increased by one, by two after this threshold. This stress test

aims to generate a high load of computation in the backend to

let Polaris and HPA autoscale the system based on the given

metrics.

D. 90th Percentile 500ms and 70% CPU Usage

Figure 1 shows the first test handled with 90th percentile of

500ms SLO for Polaris and 70% CPU Usage for HPA. The

figure shows that the latency experienced by the considered

application, handled by Polaris with high-level metrics (blue

lines and left y-axis), present fewer spikes and generally

lower values with respect to HPA (green line, right y-axis).

When the number of workers increases and the requests per

second become higher, we can see that Polaris scales out the

pods respecting the SLO better than HPA. This is because
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Fig. 1. Polaris 90th percentile 500ms latency SLO and HPA 70% CPU usage
comparision

Polaris, by directly monitoring the latency SLO, knows better

than HPA when the SLO is not fulfilled. Only to mention

one practical example, around timestamp 720, Polaris holds

additional pods in respect to HPA. Around 1920 elapsed time,

when the switch from 2 to 1 worker occurs, we can also see

that Polaris has been very reactive in pushing down the pods

number once the SLO was over-respected, to save costs and

resources.

E. 95th Percentile 600ms and 50% CPU Usage

Figure 2 shows the second set of tests that we have

accomplished for Polaris and HPA. In these tests Polaris SLO

have been set to 95th percentile of 600ms SLO and HPA to

50% CPU Usage.

Since a higher percentile is more volatile, we decided to

increase the latency SLO to 600ms and to lower HPA to 50

percent of CPU Usage to let it scale more pods at once. In

this figure, we can see that with 8 workers HPA is not able to

understand that it has to scale out resources and, by not doing

it, violates the SLO. On the other hand, Polaris is aware that

our SLO is violated and increased the replica number up to 20

to improve the SLO Compliance value. Even if this requires

additional resources, Polaris is still adhering to the SLO, which

is the desired outcome in this case. Obviously, this is a trade-

off that we must understand if we are to respect the SLO

despite our extensive use of resources. For the purposes of

this experimental evaluation, we focused on SLO compliance

rather than resource utilization.

Similar to Figure 1, also Figure 2 shows how the high-

level SLO scaling can be more reactive when the SLO is

Fig. 2. Polaris 95th percentile 600ms latency SLO and HPA 50% CPU usage
comparision

violated. For example, when the latency starts to go down,

around time 1200, our SLO-based solution starts to scale down

to save costs and free resources, thus confirming again our

claim about the suitability of high-Level metrics for SLO-

aware autoscaling.

VI. CONCLUSIONS

This work originally presents and evaluates the performance

of Polaris as a high-level metric-based pods autoscaler for

Kubernetes, by extensively comparing it to the commercial

state-of-the-art HPA. In summary, this performance compari-

son shows that a high-level metric scaling can provide lower

latency and more reactive decisions as the load changes. In

terms of a functional comparison, Polaris has demonstrated

to be a very complete autoscaler, it decouples Elasticity

Strategies and SLO Controllers and, thus, enables the provider

to change the SLO or the strategy to apply very fast and

without redeploying the entire system. Polaris can be attached

to any existing deployment environment orchestrated with

Kubernetes without the need of changing the overall system

configuration. It only needs to be deployed and configured by

creating the needed controllers and mappings.

We identify several steps of future work to propose novel ex-

perimental results. Other autoscaling solutions, in addition to

Polaris and HPA, can be studied and compared. Furthermore,

a larger portfolio of high-level and low-level metrics can be

compared. This could provide different perspectives of how

these autoscaling systems behave as metrics change and what

performance results they can lead to. Additionally, a larger
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capacity experimental testbed might be used to reproduce the

experiments in more production-like environment.
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