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Abstract—The emerging Edge computing paradigm facilitates 

the deployment of distributed Al-applications and hardware, 
capable of processing video data in real time. AI-assisted video 

analytics can provide valuable information and benefits for 

parties in various domains. Face recognition, object detection, 
or movement tracing are prominent examples enabled by this 

technology. However, the widespread deployment of such mecha-
nism in public areas are a growing cause of privacy and security 

concerns. Data protection strategies need to be appropriately 

designed and correctly implemented in order to mitigate the 

associated risks. Most existing approaches focus on privacy 

and security related operations of the video stream itself or 

protecting its transmission. In this paper, we propose a privacy 

preserving system for AI-assisted video analytics, that extracts 

relevant information from video data and governs the secure 

access to that information. The system ensures that applications 

leveraging extracted data have no access to the video stream. An 

attribute-based authorization scheme allows applications to only 

query a predefined subset of extracted data. We demonstrate the 

feasibility of our approach by evaluating an application motivated 

by the recent COVID-19 pandemic, deployed on typical edge 

computing infrastructure.
Index Terms—privacy, artificial-intelligence, edge-computing, 

information-extraction, video-processing, attribute based authen-
tication

I. In t r o d u c t i o n

Real-time video feeds from urban areas in combination with 

Al-based processing techniques provide exciting opportunities 

for novel smart-city applications [1], [2]. The emerging edge 

computing paradigm empowers these applications even more, 

where high-resolution cameras deployed in public spaces are 

complemented by specialized edge computing devices that can 

detect, process, and interpret various features of video streams. 

Such features include, e.g., motion detection, object detection, 

or face recognition. Besides potentially improving security in 

specific domains, this information extraction process can also 

act as an enabler for application developers to provide valuable 

services to potential customers. Applications leveraging such 

information include e.g., biometric authentication (smartphone 

unlocking), locomotive systems (autonomous driving), fitness
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related applications (detecting and correcting movements dur-

ing an exercise), traffic monitoring, law enforcement (tracking 

of fugitives e.g., drivers escape), and many more.

However, the increasing number of cameras in public spaces 

cause growing concerns about the abuse of mass surveillance 

systems and the implications on personal privacy and free-

dom [3]. Therefore, adequate protection of private data is an 

increasing concern in all kind of domains making use of public 

video streams, such as health, financial, and social security. 

The most common straight forward generalized approach to 

protect sensitive data is the installation of access control 

mechanisms alongside with various encryption techniques, in 

order to protect data at rest and in transit. An exemplary 

video analytics implementation at the edge might incorporate 

a computing unit, connected to a camera, encrypting and 

transmitting a video feed via Transport Layer Security (TLS) 

to a cloud server, where some form of e.g., Role Based Access 

Control (RBAC) ensures that the decrypted video feed may 

only be processed by a entity with adequate permission or 

role.

In this paper, we follow an orthogonal approach to the 

provided example. Instead of applying encryption or privacy 

preserving image transformation techniques to a recorded 

video feed, we focus on the extraction of relevant information 

from the feed with the help of sophisticated machine learning 

techniques. This information only is then transmitted and made 

available, and, of course, also protected by similar mechanism 

as described in the previous example. The (raw) video is never 

transmitted or persisted/distributed permanently.

We propose a secure system design, that leverages state- 

of-the-art access control mechanisms featuring a Key-Policy 

Attribute Based Encryption (KP-ABE) scheme. Furthermore, 

we present in more detail a use case for analyzing the use 

of protective face masks in public areas, which, given the 

global pandemic situation due to the coronavirus disease 2019 

(COVID-19), is highly plausible and relevant. The perfor-

mance of a sample use case implementation is evaluated, 

aiming to demonstrate the feasibility of such a system running 

on typical edge computing hardware.
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II. Re l a t e d  W o r k

Privacy and security are critical non-functional aspects of 

video analytics systems, and remain active areas of research. 

Recent research in particular has identified edge computing as 

a key enabler for privacy-sensitive systems that deal with real-

time video processing [1], [4]. We discuss both frameworks 

for privacy for video analytics and surveillance in general, as 

well as specific methods of edge computing that enable our 

approach.

In the broad context of privacy in video-based media spaces, 

Boyle et al. [5] proposed a framework -  a descriptive theory 

-  that defines how one can think of privacy while analyzing 

media spaces and their expected or actual use. The framework 

explains three normative controls: solitude, confidentiality and 

autonomy, yielding a vocabulary related to the subtle meaning 

of privacy. A more technical introduction to video surveillance 

in general is given by Senior in [6]. The paper briefly summa-

rizes the elements in an automatic video surveillance system, 

including architectures, followed by the steps in video analy-

sis, from preprocessing to object detection, tracking, classifi-

cation and behaviour analysis. o u r proposed system builds on 

the high-level architecture described in this paper. We improve 

this architecture by considering AI-based video processing 

capabilities, and incorporate advanced security mechanisms. 

Furthermore, we suggest concrete hardware and software, 

proven to run with adequate performance in edge computing 

scenarios. Previous research on privacy mechanisms of video 

analytics systems often focuses on protecting the source video 

streams. For example, Upmanyu et al. proposed a privacy 

preserving video surveillance framework [7]. They split each 

frame into a set of random images, where each image by 

itself does not convey any meaningful information about the 

original frame. A blockchain-based approach was introduced 

by [8]. Chattopadhyay et al. demonstrate how the practical 

problem of privacy invasion can be successfully addressed 

through DSP hardware in terms of smallness in size and 

cost optimization [9]. This is particularly useful for edge 

computing scenarios, where computational resources may be 

scarce. Their access control scheme is based on a asymmetric 

key exchange mechanism, while regions of interest in the 

image are encrypted via AES. The work of [10] also focuses 

on encryption of an individual images.

other, more application-specific approaches, often involve 

the preprocessing of video streams to anonymize or obscure 

specific parts of a frame, i.e. denaturing. An example is the 

work of Schiff et al. [3] that proposes Respectful Cameras, i.e., 

cameras that respect the privacy preferences of individuals. 

Their practical real-time approach preserves the ability to 

monitor activity while obscuring individual identities. This 

is achieved by identifying colored markers such as hats or 

vests, which are automatically tracked by their system. The 

identities of people wearing, e.g., a colored vest, are obscured 

by adding a solid overlay over the face on every image frame. 

Satyanarayanan et al. [1] proposed GigaSight, an Internet-scale 

repository of crowd-sourced video that also enforces privacy

preferences and access control, and leverages edge computing 

technology. Closer related to our approach is the work done 

by [4]. They focus on camera-based digital manhunts of law 

enforcement agencies. Their approach leverages the inherent 

geo-distribution of fog computing systems to preserve privacy 

of citizens. If a camera system, mounted on the edge device, 

detects a face it sends a notification to the cloud. Though the 

authors state that an authorization mechanism is implemented, 

in order to access manhunt related data, they do not provide 

any specific details.

The previously presented approaches all focus on protecting 

or denaturing the source video stream. ou r system is different 

in that it ensures that no frames are ever transmitted, therefore 

requiring new system design considerations. This design is 

motivated by the fact that, many applications do not require 

analyzing or recording the raw video feed, but instead only 

require filtered frames or extracted metadata processed by 

other video analytics components.

III. M o t i v a t i n g  Sc e n a r i o

Due to the recent pandemic situation caused by CoVID-19, 

many countries imposed an obligation for people to wear facial 

masks in certain (mostly public) areas. Detecting if people 

adhere to such obligations may not only be of interest to 

law enforcement but also for virus transmission research and 

medical analysis. Public surveillance distributed at the edge, 

supported by adequate machine learning techniques (models 

and prediction accuracy), is capable of aiding in the detection 

and provision of relevant information, i.e., identifying clusters 

or numbers of people not wearing facial masks at a given 

location. However, despite its potential beneficial use, privacy 

aspects still have to be considered and the protection of 

sensitive data ensured. Applications, whether law enforcement 

related or for academic or societal purposes, do not necessarily 

need to store (raw or compressed) video feed, neither must 

they have access at any time to (live) video data, in such 

given use case described above. By implementing our system, 

relevant extracted information could in the simplest case be 

the number of people without masks per area, e.g., three 

people per 10 square meters. Combined with geodata of 

the surveyed area, interested parties would be able to get 

valuable insights and knowledge of peoples’ behavior and 

adherence to possible obligations, and may take appropriate 

countermeasures. However, this is just a simplified example 

to demonstrate that there are real world use cases, where 

(governing) parties do not need to access a video feed directly 

in order to extract valuable information.

IV. Sy s t e m  De s i g n

In this section we explain our proposed system design in 

detail, focusing on hardware and architecture. Section IV-A 

will provide a view on the software side of the system. 

The foundation of our system is the architecture described in 

Section I. Fig. 1 gives an overview of the involved components 

and mechanism incorporated. The proposed systems assumes 

a processing and sensing unit (a), mounted at the edge of the
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Fig. 1. Schematic overview of our proposed privacy preserving system for Al-assisted video analytics

network, e.g., on a smart lamppost. This unit comprises a high-

resolution digital video camera, a computing device optimized 

for AI operations (e.g., NVIDIA Jetson TX2 [11]), and a 

computing device (from now on referred as caching device) 

that caches the extracted video information. Additionally, the 

latter can also persist video data if needed. As soon as the 

camera starts recording, video data is directly passed to the 

AI accelerated device. For simplicity reasons, we assume that 

one or more adequate pre-trained machine learning models are 

already deployed on this device.

After the information is extracted, subsets of this data are 

labeled according to a specification provided by, e.g., a service 

provider or governing entity. A simple example may be the 

number of people in a certain area not wearing a mask, 

according to the motivating use case described in Section III. 

The specific extracted information is an integer value, and 

the corresponding label could be peopleWithoutMasks. 

An adequate and sophisticated labeling procedure may play 

a more important role when dealing with more complex 

scenarios.

The extracted and labeled information is then passed to 

the caching device, where it gets transmitted further to the 

information database (b). The information database can run 

anywhere in the compute continuum, and facilitates both 

protected real-time access as well as access to historic data for 

batch analytics. The transmission of all extracted information 

is protected by the well established TLS standard, ensuring 

the integrity, authenticity, and confidentiality of data.

The information database, once extracted information is re-

ceived, is then being encrypted using the Key-Policy Attribute- 

Based Encryption (KP-ABE) technique [12]. In this cryp-

tosystem, ciphertexts are labeled with sets of attributes, i.e., 

our previously assigned labels. Furthermore, private keys are 

associated with access structures that control which ciphertexts 

a user is able to decrypt. Specific, fine grained access policies, 

define which user is allowed to access a certain labeled 

ciphertext for decryption. A user is able to decrypt a ciphertext 

if the attributes associated with a ciphertext satisfy the key’s 

access structure. For instance, if Alice has the key associated 

with the access structure “X AND Y”, and Bob has the key

associated with the access structure “Y AND Z”, they are 

not able to decrypt a ciphertext whose only attribute is Y 

by colluding. The KP-ABE system further allows deriving 

keys from other keys, based on their restriction hierarchy and 

access structure, i.e., each user’s key is associated with a tree- 

access structure where the leaves are associated with attributes, 

allowing any user that has a key for access structure X to 

derive a key for access structure Y, if and only if Y is more 

restrictive than X.

In a KP-ABE, the encryptor exerts no control over who 

has access to the data they encrypt, except by their choice 

of descriptive attributes for the data. Rather, they must trust 

that the key-issuer issues the appropriate keys to grant or 

deny access to the appropriate users. In our case, users would 

be applications that may only need a specific subset of the 

extracted video information. A simplified example of access 

to encrypted data via policy defined access structure in a KP- 

ABE system is shown in Fig.2. Accessing only this subset of 

data is reflected in the application’s private key (c), determined 

by a policy. An application, firstly when deployed, is issued 

with such a key and is notified by the policy database if 

its key is modified. This allows for a seamless fine-grained 

management of access control for any application without the 

need of a re-deployment. The policies are stored and managed 

at a dedicated independent location at the edge or in the cloud 

(d). Managing those policies could be done by governing 

parties for example; but in this paper we do not further 

address this issue. Furthermore, we notice that if features 

not specified at design time are needed by an application, 

those unsupported feature extraction has to be re-implemented 

and deployed by e.g., a service provider or governing party. 

Once the extracted information is correctly encrypted, it is 

possible for applications to access this information via a well 

defined separate API, via a corresponding Attribute-Based 

Access Control (ABAC) mechanism. The API never allows by 

design for an application to directly communicate with a video 

processing unit at the edge, thereby prohibiting theoretical 

access to the video feed. An application is now able to further 

process the extracted information depending on their specific 

needs.
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Fig. 2. Access to encrypted data via policy defined access structure in a 

KP-ABE system

A. Sample Implementation

In this section we showcase a concrete exemplary im-

plementation of our proposed system based on the scenario 

described in Section III. Systems for face or object detection 

are well understood, as they have been broadly studied, 

implemented and evaluated over the recent years. Since the 

outbreak of COVID-19, machine learning models and their 

applications for mask detection have gained increased attention 

of researchers and developers world-wide.

The detection accuracy for real-time systems mostly de-

pends on external factors like, lightning conditions, view angle 

and even skin color of observed persons. In our example, we 

adapted the code from [13] to run on the different hardware 

nodes of our evaluation testbed. The extracted information, 

i.e., probability of a mask being detected alongside with the 

count of people in a given frame, is labeled and transferred 

over the internet, encrypted via standard TLS, to the infor-

mation database. On the information database runs a KP- 

ABE scheme [14], which is responsibility of the re-encryption 

of initial ciphertexts, i.e., incorporating the attribute groups 

into the ciphertext. The information database hosts a simple 

REST-API providing access to the extracted information, given 

proper authentication. A sample Android application is then 

able to query only information which labels are reflected in the 

private key deployed on the smartphone. A potential limiting 

factor in this application chain is the network latency, which 

depends on multiple environmental factors. Therefore, we did 

not include measurements regarding network related perfor-

mance into our evaluation. This sample application aims to 

showcase the scenario executed on dedicated edge computing 

hardware and evaluate the core systems tasks, i.e., AI-assisted 

object detection and encryption.

B. Evaluation

In our experiments, we focused on the AI-assisted informa-

tion extraction process and the corresponding encryption tasks. 

Therefore, we deliberately executed the video processing tasks 

and the information database on the same device.

Our testbed comprises a heterogeneous set of typical edge 

computing hardware. First, a laptop with an Intel i7-7700 

CPU@4.2GHz and 16GB RAM. Second, a Nvidia Jetson 

TX2 Developer Board with a ARM Cortex-A57@2GHz CPU 

and Pascal GPU and 8GB RAM. Third, a Raspberry Pi4 

with a ARM Cortex-A72@1.5GHz CPU and 4GB RAM. The 

AI-assisted information extraction process, i.e., detecting the 

number of people wearing a mask, is computational expensive. 

For the evaluation, we chose three short publicly available 

video sequences, showing varying numbers of people wearing 

a mask. The first video shows a single person putting a mask 

on an off. The second video footage (labeled Multiple Persons 

in Fig 3) constantly shows five people taking on and off their 

masks, while the third video (labeled Crowd in Fig 3) shows 

a large amount of people (>10; some wearing a mask, some 

do not) constantly varying in number. This videos are the 

input for our system, where the number of people wearing 

a mask is extracted and encrypted on a frame per second 

(FPS) basis. If the FPS processed by our system matches the 

FPS the input video is recorded with (e.g., 25 FPS), real-time 

performance is achieved, i.e., a user could potentially read the 

extracted information in real-time, but obviously this still also 

depends on the network conditions. We have to notice that 

our mask detection implementation is a chaining process of 

a face detection algorithm and a mask detection algorithm, 

each working with its own dedicated model. While the point 

of the paper is not to implement a performance optimized 

mask-detection framework, this chaining procedure obviously 

greatly affects the overall performance of the system. Fig. 3 

shows the results of our experiments. The overall performance 

is mainly affected by the AI-specific tasks and furthermore 

on the conditions and specifics of the information that needs 

to be extracted, e.g., an increase in number of people leads 

to a massive decrease in performance. The encryption tasks 

are commonly CPU-bound, scaling linearly with CPU-speed 

and/or are also dependent on the available specific encryption 

algorithm based hardware instruction of a given CPU, like 

e.g., the AES instruction set which is integrated into many 

modern processors [15]. The extracted plain text information, 

concerning our scenario, is rather small (compared to e.g.,

� Single Person � Multiple Persons Crowd

Intel ¡7 Nvidia Jetson Raspberry Pi 4

Fig. 3. Performance of information extraction and encryption of different 
video input
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encrypting the whole raw video data), hence the computational 

effort to produce ciphertext minimal. Therefore, the overall 

contribution to the performance capabilities of our system is 

neglectable compared to the information extraction process. 

Research has shown that modern edge computing devices are 

capable of executing AI-assisted video processing, without 

significant loss in performance [16]-[19]. Hence, in order to 

achieve real-time performance, the suggested ABE-based en-

cryption scheme is not a bottleneck in the system performance- 

wise, but rather the combination of used hardware and the 

nature of the AI-assisted feature extraction task. To address 

this problem, strategies like lowering the sampling rate of the 

video for feature extraction, reducing the input size, etc. could 

be incorporated.

V. C o n c l u s i o n

Video cameras deployed in urban areas provide enormous 

value for novel smart-city applications, but at the same time, 

cause legitimate privacy concerns. These concerns are mostly 

related to the unrestricted access and recording of the raw 

video feed, and potential abuse for mass surveillance. We have 

found, however, that many applications do not require this 

access in the first place. Instead, we argue that video analytics 

should be pushed to the extreme edge, and direct access to the 

video feed should be avoided. To that end, we have presented 

a privacy preserving system for AI-assisted video analytics. 

It features a decoupling architecture that effectively hinders 

applications from directly accessing the underlying video feed, 

and instead allows them to advertise what type of information 

they require. Our system then extracts the information using 

existing AI-based video processing techniques, ensures that 

privacy preferences are met, and facilitates the secure access 

to the extracted information for both real-time and batch 

applications. A ciphertext (i.e., the encrypted information 

extracted from video data) is labeled with certain attributes, 

which only allows applications with a matching private key 

(i.e., the attributes corresponding to the labels of the ciphertext 

are encoded in the key) to decrypt and access the data. A 

KP-ABE security scheme ensures that only authorized parties 

have access to this extracted information. To allow for a 

more fine grained access control, security policies determine 

which application is able to decrypt specific subsets of the 

encrypted extracted data. The policies are stored and managed 

at a dedicated policy database, located at the edge or in 

the cloud. Furthermore, it is responsible for issuing keys to 

an application, as well as notifying applications if a key’s 

attributes change. Hence, a seamless fine-grained management 

of access control for any application without the need of a re-

deployment is achieved. We showed that our system is able to 

run on typical edge computing hardware, by implementing and 

evaluating a simple, yet due to the recent pandemic situation 

highly relevant scenario.
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