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Abstract—Demanding IoT application requirements such as
high dependability and low latency, cannot be satisfied by central-
ized cloud computing when deploying these applications. Edge
computing is emerging as an alternative to deploy demanding
IoT applications closer to the edge of the network. However,
with edge computing, available resources are distributed among
different resource-constrained devices, which cannot host large
monolithic applications. We propose a new hierarchical IoT
application model, suitable for the distributed nature of edge
computing. Thus, a task in the application is modeled using
multiple configurations of smaller tasks, each with their own
functionality level and resource requirements. For deployment
we use a decentralized resource technical framework that finds
a satisfiable task mapping on edge devices. Its functionality
is inspired by an auction house, having the objectives of (i)
deploying an application such that its requirements are met and
(ii) empowers edge devices to be in control of their available
resources. For the latter, we propose a new decision policy to
help edge devices take better decisions regarding the use of local
available resource. Our solution enables efficient device resource
utilization when deploying IoT applications at the edge.

Index Terms—Edge Computing, Internet of Things, Decentral-
ization, IoT application model, Resource Management

I. INTRODUCTION

The rapid adoption of Internet of Things (IoT) devices

has pushed the development of new IoT applications with

more stringent requirements like low latency and increased

privacy. Requirements for which the current cloud-centric state

of the art may prove inefficient, due to possible network

congestion and increased latency [1]. Edge computing has

emerged as a promising paradigm to extend cloud capabilities

closer to the end-user, enabling the migration and hosting of

parts or the entire application at the edge of the network.

However, since the edge computing architecture is composed

of distributed resource-constrained devices, the monolithic

application model is impractical; a single edge device may

not accommodate an entire application. As a solution, new

application models and novel resource management techniques

must be developed to efficiently deploy an application to an

edge computing architecture.

To enable the deployment of an IoT application to such a

distributed architecture, the monolithic model must be divided

into multiple smaller tasks. Researchers proposed that an IoT

application can be modeled as a Directed Acyclic Graph

(DAG), where vertices represent an atomic task, while the

edges represent the dependencies between them [2]. An atomic

task represents a function that cannot be divided into smaller

tasks. With the DAG model, an application can take advantage

of the available resources found at the edge of the network.

Combining the DAG application model with resource man-

agement techniques [3] enables the successful deployment of

an IoT application at the edge of the network. In previous

work [4], we proposed a decentralized resource auctioning

technique to deploy different IoT applications on resource-

constrained devices. With this approach, we manage to fully

deploy an application on an edge architecture, i.e., without the

help of the cloud, under the conditions that we find at least

one edge device which has the required available resources

for every task; a limitation that is given by the inability to

further decompose an atomic task. As a result, the outcome of

the deployment strategy is highly dependent on the available

resources of each node and the resource requirements of each

task, forcing the mapping of tasks to the cloud while leaving

available resources unused at the edge.

To address the aforementioned problems, we propose a ro-

bust application model and a novel resource management tech-

nique to lower the impact of available resources on deployment

success. We define an IoT application a robust application if its

functionality can be adapted based on the edge architecture’s

available resources. Such an application can still be functional,

with a different functionality level, if it faces a resource short-

age on the edge devices. To achieve deployment flexibility,

we extend the DAG application model such that it can include

composite tasks, and contains information that enables the

deployment strategy to choose the best functionality level of

the application considering the resource availability constraints

of the edge devices. Such a modeling approach is inspired by

the aspect-oriented flow-based programming [5]. In this case,

the developer can define multiple aspects for each composite

task to ensure different functionality levels. Combining the

proposed application model with novel resource management

is imperative to achieve efficient deployments. As such, we

extend previous work with our robust application model, up-

dating the deployment strategy and developing a new decision

policy module to enable participants to efficiently utilize their

available resources.

In this paper, we propose a decentralized resource auction-

ing technical framework to deploy IoT applications on an edge
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computing architecture. Our objective is to find a satisfiable

task mapping that meets the application requirements, i.e., the

end-to-end delay (e2e delay) latency, and efficiently utiliz-

ing all computational available resources found on resource-

constrained devices. Our contributions are:

• An improved IoT application model that allows for better

resource utilization and enables configurable application

functionality based on the available resources found at

each host edge node.

• An extended decentralized resource auctioning that con-

siders the proposed robust application model, to seam-

lessly deploy IoT applications at runtime, assuming no

design-time knowledge of network topology or devices’

available resources. Furthermore, it enables the developer

to push task updates in the form of new aspects, without

any downtime required.

• A new decision policy that empowers a device to take

local decisions regarding its available resources. Our

strategy is capable of providing both feasible and op-

timized solutions, having the following objectives: (i)

maximizing task coverage, (ii) maximizing the available

device resource utilization, and (iii) maximizing the ap-

plication functionality.

The remainder of the paper is structured as follows. In

Section II we present the overview of our proposed solution

and introduce a motivational example. Section III defines

the application and architecture considered in this paper. In

Section IV we describe the implementation details of our

proposed technique. Section V presents the methodology and

results of our evaluation regarding both deployment and bid

strategy. Section VI summarizes the related work on resource

allocation techniques, and finally Section VII concludes the

paper and provides an outlook on future work.

II. TECHNICAL FRAMEWORK OVERVIEW

Our technical framework provides decentralized resource

management at runtime, focusing on seamlessly deploying

latency-sensitive IoT applications on the cloud-fog-edge con-

tinuum with the objective of efficiently utilizing the available

resources found at the edge. Our main objective is to aid the

developer to focus only on the application development pro-

cess without requiring any knowledge of the current network

topology and devices’ available resources. Its functionality is

inspired by an auction house, from where we borrow some

elements like application advertisements and bids. However,

there are some differences as well, like (i) a bid, sent by a

participant, contains multiple offers that may be partially or

fully fulfilled and (ii) there is no incentive mechanism since

we assume devices trust each other; their incentive being the

ability to share resources to execute certain applications. Thus,

there are two main roles that an edge node can have during

application deployment, i.e., coordinator and collaborator.

An edge node becomes a coordinator when an application

arrives to be deployed. The coordinator’s objective is to ensure

that the deployment meets the application resource require-

ments. Its functionality is divided into three different phases:

App developers

Robust IoT application model design-time
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Fig. 1. Decentralized Resource Auctioning: Overview.

(i) find collaborators, (ii) find allocation, and (iii) application

update. The first phase finds collaborators by advertising the

application to its neighbors (i.e., all nodes that share a direct

communication link with the coordinator). During this phase,

the coordinator becomes a collaborator as well creating a

bid for the received application. The second phase finds a

satisfiable task allocation based on the received bids, while

the third updates the composite tasks with new aspects.

An edge node becomes a collaborator once a node receives

an advertisement message from the application coordinator.

A collaborator has total control over its available resources,

being able to create a specific bid based on its current internal

status; a bid is composed of offers, where an offer contains

a set of tasks. Each offer sent in a bid has the objective of

maximizing the available resources and task coverage. The

former objective aims at maximizing the allocated available

resource for the advertised application; since we empower

nodes to take local decisions, the strategies to allocate certain

resources to share is defined by its administrative entity and

can be different from the total available resources of a node.

The latter objective, represents the ability of a bid to cover

all advertised tasks, i.e., there is at least one offer for each

task. Both equally important in creating improved bids that

aid the coordinator in finding a satisfiable deployment. In the

case of receiving multiple concurrent advertisements, a first-in

first-out synchronization strategy is used; a bid is created for

the first message received and the resources used are locked

until a decision is made regarding that bid.

After the coordinator distributes the tasks to the collabo-

rators, a collaborator role is changed to coordinator for the

received tasks. In this case, the node can use the deployment

policy module deploying the composite task instead of the

entire application. By becoming a coordinator, a task can im-

prove its functionality based on the available resources found

locally or in the neighborhood of the host node. This is an

important feature that ensures the best application functionality

possible at the current time considering the host available

resources. Furthermore, it shows that there is no need to obtain

the optimal task allocation during application deployment
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since (i) the application can achieve maximum functionality

when more resources are available at the host of each task and

(ii) the application is deployed in a dynamic network where

uncertainty is introduced by device heterogeneity and mobility.

An overview of our technical framework is shown in Fig-

ure 1. The procedure starts at design time when an application

developer defines his/her robust application model. To properly

define the application, the developer must provide the data-

flow between composite tasks as a DAG and the application

requirements. During this process, the developer uses a model-

based system engineering tool to model the composite tasks

and their aspects as well as the communication flow. For each

composite task, a set of aspects can be defined to specify

different functionality level of the task; an aspect is defined

by a DAG and the resource requirements of every task part

of that aspect. Finally, the developer chooses an edge node

to deploy it on; a node that becomes the coordinator of the

deployed application. At runtime, the coordinator receives the

application and starts the deployment procedure.

Motivational Example. Serving as our running example,

we consider a public safety application, deployed in a smart

city scenario, with the purpose of monitoring public areas.

Although the main objective of the application is, for example,

finding wanted criminals and discovering stolen cars, it is also

desirable to aid the authorities with finding missing persons,

if enough resources are available in the platform. For this

purpose, the application is composed of distinct composite

tasks, including people analysis and environment analysis
tasks.

Privacy and low e2e delay latency define our public safety

application, requirements that may introduce significant chal-

lenges when deploying to the cloud. First, to ensure privacy

requirements and low latency, data must be processed near

its origin, making a cloud deployment less desirable. Fur-

thermore, the application should ensure correct functionality

even when a stable connection to the cloud is missing.

Consequently, a full deployment close to the origin of data

is desirable; where the IoT application is distributed among

multiple edge devices. In our scenario, an edge device may

be a static device such as a CCTV camera as well as devices

with mobility that may leave the area where the application

is deployed at any time like a dash camera found in a car or

images saved in a smart phone.

III. PROBLEM FORMULATION

The underlying premise of edge computing is a distribution

of resource-constrained devices at the edge of the network [6].

Thus, a monolithic application cannot be successfully de-

ployed on a single edge device, due to the lack of available

resources. As a result, current research [7] has focused on

modeling such applications as a DAG. An approach that

still faces some challenges because its success is dependent

on the available resources of an edge node; a task cannot

be further divided to be able to find a satisfiable mapping.

In our conception, an application model is composed of

interconnected composite tasks, where each task has defined

a set of different configurations. Each configuration has a set

of resource requirements that must be fulfilled upon deploy-

ment. In this section, we describe our application model, the

considered objectives, and our assumptions.

A. Application and System Models

We consider that the edge computing architecture is de-

fined by uncertainty introduced by mobile and heterogeneous

devices, each having limited available resources, RE = {r1,

r2, r3, ...}. Let EN represents the total number of such devices

deployed in the same neighborhood, EN = {E1, E2, E3, ...}. We

do not have a predefined network topology, devices knowing

only the nodes that share a direct communication link; all

devices from the same neighborhood form a peer-to-peer

network. Besides the available resources, a node has sensors

to collect data from its surroundings and actuators to perform

different actions. In Figure 2, an overview of a neighborhood is

shown, where each device can be a coordinator or collaborator.

Edge
Device

Edge
Device

Edge
Device

Edge
Device

Decision
Policy Module

Deployment
Policy Module

Fig. 2. Edge Computing Platform Architecture: Overview.

IoT applications may be deployed in such edge computing

architectures; we assume an application model consists of

multiple composite tasks and can be modeled as a hierarchical

graph. A composite task has a set of configurations, covering

a wide range of functions, all performing at least the critical

functionality. Furthermore, we assume an application is de-

scribed by a communication flow starting with a sensor task

and ending with a sink (i.e., the actuator task), defining the

path for which we want to compute the e2e delay. The e2e

delay represents the total time required by an application to

complete its execution; as such is provided by the developer

as an application requirement to ensure proper functionality.

Such an application division overcome the limitations of an

edge device to execute the whole application locally.

Our application model is inspired by the aspect-oriented

flow-based modeling paradigm [5], where cross-cutting con-

cerns of an application, e.g., security, persistence, synchro-

nization, fault detection, can be modularized as an aspect. In

this paper, we see the functionality level of an IoT application

as a cross-cutting concern which is impacted by the resource

availability of edge devices; therefore it can be modeled as

an aspect to adopt the application’s behavior and functionality

according to the available resources. The application developer

specifies these aspects for different levels of functionalities,

e.g., from a very critical operating mode to the fully functional

operating mode, along with their priorities. Our resource

management technique takes these aspects into account and

tries to host the application according to available resources

and the given functionality aspects of each composite task.
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To be concrete, we assume that an application model

consists of a set of composite tasks T = {t1, t2, t3, ...}, where

each task has defined a set of aspects (i.e., a configuration),

e.g., t1 = {a1, a2, a3, ...}. The model uses a DAG, Gapp

= (V, E), to model the data flow between composite tasks,

where vertices represent a composite task and edges show the

dependencies between them. The application model for our

motivational example is presented in Figure 3.

t0:input

t2:people analysis

t1:obj.
detection t4:output

t3:env. analysys

Fig. 3. Smart Building Application model.

A task ti performs a specific application feature that is

integral to the overall application performance. To this end,

we assume each composite task has defined a set of aspects

from which it will inherit their resource requirements like

memory (i.e., RAM), storage (i.e., HDD), and computational

power (i.e., CPU); resource requirements and functionality are

dependent on the chosen aspect. Let us consider that the people
analysis task, from our motivational example, has a set of 2

predefined aspects, t2 = {a1, a2}. Aspect a1 represents the de-

sired functionality, having the highest resource requirements,

while a2 represents the minimum functionality level with the

lowest resource requirements (see Figure 4 and 5).

t0:pre-
processing

t1:face
detection

t2:feature
extract

t3:feature
mapping

t4:criminal
identification

t5:missing
persons

identification

Fig. 4. Aspect 1 (a1): Face recognition for missing persons.

t0:pre-
processing

t1:face
detection

t2:feature
extract

t3:feature
mapping

t4:criminal
identification

Fig. 5. Aspect 2 (a2): Face Recognition for wanted persons. [8].

An aspect ai defines the configuration and functionality of

a composite task. Each aspect is developed at design-time

and specifies at least the minimum functionality required by

the application. Moreover, an aspect can enable a range of

different functionalities that a composite task should perform.

As a result, we have established that aspects will have different

priorities based on their functionality and resource require-

ments. For example, the base configuration for a task is con-

sidered a1 which always has the largest resource requirements

and provides the maximum functionality. As such, this will

have the highest priority. At the end of this spectrum, the

last aspect, i.e., a2 in the aforementioned example, has the

lowest priority; having the smallest resource requirements and

minimum functionality. In conclusion, an aspect is defined by a

set of resources, Ra = {r1, r2, r3, ...}, and a DAG modeling the

workflow between its subtasks. With such a modular approach,

a task can have different aspects depending on the available

resources of the participant node; helping to efficiently use the

available resources of edge device.

The e2e delay is critical to the overall deployment strategy,

hence we define the two important components required for

its computation: (i) communication latency and (ii) worst-case

execution time (WCET) of a task. The former is dependent on

the task allocation to nodes since the latency between ti and

tj, i.e., lti,tj , is equal to the latency of their host nodes, i.e.,

lEi,Ej . For example, consider that t1 is mapped on E1 and t2
on E2, resulting that lt1,t2 = lE1,E2 . The latter is dependent on

the host internal status and must be computed locally when a

bid is sent. In a dynamic network composed of heterogeneous

devices, finding the WCET of a task at design-time is not

possible since we do not know the network topology and the

current status of each node. However, with a decentralized

solution, where nodes are empowered to make their own

decisions, these challenges are overcome. In conclusion, we

can find the WCET of a task when the bid is created, by

computing its value based on the current CPU load. Since our

focus is to efficiently use the node’s available resources, we

assume that the latency and WCET are already provided by a

latency monitoring module as well as a WCET module.

B. Technical Framework Objectives

Our objectives differ depending on the role the node will

play, i.e., a coordinator or a collaborator.

For a coordinator node, the main objective is to satisfy

the e2e delay requirement of the deployed application. The

e2e delay is composed of the communication latency between

tasks and an overhead latency from the task allocation. The

overhead latency is composed of the WCET of that task on

its node plus the e2e delay of that composite task if the node

becomes its coordinator. For example, consider the authentica-
tion task t2 = {a1, a2}, where after the deployment strategy is

mapped on node E1 having as its configuration a2; which has

the lowest resource requirements and minimal functionality.

In this case, to improve the performance of the application

the task can be upgrade to a higher functionality level if E1

becomes its coordinator and finds the required resources in

its neighborhood. As a result, the overhead latency for t1 can

be equal to the WCET of the task if further deployment has

failed, or WCET + e2e delay of the deployment result.

For the collaborator node, the objective is to provide a

bid for the advertised application such that maximizes (i) the

utilization of available resources, (ii) the task coverage, and

(iii) the application functionality by minimizing the penalty of

a bid. The penalty is dependent on the priority of an aspect,

e.g., the highest priority aspect has the smallest penalty, while

the lowest priority aspect has the highest penalty. All are based
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on the local status of the collaborator (i.e., available resources

and CPU load) and may differ at different points in time.

C. Assumptions

It is important to have a good understanding of our assump-

tions since it offers a completeness for our technique. As such,

we present below our assumptions; their development is out

of the scope of this paper.

Latency. A core component of our deployment objective as

such is imperative to measure it at runtime when an application

is deployed. For this reasons, we assume that there is a

third module, i.e., a latency monitoring module, capable of

providing the latency.

WCET. The second part of computing the e2e delay latency,

hence it must be known at deployment time. As a result,

we assume that each individual collaborator is capable of

computing the WCET of its bid, based on the current internal

status, i.e., the CPU load.

Incentives. A requirement mechanism in a distributed sys-

tem where a collaboration between devices, owned by different

administrative entities, is required to achieve a certain goal.

In our scenario, we consider that these devices trust each

other and are part of a community (i.e., the neighborhood).

Devices from the same community share resources freely since

it is beneficial for all parties involved; it offers the possibility

exchange computational resources between devices, inside the

community, to deploy applications.

Application development. Done at design-time using a

modeling tool that aids the developer to model the applica-

tion’s tasks and communication flow. Once the application is

modeled and verified, the model is extracted in a JSON file

and sent to be deployed by the chosen edge device.

IV. APPLICATION DEPLOYMENT FRAMEWORK

From our resource management technique overview pre-

sented in Section II, we identify two major components, i.e.,

the deployment policy module and the decision policy mod-
ule. The former implements an extension of a decentralized

resource allocation technique [4] which aims at deploying

an application entirely on edge devices. The latter empowers

each participant node to take local decisions concerning their

available resources.

A. Deployment policy module

The deployment policy module retains its functionality

proposed in previous work [4], i.e., to find a task allocation

on edge devices that satisfies the application requirements.

However, we extend it with more functionality to support

our robust application module and update the application

functionality at runtime. Therefore, the functionality of our

coordinator consists of three distinct parts:

• Find collaborators. The procedure starts when a request

to deploy an IoT application arrives at a node. Under

these conditions, the edge node becomes a coordinator

for that application’s lifespan. The coordinator prepares

an advertisement message containing: (i) a description

of the application model and (ii) the maximum duration

allowed to receive a bid.

• Find allocation. Once all bids are collected from the

participant nodes, the procedure of finding a satisfiable

task allocation begins. The coordinator selects a mapping

based only on the information received without knowing

extra details on each participant. In the end, the solution

always satisfies the application requirements, but not a

bid; a bid can be fully or partially satisfied.

• Application update. Once the winner nodes are decided,

the deployment policy module still keeps track of these

devices. As a result, a developer can send, at a later

stage, new aspects for each composite task to expand the

application functionality. When a new aspect is received,

the coordinator sends it to the location of its target

composite task. Consequently, we can perform on the fly

updates on the application without any downtime.

Due to the problem complexity of resource allocation tech-

niques, a typical approach used in related work is based on

heuristic optimization algorithms to find a mapping between

the deployed application and an edge computing architec-

ture [9]. However, this approach is not suitable for us, since

we aim at allowing resource-constrained devices the be coor-

dinators and perform deployments in a decentralized manner.

As such, we move towards a less computational demanding

approach, i.e., using a generalization of the Boolean satis-

fiability (SAT) problem called satisfiability modulo theories

(SMT) [10]. SMT represents a technique that verifies if a first-

order logic formula, composed of predicates symbols, is satis-

fiable. Considering this, we have translated our task allocation

objectives into a SMT formula, using the following encodings:

task facts, domain facts, latency facts, bid constraints, aspect
facts, aspect constraints, and constraint formulation. The first

four encodings represent the base we use from [4], while the

rest are our contribution to this module.
First, we briefly introduce the first four encodings. Task facts

ensures that the solver maps a task on a single participant

node. To be considered as a valid choice, a node must send

a bid for that particular task. Since there is no consensus

between participant nodes, a task may receive multiple bids

from distinct nodes. Therefore, we must guarantee that only

one node is chosen for each task. Next, latency facts and

domain facts helps to determine the latency between two

dependent tasks; the latency is dependent on the current

host nodes of each task. Since we don’t know the solution

found by the solver when the model is built, we must ensure

that all possible combinations of tasks mapped on nodes are

considered. Finally, bid constraints ensures that only one offer

is chosen from a bid. As a result, we know that a solution does

not exceed the available resources of a collaborator.
The aspect facts provides the possible aspects a task can

have; information important for the e2e delay computation,

since each aspect has associated an execution time. Hence,

knowing the aspects of each task provides a knowledge base

used by the solver to enforce the last two encodings, i.e.,

aspect constraints and constraint formulation. The encoding
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is shown in Equation 1, where latency returns the overhead

latency of aspect a from task t.

aspectFacts = Or(ta = latency(a)))

∀ t ∈ T.
(1)

The aspect constraints aid the solver in getting the correct

WCET for a task, based on its mapping. Similar to the latency
facts, this constraint helps the solver to create a relation

between the mapping of a task and its WCET. As we know,

the WCET is closely related to the current state of the node.

Hence, we need to know where the task is mapped to consider

its WCET in the constraint formulation. Furthermore, since a

bid contains multiple offers, we must ensure that we get the

correct WCET for a task according to the rules presented in bid
constraints. For example, node E1 sent a bid B = {O1, O2},

where O1 = {t1, t2} and O2 = {t1}. Each task has associated

an aspect and its WCET. As a consequence, if t1 is mapped

on E1, then we have two possible WCET associated with it

(one for each offer). If t1 has the same aspect in both offers,

then the WCET of the task will be the value of the aspect.

However, if the two offers have different aspects for t1, then

the solver will choose the aspect from the task that satisfies

the bid constraints rules.

Finally, the constraint formulation ensures that the solution

satisfies our objectives. Such encoding accounts for both the

communication latency and WCET of a task; the result must

be smaller or equal to the application requirements. A rule

that helps the solver to verify the satisfiability of a solution

found using the aforementioned encodings. The formula is

shown in Equation 2, where d represents the total number

of dependencies between two tasks.

e2eDelay =

d∑

i=1

li +
T∑

t

ta ≤ app requirements (2)

B. Decision policy module

The decision policy module has the purpose of aiding the

collaborators in creating a bid for the advertised application.

The procedure starts once a node receives the advertised

message from the coordinator. Based on its current status, the

node can become a collaborator if it has the required resources

to host at least one task. To aid in its decision, we have

developed a strategy to create a bid for each message received.

A bid contains multiple offers and has the following three

objectives: (i) maximize the utilization of available resources

for each offer, (ii) maximize the coverage of tasks per bid,

and (iii) maximize application functionality. Finally, once the

bid is created, the collaborator reserves the required resources

for the bid until a response is received from the coordinator

to avoid any conflicts. Furthermore, for each task sent in the

bid, it computes and send the tasks’ WCET. In the end, the

freshly created bid is sent to the coordinator.

To obtain a bid that satisfies all objectives aforementioned

above, we have developed a new strategy capable of finding

the best bid in the given amount of time. The strategy yields

an optimal bid only if the solution can be found in the

available computational time received from the coordinator. If

the time has expired, the strategy produces a feasible solution

that guarantees the constraints are met. As a result, we have

decided to use Constraint Programming [11] to find our bid.

With constraint programming, we can describe a model using

decision variables, constraints, and global objectives.

Based on the advertisement message, we can create our

decision variables. A decision variable aims at defining for

each task a domain representing all the possible aspects the

task can have. Let’s assume that t1 has a set of two different

aspects, i.e., t2 = {a1, a2}. In these conditions, decision

variable dt2 can have assigned in the model only one aspect

from the domain. Besides the task variables, to be able to

maximize the available resources of a node in an offer, we

must define three new decision variables to keep track of the

resource requirements of a chosen aspect. Meaning that the

domain of a resource decision variable, i.e., RAM, CPU, and

HDD, has the same length as the domain of the task. For

example, the domain for the RAM resource variable for t2 is

{a1RAM , a2RAM}. Finally, we define a penalty variable to aid the

solver in finding solutions containing higher priority aspects.

For the highest priority aspect we have attached a penalty of

0, while for the rest aspects there will be a penalty increment

of 2. In the end, if the task is not placed in an offer, it will

have the largest penalty of 20.

Now that we have added all decision variables and their

related domains to the constraint programming model, we can

start defining constraints that will guide the solver in finding a

feasible solution. We have created two major constraints, i.e.,

(i) offer constraints and (ii) max coverage constraints.

The aim of our offer constraint is to ensure that an offer

does not exceed the available resources of a collaborator. Two

important parts are found in this constraint, i.e., set resource
decision variables and check available resources. The former

aims at creating a logical relation between an aspect of a

task and its resource requirements (see Equation 3). The latter

ensures that the sum of all resources required for the current

offer does not exceed the available resources of that node (see

Equation 4, where nt is total number of tasks from an offer).

setResource : (t = a) ⇒ (tCPU = aCPU

∧ tRAM = aRAM ∧ tHDD = aHDD)

∀ t ∈ Tand ∀ a ∈ ta.

(3)

maxCPU =

nt∑

i=1

tCPU ≤ availabeCPU

maxRAM =

nt∑

i=1

tRAM ≤ availabeRAM

maxHDD =

nt∑

i=1

tHDD ≤ availabeHDD

(4)

The aim of our max coverage constraint is to maximize the

task coverage in a bid. To achieve this, we verify that across all

offers in a bid there is at least one offer for a task (i.e., a strict
bid). A strict bid is a bid that has 100 % task coverage; all
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other bids with a lower task coverage are considered infeasible.

We can make the constraint soft if we change the > 0 to ≥ 0
and obtain a permissive bid. In this case, a permissive bid
considers feasible all solutions independent if a task does not

receive an offer from a collaborator. The constraint is shown

in Equation 5, where no is the total number of offers sent in

a bid and priority returns the priority of the aspect assigned

to task t:

maxCoverage =
no∑

i=1

priority(t) > 0

∀ t ∈ T.

(5)

Finally, to enable our decision policy to yield the best

solution under the given time, we have defined a global
objective. The purpose of the objective is to minimize the

penalty at the bid level. As a result, we will obtain a bid

that prioritizes the higher priority aspects for each task, while

maximizing the utilization of all available resources.

V. EVALUATION

A major goal of this paper is to efficiently utilize the avail-

able computational resources found on resource-constrained

devices when deploying a latency-sensitive application on

an edge architecture. To this end, we evaluate our proposed

application model in terms of obtained successful mappings at

the edge of the network. We first evaluate the decision strategy

module to understand the effects of various applications and

device local available resources on (i) the total number of

offers sent in a bid and (ii) computational time required to find

a feasible solution. Finally, with this knowledge, we proceed

in deploying three different applications, (i) montage, a real-

world DAG workflow [12], (ii) a cognitive application [13],

and (iii) a mockup application defined by us.

A. Decision policy module: Experiment and Results

We separately evaluate the decision policy module and

its bid strategy to demonstrate the collaborator’s ability to

provide feasible bids. The purpose of this evaluation is to

observe how the following impact task coverage: (i) edge node

available resources, (ii) application size (i.e., the total number

of composite tasks), (iii) available computational time (i.e.,

the maximum time allowed to find a bid), and (iv) number of

offers sent in a bid. Furthermore, we choose to evaluate two

different types of bids (strict and permissive) by making the

max coverage constraint a hard constraint and a soft constraint.

With the former, each bid achieves 100% task coverage; all

bids with a lower percentage are considered infeasible. With

the latter, bids with lower task coverage are accepted.

The maximum number of offers inside a bid plays an

important role in the overall performance of the deployment

technique. Depending on the type of bid, the number of tasks

may increase or decrease the performance. For example, a

strict bid requires a minimum number of offers to find a

feasible bid; the minimum number of offers is dependent on

the device available resources and application size. On the

other hand, a permissive bid requires more computational time

and available resources to yield better solutions.

The experimental setup for this policy consists of sending

as an advertising message the montage application to a col-

laborator node and record the obtained bid; we chose this

application due to its large size, making it harder to find a

feasible bid. For each bid, we have a set of different metrics

that we change such as available computational time (i.e., 1,

5, 15, 30, 45, and 60 seconds), number of offers (i.e., 2, 4,

6, and 8), available resources (12, 36, and 60 units for each

considered resource), and type (permissive and strict). In our

evaluation for this module, for each set of available resources

we obtain the task coverage for every considered bid size at

different computational times. For example, for a node with 12

units of available resources we obtain a total of 48 bids, i.e.,

for each bid size we change the available computational time

resulting in 6 total bids per size; this approach is performed

for both types of bids (see Table I).

Our results are shown in Table I and Table III where the

task coverage is shown as the intersection between the number

of offers and the execution time. For example, in Table I, a

permissive bid with two offers having the execution time of 1

manages to offer a task coverage of 25 %.

Bid Type # offers
execution time (seconds)

1 5 15 30 45 60

Permissive

2 25 25 25 30 29 29
4 46 36 46 50 50 50
6 55 58 50 50 42 42
8 63 67 63 63 58 58

Strict
2–4 0 0 0 0 0 0
6–8 100 100 100 100 100 100

TABLE I
TASK COVERAGE PERCENTAGE OF PERMISSIVE AND STRICT BIDS WITH 12

UNITS AVAILABLE RESOURCES

In Table I, we can observe that with the current available

resources, it is impossible to find strict bids when the number

of offers is 2 and 4. A result of the condition that a strict

bid is considered feasible only when its task coverage is

100 %. In comparison, since the conditions are more relaxed,

a permissive bid can offer a task coverage in the rage between

0 % and 100 %; the only chance to not get a feasible bid

is when the collaborator does not have available resources to

host at least one task from the application.

The effects of increasing the collaborator’s available re-

sources on the task coverage of each bid type is shown in

Table III and II. We can observe that it is possible to obtain

a feasible strict bid for all sizes, while an improvement in

the overall task coverage of a permissive bid is seen. We can

observe that with more execution time and available resources

a permissive bid can achieve 100 % task coverage.

To evaluate of decision module, we have implemented the

bid strategy using CP-SAT solver provided by Google OR-

Tools [14]. We perform our measurements by deploying the

collaborator on a machine with a single-core Intel i5 2.3GHz

processor.
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Bid Type # offers
execution time (seconds)

1 5 15 30 45 60

Permissive

2 58 63 50 50 58 58
4 63 58 71 71 71 66
6 66 66 83 79 79 79
8 86 88 100 100 100 83

Strict 2–4–6–8 100 100 100 100 100 100

TABLE II
TASK COVERAGE PERCENTAGE OF PERMISSIVE AND STRICT BIDS WITH 36

UNITS AVAILABLE RESOURCES

Bid Type # offers
execution time (seconds)

1 5 15 30 45 60

Permissive

2 71 71 75 71 71 71
4 75 88 92 92 92 92
6 92 92 100 92 92 96
8 83 83 83 83 96 100

Strict 2–4–6–8 100 100 100 100 100 100

TABLE III
TASK COVERAGE PERCENTAGE OF PERMISSIVE AND STRICT BIDS WITH 60

UNITS AVAILABLE RESOURCES

B. Deployment policy module: Experiments and Results

We consider as a performance metric the deployment strat-

egy ability to find a satisfiable mapping using only edge

available resources. Furthermore, we perform a comparison

between our robust application model and the DAG model

looking at their impact on the deployment strategy. Finally,

we compare the deployment efficiency of both the strict and

permissive bids; it is important to understand the impact of

strict bids on the deployment results. For our experiment setup,

we simulate the deployment of the three IoT applications

aforementioned on an edge computing platform architecture,

evaluating both the applicability and performance.

1) Applicability: Cognitive Application Deployment: Based

on the results presented in Section V-A, for our applicability

evaluation, since the application consists of 8 tasks, we set

the configuration as follows: (i) the available resources (i.e.,

RAM, CPU, HDD) on each collaborator node is randomly set

between 12 and 24 units, (ii) a bid contains two offers, (iii)

the computational time of a bid is 1 sec, (iv) we use strict

bids, and (v) the e2e delay is set to 50. Our target edge com-

puting architecture is composed of two resource-constrained

devices, that can be both coordinators and collaborators for

the deployed applications.

We define the cognitive application using our proposed

robust model, assigning to each composite task a set of

four different aspects. Each aspect has a set of resource

requirements chosen in the range of 1 to 9 units; the lowest

priority aspect has resource requirements closer to 1, while

the highest priority aspect has resources close to 9. For the

evaluation purposes, the WCET was chosen randomly between

1 and 10 for each aspect. The cognitive application model is

shown in Figure 6.

The coordinator manages to find a satisfiable mapping in

40 ms (i.e., the time required to find a mapping after the bids

were received) at which the time required to compute the bids

is added (i.e., 1 sec); a total of e2e delay = 49 was obtained,

from which 12 comes from communication latency and 37

from WCET. The application mapping is shown in Figure 6,

coarse feature
extraction

face
recognition

object
recognition

vision
capture

learning-based
activity inference rendering

efect dispaly

optical
character

recognition

E1

E1 E2

E2

E2 E2 E2

E2

a4

a2

a4

a4

a4 a4 a4

a4

Fig. 6. Cognitive Application [13]

where on each composite task on the left upper corner we

see its edge node, while on the right upper corner we have

the chosen aspect. For example, t1 is mapped on E1 with the

aspect a4. Collaborator E1 has the following available resource,

RE = {RAM = 19, CPU = 21, HDD = 18}, while E2 has RE

= {RAM = 21, CPU = 22, HDD = 15}. The task’s required

resources based on their chosen aspect and related WCET are

presented in Table IV.

Composite
Tasks

Resource Requirements
WCET

RAM CPU HDD

t1 3 1 1 1
t2 3 2 4 7
t3 4 5 5 1
t4 3 1 2 7
t5 3 1 3 3
t6 3 1 1 9
t7 3 1 3 6
t8 3 1 1 3

TABLE IV
COGNITIVE APPLICATION RESOURCE REQUIREMENTS AND WCET.

The coordinator found a satisfiable solution for our cog-

nitive application with its application functionality close to

the minimum. The reason for this behavior is introduced by

the strict bids, which ask for 100% task coverage in a bid.

Additionally, the number of offers is set to 2, which further

limits the possibility of increasing the application functionality.

However, the application functionality can be maximized later

locally at the collaborator level.

2) Performance evaluation: Considering the results pre-

sented in Section V-A, we concluded that the following

configuration is suitable for our performance evaluation: (i)

a collaborator has resources between 26 and 50 units, (ii) a

bit has a total of 6 offers, (iii) the computational time to receive

a bid is set to 1 sec, and (iv) the e2e delay is set to a high

value to avoid any unsatisfiable deployments due to incorrect

assignment.

To perform a better evaluation, we deploy two different

size applications, i.e., the montage graph with a total number

of 24 tasks and the mockup application having 16 tasks.

By deploying different size applications we can evaluate the

effect of total available resources and application size on the

deployment efficiency. Similar to the cognitive application

model, we assign to each composite task a set of four distinct

aspects. However, for our edge architecture, we consider five

different sizes (i.e., 2, 4, 6, 8 and 10).

Our results are shown in Table V where we compare

three different deployments based on the total number of

successful application mappings on edge devices. In the first

deployment, the collaborators send only strict bids with 100%
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task coverage, while in the second we change to permissive

bids. For these two, we use our robust IoT application model.

Finally, the third deployment used the DAG application model

without the aspects.

Application Type
Number of nodes

2 4 6 8 10

Montage
strict bid 0 81 100 100 92

permissive bid 0 0 8 92 97
DAG deployment [4] 0 0 0 0 0

Mockup
strict bid 44 100 100 100 98

permissive bid 0 6 100 100 99
DAG deployment [4] 0 0 0 0 0

TABLE V
SUCCESSFUL MAPPING ON EDGE.

We can see that deploying the mockup application without

changing the edge architecture, the deployment strategy per-

forms better compared to a larger application (i.e., montage);

both permissive and strict bid deployments are capable of

mapping all tests to the edge of the network when the architec-

ture size increases. Moreover, the deployment using bids with

100% task coverage yields much better results compared to the

other two deployments. We can observe that by deploying an

application using our robust model we can achieve far better

results compared with the normal DAG application model. In

the case of normal deployment using the DAG model, the

deployment cannot find one successful mapping at the edge.

The implementation of our coordinator is based on Z3 SMT

solver [15] and is deployed on the same device as described

in Section V-A; all collaborators used for the performance

evaluation are simulated on the same device.

C. Discussion

In Section V-A we have demonstrated that our decision

policy module enables a collaborator to provide feasible strict

and permissive bids. A strict bid is dependent on the number

of offers sent in a bid as well as the device available resources.

Such a behavior is seen in Tables I and III, where with

an incremental increase in both metrics we achieve 100%

task coverage independent of the number of offers. As a

result, we can consider the configuration, with 36 units of

available resources, an optimal node available resources for

deploying the montage application. In contrast, a permissive

bid is more flexible finding good bids for all configurations.

We can observe from our results that the task coverage

increases with the available resources of a node. Furthermore,

compared to a strict bid where the objective is to maximize

coverage, a permissive bid aims at providing better application

functionality (i.e., chooses the highest priority aspect for each

task). As a result, we see a fluctuation in task coverage given

by the available computational time.

In Section V-B2 we show the coordinator’s ability to suc-

cessfully find an application mapping to resource-constrained

devices. In the first part, with the aid of our experiments, we

have proved that a satisfiable deployment can be found for

a realistic IoT application; even when there are not enough

available resources for the entire application functionality. In

the second part, we focus on demonstrating that our proposed

robust application model in combination with an efficient de-

cision policy module, we can achieve better results compared

with a normal DAG application.

From Table V we can observe that even for a larger applica-

tion size we can provide full edge deployments for more than

80% of total tests if there are the available resources required

by the minimum application functionality. Considering this,

we do not find a satisfiable deployment on the architecture

composed of two collaborators, because it lacks the appli-

cation’s minimum required resources. In contrast, by adding

more collaborators, we increase considerably the chances of

finding good solutions. Comparing the different deployments

(i.e., permissive bid, strict bid, and DAG deployment), we

notice that deployments using strict bids outperform the other

permissive bids on smaller architecture sizes, while the normal

deployment is incapable of finding one satisfiable solution. In

conclusion, using bids that offer full task coverage is desired

to fully utilize the available resource found on edge nodes.

Comparable results are obtained when deploying our

mockup application model. In this case, the deployment using

strict bids outperforms the other two. We can see that by

lowering the size of the application, we lowered the required

available resources enabling the coordinator to find a mapping

for the smallest architecture as well.

As a final note, we acknowledge that the current evaluations

were performed on a laptop and not on a resource-constrained

deceive (e.g., a Raspberry Pi). Even though the computation

times for creating a bid may increase, the evaluated function-

ality is still valid. One limitation of our provided deployment

technical framework is the inability to automatically decide

at runtime, based on the application size and the available

resources, what is the optimal number of offers. In this case,

we had to perform multiple evaluations for all deployed

applications, having the number of offers hardcoded into the

decision policy module. As a solution, we intend in future

work to develop such a method that decides at runtime the

optimal bid size considering the deployed application.

VI. RELATED WORK

Recent resource management techniques have been pro-

posed in the scientific literature to migrate an IoT application

from cloud closer to the origin of data or to offload high

computational tasks from resource-constrained devices.

A deployment technique to map a multi-component appli-

cation model to a fog infrastructure is presented in [9]. Its

objective is to find an allocation of components to fog devices

such that the application’s requirements are met. For a similar

problem formulation, authors in [8] proposed a constraint

programming model, extendable in terms of deployment con-

straints and objectives, which can obtain a competitive result

in relation to heuristics and meta-heuristic algorithms.

An edge orchestration technique is presented in [16] focus-

ing on providing task deployment based on resource proximity.

The orchestrator is deployed on a router and dynamically

find a task allocation based on the application requirements

forwarding the tasks to either cloud or edge devices.
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A heuristic task offloading aiming to migrate computational

tasks from mobile devices to a heterogeneous architecture

composed of both cloud and edge devices is presented in [2].

The offloading decision is based on multiple objectives such

as application’s runtime, mobile device energy, and user cost.

Another multi-objective task offloading technique is presented

in [17] aiming at finding a balance between users satisfaction

and providers’ profit.

Multiple resource auctioning techniques were proposed

in the literature to distribute applications between devices.

In [18], an auction-based technique is proposed that enable

users to bid for the available computational resources of an

edge server. Once a bid arrives, the server computes the price

for the requested resources taking into account its location, i.e.,

cloud or edge. Similarly, in [19] an auction-based solution is

presented to map the requests of bidders (i.e., mobile devices)

to the available resources of an edge server.

Compared to the aforementioned technical papers, our pro-

posed technical framework differs as follows: (i) we perform

decentralized application deployment without requiring any

knowledge at design time of network topology or device

internal status, (ii) introduce a new robust IoT application

model to achieve adaptive application functionality based on

available resources of each collaborator, and (iii) we empower

each edge node to make local decisions regarding the current

available resources.

VII. CONCLUSION AND FUTURE WORK

In this paper, we substantially extend our previous work [4]

with a new decision policy module and provide a novel robust

IoT application model. The former consists of developing a

decision policy module that empowers collaborator nodes to

make better decisions regarding their available resources; a

policy that aims at providing feasible and optimized bids.

The latter enables the developer to define different appli-

cation’s functionality levels. An approach that (i) enables a

resource management technique to efficiently use the available

resources found on edge devices, (ii) allows expanding the

application functionality at runtime, and (iii) empowers each

collaborator to adapt the task’s functionality based on the

available resources found locally or in the neighborhood.

Based on our evaluation, we have proven that significant

improvements are seen when deploying an IoT application

defined using our proposed model. Moreover, we demonstrate

that finding strict bids with 100% task coverage yields better

results compared to permissive bids.

Regarding future work, we plan to investigate the possibility

of finding the required number of offers based on the device

available resources, aspect requirements, and application size.

Additionally, we plan to investigate the relationship between

application size and available computational time to create

and send a bid. Furthermore, we intend to develop a task

ranking at the device level to help a collaborator choose what

task functionality should be upgraded first in the case when

multiple tasks are mapped on the same node and the available

resources have increased.
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