
A Performance Evaluation of Data Protection
Mechanisms for Resource Constrained IoT Devices

Clemens Lachner
Distributed Systems Group

TU Wien
Vienna, Austria

c.lachner@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group

TU Wien
Vienna, Austria

dustdar@dsg.tuwien.ac.at

Abstract—Data Protection is a major research topic concerning
the Internet of Things (IoT). IoT systems continue to permeate
deeper into our personal lives, where devices sense, process,
and store all kinds of data. This poses various challenges to
security and privacy aspects, especially to applications running
on resource constrained devices. In this paper we evaluate
selected, well established data protection mechanisms that enable
confidentiality and integrity of data. Specifically, we look into the
performance of different cryptographic block and stream ciphers,
hashing algorithms, message authentication codes, signature
mechanisms, and key exchange protocols executed on state-of-
the-art resource constrained devices. By providing limitations and
data throughput values, our obtained results ease the calculation
of performance/data protection thresholds and facilitate the
design and development of secure IoT systems.

Index Terms—IoT, data protection, resource constrained de-
vices, performance evaluation, integrity, confidentiality, authen-
ticity, encryption, microcontroller

I. INTRODUCTION

Different interconnected devices with minimal to average
computing power make up the majority of the Internet of
Things (IoT). They sense, process, and store various data from
different domains and have become an integral part of our
daily lives [1]. The specific nature of data related to critical
domains, such as healthcare, public surveillance or home
automation, requires tailored data protection mechanisms con-
cerning security and privacy aspects. Data Integrity, con-
fidentiality, authenticity, anonymization and source location
privacy pose different, partly overlapping challenges for the
design and implementation of an IoT system. Those challenges
become even more demanding when dealing with resource
constrained devices. In this paper we refer to devices that
lack computing power, i.e., microcontrollers (MCU) with low
CPU power and limited memory. Furthermore, we distinguish
between devices typically found in Wireless Sensor Networks
(WSN), which could be seen as an infrastructural subset on
the IoT, and typical resource constrained IoT devices. Most of
the devices found in WSN are sensors and actuators mostly
adhering to the IEEE 802.15.4 protocol, using communication
frameworks like ZigBee. We define a resource constrained
IoT device as a device with limited computational power but
integrated Ethernet or WiFi capabilities and USB connectivity
for facilitated programming.

The design of an IoT system, dealing with sensitive data,
is often accompanied with the definition or followed upon
a set of distinct data protection rules, e.g., in the form of
policies. The overall risk that such a system is exposed to
could be assessed by looking on its various attack vectors
of an adversary. Concerning privacy, protecting the system
from attacks on confidentiality of the data is crucial. Other
characteristic threats to those system are spoofing attacks, mes-
sage altering, replay, and flooding attacks [2]. Well established
countermeasures reducing or eliminating the attack surface on
a system are often not designed to be executed on resource
constrained devices or may perform poorly on those [3].
However, as technology advances, generalized statements on
performance of data protection mechanisms in IoT, such
as:”Asymmetric Cryptography is infeasible”, should not be
made. Therefore, it is necessary to continuously evaluate those
various mechanisms and to show whether such statements still
hold true or not. In this paper we evaluate the performance
of different algorithms concerning data integrity, authenticity,
and confidentiality. Our testset of algorithms comprises well
established standard implementations of encryption, key ex-
change, signing, and hashing methods, as well as lightweight
implementations, respectively. Many of widely used, commer-
cially available, resource constrained IoT devices come with
built in crypto chips, i.e., specialized hardware to accelerate
specific cryptographic applications. These chips usually fea-
ture methods used by the SSL/TLS standard, but they do not
support the many other different algorithms available used for
data confidentiality and data integrity that could be needed
to facilitate the development of custom protocols, e.g., onion
routing, relying on secure and privacy preserving data transfer.
Hence, we formulate the following two research questions:

RQ1: What are the limitations of representative IoT devices
performing selected data protection mechanisms?
RQ2: What are the individual throughput rates that are needed
for performance/data protection trade-off calculations?

The results gathered by our evaluation can aid developers and
system engineers in designing a system that adheres to specific
security guidelines, yet maintains adequate performance. Ad-
ditionally, systems may encounter changes of several param-
eters during runtime, such as sensor reading frequency, data



TABLE I
TESTBED OVERVIEW OF REPRESENTATIVE RESOURCE CONSTRAINED IOT DEVICES

Device Name Processor CPU Speed SRAM Flash Memory

Arduino MKR1000 WiFi Cortex-M0+ 32-Bit 48 MHz 32 KB 256 KB
Wemos ESP8266 D1 mini Xtensa LX106 32-Bit 80-160 MHz 160 KB 4 MB
Espressif ESP32-WROOM-32 Xtensa LX6 32-Bit DualCore 160-240 MHz 512 KB 4 MB

size, or a specific level of data protection. The level of data
protection could manifest itself via changing security policies
enforcing a minimal key size of an encryption algorithm or
ensuring data integrity using a message authentication code.
In particular this becomes relevant for adaptive systems, e.g.,
fog nodes running an risk-assessment engine which needs the
end devices (i.e., our resource constrained IoT devices) to be
flexible concerning data protection methods.
The rest of the paper is structured as follows: Section II
provides an overview of related work. Relevant information
on cryptographic background, methodology, and experimental
setup is given in Section III. In Section IV we present the
corresponding results. Finally, in Section V, we conclude the
paper and give an outlook on future research.

II. RELATED WORK

As IoT devices continue to permeate deeper into our
personal lives, security and privacy aspects have become a
major research topic in this field. Suo et al. [3] divide an
IoT system into four layers. Bottom-up these are: Perception
Layer, Network Layer, Middleware Layer, and Application
Layer. An overview of possible threats and adverse scenarios
on each of those layers is provided by Farooq et al. [2],
concluding that the majority of threats are located in the
Network Layer. To mitigate or at least lower the risk of these
threats, trade-offs have to be made either at design time or
runtime of a system. Those trade-offs involve parameters like
energy consumption, strength of encryption or data throughput.
Altering one of these parameters will most likely affect one
or many of the others. In the area of WSN, where energy
consumption and management is particularly of interest, se-
curity evaluations have been done by several researchers. The
majority of related work in this fields deal with lightweight
implementations of cryptographic algorithms. In [4], various
security solutions were analyzed. It provides an overview of
the individual security characteristics, requirements, attacks,
and encryption algorithms, considered to be useful for design-
ers of a secure WSN. Alharby et al. [5] studied the security
costs in terms of energy consumption focusing on the IEEE
802.15.4 transmission protocol definition. In their simulation
they demonstrate the impact of security message overhead
on data latency and throughput, followed by an evaluation
of the effects those overheads have on energy consumption
and their memory footprint. In this paper we consider such
network overheads as negligible, because of the many others
factors that affect network performance, like signal strength or
available bandwidth. Also evaluating the costs of security in

WSN, but focusing on energy consumption, Lee et al. [6] mea-
sured and compared four lightweight encryption algorithms
on MicaZ and TelosB sensor motes. Those devices reside at
the lowest end of the WSN spectrum, regarding computing
power. In typical IoT environments, such as Smart Buildings,
energy consumption may not be of primary concern, while
data protection and throughput is considered more important.
Therefore, in this paper we solely focus on the evaluation of
data protection mechanism and their performance in terms of
computing power, based on measurements gathered from, what
we classify as, typical resource constrained IoT devices. While
our classification is based on a devices computing capabilities,
other classifications can be found in literature, e.g., Bormann
et al. [7] suggest a classification scheme based on the memory
capacity of an IoT device. Rani et al. [8] studied literature on
the performance of various lightweight encryption algorithms,
focusing on the medical domain. In their work they provide an
overview of addressed problems, methodology and outcome of
different research articles. However, the addressed papers deal
with evaluating the performance of lightweight cryptographic
algorithms only, mostly implemented on Field Programmable
Gate Arrays (FPGA). An overview of various security mech-
anisms in the IP-based IoT is provided by Cirani et al. [9].
In their work they discuss different algorithms located at the
network, transport, and application layer. They focus on a
detailed description of each algorithm and its properties like
key size, code size, block size, etc., but do not evaluate their
performance in terms of processing speed or computational
effort. Closely related to our approach is the work of Ertaul
et al. [10]. In their paper the performance of lightweight
stream ciphers is evaluated. Implementation of three different
algorithm were deployed on a NodeMCU development kit and
their performance evaluated. Their measurements include i)
stream cipher throughput, ii) power consumption, iii) memory
utilization and iv) WiFi Round Trip Throughput. However,
they solely focused on lightweight stream ciphers and their
most powerful device corresponds to the least powerful one of
our testbed. Another publication, closely related to our work
is provided by Sethi et al. [11] in RFC8387. They evaluate
various symmetric and asymmetric encryption algorithms with
different key sizes on a 8-bit microcontroller. In their work
they state that: ”It is important to state that 32-bit microcon-
trollers are much more easily available, at lower costs, and are
more power efficient. Therefore, real deployments are better off
using 32-bit microcontrollers that allow developers to include
the necessary cryptographic libraries. There is no good reason
to choose platforms that do not provide sufficient computing



TABLE II
OVERVIEW ON EVALUATED DATA PROTECTION MECHANISMS

Algorithm Type Purpose

AES Block Cipher Confidentiality
ChaCha Stream Cipher Confidentiality
Ed25519 Digital Signature Scheme Signatures

SHA3 Hashing Algorithm Family Integrity
Poly1305 Message Authentication Code Message Authentication

ECDH Key Agreement Protocol Key Exchange

power to run the necessary cryptographic operations.” In our
work the performance of algorithms related to both, integrity
and confidentiality, is evaluated using a testbed comprising
only 32-bit microcontrollers.

III. METHODOLOGY

In this section we discuss our evaluation process. First,
we present the constellation and an architectural overview of
the used testbed. Second, we briefly introduce selected, well
established data protection mechanisms which we chose for
our test scenarios, and how we conduct our experiments.
We remark that entropy generation for random number genera-
tion or specific system watchdog timer restart implementations
are out of scope of this evaluation.

A. Testbed

Our testbed comprises three representative resource con-
strained IoT devices. We chose only commercially available
and well established microcontrollers mounted on develop-
ment boards which integrate our desired capabilities. This
decision is based on our goal to facilitate the development
of secure IoT systems, in a way that our obtained results can
be easily adjusted to real world use cases. Our main criteria
for selecting appropriate devices, is i) limited CPU power and
memory, ii) an integrated WiFi chip and iii) USB connectivity.
We see such devices residing at the lower end of the IoT
spectrum, close to WSN devices which we position at the
lowest end. Out of this device set, we deliberately pick only
MCUs that differ from each other in terms of computing power
and memory, and which are prevalent on IoT development
boards. Though there are a lot more devices commercially
available, the majority does not differ in terms of computing
power, because most of them come in the form of development
boards, designed for various purposes, but featuring the same
MCU mounted on the board. Table I provides an overview
of the selected devices. All of those devices are programmed
using either C or C++, while the sourcecode is compiled and
deployed using the Arduino IDE.

B. Test Scenarios

This subsection provides an overview on the various data
protection mechanisms evaluated. We are particularly inter-
ested in algorithms supporting confidentiality, authenticity, and
integrity. Confidentiality refers to mechanisms enabling the
protection of data from disclosure to parties not authorized to
read or act on this data. Integrity mechanisms, on the other

hand, deal with the prevention of altering data, either stored
or during transfer, by unauthorized parties [12]. Authenticity
refers to authentication mechanisms used to verify a data
source. Table II gives an overview on the evaluated algorithms,
their type, and which purpose they fulfill.

1) Encryption: Encryption is a fundamental technique to
establish confidentiality, which can be divided into two main
categories, namely i) symmetric encryption and ii) asymmetric
encryption. Substitution and transposition are the key features
of encryption algorithms. Those algorithms are commonly re-
ferred to as ciphers. Symmetric ciphers use a (pre-)shared key
for both encryption and decryption, and are further classified
into i) stream ciphers and ii) block ciphers. A stream cipher
algorithm encrypts one bit or byte of plaintext at a time and
uses an infinite stream of pseudorandom bits as the key. Block
cipher algorithms, on the other hand, encrypt plaintext with
fixed blocks of n-bits size at one time [13]. While block ci-
phers seem to be applicable to a broader range of applications
and are therefore much more researched and implemented, it
has been shown that stream ciphers in general perform better
than block ciphers regarding CPU time [14] [13]. In this paper,
we are focusing on the Advanced Encryption Standard (AES)
block cipher, and the ChaCha stream cipher.
Asymmetric cryptography uses a pair of keys that are gener-
ated based on one-way functions. A one-way function easily
computes any input, e.g., calculate f(x), but it is hard to
compute its inverse function, i.e., given the value of f(x)
it is hard to calculate x. Such a key pair consists of a
private key which should be known to its owner only, and a
public key which can be distributed and made freely available
to anybody [15]. Asymmetric cryptography can be used for
both, encryption/decryption and digital signatures. Encrypting
a message can be done by anybody using the receiver’s public
key, but decryption of that message is only possible with
the corresponding receiver’s private key. Signatures work the
opposite way. First, a message is hashed and the resulting
hash then encrypted with the senders private key which will
be send to one or more recipients alongside with the plaintext
message. Authenticity and integrity of the message can then
be verified by everyone in possession of the senders public
key [16]. In recent years, a special form of asymmetric
cryptography, namely elliptic curve cryptography (ECC), has
gained increased attention. It is based on the algebraic structure
of elliptic curves over finite fields The main advantage of
ECC is that it provides equivalent security, compared to non-
ECC techniques, but uses smaller keys [17]. Therefore, ECC
in general becomes particularly interesting in IoT scenar-
ios, as corresponding applications often operate on resource
constrained devices. In this paper we focus on signing and
verifying a message using ECC, specifically Ed25519. This
technique uses SHA-512 and the elliptic curve 25519.

2) Hashing and Message Authentication Codes: The con-
cept of hashing functions is to transform a message of arbi-
trary length into an output sequence of fixed length, usually
much shorter than the input message. The ultimate goal for
cryptographic hash functions is to create a unique value



characteristic for a specific message, commonly referred to
as hash of the message. Hashing algorithms are also based on
previously described one-way functions, commonly used by
data protection mechanisms concerning integrity of data, or
for efficient data persistence mechanisms, i.e., usage of hash
tables [18]. In our experiments we look into the performance of
the latest Secure Hashing Algorithm (SHA) family, i.e., SHA3.
To preserve message integrity and authenticity during transfer,
simply hashing a message and appending the corresponding
hash is not sufficient. An adversary with knowledge about
the used hashing algorithm could perform an active man-in-
the-middle attack, by altering the message and calculating
a new hash for that message, being then forwarded to the
intended recipient. Message authentication codes (MAC) use
specific techniques that offer protection against such attacks,
by incorporating a (pre-)shared secret key into their generation
process. The values generated from a MAC are then verified by
applying the same secret key used to calculate the MAC, which
poses the main difference to digital signatures [19]. MAC
algorithms can be implemented using either cryptographic
hash functions or cipher algorithms. In this paper we are
focusing on the latter, by evaluating the Poly1305 one-time
authenticator algorithm [20].

3) Key Exchange: For at least two parties to exchange
confidential messages, a secret key needed for encryption and
decryption must be shared among all participants. This key
exchange can be seen as the weakest point, in terms of security,
of symmetric cryptography. To tackle this issue, Whitfield
Diffie and Martin Hellman proposed a cryptographic protocol,
namely the Diffie-Hellman key exchange (DH). It leverages
techniques based on asymmetric cryptography, enabling com-
munication parties to securely exchange a common key, even if
an adversary is eavesdropping the communication channel. A
modern ECC variant of the DH is called Elliptic-curve Diffie-
Hellman (ECDH). The ECDH protocol consists of three basic
steps for two parties that want to establish a shared secret
key via an insecure channel. First, each party must generate
a private and public key pair based on a common base point
on the same elliptic curve on the same finite field. Second,
the public keys are exchanged between the two parties. Third,
a common secret key is derived from calculations that take
the secret key of a communication partner and the previously
exchanged public key of the other partner as input [21]. In this
paper we do not generate ephemeral key pairs, i.e., temporarily
used key pairs, and evaluate the key generation as a separate
step, because a static key generation is usually done only once
when setting up a device. Furthermore, we do not evaluate
step two to avoid incorrect measurements which take network
latency into account that could be affected by environmental
specific factors like signal interferences.

C. Experimental Setup

All measurements are based on open source implementa-
tions of each algorithm, separately compiled and deployed
for each device, by using the Arduino IDE v.1.8.7 running
on 64bit Linux Mint 19.1. We determine the performance of

each algorithm by taking the arithmetic mean of results ob-
tained after 100 runs, respectively. Those performance results
are expressed then as limitation and throughput. Limitation
corresponds to the time it takes for an algorithm to process
one byte of data given in μs per byte (μs/B), while throughput
describes how many bytes can be processed in one second
(B/s). With provided throughput values, a trade-off value for
data protection/performance can be then calculated.
Key generation for ECC asymmetric algorithms were mea-
sured separately. For AES we also measure the performance
of the algorithm with different keysizes (128bit and 256bit)
and different block modes (ECB and CTR), respectively. Fur-
thermore, two specific versions (based on encryption rounds)
of the ChaCha algorithm are evaluated, namely ChaCha20 and
ChaCha12, both using a keysize of 256bit. From the SHA3
family, we evaluate two different versions. First, the SHA3-
256, which produces a hash with 256bit in size, and second,
the SHA3-512 algorithm, which produces a hash with 512bit
in size. ED25519 and ECDH were evaluated by performing
corresponding operations on a base64 encoded JSON file,
840B in size, which acts as typical information structure an
IoT device would send to the Fog or Cloud. The performance
of signing and verifying large messages mostly depends on
the internally used hashing algorithm, which for ED25519 is
SHA-512.

IV. RESULTS

This section provides our experimental results on evaluated
data protection mechanisms. It is followed by a discussion
on the obtained values and how they can be interpreted.
The results are put into corresponding categories, namely
i) confidentiality, ii) integrity, iii) authenticity, and iv) key
exchange. To increase readability we converted throughput
rates to kB/s.

A. Confidentiality
The following tables display the results of evaluated AES

and ChaCha variants. Top values in each row correspond
to encryption speed, while the bottom values correspond to
decryption speed. Values in brackets correspond to limitation,
while values outside the brackets correspond to throughput.
Table III shows our obtained results for the AES block
cipher with different modes of operation and different key
length, respectively. Table IV shows our obtained results for
the ChaCha stream cipher with different configuration, each
using a 256bit key. As expected, performance of encryption
and decryption scales linearly with CPU frequency. For the
ESP8266 and ESP32, CPU frequency can be adjusted easily
via the Arduino IDE. This becomes particularly interesting
if energy consumption is of major concern in system design.
The immense increase in performance of AES ciphers on the
ESP32 is most likely due to the built-in hardware acceleration
for AES.

B. Integrity
Table V and VI show the results of integrity related data

protection mechanisms. Top values of each cell correspond to



TABLE III
PERFORMANCE OF AES-ECB AND AES-CTR EACH WITH 128BIT AND 256BIT KEYS

AES128-ECB AES128-CTR AES256-ECB AES256-CTR

Arduino MKR1000 100.70kB/s (9.70μs/B)
52.34kB/s (18.66μs/B)

91.66kB/s (10.65μs/B)
91.64kB/s (10.66μs/B)

71.40kB/s (13.68μs/B)
36.76kB/s (26.56μs/B)

68.04kB/s (14.35μs/B)
68.04kB/s (14.35μs/B)

ESP8266@160MHz 304.58kB/s (3,21μs/B)
213.19kB/s (4.58μs/B)

288.30kB/s (3,39μs/B)
288.24kB/s (3,39μs/B)

217.53kB/s (4.49μs/B)
150.94kB/s (6.47μs/B)

211.56kB/s (4.62μs/B)
211.56kB/s (4.62μs/B)

ESP8266@80MHz 152.35kB/s (6.41μs/B)
106.63kB/s (9.16μs/B)

144.16kB/s (6.77μs/B)
144.13kB/s (6.78μs/B)

108.76kB/s (8.98μs/B)
75.47kB/s (12.94μs/B)

105.78kB/s (9.23μs/B)
105.78kB/s (9.23μs/B)

ESP32@240MHz 2,591.21kB/s (0.38μs/B)
2,595.51kB/s (0.38μs/B)

1,812.12kB/s (0,54μs/B)
1,803.75kB/s (0.54μs/B)

2,371.02kB/s (0.41μs/B)
2,363.84kB/s (0.41μs/B)

1,859.84kB/s (0,53μs/B)
1,854.87kB/s (0.53μs/B)

ESP32@160MHz 1,736.11kB/s (0.56μs/B)
1,692.85kB/s (0.58μs/B)

1,218.32kB/s (0.80μs/B)
1,212.06kB/s (0.81μs/B)

1,667.56kB/s (0.59μs/B)
1,627.60kB/s (0.60μs/B)

1,249.63kB/s (0.78μs/B)
1,246.63kB/s (0.78μs/B)

TABLE IV
PERFORMANCE OF CHACHA12-256 AND CHACHA20-256

ChaCha12 ChaCha20

Arduino MKR1000 711.33kB/s (1.37μs/B)
709.90kB/s (1.38μs/B)

543.94kB/s (1.80μs/B)
543.07kB/s (1.80μs/B)

ESP8266@160MHz 4,045.83kB/s (0.24μs/B)
4,032.00kB/s (0.24μs/B)

3,149.09kB/s (0.31μs/B)
3,140.70kB/s (0.31μs/B)

ESP8266@80MHz 2,023.05kB/s (0.48μs/B)
2,016.13kB/s (0.48μs/B)

1,574.51kB/s (0.62μs/B)
1,570.31kB/s (0.62μs/B)

ESP32@240MHz 5,130.10kB/s (0.19μs/B)
5,113.73kB/s (0.19μs/B)

4,078.84kB/s (0,24μs/B)
4,066.63kB/s (0.24μs/B)

ESP32@160MHz 3,407.48kB/s (0.29μs/B)
3,394.71kB/s (0.29μs/B)

2,708.68kB/s (0.36μs/B)
2,701.77kB/s (0.36μs/B)

TABLE V
PERFORMANCE OF SHA3-256 AND SHA3-512

SHA3-256 SHA3-512

Arduino MKR1000 102.24kB/s (9.55μs/B)
1,260.29μs

55.13kB/s (17.71μs/B)
1,266.31μs

ESP8266@160MHz 420.99kB/s (2.32μs/B)
307.20μs

226.17kB/s (4.32μs/B)
307.37μs

ESP8266@80MHz 210.50kB/s (4.64μs/B)
1,627.64μs

113.08kB/s (8.64μs/B)
1,626.73μs

ESP32@240MHz 712.28kB/s (1.37μs/B)
179.64μs

384.51kB/s (2.54μs/B)
179.73μs

ESP32@160MHz 473.03kB/s (2.06μs/B)
270.50μs

255.34kB/s (3.82μs/B)
270.64μs

throughput and limitation rates regarding hashing operations
of each algorithm. The bottom value corresponds to the
finalize operation of the algorithm, where internal states are
resetted. As for encryption and decryption speed of previously
discussed algorithms regarding confidentiality, hashing perfor-
mance also scales linearly with CPU frequency. However, the
ESP32 and ESP8266 are remarkably faster than the MKR1000
WiFi, which is also most likely due to hardware acceleration.

TABLE VI
PERFORMANCE OF POLY1305 MESSAGE AUTHENTICATION CODE

Poly1305

Arduino MKR1000 282.24kB/s (3.46μs/B)
70.76μs

ESP8266@160MHz 1,811.75kB/s (0.54μs/B)
11.68μs

ESP8266@80MHz 905.93kB/s (1.08μs/B)
32.00μs

ESP32@240MHz 4,675.87kB/s (0.21μs/B)
4.83μs

ESP32@160MHz 3,105.13kB/s (0.31μs/B)
7.26μs

TABLE VII
PERFORMANCE OF ED25519 SIGNATURE AND ECDH

ED25519 ECDH

Arduino MKR1000 0.916s (1.467s)
0.907s 0.492s

ESP8266@160MHz 0.157s (0.248s)
0.154s 0.082s

ESP8266@80MHz 0.313s (0.495s)
0.309s 0.164s

ESP32@240MHz 0.050s (0.078s)
0.049s 0.026s

ESP32@160MHz 0.076s (0.118s)
0.073s 0.039s

C. Authenticity

For the purpose of better readability, results of ED25519 and
ECDH are combined into a single table. Table VII provides
results regarding the performance of the signing operation
(top value without brackets), verify operation (top value in
brackets), and key generation (bottom value). To increase
readability, we converted obtained results from microseconds
to seconds. As for confidentiality and integrity related results,
Ed25519 operations also scale linearly with CPU frequency.
Also, hardware acceleration for ECC on the ESP32 and
ESP8266 are the most likely cause for the immense perfor-



mance increase.

D. Key Exchange

Table VII shows the results of the third step of the ECDH.
The performance of the first step of ECDH, i.e., key genera-
tion, is the same as for Ed25519. As for Ed25519, the same
statements regarding performance scaling with CPU frequency
and hardware acceleration apply for ECDH.

V. CONCLUSION

In this paper we present an evaluation of selected, well
established data protection mechanisms, including crypto-
graphic block and stream ciphers, hashing algorithms, message
authentication codes, signature algorithms, and key exchange
protocols. Specifically, we measured how those algorithms
performed, in terms of computational effort, on represen-
tative state-of-the-art resource constrained IoT devices. Our
measurements provide results that can aid the design and
development of secure IoT systems incorporating resource
constrained devices. We provide values for different limitations
regarding the configuration and execution of several algorithms
on certain devices. Furthermore, we provide results on data
throughput rates for each device. Limitations and throughput
rates can be used to calculate protection/performance trade-
offs for a specific hardware configuration. Our evaluation
shows that an IoT system running applications relying on
certain data protection mechanisms will largely benefit from
incorporating microcontrollers that come with built-in hard-
ware acceleration for several cryptographic tasks. Especially
for ECC related tasks, like signatures and key exchanges, hard-
ware acceleration has the most significant impact. Future work
will include measurements on power consumption, evaluations
of asymmetric encryption algorithms, like RSA or El-Gamal,
as well as network routing strategies and anonymization tech-
niques.

REFERENCES

[1] O. Vermesan and P. Friess, Internet of things: converging technologies
for smart environments and integrated ecosystems. River Publishers,
2013.

[8] D. J. Rani and S. E. Roslin, “Light weight cryptographic algorithms for
medical internet of things (iot)-a review,” in 2016 Online International
Conference on Green Engineering and Technologies (IC-GET). IEEE,
2016, pp. 1–6.

[2] M. U. Farooq, M. Waseem, A. Khairi, and S. Mazhar, “A critical analysis
on the security concerns of internet of things (iot),” International Journal
of Computer Applications, vol. 111, no. 7, 2015.

[3] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things:
a review,” in 2012 international conference on computer science and
electronics engineering, vol. 3. IEEE, 2012, pp. 648–651.

[4] M. Dener, “Security analysis in wireless sensor networks,” International
Journal of Distributed Sensor Networks, vol. 10, no. 10, p. 303501, 2014.

[5] S. Alharby, N. Harris, A. Weddell, and J. Reeve, “The security trade-offs
in resource constrained nodes for iot application,” International Journal
of Electrical, Computer, Energetic, Electronic and Communication En-
gineering, vol. 12, no. 1, pp. 52–59, 2018.

[6] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Computer Networks, vol. 54, no. 17, pp. 2967–2978,
2010.

[7] C. Bormann, “Guidance for light-weight implementations of the internet
protocol suite,” 2013.

[9] S. Cirani, G. Ferrari, and L. Veltri, “Enforcing security mechanisms in
the ip-based internet of things: An algorithmic overview,” Algorithms,
vol. 6, no. 2, pp. 197–226, 2013.

[10] L. Ertaul and A. Woodall, “Iot security: Performance evaluation of
grain, mickey, and trivium-lightweight stream ciphers,” in Proceedings
of the International Conference on Security and Management (SAM).
The Steering Committee of The World Congress in Computer Science,
Computer , 2017, pp. 32–38.

[11] M. Sethi, J. Arkko, A. Keranen, and H. Back, “Practical considerations
and implementation experiences in securing smart object networks,”
Tech. Rep., 2018.

[12] M. Schumacher, Security engineering with patterns: origins, theoretical
models, and new applications. Springer Science & Business Media,
2003, vol. 2754.

[13] W. Stallings, Cryptography and network security: principles and prac-
tice. Pearson Upper Saddle River, 2017.

[14] S. O. Sharif and S. Mansoor, “Performance analysis of stream and block
cipher algorithms,” in 2010 3rd International Conference on Advanced
Computer Theory and Engineering (ICACTE), vol. 1. IEEE, 2010, pp.
V1–522.

[15] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC press, 1996.

[16] L. Lamport, “Constructing digital signatures from a one-way function,”
Technical Report CSL-98, SRI International Palo Alto, Tech. Rep., 1979.

[17] M. Amara and A. Siad, “Elliptic curve cryptography and its applica-
tions,” in International Workshop on Systems, Signal Processing and
their Applications, WOSSPA. IEEE, 2011, pp. 247–250.

[18] M. Naor and M. Yung, “Universal one-way hash functions and their
cryptographic applications,” in Proceedings of the twenty-first annual
ACM symposium on Theory of computing. ACM, 1989, pp. 33–43.

[19] D. Russell, D. Russell, G. Gangemi, S. Gangemi, and G. Gangemi Sr,
Computer security basics. ” O’Reilly Media, Inc.”, 1991.

[20] D. J. Bernstein, “The poly1305-aes message-authentication code,” in
International Workshop on Fast Software Encryption. Springer, 2005,
pp. 32–49.

[21] D. Hankerson and A. Menezes, Elliptic curve cryptography. Springer,
2011.


