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Abstract—Middle ear effusion is a common symptom of otitis
media, the reactive physical manifestation of otitis media (OM)
in children’s middle ear. However, diagnosing MEE for little
children at home is troublesome due to their difficulty cooperat-
ing and the caregiver’s lack of medical knowledge. To this end,
we propose EarSonar, a novel acoustic-based MEE diagnostic
system. The principle behind EarSonar is that the acoustic
absorption effect exists in ear scenarios, and the volume of middle
ear fluid can markedly affect the absorbed spectrum energy. By
automatically eliminating the impact of potential interference
factors and identifying the representative frequency range with
the typical reaction of acoustic absorption, EarSonar captures
fine-grained signal features on absorbed spectrum energy and
models the intrinsic relationship between acoustic absorption and
the volume of the filler fluid in the eardrum. On that basis,
EarSonar extracts the features of the MEE signal segment and
uses k-means clustering to classify middle ear effusion status.
We conducted a test on 112 adolescents aged 4-6. We divided
the degree of middle ear effusion into three grades. The final
average detection accuracy rate exceeds 92%, which is 8%
higher than the previous method. We have implemented a proof-
of-concept prototype of EarSonar by building upon earphones
embedded with a microphone and speaker. Experimental results
demonstrate a feasible and effective way to turn earphones into
potential home-use MEE screening tools.

Index Terms—Middle ear effusion, Acoustic sensing, Device
free, Healthcare

I. INTRODUCTION

Middle ear effusion (MEE) [1] occurs when fluid builds up

in the space behind the eardrum. It is the reactive physical

manifestation of inflammation in the middle ear, namely otitis

media (OM). Although many cases can be cured at home,

persistent infections can lead to severe complications such as

impaired hearing, tearing of the eardrum, and meningitis [2].

OM is a middle ear effusion without signs of acute infection.

As a result, it is difficult for patients to perceive the symptom

of MEE at the early stages. However, recurrent infection harms

infant development because it is associated with speech delay,

sleep disruption, poor school performance, balance issues, and

cause hearing loss [3]. According to recent studies [4], more

than 62% children have had MEE within one year, and under

three years is up to 83%.

Current methods of examination are usually pneumatic oto-

scope [5] and tympanogram [6], both of which are expensive

and require medical knowledge. Moreover, it requires an ear

specialist to perform. They are not suitable for home diagnostic

use [7]. 2016, American Academy of Otolaryngology [8]

Calls for researchers to focus on new methods for timely

and accurate detection of MEE and new family strategies to

help parents and caregivers monitor fluid effusions. Recently,

significant progress has been made in acoustic-based ear canal

state detection. EarHealth [9] proposes and implements a

new earphone-based system for monitoring three different ear

diseases (ruptured eardrum, earwax buildup, and blockage)

in daily life. However, EarHealth cannot be fine-grained the

classification of childhood otitis media, a difficult-to-detect

disease. Chan et al. [10] used smart headphones to detect

MEE, but they did not perform fine-grained segmentation

and analysis on the signal, so the detection accuracy did not

exceed 85%. Considering the diagnosis of MEE in infants

is troublesome because they are difficult to cooperate with

and caregivers lack medical knowledge. Therefore, developing

an automated tool that is readily available and capable of

accurately diagnosing MEE for home screening purposes is

critical and urgent.

In this direction, we explore the possibility of turning

a COTS earphone into a full-featured, calibration-free, and

readily available MEE diagnostic device for daily healthcare.

The idea stems from the fact that due to the inherent acoustic

impedance [11], materials can take in sound energy when

sound waves are encountered, namely acoustic absorption

effect [12], as opposed to reflecting the energy. Acoustic

waves penetrate and are reflected by the medium, and the

impedance of the medium itself affects the degree to which

the acoustic wave penetrates from itself or is reflected. (see

Sec. II-A). Specifically, it will be reflected when an acoustic

beam passes through the air and encounters an eardrum with

effusion. The effusion absorbs part of the signal energy, as

shown in Fig. 2(a). Although the intrinsic impedance of the

effusion in the middle ear can not be directly measured by

using the speaker and microphone on earphones, fortunately,

the inherent impedance of the effusion will affect the energy

distribution in the frequency domain of the effusion’s reflected

signals. The proportion of the energy absorbed by the acoustic

wave in the medium is determined by the combination of the
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(a) Usage scenario (b) Structural anatomy (c) Clear eardrum (d) Effusion eardrum

Fig. 1: EarSonar utilizes the COTS earphones with an inbuilt microphone and speaker to achieve automatic MEE diagnosis.

(b) Shows the structural anatomy of ear with MEE, (c) The normal clear eardrum without effusion accumulation, (d)Fluid

builds up in the space behind the eardrum.

acoustic impedances of the two different media.

In this paper, we present EarSonar, a readily available and

automatic diagnostic system as illustrated in Fig. 1, which

utilizes the extra inbuilt microphone and speaker of COTS

earphone to capture acoustic echos that retain the traits of

middle ear fluid status, therefore achieves full-featured MEE

diagnosis for home screening purpose.

However, several technical challenges must be addressed

to realize such a system. First, in the human ear, besides

the signals reflected from the eardrum, acoustic signals are

reflected by other parts of the ear canal, such as the walls

of the ear canal. It is challenging to separate multipath

echoes from the ear canal and the eardrum. To overcome the

multipath reflection, we design frequency-modulated contin-

uous wave (FMCW) based chirp signals to sense the in-ear

effusion status. Since the FMCW signal has high resolution in

multipath reflections with different time-of-arrivals, EarSonar

can effectively distill target signals reflected from the eardrum.

The second design challenge lies in the subtle energy

absorption effect. To accurately identify MEE signs, EarSonar

needs to reliably identify a representative frequency range

with typical reaction and capture fine-grained signal features

to characterize the acoustic absorption. To achieve this goal,

we first conduct qualitative analysis (see Sec. II-B) to study

the impact of effusion on acoustic absorption over different

frequency ranges and observe that the amplitude of the FMCW

chirp signals in 18 kHz (inaudible to human ears) is with

apparent fading. Furthermore, the quantitative analysis reveals

the impact of in-ear effusion volume on acoustic absorption

variation. By analyzing the fine-grained signal features on ab-

sorbed spectrum energy, EarSonar can infer the in-ear effusion

status.

Finally, to effectively identify the symptom of MEE, we

have to model the intrinsic relationship between acoustic

absorption and the volume of filled fluid in the eardrum.

However, an effective diagnostic model still lacks that can

accurately identify the symptom of MEE and apply it to

various patients and diverse application scenarios. Meanwhile,

different people’s ear canals and other modes of wearing ear-

phones will cause varying test results. To solve these problems,

We extracted the MEE signal’s statistical and MFCCs features.

We used K-means clustering to classify and detect middle ear

effusion.

We have implemented the prototype of EarSonar by building

upon COTS earphones embedded with a microphone and

speaker. We conducted experiments and confirmed clinical

diagnoses in a pediatric hospital for over six months. Exper-

iment results show that EarSonar can achieve median values

for Precision, Recall, and F1score rates are 92.8%, 92.1%,

and 92.3%, respectively. The results show that earphone has

the full potential to become a tool for the initial screening of

MEE in families.

Our main contributions are summarized as follows.

• We experimentally verified that the acoustic absorption

effect exists in-ear scenarios. By identifying the repre-

sentative frequency range with the typical reaction of

acoustic absorption, EarSonar captures fine-grained signal

features on spectrum energy to infer the in-ear effusion

status.

• We model the intrinsic relationship between acoustic ab-

sorption and the volume of filled fluid in the eardrum. By

designing a k-means Classifier, EarSonar can effectively

identify MEE’s symptoms and severity and apply diverse

application scenarios to various patients.

• We design EarSonar to retrofit earphones into a wearable

MEE diagnostic system by using the inbuilt microphone

and speaker to capture acoustic echos that retain the

traits of middle ear fluid status, therefore achieving full-

featured MEE diagnosis for home healthcare.

II. MOTIVATION

In this section, we present the principle of the acoustic

absorption effect and conduct empirical studies to validate the

phenomenon in the ear scenario and crucial findings.

A. Principle of Acoustic Absorption

Due to the inherent acoustic impedance [11], materials can

absorb sound energy when encountering sound waves, the

sound absorption effect [12], rather than reflecting energy.

When sound waves are transmitted between different media,

different degrees of reflection and refraction will occur due to

the different impedance of the media. As sound waves travel

from the ear canal to the eardrum with fluid, the fluid affects

the reflection and refraction of the acoustic signal.
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(a) The principle of acoustic absorp-
tion effect.
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(c) Middle ear with fluid
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(d) Middle ear without fluid

Fig. 2: Feasibility analysis of EarSonar

Theoretical model. We now introduce how the impedance

affects the acoustic absorption effect. The acoustic impedance

of in-ear effusion describes the ratio of acoustic signal pressure

P to the velocity U of molecule movement [13] can be

expressed as: Z0 = ρ0c0, which is caused by the sound

pressure of the medium, as well as the product of the density

of liquid ρ0 and the acoustic signal speed c0.

Specifically, suppose the waves are directed vertically from

the air to the effusion in the eardrum. In that case, the incident

acoustic pressure is denoted as Pi = P0cos(wt − kx + ϕ),
where Pr is the reflected acoustic, P0 is acoustic pressure

amplitude, w is the angular frequency, k is wavenumber

associated with wavelengths, and ϕ is the initial phase. The

relationship between Pi and Pr can be expressed as

R =
Pr

Pi
=

zfluid − zair
zfluid − zair

, (1)

where zair denotes the acoustic intrinsic impedance of air,

and the zfluid is the that of fluid. R is the liquid reflectance,

which is determined by the degree of effusion. Among them,

under ideal conditions, the relationship between impedance Z
and effusion thickness d is given by [14]

Z =

√
μ

ξ
tanh(

2πd
√
ξμ

λ
), (2)

Where μ, ξ and λ can be constants, representing permeability,

dielectric constant and signal bandwidth, respectively. In this

sense, the impedance Z can be regarded as the tangent function

of the thickness d. Under ideal conditions, as the thickness d
increases, the impedance Z increases accordingly. Meanwhile,

the reflected signal is

Pr = R ∗ P0cos(wt− kx+ ϕ). (3)

Theoretically, by measuring and analyzing the reflected

signals, we can describe the energy of reflected signals. With

aspects to the ear canal, the sound is transmitted through

the microphone and reflected at different objects (i.e., ear

wall, eardrum, and foreign body) and finally received by the

earphone’s inbuilt microphone, assuming that the sinusoidal

signal we transmit is

R(t) =
∑
r∈M

Prcos(2πft+ ϕi), (4)

where f and ϕ represent frequency and phase, respectively. M

denotes the set of all paths of acoustic signals. We use Ai to

represent the amplitude of each path. The amplitude spectrum

of a specific echo is

A(f) =
FFT (R(t))

N
=

∑
r∈M

Pr =
∑
j∈F

Pj +
∑
k∈C

Pk, (5)

Where
∑

j∈F Pj denote the set of paths reflected by the

eardrum,
∑

k∈C Pk denote the set of paths reflected by the

ear canal and foreign body in the ear. It can be seen from the

above formula that the amplitude change of the received signal

will be affected by the liquid volume and the propagation path.

Inspiration. Actually, it is not easy to directly measure

the intrinsic impedance of filled effusion in the middle ear.

However, by actively using a speaker to send a well-designed

acoustic signal and exploiting a microphone to capture the

reflected echoes, we can perceive the energy distribution in the

frequency domain of the effusion’s reflected signals, dependent

on the inherent impedance of the volume of the effusion. The

energy of the acoustic signal will be absorbed by the medium,

and the amount of absorption is related to the impedance of

the medium itself and the volume of the medium [15].

B. Feasibility Analysis

Based on the above principle, we conduct empirical studies

to analyze the feasibility of using an earphone with an extra

embedded microphone and speaker (The modified prototype

is shown in Fig. 4) to identify the symptom of MEE.

To validate our previous analysis, we selected a patient with

otitis media (female, four years old) at Children’s Hospital

and followed her continuously. To specify, we applied the

designed EarSonar prototype to collect the ear canal data of the

participants. We use a microphone to send out 14kHz-22kHz

acoustic signals, perform FFT on the acoustic signals, and

then perform data analysis. We compared the acoustic data of

this participant when she was just diagnosed with otitis media

and when she was fully recovered, as shown in Fig. 2(b).

We found that in the entire frequency domain, the acoustic

signals of different periods present different characteristics,

and an apparent acoustic dip is produced near 18kHz. At the

same time, we expanded the scope of the experiment and

collected more participants (112 participants). We fitted the

data and finally classified the symptoms of all patients when
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they developed MME symptoms and fully recovered, as shown

in Fig. 2(c) and Fig. 2(d). In addition, we found that the signal

followed different distributions when being with and without

effusion.

Considering the user-friendliness and anti-interference per-

formance, the frequency range of 16-20 kHz can be well used

to transmit FMCW chirp signals for MEE sensing. When a

chirp signal passes through the ear canal, the signal reflections

from eardrum will be captured by inbuilt microphone. We

finally chose the 16kHz to 20kHz signal as our test signal,

which is relatively weak and beyond the range of human

hearing.

III. SYSTEM OVERVIEW

The schematic diagram of EarSonar is illustrated in Fig. 3.

Fig. 5 shows an overview of the system design, including four

main modules: Acoustic signal collection, Signal preprocess-
ing, Acoustic absorption analysis and MEE detection.

Acoustic signal collection. As a terminal interface driven

by EarSonar, the earphone with an inbuilt microphone and

speaker is used to sense the effusion status inside the middle

ear. EarSonar first uses a speaker to send an FMCW chirp

signal over the 16-20 kHz frequency range, which the ear canal

will reflect, eardrum, and the foreign objects in the ear. Then,

the inbuilt microphone can collect these acoustic echoes.

Signal preprocessing. Given the received reflections, Ear-

Sonar first employs a bandpass filter to eliminate the impact

of noises and adopts an event detection mechanism to extract

each chirp and its corresponding echo signal. Then we use the

correlation coefficient to separate echos reflected by different

in-ear objects. Finally, it uses the parity decomposition method

to identify the echoes reflected by the eardrum accurately.

Acoustic absorption analysis. By performing FFT on the

eardrum-reflected echoes to distill the power spectral density,

EarSonar extracts the fine-grained signal features on absorbed

spectrum energy, which retains the trait of effusion status. To

classify the ear effusion state, We extracted MFCCs features

and statistical features of MEE signals. Then designed the

feature vector.

MEE detection. Given the results of acoustic absorption

analysis, EarSonar further models the intrinsic relationship

between acoustic absorption and the volume of filled fluid

in the eardrum. According to the selected features mentioned

above, EarSonar uses k-means clustering to classify feature

vectors.

IV. SYSTEM DESIGN

We present the technical details of EarSonarin this section.

First, EarSonar processes the raw acoustic signal, detects the

MEE signal, extracts features from the MEE signal segments,

and cluster these feature vectors to determine user’s middle ear

fluid status. Next, We will detail how to properly use FMCW

signals for eardrum echo detection and clustering techniques

for MEE detection.

A. Acoustic Signal Collection

We design an FMCW chirp signal for client-side MEE status

sensing. After that, the details of acoustic signal generation and

processing are presented.

FMCW chirp signal design. The frequency of the FMCW

signal (as shown in Fig. 6) varies linearly with time and has

good autocorrelation properties. These characteristics make

FMCW signals commonly used for multi-target detection.

Comparing to other waveforms, FMCW signals are easy to

demodulate due to their high spectral efficiency. The frequency

f of the signal changes linearly with time as f = f0 +
B
T t,

where f0 is the initial frequency, B is the bandwidth, and T
is the duration of the acoustic signal.

Signal generation. To convert earphone into MEE detec-

tion system. We need to design the acoustic signal so that, in

principle, echoes from the eardrum can be detected without

placing additional burden on the user. Consider that normal

people can hear sounds in the frequency range of 20 Hz to

15 kHz. The sampling rate of current commercial smartphones

is usually set at 48 kHz. According to the Nyquist sampling

theorem, it is more appropriate to design the acoustic signal

below 24 kHz. Therefore, the frequency range of the designed

FMCW signal cannot exceed 24 kHz. Third, the frequency

range of the design should be easily distinguishable from

ambient noise. This is not easily disturbed by ambient noise

and is easy to filter. Hence, EarSonar adopts FMCW chirps

between 16 kHz to 20 kHz. To separate the echoes from the

eardrum from the multipath signal from the ear canal, we

intermittently send out the FMCW signal (Chirp). The duration

of the chirp determines the distance resolution between the

echoes. We need to ensure that the eardrum signal is not

aliased too much in the multipath echo from the ear canal

when the echo of the eardrum is detected.

To reduce aliasing of echoes from the ear canal and ade-

quately receive echoes from the eardrum. We set the duration

of chirp to 0.5 ms and the interval between adjacent chirps

to be no less than 5 ms, so that we can capture all echoes

in the range of 10 cm, and try to avoid the overlap between

echoes . Note that the length of the human ear canal is usually

2 cm-3.5 cm [16] as shown in 7(a), we set the interval of each

chirp to 5 ms. We set the initial frequency f0 to 16 kHz, the

bandwidth B to 4 kHz and the chirp duration T to 0.5 ms.

When the signal is reflected by the eardrum, it produces an

echo as shown in the figure 7(b).

B. Signal preprocessing

To capture the reflections from the eardrum, EarSonar has

to perform the following processing on the received signal.

1) Noise removal: The FMCW chirp signals will get re-

flected by in-ear objects. To reduce the noise interference in

the environment, we filter the received echo signal through a

Butterworth bandpass filter. In addition, EarSonar passes the

acoustic signal through a Hanning window [17] on each pulse

to reshape the envelope of the signals and increase their peak-

to-sidelobe ratio to obtain a higher signal-to-noise ratio (SNR).
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Fig. 3: schematic diagram of using earphone for MEE diagnosis. Fig. 4: The developed data recording prototype.

Fig. 5: The methodological flow of EarSonar.

Fig. 6: The principle of FMCW chirp.

2) Event detection: After noise removal, the next step is to

segment and extract the signal of the echo band. Considering

that the generation of echo events will have apparent energy

compared with others, EarSonar uses an adaptive energy event

detection scheme for event detection. Specifically, for a signal

X(i), We use a sliding window scheme to calculate the average

signal power for each window W , as follows

μ(i) = 1
W A(i) +

(
1− 1

W

)
μ(i− 1)

σ(i) = 1
W B(i) +

(
1− 1

W

)
σ(i− 1)

(6)

where μ(i) and σ(i) represent the mean and standard devia-

tion, respectively. A(i) represent the cumulated power and and

B(i) represent the overall standard deviation of signals within

a sliding window. where

A(i) = 1
W

∑W+i
k=i |X(k)|2

B(i) =
√

1
W

∑W+i
k=i (|X(k)|2 −A(k))

2 (7)

Then, the potential starting point of X(i) can be identified if

|X(i)|2 > μ(i) + σ(i), and the end point satisfy |X(i)|2 < μ̄.
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Fig. 7: The captured chirp by micrphone.
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Fig. 8: Events detection and Segmentation.

μ̄ is the average signal power. Fig. 8(a) shows the example of

event detection.

3) Echo segmentation: The goal of EarSonar is to extract

the echo signal from the eardrum. The complete echo signal

includes the direct signal (the speaker is directly transmitted

to the microphone) and the multipath echo from the ear canal.

We need to eliminate the influence of these multipath signals

as much as possible. By the way, we need to create a uniform

template and sequence length for the echo signal from the

eardrum to ensure that the subsequent feature extraction can be

performed usually. In general, we need to divide the obtained

echo sequence, eliminate the overlapping interval as much as

possible, and extract the signal from the eardrum.

To solve this problem, we propose a time series-based

even/odd decomposition segmentation method [18] for echo

segmentation. The core of the method is to concentrate the

energy in the even and odd parts of the time series, and

optimally place the center of symmetry in the even and odd

parts. In this way, we can identify local symmetric intervals

in the time series.

After event detection, we get each chirp signal and its echo

x[n], n ∈ [−T, T ]. This signal has limited support and time

centering without loss of generality. By parity decomposition
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we represent x[n] as the sum of the even and odd parts, xe[n]
and xo[n], respectively. In the discrete case, we can get x[n] =
xe[n;n0] + x0[n;n0]

where n0 is the point of symmetry, the xe[n;n0] and

x0[n;n0] is given by

xe[n;n0] =
x[n]+x[2n0−n]

2

x0[n;n0] =
x[n]−x[2n0−n]

2

(8)

The choice of the symmetry point n0 is not arbitrary. It needs

to correspond to the position of the sample. Since the input

acoustic signal sequence x[n] n = 1, ..., L has finite duration,

then n0 = k
2 , k ∈ 2, ..., 2L. When k is odd (or even), the

folding point corresponds to the position of the half sample. Of

course, the length of the odd and even parts may be different.

For the parity energy Ee and Eo under the best symmetry

point, the expression is

E0 =
∑+∞

n=−∞ |xe [n;no]|2 =
∑+∞

n=−∞
∣∣∣x[n]+x[2n0−n]

2

∣∣∣2
= 1

4

∑+∞
n=−∞ |x[n]|2 + |x[2n0 − n]|2 + 2x[n]x[2n0 − n]

= 1
2E + 1

2

∑1
2n0

x[n]x[2n0 − n]
(9)

Where [1, 2n0] is the non-empty support of the product

in the summation. Eo is energy of the odd part and has the

same expression, as long as the sign of the sum in the last line

changes. Use the convolution definition of the energy sequence

to generate

Ee =
1
2E + (x ∗ x)[2n0]

Eo = 1
2E − (x ∗ x)[2n0]

(10)

After that we need to calculate the automatic convolution

of x[n]. After obtaining the automatic convolution, the best

candidate position can be expressed as 2n0 = argmaxm |(x∗
x)[m]|.

In the previous process, we have identified the largest

support segment that exhibits nearly perfect even or odd local

symmetry for any sequence x[n]. To find fragments with strong

symmetry and no overlap, these fragments cover most of

the sequence. It requires three steps. First, we compute the

autoconvolution of the sequence x[n], then locate all possible

even or odd symmetry points. At this point, all local extrema

become candidate points, and we store the positions of all

candidate points in the list C.

Second, we need to determine the symmetric range around

the location of each candidate local extreme point. Here we

need to set several parameters. First, each candidate location is

marked as ci, ci ∈ C. We define ml as the minimum symmetry

support and pt(0.5 < pt < 1) as the even/odd energy ratio

threshold. Then, we need to select a subsequence y[n] centered

on ci bits, and y[n] maintains a uniform length. We perform

parity decomposition on y[n] and calculate the Ey , Eye and

Eyo of y[n], which respectively represent the energy of y[n]

and the energy after parity decomposition. In order to divide

y[n] into even or odd symmetrical segments, we need to check

whether the energy ratio satisfies Eye/Ey > pt or Eyo/Ey >

pt. If neither of these two conditions are verified, then ci will

be removed from the list of candidate positions.

Third, after we get the candidate sequence set, the potential

best eardrum echo band follows the following principles (i) has

a higher energy ratio (ii) keeps a distance of 2 cm-3.5 cm from

the direct signal. We ensure that the eardrum echo maintains

a high correlation with the direct signal for the first principle.

A higher energy ratio can ensure that this signal segment is as

complete as possible instead of overlapping with the multipath

signal. Secondly, the second principle comes from keeping a

distance between the earphone and the eardrum. This distance

will be kept within a specific range for most people. We

find the best distance from the direct signal within 2.5-5cm.

Candidate point ci, and create the best eardrum echo sequence

m. The final confirmation process from the eardrum echo is

shown in the Fig. 8(b).

C. Acoustic Absorption Analysis

1) Echo power spectrum extraction: After signal segmen-

tation, we get the peak point from the eardrum echo in the

acoustic echo signal. For subsequent stable feature extraction,

we need to specify a uniform window for FFT. EarSonar

determines the peak from the eardrum. In the time domain, we

take the peak sampling point of the eardrum as the centre and

collect N sampling points on both sides of the fixed window.

We obtain the power spectral density from the points collected

by each chirp. Using this method, we can eliminate the impact

of multipath signals on MEE detection as much as possible

while ensuring that the collected signals are as uniform as

possible.

We use samples of participant A collected in each of the

six sessions(S1...S6) in a quiet room accompanied by 20 -

30dB noise within the same day. Fig. 9(a) plots the power

spectrum density (PSD) of the same person. It can be seen

that the data we measured under different sessions maintained

a high degree of consistency. Fig. 9(b) shows the correlation

coefficients between S1 to S6 and other sessions. It can be

seen that the echo of the eardrum and ear canal is relatively

stable for the same person under normal circumstances.

On the other hand, We also need to prove whether the

eardrum echoes of different people are similar under normal

circumstances. Fig. 9(d) shows the correlation coefficients of

another participant at six different sessions. It can be seen

that the overall trend of participant B’s PSD curve is similar

to that of participant A, and the overall correlation coefficient

between them is still higher than 90%. This provides the basis

for our MEE detection.

The task of EarSonar is to detect whether the user has

middle ear effusion. Usually, the middle ear effusion will last

for 2-3 weeks. We tracked different participants to perform

eardrum acoustic measurements at 8:00 am and 10:00 pm

every day. Fig. 10(a) and Fig. 10(b) show the results from

the time they enter the clinic until they recover, we can see

that the participants signal patterns gradually return to normal

levels (Fig. 9(a) and (b)), We divide the types of ear effusion

into Purulent, Mucoid and Serous.
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Fig. 9: The curves and correlation coefficients from different participants of middle ear without effusion
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(b) MEE echo power spectrum of
participant B.

Fig. 10: The power spectrum of the reflected signal from the

time of admission to the recovery of the two participants.

Finally, we perform FFT processing on the interpolated

signal. After the processing of the above steps, we get the

power spectrum interval of Middle ear without fluid and

Middle ear with fluid, as shown in Fig. 11(a) and Fig. 11(b).

the shaded area represents the range of the eardrum echo

power spectrum in different states. We divide middle ear

effusion into four states according to different middle ear

effusion intervals, Clear, Purulent, Mucoid and Serous.
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Fig. 11: The power spectrum of different state of MEE
2) Feature Extraction: In this section, for MEE detection

and classification we need to obtain fine-grained features from

MEE signal segments. We need to analyze the features of MEE

signals and then extract the features.

MFCCs Features. Mel-frequency cepstrum coefficients

(MFCCs) are proposed based on the auditory characteristics of

the human ear and are widely used in speech recognition. It has

a nonlinear correspondence with the signal in the frequency

domain. Subtle changes and differences in acoustic signals

can be represented by the MFCC. In order to obtain the

MFCC of the MEE signal, we first need to perform fast

Fourier processing on the segmented eardrum echo to convert

the signal to the frequency domain. Then we need to split

the frequency domain signal into multiple smaller frequency

bins and then use a triangular filter on each frequency bin to

calculate the short term power for each frequency bin. Finally,

a discrete cosine transform (DCT) is used on these short-term

power segments to obtain complex pairs. In EarSonar, the

MEE signals from different periods of users have differences

in the frequency domain, and the difference information can

be reflected by the MFCC.

Statistic Features. We obtained the power spectral density

profile of the echo from the eardrum under different effusion

states by FFT calculation. We use the statistic features reflect

the global characteristics of the MEE signal, We extract the

following features from the Power spectrum sequence: 1)the

mean and standard deviation, 2)the maximum and minimum

value of x, 3)the skewness, 4)the kurtosis.

For MEE detection and classification, EarSonar constructs

a 105-element feature vector for each MEE signal segment,

which includes MFCC features and statistical features. In order

to reduce the computational load of the model, we use the

Laplacian score to measure the importance of features, and

save the top 25 features with importance.

3) In-group k-means based clustering.: To accurately group

different degrees of ear effusion, the k-means algorithm (a

classic clustering method) is chosen due to its computa-

tional efficiency. The core of K-means clustering is to divide

each data vector into the cluster represented by the nearest

cluster center point. Given k values and k initial cluster

center points, and assign all points to each cluster. After

completing the above steps, recalculate the center point of

each cluster according to all the vectors in each cluster, and

then iterate the clustering process after each new point is

added and continuously update the cluster center point. k-

means clustering is proposed to partition n EarSonar samples

X = {X1, X2, ...Xn}, where each object has attributes of m
dimensions. The goal of the K-means algorithm is to cluster

n objects into k clusters according to the similarity between

objects, and each object belongs to one and only one cluster

whose distance from the center of the cluster is the smallest.

For EarSonar, we have given four cluster centers according

to the four different states of the effusion as {C1, C2, C3, C4}.

Then we calculate the Euclidean distance from each object to

each cluster center, as follows

dis (Xi, Cj) =

√√√√ m∑
t=1

(Xit − Cjt)
2

(11)

where Xi represent the i-th sample(1 ≤ i ≤ n), Cj represent

represents the j-th cluster center(1 ≤ j ≤ 4), Xit Represents
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the t-th property of the i-th sample(1 ≤ t ≤ m). Cjt represents

the t-th property of the j-th cluster center. By comparing the

distances of each object to each cluster center in turn, the

objects are assigned to the cluster with the closest cluster

center, and 4 clusters are obtained {S1, S2, S3, S4}. To obtain

the best clustering results, we minimize the Euclidean distance

of the combined features, the EarSonar samples in each cluster

by satisfying

min

K∑
i=1

∑
x∈Ci

dist (ci, x)
2

(12)

After k-means clustering, the vast majority of EarSonar sam-

ples are correctly classified, while only a small fraction of

corridor points are mixed.

4) Outlier remove.: K-means clustering can perform badly

in the presence of outliers, and these individual data have a

very large impact on the average value. Given this limitation

of the K-Means algorithm, we need to pay special attention to

these data noise and outliers when applying the algorithm. For

data noise and outliers in the clustering, we use two strategies

to remove outliers. First, outliers that are farther from the

cluster center point than any other data point are directly

removed. In order to prevent accidental deletion, data analysts

need to monitor these outliers in multiple clustering loops, and

then compare them with the results of multiple loops based

on business logic, and then decide whether to delete these

outliers. Second, the random sampling method can also better

avoid the influence of data noise. Because of random sampling,

the probability of data noise and outliers that are rare events

can be randomly selected into the sample will be very small,

so the randomly selected sample will be relatively clean. The

clustering analysis of the random sample can not only avoid

the misleading and interference of data noise, but also the

clustering result can be applied to the remaining data set as a

clustering model to complete the clustering of the entire data

set.

V. SYSTEM IMPLEMENTATION

Hardware prototyping. Our experiment introduced an

additional Micro microphone (low-cost) to maintain a parallel

structure with the earphone speaker to facilitate the acquisition

of echoes from the eardrum as shown in Fig. 3. We embedded

it into various in-ear earphone as shown in Fig. 12(b), which

signal-to-noise ratio is generally higher than 70dB, the sound

input quality is high, and the sensitive fluctuation value is

lower than -30dB. It can perfectly cover the acoustic signal

with frequency response range of 20Hz-20KHz. Considering

that most of our participants are children, we have customized

silicone earplugs that are more comfortable and more in line

with the structure of children’s ear canals, which ensures good

ambient noise isolation and a comfortable user experience. We

connect EarSonar to the HUAWEI Mate 40. All acoustic data

will be uploaded to an MSI Pro laptop with a 2.5 GHz Intel

i7 CPU and 16GB memory as the server, and we use Python

to process the algorithm we use in EarSonar. The server will

finally feed back the detection result of MEE.

Participant recruitment. We recruited 112 participants (60

males and 52 females) from Children’s Hospital to evaluate

the performance of EarSonar. We distribute the ages of these

participants between 4-6 years old, and our experimental scene

is shown in Fig. 12(c). We pooled all data for cross-validation.

We followed participants from diagnosis to full recovery (hos-

pital discharge). The IRB approved our experiment with 112

volunteers (we followed each participant for at least 20 days)

over 12 months. To increase the realism of the experiment,

we provided participants with attractive reward gifts before

and after the experiment.

VI. EVALUATION

We implemented a proof-of-concept prototype of EarSonar

using a micromodified earphone and smartphone. We de-

veloped a client application and set up the server to run

on the user’s smartphone. The EarSonar prototype uses the

earphone’s speaker and an additional embedded microphone

for MEE detection. To verify the validity and accuracy of

EarSonar, we recruited 112 participants.

(a) (b) (c)

Fig. 12: (a)The pneumatic otoscope, (b)Differene kinds of

earphones, (c)Experimental environment.

A. Experiment Setup and Metrics

Data collection. EarSonar labels MEE status as Clear,

purulent, mucoid and serous. In the testing stage, we collected

at least three MEE states for each participant. Acoustic signals

for three week (20 days) of each participant, which completely

covered the four states of the participant’s middle ear effusion

recovery, Acoustic data for 10s is collected every time at 8

am and 6 pm each day. We collected a total of 44800s (112

x 20 x 10 x 2) acoustic signal data. In order to verify the

performance of EarSonar, we also set different experimental

parameters, such as different room noises, different earphone

wearing modes, etc.

Groundtruth data. Before each experiment, a trained nurse

tests the patient, who is awake and remains or sitting. To

verify the performance of EarSonar we will ask doctors to use

the professional pneumatic otoscope(As shown in Fig. 12(a))

to detect the degree of eardrum effusion of participants as

Groundtruth every time we collect data.

Evaluation metrics. In this paper, we use precision, recall,

F-score, Confusion matrix as metrics to comprehensively

measure the performance of EarSonar. For classification, we

used the k-means clustering algorithm on the preprocessed

acoustic data. We extracted the MFCC features and statistical

features of the MEE signals. We train our algorithm on data

collected in smartphones. To verify the effectiveness of the

algorithm, we use leave-one-out cross-validation (LOOCV) for

evaluation. Specifically, in each iteration of LOOCV, we use
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Fig. 13: Estimation performance of EarSonar.

data from 111 of the 112 participants for training. Then output

the prediction for the last participant. We repeat this process

for all 112 participants to guarantee the accuracy of the model

trained on all 112 participants.

B. EarSonar Performance

We first use leave-one-out cross-validation [10] to evaluate

the overall performance of EarSonar. Since the recovery of

middle ear effusion is a long cycle, we divided the types of ef-

fusion into serous, mucous, suppurative, and clear, and serous,

mucinous, and suppurative represent the three stages of MEE.

Clear represents a normal eardrum. We use Precision, Recall,

F1-score to evaluate the overall performance of EarSonar, The

results are shown in Fig. 13. The median values for Precision,

Recall, F1score rate are 92.8%, 92.1%, 92.3% respectively. At

the same time, we observe that for the four states of MEE,

the Clear state has the highest detection accuracy, while the

Purulent state The detection accuracy of the Mucoid state and

the Purulent state is lower, because the Purulent state and the

Mucoid state are prone to aliasing. Fig. 13 plots the confusion

matrix of 4 states. The average accuracy rate is higher than

92%. The few that were misidentified were those states with

similar characteristics. These results demonstrate the extent to

which EarSonar can reliably detect MEE in real time.

C. Impact Quantification

1) Impact of angle.: Considering that we always wear

earphones in a fixed way in the laboratory, in practice, when

putting on and taking out the earphones, the relative position

of the earphones and the ear canal will change, and even the

behavior of wearing earphones will be irregular. We regard the

plane of the human ear as a plane coordinate system to set the

x-axis and y-axis, and we take the standard wearing headset

posture as an angle of 0 degrees. And rotate the position

of earphone. Six angles were tested, including 0 degrees, 10

degrees, 20 degrees 30 degrees, and 40 degrees. Table. I shows

the echo detection accuracy under these five different angels.

The precision results of the six cases were 92.8%, 91.3%,

90.2%, 88.5%, and 86.4%. EarSonar has the highest accuracy

rate at 0 degrees. When participants place their earphones

outside the effective area of 20-40 degrees, the multipath

reflection in the ear canal will change significantly, resulting

in a decrease in inaccuracy.

2) Background noise: Ubiquitous background noise can

affect acoustic sensing systems. We examine our EarSonar in

4 different noise levels in a room with 40 dB, 55 dB, 65 dB,

TABLE I: The Acoustic Measurements Accuracy.

Angle Axis0 Axis10 Axis20 Axis30 Axis40

Accuracy 92.8% 91.3% 90.2% 88.5% 86.4%

and 75 dB. To ensure reliability and control for experimental

variables, we add additional background noise to the collected

data to simulate the test environment under different scenarios

of different sound pressure levels [19]- [20] with a smartphone

one meter away from the participant.

From Fig. 14(a), We observed a slight increase in FARs with

increasing noise, but background noise sound pressure level

(SPL) did not significantly affect FARs. However, as shown

from Fig. 14(b), the FRRs will increase with the increase of

noise. We recommend that users use EarSonar in a quiet room

to prevent uncontrollable background noise from affecting the

detection results.

3) Body movement: Involuntary movements of the user

while using the EarSonar may affect the detection results. In

order to evaluate the robustness of the system under different

slight movements of the user, we prescribe several body move-

ments such as sitting, slight head movements, walking and

slight nodding. Considering the young age of the participants.

All actions are carried out with the assistance of a physician.

Fig. 14(c) and Fig. 14(d) show the detection performance of

EarSonar under different body movements. We can see that the

EarSonar maintains relatively good robustness under the two

actions of sitting down and slight head movement. However,

the two actions of walking and nodding affect performance.

This shows that EarSonar is robust to slight motion noise.

When the degree of motion increases, the relative position of

the earphone and the ear canal may change, resulting in a

decline in system performance. What needs to be pointed out

is that we recommend that when using EarSonar for MEE

testing, participants should maintain a sitting posture.

4) Impact of the device: Earphones with different configu-

rations may affect the performance of EarSonar. Therefore, we

use four other earphones simultaneously for data collection.

Specifically, we use CK35051, ATH-CKS550XIS, IE 100

PRO, and BOSE QC20 for testing. The prices of these devices

are different, and the hardware functions will differ. Fig. 15(a)

shows a comparison of the recall and precision of EarSonar

under these four other earphone usages. The results show that

EarSonar can adapt to different earphones and run robustly
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Fig. 14: The impact of Background noisy and Bodymovement.
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5) Impact of Training Size.: The proposed detection of

MEE states is based on the fact that the middle ear effusion

states from different states will absorb and reflect sound waves

to different degrees. The model is actually trained to recognize

these varying degrees of middle ear fluid. To investigate

the user’s burden on training data collection, we train the

model with different numbers of data samples. As shown in

Fig. 15(b). The average accuracy rate of EarSonar increases

with the increase of the training data set, but when we use

50% of the data volume, the average accuracy rate of EarSonar

reaches 91.6%, and then with the increase of the data volume,

the accuracy rate improves greatly Small.
6) Power and latency Measurement.: EarSonar uses Ear-

phone and smartphone to perform MEE detection. Currently,

there is no additional sensing module configured on earphone

for MEE detection. In fact, Most earphones today offload data

directly to your phone or over the web. We evaluated the

power consumption and latency of EarSonar on smartphone.

We train machine learning models on laptops and implement

MEE recognition (including bandpass filtering, feature extrac-

tion, and inference) on smartphones. When we perform MEE

detection on mobile phones, the latency of different operation

is shown in Table. II. In fact, the recognition (feature extraction

and inference) time is usually very short, so the actual energy

consumption will be much lower as shown in Table. III.

VII. RELATED WORKS

MEE Detection. Many methods are focusing on how to

detect MEE more conveniently at present. Chan et al. [10]

use a smartphone to detect middle ear fluid. They only used

an extra piece of paper to convert the smartphone into a tool

detecting MEE. Song et al. [21] use the water stream in the

syringe as the medium to detect the influence of the middle ear

effusion on the ultrasonic signal. Ozana et al. [22] use cheap

optical instruments to assist medical staff in detecting MEE.

P3Q-2 [23] highlights that the condition of the middle ear is

determined by analyzing the ultrasonic echo collected from

the tympanic membrane and middle ear cavity. J et al. [24]

developed a handheld optical coherence tomography (OCT)

system to monitor in vivo response of biofilms and MEEs

in the OM-induced chinchilla model, the standard model for

human OM. Different to existing works, EarSonar is the

first earphone-based MEE diagnostic system, exploiting the

inbuilt microphone and speaker of COTS earphones to capture

acoustic echos that retain the traits of middle ear fluid status

achieve full-featured MEE diagnosis.

Earphone Sensing. Nokia Bell Lab’s has developed a smart

earphone [25] prototype esense to expand the development

of earphones in the field of human health monitoring. Min

et al. [26] use embedded sensors in the headset to detect

speaking activity and participant emotions separately. Hossain

et al. [27] designed a multi-sensory device based on eSense

and an activity recognition framework was proposed. It has

a microphone, 6-axis inertial measurement unit and dual-

mode Bluetooth. they use eSense accelerometer sensor data

to detect behavioral activities related to the head and mouth.

HeadFi [28] made a circuit change for cheap earphones. This

makes unintelligent earphones smart, which greatly reduces

the cost of potential smart earphones in the future. EarEcho

[20] used unique acoustic signals in the ear canal to extend

earphone to identity authentication devices. EarDynamic [29]

leverages ear canal deformation that combines the unique static

geometry and dynamic motions of the ear canal when the user

is speaking for authentication. EarphoneTrack [30] proposed

a new mode of acoustic motion tracking using earphones.

Earphone-based tracking alleviates the limitations associated

with traditional smartphone-based tracking.

VIII. CONCLUSION

In this paper, We recommend using earphones to detect

middle ear effusion and extend this function to the health

monitoring function of smart earphones. EarSonar uses ear-

phone’s internal speakers and requires an additional embedded

microphone (low cost), no special sensor is required. Specif-

ically, EarSonar exploit the inbuilt microphone and speaker

of COTS earphones to capture acoustic echos that retain the

traits of middle ear fluid status, therefore, achieve full-featured

MEE diagnosis. We implement the prototype of EarSonar

and conduct extensive experiments in clinical diagnosis. The

results show that EarSonar can effectively diagnose MEE at
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TABLE II: Latency of EarSonar for different operation.

Operation Latency(ms)
Band-pass Filter 1.32
Feature Extract 35.89

Inference 1.2

TABLE III: Power consumption of EarSonar for different

smartphone.

Smartphone Power(mW)
Huawei 2100
Galaxy 2120
MI 10 2243

an accuracy up to 92.8% and it is 8% higher than the previous

method based on acoustic detection of MEE.
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