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Abstract—The eye-blink pattern is crucial for drowsy driving
diagnostics, which has become an increasingly serious social issue.
However, traditional methods (e.g., with EOG, camera, wearable,
and acoustic sensors) are less applicable to real-life scenarios
due to the disharmony between user-friendliness, monitoring
accuracy, and privacy-preserving. In this work, we design and
implement BlinkRadar as a low-cost and contact-free system to
conduct fine-grained eye-blink monitoring in a driving situation
using a customized impulse-radio ultra-wideband (IR-UWB)
radar which has superior spatial resolution with the ultra-wide
bandwidth. BlinkRadar leverages an IR-UWB radar to achieve
contact-free sensing, and it fully exploits the complex radar signal
for data augmentation. BlinkRadar aims to single out the eye-
blink induced waveforms modulated by body movements and
vehicle status. It solves the serious interference caused by the
unique characteristics of blinking (i.e., subtle, sparse, and non-
periodic) and from the human target itself and surrounding
objects. We evaluate BlinkRadar in a laboratory environment
and during actual road testing. Experimental results show that
BlinkRadar can achieve a robust performance of drowsy driving
with a median detection accuracy of 92.2% and eye blink
detection of 95.5%.

Index Terms—Eye Blink detection, RFID Signal, Drowsy driv-
ing detection

I. INTRODUCTION

Drowsy driving is the main reason for traffic accidents,

resulting in heavy casualties and economic loss, and it has

become an increasingly severe problem around the world.

Under the state of drowsiness, a driver’s cold significantly

reduces vigilance and slow reaction time. According to the

U.S. National Highway Traffic Safety Administration, in just

2019, over 697 deaths were related to drowsy driving in the

United States [1]. In Europe, statistics [2] show that around

20% of all traffic accidents are due to a diminished vigilance

level of drivers caused by drowsiness. Research on traffic

safety [3] shows that the eye-blink pattern is distinctive when

drivers become drowsy, which causes the observable physio-

logical phenomenon, i.e., eyelid closure frequency increases.

Therefore, developing a driving state diagnosis system that

accurately monitors eye-blink motion in driving situations is

crucial to preventing traffic accidents and saving lives.

Traditionally, to monitor such physiological phenomena for

driving state diagnosis, existing eye-blink detection methods

mainly rely on different types of sensors, which can be

divided into four categories: EOG sensor [4], proximity sensor

[5]- [6], camera [7] and an acoustic sensor. However, these

systems are less applicable to real-life scenarios due to the

disharmony between user-friendliness, detection accuracy, and

privacy-preserving. Specifically, EOG and proximity sensors

are usually embedded in wearable devices such as virtual

reality headsets and eye-wears [6]. Although these systems can

achieve high detection accuracy, the inconvenience caused by

these sensors’ contact (even intrusive) nature has prevented

them from being widely adopted in daily driving situations.

Unlike EOG and proximity sensors, cameras are usually

deployed to capture images or record videos to detect eye-

blink motion in a non-intrusive way [8]. Though promising,

the performance of camera-based systems degrades in low

lighting conditions and may raise privacy concerns, hindering

their wide application. With inherent non-intrusive and good

privacy-preserved attributes, acoustic sensing gained a tremen-

dous amount of attention in recent years, shows fantastic

potential for eye-blink detection owing to its low propagation

speed and wide availability. However, limited by the acoustic

wavelength and bandwidth, acoustic-based systems can be

susceptible to real-life acoustic interference and with coarse-

grained spatial resolution [9]. Because it’s a matter of life and

death, eye-blink detection should be with high accuracy.

Ideally, an in-vehicle eye-blink detection system should

be performed continuously with a low-cost (boosting wide

application) and potential vehicle-mounted (i.e., in a non-

intrusive manner) device, providing high detection accuracy

and assuring privacy-preserving so that eye-blink patterns can

be easily used as markers for intervention or evidence for

drowsiness diagnoses [10]. To achieve this goal, inspired by

the superior performance of impulse-radio ultra-wideband (IR-

UWB) radar [11] in recognizing the motion of an object

at a distance, in this work, for the first time, we propose

BlinkRadar to employ IR-UWB for RF-based eye-blink mo-

tion sensing by harmonizing these crucial concerns on user-

friendliness, accuracy detection, and privacy-preserving. The

principle behind BlinkRadar is that the movements of the

target object can affect the propagation of the IR-UWB signal

by reflecting and mingling with basic motion-induced chang-

ing patterns embedded with fine-grained spatial information.

By actively emitting well-designed IR-UWB signals through

1040

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00104

20
22

 IE
EE

 4
2n

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
is

tri
bu

te
d 

C
om

pu
tin

g 
Sy

st
em

s (
IC

D
C

S)
 | 

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
10

4

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 17,2022 at 09:19:03 UTC from IEEE Xplore.  Restrictions apply. 



a commercial-grade IR-UWB radar platform and analyzing

how eye-blink motion is modulated in the complex reflection

signals.

Although promising progress has been achieved in using IR-

UWB for wireless sensing, eye-blink detection still faces the

following challenges. First, eye-blink motion is exceptionally

subtle. Compared with respiratory sensing, which monitors the

chest displacement of about 5 mm, the eyelid has a thickness

of as low as 0.5 mm [12]. The subtle displacement and limited

reflection area-caused signal variation are so slight that they

can be easily buried in background noise. Hence, identifying

eye-blink waveform with RF-sensing is far from trivial even

for static subjects, not the highly dynamic driving situations.

Moreover, the reflected signals bounced off the eyes and other

in-car activities (e.g., body and respiratory movements, driving

and road vibrations, etc.) are mixed, making it extremely

hard to detect eye-blink from these interferences. Third, eye-

blink is a sparse motion in the time domain with aperiodicity

and markedly variable blink intervals (ranging from hundreds

of ms to tens of seconds). These properties make frequency

domain analysis and model-based methods infeasible for eye-

blink detection.

Fig. 1: COTS impulse radio used in BlinkRadar and radio

setup inside the vehicle.

We design BlinkRadar the first RF-based non-intrusive,

fine-grained, and motion-robust eye-blink detection system to

tackle these challenges. We implement BlinkRadar based on

a commercial-grade IR-UWB radar platform [13], leveraging

its large bandwidth (e.g., as high as 1.5GHz) to achieve high-

resolution motion sensing. Given the raw eye-blink-induced

IR-UWB signal embedded with fine-grained spatial informa-

tion, we distill the subtle motion of eye-blink by analyzing dif-

ferent transformations induced by actions at different positions

in the in-phase and quadrature (I/Q) vector space. Based on the

characteristics of I/Q-domain signal representation, we further

analyze the impact of fine-grained motion change of eye-

blinking on the signal change of both amplitude and phase, i.e.,

the movement of eyelids (open and close eye) can affect the RF

transmission path modally and contributing to characterized

phase change; due to the different reflection factor of eyelid

and the eyeball, the presence and absence of eyelids can lead

to different amplitude of reflected signals. Given these signal

features caused by eye-blink, we design an algorithm to detect

eye bink.

To summarize, our contributions are as follows.

• To our knowledge, BlinkRadar is the first RF-based

non-intrusive, fine-grained, and motion-robust eye-blink

detection system operating in a commercial-grade IR-

UWB radar platform.

• We analyze the necessity to process radar signal in its

complex I/Q domain, leveraging the phase or amplitude

of the signal. We propose using the unique variation of

the signal in the I/Q vector space for recovering and

refining the eye-blink waveform, which fully utilizes the

I/Q components together and achieves fine-grained eye-

blink waveform recovery leveraging the generalizability

brought.

• We conduct extensive evaluations and field studies to

evaluate the performance of BlinkRadar. The results

strongly confirm its excellent performance in eye-blink

detection in the driving situation. It can achieve median

detection accuracy of 95.5% for eye blink detection and

92.2% for drowsy driving detection. BlinkRadar is robust

to various unfavorable factors, including bumpy roads and

sunglasses-wearing of the driver.

The rest of this paper is organized as follows. Section II

presents the feasibility analysis of applying RF signals for

eye-blink sensing. Section III introduces the system overview.

Section IV present the whole system. Section V presents the

implementation of BlinkRadar. Section VI presents the system

evaluation. Section VIII discussed the limitation of our work.

By discussing the related works in Section VII, we conclude

this work.

II. FEASIBILITY ANALYSIS

This section first verifies whether blinking can generate a

response through a valid RF signal. We then explore the unique

motion of signal changes due to the blink signal, and in this

section, we conduct extensive empirical studies that inspire us

to advance this work. Before the feasibility analysis, We need

to understand the blinking pattern when drowsy.

A. Eye-Blink Pattern during Drowsy Driving

Eyes blink a physical need. When blinking, the tears can

evenly wet the cornea and conjunctiva so that the eyeball

will not be dry, keep the cornea lustre, and remove the

conjunctival sac dust and bacteria. If you don’t blink, the tear

film on the eyeball will quickly evaporate, and we will feel

dry, uncomfortable, stinging, and teary eyes. Considering the

caffier’s study [12], the typical eye-blink duration is less than

400ms on average and 75ms for the minimum. When a person

enters an exhausted state, the blinking time will exceed 400ms

or even longer.
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B. The Motion of Eye-Blink

Eye-blink has the characteristics of non-periodic and sparse-

ness, and the human blink has a unique movement pattern. We

first introduce the movement pattern of the human eye and then

introduce the relationship between blink movement and signal

changes. To explore the unique signal changes produced by

eye blinks, we placed the UWB radar 40 cm in front of the

participants’ eyes. As shown in Fig. 2(a), UWB radar receives

the signal reflected from the eye and transfers the signal

into I/Q space to analyze the phase and amplitude variation

pattern of the signal. To distinguish the signal changes during

blinking, we divide the blinking process into two stages, Eye

Closing Stage and Eye Opening Stage.

Eye closing stage. When closed eyes, the human eyelid

will reflect the RF signal, and the path of the reflected signal

will change from the eyeball to the receiving antenna to the

eyelid to the receiving antenna. This will produce subtle path

changes, which will lead to changes in the signal phase. Mean-

while, the surface of the eyeball and the eyelid are different

reflectors, and reflectors of other materials have different signal

reflectivity, so the signal reflected from the surface of the

eyeball and the eyelid will have various manifestations in

amplitude. The specific process as shown in Fig. 2(b)

Eye opening stage. When the eyes are opened, the process

is the opposite of closing the eyes. As shown in Fig. 2(b), we

see that in the I/Q space, the amplitude of the signal becomes

smaller when the are opened, and the phase of the signal is The

opposite change. We can separate the blink-related signal from

the multipath-filled signal through this extraordinary signal

feature change.

(a) The UWB radar and reflected sig-
nal

(b) The Schematic diagram of
I/Q space

Fig. 2: The Schematic diagram of UWB radar and I/Q space.

C. Blink Frequency When Drowsy

To demonstrate the relationship between drowsiness and

blink frequency, we recruited 8 participants to qualitatively

test changes in blink time when they were tired and not tired.

We tested it at 10:00 in the morning and night when everyone

was in their best spirits. At 10:00, participants determined they

were in a state of fatigue and then performed an eye-blink

test. We used blink frequency to indicate whether participants

were drowsy [14]. To ensure the reliability of the survey and

empirical testing, light conditions were kept constant (i.e., 220

260 lux light intensity), and the distance between participants

and the device was always kept constant (40 cm).

For simplicity and without loss of generality, we plotted

their 1 minute blinks in table. I when they were energized and

TABLE I: Blink frequency at different times

1 2 4 5 6 7 8
10:00am 20 21 19 20 18 22 21
10:00pm 25 26 30 25 26 24 26

lethargic. We found that participants blinked more often when

tired than when they were energized.

III. SYSTEM OVERVIEW

This section introduces the overview of BlinkRadar. The

whole system consists of three components: signal preprocess-

ing, Eye-blink detection, and Drowsy driving detection.

Signal preprocessing. In this model, We introduced the sig-

nal preprocessing process of BlinkRadar. This module includes

noise reduction and background subtraction. The UWB radar

transmits a signal, and the signal is reflected and received by

the radar receiving end again. At the same time, the data is

transmitted to the computer for processing. We want to use

a smoothing filter to reduce the noise in the signal, and then

we use a loopback filter to remove static reflections from the

clutter for background subtraction.

Eye-blink detection. This model introduces how to extract

the blink signal from the mixed signal. We first convert the

received signal to the I/Q space. We analyze the unique

signal pattern changes caused by blinking, including signal

amplitude and phase changes. Then we introduced how to

find the best blink observation position and remove the noise

caused by vehicle vibration. Since the human body cannot

maintain a posture, the human body will move slightly, and

the surrounding environment will also change. Therefore,

BlinkRadar needs to update the viewing position adaptively in

real-time to maintain good blink detection performance. We

have designed an algorithm that can continuously update the

best observation position.

Drowsy driving detection. This part of the model in-

troduces how to perform blink detection in a moving car

continuously. Drowsy driving is mainly reflected in the driver’s

blink rate. We designed a drowsy detection algorithm and re-

cruited participants to conduct experiments. In order to verify

BlinkRadar, we collected the blink rate of the participants

when they were drowsy and awake. We verified the feasibility

of BlinkRadar in the onboard drowsiness detection system.

IV. SYSTEM DESIGN

A. RF Signal Design

In this section, we introduce the design of RF signal

design of the UWB radar. BlinkRadar utilizes a system-on-chip

impulse radio for transmitting and receiving wireless pulses.

The schematic diagram of the transmitting signal and receiving

signal is shown in Fig. 4. The transmitted signal is sk(t), the

modulated signal is xk(t), the signal after passing the channel

is yk(t), and the demodulated signal is ybk(t). The receiving

end receives In-phase and Quadrature (I/Q) sampling at the

receiver side for downconversion.
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Fig. 3: Overview of BlinkRadar design.

Fig. 4: Signal preprocessing process.

The UWB radar we use combines the transmitting antenna

with the receiving antenna. The transmitting antenna continu-

ously sends out chirp signals, and the receiving antenna will

receive echoes. The transmitted chirp can be represented as

s(t) = Vtxexp(−
(t− Tp

2 )2

2σp
2

) (1)

where the Vtx is the amplitude of the pulse, the duration

of the signal is Tp, and σp
2 is the variance corresponding to

the -10 dB bandwidth. We employs an in-phase single-carrier

frequency cos(2πfct) for upconversion. Then, the transmitted

signal in the time domain is given by

xk(t) = s(t− kTs) · cos(2πfc(t− kTs)) (2)

where fc is carrier frequency, Ts is duration of frame, k
denotes the k-th frame. Because the impulse radio transmits

a sequence of identical pulses, we have s(t− kTs)− s(t). So

the equation can be written as

xk(t) = s(t) · cos(2πfc(t− kTs)) (3)

The signal’s carrier frequency is 7.3GHz, and the bandwidth

is 1.4GHz. The transmitted signal xk(t) is shown in the

Fig. 5(a) and the Spectrogram of the xk(t) is illustrated in

Fig. 5(b).

The impulse response hk(t) is given by:

hk(t) =
∑p

p=1 αpδ(t− τp − τDp (kTs)) (4)

where αp is the channel gain of the pth reflection path signal

in the vehicle, τp is the time delay of the p-th path, τDp (kTs)
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(b) Transmitted xk(t) in frequency
domain

Fig. 5: The time and frequency domain of transmitted signal

is the time delay caused by Doppler frequency shift of the

p-th path. The τp =
2Rp

c and τDp (kTs) =
2vpkTs

c , Where Rp

is the distance between the target to the UWB radio. c is the

speed of electromagnetic wave, vp is the speed of the moving

target. The range resolution of Blink Radar is Δr = c
2B . The

received signal of the system is

yk(t) = hk(t) ∗ xk(t) (5)

Received baseband signal ybk(t) are obtained after applying

I/Q space, we have:

ybk(t) =
P∑

p=1

αpe
2πfc(τp+τD

p (kTs))·s(t−kTS−τp−τDp (kTs))+n(t)

(6)

For common pulse radar, we can use a two-dimensional

fast Fourier transform for ranging and speed measurement

processing, we will receive the signal for (FFT), and we can

get different objects at different distances relative to UWB

radar, As shown in Fig. 6(b). We have seen three Peaks

corresponding to different signal paths. The first path is the

path directly received by the antenna itself, the second is the

path reflected from the eye, and the third is the path reflected

from the environment. We further divide the signal path into

a static and dynamic path. All static path signals, including

direct path signals and reflections from static surrounding

objects. We denote the superimposed composite signal as Hc

where Hc is a vector summation of Hs and Hd. For most

small-scale movements, the amplitude of the dynamic vector

can be assumed as a constant, and only the phase changes.

Therefore, the dynamic vector rotates to the static vector,

inducing the signal variations in the I/Q vector space.

(a) Signals travel through multiple
paths.
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Samples
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1.5

2

2.5

3

3.5

P
o
w

er

Direct path

Eyes

Surrounding

(b) The FFT result of the sensing
signal.

Fig. 6: The illustration of eye-blink detection in a multipath

environment, and the corresponding ToFs of the multiple

paths, respectively.
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B. Rf Signal Preprocessing

Before extracting information from RF signals, the effects

of hardware or environment should be removed to guarantee

signal quality. The RF signal preprocessing has two main

steps, noise reduction and background subtraction.

1) Noise reduction: The received baseband signals are

polluted with noise, as shown in Fig. 8(a). Noise will prevent

the following vital signs extraction modules from working

correctly. Especially, vital signs will be immersed in noise.

Therefore, a cascading filter comprised of a low-pass Finite

Impulse Response (FIR) filter and a smoothing filter is utilized

to enhance the SNR of the signals. The order of the designed

FIR filter is 26, and Hamming window is used. The smooth

filter with a window size of 50 points is used further to smooth

the output signal of the FIR filter. Fig. 8(b). Illustrates the

output of the cascading filter. It can be seen that noise is

suppressed.
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(a) The signal without SNR enhance-
ment
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(b) The signal with SNR enhance-
ment

Fig. 7: The signal without SNR enhancement and with SNR

enhancement

2) Background subtraction: BlinkRadar needs to remove

reflections from other objects. Each reflector in the vehicle

produces a reflected component in the overall signal, and this

component has a frequency shift that is linearly related to the

reflected time-of-flight. For example, reflections from the seats

and steering wheel are much stronger than reflections from the

eyes. These reflections can interfere with blink detection.

To remove reflections from all these static objects (seats,

steering wheel), we take advantage of the fact that since these

reflectors are static, their distance from the UWB radar is

not time-dependent, so the frequency shift they cause remains

constant time. We take an FFT of the received signal for each

scan window and calculate the power at each frequency as

a function of time. Note that there is a linear relationship

between the two. The frequency shift and distance traveled

are as follows

distance = C × TOF = C × �f

slope
(7)

We can use the equation above to plot the power reflected

from each distance as a function of time. As shown in

Fig. 8(a), We can see from the picture that there are many

static components similar to straight lines, and their energy

does not change with time. Therefore, we remove the power

of these static reflectors from the FFT scan of the signal in the

previous scan by simply subtracting the output of the given

FFT. This process is called background subtraction because it

removes all static reflectors in the background. The result after

elimination is shown in Fig. 8(b).

(a) Signal before background sub-
traction.

(b) Signal after background subtrac-
tion.

Fig. 8: The signal without background subtraction and with

background subtraction

C. Eye-Blink Motion Capture

Though human blinks are aperiodic and sparse, human

blinks have unique movement patterns. We first introduce the

movement patterns of the human eye and then introduce the

relationship between blink movement and signal changes. We

now present actual experimental results.

The change of the signal in the I/Q space in the closed eye

phase is shown in Fig. 9(a). We observed that the signal’s

amplitude becomes small, this change is since the surface of

the eyeball and the eyelid’s surface are different reflectors.

The reflectors of different materials have Different signal

reflectivity, so the signal reflected from the eyeball’s surface

and the eyelid’s surface will have different performances in

amplitude. At the same time, the reflection path of the signal

changes, and the reflection signal changes from eyelid reflex

to eyeball reflex. Results in a change in the phase of the

signal. The process of opening the eyes is the opposite of

closing the eyes. As shown in Fig. 9(b), we observe that the

signal amplitude becomes large, and the phase also changes

accordingly. We can distinguish this unique pattern from the

blink-related signal from the multipath fill signal.

0 200 400 600 800 1000

I

0

1

2

3

4

5

Q

Eyes closed

(a) The signal variation of Eyes
closed

0 200 400 600 800 1000

I

0

1

2

3

4

5

Q

Eyes open

(b) The signal variation of Eyes open

Fig. 9: The signal variation of Eyes closed and open

Through the previous results, we can summarize the effect

of the blinking process on the signal as to when blinking

occurs. The signal transmission path will slightly change, and

the signal amplitude will change due to the difference in the

reflection of the signal by the eyelid and eyeball. In the I/Q

space, the amplitude of the signal can be expressed as

ϕ = −2π(f0τ − B

2T
τ2) (8)
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In the blink of an eye, the value of B
2T τ

2 can be ignored,

the τ = 2d
c , we denote The change of phase �ϕ as

�ϕ = −4πf0 � d

c
(9)

The signal phase change can be represented by �ϕ. The

Changes in signal amplitude can be used�α. We record blinks

by capturing the changes in the phase and amplitude of the

unique signal during blinking in the I/Q space.

D. Eyes Blink signal extraction

This section will introduce how BlinkRadar filters out blink-

related signals from the multiple noises. Before we introduce

how to remove these noises, we first need to understand them

and how they affect BlinkRadar.

Multiple noise. The sensing signals will travel through

multiple paths from the transmitter to the receiver. Signals

reflected from surrounding objects are called ambient inter-

ference. Environmental disturbances can come from static

objects, such as seats and steering wheels, or moving objects,

such as fidgeting passengers. In addition to the signals re-

flected from the eyes, there are also signals reflected from other

body parts. Interference caused by signals reflected from other

body parts is called self-interference. Such as the head when

yawning, and the hands when operating the steering wheel.

Biosignal noise. Faces and the human body produce biosig-

nals that interfere with our blink detection. These biological

signals include heartbeat and breathing. The movement of the

heartbeat is slight but will maintain a regular cycle. At the

same time, the heartbeat information will be hidden in the

breathing information. Many studies have shown that the chest

cavity will be displaced by 3-5cm when breathing. At the same

time, the head moves involuntarily when breathing, and there

is an approximate 1mm head movement synchronized with

the heartbeat due to blood pumping, which is called Ballistic

Cardiography (BCG). This involuntary movement is aliased

with blinking information. Unlike ambient noise, this type of

noise embedded in the blinking information is more difficult

to remove. To solve Multiple noises and Biosignal noise. We

mainly use two methods to solve and help us extract the

information from blinking.

The signal separation. To separate the blink signal from

the noise, which is easier to separate, we first use the chirp

signal. UWB radar will continuously transmit pulse signals

with a carrier frequency of 7.3GHz and bandwidth of 1.4GHz.

The speed of the electromagnetic wave c is 3.0 × 108, and

the resolution of the RF signal with a bandwidth of 1.4GHz

can distinguish two signals with a distance difference more

significant than 1.07 cm. The resolution of 1.07cm helps us

easily separate the signal from the blink of the eye from the

motion of the driver’s limbs and chest, and we design filters

to filter out unwanted noise in the environment. However, the

movements of the driver’s face, including the movement of

the lips, and the involuntary small-amplitude movements of

the head can be mixed into the blink signal. Finer-grained

signal separation is required to obtain a clean blink signal.

Fine-grained blink features. Since both breathing and

heartbeat are periodic motions, the induced involuntary head

movements are also periodic. The motion of the head is differ-

ent from blinking in the I/Q space. As shown in Fig. 10(a). We

use blue for head movement and yellow for blink movement.

Signal amplitude changes caused by small head displacements

(approximately 1mm) are negligible, while the corresponding

phase changes are significant. So if we do not consider the

static vector, the phase change causes the dynamic vector to

rotate relative to the origin. Since the amplitude change is

negligible, the radius of the arc is approximately constant.
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ment.
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Fig. 10: The signal motion of headmovement and the noise

and eye-blink.

When we apply the chirp signal design to eye-blink de-

tection in a multipath environment, reflectors at different

distances cause different amounts of frequency shift. The

signals fall into different frequency bins after performing FFT

on the sensed signal (mixed-signal). We can get multiple

reflectors at different frequencies corresponding to different

frequency ranges. Without prior knowledge of the distance

between the eye and the sensing device, we do not know

which peak corresponds to the eye reflection signal when there

are multiple peaks. The naive approach is to differentiate the

ocular reflection signal by distinguishing the amplitude of the

peaks. However, due to the tiny reflection area, the magnitude

of eye reflections may be weaker than reflections from other

surrounding objects such as steering wheels and seats, even if

the eye is closer to the sensing device.

To quickly identify the frequency bins corresponding to the

eyes, we exploited the disturbances caused by respiration and

heartbeat rather than relying directly on the signal changes

caused by blinking. The reason is that blinking is a sparse

activity, with blink intervals ranging from a few seconds to

tens of seconds, which may A significant delay is introduced

if we identify the frequency bins of eye reflexes by blinking. In

contrast, embedded interference persists even without blinking,

which can be used to identify frequency bins of eye reflections

quickly. Illustrates the signal changes in the frequency of the

eye’s reflections when the eye is not blinking. We have an

interesting observation: while the 1D amplitude variation of

the eye-reflected signal is slight, the 2D I/Q vector space

signal varies greatly, forming arc-shaped trajectories due to

embedded disturbances. As shown in Fig. 10(b), the eye

reflection frequency can be easily distinguished from the

noise in 2D space. Therefore, to identify the frequency bins

corresponding to the eyes, we first calculate the variance of
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the 2D signal variation for each frequency bin and then pick

out the frequency bins with the most significant variance.

This is the first time we have exploited ”harmful” embedded

interference to aid our blink-sensing signal processing.

E. Real-time Eye-Blink Detection.

Although the above viewing position scheme can achieve

good blink detection performance, the optimal Observe po-

sition changes during long-term detection due to slight body

movement of the target and changes in the surrounding envi-

ronment. Therefore, we need to adaptively update the viewing

position in real-time to maintain good sensing performance.

Since we obtained the optimal viewing position by the arc

fitting method, the more signal samples we have, the more

accurate the optimal viewing position. However, more data

samples mean more significant system latency and can impact

real-time performance. Below, we present the design details of

our real-time algorithm to maintain a good balance between

detection accuracy and system.

Signal transmission and reception. In the beginning, our

system collects several signal samples for the initialization.

Specifically, we accumulate 50 chirps with the default chirp

period of 40mm, which takes 2s in total. Note that this

2s is for the cold-start and is a one-time effort. Once the

system is initiated, we can output the detection results every

40mm. Therefore, our proposed system can provide real-time

detection. We apply the well-known Pratt method for the arc

fitting, which is lightweight and robust.

Extreme value separation. After obtaining the best viewing

position, BlinkRadar continuously tracks the relative distance

from the viewing position to the newly collected signal sam-

ples. We apply a local extreme value detection (LEVD) method

to detect the bumps caused by blinks in a sliding window. The

basic idea of the LEVD method is to find alternative local

maxima and minima and compare the difference between two

nearby local maxima and minima with a predefined threshold.

Set to five times the standard deviation of the signal amplitude

without blinking. A blink is detected if the local maximum and

minimum difference is more significant than a threshold.

Adaptive update. During the driving process of the vehicle,

the vibration of the vehicle body and the adjustment of the

driver’s posture will change the distance between the eyes and

the UWB radar, so BlinkRadar needs to update the observation

position constantly. Since the optimal view position calculation

is very lightweight, we continuously. The viewing position is

updated as soon as enough samples are accumulated. Note

that if too few samples are used For arc fitting, the accuracy

can be pretty low. BlinkRadar restarts the whole eye-blink

detection process when a significant body movement happens.

BlinkRadar constantly finds the best viewing position, through

which it can continuously capture the blinking action.

F. Drowsy Driving Detection

In this section, We’ll introduce how BlinkRadar performs

drowsy driving detection.
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Fig. 11: An illustrative example of our real-time eye-blink

detection algorithm.

BlinkRadar aims to detect whether a user has entered a

drowsy state by detecting their blink rate, and we now discuss

the rationale behind our approach. When the user is very

awake and driving with full attention, the user’s eyes will

look ahead to observe the road conditions, and the blinking

frequency will remain normal. When the user enters a sleepy

state, the blink rate becomes higher. Previous research has

shown that when users feel drowsy in the initial stages, the

blink time is longer, and the blink rate is higher. Although

not a contribution of our work, for the integrity of drowsy

driving detection. We built a model to verify that we can

do this reliably. We build a simple model for drowsy driving

detection based on the above description.

We use blink rate denote the frequency of blink. To unify

units, BlinkRate is the frequency of blinks per minute. Next,

we built a model for each. The model includes two scenarios:

awake, drowsy. We use a one-minute window to calculate the

user’s blink rate, and we collect each user’s blink rate while

awake and drowsy.

V. IMPLEMENTATION

Hardware implementations. BlinkRadar performs eye-

blink detection identification using UWB signals. The core

component is a compact, low-cost [15] IR-UWB transceiver

as shown in Fig. 12(a). They are used to transmit and receive

RF signals for eye-blink sensing. The radio is connected

to a Raspberry Pi via Serial Peripheral Interface (SPI). The

hardware PCB is relatively small with a size of 6.5 × 3cm2.

The hardware includes a power supply, 5V fan and impulse

radio. We place the whole uwb radar on the windshield of

a vehicle. Since the impulse radio is facing the driver as

shown in Fig. 12(b). The eye-blink detection modules are

implemented using Python 3.7 and PyTorch 1.7.1. All code

will be executed on an MSI laptop (GTX 1060 graphics card

and I7-7700).

Signal parameters. It transmits a baseband signal with a

bandwidth of 1.4GHz, and the signal is further modulated onto

a 7.3GHz carrier.

Ground truth. We employ a separate smartphone as the

recording device to record the ground truth using the camera.

The recording device is held by an adjustable tripod and placed

at the same height as the sensing device. We first collected two

sets of data for each participant (The blinking data of awake

or drowsy). These two data sets are used as the training set. To

maintain the safety of the experiment, we choose to conduct
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the experiment when the driver is awake and the experiment

is carried out in an open area with sparse traffic. The driver

does not enter a drowsy state. We will have the experimenter

give instructions to the participants. When the typical driving

instruction is given, the driver blinks according to the regular

pattern, and when the drowsy instruction is given, the driver

drives. Participants will be asked to blink to simulate their

drowsiness blinking pattern.

(a) The UWB radar. (b) The driving environment.

Fig. 12: The UWB radar and driving environment.

VI. EVALUTAION

In this section, we comprehensively evaluate the perfor-

mance of BlinkRadar using the UWB Radar by varying the pa-

rameters under different conditions. Our extensive experiments

on actual vehicles and the road demonstrate the potential of

BlinkRadar for practical use of drowsy driving detection using

wireless signals.

A. Experiment Setup

To verify the performance of BlinkRadar, we recruited 12

participants (8 male and 4 female). Their ages ranged from (19

to 27). We used a Volkswagen Sagitar as an experimental ve-

hicle. We study the influence of different factors by arranging

UWB radar on the front window and changing the parameters

and conditions. We collected data for each driver in the vehicle

when they were awake and asleep. Then to simulate actual

driving, we will ask the participants to drive on the road at a

uniform speed (road at night, with low traffic volume). We will

not ask the participants to reach a state of drowsiness while

driving but will give instructions to ask them. While driving,

the data were collected by simulating their blinking patterns

when they feel drowsy.

B. Overrall Performance
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Fig. 13: CDF of the detection accuracy.

BlinkRadar mainly performs two functions, one is blink

detection, and the other is drowsy driving detection based on

blink detection. We first explore the overall blink detection

performance and drowsy driving detection performance.
Accuracy of eye-blink detection. The accuracy of blink

detection is defined as the number of correctly detected eye

blinks over the total number of eye blinks. As shown in

Fig. 13(a), The overall median accuracy of eye-blink detection

can reach 95.5%.

Fig. 14: Illustration of different relative positions of the sensing

device with respect to the human target.

Accuracy of drowsy driving detection. The accuracy

of drowsy driving detection is defined as the number of

correctly detected drowsy driving over the total number of

drowsy driving. As shown in Fig. 13(b), The overall median

accuracy of drowsy driving detection can reach 92.2%. Next,

we transform the parameters to study the factors that affect

the detection accuracy of BlinkRadar.

C. Continuous Blink Missed Detection Rate
To verify the stability of BlinkRadar, we examine the

continuous missed detection rate of BlinkRadar during the

continuous blink detection process. The experimental results

are shown in Fig. 15(a). The first missed detection rate in

continuous blink detection is 4.9%, the probability of two

consecutive missed detections is 2.1%, and three consecutive

missed detections are 0.2%. The results prove that BlinkRadar

can be stably used for blink detection.

D. Distance from UWB Radar to Participant
UWB radars are placed at different distances of 20, 40, and

80cm, respectively. Its direction Eyes are facing the human

target. We can achieve a detection accuracy that exceeds 95%

in 40 cm as shown in Fig. 15(b). When the distance increases

to 80 cm, the accuracy drops to 91%. Therefore, We advise

keeping the device within 0.4 m for high accuracy.

E. Elevation and height from UWB radar to participant
The sensing device is placed at different heights from 0

degrees to 60 degrees in steps of 15 spend. The sensing device

is placed facing the eye of the human target. We define the

user’s line of sight as 0 degrees. We can see that performance

decreases with height increase, as shown in Fig. 15(c). Within

30 degrees, BlinkRadar can achieve a high detection accuracy

of 95%.
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Fig. 15: Illustration of continuous blink missed detection rate and different relative positions of the sensing device with respect

to the human target.
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Fig. 16: Other factors.

F. Angle from UWB Radar to Participant

We positioned the UWB radar to face the participant’s

eyes at 0 degrees. We tested the detection performance of

BlinkRadar in the range of 0 degrees to 60 degrees with a step

size of 15 degrees, and the result is as shown in Fig. 15(d).

It can be seen that in the range of 0 degrees to 15 degrees,

BlinkRadar can maintain more than 90% detection accuracy.

When the angle is more significant than 30 degrees, the

detection accuracy drops significantly, which may be related

to the angle of the antenna being too far away from the

participant.

G. Impact of Glasses

Considering the ubiquity of glasses wearers, BlinkRadar

needs to complete blink detection under the premise that users

wear glasses. We mainly evaluate two types of glasses (myopia

glasses and sunglasses). We fixed the UWB radar to the front

of the windshield. Fig. 16(a) shows that the detection accuracy

of BlinkRadar is 94% and 93%, respectively. Although the

accuracy rate is slightly lower than when the glasses are not

worn, the system can still complete the routine work. Blink

detection in the case of wearing glasses and wearable devices

is also our next work direction.

H. Impact of Road Types and Traffic Conditions

The signal quality of BlinkRadar can be affected by different

road types and traffic conditions, thus affecting the perfor-

mance of BlinkRadar. Make sure that BlinkRadar works on

different road types and different traffic conditions. We collect

data on different road types (e.g., smooth highway, bumpy

road, uphill road, downhill road, intersection, left turn, right

turn, roundabout, U-turn) and analyze the results separately.

The result is shown in Fig. 16(b). It can be seen that if the road

surface is smooth and the number of maneuvers is small, the

estimation error of blink detection is low. During the bumpy

road surface and Driving maneuvers can increase estimation

error.

I. Impact of Eye Size

Different users have different eye sizes. We want to know

whether the size of the user’s eyes will affect the performance

of BlinkRadar, and we give the detection accuracy of each of

them according to the size of the user’s eyeballs. We found

that the user’s eye size does affect the detection, as shown

in Fig. 16(c), but even with the smallest eye size in the

experiment (3.5 x 0.8cm), BlinkRadar still maintains more

than 90% accuracy.

J. Impact of Detection Time

Fig. 16(d) shows the accuracy of drowsy driving detection

under different detection windows. It can be seen that when the

time length is between 1min and 2min, BlinkRadar can achieve

the highest detection accuracy. Too short a detection window

detects too few samples. Too long a detection window is easy

to delay the detection of drowsy driving. We set BlinkRadar’s

drowsy detection window to 1min.

VII. RELATED WORK

This section briefly introduces the literature background

related to blinking detection and some wireless sensing-based

driving behavior detection.

A. Eye-Blink Detection Methods

1) EOG-based blink detection: Electrooculography (EOG)

sensors are the most widely used method for eye tracking

and blink detection. Andreas et al. [16] describe the design,

implementation, and evaluation of a novel eye tracker for

context-awareness and mobile HCI applications. Hiroyuki et

al. [17]input interfaces for the severely handicapped and

object-of-interest selection in the camera finder. They will
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bring significant benefits when they can be used easily in

everyday life. D et al. [18] developed a lab view-based EOG

logger to acquire EOG data and subsequently analyze it in

MATLAB. Activity status data collection was performed in

the early morning with the subjects’ consent. Subjects were

asked to complete an activity while acquiring the data. Video

recordings were also performed simultaneously to verify the

performance of the EOG system. However, the characteristics

of EOG signals obtained substantially depend on the electrode

placement.

2) Wearable device detection methods: Wearable devices

use smart glasses and VR glasses-based methods to combine

head and eye movements for human activity recognition.

Shoya et al. [19]demonstrate how information about the eye-

blink frequency and head motion patterns derived from Google

Glass sensors can be used to distinguish different types of

high-level activities. Orbits et al. [20]Using an off-the-shelf

Jins MEME pair of eyeglasses, present a pilot study that sug-

gests that the eye movement required for Orbits can be sensed

using three electrodes. 3D-Spatial [6]investigated the effect

of three-dimensional (3D) spatial learning on eye-blink in

computer graphics-generated visual environments. Devender et

al. [21] describe an Electrooculogram (EOG) and gaze-based

hands-free natural interaction system design for virtual reality

(VR) games which enhances the immersive VR experience.

3) Camera-based detection methods: Recently, there have

been many methods using Cameras to detect eye blinks. The

Camera’s low cost, non-contact and easy portability make it

the most widely used method for detecting drowsy driving.

Taber [22] presents an automatic drowsy driver monitoring

and accident prevention system that is based on monitoring

the changes in the eye-blink duration. CafeSafe [23] app for

Android phones that incorporates information from the front

and rear cameras and other embedded sensors on the phone

to detect and alert drivers to dangerous driving situations

inside and outside the car. However, the method based on

the Camera needs to consume a lot of computing power,

and using a Camera in the car will cause potential privacy

leakage problems. Our proposed method based on UWB radar

consumes less computing power and does not cause privacy

leakage problems.

B. Driving Action Detection Methods

Existing works exploit biological features, including

EEG (electroencephalogram) and PPG (photoplethysmogram)

to detect fatigued driving. Li et al. proposed a PPG sensor-

based driver fatigue detection method [24], and Dkhil et

al. introduced an EEG based fatigue index based on alpha

spindles [25]. Balasubramanian et al. employed the signal

power in the 15-30 Hz frequency band for muscle fatigue

detection [26]. Biological features form the basis for directly

reflecting the driver’s fatigue state. However, these methods

rely on complex and expensive equipment and therefore are

difficult to be widely adopted.

Drowsy and distracted driving detection systems based on

wireless sensing have seen significant development recently.

ER [27] realized an early warning system that detects inat-

tentive events. D3-Guard [28] utilized the Doppler shift of

acoustic signals to capture the driver’s action patterns to detect

drowsy driving. DriverSonar [29] Detects dangerous driving

actions using unique acoustic echo information. CARIN [30]

used CSI-based technology to recognize the activity of pas-

sengers in the presence of interference. Recently, Zhang et al.

designed a diffraction-based sensing model to recognize exer-

cises and daily activities using WiFi signals [31]. Moreover,

MoVi-Fi [32] and V2ifi [13] were proposed to use RF signals

to detect human activity.

VIII. DISCUSSION

In this section, we discuss the limitations of our system and

potential future work.

We expect BlinkRadar to be as perfect as possible, but

BlinkRadar is flawed. Compared with traditional camera-

based solutions, BlinkRadar is more strict about placement.

Traditional camera-based schemes can start performing blink

detection as long as the human eye can be captured in the

footage. After our research, there are two main reasons for

this limitation.

The limited angular range of the antenna. The angle

range of the camera is mainly 45 degrees. However, for

BlinkRadar, when the angle of the antenna exceeds 30 degrees,

the detection performance will drop significantly. At the same

time, the range of the human eye is petite, and the reflected

energy is fragile, so the angle of reflection of the antenna is

more stringent.

Complex road conditions and body vibration. In a

moving car, the system’s performance degrades as we continue

to drive over rough roads. The reason is that vibration and

displacement can change the distance measurement between

the UWB radar and the human body, thus affecting the sensing

performance. Equipment vibration/displacement. This is a real

challenge for wireless sensing because the detected motion

information comes from both the target and the device. It is

not easy to separate them to get target information.

In conclusion, we propose incorporating BlinkRadar into

the perception method of drowsy driving as a camera-based

alternative in scenarios where users have high privacy require-

ments.

IX. CONCLUSION

This paper implements a subtle blink detection platform

using RF signals on IR-UWB. We quantitatively modeled the

relationship between signal changes and subtle eye-induced

movement blinks through theoretical and experimental analy-

sis. In this work, we design and implement a low-cost and con-

tactless drowsy driving detection system that strikes a balance

between user-friendliness, monitoring accuracy, and privacy

protection. Comprehensive experimental results demonstrate

the effectiveness of our system. We evaluate BlinkRadar

during laboratory environments and real-world road tests.

Experimental results show that BlinkRadar can achieve robust

performance with a median detection accuracy of 95%.
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