
SMT-as-a-Service for Fog-Supported Cyber-Physical Systems
Stefan Holzer

Distributed Systems Group
TU Wien
Austria

Pantelis A. Frangoudis∗
Distributed Systems Group

TU Wien
Austria

Christos Tsigkanos
Department of Aerospace Science & Technology

University of Athens
Greece

Schahram Dustdar
Distributed Systems Group

TU Wien
Austria

ABSTRACT
Various properties related with the safe, correct, and efficient oper-
ation of Cyber-Physical Systems (CPS) can be expressed via formal
languages and checked at runtime or offline by appropriate ver-
ification tools. Such tools operate on monitoring data about the
CPS state and functionality, typically collected from IoT devices. A
specific approach involves modeling CPS state or operations using
Satisfiability Modulo Theories (SMT) formalisms, and using solver
software to check whether given CPS properties are satisfied or to
derive satisfiable CPS configurations. The computational require-
ments of this process can however be significant, which challenges
its timely execution on IoT/edge devices where input date originate.
To address this challenge, we present an architecture that allows
the distributed execution of SMT problem solving workloads over
the computing continuum as a service. Our design supports arbi-
trary hierarchies of solver nodes running anywhere from the IoT
device to the cloud, each independently executing decision-making
logic as to whether to solve an SMT problem instance locally or
to recursively offload the task to other nodes in the continuum.
We demonstrate the benefits of offloading by implementing and
quantitatively evaluating different reinforcement learning-based
decision-making strategies addressing latency minimization and en-
ergy efficiency goals, and showcase the practicability of our scheme
in a fog robotics proof-of-concept.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Ro-
botics; • Mathematics of computing → Solvers; • Computing
methodologies→ Reinforcement learning.

KEYWORDS
Computing continuum, IoT, Computation Offloading, Satisfiability
Modulo Theories, Fog Robotics

∗Corresponding author. Email: pantelis.frangoudis@dsg.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDCN ’24, January 04–07, 2024, Chennai, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1673-7/24/01. . . $15.00
https://doi.org/10.1145/3631461.3631562

ACM Reference Format:
Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram
Dustdar. 2024. SMT-as-a-Service for Fog-Supported Cyber-Physical Systems.
In 25th International Conference on Distributed Computing and Networking
(ICDCN ’24), January 04–07, 2024, Chennai, India. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3631461.3631562

1 INTRODUCTION
Complex Cyber-Physical Systems (CPS), such as those emerging
in various next-generation IoT scenarios, often need to operate ac-
cording to strict functional and non-functional specifications, such
as safety-related [23]. Ensuring that these specifications are met
can take place by following formalisms that prescribe application
behavior and collecting monitoring information encoded in traces,
which are verified at run time or offline to detect specification
violations or to derive correct configurations.

Such problems can often be modeled with Satisfiability Modulo
Theories (SMT) [11], an extension of the satisfiability problem (SAT).
SMT is a powerful approach for solving complex constraint satis-
faction problems. These arise, for example, in motion planning for
robots [18], verifying the correct operation of satellite [28] or edge
systems [37] by trace checking, or detecting threats in rule-based
smart home systems [38]. Application areas of SMT also extend
beyond IoT/CPS and range from scheduling and optimization to
computer security and software quality.

The procedure is, however, costly. Solving hard satisfiability
problems that contemporary complex CPS face may require sig-
nificant resources and time. The latter is important to minimize
when it comes to systems that carry out time-sensitive operations.
An approach to dealing with such high resource requirements is to
transport relevant input data to cloud instances and solve the prob-
lems there, taking advantage of the abundance of cloud resources.
However, this faces two significant issues: (i) for various problem
instances, the time it takes to transport input data to the cloud and
receive a response offsets the potential latency gains that come
with using more compute resources, and (ii) various CPS applica-
tions, such as those relevant with disaster management scenarios,
often need to operate under limited, intermittent, or no connectivity
beyond the edge network space, which precludes cloud offloading.

Fortunately, advances of the last decade in IoT/edge device plat-
forms, virtualization technology, and orchestration middleware,
have given rise to a computing continuum that extends from the
IoT device all the way to the cloud, making it possible to execute
computation tasks almost uniformly (performance aside) anywhere

154

https://doi.org/10.1145/3631461.3631562
https://doi.org/10.1145/3631461.3631562
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3631461.3631562&domain=pdf&date_stamp=2024-01-22

ICDCN ’24, January 04–07, 2024, Chennai, India Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram Dustdar

in the continuum. Taking advantage of these developments, we
address the problem of efficient handling of SMT workloads orig-
inating in the IoT device space, aiming to answer the following
research questions:
RQ1: How to architecturally support SMT workloads in the device-
to-cloud computing continuum.
RQ2:How to provide offloading decision support for the evaluation
of SMT formulas considering different performance criteria.
RQ3: How can different offloading decision-making strategies im-
prove the performance of SMT formula evaluation within fog com-
puting settings.

Our answers to these questions come with the following con-
tributions: 1○ We introduce a solver node abstraction, based on
which we design and implement a recursive, extensible architec-
ture that handles local or offloaded execution of SMT formulas in
an “as-a-Service” manner over the computing continuum (§3). Our
design supports a wide range of SMT solvers and offloading strate-
gies, depending on the particularities of the underlying compute
hosts, which may range from powerful edge servers to single-board
computers. 2○ We design two different offloading decision-making
strategies based on Reinforcement Learning (RL). These mecha-
nisms have different capabilities and computational requirements,
thus being tailored to different host environments (resource con-
strained IoT devices vs. more powerful fog nodes). Furthermore,
they can support diverse goals such as response time minimiza-
tion and energy efficiency (§4). 3○With a view to fog robotics as
a representative CPS use case, we perform extensive experiments
over a device-to-cloud testbed. Our results demonstrate the practi-
cability of our approach to support diverse SMT workloads, as well
as the latency and energy cost savings that come with intelligent
offloading (§5).

2 RELATEDWORK
We advocate an architecture and software framework to support the
execution of SMT workloads over compute infrastructure spanning
the device-to-cloud continuum; consequently, we classify related
work into three major categories. First, we discuss SMT in CPS and
IoT as relevant domains. Subsequently, we discuss cloud and fog ro-
botics, positioning our work within amajor application area. Finally,
we consider computation offloading , since it is a key component
of our approach.

SMT in CPS/IoT. The application of SMT is in most cases some
type of verification task. In the area of IoT security, Mohsin et
al. [30] present IoTSAT, a formal modeling approach to create a
security analysis framework, where SMT formulas representing
IoT specific threat models are evaluated. Wang et al. [38] study the
interactions between trigger-action rules and use SMT to discover
inter-rule vulnerabilities, which are highly relevant in platforms
such as smart homes. Liang et al. [25] present a solution for sys-
tematically debugging IoT control system correctness for building
automation, where IFTTT (If This Then That) rules and policies are
specified as conjunctions of conditions and the proposed framework
transforms them into SMT formulas.

In the area of robotics, SMT and SAT find use in different kinds
of problems such as scheduling, resource management, and motion

planning. Hung et al. focus on motion planning with rectangular
obstacles using SMT solvers to find a feasible path from the source
to a goal [17]. Imeson and Smith [18] propose a new method for
solving multi-robot motion planning problems with complex con-
straints. In particular, they encode the task assignment and the
path planning problems using SAT, handling additional complex
constraints like battery life limitations, robot carrying capacities or
robot-task incompatibilities. Another emerging area is smart facto-
ries as the new industrial paradigm. Bit-Monnot et al. [4] present
two SMT-based planners for smart factories. A recurring problem
is task planning, and such planning problems can be modeled with
SMT. In all these cases, our approach can help solve these problems
more efficiently.

Cloud and fog robotics. Cloud robotics aim at using elastic re-
sources offered by a cloud infrastructure to overcome the resource
constraints of robots. By using the cloud and offloading computa-
tionally intensive tasks, many new applications for robotics emerge.
Hu et al. [15] propose a machine-to-machine (M2M) communica-
tion framework, where the M2M layer is used for communication
between machines to form a collaborative computing structure and
the machine-to-cloud (M2C) layer utilizes a pool of shared compu-
tation and storage resources provided by the cloud. Fog robotics [5]
extend these principles towards utilizing compute resources along
the device-to-cloud continuum, even including robots as mobile
computation platforms, when robot resource availability allows it.
A popular case for fog robotics is Simultaneous Localization And
Mapping (SLAM) [1, 16]. Chen et al. [8] experiment with an indus-
trial robotics system based on edge computing with the deployment
of edge nodes near the data sources, proposing a three-tier architec-
ture where the (mid) edge tier hosts latency-sensitive robot control
functions, and pre-processes data from robots to reduce the volume
of data transmitted to the cloud.

Computation offloading. The literature on computation offload-
ing in fog and edge computing is extensive [22]. Task offloading
decisions can be driven by specific goals such as energy efficiency or
latency reduction. As an example, Zhang et al. [41] provide a solu-
tion for energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks. They formulate an optimization problem
to minimise the energy consumption of the offloading system using
a detailed energy model, considering the computational capabilities
of the mobile device, the associated costs of the task computation,
and the file transmission depending on multiple factors such wire-
less channel state and interference, size of the input and output of
computation, and the mobile device characteristics. Shahhosseini
et al. [33] target task offloading for IoT applications and focus on
finding a solution for the optimal response time taking into account
their particularities, such as the ratio of input/output data size and
data flow configuration in a three-layer architecture consisting of a
sensor layer, fog layer and cloud layer. Masoudi and Cevdar [27] also
address the question of on-device vs. edge computation for mobile
services and propose a solution for delay-aware decision making to
minimize power consumption. For cases where input data, and thus
the respective data processing tasks, are divisible, Tran-Dang and
Kim [35] propose FRATO, a framework for delay-minimizing task

155

SMT-as-a-Service for Fog-Supported Cyber-Physical Systems ICDCN ’24, January 04–07, 2024, Chennai, India

offloading in three-tier fog computing architectures using particle-
swarm optimization. Often, task offloading is jointly considered
with resource allocation and scheduling [6, 13, 42], giving rise to
challenging optimization problems. These challenges are further
exacerbated by edge heterogeneity [26]. The economics of fog com-
puting are of growing interest [39] and of particular importance for
computation offloading in an environment with selfish edge/fog
nodes. In such settings, Diamanti et al. [12] design an incentive
mechanism for offloading latency-tolerant tasks and apply a Stack-
elberg game-theoretic approach to joint compute-communication
resource allocation.

An approach to deal with complex offloading optimization prob-
lems is via Reinforcement Learning [19, 40]. Li et al. [24] decide
between executing tasks locally on user equipment or offloading
them to a single Multi-access Edge Computing (MEC) server using
a RL-based optimization framework based on a Deep Q-Network
(DQN), aiming to reduce delay and energy consumption. Khoram-
nejad and Erol-Kantarci [21] support binary and partial task of-
floading towards a MEC server via a distributed multi-agent Deep
Reinforcement Learning (DRL) scheme for joint resource alloca-
tion and offloading management. Chen et al. [7] expand towards
the use of multiple MEC servers in a sliced Radio Access Network
(RAN) where offloading decisions are made by a centralized con-
troller. Karagiannis et al. [20] use Q-Learning to efficiently route
IoT data processing requests along fog compute node hierarchies,
in order to avoid long forwarding chains and reduce latency. In
the context of the Internet of Vehicles (IoV), Ning et al. [31, 32]
present a DRL-based offloading framework where tasks can be
executed at cloudlets, Roadside Units (RSU) and vehicles as fog
compute nodes. Finally, Tripathi et al. [36] identify problems re-
lated with resource contention between network functions and user
application workloads executed at the edge, and the correlations
therein, and propose a distributed RL-based framework for joint
network-compute resource orchestration and dynamically adapting
service-specific configuration parameters.

Summary. Compared with existing works, we aim to provide sys-
tem support for the dynamic execution of SMT workloads in a
seamless way across the device-to-cloud continuum in a Solver-as-
a-Service manner, a problem previously not addressed in the liter-
ature. Our focus is to provide a runtime environment to facilitate
this. From an offloading mechanism perspective, our contributions
are complementary, as we focus on providing the facilities to allow
for configurable criteria and algorithms for offloading decisions –
delay awareness and energy efficiency are two potential goals. Fur-
thermore, our scheme is tailored to the particularities of handling
SMT workloads, which is reflected in the state representation we
use when applying RL.

3 ARCHITECTURE
In this section, we start by outlining key principles as requirements
permeating our approach, before describing in detail the node ele-
ment around which our architecture is designed.

3.1 Key design principles and requirements
We design an architecture and software framework to support
the execution of SMT workloads originating at IoT devices over a

distributed compute infrastructure spanning the device-to-cloud
continuum, in a stateless, as-a-service manner. Our approach is
recursive in nature: A service invocation starts on-device – or at the
nearest edge node capable of handling it, and the request propagates
towards the cloud until a fog node decides to serve it by locally in-
voking an SMT solver process. Different fog nodes make decisions
independently based on diverse and node-specific decision-making
logic that may be put in place. Our approach adheres to the follow-
ing design requirements:
R1. Support for resource-constrained devices: Our system
should be deployable on different types of devices along the com-
puting continuum. Such devices could be significantly constrained,
as is the case for the mobile robots and single-board computers
we experiment with. This drives the design and implementation
towards lightweight solutions.
R2. Support for different offload decision-making mecha-
nisms: At the core of our work lies the decision on whether SMT
formulas should be offloaded or solved locally. The algorithms to
decide that can be based on different methods and their selection
could be driven by the available compute resources. Therefore, our
system should support multiple decision modules, as extensibility
and interchangeability are desirable features. However, common
parts of the software should be extracted, and it should be possible
to add another specific approach with minimal integration effort. It
is also essential that several decision modules can co-exist, without
affecting each other’s performance and functionality negatively.
R3. Independence from SMT solver implementations: The ac-
tual SMT solver instance used in an implementation of our scheme
should be abstracted, which enhances extensibility and allows to
tailor the used solver to the particularities of the underlying host.
To achieve this, a common language to express problems and inter-
face with solvers is required. The de facto approach to this end is
to use SMT-LIB [2], which is also the case in our system.

3.2 Node Design
Figure 1 illustrates the different modules and the interactions be-
tween them in the architecture we advocate. Service invocation
involves the following workflow.

(1) The first step is always the occurrence of a new SMT formula,
whichmay take place at regular intervals or in response to an
event, depending on the use-case scenario. The SMT formula
can be provided from an external system or application, so
the possibilities here are diverse.

(2) The next activity is to get the latest state information, which
is relevant for decision-making. This results in a call to a
monitoring module.

(3) After determining the state, the decisionmodule is invoked to
select between solving locally or offloading to an appropriate
node.

(4) If the decision is to offload, the SMT formula is forwarded to
the communication module, which offloads it to the selected
node.

(5) If the decision is to solve locally, the formula is handed to
the SMT solver module that solves the problem.

(6) The result is recursively returned to the source instance.

156

ICDCN ’24, January 04–07, 2024, Chennai, India Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram Dustdar

Figure 1: Birds-eye view of the node architecture supporting
SMT-as-a-Service for fog offloading.

The core components of our node architecture are presented in
detail next.

3.2.1 Communication Module. The communication module is used
for communication with other devices. If an SMT formula is to be
offloaded, this is carried out via the communication module. Our
implementation supports REST-based interactions, but because of
the loose coupling between node components, the communication
mode can be replaced in a relatively straightforward way.

3.2.2 Monitoring Module. The monitoring module is used to mon-
itor the environment (the devices on which the system is running).
This component could provide any information useful for decision-
making. This could range from battery level or CPU usage to con-
nectivity to different hosts in the form of average round-trip times
(RTT). The monitoring component is asynchronously executed and
gets the state information periodically. The benefit of doing this
in the background and not at each decision is that the cost of the
decision itself can be reduced, as the operations for monitoring
are more time-intensive. If the device is more powerful, the period
could be adapted accordingly. This would lead to more up-to-date
monitor values for the decision module and it is a manifestation
of the trade-off between accuracy/decision quality and monitoring
overhead; mechanisms for navigating this trade-off space are left
for future work.

3.2.3 SMT Module. The SMT module consists of two parts. The
first one is an interface to the native SMT solver. The second one
provides an API endpoint over which it can receive requests to
solve SMT problems. These requests might either originate locally
at the node (e.g., an IoT device hosting it) or come from other nodes
(offloading requests).

3.2.4 Decision Module. The decision module receives SMT formu-
las and decides how to proceed with them. Depending on which

decision mode is active, the formulas are forwarded to the cor-
responding submodule. In general, external modules can also be
called, to take over further processing. Our system readily sup-
ports a number of such modules (see Section 4) that are based on
reinforcement learning. Our rationale is that the decision module
should be operable in different and changing system environments,
which rules out threshold-based, heuristic approaches. Furthermore,
it makes the whole system more flexible and applicable to differ-
ent use cases, as it can be configured to focus on the needs of the
supported application or node operator preferences. The choice of
which such module to activate is related with the capabilities of the
underlying host. For example, as we discuss, demanding DQN-based
mechanisms are not suitable for execution on resource-constrained
robots.

4 DECISION-MAKING STRATEGIES
Our approach provides architectural support for diverse offload
decision-making schemes. As an example, in this paper, we design
two such mechanisms based on reinforcement learning [34]. RL
involves agents that interact with their environment and receive
feedback for their actions in the form of reward or penalty. Based
on this feedback, their aim is to learn a policy in terms of selecting
actions given the perceived state of the environment, so that they
maximize their expected cumulative reward.

4.1 System model
In our architecture, each fog node that executes our offloading logic
hosts such an agent, which acts independently and selects to either
solve an SMT problem instance locally or offload it to another node
from a configured set (e.g., a nearby fog node or a node in the
cloud). In what follows, we elaborate on what constitutes a node’s
view of system state, the available actions to pick from, and the
reward signal. Then we delve deeper into the details of the two
example strategies we have applied, namely Q-Learning and Deep
Q-Learning.

State space. Environment state information is composed of the
problem complexity of the SMT formula to be solved and the con-
nectivity status of the path towards each potential offloading target.
We assume that further information on the state of offloading tar-
gets, such as their current CPU load or battery level, is not available
to the agent, though our design does not preclude this option. The
connectivity status can be estimated via round-trip time measure-
ments, and can be represented in different fidelities, based on the
selected decision-making algorithm. For example, RTT values can
be mapped to distinct connectivity classes (e.g., poor, fair, etc.) or
can be used directly.

Inferring the complexity of an SMT formula from its structure
(e.g., number of variables, quantifiers, etc.) is not straightforward.
In our case, we assume the existence of an oracle that, given an
SMT formula, decides on its complexity. There are two practical
ways we have considered to build such an oracle: (i) Since for a
given application the SMT formulas to be solved are often specific
to it, a benchmarking step can precede deployment, where the
formulas of interest are handed to a solver running on representa-
tive hardware to measure their execution time. Then, a hardness
rating 𝐻𝑓 is assigned to formula 𝑓 by the following expression:

157

SMT-as-a-Service for Fog-Supported Cyber-Physical Systems ICDCN ’24, January 04–07, 2024, Chennai, India

𝐻𝑓 = min{1, 𝑡𝑓
𝑇𝑚𝑎𝑥

}, where 𝑡𝑓 is the average time to solve the for-
mula on the given platform, and 𝑇𝑚𝑎𝑥 is a configurable threshold
that corresponds to the maximum tolerable execution time of a
hard formula. (ii) At runtime, a node can keep track of the history
of executions of the same formula and classify it accordingly; this
implies that offloading performance may suffer initially, but saves
on benchmarking effort.

Action space. The available actions of a node are defined by the
number of potential offloading targets. It is up to the node operator
to define this set. We should note that in our approach, an offloading
target need not necessarily correspond to a single host, but also
to node clusters thereof. For example, it is reasonable to assume
a three-tier compute infrastructure, where the first tier is the IoT
device where requests originate, the second tier is an edge cluster
accessible via a gateway node, and the third tier is a VM cluster
hosted in a public cloud. Each node may then need to know a single
entry point to the tier that follows, thus abstracting the internal
configuration of the latter. This can significantly reduce the state
space and monitoring load.

Reward model. The reward function is related with the criteria
the system operator aims to optimize for, such as latency, energy
consumption, or their combination. In the case of latency, the re-
ward can be defined as a configurable threshold time minus the
time required to solve the problem – if solution time is higher than
the threshold, the agent receives a negative reward. For a decision-
making mechanism that aims to reduce energy costs, similar to a
latency-based reward scheme, the agent observes the energy cost of
a decision and calculates a reward based on that. Energy minimiza-
tion is important, e.g., for mobile robots that operate on battery,
but accurately measuring energy costs is often not straightforward.
We provide some details on a simplified energy cost model we have
applied in our proof-of-concept implementation in Section 5.

Exploration vs. exploitation. Our RL-based mechanisms need to
make offloading decisions while learning. We have selected to al-
ternate between exploration and exploitation steps using the widely
applied 𝜖-greedy strategy, where the agent chooses a random action
(exploration) with probability 𝜖 , while with probability 1 − 𝜖 it fol-
lows the optimal action based on current knowledge (exploitation).
From an architecture and implementation perspective, all the rele-
vant parameters (exploration rate, decay rate and minimal 𝜖 value)
are configurable, while it is possible to extend the system to experi-
ment with other exploration strategies without much integration
effort.

4.2 Q-Learning
We first design a decision-making module based on Q-learning. A Q-
learning algorithm aims to derive a value function𝑄 : S ×A → R,
which represents the expected cumulative discounted future reward
if the agent selects action 𝑎 ∈ A at state 𝑠 ∈ S and continues
by following the optimal policy. 𝑄 can be represented as a table,
which is updated each time an agent takes an action considering
the observed reward, the selected action, and the state the agent
transitions to. Since in our case the state encodes the connectivity
status towards potential offloading targets and the hardness of the
SMT problem to solve, all of which take continuous values, we

discretize their values to reduce the state space. To further limit
space requirements, instead of considering the connectivity from a
fog node to each potential offloading target, we use a single value
to characterize the current connectivity capabilities of the node.
Eventually, both problem hardness and node connectivity state
belong to one of five distinct categories: poor, fair, average, good,
excellent. This way, the space to maintain is reduced to 25 states.

Admittedly, this results in significant loss of representation ac-
curacy and can come at the cost of offloading decision quality, but
allows to execute the Q-learning algorithm at very low-end hard-
ware, as is the case for robot nodes in our testbed (Section 5.2). Our
architecture allows to seamlessly integrate more sophisticated and
resource-demanding algorithms.

4.3 Deep Q-Learning
The second decision-making schemewe develop is based onDeepQ-
Learning. Here, instead of the Q-table, an artificial neural network
is used to approximate the value function, and the Deep Q-Network
(DQN) approach is used to train it [29]. DQN deals with space limi-
tations of Q-learning when it comes to state representation, but at
the same time targets fog nodes with increased compute capabilities
to train and use the neural network. This approach allows to use a
more precise state representation. Here, state encodes the original
hardness ranking for SMT formulas, as well as the precise connec-
tivity information to all potential offloading targets. The selected
representation defines part of the neural architecture: The number
of input neurons must be equal to the number of state dimensions
(i.e., formula hardness, latency information about all potential exe-
cution targets) and the number of output neurons must be equal to
the number of actions. In our implementation, we have opted for a
fully-connected neural network with three hidden layers, with 24
neurons each.

5 EVALUATION
5.1 Methodology and objectives
We showcase our SMT-as-a-Service scheme in a fog robotics con-
text. For this purpose, we implement our service-based design and
deploy it on top of an end-to-end testbed representative of the
cloud continuum. Our testbed features a mix of low-end robots
(IoT device tier), a single-board computer cluster with Raspberry
Pis (edge tier), typical in evaluating edge computing systems, and
server-grade hosts in an institutional data center and in the cloud.
This serves as a basis for both a feasibility demonstration and a
quantitative evaluation of different candidate offloading decision-
making strategies. We further show our system in action in a robot
path planning use case.

5.2 Architecture implementation and testbed
Our architecture naturally lends itself to a microservices-based im-
plementation, where each individual component is implemented
as a containerized service exposing REST API endpoints. All our
components are written in Python and our implementation is avail-
able as open source.1 The DQN-based decision module is built on
PyTorch. The SMT module receives formulas encoded in SMT-LIB

1https://github.com/Stefan2911/SMTaaS

158

https://github.com/Stefan2911/SMTaaS

ICDCN ’24, January 04–07, 2024, Chennai, India Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram Dustdar

format in the payload of a REST API call, and interfaces with the
solver software using the PySMT library [14]. This has the ad-
vantage of selecting the appropriate solver backend based on the
hardware capabilities of the node. For example, we use CVC4 [3] on
IoT/edge hosts, while we also support MathSAT5 [9] and Z3 [10]
on cloud hosts.

Figure 2 presents our testbed. We use a Lego Mindstorms EV3 ro-
bot, where SMT solution requests originate. It runs Linux (ev3dev)2
on a TI Sitara AM1808 (ARM926EJ-S core) processor at 300 MHz,
with 16MB of RAM and 64MB of flash memory, and is representa-
tive of a resource-constrained mobile IoT device. The robot has a
USB Wi-Fi interface, and can offload workload to an edge cluster
made up of two Raspberry Pi 4 Model B Rev 1.1 devices (from now
on termed Dedicated Edge Devices – DEDs). These run Raspbian
Linux on a 4-core ARMv7 Processor at 1.5 GHz with a 4GB RAM.
Our testbed further includes two cloud sites: the first hosts 3 VMs
with 2, 4, and 8 CPU cores, respectively, and the second hosts a
single 4-core VM.

Each of the above, from the robot to the cloud VMs, runs an
instance of our node, and they are configured in a way that the
robot can offload tasks to the edge nodes, while the latter can offload
tasks to the cloud nodes.

5.3 Offloading scenarios
Figure 2 shows our main decision mechanism configuration: the
robot makes offloading decisions using the simple Q-learning mech-
anism, owing to its resource limitations, while edge devices run the
DQN-based one. We evaluate this setup (abbreviated as Q+DQN+C)
against the following benchmarks:
Robot Only (RO): All the SMT formulas are solved on the robot it-
self. The robot does not make decisions and there is no offloading to
other devices. The robot always forwards the formulas to the local
SMT module that interfaces with the CVC4 solver. These scenarios
serve to demonstrate the limitations of executing only on-device
computations and motivate the need for offloading. It should be
noted that this setup can be considered characteristic of scenarios
that feature disconnected and fully autonomous robot operation,
where physical limitations such as the lack of network infrastruc-
ture (e.g., in disaster management situations) mandate that service
logic is executed on board, without edge or cloud assistance and
control.
Edge devices only (EO): Each SMT formula is offloaded to one of
the devices of the edge cluster, picked uniformly at random by the
robot. Similarly, the SMT module uses CVC4 as the solver.
Cloud Only (CO): Each SMT formula is directly offloaded to one
of the cloud nodes, also picked uniformly at random per request by
the robot.
Q-Learning on the robot; edge cluster only (Q+E): We use
Q-Learning on the robot to decide whether the problem should be
offloaded to one of the DEDs or solved on the robot. There is no
option to further offload workload from DEDs to the cloud.
Q-Learning on the robot; Q-Learning on edge devices (Q+Q+C):
We use Q-Learning on the robot to decide whether the problem

2https://www.ev3dev.org/

should be offloaded to one of the DEDs or solved on the robot. Q-
Learning is also used on the DEDs to decide whether the problems
should be offloaded to one of the cloud instances or solved on the
DEDs.

The benchmarks that involve decision making represent use
cases where both offloading and solving locally are potential op-
tions. However, if one option is always the preferred solution, our
experiments show that the algorithms we advocate will learn it.
To study the effects of latency on offloading behavior, for each
scenario that involves computation beyond the robot, we carry out
five different sets of experiments, each corresponding to a different
end-to-end delay that we simulate at the application layer.

5.4 SMT workload
To simulate SMT problem workloads, we selected a subset of prob-
lems from the official SMT-LIB-benchmark repository used for
competitions,3 applying the following process: We measured the
execution times of all the problem formulas with a timeout of 1.5 s
using the CVC4 solver on a host with an Intel(R) Core(TM) i5-6200
CPU at 2.30GHz and 8GB RAM, thus filtering out all formulas that
took more than 1.5 s to run. We further filtered out formulas that
cannot be solved on the robot due to processor or solver implemen-
tation limitations. Then, we sorted the problems by execution time
and split them in three sets: easy (0-0.5 s; 14 formulas), medium (0.5
- 1 s; 7 formulas), and hard (1 - 1.5 s; 9 formulas). Finally, we created
a fourth set that includes formulas from all three categories (mixed;
10 formulas).

5.5 Latency savings
We run a set of testbed experiments measuring the response time
for handling an SMT problem solution request, from the moment it
is generated at the robot end, until the result of the computation has
been received. Figure 3 presents the results of our experiments for
the different SMT problem datasets used, and simulating increasing
response times by adding a fixed latency component each time. It
should be noted that, on average, solving the problems on-device
results in approximately two orders of magnitude higher latency,
which is not affected by the delay we introduce in the path. For these
reasons, we omit these results from the plots. However, for spe-
cific simple problem instances in our dataset, the decision-making
mechanism on the robot still opts for executing them locally.

As the figure illustrates, the cloud only (CO) and DED only
(EO) approaches always show a linear increase in response time
with additional latency. Furthermore, there is not much difference
between using DQN (Q+DQN+C curve) and Q-learning (Q+Q+C
curve) on the DEDs. This has to do with the way we simulate
latency, which for simplicity takes place only on the link between
the robot and the edge cluster.

If the workload is composed only of simple problems, from about
100ms additional latency on, it becomes beneficial to solve some
problems on the robot. All of our approaches learn this behavior and
make an optimized decision. In this case, the CO approach is slightly
worse than the EO for the following reasons: (i) the problems are
very simple and can be solved very fast on the DEDs; (ii) the natural
latency between the robot and the cloud is worse than the natural
3https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

159

https://www.ev3dev.org/
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

SMT-as-a-Service for Fog-Supported Cyber-Physical Systems ICDCN ’24, January 04–07, 2024, Chennai, India

Figure 2: Testbed setup for our target scenario. SMT problem solving requests originate at a robot, where a Q-learning agent
decides to offload them to dedicated edge devices (RPi) or solve them locally. Edge devices, in turn, decide using DQN whether
to offload the received requests to cloud instances or handle them locally.

latency between the robot and the DEDs. In general, Q-Learning
and DQN on the DEDs lead to additional overhead that can not be
compensated for problems from the simple problem set. This causes
slightly worse results when there is an additional decision-making
approach on the DEDs.

For problems of medium difficulty, offloading from the robot is
the best option. CO fares better than EO, since problems can be
solved faster in the cloud and compute time dominates network
latencies. For this reason, in contrast with the simple problem set,
the additional offloading capabilities from the DEDs pay off: what-
ever the algorithm, both approaches (Q+Q+C, Q+DQN+C) perform
better than only Q-Learning on the robot. Something similar ap-
plies to hard problems. The performance gap between solving at
the edge vs. the cloud is however larger, and the decision module
on DEDs almost always further offloads the workload to the cloud.
Since most requests in this case are handled by the cloud nodes,
their performance resembles that of the CO approach.

Finally, for mixed workloads, for some problems the best option
is to solve on the robot, for some problems to solve on the DEDs and
for some on the cloud instances. Intelligent offloading mechanisms
both on the robot and on edge devices always perform better.

5.6 Energy efficiency
To demonstrate that our architecture is capable of supporting fur-
ther goals than latency minimization, we implement an energy
cost-aware decision-making scheme. For this purpose, we apply a
different reward model to account for the energy cost of offloading
in our Q-learning-based mechanism. In particular, our (negative)
reward is defined as the cost 𝑒 (𝑝) of a decision (offload problem 𝑝

or solve it locally) given by the following expression:

𝑒 (𝑝) =
{
normalised size of 𝑝, if 𝑝 is offloaded
normalised hardness of 𝑝, if 𝑝 is executed locally.

This is an abstract, simplified model whose limitations we ac-
knowledge. Unfortunately, the robot platform in our testbed did not
provide reliable energy consumption information, so we resorted to
such a model for the purpose of demonstration of potential offload-
ing gains. We are aware that more accurate models that can account
for the particularities of different connectivity and computation
technologies are necessary, though this is beyond the scope of this
paper.

In our setup, energy-driven decisions make more sense on the
robot, as the only battery-powered device. We thus only compare
the following three configurations: RO, EO, and Q+E. We do not
consider energy costs on the devices with a continuous power
supply, although our model can be adapted to support that. We
also omit the configurations that involve cloud execution, as this
is identical to DED execution from a device energy consumption
perspective – the energy cost for the device is the same whether it
offloads to the edge or to the cloud. Figure 4 shows a comparison
of the three configurations mentioned above. In particular, it plots
the percentage of energy cost saved by using a Q-learning based
offloading decision on the robot vs. solving problems locally (RO) or
always offloading to edge devices (EO). When using our system, the
decision-makingmodule opts for aminimum of needed energy from
the local execution and offloading, resulting in lower overall energy
consumption. Given our simplified energy cost model, we observe
that for the simple andmedium problem sets, it is generally better to
solve locally, while for hard problems, it is better to offload. In most
cases, the size of the problems and the complexity correlate, but it

160

ICDCN ’24, January 04–07, 2024, Chennai, India Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram Dustdar

0 100 200 300 400

1

2

Additional latency (ms)Av
er
ag
e
tim

e
ne
ed
ed

pe
rr
eq
ue
st
(s
) Simple Problem Set

0 100 200 300 400

2

3

4

Additional latency (ms)Av
er
ag
e
tim

e
ne
ed
ed

pe
rr
eq
ue
st
(s
) Medium Problem Set

0 100 200 300 400

2

3

4

5

Additional latency (ms)Av
er
ag
e
tim

e
ne
ed
ed

pe
rr
eq
ue
st
(s
) Hard Problem Set

0 100 200 300 400

2

3

Additional latency (ms)Av
er
ag
e
tim

e
ne
ed
ed

pe
rr
eq
ue
st
(s
) Mixed Problem Set

EO CO Q+E Q+Q+C Q+QDN+C

Figure 3: Average SMT request handling times for different system configurations and for different types of SMT problems. For
reference, the average response times for the robot-only configuration are 5.058, 46.254, 104.176 and 46.045 s for the simple,
medium, hard and mixed problem sets, respectively. These values do not depend on the latency in the path, and are omitted
from the plots for reasons of readability.

0 10 20 30 40 50 60 70 80 90 100

Simple

Medium

Hard

Mixed

46.6%

54.1%

33%

47.6%

4.3%

41.9%

44.7%

43.5%

Energy cost reduction when Q+E is applied.

Energy savings vs. RO
Energy savings vs. EO

Figure 4: Comparison with energy-aware mode

is often the case that the description (the file size) is large, but the
problem is not that complex (communication costs dominate) and
vice versa (computation costs dominate). We note that significant
gains can be achieved. For example, for the medium set, we can
reduce the needed energy by more than half.

5.7 Use Case: Path Planning for Fog-Supported
Robots

5.7.1 High-level description. In this section, we present a real use
case in the field of fog robotics and illustrate a 360◦ end-to-end view
of our system, where a problem is translated into an SMT formula,
processed by our system and the result is utilized by a robot.

In particular, we consider the following problem thatmay emerge
in contemporary Industrial IoT settings: a robot operates in a ware-
house, receiving a continuous stream of commands, each containing
a set of items (e.g., construction materials) to pick up and carry to
its base. Each material/item is placed at a fixed location. These mate-
rials represent the vertices of a graph, and the ways between them
represent the edges. The robot should not pick up materials twice,
and therefore every vertex should be visited only once, leading to a
Hamiltonian path problem. This scenario could be extended with
more constraints, such as different edges having different costs,
etc. The robot is required to end its route with the starting point
again, and therefore we formulate a Hamiltonian cycle problem
dynamically. In order for our system to process such commands,
an application running on board the robot translates the list of
items to pick to the respective SMT-LIB-encoded instance of the
Hamiltonian path problem. The resulting formula is passed on to
the local solver API endpoint. The solution is returned to the call-
ing application in a transparent way as to whether execution took
place locally or was offloaded. In turn, the solution is translated to
a sequence of low-level instructions for the robot, so that the latter
implements the derived route. The stream of commands therefore
represents our SMT workload, which is possible to execute on the
robot, on top of dedicated edge devices, or in the cloud, according
to a decision made dynamically – on a per-command basis – by our
SMT-as-a-Service framework.

5.7.2 Robot mobility. We allow the robot to move only in four
directions: (i) right, (ii) left, (iii) up and (iv) down, along a grid
structure with coordinates that are known to the robot. As soon
as the on-board application receives a solution from the SMT-as-a-
Service system, it parses the solution to obtain a sequence of vertex
IDs (the path), translates the IDs to actual grid elements, and uses
the Lego Mindstorms EV3 low-level API to interface with the motor
in order to move the robot to the appropriate coordinates.

5.7.3 Experiment. We create twominiaturized terrain topologies to
measure the performance of our scheme under planning problems
of different complexity, namely on two grids with 8 and 16 vertices,

161

SMT-as-a-Service for Fog-Supported Cyber-Physical Systems ICDCN ’24, January 04–07, 2024, Chennai, India

respectively, as shown in Figure 5. In the smaller grid (LHS of the
figure), the robot is placed in a square representing a vertex, while
in the larger one (RHS of the figure) it is the crosses of the tape
that correspond to vertices. We set the resulting graphs as the input
(i.e., the robot has to pick up items from all grid vertices – in both
these examples a Hamiltonian cycle exists), and the SMT problem
is generated by the robot as previously described. Afterwards, the
on-board application invokes the local API endpoint to submit an
SMT request.

(a) Small grid (8 vertices). (b) Large grid (16 vertices).

Figure 5: Two examples of a miniaturized grid terrain used
in our experiments. The robot hosts a SMT-as-a-Service node
with the Q-learning decision module, and can offload work-
load to a local edge cluster (not shown in the figure).

Figure 6 compares the response times for the two different grid
scenarios in a testbed configuration that includes only the robot
and an edge cluster of two DEDs. Solving the path planning prob-
lem on-board is costly, and therefore the robot-only (RO) approach
suffers from significantly increased response times. Offloading the
request is the best option, which the robot agent learns to select,
and this is why the edge-only (EO) and the Q-learning (Q+E) ap-
proaches have similar performance. In more general and complex
settings, where the robot application may at the same time have
to solve other problems besides path planning, leading to mixed
SMT formula workloads, it is reasonable to expect that a RL-based
mechanism would effectively balance between on-device, edge, and
cloud workload execution.

6 CONCLUSION
We presented an architecture to support the execution of SMT prob-
lem solving workloads as a service over a distributed computing
infrastructure spanning the device-to-cloud continuum. Our design
caters for the diversity of the continuum’s ecosystem, both in terms
of host capabilities, but also of supported CPS/IoT scenarios. We fo-
cused on two complementary aspects, namely those of architecture
support targeting modularity, extensibility, and service orienta-
tion, and intelligent offloading decisions, showcasing the utility
of reinforcement learning approaches. We have demonstrated the
feasibility and performance of our SMT-as-a-Service approach in a

RO EO Q+E
0

20

40

60

80

100

120

140

160

180

7.6
0.77 0.76

171.23

2.66 2.58

Av
er
ag
e
re
sp
on

se
tim

e
(s
)

Small grid (8 vertices)
Large grid (16 vertices)

Figure 6: Path resolution time for graphs of different size.
The reported results are the average of fiveHamiltonian cycle
problem executions.

full-fledged end-to-end testbed, with a particular view towards fog
robotics. However, our design is generic and has wider applicability
to any scenario where SMT finds use as a modeling and problem
solving approach. Despite delivering a full end-to-end system, many
aspects are still open, with more sophisticated offloading strategies
topping the list.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101079214 (AIoTwin project) and by the Hellenic Foundation
for Research and Innovation – Project 15706 RV4THINGS.

REFERENCES
[1] Ali J. Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar,

Steven Y. Ko, and Karthik Dantu. 2023. Edge-SLAM: Edge-Assisted Visual Si-
multaneous Localization and Mapping. ACM Trans. Embed. Comput. Syst. 22, 1
(2023), 18:1–18:31.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:
Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. https://www.smt-lib.org

[3] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Proc. 23rd International Conference on Computer Aided Verification (CAV), Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.).

[4] Arthur Bit-Monnot, Francesco Leofante, Luca Pulina, and Armando Tacchella.
2019. SMT-based Planning for Robots in Smart Factories. In Proc. 32nd Inter-
national Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA/AIE).

[5] Victor Casamayor-Pujol and Schahram Dustdar. 2021. Fog Robotics - Under-
standing the Research Challenges. IEEE Internet Comput. 25, 5 (2021), 10–17.

[6] Haowei Chen, Shuiguang Deng, Hongze Zhu, Hailiang Zhao, Rong Jiang,
Schahram Dustdar, and Albert Y. Zomaya. 2022. Mobility-Aware Offloading
and Resource Allocation for Distributed Services Collaboration. IEEE Trans.
Parallel Distributed Syst. 33, 10 (2022), 2428–2443.

[7] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and
Medhi Bennis. 2019. Optimized Computation Offloading Performance in Virtual
Edge Computing Systems Via Deep Reinforcement Learning. IEEE Internet of
Things Journal 6, 3 (2019), 4005–4018.

162

https://www.smt-lib.org

ICDCN ’24, January 04–07, 2024, Chennai, India Stefan Holzer, Pantelis A. Frangoudis, Christos Tsigkanos, and Schahram Dustdar

[8] Youdong Chen, Qiangguo Feng, and Weisong Shi. 2018. An Industrial Robot
System Based on Edge Computing: An Early Experience. In Proc. USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge), Irfan Ahmad and Swaminathan
Sundararaman (Eds.).

[9] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. 2013. TheMathSAT5 SMT Solver. In Proc. 19th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).

[10] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Proc. 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), C. R. Ramakrishnan and Jakob
Rehof (Eds.).

[11] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2011. Satisfiability modulo
theories: introduction and applications. Commun. ACM 54, 9 (2011), 69–77.

[12] Maria Diamanti, Panagiotis Charatsaris, Eirini-Eleni Tsiropoulou, and Symeon
Papavassiliou. 2022. Incentive Mechanism and Resource Allocation for Edge-Fog
Networks Driven by Multi-Dimensional Contract and Game Theories. IEEE Open
J. Commun. Soc. 3 (2022), 435–452.

[13] Maria Diamanti, Christos Pelekis, Eirini Eleni Tsiropoulou, and Symeon Pa-
pavassiliou. 2023. Delay Minimization for Rate-Splitting Multiple Access-Based
Multi-Server MEC Offloading. IEEE/ACM Transactions on Networking (2023). In
press.

[14] Marco Gario and Andrea Micheli. 2015. PySMT: a solver-agnostic library for fast
prototyping of SMT-based algorithms. In Proc. SMT Workshop.

[15] Guoqiang Hu, Wee-Peng Tay, and Yonggang Wen. 2012. Cloud robotics: archi-
tecture, challenges and applications. IEEE Netw. 26, 3 (2012), 21–28.

[16] Peng Huang, Liekang Zeng, Xu Chen, Ke Luo, Zhi Zhou, and Shuai Yu. 2022. Edge
Robotics: Edge-Computing-Accelerated Multirobot Simultaneous Localization
and Mapping. IEEE Internet Things J. 9, 15 (2022), 14087–14102.

[17] William N. N. Hung, Xiaoyu Song, Jindong Tan, Xiaojuan Li, Jie Zhang, Rui
Wang, and Peng Gao. 2014. Motion planning with Satisfiability Modulo Theories.
In Proc. 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18] Frank Imeson and Stephen L. Smith. 2019. An SMT-Based Approach to Motion
Planning for Multiple Robots With Complex Constraints. IEEE Trans. Robotics
35, 3 (2019), 669–684.

[19] Binayak Kar, Widhi Yahya, Ying-Dar Lin, and Asad Ali. 2023. Offloading Using
Traditional Optimization and Machine Learning in Federated Cloud-Edge-Fog
Systems: A Survey. IEEE Commun. Surv. Tutorials 25, 2 (2023), 1199–1226.

[20] Vasileios Karagiannis, Pantelis A. Frangoudis, Schahram Dustdar, and Stefan
Schulte. 2023. Context-Aware Routing in Fog Computing Systems. IEEE Trans.
Cloud Comput. 11, 1 (2023), 532–549.

[21] Fahime Khoramnejad and Melike Erol-Kantarci. 2021. On Joint Offloading and
Resource Allocation: A Double Deep Q-Network Approach. IEEE Trans. Cogn.
Commun. Netw. 7, 4 (2021), 1126–1141.

[22] Nidhi Kumari, Anirudh Yadav, and Prasanta K. Jana. 2022. Task offloading in
fog computing: A survey of algorithms and optimization techniques. Comput.
Networks 214 (2022).

[23] Nancy Leveson. 2020. Are you sure your software will not kill anyone? Commun.
ACM 63, 2 (2020), 25–28.

[24] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. 2018. Deep reinforcement learning
based computation offloading and resource allocation for MEC. In Proc. IEEE
WCNC.

[25] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F. Karlsson,
Dongmei Zhang, and Feng Zhao. 2016. Systematically Debugging IoT Control
System Correctness for Building Automation. In Proc. 3rd ACM International
Conference on Systems for Energy-Efficient Built Environments (BuildSys@SenSys).

[26] Yu Liu, Yingling Mao, Zhenhua Liu, Fan Ye, and Yuanyuan Yang. 2023. Joint Task
Offloading and Resource Allocation in Heterogeneous Edge Environments. In
Proc. IEEE INFOCOM.

[27] Meysam Masoudi and Cicek Cavdar. 2021. Device vs Edge Computing for Mobile
Services: Delay-Aware Decision Making to Minimize Power Consumption. IEEE
Trans. Mob. Comput. 20, 12 (2021), 3324–3337.

[28] Claudio Menghi, Enrico Viganò, Domenico Bianculli, and Lionel C. Briand. 2021.
Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap. In Proc. 43rd
IEEE/ACM International Conference on Software Engineering.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[30] Mujahid Mohsin, Zahid Anwar, Ghaith Husari, Ehab Al-Shaer, and Moham-
mad Ashiqur Rahman. 2016. IoTSAT: A formal framework for security analysis
of the internet of things (IoT). In Proc. 2016 IEEE Conference on Communications
and Network Security (CNS).

[31] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Lei Guo, Joel J. P. C. Rodrigues,
Xiangjie Kong, Jun Huang, and Ricky Y. K. Kwok. 2019. Deep Reinforcement
Learning for Intelligent Internet of Vehicles: An Energy-Efficient Computational

Offloading Scheme. IEEE Transactions on Cognitive Communications and Net-
working 5, 4 (2019), 1060–1072.

[32] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Joel J. P. C. Rodrigues, and Feng
Xia. 2019. Deep Reinforcement Learning for Vehicular Edge Computing: An
Intelligent Offloading System. ACM Trans. Intell. Syst. Technol. 10, 6, Article 60
(Oct. 2019).

[33] Sina Shahhosseini, Arman Anzanpour, Iman Azimi, Sina Labbaf, Dongjoo Seo,
Sung-Soo Lim, Pasi Liljeberg, Nikil D. Dutt, and Amir M. Rahmani. 2022. Explor-
ing computation offloading in IoT systems. Inf. Syst. 107 (2022).

[34] Richard S. Sutton and Andrew G. Barto. 2020. Reinforcement learning - an intro-
duction (second ed.). MIT Press.

[35] Hoa Tran-Dang and Dong-Seong Kim. 2021. FRATO: Fog Resource Based Adap-
tive Task Offloading for Delay-Minimizing IoT Service Provisioning. IEEE Trans.
Parallel Distributed Syst. 32, 10 (2021), 2491–2508.

[36] Sharda Tripathi, Corrado Puligheddu, Somreeta Pramanik, Andres Garcia-
Saavedra, and Carla Fabiana Chiasserini. 2023. Fair and Scalable Orchestration
of Network and Compute Resources for Virtual Edge Services. IEEE Transactions
on Mobile Computing (2023). In press.

[37] Christos Tsigkanos, Marcello M. Bersani, Pantelis A. Frangoudis, and Schahram
Dustdar. 2022. Edge-Based Runtime Verification for the Internet of Things. IEEE
Trans. Serv. Comput. 15, 5 (2022), 2713–2727.

[38] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A. Gunter. 2019.
Charting the Attack Surface of Trigger-Action IoT Platforms. In Proc. ACM Con-
ference on Computer and Communications Security (CCS).

[39] Joe Weinman. 2017. The 10 Laws of Fogonomics. IEEE Cloud Comput. 4, 6 (2017),
8–14.

[40] Zeinab Zabihi, Amir Masoud Eftekhari Moghadam, and Mohammad Hossein
Rezvani. 2024. Reinforcement Learning Methods for Computation Offloading: A
Systematic Review. ACM Comput. Surv. 56, 1 (2024).

[41] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng,
Li Pan, Sabita Maharjan, and Yan Zhang. 2016. Energy-Efficient Offloading for
Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access 4 (2016),
5896–5907.

[42] Yunzhi Zhao, Fen Hou, Bin Lin, and Yuxuan Sun. 2023. Joint Offloading and
Resource Allocation With Diverse Battery Level Consideration in MEC System.
IEEE Trans. Green Commun. Netw. 7, 2 (2023), 609–625.

163

	Abstract
	1 Introduction
	2 Related work
	3 Architecture
	3.1 Key design principles and requirements
	3.2 Node Design

	4 decision-making strategies
	4.1 System model
	4.2 Q-Learning
	4.3 Deep Q-Learning

	5 Evaluation
	5.1 Methodology and objectives
	5.2 Architecture implementation and testbed
	5.3 Offloading scenarios
	5.4 SMT workload
	5.5 Latency savings
	5.6 Energy efficiency
	5.7 Use Case: Path Planning for Fog-Supported Robots

	6 Conclusion
	Acknowledgments
	References

