
An Efficient Graph-Based IOTA Tangle Generation
Algorithm

†‡Fengyang Guo, †Xun Xiao, †Artur Hecker and ‡Schahram Dustdar
†Munich Research Center, Huawei Technologies, Munich, Germany

‡Distributed Systems Group, TU Wien, Vienna, Austria

Abstract—IOTA is a recent distributed ledger technology
that relies on Directed Acyclic Graph (DAG) for its ledger
organization. To improve IOTA mechanisms, the state of the
art methodology employs graph analysis and, for that, heavily
relies on synthetic graph generation. Herein, the most popular
generation method simulates IOTA protocol execution. Although
this method produces realistic IOTA ledgers, it requires too much
memory and time due to repeated random walks on the DAG. In
this paper, we propose an alternative Graph Generation and Re-
finement (GraGR) algorithm designed to generate realistic IOTA
ledgers while strongly relaxing memory and timing constraints.
The evaluations show that, compared to the state of the art,
GraGR can generate a ledger with the same properties with
only half of memory and up to 10 times faster.

Index Terms—IOTA Blockchain Network, Network Modeling,
Distributed Ledger System, IoT

I. INTRODUCTION

Blockchain is a popular technology that features a decentral-
ized and immutable data ledger [1] with a distributed consen-
sus mechanism. It shows huge potential in areas, where several
independently operating authorities work together, such as
finance, supply chain management and Internet of Things
(IoT). However, most current blockchain or distributed ledger
technologies (DLT) exhibit some weaknesses [2], such as lim-
ited transaction processing speed. In the traditional blockchain
it is caused, among others, by the data structure choice: since
a chain offers exactly one block that new transactions (or a
new block) can be “attached” to, to achieve consistency, either
the number of nodes upholding this particular block has to
be limited, or complex agreement/consensus between all such
nodes at the moment of attachment is required. Both effects
limit the transaction throughput [3].

A solution to improve the scalability of DLT is to use a
Directed Acyclic Graph (DAG) data structure. Among the
DAG-based DLTs, one of the most recent and prominent is
IOTA [4]. Here, the incoming transactions can be attached to
any leaf node (called “tip”), promising an increased transaction
processing speed. However, the speed depends on several
factors: an empirical analysis of an operational IOTA data
structure (called “tangle”) reveals that the actual processing
speed is not as high as expected [5], pinpointing the relative
complexity of the tangle as the main challenge area. To address
this and to improve the performance, graph topology analysis
becomes key, as it allows to develop better-suitable, faster
algorithms for transaction processing.

For a comprehensive graph analysis, many sample tangles
are required. Such samples can be obtained from either real or
synthetic data. The problem with real data is limited diversity
and availability. The main problem with generated tangles is
realism. The common methodology is to follow IOTA protocol
for arriving transactions: concretely, after an initiation to a
single-vertex DAG, the generator, e.g., IOTA node binary,
is subsequently fed with incoming transactions, either taken
from a recorded trace or from a stochastic arrival process. Per
default, IOTA employs random walk on the transpose graph
of its DAG, i.e., from the root to the tips for each incoming
transaction, i.e., for each step in the transpose graph, the
walker calculates the transition probability for all candidate
attachment points. Alas, this transition probability cannot
be reused, because the cumulative weight and edge weight
change, once the incoming message is attached to the tangle.
In a nutshell, this method keeps the whole tangle data structure
in memory, including cumulative weight of each message
and, potentially, additional graphical information. We refer
to these approaches as Protocol Simulation based Generator
(ProSG). Albeit delivering realistic IOTA tangles, ProSG is not
optimized for efficient research data generation and requires
a lot of time and memory [6], in particular under a bursty
message arrival. Hence, a more efficient tangle generator is
crucial to streamline research and development activities.

In this paper, we propose a novel Graph Generation and
Refinement algorithm (GraGR) for realistic IOTA tangle gen-
eration. GraGR does not need to calculate the transition
probability at each step. Instead, with additionally provided,
expected in- and out-degree distributions, GraGR can generate
a representative IOTA tangle while limiting memory and
timing requirements. Our main contributions are:

• We propose the first IOTA tangle generation algorithm
that does not rely on costly random walk approaches.

• We conduct a comprehensive evaluation and analysis of
the performance of GraGR in comparison to ProSG type
of methods and show that GraGR generation is both
correct and efficient.

In the following, we review existing IOTA tangle generation
methods in Section II. Section III introduces IOTA preliminary
as a background and presents GraGR; after that, Section IV
compares ProSG-type generation to tangle generation with
GraGR. Finally, Section V concludes this paper.

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 4816IC
C

20
23

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-5
38

6-
74

62
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C4

50
41

.2
02

3.
10

27
90

38

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There are two known ways to obtain IOTA tangles to
analyze and improve IOTA system performance. Because they
only differ in the used dataset, but rely on the IOTA protocol
for message processing, we generally refer to these both
methods as ProSG.

The first is to use a synthetic message sequence under
IOTA typical message processing. One of such methods is
TangleSimulator1. Starting from a genesis message, TangleS-
imulator generates a Poisson message sequence and adds each
message to the tangle using IOTA-typical random walk. A
well-known analysis of basic properties of IOTA tangles, such
as cumulative weight, number of tips for different Tip Selection
Algorithm (TSA) versions, etc., also uses this method to create
different tangles [7], [8]. Similarly, security analysis of IOTA
tangles [9], [10] utilizes tangles generated this way to study
parasite chain attacks. Authors in [11] study tangle parameter
influence on a so-called large weight attack on an IOTA tangle
in a real network. They generate the tangle with a Python
library and simulate the large weight attack. An analysis of
the TSA properties in [6] also uses this method and states that
it is rather ineffient, in particular for a bursty message arrival.

The second way is to extract ledger data from the oper-
ational IOTA ledger, called IOTA mainnet/devnet tangle. An
analysis of the real transaction speed in IOTA extracts real
tangle data from the IOTA raw dataset, rebuilds the tangle
and finds various abnormal structures in the real IOTA tangle
that limit the transaction speed [5]. However, the raw datasets
of real IOTA tangles are of limited diversity and availability.

In contrast to these state of the art approaches, which all
rely on the basic IOTA protocol, we aim to generate IOTA
tangles based on graph construction mechanisms. Random
graph generators are widely used in many fields, such as social
networks, biological networks and Internet studies [12].

A DAG generation algorithm was proposed in [13]. The
input is n vertices and m layers. Two vertices are selected
from two adjacent layers. A random variable is generated
and, if it is smaller than a predefined threshold p, an edge
is added from the vertex of the previous layer to the vertex
of the latter layer. Common to random graph generators is the
fact that the generated graph does not follow IOTA tangle’s
degree distribution. To improve IOTA mechanisms, it is an
important requirement to closely follow topological features
of real IOTA tangles [7].

To find out what would be characteristic properties of
tangles, authors in [5] analyzed and compared real and theo-
retical tangles in terms of in-degree distribution, longest and
shortest path, diameter ratio and edge weight. The in-degree
distribution of simulated tangles based on [4] follows a Poisson
distribution. The length of the longest and shortest paths in
tangles with 1 million messages are similar and about 105.
The edge weights of these simulated tangles are distributed in
a range from 1 to 100. Tangles should always have a single

1https://github.com/minh-nghia/TangleSimulator

Fig. 1: Full and light node in IOTA network

genesis message and the out-degree of all messages in all kinds
of tangles is limited to 2 [4].

In summary, the existing IOTA tangle generators can only
generate tangles in an inefficient way, while the existing
general random graph generation algorithms do not necessarily
comply with the identified constraints of IOTA tangles. Hence,
we still need an efficient IOTA tangle generator to generate
tangles, which meet the in-degree, out-degree, index difference
and other prescribed requirements.

III. ALGORITHM DESIGN

In this section, we first introduce some basic knowledge
about IOTA tangles, IOTA’s main data structure. The main
point is to understand, how IOTA tangle is constructed. Then,
we introduce the idea of our proposal and present the details
of GraGR, the new graph-based tangle generation method.

A. IOTA Preliminary

1) IOTA System: IOTA is designed and operated by IOTA
Foundation (IF)2. IOTA network is a distributed system con-
sisting of two types of nodes, full nodes (like n1, n2, n3) and
light nodes in Fig. 1. A full node participates in the IOTA
network by storing, exchanging and synchronizing message
data, eventually written into a local ledger, called tangle and
organized as DAG. A light node collects data from users and
sends messages to the IOTA network (a full node). For a
full specification of an actual IOTA system (node interactions,
consensus, etc.), please refer to [5].

2) Message Attachment: As mentioned, IOTA organizes all
messages in a DAG. Herein, an edge between two messages
indicates the order of attachment and represents approval: in
IOTA, fresher messages approve older messages. Hence, an
IOTA message processing consists in attaching an arriving
message to a DAG leaf, i.e., tangle tip. TSA in IOTA chooses
one of the tips, i.e., one yet unapproved message. After the
selection of the first tip, the IOTA system selects the second
tip in the same way. Once attached to a tip, the newly arrived
message becomes a new tip. The selected previous tips are now
considered approved and will no longer be selected. While
there could be various kinds of TSAs for IOTA, the officially
recommended TSA is Markov Chain Monte Carlo (MCMC).
For example, in Fig. 2, m3, m4, m5 are tips, and m6 and
m7 are incoming messages. m6 may select m3 and m4 with
MCMC, and m7 selects a former message to attach without
using MCMC.

2https://www.iota.org/

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

4817

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Message attachment

TABLE I: Variable definition

Variable Definition

Gk The k-th DAG
n The size of the message set
λ Message arrival rate
vti Message i with out-degree t

V, V t
k Message set, Message set of Gk with out-degree t

li The number of messages in the layer i
Dk In-degree distribution of Gk

di In-degree of the message i
Tk Out-degree distribution
nt
k Message count with t out-degree in graph k
E Index difference distribution
eij Index difference between i and j

Inherently, MCMC is a random walk on a transpose DAG,
i.e. in the reverse direction. In a tangle, each message has
its own weight and a Cumulative Weight (CW). Own weight
is set to 1, and CW is the number of child messages plus its
own weight. The child messages are the messages, which point
to this message directly or indirectly. In IOTA, the CW of a
message indicates the number of messages, which approve this
message and, hence, the confidence level of this message. A
huge CW value means that the message has a high confidence.
The difference between the CWs of two connected messages
is the Edge Weight (EW). The EW influences the transition
probability of the random walk on the transpose DAG. As per
transition probability function [4], the smaller the EW is, the
bigger the transition probability is. One important variable for
the random walk is α, which reflects the impact of the EW
value. If α is 0, it is a uniform random walk. The bigger α
is, the greater the impact of EW value on MCMC behaviour
has, and the tangle structure tends to narrow.

B. GraGR Algorithm Design

The basic idea of the IOTA tangle construction method
in this paper is inspired from graph generation methods. In
contrast to generic random graph generation, we create an
algorithm that creates a DAG with some characteristic topo-
logical parameters of a simulated IOTA tangle. Specifically,
we want the generated structure to exhibit the same in-degree
distribution as an additionally provided input distribution, and
to respect typical constraints of the IOTA tangle’s out-degree,
as described in Section II.

We define V is the message set, D0 is the prescribed in-
degree distribution (input to our algorithm), and E is the pre-

scribed index difference distribution. The index difference is
the difference between the indices of two connected messages.
For example, in Fig. 2 the index difference of m5 and m1 is
4. The index difference indicates an attachment time interval
between two connected messages. For all tangles, the index
difference should follow a similar distribution. Otherwise the
tangle structure is abnormal, and the attachment order is
chaotic. The in-degree list di is generated by D0, and index
difference list eij is generated from E. Table I summarizes all
used variable definitions.

Initially, the generated tangle starts with a genesis message,
and the new vertices are attached to this genesis message.

The proposed tangle generation algorithm can be divided
into two major parts: part I is the Generation part, where
we generate a DAG following wanted in-degree and index
difference distributions, as shown in Algorithm 1. Part II is
the Refinement part, where we change output Part I using the
out-degree distribution and the index difference distribution,
as shown in Algorithm 2.

For Generation part, Algorithm 1, inputs are message arrival
rate λ, number of nodes N , and the prescribed in-degree
distribution D0. The output of Algorithm 1 is DAG G1. The
major steps are as follows:

1. For the first message v0 in the tangle, assign a random
variable l1 based on the Poisson distribution determined
by arrival rate λ, and add l1 in-degree to this message.

2. Calculate the index difference for each edge, and the
index of messages connected to v0 is the message v0
index 0 plus an index difference value.

3. For the following vertices, associate each message vi
with an in-degree value di and add di messages to
this messages, whereas di follows the given in-degree
distribution D0.

4. The index of the message added in step 3, which directly
connects to the current message, is the current message
index plus a random index difference e generated from
the index distribution E.

While the output of Algorithm 1, G1, is a DAG with basic
properties of an IOTA tangle, it cannot be considered a realistic
IOTA tangle, as it includes too many messages with out-degree
0, and, some of its messages have an out-degree higher than
2. Indeed, in Algorithm 1, we only enforce the prescribed
in-degree and add the directly connected children to each
message, while out-degree constraints are not respected yet.

The following is the Refinement part, Algorithm 2, starts
from G1 and the prescribed out-degree distribution T0.

1. Calculate the out-degree distribution of G1 and compare
the percentage of each out-degree value of the out-degree
distribution T1 to the prescribed out-degree distribution
T0. Select the messages with unqualified out-degree val-
ues, for example, 0 or higher than 2.

2. For all messages with out-degree 0 - except the genesis
message - generate two random index difference variables
eij , eih based on the index difference distribution E. Link
vi to vi−eij , vi−eih .

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

4818

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

3. In Step 3, if the index of the added out-degree message
is smaller than 0, then link vi to genesis message v0.

4. For messages, whose out-degree is bigger than 2, delete
the edges randomly, until their out-degree is exactly 2.

5. For messages with out-degree 1, if the prescribed out-
degree distribution needs more messages with out-degree
2, then randomly select the messages vi with out-degree
1, link vi to a former message vi−eij , the index difference
eij , which is also selected from the index difference
distribution E0.

Algorithm 2 returns DAG G2, which is a synthetic tangle
with prescribed properties.

Algorithm 1 Graph Generation

Input: n, V , D0, E, λ, T0
Output: G1

1: for vi in V do
2: if i == 0 then
3: j ∼ Poisson(λ)
4: V ′={v1,v2,...,vj}
5: add vj ∈ V ′ to v0
6: else
7: h ∼ D
8: generate V’={vj1 ,vj2 ,...,vjh}
9: each jh = i + e, e ∼ E

10: add V’ to vi
11: end if
12: end for
13: return G1

IV. EVALUATION

In this section, we evaluate general ProSG methods and
our GraGR proposal in the following aspects: out-degree, in-
degree, longest path, shortest path from the genesis message
to the latest tip, diameter ratio, index difference and costs, i.e.,
time and memory consumption. Since the realism of ProSG
is not questioned, we use it as a reference for topological
parameters. In contrast, we want to have a better performance.

A. Experiment Setup

We run all experiments on a computer with Intel Core i5-
8265U @ 1.6Ghz CPU and 16GB RAM. All algorithms are
implemented in Python 3.8. For the experimental setup, we set
α = 0.01, which is the default value in the real IOTA network.
Then, we vary both λ values, and the number of vertices N
in Table II. We generate a number of tangles for each set of
parameters, until the statistical error of the reported results is
lower than 5%. In practice, the number of generated tangles
was around 10 for each parameter set.

B. Results

1) Path Length: The determined shortest and longest path
lengths from the genesis message to the latest tip of the tangles
generated by ProSG and GraGR are shown in Fig. 3.

Algorithm 2 Graph Refinement

Input: G1, n, V , T0
Output: G2

1: for vi in V1 do
2: if Out-degree (vi) == 0 and i 6= 0 then
3: e1,e2 ∼ E
4: vj1 = i - e1
5: vj2 = i - e2
6: if vj1 <0 then
7: vj1 = 0
8: end if
9: if vj2 <0 then

10: vj2 = 0
11: end if
12: Add vi to vj1 , vj2
13: else if Out-degree (vi) >2 then
14: Successor (vi) = {vj1 ,vj2 ,...,vjh}
15: random delete edges until Length(Successor(vi)) ==2
16: else if n20 >n21 then
17: ∆n = n20-n21
18: random select ∆n vertices V ′ from V 1

1

19: get V ′ = {vi1 ,...,vin′}
20: each en′ ∼ E, jn′ = in′ + en′

21: add vin′ ∈ V ′ to vjn′

22: end if
23: end for
24: return G2

TABLE II: Experiment parameter setup

Parameters Value
α 0.01
λ 5, 10, 15, 20
N 104 ∼ 105 with a step-size = 104

As can be seen in Fig. 3, with the number of messages going
up, the lengths of the longest and shortest paths increase. For
the same number of messages, for smaller λ values the paths
are longer. For λ = 1 (smallest value), the tangle degenerates
to a chain. Generally, for bigger λ values, the tangle becomes
wider. Note that for the same value of λ, the longest and
shortest paths of the tangles, generated by ProSG and GraGR
respectively, are similar in length. We conclude that GraGR
maintains the path length properties of real IOTA tangles.

2) Diameter Ratio: In addition, we calculate the diameter
ratio of tangles generated by these two methods and the
absolute value of the difference of diameter ratios. We define
diameter ratio as the longest path length divided by the shortest
path length. Semantically, this term is indicative of the shape
of the tangle. A bigger diameter ratio indicates the tangle is
wider, while a smaller diameter ratio means that the tangle
becomes like a narrow band. The results are shown in Fig. 4.
For diameter ratio comparison, we use λ = 10 as an example,
as the results are similar for different λ. In Fig. 4a, the
difference between the diameter ratio of the tangle generated

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

4819

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

0

2 * 103

4 * 103

6 * 103

8 * 103

10 * 103

12 * 103

14 * 103

Lo
ng

es
t p

at
h

le
ng

th

ProSG =5
ProSG =10
ProSG =15
ProSG =20

GraGR =5
GraGR =10
GraGR =15
GraGR =20

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of messages

0

1 * 103

2 * 103

3 * 103

4 * 103

5 * 103

6 * 103

Sh
or

te
st

 p
at

h
le

ng
th

ProSG =5
ProSG =10
ProSG =15
ProSG =20

GraGR =5
GraGR =10
GraGR =15
GraGR =20

Fig. 3: Comparisons of path lengths of generated tangles

1 2 3 4 5 6 7 8 9 10

Number of messages (*104)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ra
tio

= 10
ProSG GraGR

(a)

1 2 3 4 5 6 7 8 9 10

Number of messages (*104)

5
10

15
20

0.02

0.04

0.06

0.08

0.10

Ab
s

(b)

Fig. 4: The comparison of the tangle diameter ratio

by the two methods is very small. Fig. 4b shows the diameter
ratio difference of the experiments. Most difference values
are around 0.06. This comparison indicates that the tangles
generated by GraGR and ProSG have quite similar diameter
ratios. Hence, we conclude that GraGR generates tangles of
realistic shapes.

3) Out- and In-Degree Distributions: Just like ProSG meth-
ods, which use IOTA TSA, by the strict construction of
GraGR in Algorithm 2, the out-degree of each message in the
constructed tangle exactly follows the prescribed out-degree
distribution, but without employing TSA.

We now evaluate the in-degree distribution of the generated
tangles. Specifically, we measure mean and absolute difference
values of the in-degree mean of tangles generated by the two
methods, as shown in Fig. 5. Using λ = 10 as an example,
Fig. 5a shows that the average in-degree of tangles generated
by two methods is essentially the same. We show the absolute
value of difference of in-degree mean in Fig. 5b. For higher
numbers of vertices (e.g. more than 10000), the difference
value is slightly larger. However, the maximum difference is
under 0.002, which is still small. As the number of vertices
grows, the difference of the in-degree mean becomes smaller,
and, when the number of vertices is 100000, the difference
is still below 0.0005. Note that the in-degree mean difference
remains stable for changing parameter settings. These findings
confirm that the tangles generated by ProSG and GraGR have

1 2 3 4 5 6 7 8 9 10

Number of messages (*104)

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e

= 10
ProSG GraGR

(a)

1 2 3 4 5 6 7 8 9 10

Number of messages (*104)

5
10

15
20

0.0005

0.0010

0.0015

0.0020

Ab
s

(b)

Fig. 5: The comparison of the tangle in-degree mean

similar properties in terms of in-degree.

0 50 100 150 200 250 300 350 400

Index difference

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

ProSG =5
ProSG =10
ProSG =15
ProSG =20

GraGR =5
GraGR =10
GraGR =15
GraGR =20

(a) CDF

5 10 15 20

100

101

102

In
de

x
di

ffe
re

nc
e

ProSG
GraGR

Mean

(b) Boxplot

Fig. 6: The comparison of the index difference

4) Index Difference: We calculate the index difference in
the generated tangles and compare their distributions.

Results are presented as Cumulative Distribution Function
(CDF) in Fig. 6a. Note the good match of the index difference
distribution of the tangles generated by ProSG and GraGR for
the same message arrival rate respectively. Depending on λ,
the proportion of high index difference values (more than 50)
rapidly decreases: while for λ = 5, there is a very significant
proportion of index differences underneath 25, for λ = 10, the
same proportion includes values underneath 50 and for λ = 15
and λ = 20 - values under 100.

Fig. 6b shows this phenomenon more clearly. The index
difference values of the tangles generated by ProSG and
GraGR are almost the same. The index difference values are
distributed in a small range, for example, most index difference
values of the tangles with λ = 5 are mostly distributed in the
range (1,20). As λ increases, the median and mean value of the
index difference distribution also increase. Overall, however,
the index difference in the tangles produced by ProSG and
GraGR are similar.

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

4820

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

0

100

200

300

400

500

RA
M

 (M
B)

ProSG
GraGR part I
GraGR part II

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of messages

0

100

200

300

400

500

600

Ti
m

e
(s

)

ProSG =5
ProSG =10
ProSG =15
ProSG =20

GraGR =5
GraGR =10
GraGR =15
GraGR =20

Fig. 7: The comparison of the consumed time and memory

5) Runtime and Memory Cost: We evaluate both ProSG
and GraGR approaches in terms of runtime and memory con-
sumption required when generating tangles of the respectively
same size. We run experiments for different tangle sizes N and
using different message arrival rates λ. We record the elapsed
time and the required memory. The results are shown in Fig. 7.

First of all, we observe that λ has almost no effect on the
memory consumption. Hence, we chose λ = 10 as an example.
The upper plot in Fig. 7 shows the consumed memory. As
expected, bigger graphs (more vertices) require more memory;
the relationship is essentially linear. To better understand
GraGR, we present the consumed memory separately for both
of its phases. GraGR Refinement part consumes approx. 3
times more memory than its Generation part, because Re-
finement needs to calculate the out-degree distribution of the
tangle. Comparing GraGR to ProSG, we observe that GraGR
consumes only half of the memory required by ProSG for the
same size of the generated IOTA tangle.

The second plot in Fig. 7 describes the runtime duration
of both generators for a tangle of the same size. Again,
as expected, with the increasing number of vertices, both
ProSG and GraGR require more time; the relationship is,
again, essentially linear. However, the runtime of ProSG grows
significantly faster than that of our algorithm. Generating a
tangle with the same number of vertices, GraGR is up to
10 times faster. Also note that the message arrival rate has
a relatively low impact on GraGR execution time.

Overall, GraGR is way more efficient. From the observed
trend, and expressing it another way around, on a platform
with 1024MB of memory, to produce a tangle with 1 million
vertices, the state of the art ProSG requires from 3000 to
5000 seconds, depending on the message arrival rate, while
GraGR finishes the task in only 300 to 500 seconds. Given
the second-only duration of tangle production for smaller size
tangles, with GraGR synthetic tangles can be produced on the
fly, without the need to store the tangles for latter analysis.
This significantly speeds up the experimentation.

V. CONCLUSION

In this paper, we propose a novel IOTA tangle generation
algorithm. Instead of following IOTA protocol like all existing
generators (aka ProSG), our proposal, GraGR, manipulates
the topology of a generated random DAG, until its properties
fulfill requirements on IOTA tangles. While GraGR delivers
results topologically equivalent to ProSG, GraGR consumes
only about half of the memory and is up to 10 times faster.

The main difference between ProSG and GraGR is the
reliance of ProSG on repetitive reverse random walks. Our
evaluations suggest that such random walks are indeed the
main contributor to the performance gap of ProSG.

In general, the new tangle generation algorithm provides the
research community with an easier way to yield experimental
tangles for DAG DLT research. For the first time, GraGR
allows on-the-fly generation of realistic IOTA tangles with
hundreds of thousands of messages.

We recently found that double Pareto Lognormal (dPLN)
distribution may be a better fit [14] for tangle degree distribu-
tion. While in this paper, we still rely on the accepted state of
the and require Poisson distribution, a generator using dPLN
distribution will be addressed in our future work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[2] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International journal of web
and grid services, vol. 14, no. 4, pp. 352–375, 2018.

[3] L. Hughes, Y. K. Dwivedi, S. K. Misra, N. P. Rana, V. Raghavan,
and V. Akella, “Blockchain research, practice and policy: Applications,
benefits, limitations, emerging research themes and research agenda,”
International Journal of Information Management, vol. 49, pp. 114–129,
Dec. 2019.

[4] S. Popov, “The tangle,” IOTA Found. Whitepaper, p. 131, 2016.
[5] F. Guo, X. Xiao, A. Hecker, and S. Dustdar, “Characterizing IOTA

Tangle with Empirical Data,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.

[6] X. Xiao, F. Guo, A. Hecker, and S. Dustdar, “Fast Tip Selection for
Burst Message Arrivals on A DAG-based Blockchain Processing Node
at Edge,” in GLOBECOM 2022 - 2022 IEEE Global Communications
Conference, Dec. 2022, pp. 1373–1378.

[7] B. Kusmierz, P. Staupe, and A. Gal, “Extracting tangle properties
in continuous time via large-scale simulations,” Technical Report.
Accessed: 2018-08-23, Tech. Rep., 2018. [Online]. Available:
https://https://www.iota.org/foundation/research-papers

[8] B. Kusmierz, W. Sanders, A. Penzkofer, A. Capossele, and A. Gal,
“Properties of the Tangle for Uniform Random and Random Walk
Tip Selection,” in 2019 IEEE International Conference on Blockchain
(Blockchain), Jul. 2019, pp. 228–236.

[9] A. Penzkofer, B. Kusmierz, A. T. Capossele, W. Sanders, and O. Saa,
“Parasite chain detection in the iota protocol,” in Tokenomics, 2020.

[10] S. Ghaffaripour and A. Miri, “Parasite chain attack detection in the
iota network,” 2022 International Wireless Communications and Mobile
Computing (IWCMC), pp. 985–990, 2022.

[11] L. J. W. Vries, “IOTA Vulnerability: Large Weight Attack Performed in
a Network,” B.S. thesis, University of Twente, 2019.

[12] M. Drobyshevskiy and D. Turdakov, “Random graph modeling: A survey
of the concepts,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp.
1–36, 2019.

[13] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms,” Journal of Scheduling, vol. 5,
no. 5, pp. 379–394, 2002.

[14] F. Guo, X. Xiao, A. Hecker, and S. Dustdar, “A Theoretical Model
Characterizing Tangle Evolution in IOTA Blockchain Network,” IEEE
Internet of Things Journal, vol. 10, no. 2, pp. 1259–1273, Jan. 2023.

2023 IEEE International Conference on Communications (ICC): IoT and Sensor Networks Symposium

4821

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 09:35:43 UTC from IEEE Xplore. Restrictions apply.

