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Abstract— The past years have shown that human computation
can be crucial in a variety of applications, and not only with
individual work such as in crowdsourcing but also coordinated
team-based work in various settings, enterprise or ad-hoc ones.
As distributed intelligence systems are increasingly designed to
include people as task-executing stakeholders along with software
services, the need to automate the human involvement in terms
of coordination is real. Research and industry are focused on
automating the process of team-formation as well as team-
coordination. We investigate this topic further in this paper.
While existing work have focused on interactions in general in
combination with metrics such as cost, we argue that interactions
in team formations should be considered in the context of their
types. In this paper we propose strategies and algorithms that
consider interaction types when forming teams, in combination
with trust. We report on results of our conducted experiments
with both synthetic and real data regarding the proposed team
formation strategies.

I. INTRODUCTION

Human-computation applications as well as mixed sys-

tems that incorporate human-computation are approaching

their peak point, as industry and academia include people

as stakeholders in various types of systems and applications

for tasks that cannot be executed by software. as well as

for tasks that can be executed more efficiently in a common

”collaboration” with machine-based resources. Crowdsourcing

applications have gained their momentum, and along with

developments in more complex modeling and programming of

socially-enhanced applications [1], we are heading to complex

systems where software and people work together. Focusing

on the people part, there has been research on getting beyond

the individual task-execution model as in crowdsourcing and

focusing on coordinated team-work, where the coordination

can be managed with fully automated processes or including

humans-in-the-loop.

Distributed information processing by human-based col-

lectives for complex tasks that can not yet be solved by

computers, in cooperation with computers is already helping in

multiple application areas, such as pattern recognition, object

recognition in images etc. Collective human computation

has been listed as one of the building-blocks of distributed

intelligence in systems where people work in cooperation with

software and hardware [2], [3], [4]. In this regard, we direct

our attention to the topic of collective-based tasks that cannot

be solved by a single human and require efficient teams with

the right expertise. The challenge of forming productive teams,

which will collaborate efficiently is still salient and requires

attention. In this paper we investigate this problem.

Online collective work is not a new topic, but topics such

as management mechanisms for human provided services in

collectives, including people services in service-oriented archi-

tectures, automating processes with human-in-the-loop where

people perform tasks, and programming human-provided ser-

vices [5], are fairly new and should be addressed if we want

to design collective adaptive systems with various types of

resources that will lead (but also adapt to) social changes.

To address the aforementioned challenges, suitable collective

formation mechanisms are needed. Existing works have fo-

cused on team formation strategies, mostly based on the ap-

propriateness of skills and team connectivity based on existing

interaction analysis between possible team participants. They

provide solutions to team-formation in terms of minimizing

coordination cost, team size, and workload. Authors in [6] for

example consider that the frequency of previous interactions

are one of the indicators for efficient teams. As far as we know,

existing work has focused on efficiency metrics, but focusing

only on one type of connections between team members,

which help in assessment of coordination cost between team

members, general interaction frequency or both, while we

chose to look at interaction in more details, namely focusing

on interaction types. Thus, in this paper we consider two types

of interaction networks, communication interactions which

include only natural language communication between peo-

ple, and coordination interaction, which include task-related

interactions, such as a delegation of one task from one person

to another. To generalize, our hypothesis is that if we are

to assemble efficient collectives, a group of individuals who

have the required skills for a specific goal can not be formed

without considering multiple underlying (possible) relation

types between the individuals. Our contributions in this paper

are:
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• a novel approach to team formation considering interac-
tion types,

• a team-formation algorithm by ranking experts based on

trust and weighted interaction values,

• a team formation Genetic-algorithm based on data of

previously formed teams that have already completed

projects.

II. TEAM FORMATION BASED ON TRUST AND MULTIPLE

INTERACTION TYPES

A. Problem Statement

The specific team-formation problems that we investigate in

this paper can be defined as in the following definitions.

Problem 1: Given a network of experts with information

about their previous performance and interactions, and a given

project-requirement, find a collective/team of experts from the

network who can execute the project effectively.

Problem 2: Given a set of existing teams with information

about their previous performance and interactions, and a

given project-requirement, find and select a collective/team of

experts who can execute the project effectively.

B. Model

To approach the stated problems we consider two types

of information crucial for our team-formation model and

strategies:

1) interaction links, and
2) subjective and objective data regarding expert per-

formance, ie., metrics that include votings and recom-

mendations, acceptance or rejection of tasks assigned

from the system, expert productivity etc.

Regarding the interaction links, we are distinguishing two

types of them in the context of a specific collaboration:

1) communication links, which include messages in nat-

ural language; and

2) coordination links, which include task-related inter-

actions such as delegation of tasks (control flow with

human in the loop).

Regarding performance data of experts, we consider an overall

trust metric for experts and teams over a specific period of

time. In [7], we have introduced a trust model from two

perspectives: a trust metric to assess the trustworthiness of an

individual/member of a team and a trust metric assessing the

trustworthiness of a team. Both trust metrics are calculated in

the context of the goal for which a team has been assembled,

ie., a team member has a local trust score in the context of a

specific team within which he/she works providing a specific

skill-type, whereas a global trust metric is relevant across all

teams he/she has worked within a time interval. We regard the

actuality of having an available global trust score for people

in the context of a particular skill as an effective approach for

initial expert recommendation for inclusion in teams, and we

consider trust in addition to communication and coordination

links as one of the indicators of team efficiency. We discuss

the trust metric later in this paper again, because we used it

in our experiments but we do not describe the actual formulas

as we have defined them in the aforementioned work.
Specifying our expert environment model now, we denote a

pool of experts as P = {p1, p2, p3...pn}, a team of people (a

collective) as C ⊆ P . and a set of initial tasks for a specific

team C as T = {t1, t2, t3...pn}. Every expert in the pool P

has her/his own profile properties. The important ones for us

in this work are s(p) denoting the skill type of p, stt(p),
denoting the trust score of p, and c(p) denoting the labor cost

of expert p for skill s(p). As aforementioned, we consider

two interaction network types: a) a communication network, in

which the interaction intensity between two people is denoted

by weight wm(pi, pj), and b) a coordination network, in which

the intensity of interactions in terms of coordination is denoted

by weight wc(pi, pj). The shortest path between two people in

the network is denoted by d(pi, pj). The edges within a team

are denoted with the set E, and the total number of edges is

denoted with |E|. A communication edge between two team-

members is denoted with em, while a coordination one with ec.
The total number of edges between pi and pj is denoted with

em,c. Thus, wm(pi, pj) =
∑

em∑
em,c

, and wc(pi, pj) =
∑

ec∑
em,c

.

A pair of two team members within a team between who

exists at least one interaction link is denoted with (pi, pj)e.
We denote the collection of teams, in which a specific person

has been a member (over a specific time period), with Uτ =
{Cτ

1 , C
τ
2 ...C

τ
n}.

The requirements for team-members (for each particular

task) are denoted with I(s, r, c) individually, where s is the

skill-type, r is the reputation of a member of a team in the

context of a particular skill, and c is labor cost. The initial

network consists of multiple experts who have previously

worked together in teams and consequently created different

types of interaction links. From this network we distinguish

two types of interactions, one based on communication and

another based on coordination interactions.
Because we consider trust scores of experts, in this paper

we hypothesize that given a high trust score of experts, a

high number of interactions between experts in the context

of message exchanges and/or task-related coordination is an

indicator that those experts can work well with each other.

Thus, in our model we aim to form teams with a high value

for the weighted values of these type of interactions along with

a high value of trust. We denote the total weight of interactions

within a specific team, with Wm(C), whereas the total weight
of interactions in terms of task-coordination as Wc(C).

Each node in our model is defined with a trust score

called Socio-technical trust (STT) score, which is a complex

metric that includes multiple measurable metrics indicating

an expert’s performance, as well as social-trust scores from

votes of collaborators and customers indicating collaboration

satisfaction. The team trust score is a normalized aggregated

trust score from the member expert trust values. The threshold

value for the team STT is denoted with δ. Now we have all

the indicators over which we want to execute a team-formation

algorithm (notations are given in Table I). Thus, optimally, we

need to form a team that:



• includes experts with matching skill requirements

• satisfies STT ≥ δ
• minimizes the team diameter, D(C)
• maximizes the weight of communication interactions

between team-members, Wm(C)
• maximizes the weight of coordination interactions be-

tween team-members. Wc(C)

The team-weight of communication interactions is defined

as:

Wm(C) =
1∑

(pi,pj)e

∑
i �=j

wm(pi, pj) ∀pi, pj ∈ C (1)

The team-weight of coordination interactions is defined as:

Wc(C) =
1∑

(pi,pj)e

∑
i �=j

wc(pi, pj) ∀pi, pj ∈ C (2)

However, to have the optimal team is difficult due to the

dynamic nature of human computation networks, and thus,

we approach the problem of team formation in two ways:

a) by using an Analytic Hierarchy Process (AHP) method in

ranking the importance of the above constraints, and using a

non-evolutionary Pareto-based approach to rank formed teams,

and b) by using an ML Genetic Algorithm approach, with the

presumption that we have team-based historical information,

for assembling new efficient teams out of existing teams and

their data. We compare both approaches in the experiment

section. The team requirements and consequently, indicators

of efficiency, in our model are: C(s), STT,D(C),Wm(C),
and Wc(C).

Let us look at an example to further motivate our problem

and the reason behind our argument that interaction types

provide valuable information regarding team collaborations

and their efficiency. Figure 1 shows two same sections of an

expert network with two teams on each of them. The lighter

links represent communication interactions, and the ones in

dark blue represent two types of interactions existing between

team members, communication and coordination, and edge

values are given respectively as well for illustration purposes.

In sub-figure 1(a) the team formed by A,B,C,D,K is more

favorable than the one formed by K,E,F,G,H. Both teams have

the same number of nodes and close values for the total team

socio-technical trust scores (if we have a summed value over

all node STT-values), which are presented by the values in red.

In the same sub-figure the favorable team is better connected,

has more connections between team members. Thus, this case

is fairly intuitive. However, looking at sub-figure 1(b), we

see that the more favorable team is the one that includes

K,E,F,G,H. The STT score does not have a high discrepancy,

but the values for the edge weights for both interaction types

are much higher then the ones for the team with nodes

A,B,C,D,K. This means that a ranking algorithm or a team-

formation algorithm should take into consideration the case

when a team that is ”less connected” has more communication

and coordination interactions between connected members, be-

cause this might be an indicator of effective collaborations and

higher trust between team members. Hence, it is these type of

specific cases that bring us to consider the type of interaction

links, and the distance between team members/diameter in

a multi-objective team-formation strategy that we present in

Algorithm 1.

TABLE I

NOTATIONS

Notation Description
P Pool of people/experts
Ci Team i ⊂ P
em a communication interaction-type link between two exerts
ec a coordination interaction-type link between two experts
(pi, pj)e a pair of team members with at least one interaction link
wm(pi, pj) communication link strength between expert pi and expert

pj
wc(pi, pj) coordination link strength between expert pi and expert

pj
STT Socio-technical trust score of a team
Wm(C) Normalized weight of communication interactions

(message-exchange) between team-members
Wc(C) Normalized weight of coordination interactions between

team-members
D(C) Team diameter

C. Expert role connected to different types of interaction links-
Discussion

One reason of separating communication interactions and

coordination interactions is because these two types of in-

teractions separately can inform about the member roles.

More specifically, one application of the analysis of these two

interaction types is the differentiation between a leader of the

team or unavailability of a team member. For example, if a

member of a team has a high trust score and it has more

communication interactions in terms of message-exchanges in

natural language and more coordination interaction, then these

three metrics can indicate that the member might be a leader

of the team, as it communicates more but also manages the

control flow, e.g., delegates tasks to other members of the

team. If on the other hand, a member of the team does not

have a high number of communication messages and has high

coordination-based interactions, it can mean that the member

has been unavailable because it has not communicated and it

had rejected assigned tasks or it has delegated tasks to co-

members. However, these are only intuitive assumptions, and

we plan to investigate the problem of role-identification based

on interaction types in our future work.

III. PROGRAMMING TEAM FORMATION

With Algorithm 1 we present a strategy to form teams out of

a ranked list of available experts, while Algorithm 2 presents

a genetic algorithm method to form teams out of an existing

initial set of teams.
Algorithm 1 ranks all experts by trust separating them by

skill. We utilized a trust score such as the one presented

in [7]. To specify, the trust metric is a metric composed

of two complex metrics, each composed by atomic ones,

specifically STT is composed of social trust, which in our

implementation is represented by votes from other experts

with whom an expert has collaborated, and performance-
based trust, which is calculated based on atomic tasks such as



(a) Favorable and non-favorable teams in the case when a better
connected team has favorable interaction weights. The bordered area
with a full line represents a favorable team, whereas the bordered area
with a dashed line represents a non-favorable one.

(b) Favorable and non-favorable teams in the case when a better
connected team has less favorable interaction weights.The bordered area
with a full line represents a favorable team, whereas the bordered area
with a dashed line represents a non-favorable one.

Fig. 1. The lighter lines represent interactions only in terms of communica-
tion with message-passing in natural language, the darker lines represent the
presence of two types of interactions: communication and coordination. Edge
values represent interaction weights, a single value represents communication
weight, while sets of two values represent weights of communication and
coordination, respectively. Values in red represent STT scores of experts.

success rate and effort. Because the trust metric is a composite

one, we use an AHP based algorithm to rank experts as AHP

provides a hierarchical weighting method for parameters that

are comprised of several others. Next, a team is formed in such

a way that based on skill types an expert with the highest

trust score for each skill type is included within the team.

After forming multiple such teams the algorithm compares

teams based on communication and coordination interaction

weights, and team diameter, and ranks the teams maximizing

communication and coordination interactions, and minimizing

the team diameter.

Algorithm 2 is a genetic algorithm, which takes as input a

number of appropriate teams for the tasks. A population is rep-

Algorithm 1 Team-formation algorithm utilizing AHP for

ranking experts and non-evolutionary Pareto based team se-

lection

Require: Graph G(P,I), T, I(s, r, c), Cr

1: U = ∅, PC = ∅;
2: for all task in T with I(sk, r, c) do
3: rankWithAHP (P )
4: /* store ranked experts in separate lists by skill type */

5: listP (sk)← ranked experts with skill sk
6: for all listP (sk) do
7: /* create x number of teams by choosing experts

from the same rank, from each list with ranked experts

based on skill, in descending order */

8: Ci ← listP (sk).getF irstListElement()
9: U ← Ci

10: for all C in U do
11: /* check for all objectives: minD(C) ∈
CO,maxWm(C) ∈ CO,maxWc(C) ∈ CO */

12: for all o in CO do
13: ParetoCompare(Ci, Cj , o)

14: PC ← Ci

15: Rank(PC)

16: return PC

resented by a set of teams, each team having the same number

of team-members. The set of genes considered for each team

are the values for Wm(C), Wc(C) and D(C). For the fitness

function, we set the following requirements: STT >= 0.5,
((Wm(C) + Wc(C))/2) >= 0.5, and D(C) <= 0.5. The
algorithm gives a sorted list of teams based on a compari-

son function of our communication, coordination, and team

diameter objectives.

Algorithm 2 Team-formation Genetic Algorithm

Require: PC

1: population =← PC.size(), newPopulation = ∅;
2: for all teams in PC do
3: team ← setGenes(Wm(C),Wc(C), D(C))

4: population.add(team)

5: while generationCount � maxSteps do
6: for all team in PC do
7: calculateFitness()

8: selectParentsByRouletteWheel()

9: newChildrenCrossover()

10: if mutateVar � mutatePercent then
11: newChildrenMutation()

12: /* calculate fitness for children/*

13: calculateFitness()

14: newPopulation← newPopulation.add(child)
15: population← newPopulation
16: sort(population)



IV. EXPERIMENTS

A. Evaluation with synthetic data

We implemented Algorithm 1 for team formation and se-

lection, combining AHP for team formation and Pareto-based

efficiency for selecting the most appropriate team, based on

pre-set requirements. Thus, we used an a priory decision mak-

ing approach with a human decision-maker (DM), considering

a scenario where teams are not formed ad-hoc but with a

customer request. We used the AHP method for ranking people

based on skill-types and trust 1. We modeled and generated

a pool of human profiles with skills and different metric

values, such as values for cost per task, and a socio-technical

trust score. Each person has a single skill. We modeled and

generated tasks, where each task was associated with a single

skill. Every person was modeled to have a connection with a

(random) number of other experts from the pool of resources

indicating a previous collaboration. Every connection/edge

had two weighted values, one indicating a communication

interaction and the other indicating a coordination interaction.

Algorithm 1 has two blocks, the first one forms and ranks

teams based on AHP analysis of two requirements for teams:

cost per task and socio-technical trust score (reputation) of

team members (lines 1-9); the second block (lines 10-15) ranks

teams based on Pareto analysis of three pre-set objectives:

higher Wm(C) and Wc(C), and lower D(C). We set the

requirement for the STT of the team as STT ≥ 0.5 in the

team formation with AHP. We generated 10 initial tasks, with

6 tasks having the same skill and 4 tasks having different

skills, so as to simulate for example realistic teams such

as development, where development skills are represented

more often, while testing, and design skills for example are

represented with fewer people. Thus, the size of each team

is the same and does not influence the formation, ranking

and selection process. The teams were formed such that we

ranked and matched people to the requirements for each

incoming task, by skill type, STT and cost per task. For one

run of an algorithm 30 teams were created with 30 rounds

of 10 task assignments. We ran a Pareto comparison and

ranking method on the 30 teams and ranked them based on

the three interaction-based objectives, namely the normalized,

communication weights, coordination weights, as well as the

diameter weight of the team. Table II gives the results of the

10 most appropriate teams returned by a run of Algorithm 1.

Analyzing the results we could observe that for example the

most appropriate team with our algorithm does not necessarily

have the highest trust score but it has a fairly high trust

score and enough high scores for the communication and

coordination values and low enough value for the function

value. Looking at Table II, we notice that team with Id 21 has

better scores when considering the three objectives, although

it might have worse scores when considering single objectives

one by one, compared to individual objectives of various other

teams. Let us check two other interesting examples, the teams

1We based our model on the framework presented by authors in [8].

with Id 6 and 22 for example. Team 22 is better with regard

to Wm(C) and Wc(C) when considered together, but on the

other hand is worse regarding D(C) than the team with Id 6,

that is why it is ranked much lower. Thus, selecting the highest

ranked team returned from Algorithm 1 seems a valid option,

considering every pre-set requirement. Perhaps it is not the

best solution considering single requirements, as for example

team with Id 22 might be better in terms of trust and cost

(not shown in the results for the sake of clarity) but not better

than team with Id 21 in terms of the overall requirements

considered in combination.

TABLE II

RANKED TEAMS AND VALUES OF THREE OBJECTIVES

Team ID Trust Wm(C) Wc(C) D(C)
21 0.8 1 0.6 0.4
6 0.64 0.8 0.6 0.3
23 0.75 0.6 0.6 0.1
19 0.52 0.5 0.2 0.2
8 0.65 0.5 0.4 0.3
22 0.82 0.5 0.8 0.8
27 0.6 0.3 1 0.5
3 0.65 0.4 0.2 0.6
17 0.62 0.2 0.6 0.8
7 0.56 0.1 0.5 0.5

Algorithm 2 takes as an input 10 team configurations

ranked according to higher communication and coordination

weights and lower team diameter. Table III shows the teams

at the beginning of the algorithm, and the values for our three

objectives, while Table IV shows the last returned teams as

they were changed/generated in each run for new generation

of teams with the algorithm. The results show that up to the

point of the pre-set number for new team generations, the

communication weight got to the value of 1 for all generated

teams, while the communication weight value did so for only

a few teams, this is due to our configurations and the pre-set

values for team members regarding these values.

From the perspective of the comparison of both algorithms,

we can conclude that in the case we want to form new

teams from existing ones, which have been invoked with

similar project requirements and with the same number of

team members, a genetic algorithm approach that considers

both high trusted teams, high communication and coordination

interaction weights, and low team distance measure returns

better teams than a non-evolutionary algorithm (Algorithm 1)

forming teams from a pool of experts not considering previous

individual membership in teams. However, Algorithm 1 returns

efficient enough teams when considering individuals from a

large pool instead of individuals from already existing teams.

Needless to say, Algorithm 2 can be run on existing team-

network structures in the case that such logs exist, and only on

cases where team-structures include all the skill types required.

B. Evaluation with real data

In addition to our synthetically generated data-set we in-

vestigated how Algorithm 1 behaved with a real data-set



TABLE III

RANKED TEAMS AND VALUES OF THREE OBJECTIVES AS INPUT FOR

ALGORITHM 2

Team ID Wm(C) Wc(C) D(C)
12 1 0.4 0.1
13 0.8 0.8 0.5
2 1 0.5 0.5
28 0.8 0.8 0.6
20 0.2 0.5 0.2
27 0.6 0.4 0.8
14 0.1 0.4 0.2
17 0.1 0.2 0.8
25 0.3 0.2 0.1
6 0.3 0.2 0.2

TABLE IV

RANKED TEAMS AND VALUES OF THREE OBJECTIVES AT A FINAL RUN OF

TEAM GENERATIONS IN ALGORITHM 2

Team ID Wm(C) Wc(C) D(C)
4 1 1 0.2
2 1 1 0.2
8 1 1 0.4
14 1 0.8 0.1
5 1 0.6 0.1
24 1 0.5 0.4
27 1 0.5 0.1
11 1 0.5 0.3
3 1 0.2 0.4
1 1 0.1 0.1

for comparison. We utilized a data-set created by authors in

[9]2, which provides real data for the activities of software

engineering student teams for a final project in a software

engineering course. The data-set provides a variety of data

regarding 74 teams working on projects with the same require-

ments, collected during several semesters at the San Francisko

State University. Each team within the data-set is assigned two

different grades, one for the development process, and another

for the final software built. The grades assigned are A, and

F, A representing good results or above expectations and F

representing below expectation teams.

The difference between our generated data and the real data-

set is that with the synthetic data we generated expert profiles

and formed teams according to their rank in the context

of their trust score, and then ranked the teams optimizing

three objectives, while the real data-set does not provide

information regarding team member skills and competencies,

rather it provides data on a team-level. Thus, we evaluate the

ranking part of Algorithm 1 based on the three objectives

only: communication score for the team, coordination score

and distance between team members. Moreover, we did not

form teams by ranking experts but ranked teams from the data-

set by mapping appropriate team related data that fitted our

model.

Mapping the data from the data-set, we selected the follow-

ing team indicators that fitted most to our objectives: meet-

2We found the data-set from: http://archive.ics.uci.edu/ml/
datasets/Data+for+Software+Engineering+Teamwork+Assessment
+in+Education+Setting.

ingHours, from the data-set gives the number of team meeting

hours which we associated with communication weight value
in our model to indicate the communication intensity of teams,

and teamMemberResponseCount and leadAdminHoursRespon-
seCount, which are self-reporting team-member and team-

lead reports collected multiple times during the development

process, which we associated with our coordination weight
value in our model. The sum of teamMemberResponseCount
and leadAdminHoursResponseCount for each team represents

a teams coordination weight value.

The teams in the data-set are of two types, local (from

the same university) and global (composed of members from

multiple universities). Thus, mapping this data to our model,

we assign D(C) = 1 to the local teams, and D(C) = 0.5 to

global teams, with the assumption that members in the local

teams know each other better than those in the global teams,

and thus we assign a hard-coded distance weight value to each

team based on this assumption. Table V shows the returned

list of the first ranked 13 teams. After examining the ranked

teams we noticed that most of the teams had A score for

both the development process and the product delivered, but

some had A either for the development process or the product

delivered. However, the global teams which were formed from

various universities had less meetings than those that could

meet online, but some of these global teams got grade A even

with lower communication interactions. If we take the grade A

as a trust indicator, the results show that communication and

coordination interactions should be considered together with

a trust score for team formation algorithms to be effective.

Consequently, trust plays an important role in two contexts

when considering communication, coordination and network

distance. On one side it can be used as an additional indicator

to clarify cases where the communication link number is

low, because if the trust between two experts is high, low

communication does not mean bad communication. On the

other hand, trust can be an indicator of communication link

type such that if we want to denote communication links with

positive and negative signs denoting positive and negative

communication between two experts then understandably, a

trust score can be used in decision-making scenarios for the

sign of communication links. We leave this problem for our

future research.

V. A FUZZY APPROACH TO THE TRUST AND

INTERACTION-TYPES FORMATION MODEL: DISCUSSION

The algorithms proposed work with people who are avail-

able to work on a required project/goal. In the case when

there is uncertainty regarding the availability of workers, and

we want to consider it, a fuzzy-set ([10]) based approach can

also be utilized to form teams considering their availability

in addition to the multi-objective functions. Hence, to make

the pool of resources even more concrete for Algorithm 1, a

fuzzy based approach would allow us to consider a pool of

resources with high trust and high availability for the required

project. With the fuzzy approach trust indicator constraints

can be more relaxed as well. If we define f as a variable



TABLE V

RANKED TEAMS AND VALUES OF THREE OBJECTIVES FROM A

REAL-WORLD DATA-SET

Team ID Wm(C) Wc(C) D(C) Type
2 176.57 49.0 0.5 local
4 145.57 49.0 0.5 local
1 102.92 48.0 0.5 local
5 219.0 46.0 0.5 local
0 94.95 41.0 0.5 local
3 78.36 43.0 0.5 local
6 56.32 41.0 0.5 local
8 138.86 38.0 0.5 local
12 139.86 34.0 1.0 global
9 54.29 31.0 0.5 local
7 52.86 23.00.1 1.0 global
10 47.71 35.0 1.0 global
11 52.43 27.0 1.0 global

with the label ”fitness”, then we would have a set with terms

F = {high,medium, low} indicating the level of fitness of an
expert into the collective based on the membership functions

for its trust and availability. The membership functions can be

defined as trapezoid ones such as:

μX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if (x ≤ a)∨(x > d);
(x− a)/(b− a) if a < x ≤ b;
(d− x)/(d− c) if c ≤ x < d;
1 if b ≤ x ≤ c.

(3)

For low, medium, and high fitness a, b, c and d are pre-

set values. Figure 2 shows an example of the membership

functions, and specific values of an expert: a trust score of

an expert 0.8, and availability 85%. If we denote t as a

variable indicating trust and v indicating availability, some rule

examples that can be utilized in this example are:

• if t is high & v is high then f is high

• if t is high & v is medium then f is medium

• if t is medium & v is medium then f is medium

• if t is low & v is low then f is low

In Algorithm 1 we can apply the fuzzy approach step for the

ranked list of experts after Line 5. Then we can use the results

of the first rule which would give experts with high fitness,

as input to the algorithm in Line 6, instead of the larger list

of resources returned by AHP used in Line 6. Of course,

availability can be utilized with AHP as well together with

other metrics, but the purpose of this section is to discuss

possible approaches. The detailed description of fuzzification

and defuzzification methods is out of the scope of this paper, as

these depend on the client and the developer of the algorithm

as well (a Mamdani approach can be used for the following

steps for example). The purpose of this section is to illustrate a

case where a fuzzy approach could be used to specify a group

of people from a large pool of resources, and use the list as

input data for forming multi-objective teams as in Algorithm

1.

VI. RELATED WORK

The authors in [6] have presented two heuristics based

on genetic algorithms and simulated annealing for team-

(a) Particular values for trust and membership functions

(b) Particular values for availability and membership functions

Fig. 2. Selected trust and availability values and their corresponding values
within the defined membership functions

formations that consider skills and connectivity of teams

members. They also present and discuss a recommendation

model for adding new members to the team to fulfill skill

requirements. Interactions are also considered in [11] where

authors present multiple strategies for team-assembly focusing

on multiple aspects of cost, they present team-assembly strate-

gies considering the cost of communication, a strategy to find

a team based on the cost of team-members, as well as finding

Pareto-optimal teams considering both the communication cost

and the team-member cost. Lappas et al. in [12] also present

Pareto-optimal team formation algorithms with minimized

communication cost. Anagnostopoulos et al. in [13] discuss

forming teams considering the trade-offs between team-size

and load with the help of a greedy task-assignment algorithm,

while in [14] they provide team-formation algorithms that

consider coordination cost and workload balancing. Examples

of work that in general consider the underlying social network

from which teams are formed are [15], [16].

Of course if we allow for elastic teams once the team is

formed we can adapt the teams at run-time, similar to our

approach [7], and avoid considering the trade-off between

team-size and cost at the time of the formation of the team as

is the concern of authors in [17].

Authors in [18] discuss team formation as well as net-

work adaptations based on two different approaches, namely,

structure-based and performance-based strategies. Authors in

[19] present algorithms for team formation based on skill

and coordination cost in two different situations, when a

team does not have a leader and when a team has a leader

responsible for the team coordination, and run experiments on

the DBLP dataset, concluding that the algorithms can form



small teams with a high number of common publications and

high expertise. An AHP-based approach of a multi-objective

optimization is presented in [20].

[21] have discussed fuzzy based approaches for assessing

trust in service-oriented computing where people are treated

as computational resources. They argue that people should be

able to define trust as they see fit to the domain of application,

and argument the fuzzy approach to trust. We make the same

argument for availability, as people who work online can set

their own schedules, but also requesters of work/clients, should

be able to define what is meant under availability in their own

application domain. Availability can be also specified for the

type of skills that are required for various steps of a project

with regard to time. For example, an expert might be available

as a developer 60% of his/her total working time, while for

the designing skills he/she might be available only 40%.

[3] presents an overview of distributed intelligence where

human teams are mentioned as entities in distributed intelli-

gence systems. Another mentioned fact is that organizational

and social paradigms are a starting point for designing agent

systems that can cooperate and collaborate for a common

complex objective. Hence, we postulate that learning the for-

mation of efficient human-based collectives could be valuable

for agent and mixed-system resource-assembly problems. Dis-

tributed intelligence including human computation in various

application areas are discussed in [4]. The authors present the

term ’global brain’ and elaborate on the benefits of distributed

intelligence, such as for example disaster prevention and

relief, research, innovation, traffic management and others.

Considering the team formation problem in this work, the

benefits of it can be seen in many areas where distributed

expert teams need to be formed for a specific objective. The

importance of social interactions in human computation is

emphasized in [22], where the authors make parallels between

neural networks and human computation ones.

VII. CONCLUSION AND FUTURE WORK

In this work we argued the importance of differentiating

interaction types between experts and the way these can be

included in team-formation mechanisms. We assessed team

efficiency by a trust score and conducted experiments with the

assumption that more communication and coordination links

means more efficient teams. However, in cases where we do

not have a trust metric, a high number of the communication

and coordination links can also result in non-efficient teams,

because communication links can be negative. We plan to ap-

proach this problem in future work. In addition, in future work

we will work on extending this model with the assumption that

experts provide multiple skills, when a single worker can be

included in a team with various roles to work for various task

types, and investigate how our model and algorithms perform

in those cases. In addition, we plan to investigate forming a

set of multi-domain teams where multiple teams are formed

to work together in a complex system that requires multiple

areas of general domain-expertise for separate teams, in this

way engaging in an investigation of a larger-scale distributed

computing challenge. Another open research challenge we

are interested to address in the future concerns mechanisms

of management for multiple-teams working together with

software services in mixed-resource systems of distributed

intelligence.
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