
Vela: A 3-Phase Distributed Scheduler for the
Edge-Cloud Continuum

Thomas Pusztai
Distributed Systems Group, TU Wien

Vienna, Austria

t.pusztai@dsg.tuwien.ac.at

Stefan Nastic
Distributed Systems Group, TU Wien

Vienna, Austria

s.nastic@dsg.tuwien.ac.at

Philipp Raith
Distributed Systems Group, TU Wien

Vienna, Austria

p.raith@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria

dustdar@dsg.tuwien.ac.at

Deepak Vij
Futurewei Technologies, Inc.

Santa Clara, CA, USA

dvij sj12@yahoo.com

Ying Xiong
Futurewei Technologies, Inc.

Santa Clara, CA, USA

yingx@live.com

Abstract—The amalgamation of multiple Edge and Cloud clus-
ters into an Edge-Cloud continuum requires efficient scheduling
techniques to cope with high numbers of infrastructure nodes
and computing jobs. Since monolithic schedulers typically do not
scale well beyond a certain cluster size, distributed scheduling ap-
proaches are usually employed to address such scalability issues.
Distributed schedulers are often designed for Cloud environments
and lack support for the Edge. Conversely, many Edge schedulers
focus on single clusters and provide limited support to deal with
the scale of the Edge-Cloud continuum. In this paper, we present
the Vela Distributed Scheduler, a globally distributed scheduler,
which is specifically tailored for the Edge-Cloud continuum. The
main contributions of our work include: i) A novel, globally
distributed and orchestrator-independent scheduler with a 3-
phase scheduling workflow; ii) A two-level, informed sampling
mechanism, which reduces latency for globally distributed sam-
pling and leverages job requirements to produce high quality
node samples; And iii) a MultiBind mechanism that significantly
reduces job evictions and rescheduling due to scheduling conflicts.
We implement Vela on top of Kubernetes and evaluate it in a
realistic large-scale setup using multiple interconnected, globally
distributed, and production-ready MicroK8s clusters with up
to 20,000 total simulated nodes. Our results show that Vela’s
performance scales linearly with infrastructure size and that it
reduces scheduling conflicts by a factor of 10.

Index Terms—distributed scheduling, edge computing, edge-
cloud continuum

I. INTRODUCTION

When multiple Edge and Cloud clusters meld together they

form what is called the Edge-Cloud continuum. Executing the

microservices of an application on the right nodes allows the

application to take advantage of the best of both worlds, i.e.,

the low latency, proximity to the users, and attached Internet

of Things (IoT) devices of the Edge and the powerful compute

resources of the Cloud. Placing a workload in the Edge-

Cloud continuum, which can often span tens to hundreds of

This work is supported by Futurewei’s Cloud Lab. as part of the overall
open source initiative.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871403.

TABLE I: Scheduler Architectures Comparison

Type State per
Instance

State
Synchronization

Conflicts
Handling Limitations

Monolithic
e.g., [2]–[4]

Entire cluster
Not needed,

because single
instance only

Avoided by
monolithic state

Limited
infrastructure size

Two-level
e.g., [5]–[7]

Statically or
dynamically
partitioned
by 1st level

Not needed,
because state
is partitioned

Avoided
by partitioning

Local optima and
potentially limited

infrastructure size if
1st level is monolithic

Shared State
e.g., [8]–[11]

Entire cluster

E.g., read-only
master state with
frequent sync or
partitioned sync

E.g.,
transactions
or optimistic
concurrency

Limited
infrastructure size,

since each scheduler
maintains entire state

Distributed
e.g., [12]

Sampled
set of nodes

Sampling
Optimistic

concurrency
Local optima

Hybrid
e.g., [13], [14]

Depends on
combination

Depends on
combination

Depends on
combination

One part is usually
monolithic

thousands of nodes is challenging for a monolithic scheduler

and, thus, often calls for a distributed scheduling approach.

There are multiple architectures for designing distributed

schedulers, namely two-level, shared state, distributed, and

hybrid [1]. We examine their differences from the monolithic

architecture and from each other in four major aspects: i) how

much of the scheduling-related infrastructure state a single

scheduler instance sees, ii) how this state is synchronized,

iii) how scheduling conflicts (i.e., two schedulers assign the

same resources) are handled, and iv) architecture limitations.

Table I summarizes the scheduler architectures. Monolithic

schedulers handle the entire infrastructure state within a sin-

gle instance, which prevents conflicts, but limits scalability

w.r.t. the infrastructure size. Two-level schedulers rely on a

hierarchy, where the first level is responsible for the entire

infrastructure state and statically or dynamically partitions it

among an arbitrary number of second level schedulers. This

prevents conflicts and improves scalability, but it may lead to

local optima and, if the first level is monolithic, scalability may

still be limited. Shared state schedulers operate with multiple

schedulers that share access to the entire infrastructure state.

Conflicts may occur, especially if the local state is outdated

and the scale of the infrastructure is limited, because each

scheduler has a copy of the entire state. Distributed schedulers

rely on multiple schedulers that have a limited view of the

infrastructure state, often obtained by selecting a portion of

161

2023 IEEE International Conference on Cloud Engineering (IC2E)

2694-0825/23/$31.00 ©2023 IEEE
DOI 10.1109/IC2E59103.2023.00026

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 E
ng

in
ee

rin
g

(I
C

2E
) |

 9
79

-8
-3

50
3-

43
94

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

2E
59

10
3.

20
23

.0
00

26

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

�������	�
��	�
���

������
���
	
	�

��������������

��������
�����
���

�	 ��
����
��

�����!�"�

������
���
	
	�

����������#����	����

$�%

������&�	�&

������
���
	
	�

������$������
������

$�%

��������
�����
���

�	 ��
����
��

��������
�����
���

�	 ��
����
��

Fig. 1: Globally Distributed Machine Learning.

nodes (sampling), making this architecture highly scalable.

The sampling algorithm influences the scheduling decisions’

quality and the conflict probability. Hybrid schedulers combine

two of the other approaches, usually a monolithic scheduler

for one type of jobs and a distributed scheduler for all others.

Edge schedulers typically optimize placement for a set of

Edge-specific constraints, such as network latency or geo-

location, but they often lack the scalability needed for an

online scheduler in the Edge-Cloud continuum, because they

rely on computationally intensive algorithms, such as genetic

algorithms, or because they focus on a single cluster and,

hence, lack a distributed architecture. Those that focus on

scalability, e.g., [15]–[20], are often limited to scheduling

batch jobs, not microservices, and none of them consider

multiple globally distributed clusters. Their evaluations are

limited to small clusters with less than 1,000 nodes, which

does not allow drawing conclusions on global scalability.

Typically, clusters are managed by an orchestrator, e.g.,

Kubernetes1 or Nomad2, which is responsible for deploying

and launching jobs and providing management services. The

scheduler is often part of the orchestrator, but it may also be

an external component that only interfaces with it to make job

placement decisions.

The need for globally distributed scheduling in the Edge-

Cloud continuum is exacerbated by novel large-scale ap-

plications that often require global deployments, such as

general public augmented reality (AR)/Metaverse [21] or

geo-distributed machine learning (ML). Such scenarios may

also encompass scheduling on heterogeneous devices, like a

combination of high-end servers and single-board computers,

with the latter being required, e.g., for privacy preserving

preprocessing [22].

A use case of globally distributed ML, based on the Gaia

ML system [23], is shown in Fig. 1. An AR application for

tourists classifies images to display sightseeing information to

its users. Classification jobs use the YOLOv5 CNN model

to match user videos to sights in a city. An info service

provides information to display to the users. Both jobs need

to run as services in Edge clusters close to the users, because

latency is critical in AR applications [24]. Training jobs to

improve the model are run daily in a federated manner in

the Cloud, relying mostly on local images from the closest

1https://kubernetes.io
2https://www.nomadproject.io

Edge clusters and synchronizing the model globally using the

Approximate Synchronous Parallel (ASP) model [23]. With

global communications, latency plays a role and demands a

reduction of packet round trips between scheduler and target

nodes.

We formulate the following research challenges:

RC-1 How can a scheduler for the Edge-Cloud continuum
handle globally distributed Cloud and Edge clusters and
scale reliably with the infrastructure? As previously men-

tioned, monolithic schedulers can only handle a limited

number of nodes, e.g., Kubernetes officially supports up to

5,000 nodes [25]. But also distributed schedulers may have

limitations related to state synchronization, handling of

scheduling conflicts, and scalability. However, scalability

is an important feature of a scheduler [26], especially

when dealing with very large infrastructures that span

multiple, globally distributed clusters [27].

RC-2 How can high-quality samples be collected from glob-
ally distributed clusters, while maintaining low sampling
and scheduling latency? Sampling-based schedulers are

designed to handle large clusters. They commonly either

retrieve samples from a local or shared cluster state, such

as Tarcil [10], or contact nodes directly, like Sparrow [12].

The former approach does not work for globally dis-

tributed clusters, because maintaining a detailed state of

globally distributed nodes is not feasible, nor does the

latter, because contacting many globally distributed nodes

directly would significantly increase scheduling latency,

given global packet round trip times, e.g., 165 ms as

per the Verizon SLA for a Europe-USA packet round

trip [28] (sum of round trips within Europe, USA, and

transatlantic). Additionally, as clusters get more loaded,

it has been reported that larger samples are needed to

find suitable nodes [10], because the samples are more

likely to contain nodes that are full. Such wasted samples

increase load on the scheduler. Thus, a sampling mech-

anism is needed that i) delegates work to the clusters to

minimize the latency incurred by network communication

and ii) leverages job requirements to return only suitable

nodes to avoid an increase in sample size.

RC-3 How can a distributed scheduler increase job through-
put by reducing the number of scheduling conflicts? The

assignment of the same set of resources to two different

jobs by two scheduler instances and the resulting conflict

is an issue recognized by many distributed schedulers [8]–

[11], [13]. Rescheduling the conflicting jobs takes a sig-

nificant amount of time and reduces the scheduler’s job

throughput, because the jobs need to traverse the entire

scheduling lifecycle again. Reducing conflicts requires

careful consideration of the scheduler’s inner workings.

While a job is being committed to a node, the sampling

algorithm may rely on an outdated state and suggest a

node, although it will be full after the commit has com-

pleted. Accounting for this issue and adding mitigation

measures when conflicts do arise can significantly reduce

162

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

rescheduling and, thus, increase the overall throughput of

the scheduler.

In this paper we present the open-source Vela Distributed

Scheduler3, which is part of Polaris SLO Cloud4, a SIG of

the Linux Foundation Centaurus project5, a novel open-source

platform for building unified and highly scalable public or pri-

vate distributed Cloud and Edge systems. Vela continues our

line of research on scheduling in the Edge-Cloud continuum

continuum [29] [30]. Our main contributions include:

1) Vela Scheduler, a novel, globally distributed,
orchestrator-independent scheduler with a 3-phase
scheduling workflow to enable optimized scheduling of

microservices at global scale within the Edge-Cloud

continuum. The workflow is distributed across multiple

components to ensure scalability and is comprised of

a sampling phase that retrieves node samples from

globally distributed clusters, a decision phase that picks

the best suitable node, and a commit phase that enforces

the scheduling decision in a conflict-aware manner.

2) 2-Smart Sampling, a two-level, informed sampling mech-
anism that delegates sampling to globally distributed
clusters and leverages job requirements to produce sam-
ples consisting of nodes that are likely to be suitable. This

reduces scheduling latency and sample wastage. Vela’s

design for globally distributed clusters delegates sampling

to agents in the clusters, which frees the scheduler from

communicating with the nodes directly. This delegation

greatly reduces network traffic and latency for the sched-

uler. By leveraging job requirements, the likelihood that

the sample contains suitable nodes is greatly increased,

while avoiding large sample sizes, which would augment

the scheduler’s load. To the best of our knowledge, there

is no other scheduler that is designed to perform sampling

on a global scale or is evaluated in a globally distributed

sampling scenario.

3) MultiBind, a scheduling decision commit phase that au-
tomatically retries committing the job to another node if
a scheduling conflict occurs, without rerunning the entire

scheduling process. This significantly reduces the number

of jobs that need to be rescheduled due to conflicts and,

thus, increases the overall throughput of the scheduler.

This paper is structured as follows: Section II examines re-

lated work, Section III provides an overview of the architecture

of the Vela Distributed Scheduler, and Section IV describes the

mechanisms that realize our contributions. Section V evaluates

our scheduler on multiple interconnected Kubernetes clusters

that represent an Edge-Cloud continuum and Section VI

provides and outlook on future work and concludes the paper.

II. RELATED WORK

The default schedulers of Kubernetes [3] and Docker-

Swarm [4] suffer from the typical issues of monolithic sched-

ulers that we have previously mentioned. There are many

3https://polaris-slo-cloud.github.io/vela-scheduler
4https://polaris-slo-cloud.github.io
5https://www.centaurusinfra.io

works that focus on Edge-related capabilities for monolithic

schedulers, e.g., Rossi et al. [31] propose a latency-aware

Kubernetes scheduler for geo-distributed environments and

Santos et al. [32] add latency- and bandwidth-awareness to

their Kubernetes scheduler extension. Hailiang et al. [33] use

a genetic algorithm that aims to reduce the response time for

microservice-based Edge applications, but the algorithm runs

offline, which inherently prevents it from being scalable. In

general, none of these works consider a distributed approach

to ensure scalability for the Edge-Cloud continuum, hence they

cannot be applied in a globally distributed context like Vela.

Mesos [5] and YARN [6] are two-level schedulers that are

frequently used in production [34], [35]. Their top-level is

monolithic and the second-level relies on partitioning. For

Mesos all scheduling decisions have to pass through the top-

level scheduler, which may result in a bottleneck, and YARN’s

top-level needs to capture the entire cluster state and assign

fine-grained resources to the second level, which may be

an issue if the entire cluster state gets too big to fit into

memory. The Fair Scheduler [36] in YARN allows achieving

a fair resource distribution among second-level schedulers

and Capacity Scheduler [37] ensures that each tenant of a

multi-tenant system gets a minimum share of resources, but

both approaches are designed for the Cloud, not the Edge.

Epsilon [38] and OneEdge [7] are also two-level schedulers,

whose first levels are monolithic. Epsilon’s second level uti-

lizes the shared state concept and supports autoscaling of the

second-level schedulers. OneEdge uses sharding for the second

level schedulers and it supports enforcing and End-to-End

(E2E) latency Service Level Objective (SLO). The major issue

with these approaches is the monolithic first level, which can

hinder scalability – Vela Scheduler aims to avoid this using

its fully distributed, sampling-based approach, which does

not require scheduler instances to maintain any cluster state

beyond the node samples that are retrieved independently for

each job. The downside of sampling is that the ideal solution

may not be part of the sample, an issue that Vela tries to

mitigate using its 2-Smart Sampling mechanism (additionally,

we plan further improvements on this using AI-based sampling

in future work). Hydra [27] builds on top of YARN and greatly

improves scalability by federating multiple two-level clusters

across multiple data centers, however it is designed for the

Cloud and does not focus on Edge clusters.

Apollo [9], Omega [8], Tarcil [10], and ParSync [11] are

shared state schedulers. Apollo’s shared state is centralized

and treated as read-only for the schedulers; the state can only

be updated by status updates received from the cluster nodes.

Omega supports different types of transactions to reduce

scheduling conflicts. ParSync partitions the state internally and

the scheduler instances get updates on different partitions on

every synchronization iteration. The schedulers prefer to pick

nodes from recently updated partitions to avoid relying on stale

state data and, thus, reduce the chance for scheduling conflicts.

Tarcil improves speed by sampling nodes from a shared state,

but if the cluster is heavily loaded the sample size becomes

very large, e.g., 82% of the nodes in one of their examples.

163

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

Sampling Phase

Job Sampling
Queue

Vela
Scheduler

Vela Cluster Agent A

Nodes
Cache

Sampling
Pipeline

Filtering &
Scoring
Plugins

Decision
Pipeline
Queue

Decision Phase

Filtering & Scoring
Plugins

Commit Phase

Try committing

MultiBind Mechanism

1. Node (cluster A)

2. Node (cluster B)

3. Node (cluster A)

Vela Cluster Agent A

Commit
Plugins

Commit
Pipeline

Decision
Pipeline

Sampler Pool

Nodes
Cache

Fig. 2: Scheduling Workflow and Job Lifecycle.

Arktos [39] improves on the scalability of the Kubernetes

scheduler by turning it into a shared state scheduler. All shared

state schedulers suffer from the issue that the entire cluster

state may become too large to be handled by a single scheduler

instance and from the occurrence of scheduling conflicts. Our

approach avoids the former issue by being fully distributed and

drastically reduces conflicts using the MultiBind mechanism.

Sparrow [12] is a distributed scheduler designed for batch

jobs that relies on sampling to collect nodes. The nodes

are contacted directly, which is not feasible with globally

distributed nodes. A late-binding mechanism is used to ensure

that a job starts as quickly as possible: a job is assigned to the

queues of all eligible nodes and the first node that dequeues

the job gets to execute it. Sparrow cannot have scheduling

conflicts, because jobs can always be queued on a node, an

assumption that is only valid for batch processing systems.

While Sparrow supports constraints for its sampling phase,

they are evaluated in a centralized fashion. Vela Scheduler

avoids contacting nodes directly to allow for global distribution

and it specifically addresses scheduling conflicts, because it is

not restricted to batch jobs.

Mercury [13] and Hawk [14] are hybrid schedulers that

combine a monolithic scheduler for one type of jobs with a

distributed scheduler for other jobs. Mercury divides the two

scheduling approaches between “guaranteed” and “queueable”

jobs, while Hawk divides them between “long“ and “short“

jobs respectively. Mercury solves conflicts by terminating

queueable jobs in favor of guaranteed jobs, while Hawk

avoids conflicts by queuing. Naturally, the monolithic part

can become a bottleneck and many systems have a single

job type, so these approaches are not always applicable. Vela

Scheduler does not have this bottleneck and, while being

primarily designed for microservices, it can support any job

type through appropriate plugins.

III. VELA 3-PHASE SCHEDULING WORKFLOW

The Vela Distributed Scheduler is designed to manage mul-

tiple, globally distributed Edge and Cloud clusters. It consists

of two components, the Scheduler and the Cluster Agent.
The scheduler can be deployed with an arbitrary number

of instances, which are independent of the infrastructure,

��
��

��
��	

�

�

��
	

�	
�	
�

	

�	����
�	���	�����	
�
�	

��
�
��
	�

��
�	

�

�	
����� ���	���	

�	����
�	���	�
�	��������	����	��

��
��	

�

�

��
	

��
�
��
	�

��
�	

������������	���	

��
	

 �
��

��
���
�

��		��
���
���

��
	
	
��

Fig. 3: 3-Phase Scheduling Workflow with Sampling, Decision, and Commit
Pipelines.

i.e., clusters, they need to manage. Due to its orchestrator-

independent design, clusters may be operated by different

orchestrators, e.g., one cluster might use Kubernetes, while

another cluster might use Nomad. The exact definition of a

cluster node depends on the respective orchestrator – typically,

a node will be either a VM, a bare-metal server, or a single-

board computer. Every node can host multiple jobs, as long as

it has sufficient resources to accommodate them. To become

enabled for the Vela Scheduler, each cluster only needs to

deploy the Cluster Agent, typically as a controller.

The 3-phase scheduling workflow (see RC-1) is the logical

centerpiece of Vela. The workflow and the lifecycle of a job

within it are shown in Fig. 2. Each of the three phases,

i.e., sampling, decision, and commit, contains a pipeline;

these pipelines are shown in Fig. 3. Each pipeline consists

of multiple stages. The business logic within each stage is

realized through plugins, which facilitates the implementation

of diverse scheduling policies.

The 3-phase scheduling workflow starts when a user or

another system component, such as an autoscaler, submits

a job to an arbitrary instance of the Vela Scheduler. The

scheduler instance sorts incoming jobs, e.g., based on priority,

in its Sort stage and then adds them to its Sampling Queue.

Once the scheduler dequeues the job, it enters the sampling
phase with the 2-Smart Sampling mechanism – the sampler

pool can process multiple jobs in parallel in this phase. 2-

Smart Sampling consists of two steps, the first one is executed

by the Sample Nodes plugin. It selects a random subset of all

configured clusters to be used for sampling and requests a

sample from their respective Cluster Agents, passing the job’s

requirements along to ensure that only nodes that fulfill these

requirements are returned.

Each cluster’s Cluster Agent, then, executes the second

step of 2-Smart Sampling. The agent maintains a frequently

updated cache of its cluster’s nodes – the exact implementa-

tion depends on the underlying orchestrator, e.g., Kubernetes

provides a watch mechanism that notifies the agent on nodes

list changes. The agent selects a set of nodes from this cache

and executes the sampling pipeline, which employs a multi-

criteria decision making (MCDM) approach, consisting of the

Filter and the Score stages. Filter plugins remove nodes that

are not suitable for hosting a job and Score plugins assign

scores from 0 to 100 to the nodes that have survived filtering,

164

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

based on how suitable they are. A higher score indicates better

suitability for the job, e.g., empty nodes may score higher than

partially loaded ones. The sampled nodes are then returned

to the Vela Scheduler, which places them, together with the

job, in the decision pipeline queue. The presence of this queue

ensures that sampling, which may consume some time, can be

executed on different threads from the decision pipeline. This

allows avoiding situations where all threads might be blocked

waiting for samples, while the CPU remains idle, even though

it could be used for the decision pipeline. If desired, a timeout

can be configured for each sampling request to a Cluster Agent

– this can be used if a use case has stringent requirements on

scheduling latency.

When the job exits this queue, it enters the decision phase.

The decision pipeline further evaluates the sampled nodes for

their suitability using another set of Filter and Score plugins

that allow enforcement of global policies. Multiple decision

pipelines, each responsible for a single job, are executed

on concurrent threads. Since the Cluster Agent’s sampling

pipeline also includes scoring, each node already has a list

of scores produced by the sampling Score plugins. The scores

computed by the scheduler’s Score plugins are added to this

list. After all eligible nodes are scored, the decision pipeline

accumulates the scores and picks the top m nodes with the

highest score, with m being determined by the configuration

of the MultiBind mechanism. The Reserve stage can be used

by plugins to update internal data structures. At the end

of the decision pipeline, the scheduler advances the top m
nodes to the commit phase. The decision pipeline requires no

synchronization with other pipeline- or scheduler instances,

because the only point of synchronization is located in the

subsequent commit phase and is handled by the Cluster Agent.

In the commit phase the MultiBind mechanism instructs the

Cluster Agent, responsible for the cluster of the first of the m
selected nodes, to commit the scheduling decision to the node.

Since scheduling decisions can be made simultaneously by

multiple scheduler instances, scheduling conflicts may occur,

i.e., two jobs may be assigned to the same node by different

scheduler instances, but the node only has enough remaining

capacity to host one of them. To handle such conflicts we

rely on an optimistic concurrency approach within the Cluster

Agent, which checks for each job, if the resources are still

available. In case of a conflict, the first job to arrive is

committed to the node, the second job is rejected. To this

end, the commit pipeline first reserves resources in the agent’s

cache to make them unavailable to the sampling pipeline, then

fetches the current information about the node, checks if the

constraints are still fulfilled, and, finally commits the decision

by binding the job to the node. If the commit pipeline fails, the

MultiBind mechanism takes the next best node from the list of

m most suitable nodes and tries committing the job to that one.

Only if all m nodes fail, will the job be considered as having a

scheduling conflict, which requires rescheduling, i.e., running

the entire scheduling workflow again. Our experiments show

that the MultiBind mechanism reduces the number of conflicts

by a factor of up to 10.

Currently, Vela Scheduler is aimed at stateless microser-

vices. However, its plugin-based design allows adding plugins

to support stateful microservices or batch jobs in the future.

Vela is fault-tolerant by design. The failure of a Cluster

Agent means that its cluster is not available for scheduling,

but does not affect the availability of other clusters. Since

no coordination is needed among scheduler instances, the

failure of one instance only requires users to submit new

scheduling requests to another instance, but has no effect on

the operational status of the overall system.

IV. VELA’S MAIN SCHEDULING MECHANISMS

In this section we present the two most important scheduling

mechanisms, i.e., 2-Smart Sampling and MultiBind in detail.

A. 2-Smart Sampling

To reduce latency and avoid large sample sizes, even in

loaded clusters (see RC-2), Vela Scheduler introduces 2-Smart

Sampling, a two-step informed sampling approach, where the

scheduler delegates sampling to the Cluster Agents in the

selected clusters. This delegation frees the scheduler from

communicating with globally distributed nodes directly, which

would incur high latency, and allows sampling to take full

advantage of the local information that is available within the

cluster. Specifically, 2-Smart Sampling executes in two steps:

1) The scheduler picks a random subset of all configured

clusters to be contacted for samples. Using only a sub-

set ensures scalability and reduces scheduling conflicts.

Then, the scheduler contacts the Cluster Agent of each

selected cluster for a node sample, passing along all the

job’s requirements.

2) Each contacted Cluster Agent runs the sampling pipeline

to pick a set of nodes and check them for eligibility for

hosting the job. The nodes that are deemed eligible are

scored and then returned to the scheduler.

The percentage of clusters to be sampled (Cp) and the per-

centage of nodes to sample per cluster (Np) can be configured.

The sampling pipeline in the second step of 2-Smart

Sampling consists of three stages (see Fig. 3): Sampling

Strategy, Filter, and Score. The scheduling policy of each

stage is implemented by one or more plugins. Currently we

provide two Sampling Strategy plugins (a sampling request

specifies which one to use), one for random sampling and

one for Round-Robin sampling, and three Filter plugins:

ReourcesFit ensures that a node fulfills the job’s resource

requirements, GeoLocation allows a job to specify that it

needs to run in a specific location, and BatteryLevel allows

restricting a job to running on a node that has a minimum

battery level (if the node has a battery) – the former two

plugins also tie into the Score stage.

For each job 2-Smart Sampling operates as shown in

Algorithm 1:

Step 1. Lines 3–9 execute the first step of 2-Smart Sampling,

i.e., pick a random subset of all clusters and request a sample

from their Cluster Agents. The returned samples are added

to the decision pipeline queue, together with the job.

165

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Sampling Phase

1: Input: j: The job for which to sample nodes;
Cp: Percentage of clusters to sample;
Np: The number of nodes to sample per cluster;
strat: The sampling strategy to use;

2: Output: Se: The set of sampled nodes that are eligible for hosting j and
their scores;

� The 1st step of 2-Smart Sampling runs within the scheduler
3: Se ← {}
4: C ← PICKRANDOMCLUSTERSTOSAMPLE(Cp)
5: for all c ∈ C do
6: Se,c ← C.RUNCLUSTERSAMPLINGPIPELINE(j,Np, strat)
7: Se ← Se ∪ Se,c

8: end for
9: ADDTODECISIONPIPELINEQUEUE(j, Se)

� The 2nd step of 2-Smart Sampling, i.e., the sampling pipeline, runs
within a Cluster Agent

10: function RUNCLUSTERSAMPLINGPIPELINE(j,Np, strat)
11: sampleSize← COMPUTESAMPLESIZE(Np)
12: Se,c ← {} � The sampled nodes from this cluster

13: while |Se,c| < sampleSize AND NOT timeout occurred do
14: Si ← SAMPLENODESWITHSTRATEGY(strat, sampleSize)
15: for all n ∈ Si do
16: if RUNALLFILTERPLUGINS(n) = true then

� If the node survives all filter plugins, it is eligible.
17: Se,c ← Se,c ∪ {n}
18: end if
19: end for
20: end while

21: for all n ∈ Se,c do
22: RUNALLSCOREPLUGINS(n) � Run all score plugins and add

the scores to the node n
23: end for

24: return Se,c

25: end function

Step 2. Lines 10–25 execute the second step of 2-Smart Sam-

pling in each involved Cluster Agent. Lines 13–20 constitute

the sampling and filtering loop, which proceeds until enough

eligible nodes have been found or a timeout is reached.

Line 14 gets a set of nodes from the Sampling Strategy

plugin, e.g., random sampling (default) or Round-Robin.

Lines 15–19 run all Filter plugins on each sampled node

to determine if it fulfills the job’ requirements. Lines 21–23

execute all Score plugins on each eligible node. Subsequently,

the complete cluster sample is returned to the scheduler.

This approach ensures that each cluster’s sample only con-

tains nodes that meet the job’s requirements, which allows for

a smaller sample size. The sampling pipeline plugins need to

ensure that the job’s resource requirements are met by a node,

but they may also implement complex policies that further

improve the quality of the sample. The Cluster Agent may

also implement cluster-specific scheduling policies.

B. MultiBind Commit Phase

Vela Scheduler relies on an optimistic concurrency approach

to deal with multiple decision pipeline or scheduler instances

running in parallel. No cluster node resources are locked

during the sampling phase, because most of them will not

be used – in the end the job is assigned to a single node.

This improves scalability, but entails that when committing

a scheduling decision, another decision pipeline or scheduler

instance may have already claimed some of the required

resources on the node, resulting in a scheduling conflict for the

current job. This is a common issue in distributed scheduling,

which is normally handled by rescheduling the job (see RC-

3) [8]–[11]. In Vela Scheduler we mitigate this issue by the

randomness in both steps of 2-Smart Sampling. Nevertheless,

scheduling conflicts can occur. Note that the number of jobs

per node is not limited, i.e., if the selected node has enough

resources for both jobs, both are committed and executed –

a conflict only occurs, if the node does not have sufficient

resources for hosting both jobs.
To further reduce the number of scheduling conflicts that

require rescheduling, Vela Scheduler relies on its MultiBind

commit phase: instead of trying to commit the job only to the

highest scored node and rescheduling it, if a conflict occurs,

we use a list of the m highest scored nodes and try committing

to the next node. Only if committing to all m nodes fails, the

job is considered to have a scheduling conflict and needs to

be rescheduled. Our tests in Section V show that a setting

of m = 3 reduces the scheduling conflicts by factor of 10

compared to not using MultiBind. When trying to commit a

job to a node, the MultiBind mechanism contacts the Cluster

Agent of the node’s cluster to execute the commit pipeline.

This pipeline, which supports running multiple instances in

parallel, contains two stages, whose logic is implemented

using plugins: the Check Conflicts stage and the Commit stage.

The entire process executed by the MultiBind commit phase

is shown in Algorithm 2:

Algorithm 2 Commit Phase

1: Input: j: The job to commit;
N = (n1, ..., nm): The m highest scored nodes as commit candidates;

2: Output: SUCCESS or CONFLICT ;

� The MultiBind mechanism runs within the scheduler
3: for all n ∈ N do
4: if RUNCLUSTERCOMMITPIPELINE(n, j) = SUCCESS then
5: return SUCCESS
6: end if
7: end for
8: return CONFLICT � There was a conflict for all nodes in N .

� The commit pipeline runs within the Cluster Agent
9: function RUNCLUSTERCOMMITPIPELINE(n, j)

10: RESERVERESOURCESINCACHE(n, j)
11: LOCK(n)

12: n∗ ← FETCHNODEINFO(n)
13: J ← FETCHJOBSONNODE(n∗)
14: n∗ ← COMPUTEAVAILABLERESOURCES(n∗, J)

15: if RUNCHECKCONFLICTSPLUGINS(j, n∗) = CONFLICT then
16: UNRESERVERESOURCESINCACHE(n, j)
17: result← CONFLICT
18: else
19: COMMIT(j, n∗)
20: result← SUCCESS
21: end if

22: UNOCK(n)
23: return result
24: end function

166

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

Step 1. Lines 3–8 represent the MultiBind mechanism, which

executes in the scheduler. It iterates over the list of the m
highest scored nodes and tries to commit the job to every

node, stopping and reporting a scheduling success if the

commit succeeds. If all commits fail, a scheduling conflict is

reported. Each commit attempt, triggers the commit pipeline

in the respective Cluster Agent.

Step 2. Line 10 proactively reserves the job’s resources in the

nodes cache to make them unavailable for sampling requests.

Free resources that are not required by the job are still

available for sampling.

Step 3. Line 11 locks the target node within the Cluster Agent

such that no other commit pipeline can access it. Unreserved

resources on the node are still available for sampling.

Step 4. Lines 12–14 fetch the target node and all jobs cur-

rently assigned to it from the orchestrator and, together with

information from the nodes cache, compute the currently

available resources on the node.

Step 5. Lines 15–17 execute the Check Conflicts plugins to

check for a scheduling conflict. If there is a conflict, we

undo the resources reservation in the nodes cache carried out

in step 2 and prepare to report the conflict to the scheduler.

Step 6. Lines 19–20 run the Commit plugin to commit the

job to the node.

Step 7. Lines 22–20 unlock the target node in the Cluster

Agent to make it available to other commit pipeline instances

again and then return the result to the scheduler.

Reserving resources in the nodes cache is a critical step,

because otherwise the sampling pipeline would consider them

still available, even though they are currently being bound to

a job. Fetching the target node and its assigned jobs is needed,

because the nodes cache could be outdated. The Commit stage

first creates the orchestrator-specific job object and then binds

it to the target node, which completes the commit pipeline.

V. EVALUATION & IMPLEMENTATION

To evaluate our scheduler we focus mainly on the scalability

aspect at a global scale, while keeping low latency and reduc-

ing scheduling conflicts, as described in our contributions. All

code to run the experiments, as well as, all results can be

found in our repository6.

A. Implementation

Vela Scheduler and its Cluster Agent are implemented in

Go; all their APIs are JSON-based REST APIs. The two

largest engineering challenges lie within the Cluster Agent.

The first one is the nodes cache, which needs to support a very

high read frequency from sampling, but also a considerable

write frequency stemming from the commit pipeline and

orchestrator updates. The cache supports read-write locking,

but to avoid holding locks for a long time, we treat all node

objects as immutable. Reading is only done at three points:

at the beginning of the sampling pipeline, by the Sampling

Strategy plugins, and at the beginning of the commit pipeline.

6https://polaris-slo-cloud.github.io/vela-scheduler/experiments

Writing is also done at three points: once at the beginning

and at the end of the commit pipeline and when there is a

node status update from the orchestrator. The second major

engineering challenge is to reserve resources in the nodes

cache as early as possible in the commit phase. It is critical

to do this immediately for all incoming jobs, before locking

the node (this locking only applies to the commit pipelines,

not the nodes cache), because otherwise sampling would still

consider resources as available, which will be consumed by

a job waiting to be committed. At the end of the commit

pipeline, each resource reservation is either committed or

removed, depending on the outcome of the pipeline. Further

implementation details can be found in our code repository.

B. Experiments Setup

To evaluate the scalability of Vela Scheduler we set up

10 globally distributed Kubernetes clusters, which vary in size,

depending on the experiment. We run a single instance of

Vela Scheduler, which, however, does not limit the distributed

nature of our scheduler, because i) the 2-Smart Sampling

mechanism is fully distributed and ii) each scheduler instance

runs multiple sampling, decision, and commit pipelines in-

dependently of each other in parallel, which is the same as

running multiple scheduler instances.

To set up the clusters in our testbed we use 10 Google Cloud

Platform (GCP) VMs of type c2-standard-8, each having

8 vCPUs and 32 GB of memory and running on a physical

machine with an Intel Cascade Lake or later processor. Every

VM is bootstrapped with Ubuntu 22.04, on top of which

we install MicroK8s7 v1.25.6 to initialize a distinct single-

node Kubernetes cluster. For all experiments, we rely on

fake-kubelet8 to create simulated nodes in each MicroK8s

cluster. The resource properties of these nodes can be easily

configured and they are treated as ordinary nodes by Kuber-

netes. However, fake-kubelet nodes do not actually execute

any pods (i.e., jobs), but this is not needed for our experiments,

since we benchmark the scheduling performance, i.e., until

a job has been bound to a node. Sampling performance is

also not affected by fake-kubelet, because our sampling

algorithm works against the Cluster Agent’s nodes cache,

which is maintained in the background. Other than consuming

some CPU time on each VM, the use of fake-kubelet does

not impact the metrics evaluated in this paper.

Since Vela Scheduler focuses on the Edge-Cloud continuum,

the 10 clusters are intentionally not homogeneous. We simulate

three Cloud and seven Edge clusters with different types

of nodes; the hosting VMs are located in different regions.

Cloud clusters are made up of a combination of VMs of three

different sizes and Edge clusters consist of a combination of

Raspberry Pi9 single-board computers and cloudlet servers.

The node details, the percentage of each node type in the

composition of a cluster, and the cluster regions are listed in

Table II. These node details serve as realistic configurations

7https://microk8s.io
8https://github.com/wzshiming/fake-kubelet
9https://www.raspberrypi.org

167

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Node Types in Cloud and Edge Clusters.

Node Type &
Occurrence (%) vCPUs RAM Regions

C
lo

ud

50% cloud-small 2 4
Belgium, Oregon,
Finland

30% cloud-medium 4 8
20% cloud-large 8 16

E
dg

e

20% Raspberry Pi 4B 4 2
Belgium, Netherlands,
Frankfurt, Montreal,
Oregon, Finland, Iowa

40% Raspberry Pi 4B 4 4
30% Raspberry Pi 3B+ 4 1
10% cloudlet 4 8

for the resource properties of the simulated nodes. There is no

difference between simulating a cloud node and a Raspberry

Pi node using fake-kubelet, because for our experiments

only the configured resource properties are of interest. Vela

Scheduler itself is also deployed on a c2-standard-8 VM

and is located in the Zurich region. All tests use Apache JMe-

ter10 as a load generator – we run it on a VM with 24 vCPUs

and 47 GiB of RAM. The hosting server at our university

has an Intel Xeon CPU (Cascade Lake) with a base clock

of 2.1 GHz. JMeter does not allow for configuring a specific

request rate per second, but instead requires configuring the

number threads that generate requests and the approximate

timing they should use, e.g., one request every 10 milliseconds.

We run three sets of experiments: i) configuration tuning to

find optimal settings for Vela Scheduler, ii) scalability with
respect to infrastructure to assess the performance of our

scheduler on an increasing number of nodes, and iii) scal-
ability with respect to workload to a assess the performance

on an increasing scheduler workload.

Configuration Tuning aims to find optimal values for Cp

and Np, i.e, the percentage of clusters and the percentage of

nodes to sample in 2-Smart Sampling. To this end, we evaluate

settings of Cp = {10%, 20%, ..., 100%} and, for each value,

run an experiment iteration with Np = {4%, 8%, 12%, 16%},

for a total of 40 iterations. Each iteration tries to schedule

11, 200 jobs requiring 4 vCPUs and 4 GiB of RAM on clusters

of 2, 000 (2K) nodes each, adding up to 20K nodes in total.

11, 200 is the maximum number of jobs of this size that this

cluster configuration can support, thus the scheduler must find

all available space to avoid scheduling failures. Additionally,

50% of the nodes are too small to host such a job.

The two scalability experiments use the settings determined

by the configuration tuning to evaluate the scalability of Vela

Scheduler. Akin to the previous experiment, each scalability

experiments uses 10 clusters, each of which contains a tenth

of the total nodes in the experiment, i.e., for 1K total nodes

each cluster contains 100 nodes and for 20K total nodes each

cluster contains 2K nodes.

The experiment on scalability with respect to infrastructure

schedules 1K jobs on increasing cluster sizes, specifically

1K, 5K, 10K, 15K, and 20K total nodes (for comparison,

Kubernetes officially only supports 5K total nodes [25]). We

run three iterations for each of these cluster sizes. The jobs

intentionally fit on each node to allow us to focus on measuring

the execution performance.

10https://jmeter.apache.org

The scalability experiment with respect to workload op-

erates on 20K total nodes (i.e., 2K nodes per cluster) and

gradually increases the scheduler workload across 15 itera-

tions, each lasting three minutes. In this experiment the jobs

are heterogeneous; specifically each JMeter thread iteration

creates one job requiring 1 CPU and 1 GiB, two jobs needing

2 CPUs and 2 GiB, and one job requiring 4 CPUs and 4 GiB of

RAM. We intentionally use CPU and RAM requirements only,

because adding battery or geo-location requirements would

reduce the number of eligible nodes and, hence, saturate the

clusters sooner. Each job counts as one scheduling request. We

use thread and timing configurations for JMeter to achieve job

rates between 15.18 requests/sec and 290.36 requests/sec.

C. Results

1) Configuration Tuning: For this experiment we focus

on finding the lowest values for Cp and Np that yield zero

scheduling failures. We aim for the lowest configuration val-

ues, because sampling fewer (globally distributed) clusters and

fewer nodes within each cluster naturally leads to faster exe-

cution times than sampling more clusters and/or nodes. Since

rescheduling attempts are common in distributed schedulers,

we consider a job to have failed scheduling, only after having

attempted rescheduling a total of ten times without success.

Fig. 4 shows the number of scheduling failures as a percent-

age of the total jobs. It is evident that the number of failures

decreases as the number of sampled clusters increases, because

the scheduler has more nodes to choose from. The failures

first reach zero at Cp = 50% and Np = 4%, which is what

we will use for the remaining experiments. At Cp = 60% and

Np = 4%, there is a single failure, but starting at Cp = 70%,

there are no more failures, which is why we have excluded

larger Cp values from Fig. 4 for clarity. The full set of results,

including the number of rescheduling attempts, is available in

our repository. For the remainder of this paper we use the

above mentioned lowest Cp and Np values that resulted in

no failures, i.e., perfect scheduling, within this experiment.

However, future work may investigate dynamic adaptation of

these values, because as the utilization of the clusters increases

or decreases, different Cp and Np values may be needed to

maintain a low number of failures and scheduling conflicts.

2) Scalability with Respect to Infrastructure: This experi-

ment focuses on evaluating the performance of Vela Scheduler

Fig. 4: Scheduling Failure Percentages for Configuration Tuning.

168

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Mean Scheduling Times (ms) at Cp = 50% and Np = 4% for Total
Nodes.

Fig. 6: Sampling Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

on increasing cluster sizes to show its scalability. We examine

execution times of the sampling phase, the commit phase, and

the E2E times, i.e., the time from adding a job to the sampling

queue until a successful end of the commit phase. Since we

noticed a significant latency increase of the MicroK8s API

server under high load (e.g., creating a pod object sometimes

took about 8 seconds), we do not include the interaction with

Kubernetes in the commit and E2E metrics, instead we fetch

node information only from our cache and consider the commit

pipeline successful once we make the commit in our cache,

before we issue a write request to the orchestrator. This allows

us to focus solely on the Vela Scheduler performance.

Fig. 5 summarizes the mean execution times in this ex-

periment, showing a linear increase for all of them. We

observe two different E2E times: one including time spent in

the sampling queue (E2E) and one without sampling queue

time (E2E-no-queue or E2E-nq). When including queuing

time, E2E time increases much faster, albeit still linearly. This

is because as the sampling duration increases, the threads

responsible for step one of 2-Smart Sampling in the scheduler

are blocked for a longer time. Since we have 80 sampling

threads (CPU cores × 10) in the experiment, these threads are

at some point all waiting for responses and thus many of the

1, 000 jobs that arrive in very quick succession need to stay

in the queue longer. This could be alleviated, e.g., by running

multiple concurrent scheduler instances.

More detailed breakdowns of the sampling, commit, and

E2E-nq times are shown in Fig. 6, Fig. 7 and Fig. 8 respec-

tively. For 1K total nodes, sampling takes a mean of 243.3 ms,

Fig. 7: Commit Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

Fig. 8: End-to-End Times (ms), without Sampling Queue, at Cp = 50% and
Np = 4% for Total Nodes.

which is a reasonable time for getting samples from five

globally distributed clusters, considering global packet round

trip times (e.g., the Verizon SLA for a Europe-USA packet

round trip, including intra-Europe and intra-US round trips is

165 ms [28]). Sampling times increase linearly with the cluster

sizes to a mean of 902.1 ms for 20K total nodes. Since the

Cluster Agent performs sampling on its nodes cache, which is

regularly updated in the background, no communication within

the cluster is necessary in this phase. However, as the cluster

size increases, the absolute number of nodes per sample also

increases, hence more processing time is needed for larger

clusters. Commit times increase linearly as well, ranging from

53.1 ms for 1K nodes to 182.8 ms for 20K nodes. Since the

commit phase involves only communication with the target

cluster, conflicts checking for a single node, cache operations,

and possible MultiBind retries, its contribution to the E2E

time is fairly low. E2E-nq times also increase linearly from

297.9 ms for 1K nodes to 1087.1 ms for 20K nodes. This

shows that most of the time is spent in 2-Smart Sampling,

which is reasonable given that all Filter and Score plugins

currently run as part of the sampling pipeline.

The MultiBind overhead when trying to commit to all

m = 3 nodes, compared to succeeding on the first node, varies

depending on the communication latency with the selected

clusters. However, it is evident from the execution time results

that MultiBind provides considerable time savings over the

alternative strategy of rerunning the entire Vela Scheduler

lifecycle on every scheduling conflict, because this would

encompass not only contacting at least one more cluster for

169

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Scheduling Decisions and Throughput.

Req
/

sec

Queuing
Time

(msec)

Scheduling
Decisions/sec

(SDPS)

Throughput
w MultiBind

(jobs/s)

Throughput
no MultiBind

(jobs/s)
54 0 54 54 49
72 1 72 72 62
94 6 95 94 75
99 106 100 98 73

133 30,097 110 107 77
175 35,499 238 96 87
212 35,672 384 99 94
254 32,562 608 116 112
290 30,847 817 134 131

committing, but also running the complete sampling phase

again.

3) Scalability with Respect to Workload: In this experiment

we evaluate all results with focus on the scheduler’s throughput
in jobs per second (jobs/s) and the total number of scheduling
decisions per second (SDPS). We calculate the throughput by

dividing the number of successfully scheduled jobs by the total

time the Vela Scheduler was active. This time is calculated

using the difference between the scheduling finish timestamps

of the last successful job and the first successful job. We

compute this value for every iteration of our experiment and

round it to the next integer value, giving us a throughput

ranging from 15 jobs/s up to 134 jobs/s. The scheduling

decisions per second (SDPS) are the total number number of

scheduling attempts irrespective of their results (i.e., success,

conflict, rescheduling due to no nodes found, or failure due to

too many rescheduling attempts) divided by the total execution

time. The SDPS range from 15 to 817. We stopped our

experiments at this number, because the simulated cluster

resources were getting exhausted, thus, leaving too little space

for scheduling other jobs.

Table III summarizes the results of this experiment. It

shows the request rate generated by JMeter in requests per

second (req/s), the mean queuing time of a job before it

is dequeued by the sampling pipeline, the SDPS, and the

throughput in successfully scheduled jobs per second with and

without MultiBind. The mean queuing time and the SDPS are

good indicators of whether the scheduler is able to keep up

with the incoming workload. Up until 99 req/s the queuing

time is negligible, whereas starting with 133 req/s it suddenly

rises to 30 seconds. Likewise, the SDPS are equal to or

greater than the request rate up until 99 req/s and start lagging

behind at 133 req/s. The throughput with MultiBind remains

approximately equal to the input request rate (the difference

of 1 in the row with 99 req/s is caused by rounding, the

actual difference is less than 0.042), until 133 req/s, where

it starts to fall behind. These values indicate that the single-

instance configuration of Vela in the experiments can reliably

sustain the scheduling of an input workload of approximately

100 req/s. While this is sufficient for our AR use case, Vela

is capable of much higher SDPS, as we discuss in the next

paragraph. The sudden increase in queuing time is due to

the sampling threads waiting for responses from the Cluster

Agents. A maximum CPU usage of 93% in the scheduler

VM indicates that the current thread configuration is ideal and

Fig. 9: Scheduling Conflicts with and without MultiBind.

that the scheduler needs to be scaled out to further increase

performance. Conversely, the Cluster Agents show a peak

CPU usage of approximately 26%, indicating that thread-

level parallelism could be further increased before scaling out,

which we defer to future work.

The SDPS show a significant increase after 133 req/s,

because of the number of rescheduling attempts, due to not

finding suitable nodes. Rescheduling attempts rise from zero

until 99 req/s and 0.04% at 133 req/s to 53.4% at 175 req/s and

75.75% at 290 req/s, resulting in up to 817 total SDPS in the

last case. This is caused by resources becoming scarce in the

cluster, which leads to not finding any suitable nodes during

sampling. However, this shows that a single Vela Scheduler

instance is capable of supporting high numbers of SDPS, while

managing clusters of 20k total nodes.

As previously noted, scheduling conflicts are common in

distributed schedulers. Their occurrence rate should be as

low as possible to avoid rescheduling jobs, which consumes

processing time. In Fig. 9 we examine the percentage of

scheduling conflicts of Vela Scheduler with and without the

MultiBind mechanism. The number of scheduling conflicts

with MultiBind is reported directly by our scheduler, while

the number of conflicts without MultiBind is obtained by

counting all successful commit phases, where MultiBind re-

tried committing at least once. For the first five experiment

iterations there are between zero and two scheduling conflicts

with MultiBind. Then, the rate starts increasing gradually,

but stays below 1% of the total jobs until a throughput of

94 jobs/s, reaching its highest value of 2.76% at 107 jobs/s.

These numbers are very low compared to scheduling without

MultiBind. In this case there are 2.09% scheduling conflicts

already in the first experiment iteration, gradually increasing

up to a maximum of with 28.2% at 107 jobs/s. This clearly

shows the benefit of MultiBind; without it, the scheduling time

would double or triple for up to 25% of the jobs, because

they would need to traverse the Vela Scheduler lifecycle two

or three times, due to rescheduling. Altogether the numbers

show very promising results, with Vela Scheduler having

linear scalability and the MultiBind mechanism being a great

improvement over a simple rescheduling on conflict approach.

VI. CONCLUSION

In this paper we have presented Vela, a globally dis-

tributed, orchestrator-independent scheduler for the Edge-

170

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

Cloud continuum with a 3-phase scheduling workflow. Its 2-

Smart Sampling mechanism delegates sampling to globally

distributed clusters, freeing the scheduler from communicating

with nodes directly, thus, reducing latency. By considering the

requirements of a job during sampling, the clusters produce

meaningful samples that only contain nodes that are capable of

hosting the job, thus reducing sample wastage and keeping the

sample size small. The MultiBind mechanism greatly reduces

scheduling conflicts by retrying committing a job to the second

or third best suitable node, if the commit to a previous one

fails, which significantly increases scheduler throughput. We

have evaluated Vela Scheduler on a testbed with 10 clusters

with up to 20k simulated nodes, showing its scalability.
As future work we intend to add more plugins to the sched-

uler’s pipelines to add awareness of Service Level Objectives,

such as network requirements, and awareness of serverless

workflows as described in [40]. Furthermore, we plan to imple-

ment AI-based sampling strategies that leverage information

on the previous execution of similar jobs to produce even

better samples and we want to further improve the scalability

of our approach by increasing sampling performance and

introducing sharding into the Cluster Agents.

ACKNOWLEDGMENT

The authors thank Vı́ctor Casamayor Pujol from the Dis-

tributed Systems Group, TU Wien for plotting the 3D graph.

REFERENCES

[1] M. Schwarzkopf, “The evolution of cluster scheduler architectures,”
2016. [Online]. Available: https://www.cl.cam.ac.uk/research/srg/netos/
camsas/blog/2016-03-09-scheduler-architectures.html

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems -
EuroSys ’15, L. Réveillère, T. Harris, and M. Herlihy, Eds. New York,
New York, USA: ACM Press, 2015.

[3] The Kubernetes Authors, “Scheduling framework — kubernetes,” 2021.
[Online]. Available: https://kubernetes.io/docs/concepts/scheduling-
eviction/scheduling-framework/

[4] Docker Inc., “Scheduler design,” 2017. [Online]. Available: https:
//github.com/docker/swarmkit/blob/master/design/scheduler.md

[5] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 11). Boston,
MA: USENIX Association, 2011.

[6] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA:
Association for Computing Machinery, 2013.

[7] E. Saurez, H. Gupta, A. Daglis, and U. Ramachandran, “Oneedge: An
efficient control plane for geo-distributed infrastructures,” in Proceedings
of the ACM Symposium on Cloud Computing, ser. SoCC ’21. New York,
NY, USA: Association for Computing Machinery, 2021.

[8] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: Association for
Computing Machinery, 2013.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for
cloud-scale computing,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, 2014. [Online]. Available: https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/boutin

[10] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
scheduling speed and quality in large shared clusters,” in Proceedings of
the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15. New
York, NY, USA: Association for Computing Machinery, 2015.

[11] Y. Feng, Z. Liu, Y. Zhao, T. Jin, Y. Wu, Y. Zhang, J. Cheng,
C. Li, and T. Guan, “Scaling large production clusters with partitioned
synchronization,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, 2021. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/feng-yihui

[12] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13. New
York, NY, USA: Association for Computing Machinery, 2013.

[13] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil,
G. M. Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga,
“Mercury: Hybrid centralized and distributed scheduling in large
shared clusters,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association, 2015.
[Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/karanasos

[14] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015. [Online]. Available: https://www.usenix.org/conference/atc15/
technical-session/presentation/delgado

[15] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau,
“Ondisc: Online latency-sensitive job dispatching and scheduling in
heterogeneous edge-clouds,” IEEE/ACM Transactions on Networking,
vol. 27, no. 6, pp. 2472–2485, 2019.

[16] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[17] N. Potu, C. Jatoth, and P. Parvataneni, “Optimizing resource scheduling
based on extended particle swarm optimization in fog computing en-
vironments,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, 2021.

[18] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and collective
deep reinforcement learning for computation offloading: A practical
perspective,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 5, pp. 1085–1101, 2021.

[19] T. Pusztai, F. Rossi, and S. Dustdar, “Pogonip: Scheduling asynchronous
applications on the edge,” in 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), 2021.

[20] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 3, pp. 940–954, 2022.

[21] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding,
and M. Daneshmand, “A survey on the metaverse: The state-of-the-
art, technologies, applications, and challenges,” IEEE Internet of Things
Journal, 2023.

[22] B. Sedlak, I. Murturi, and S. Dustdar, “Specification and operation
of privacy models for data streams on the edge,” in 2022 IEEE 6th
International Conference on Fog and Edge Computing (ICFEC), 2022,
pp. 78–82.

[23] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching lan speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017, pp. 629–647. [Online]. Available: https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

[24] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
2019.

[25] The Kubernetes Authors, “Considerations for large clusters,” 2023-01-
12. [Online]. Available: https://kubernetes.io/docs/setup/best-practices/
cluster-large/

[26] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Comput. Surv., vol. 55, no. 7, 2022.

171

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

[27] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M. Fumarola,
B. Huang, K. Chaliparambil, A. Suresh, Y. Chen, S. Heddaya et al.,
“Hydra: a federated resource manager for data-center scale analytics,”
in 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), 2019.

[28] Verizon, “Ip latency statistics,” 2023. [Online]. Available: https:
//www.verizon.com/business/terms/latency/

[29] S. Nastic, T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, D. Vij, and
Y. Xiong, “Polaris scheduler: Edge sensitive and slo aware workload
scheduling in cloud-edge-iot clusters,” in 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[30] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith,
S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang, “Polaris scheduler: Slo-
and topology-aware microservices scheduling at the edge,” in 2022
IEEE/ACM 15th International Conference on Utility and Cloud Com-
puting (UCC), 2022.

[31] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, 2020.

[32] Santos José, Wauters Tim, Volckaert Bruno, and De Turck Filip,
“Towards network-aware resource provisioning in kubernetes for fog
computing applications,” in 2019 IEEE Conference on Network Soft-
warization (NetSoft), 2019.

[33] Zhao Hailiang, Deng Shuiguang, Liu Zijie, Yin Jianwei, and Dustdar
Schahram, “Distributed redundant placement for microservice-based
applications at the edge,” IEEE Transactions on Services Computing,

vol. 15, no. 3, 2022.
[34] Apache Software Foundation, “Powered by mesos: Organizations

using mesos,” 2022. [Online]. Available: https://mesos.apache.org/
documentation/latest/powered-by-mesos/

[35] K. Karanasos, A. Suresh, and C. Douglas, “Advancements in yarn
resource manager,” in Encyclopedia of Big Data Technologies, S. Sakr
and A. Zomaya, Eds. Cham: Springer International Publishing, 2018,
pp. 1–9.

[36] The Apache Software Foundation, “Apache hadoop 3.3.3: Fair
scheduler.” [Online]. Available: https://hadoop.apache.org/docs/stable/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html

[37] ——, “Apache hadoop 3.3.3: Capacity scheduler.” [Online].
Available: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html

[38] Jing Hui Alex Neo and Lee Bu Sung, “Epsilon: A microservices based
distributed scheduler for kubernetes cluster,” in 2021 18th International
Joint Conference on Computer Science and Software Engineering (JC-
SSE), 2021.

[39] P. Huang, Y. Bai, F. Li, X. Ding, Q. Chen, D. Vij, Du Peng, and Y. Xiong,
“Arktos: A hyperscale cloud infrastructure for building distributed
cloud,” in 2022 IEEE/ACM 15th International Conference on Utility
and Cloud Computing (UCC), 2022.

[40] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A
serverless computing fabric for edge & cloud,” in 2022 IEEE 4th
International Conference on Cognitive Machine Intelligence (CogMI),
2022, pp. 1–12.

172

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 04,2023 at 14:15:18 UTC from IEEE Xplore. Restrictions apply.

