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Abstract—We present an orchestration scheme for Deep Neural
Network (DNN) model serving, capable of computation dis-
tribution over the device-to-cloud continuum and low-latency
inference. Our system allows automated layer-wise splitting of
DNN structures and their adaptive distribution over compute
hosts, providing an execution environment for collaborative
inference. Model deployment and its self-adaptation at runtime
are implemented by optimization algorithms supported in a plug-
in manner. These follow service and infrastructure provider
criteria and constraints, expressed via well-defined interfaces.
Our framework can serve diverse neural architectures, including
DNNs with early exits, with zero to minimal modifications.

I. INTRODUCTION

Deep Neural Networks (DNNs) have proven to be a potent

tool for large-scale data analytics. Advances in hardware

have spurred the design of deeper and more powerful DNN

architectures which enabled their application for learning tasks

in traditionally complex domains such as image classification,

video analytics, and speech recognition.

Due to the limited computational capacity of end-user or IoT

devices, DNNs are typically operated as centralized services

in remote cloud data centers that provide the needed compute

resources. This design conflicts with application scenarios that

depend on a high degree of responsiveness or lack the required

network bandwidth for streaming large amounts of data to the

cloud. In contrast to such a monolithic service design, edge

computing follows a more distributed approach that moves

data processing closer to the end-devices where data originate.

The layered architecture of DNNs inherently lends itself to

be mapped over such a distributed compute hierarchy. This

can help balance load and reduce inference latency. Recent

research [1] also proposes new architectures that facilitate the

distributed execution of DNN inference: Instead of using only

one classifier at the final network layer, additional side-exit

classifiers are introduced at intermediate layers that allow to

obtain inference results at earlier points in the network.

DNN model serving over a device-to-cloud compute contin-

uum however comes with non-trivial challenges, which are the

focus of this work. These include (i) providing the appropriate

execution environment on-device, at the edge and in the

cloud, for distributed deployment, and zero-touch orchestration

and life-cycle management of DNN model serving, and (ii)

addressing the algorithmic aspects of optimal deployment and

self-adaptation responding to a volatile operating environment.

To this end, we design and implement a full orchestra-

tion framework which allows service providers to deploy

purposely-built (e.g., multi-exit models with built-in support

for our framework) or pre-existing DNNs over hosts with

diverse capabilities, expressing target performance goals such

as minimizing inference latency. Different placement and

orchestration strategies can be activated to distribute DNNs

layer-wise, supported as plugins and executed by a host

runtime environment. The latter also instruments infrastructure

monitoring, which feeds critical input to the aforementioned

orchestration strategies, allowing to optimize for diverse crite-

ria (e.g., inference latency, workload distribution and fairness),

subject to infrastructure- and service-level constraints.

The state of the art either allows a single DNN split

point at a time and does not explicitly consider early-exit

architectures [2]–[4], or assumes the full model is available

both on-device and on a remote server [2], [5], or does not

focus on system support for DNN orchestration [3], [6]–[8].

II. SYSTEM ARCHITECTURE

Model partitioning: We provide a programming model build-

ing on top of PyTorch which allows developers to compose

and train neural network architectures, potentially with early

exits, and define distributable layers. A DNN produced this

way can be passed on by the service provider to a controller,

which implements the core of our orchestration logic and

which takes care of the distribution of its layers to compute

hosts. We also provide an automated model slicing mechanism

that operates on a pre-trained, vanilla PyTorch model (in

particular, on TorchScript,1 an intermediate representation of

serialized PyTorch modules), scans its computational graph,

and automatically identifies split points. The processed model

can be submitted for serving and is treated by the controller

in an identical manner as the ones built using our developer

facilities. Therefore, our system can orchestrate existing, pre-

trained models, without modifications.

Runtime environment: Each compute node implements a

runtime that allows to receive DNN layers, perform the

respective computations, communicate with other nodes in the

compute hierarchy, trigger inference, and perform monitoring.

Communication tasks are carried out over gRPC. This includes

exchanging serialized intermediate results of DNN inference

between layers. Each host periodically measures the available

bandwidth and latency towards other known hosts. This infor-

1https://pytorch.org/docs/stable/jit.html
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mation is also updated during inference, when the node has to

exchange information with nodes hosting other DNN layers.

Controller: Nodes initially register with the controller, which

then contacts them periodically to determine their availability

and resource state. It maintains a latency and bandwidth matrix

with the respective metrics for any pair of compute nodes,

which it updates based on the information reported by node

runtimes. It exposes both southbound and user-facing APIs;

the latter are used as an entry point to deploy a DNN model.

Scheduler: This component executes the key orchestration

functionality. It contacts the controller in regular intervals to

obtain the current state of the compute hierarchy. Upon startup,

an offline profiling step is performed to estimate the resource

requirements of the DNN layers. Based on that information,

it then repeatedly computes a placement and deploys each

DNN layer to its assigned compute host. From a software

architecture perspective, we provide a plugin framework for

implementing different deployment, resource allocation, and

adaptation strategies. This way, different optimization goals

can be pursued. Our system readily supports a number of them.

Layer placement strategies: When a model is provided to

the scheduler for serving, the latter needs to decide on an

appropriate placement of layers over nodes in a compute

hierarchy. This decision can be driven by different criteria. We

briefly describe latency-driven strategies, but others are also

possible, such as those aiming to balance inference load fairly

across nodes or minimize energy consumption. We define

inference latency as the end-to-end latency from submitting

input data to receiving an inference result. This is broken down

to communication- and computation-related latency. Commu-

nication latency is determined by the underlying network links

and the volume of data that need to be exchanged between

nodes hosting different DNN layers. Computation latency

depends on the computational requirements of each inference

task, and the capabilities and load of the processor executing

it. A latency-driven strategy aims to determine the appropriate

DNN split points and deploy layers of the DNN on hosts

to minimize inference latency, subject to capacity (node and

network link) and layer ordering constraints. To acquire the

necessary input to the algorithm, we combine the following

information: (i) the computational requirements per layer (in

FLOPS) and the incurred traffic volume, for which we have

implemented DNN profiling facilities, (ii) the computation

capabilities (in FLOPS) of different compute node hardware

models, which we acquire either via existing studies [9] or

via offline benchmarking (for new devices), (iii) monitoring

information, and (iv) the architecture of the DNN to deploy.

When the number of potential host nodes is small, this

problem can be solved to optimality fast. However, when

deploying very deep neural architectures over large-scale in-

frastructures with many user-controlled nodes and deep fog

computing hierarchies, deriving the optimal DNN layer dis-

tribution is computationally expensive. We formulate different

variations of the optimization problem, shown to be NP-hard,

and implement alternative algorithms to solve it, which trade

solution quality for execution time.

Triggering self-adaptation: The execution cost of DNN

(re)deployment is important when considering runtime adap-

tations (e.g., cross-host layer migration). Currently, a full

re-deployment takes place after periodic monitoring by the

controller, which might fire adaptation triggers when the

conditions change, or when an updated model is available. We

target more sophisticated self-adaptation schemes, e.g., using

reinforcement learning [10], for future work.

III. EXPERIMENTAL RESULTS

Fig. 1 shows the performance of exemplary placement

strategies on GoogLeNet [11], a 22 layers deep Convolutional

Neural Network. For small-scale problems, the optimal de-

ployment can be derived in acceptable time using CPLEX,

but larger compute hierarchies induce significant compute and

memory resource requirements. A genetic algorithm (without

significant tuning) demands less resources for large problem

instances, with a reasonable loss in solution quality. A cloud-

only solution incurs significant inference latency.
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(a) Execution time.
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Fig. 1: Solving the distributed DNN deployment problem.

IV. CONCLUSION

We provided a brief overview of our orchestration frame-

work for distributed DNN model serving over device-to-cloud

compute infrastructures. Various open issues are currently

under our study, with the design of low-overhead algorithms

and mechanisms for runtime self-adaptations topping our list.
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