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Abstract—Edge AI and Human Augmentation are two ma-
jor technology trends, driven by recent advancements in edge
computing, IoT, and AI accelerators. As humans, things, and
AI continue to grow closer together, systems engineers and
researchers are faced with new and unique challenges. In this
paper, we analyze the role of edge computing and AI in the cyber-
human evolution, and identify challenges that edge computing
systems will consequently be faced with. We take a closer look
at how a cyber-physical fabric will be complemented by AI
operationalization to enable seamless end-to-end edge intelligence
systems.

Index Terms—edge AI, human augmentation, edge intelligence,
edge computing, AI systems, AI operations

I. INTRODUCTION

Edge AI and Human Augmentation are currently considered

to be two of the major emerging technology trends [1], which

we attribute to three key technological developments. First, the

increase in data availability, consolidated computing power, as

well as the advancement of machine learning (ML) techniques

have fostered the development of AI supported applications

that continue to transform virtually every aspect of our daily

life. Second, the increasing number of Internet connected

sensors and smart things embedded in our surroundings, i.e.,

the Internet of Things (IoT), and wearable smart devices,

generate a wealth of opportunities to create many types of

applications that can enhance our everyday experience and

quality of life. Third, the growing friction between cloud-based

AI solutions, and the need of many applications to analyze

high volume and high velocity data streams in near real-time

[2], [3], has pushed hardware developers to create miniaturized

AI accelerators that promise to bring AI to the extreme edge.

It is clear that edge computing [4]–[6] will play a fundamen-

tal role in reconciling these developments. Not only are there

physical limits to what cloud-based solutions can deliver [6],

[7], there are legitimate concerns about privacy and trust, in

particular as we become more dependent on AI. Furthermore,

as we move towards artificial general intelligence (AGI) or

“strong AI”, isolated AI programs will become increasingly

interconnected and begin to collaboratively solve increasingly

complex tasks [8]. While we can bootstrap such a system from

the cloud, a decentralized model where AI agents make use of

edge resources is likely to follow. We can see that intelligence

will gradually be pushed from the cloud closer to the edge.

In this new paradigm of Edge Intelligence, where a cyber-

physical fabric not only provides raw data, but can intelligently

act on it, edge computing is faced with some unique challenges

from the AI systems problem space. The goal of this paper is to

better understand these challenges. To that end, we first outline

our vision of the convergence of humans, things and AI. Then,

we take a systems perspective on the challenges along two

dimensions. First, we discuss the underlying infrastructure and

coordination mechanisms required for edge intelligence. Con-

necting the cyber-physical IoT, and combining general purpose

compute infrastructure with AI accelerators for edge-based

utility computing will require new coordination mechanisms.

Second, we discuss operationalizing edge intelligence, that is,

enabling end-to-end platforms and workflows to manage the

edge AI application life cycle.

II. CONVERGENCE OF HUMANS, THINGS AND AI

The development of AI has taken spectacular leaps over

the past decade. The increase in data availability, computing

power, as well as the advancement of machine learning (ML)

techniques and specialized AI hardware, has moved us into

the fast-lane towards a society that is shaped by AI in all its

aspects. Even in problem areas long thought to be unattainable

without human reasoning and intuition, AI has achieved super-

human capabilities, as impressively demonstrated by Jeopardy

winning IBM Watson [9] or Google DeepMind’s AlphaGo

[10]. Although researchers and thinkers seem divided into AI

optimists and pessimists, one things seems clear. The optimal

strategy for us humans, for whatever future awaits us with

the development of AI, is that we continue to foster a close

partnership with AI. This partnership seems particularly im-

portant as the number of Internet connected sensors, devices,

and autonomous agents that can sense and manipulate our

physical surroundings continues to grow. A cyber-physical

fabric of tomorrow that permeates our environment, together

with the unprecedented amount of computing power and

digitally persisted knowledge, is an opportunity for human

cognition to evolve beyond its biological limits.

We take a step back and discuss the evolutionary steps of

the cyber-human, as illustrated in Figure 1. The Internet allows

us to store and access information at immense scales, and

smartphones have become our main gateway to this world.
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Fig. 1. The currently observable evolution of the cyber-human

For many, the smartphone is already an extension of their

self, representing the first step in the cyber-human evolution.

Typing in a search term into your smartphone and parsing the

information it displays takes us a long time compared to the

bandwidth available to a superhuman AI. Similarly, we control

our smart things via manual gateways, such as the apps on

our phone, at a very low bandwidth. With the development of

increasingly sophisticated smart devices such as mixed reality

smart glasses, combined with augmented reality (AR) and AI

techniques, step two has nudged humans and things closer

together [11]. AI applications help us or our cars to recognize

objects and overlay our field of vision with contextual infor-

mation. As edge devices become more intelligent, and more

and more sensor data in our surroundings can be aggregated,

processed and served via edge resource at high bandwidth, step

three will fully realize a transparently immersive experience.

However, for the seamless augmentation of human cognition,

the bandwidth requirements will be even higher. Imagine a

world in which we perceive and interact with the cyber-

physical surroundings via neural-interface connected gateways

and AI assisted control mechanisms. The requirements of

step four in the cyber-human evolution are fundamentally

challenging our way of building systems.

An important aspect to highlight in this evolution is the trend

towards artificial general intelligence (AGI), i.e., the develop-

ment of AI that can solve intellectual tasks that a human being

can [12]. From a system’s perspective, it is likely that AGI

will not be achieved by a single method, but rather a context-

sensitive ensemble of different task-specific AI agents that

permeate our environment via an underlying computational

substrate [13]. Some projects that work towards AGI are based

on the idea of an interconnected and self-governing network

of AI solution agents that can cooperate to solve increasingly

more complex problems as the network grows [8]. In such

a system, edge computing will play a fundamental enabling

role. Compared to the cloud, the edge can provide trust, AI

specialized hardware in close proximity to data, and thereby

handle the immense bandwidth requirements.

A. How Edge Intelligence can increase the Fidelity of our
Perception of Reality

Augmenting human cognition with computation is an idea

that dates back decades and has been explored by science-

fiction writers and researchers alike. In 2004, Satyanarayanan

described a wearable cognitive assistance use case that he said

at the time was “clearly science fiction” [14], but was made a

reality almost ten years later [11]. This development is the

transition between step two and three in our cyber-human

evolution timeline. Today, products such as Google Lens1

attempt to bring these systems to the masses by integrating

cloud-based visual analytics AI systems with personal edge

devices. Going a step further, consider a high-fidelity person-

alized visual discovery assistant. You use your smartphone

to visually discover things that your assistant knows are

important to you. By pointing your camera along a shopping

street, the application recognizes streets, buildings and objects,

and displays an AR overlay with retailers that have offers that

you may be interested in, restaurants that have food you like,

or points of interest you may want to visit, combined with real-

time information such as the number of guests currently in a

restaurant or shop. With current state-of-the art technology, we

would realize such applications via a direct link between the

camera app and the cloud.
There are however use cases where momentary information

is important, such as high-speed manufacturing lines, or virtual

assistants of fast-paced interactions, like navigating through

a smart space, where cloud-based analytics become infeasi-

ble. There are numerous other wearable cognitive assistance

applications that require such momentary information [6].

These scenarios focus mostly on analyzing the video stream

of a camera, and annotating it with contextual information.

Future applications will move beyond isolated sensing, but

synthesize data from many sources that cannot be streamed

into the cloud. Consider a cognitive assistance application

that guides you through a public space shared with other

people and autonomous agents such as self-driving cars and

mobile robots. Suppose each agent broadcasts its sensor data

(gyroscope, accelerometer, location, etc.). Edge resources ag-

gregate sensor data sources in close proximity to create a

hyper-reality overlay to give you a personalized experience

and guiding you through the space. As fidelity of this overlay

depends on available proximate resources and capabilities, an

approach is needed for a seamless edge/cloud AI system that

can transparently trade off accuracy and computation, where

accuracy increases with computational power. Suppose these

applications could be served by a continuum of edge resources

and the cloud. If models are served via edge resources,

1https://lens.google.com/
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fidelity of recognition can be much higher, because models

can be trained for specific domains and then deployed in

close proximity of where they are required. Data can then

be streamed instead of chunked (e.g., like Google Lens sends

individual images to the cloud), which can further increase

fidelity and responsiveness of an AR system.

Step four in the cyber-human evolution will confront re-

searchers with a multitude of challenges over the next decade.

Engineering and managing a system to allow the pervasive

and seamless integration of all these applications at scale

into our everyday lives requires a new way of thinking about

infrastructure and processes, beyond our current understanding

in pervasive computing, in particular as AI agents become

more involved and applications co-evolve with ML models.

Deep neural networks can be pre-trained on massive datasets in

the cloud, localized data can be used to refine models the edge

using transfer learning, and applications can then be deployed

on edge resources optimized for inferencing. We discuss this

in depth in Section IV.

B. The AI Enhanced Smart City

Smart cities provide a number of exciting opportunities for

edge computing [15]. In fact, we believe that edge intelligence

will be the key to fully connect the cyber-physical city with

its cyber-human inhabitants. Smart public spaces understand

situations by interpreting activity. Many dispersed cameras can

be used to create data analytics models (like crowd behavior

[16], flooding or fire spreading models, or ecosystem/plant

monitoring [17]). An AI could use weather data together with

camera streams to determine road driving conditions, and put

that information in context with historical data to assess the

immediate risk of accidents. Autonomous vehicles can in turn

use this information to adapt their driving behavior. In the case

of accidents, a smart city system would react by immediately

informing authorities, dispatching first responders, and re-

routing traffic. Air quality sensors distributed throughout the

city can be used to track development and spread of air

pollution. A number of similar use cases with different sensor

and analytics requirements could be conceived. What these

use cases illustrate is the common need for real-time, location-

based data about urban environments and activity at different

levels of fidelity. Moreover, appropriate edge resources are

necessary to both process and store data close to where

they are generated [18]. Sending data to the cloud to do

inferencing on ML models deployed as web services is not

feasible in many cases, in particular as the required perception

fidelity increases. Researchers and practitioners will therefore

be challenged to reconcile smart-city scale sensing capabilities

and compute infrastructure with scalable deployment of AI

applications to the edge.

C. Democratized, Trusted, and Explainable AI

Not everyone has the same access to data and ML capa-

bilities to train effective models from scratch. However, if

someone wants to create an application that combines, say,

speech recognition, emotion interpretation, and a conversa-

tional system, they could do so using of-the-shelf models and

refining them with their domain-specific data [19]. Suppose

a platform where users can provide the data they have,

specify a set of goals for their application, and a system in

the background applies a pipelines of steps to recommend

necessary models, do hyperparameter tuning, and then deploy

the created models automatically. This is one of the main

goals of AutoML research [19], and there are tentative re-

sults in realizing such platforms [20]. It is clear that model

marketplaces and AutoML techniques (automated data prepa-

ration, transfer learning, model selection [21], etc.) are key

mechanisms for democratizing AI. Engineering these systems

in a centralized way in the cloud seems the obvious course

of action. However, often times, data required for training

models may be sensitive and not allowed to leave a certain

context, such as a companies premises or a network boundary.

Similarly, infrastructure for processing the data may have to be

certified by some governmental organization, as is the case, for

example, in many e-health use cases where sensitive patient

data are involved and data processing is audited. In such

scenarios, hybrid edge/cloud computing infrastructure plays

a significant enabling role.

Another key aspect of AI is trust and explainability [22].

Models are rarely used in an isolated and static environment.

Instead, concept drift causes model performance to degrade

[23], models may be vulnerable to adversarial attacks [24], or

exhibit bias. It is important that we can trust AI, particularly

when we employ it scenarios that can have an impact on our

health or security. In these cases, model vulnerabilities need

to be found and fixed quickly, for example when confidence

drops below a given threshold. Moreover, when AI makes

predictions in such scenarios, it is crucial that we are able

to trace and explain these predictions, even once models have

been replaced with updated versions [25]. In later sections, we

discuss how trust and explainability are particularly challeng-

ing in edge intelligence.

D. Key Ingredients for Edge Intelligence

From our discussion and the presented use cases, we iden-

tify two orthogonal elements that play key roles in realizing

edge intelligence systems.2

a) Computational Fabric: dispersed resources will allow

the training, monitoring, and serving of models. The hetero-

geneity of applications and models will require flexible and

modular infrastructure, and the scale of the infrastructure will

require intelligent operations mechanisms (AI for operations).

b) Operationalization: automated AI application lifecy-

cle management will have to move beyond the currently pre-

dominant cloud-based view. Current mechanisms will have to

be extended and synthesized with edge computing techniques

to provide scalable operationalization of edge intelligence

(operations for AI).

2Vital elements of edge intelligence are, of course, specific ML algorithms
and techniques. As we take a broader systems perspective, specific adaptations
of ML algorithms for edge computing are out of scope of this paper.
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In the remainder of the paper, we discuss these two dimen-

sions and the associated challenges.

III. A FABRIC FOR EDGE INTELLIGENCE

To realize the vision we have outlined, we identify the

following critical components for an edge intelligence fabric:

1) a sensing substrate, 2) a network of edge computers with

modular AI capabilities, and 3) intelligent orchestration mech-

anisms to reconcile distributed and decentralized infrastruc-

ture. In particular, edge computers will be made up of different

types of computing platforms. General purpose computing

will be complemented by specialized HPC and AI optimized

hardware, federated to create a powerful, high-density multi-

purpose compute units. Self-learning edge middleware will

learn how to optimally schedule workloads depending on

the type of workload and available capabilities, which is

particularly important for operationalized AI workloads, as we

will see in the next section. Hierarchies of connected clustered

edge computers will form the backbone, and coordination

mechanisms will weave these hierarchies together to a fabric

that enables seamless edge intelligence. This highly dynamic

and heterogeneous environment raises many challenges, in

particular for middleware architectures and operations mecha-

nisms. With the vision and use cases we have outlined in mind,

we discuss in more detail each component and associated

challenges.

A. Sensing Substrate & Sensor Data as a Service (SDaaS)

Implementing use cases such as smart public spaces on

smart-city scale requires a large number of different sensing

capabilities [15]. Having individual companies develop and

deploy specific sensors for specific use cases seems inefficient

in the long term. Instead, city planners will have a high stake in

providing application developers with a sensing infrastructure

to make use of smart city data. It seems much more likely that

an initial set of smart city and IoT use cases will bootstrap a

general set of requirements for sensor capabilities, which will

then trigger a deployment at increasingly larger scale. Similar

to a smartphone that has a wide array of sensors installed

giving developers lots of opportunities to create novel and

creative applications. Not all applications use all sensors, in

fact, some usage behavior may not require specific sensors at

all. They are there nonetheless, because they provide potential

utility for future apps. It is reasonable to assume that a similar

model will work well for smart-city scale edge intelligence.

Once a family of edge intelligence application emerges, and

we understand the broader range of requirements, companies

can start building arrays of sensors to support applications

with sensing capabilities, hardware and potential utility. In

fact, there already projects, such as the Array of Things3, that

can work as substrate for providing Sensors Data as a Service

(SDaaS) [26].

We foresee several challenges for edge computing in this

model. Given the large number and dynamic and mobile nature

3https://arrayofthings.github.io/

of both publishers and subscribers of sensor data [27], and

the stringent QoS requirements of edge intelligence use cases,

we will be forced to rethink centralized messaging services

such as Amazon AWS IoT or Microsoft Azure IoT Hub [28].

Novel messaging systems, such as osmotic message-oriented

middleware [29], can help facilitate transparent access to this

geographically dispersed network of sensors and actuators,

even under highly dynamic node behavior. Furthermore, it is

unlikely that sensing infrastructure will be static and managed

by a single central authority. Consider the integration of

cognitive assistance devices with self-driving cars and smart

traffic systems. Applications require access to public sensor

data, such as statically deployed arrays of sensors; dynamic

sensor data from cars; as well as personal sensor data, such

as location and movement of pedestrians. How can these

different static and dynamic data sources be reconciled to

let AI applications make full use of them? Moreover, while

AI inferencing mostly works on real-time data in an event-

based way, the majority of training techniques require batch

access to labeled data. Storing and providing scalable access

to these highly dispersed data is a fundamental challenge for

edge intelligence.

B. Modular AI Capabilities

AI workloads benefit significantly from specialized hard-

ware. GPU clusters dominate the cloud-based ML landscape,

but the same type of GPUs used in these clusters, are im-

practical for many edge resources due to their size and power

requirements (a popular example is the NVIDIA Tesla K80

that has a TDP of 300W). Instead, a new family of AI

accelerators have emerged that promise to fully enable AI

for resource constrained edge devices. Google has devised the

Edge TPU4, an application-specific integrated circuit (ASIC)

that can enable, for example, high-fidelity, real-time vision

applications running on a Raspberry Pi. A number of other

prominent examples include Microsoft BrainWave, which uses

field-programmable gate arrays (FPGAs) [30]; Intel Neural

Compute Stick [31]; or Baidu Kunlun [32].

These are exciting developments for edge AI, and the

benefits are clear: AI accelerators tend to be small and cost

efficient, thereby making it feasible to fit them easily on edge

devices, such as SBCs connected to cameras, smart phones, or

similar compact or mobile devices. However, as the variety of

AI accelerators increases, so does the heterogeneity of the edge

fabric, thereby introducing additional complexity for platform

abstractions. Moreover, because ASICs are as such designed

for specific algorithms, hardware vendors also control what

algorithms and platforms we can use, and potential vendor

lock-ins pose a significant threat to the democratization of AI.

While we see pluggable AI capabilities for edge computers as

the way forward in enabling a rich edge intelligence fabric,

it is clear that this requires the continued fostering of open

standards and robust platform abstractions. It is particularly

important that developers can trust the “write once, deploy

4https://cloud.google.com/edge-tpu/
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Fig. 2. Multi-purpose edge computer with self-adaptive middleware that learns
how to efficiently schedule workloads

anywhere” philosophy, and that a programming models, such

as a Function as a Service (FaaS) style model, hide the hetero-

geneity of the underlying edge resource [3]. Not only is this

crucial for efficient development of AI applications, it is also

a critical requirement for transparent resource provisioning,

and to enable a seamless continuum of edge resources, where

coordination middleware can transparently make trade-offs

between fidelity, accuracy and computational costs.

C. Multi-Purpose Self-Adaptive Edge Computers

In contrast to cloud data centers, where the predominant

infrastructure unit is the server computer that consolidates

large amounts of CPU, RAM, and disk space, edge resources

will be much more diverse and provide a variety of com-

putational platforms to support the equally diverse range of

use cases. Edge computing enables many different use cases,

such as data analytics, visual analytics, cyber-physical systems

gateways, or AR/VR support [6]. Highly specialized hardware

platforms, such as high-density , embedded AI hardware, or

FPGAs, will be consolidated to cohesive multi-purpose edge

computers that enable these use cases. However, this extreme

heterogeneity also poses several challenges. At smart city

scale, it is impossible to manually map software services

to the respective platforms. To make efficient use of these

platforms, hardware needs to be grouped into cohesive units of

multi-purpose edge computers. When provisioning resources

for workloads, a provisioning system needs to understand the

capabilities of the underlying resource, as well as the effects

of scheduling specific workloads to specific platforms on the

operational efficiency. For example, scheduling a ML model

inferencing task will be both faster and more energy efficient

on an embedded AI hardware than on a general purpose com-

puting platform. In mobile scenarios that require portability

and reliability, energy efficiency is an additional constraint to

consider [33]. Ideally, a cluster middleware learns at runtime

how to optimally provision resources for given workloads,

learning the trade-offs between energy efficiency, latency, and

accuracy. These self-learning and self-adaptive clusters will

form the infrastructural unit of the edge computing fabric.

D. Edge Coordination Mechanisms

As we have shown, edge computing introduces new chal-

lenges for operations researchers. There is evidence that

methods from cloud operations research, for example for

energy efficiency, may only have limited applicability for

edge computers [33]. Also, it is clear that maintaining a

network of highly dispersed multi-purpose edge computer

clusters introduces additional management and coordination

complexity. We discuss some of the most pressing operations

issues for edge intelligence.

1) Multi Tenancy & Isolation: Applications rarely live in

isolation, and a utility-based edge computing fabric has to

deal with challenges that come with multi tenancy, which

is not as straightforward at the edge as it is in the cloud

[34]. Powerful server computers in data centers allow us to

easily host multiple VM as the unit of isolation. Although

researchers have argued that Cloudlets will simply be VM

hosts closer at the edge [7], we cannot necessarily assume

that all edge resources can provide this level of virtualization.

VMs require a lot of resources and not all edge computers

are powerful enough to provide fully-fledged VM-based vir-

tualization. Because this introduces a break in the edge/cloud

continuum, there are legitimate doubts whether VMs will work

as the predominant form of isolation for edge computing.

Container-based deployment strategies have been recognized

as a more viable solution, as they provide lightweight resource

virtualization and isolation [35]. More recently, Unikernels

have been gaining traction as an alternative way of developing

applications as completely isolated machine images that can

run directly on top of a bare-metal hypervisor [36]. However,

such Unikernels rely on library operating systems, and are

not yet as well understood as containers. Regardless of which

technology will dominate, it is clear that multi-tenancy in

resource-constrained environments (compared to a cloud data

center) is challenging, as the efficient use of resources becomes

more difficult. Security is another important factor. Consider a

system where autonomous AI agents roam through the fabric

to complete specific tasks. It is absolutely crucial that AI

agents are safe from outside tampering and isolated from

interference.

2) Intelligent Scheduling: The highly heterogeneous nature

and massive geographic dispersion of edge resources poses

significant challenges for workload scheduling. Multi tenancy

in combination with a limited number of constrained resources

further exacerbates this problem. In agent-based scenarios,

intelligent eviction or suspend/resume strategies that respect

the requirements of AI agents will be necessary, and call for

sophisticated management mechanisms. Furthermore, latency

and energy-aware scheduling techniques become more difficult

in hierarchical architectures, where the underlying platform’s

operational optimizations must be treated as a black box [33].
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Effectively scheduling workloads to the edge will require

a large number of hard and soft constraints. Performance

evaluations of state-of-the-art scheduling approaches (such as

the Kubernetes container scheduler), exhibit clear scalability

limitations when confronted with a large number of constraints

[37]. We discuss these issues in more detail in Section IV.

3) Proximity & Mobility Awareness: In edge intelligence

scenarios, both software agents and hardware resources can

be dynamic and mobile. Allowing for mobility requires a

good understanding of proximity, s.t., communication latencies

between nodes can be optimized, and privacy policies can be

enforced. Mobility can be particularly challenging for mes-

saging systems that provide message delivery guarantees [27],

[28]. Proximity awareness is therefore a fundamental enabling

mechanism of mobility in edge computing [29]. In networks,

proximity can be distinguished into logical and physical prox-

imity, and both play an important role in edge computing. For

example, physical proximity matters when low-range network

techniques such as BLE are involved, and logical proximity

matters when minimizing round-trip time. Classic techniques

as used by Content Delivery Networks (CDN), such as using

anycast DNS and latency monitoring, are challenged in highly

dynamic environments. Also, simple monitoring techniques,

e.g., via network latency, can produce undesirable strain on

the network and become difficult to manage [28]. Besides

network latency or logical distance, the application’s response

time should also be factored into proximity. For example, a

message broker in close proximity with a that exhibits high

response time because of congested queues can behave as if

it were much farther a way. We believe that new methods

synthesized from, for example, advanced techniques of interest

management, as well as runtime application monitoring, will

be necessary for enabling proximity and mobility awareness

for edge intelligence at scale.

IV. OPERATIONALIZED EDGE INTELLIGENCE

Delivering AI applications involves complicated workflows

where data scientists and software engineers collaborate to

create and deploy ML models underlying the application [25],

[38], [39]. Data is curated and explored, feature engineering

and training is performed to create ML models, which are

subsequently deployed, monitored, and updated during their

lifetime. As edge intelligence transitions from individual and

isolated prototypes into interconnected production-grade de-

ployments, the ad-hoc way of building and deploying ML

models and AI applications will become impractical. Instead,

edge AI operations platforms will fully automate the end-

to-end process and provide a closed feedback loop between

runtime metrics of deployed models and the workflows that

create them [25]. Such platforms are already a reality for

cloud-based AI workflows as we will show. In the case of

edge AI, however, the process becomes much more involved.

Heterogeneous resource capabilities, data locality, scalability

issues, etc. have to be considered when automating work-

flows. In this section, we first briefly summarize existing

knowledge on AI operationalization. We will then analyze

Fig. 3. AI lifecycle pipeline with a rule-based trigger e that monitors available
data and runtime performance data to form an automated retraining loop

different operationalization requirements for edge intelligence,

identify key mechanisms that can facilitate these scenarios,

and then discuss various architectural possibilities and arising

challenges.

A. Operations for AI - Managing the AI Lifecycle

The idea of operationalizing AI has become pervasive

throughout both industry and research [46]. Software engineer-

ing researchers and practitioners have over the past decades

developed a variety of DevOps methods for managing the

software lifecycle. Continuous integration (CI) and delivery

(CD) have become de-facto standards in modern software

development processes. Advanced methods such as A/B test-

ing, or continuous experimentation are also employed more

and more. Only recently have such life-cycle management

techniques and tools for AI applications appeared.

Systems like Uber’s Michelangelo [38], IBM Watson Ma-

chine Learning [47], ModelOps [25], TensorFlow Extended

[39], or ModelHub [48], provide tools and platforms to define

and automate AI pipelines, share data and models, and monitor

runtime performance of models. Similar to a CI pipeline

that, triggered when new code changes arrive, automatically

compiles, tests, lints, and then deploys software artifacts,

an AI pipeline defines a sequence of steps to manage the

AI application lifecycle, from data preprocessing, to model

training, to custom steps such as model compression or robust-

ness checking. Runtime performance of models is monitored

and used to trigger automated retraining, forming closed

continuous retraining loops. Figure 3 shows such a pipeline.

Retraining triggers can be as simple as a weekly schedule, or

a combination of rules, such as detecting concept drift and

monitoring the amount of data available for training. Such

pipelines are not as well understood and not as well supported

as, for example, CI/CD software pipelines. Moreover, most

efforts for AI lifecycle management are focused on both

training and deployment in the cloud, and largely neglect

edge computing characteristics. In particular, it is unclear

how platforms should handle training data that cannot leave

the edge, how to reconcile hybrid edge/cloud infrastructure

for executing pipelines, how to scale deployment of a large

number of ML models to the edge, and how to achieve scalable

runtime monitoring of live models. We further explore these

issues by analyzing existing and novel cloud/edge workflows

for AI lifecycle management.
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TABLE I
OVERVIEW OF AI OPERATIONS WORKFLOWS

Data characteristics Model characteristics Enabling technologies Example use cases

C2C - Training data is centralized
- Massive data sets

- Models are large
- Huge number of inferencing re-
quests need to be load balanced

- Scalable learning infrastruc-
ture [40]
- Data warehousing

- Image search
- Recommender systems

C2E - Training data is centralized
- Inferencing data may be sensi-
tive

- Inferencing may need to happen
in near-real time
- Large number of model deploy-
ments
- Models run on specialized hard-
ware

- Model compression [41]
- Latency/accuracy tradeoff [42]
- Distributed inferencing [43]
- Transfer learning [44]

- Surveillance systems
- Self driving cars
- Fieldwork assistants

E2C - Training data is distributed
- Training data may be sensitive

- Models can be centralized
- Huge number of inferencing re-
quests need to be load balanced

- Decentralized/federated learning
[45]

- Volunteer computing
- Novel Smart City use cases

E2E - Training data is distributed
- Training and inferencing data
may be sensitive

- Inferencing may need to be near-
real time

- Decentralized/federated learning
- Distributed inferencing

- Industrial IoT (e.g., predictive
maintenance)
- Privacy-aware personal assistants
- Novel IoT use cases

B. Edge Intelligence Operationalization

Systems like IBM AI OpenScale5 make use of cloud-based

technologies to enable end-to-end AI operationalization in the

cloud. Cluster computing systems such as Apache Spark, and

clustered deep learning infrastructure operate on data persisted

in cloud-based object storages [40], and models are deployed

as web services on a cloud-based hosting platform from which

they can be easily monitored. Companies are driving efforts to

integrate edge resources into this process [49]. Google Cloud

IoT Edge6, Microsoft Azure IoT Edge7, or Amazon AWS

Greengrass8 leverage edge resources to serve ML models, but

data preprocessing, model training, and message brokering is

still mainly performed by the cloud. To fully realize end-to-

end edge intelligence workflows we need to make full use of

edge resources not only for serving models, but for all steps

within the AI lifecycle. With this in mind, we identify five

different AI lifecycle workflows, from training to serving.

1) Workflows:
a) Cloud to Cloud: This is the status quo as supported

by cloud-based AI platforms such as Microsoft Azure ML,

Google Cloud prediction API, or IBM AI OpenScale. Models

are trained in centralized training clusters using data aggre-

gated in cloud-based storage silos. Models are then served on

cloud resources (e.g., as web services in VMs).

b) Cloud to Edge: This workflow integrates edge re-

sources as deployment targets. It is useful for use cases where

training models requires a lot of computational power, and

there are massive amounts of data involved (e.g., training

classifiers on ImageNet), but inferencing must be fast (e.g,

real-time object detection), or inferencing data may not leave

the edge (e.g., patient data). Google, Microsoft, Amazon and

others are driving effort with their enterprise-grade edge AI

5https://www.ibm.com/cloud/ai-openscale
6https://cloud.google.com/iot-edge/
7https://azure.microsoft.com/en-us/services/iot-edge/
8https://aws.amazon.com/greengrass/

platforms, which are still largely in alpha or beta stages of

development.

c) Edge to Cloud: This workflow makes use of edge

resources to train data, and serves models in the cloud. The

workflow may be useful for application where training data is

massively distributed (such as in mobile computing scenarios

[45]), training data may not travel to the cloud, or training

needs to be performed close to data sources. Yet, serving

models requires either massive scalability, or decentralized

inferencing is impractical.

d) Edge to Edge: In this workflow, both training and

serving happens in the edge. For reasons similar to the

previous two workflows. Industry 4.0 use cases illustrate this,

where sensitive data may not leave the companies premises,

and inferencing needs to happen in near real-time at the edge.

e) Complex Hierarchical Models: It is likely that future

scenarios will call for a creative mix of the above mentioned

workflows. Some use cases may require base models to be

trained on aggregate data in the cloud, then deployed and

fine-tuned with data at the edge (e.g. demand forecasting for a

retail chain where a model is built on data across all locations,

and fine-tuned for specific stores; or personalized diabetes

assistants, where anonymized data across patient groups are

used to train a base model, that is then refined using the

individual patient’s data). Localization and context play a big

role here, and a hierarchical edge/cloud architectures can help

facilitate this as we will show.

Table I lists data and model characteristics for the basic

workflows, specific ML mechanisms that are the key enablers,

and some example use cases. Which workflow will apply to a

given problem depends on many considerations: What are we

training models for? How large are the models? How often

are models re-trained? How much data is involved? How long

does it take, and is it important that training is fast? Some

simple curve fitting models for on-the-fly optimization can

be executed in a matter of seconds, whereas training image
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classifiers may take several hours or even days. How fast does

inferencing have to be? Can we tolerate latencies from sending

data to the cloud? Is the data used for training or inferencing

sensitive?

2) Facilitating Complex Edge AI Scenarios: It is clear

why edge computing is an appealing model for advanced AI

applications. A hierarchical hybrid cloud and edge computing

architecture, as shown in Figure 4, can help facilitate complex

edge AI operations scenarios. For example, consider a scenario

where dispersed edge and IoT devices produce data that

could provide locality-specific insights. Suppose many such

premises exist, that share a common knowledge base. For

example, a disaster recovery system that uses AI for decision

making and forecasting. Any type of decision making will be

highly locality specific, yet abstract patterns may be similar

across locations. Public cloud-based ML facilities, that are

cost efficient and can be provisioned on-demand, can be used

to train a base model, that is then refined using transfer

learning at on-premises cloudlets that have access to data from

local sensors and devices. These cloudlets can use distributed

learning to avoid aggregating all data in proximity, and then

serve models for low-latency inferencing.

As promising as edge computing is, there are numerous

challenges in realizing such an end-to-end architecture. De-

ploying models to the edge in a generalized way may be

difficult (compared to, for example, packaging the ML model

as a web service and deploying it to a PaaS like Heroku),

as edge resources are very heterogeneous and can’t yet be

used like classic utility computing. Will the model run on a

Raspberry PI or other SBC, or a high-density edge computer

cluster, or a private cloud? How will data be stored and

accessed from edge resources to make it available in a safe

and privacy-aware way for training and inferencing? How

and where will continuous training pipelines be managed and

executed? How can we deploy models to a large number of

edge resources? How does each model scale with different

requirements (e.g., user-specific models for personal health

assistants). We take a closer look at some of these questions,

and discuss possible solutions and open challenges.

C. Scalable provisioning

The massive distribution and heterogeneous nature of edge

resources pose several challenges for provisioning software

systems in general, and AI applications in particular. As we

discussed in Section III, the capabilities of edge computers

are much richer and diverse than those of server computers

in classical cloud computing. However, edge resources are

also more constrained, both in terms of computing power and

storage capacity. From an operations perspective, delivering AI

at the edge has to include additional goals and constraints, in

particular because proximity to data producers and consumers

plays such a critical role in edge computing, both to maintain

privacy and trust, and enable low-latency data processing.

Suppose a scenario in which edge resources serve ML

models to support an application for detailed visual discovery

of points of interest in a city via AR. An AR overlay (either

via a smartphone or HMD) provides contextual information

about objects or things that are in the camera stream. Ideally,

a resource hosts ML models (e.g., for object recognition), for

the points of interest in its proximity. Locality and context

awareness play a key role in making this work. The resource

understands that, in its proximity there exist, for example, an

art museum, a botanical garden, or a shopping mall, which

each have their own ML models for the given domain.

To ensure reliable operations and the efficient use of edge

resources, it is necessary that: 1) applications and ML models

are deployed in a way to meet certain operations goals (e.g.,

reduced bandwidth, low latency, etc.), 2) old applications and

models are evicted (a sort of garbage collection), and 3) trust

and privacy constraints are maintained.

These requirements are similar to those of large-scale IoT-

cloud deployments, for which different provisioning systems

have been developed [50], [51]. However, these provisioning

frameworks do not consider the co-evolution and dependency

of AI applications and the underlying ML models. In par-

ticular, they assume a classic compile-test-deploy workflow

of software, whereas an AI operations pipeline is highly

customizable and its steps have different computational needs.

If we take into consideration that the edge AI fabric will

be used for both building and serving models, operations

challenges are two-fold: 1) provisioning resources for AI

pipelines at the edge (mapping of capabilities to workloads),

and 2) management of deployed AI applications at the edge.

D. Scalable Monitoring

Runtime monitoring of ML model metrics is a fundamental

aspect of trusted and operationalized AI [52]. Deployed mod-

els are subject to degrading performance caused by concept

drift, i.e., when the inferencing data starts to differ from

the original training data [23]. AI may exhibit unintended
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behavior when trained using reinforcement learning tech-

niques. Models may be subject to adversarial attacks, which

can be quantified via robustness scores [24]. Automated AI

pipelines require timely access to these metrics for evaluating

retraining triggers. For cloud-based scenarios, from a systems

perspective this monitoring is relatively straight forward. There

are two aspects that make monitoring particularly challenging

for edge computing: a) some metrics, such as concept drift,

are calculated relative to the dataset the model was trained

on [23], and b) components that manage pipeline triggers

for continuous retraining need real-time access to monitoring

data. Because edge resources are highly distributed and may

have limited storage capability, it may not be possible to

have continued access to the original training data, or the

data may have been removed all together to free up storage.

Furthermore, depending on how AI pipelines are provisioned

to edge resources, it may be difficult to create a communication

link between the resource that actually serves the model,

and the pipeline platform that evaluates retraining triggers.

Moreover, a large number of models may introduce serious

scalability challenges. Consider an application where each user

of a large user base requires a personalized model that is

transfer learned from a base model. Monitoring and deploying

each model individually may not be practical or possible.

E. Privacy and Trust

If personal data spaces turn out to be the dominant form

of achieving privacy-aware data distribution, new methods

for accessing data for training and inferencing purposes are

needed. As people continue to gather personal information into

their own space, they will be required to give third parties

selective access to their data via complex access rules, or

provide only anonymized views on their data via privacy-

aware routing techniques. Only when people own their own

data, the medium they are stored on, and can manage strict

access controls, will they be in full control of their personal

and sensitive data. As of today, we still put our trust in

cloud providers to handle our data, even highly sensitive data

such as health related records. Particularly problematic are the

increasing number of surveillance cameras throughout public

spaces. Although they provide exciting opportunities for visual

analytics, situational awareness, or other AI applications, they

are fundamentally a privacy concern. Researchers will be

challenged to devise methods that reconcile data availability

for AI agents, and guarantee data safety and the data owner’s

privacy.

F. Explainability

As AI continues to dominate further areas of human life,

questions of bias, ethics, trust, and safety become more

pressing and will continue to challenge our society and the

development of AI. Being able to explain the behavior of AI,

and understanding how and why specific predictions are made

is crucial for achieving ethical and trusted Explainable AI

(XAI) [22]. This is particularly the case for domains where

human lives are at stake, such such as healthcare, military,

judicial, autonomous driving, and autonomous mobile robots.

Explainability techniques operate on different layers in the

AI stack and stages in the AI workflow. From visualizing

the neurons of a neural network that were activated by the

given data input [53], up to tracing the data set the model

was trained on. All facets of explainability will be more

complex in edge intelligence, as data, learning, and inferencing

are distributed and decentralized. Explainability in a broader

sense also includes data provenance. For example, a feature of

modern cloud-based AI platforms is the tracking of a lineage

of models and the data they were trained on [25]. This is a

reasonable approach for cloud-based workflows, where storage

can be easily scaled, but may prove much more challenging

in edge computing, where data is decentralized and storage

capacity is limited. Generally, as edge AI systems grow more

complex, and the development of AI becomes more and more

fast paced, researchers will be challenged to devise methods

for XAI that become an integral part of AI systems and

methodology.

V. CONCLUSION

Through the increasing interconnectedness of humans and

things, and the fast-paced development of edge AI methods

and hardware, edge computing has emerged as a promising

computational paradigm for delivering transparently immer-

sive experiences and enabling the seamless augmentation

of human cognition. In this paper we outlined the role of

edge intelligence in the cyber-human evolution, and presented

challenges that will confront edge AI systems for several years

to come. Specifically, we have shown how edge computing

exacerbates the complexity inherent to AI applications and ML

workflows, and that new methods are necessary to leverage

hierarchical edge/cloud architectures for the AI lifecycle.

For the full end-to-end realization of smart-city scale edge

intelligence, there are still many questions that warrant further

investigation, in particular concerning ownership and stake

of edge computing infrastructure. With respect to stake, we

observe that there are three categories of edge intelligence use

cases: public (such as smart public spaces), private (personal

health assistants (personal), predictive maintenance (corpo-

rate)), and intersecting (such as autonomous vehicles). It is

unclear who will own the future fabric for edge intelligence,

whether utility-based offerings for edge computing will take

over as is the case in cloud computing, whether telecom-

munications will keep up with the development of mobile

edge computing, what role governments and the public will

play, and how the answers to these questions will impact

engineering practices and system architectures.
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