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Abstract—In the era of big data and artificial intelligence,
distributed machine learning has emerged as a promising so-
lution to address privacy and security concerns while fos-
tering collaboration between multiple parties. However, with
the data increased in terms of volume, velocity, veracity and
variety, ensuring effective data management and responsible
data sharing in these systems remains a challenge. In this
paper, we explore the potential solutions and propose a system
architecture that incorporates FAIR data principles (Findable,
Accessible, Interoperable, and Reusable) to promote effective
and secure collaboration in federated learning. A minimum set
of metadata schemes tailored for distributed machine learning
and a decentralized authentication and authorization mechanism
based on self-sovereign identity and policy-based access control
architecture are proposed. To demonstrate the effectiveness of
the proposed system, we conduct a FAIRness assessment and
evaluate the model performance with a federated learning use
case. Our work contributes to the development of an efficient,
secure, and collaborative data ecosystem, fostering innovation in
artificial intelligence and machine learning.

Index Terms—FAIR data principles, distributed machine learn-
ing, federated learning

I. INTRODUCTION

With the rapid development of the Internet of Things
(IoT), vast amounts of data are generated ever-increasingly
in terms of volume, variety, velocity, and veracity [1]. Data
has become an indispensable asset for individuals, businesses,
organizations and governments, thanks to the rapid develop-
ment of sophisticated analytical tools and artificial intelligence
techniques such as deep learning, providing valuable insights
to improve business operations and support policy decisions.
Nonetheless, privacy and security concerns raise barriers to
data collection and data sharing. In addition, the prevalence
of isolated data islands in various industries due to factors
such as competitive rivalry and complex administrative pro-
cesses resulting in a fragmented data ecosystem has impeded
data-driven innovation [2]. Distributed machine learning has
emerged as a promising response to these challenges, enabling
multiple parties to cooperate and train machine learning mod-

*These authors contributed equally to this work.

els without disclosing their raw data by shifting the paradigm
from data centralization to bringing computation to the data.

This paradigm shift towards distributed machine learning
has underscored the need for effective and responsible data
management and stewardship that facilitates seamless coop-
eration and responsible data sharing among the participating
parties. The FAIR data principles [3] have emerged as guid-
ing principles that provide a set of guidelines to improve
the Findability, Accessibility, Interoperability and Reuse of
research data. The FAIR principles apply to digital resources
such as datasets, code, workflows, or other research objects,
as well as metadata and supporting infrastructure (e.g., search
engines) [4]. By adhering to the FAIR principles, stakeholders
in distributed machine learning systems can ensure that the
data utilized in these systems is discoverable, efficiently and
securely managed, thus maximizing the value derived from the
data while minimizing potential risks.

In this paper, we explore the challenges and potential
solutions for incorporating FAIR data principles in distributed
machine learning systems. We propose a novel method to
further enhance FAIR data compliance in distributed machine
learning systems. Our contributions are as follows:

• We leverage Decentralized Identifiers (DIDs), which
are decentralized, cryptographically verifiable, globally
unique, and resolvable, as Persistent Identifiers (PIDs) to
ensure the findability of digital objects.

• We develop a minimum set of metadata schemes tailored
for distributed machine learning, which enhances data
discoverability and interoperability.

• We propose a novel system architecture that consists of
a data space for metadata services, and the blockchain
network and supports secure and stable collaboration
among data providers and data consumers.

• We utilize DIDs and Verifiable Credentials (VCs) for
Self-Sovereign Identity (SSI) and based on it we develop
decentralized policy-based authentication and authoriza-
tion architecture to secure data access and control in
distributed machine learning systems.

• Furthermore, we demonstrate the effectiveness of the
proposed solutions by the evaluation of the FAIRness
of the implemented prototype system and of the model978-1-979-8-3503-1090-0/23$31.00 © 2023 European Union
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performance with the federated learning use cases.

II. BACKGROUND

In this section, we provide an overview of the key concepts
underlying our work, namely the FAIR data principles, feder-
ated learning, and distributed ledger technologies along with
the smart contract.

A. FAIR Data Principles

The FAIR data principles are guiding principles for scien-
tific data management and stewardship that provide a set of
guidelines initially proposed to improve the Findability, Ac-
cessibility, Interoperability and Reuse of the research data [3].
Most of the requirements for findability and accessibility
can be achieved at the metadata level. Interoperability and
reuse require more effort at the data level. The key points
of the FAIR data principles highlight the following specific
components and features:

• Persistent identifiers: Unique and stable identifiers as-
signed to data, ensuring long-term findability and acces-
sibility.

• Rich metadata: Detailed descriptions of data, making it
easier to discover, understand, and use by both humans
and machines.

• Standardized formats and vocabularies: Consistent use of
data formats, terminologies, and ontologies to enhance
interoperability and facilitate data exchange.

• Open protocols: Adoption of open standards and proto-
cols for data access, ensuring transparency and fostering
collaboration among different stakeholders.

• Clear licensing and usage policies: Well-defined policies
guiding data reuse, ensuring proper attribution, and com-
pliance with legal and ethical guidelines.

B. Federated Learning

Federated learning [5] is a distributed privacy-preserving
machine learning paradigm that enables multiple parties to
jointly train machine learning models without disclosing their
raw data, and involves training a global model by aggregating
local model updates from multiple data sources. A system
for federated learning consists typically of a server and a
collection of clients.

Given the global dataset D distributed on K clients, where
each client k ∈ {1, 2, . . . ,K} holds a local dataset Dk of
size nk, we denote the global dataset as the union of all local
datasets, i.e., D =

⋃K
k=1 Dk, and has a total size of n =∑K

k=1 nk.
In each round of federated learning, each client k computes

an update to the model parameters based on its local dataset
Dk. Let the model parameters be denoted by w, and the
objective function for the optimization problem be L(w). The
local objective function for client k can be defined as in
Equation 1, where l(w;xi, yi) is the loss function for a single
data point (xi, yi).

Lk(w) =
1

nk

∑
i∈Dk

l(w;xi, yi) (1)

The global objective function, which we aim to optimize,
is the weighted average of the local objective functions, as
shown in Equation 2.

L(w) =

K∑
k=1

nk

n
Lk(w) (2)

In each round, client k computes a local update ∆wk by
minimizing the local objective function Lk(w). The server
then aggregates the local updates from all clients to compute
the global update, which is given by Equation 3.

∆wglobal =

K∑
k=1

nk

n
∆wk (3)

Finally, the server updates the global model parameters with
the global update using Equation 4, where η is the learning
rate and t denotes the current round of federated learning.

wt+1 = wt + η∆wglobal (4)

This process continues and repeats for a predefined number of
rounds or until a convergence criterion is met.

One of the challenges in federated learning is dealing
with non-Independent and Identically Distributed (non-IID)
data. Non-IID data arises when the data distribution across
different parties varies, which is often the case in real-world
scenarios and can lead to reduced model performance and
slow convergence rates, as the global model may struggle to
generalize well across heterogeneous data sources [6].

C. Blockchain

Distributed ledger technologies (DLTs), such as blockchain,
are decentralized systems that enable secure and transparent
data storage and management, in which transactions are stored
in a series of blocks connected with each other and the latter
block records the hash value of the former block. Once a block
has been confirmed, the transactions in that block can not be
changed. They use cryptographic techniques and consensus
algorithms to ensure data immutability, traceability, and tamper
resistance [7]. DLTs have the potential to transform various
industries by enhancing trust, security, and efficiency in data
exchange and collaboration.

One of the key features of DLTs is the ability to create
and deploy smart contracts. Smart contracts are self-executing
programs with the terms of the agreement between interested
parties that are deployed on the blockchain and can automat-
ically enforce predefined rules and conditions encoded within
them. They can facilitate, verify, and enforce the performance
of a contract without the need for intermediaries. The output
of a smart contract is stored in a transaction. Same as the other
transactions on the blockchain, these transactions are traceable
and irreversible [8]. In the context of distributed machine
learning systems, smart contracts can be used to automate
and enforce data-sharing agreements, model update processes,
and access control mechanisms, thereby enhancing security,
transparency, and efficiency.
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III. PROPOSED SYSTEM

In this section, we describe the proposed distributed learning
system designed to incorporate FAIR data principles into
federated learning. We begin with a high-level overview of
the system architecture and then delve into the details of the
metadata for distributed machine learning. Next, we illustrate
the decentralized authentication and authorization process be-
tween different entities in the system. Then, we describe the
model verification for robust aggregation during the federated
learning process. Finally, we develop a federated learning
prototype of our proposed system.

A. System Overview

Our proposed system aims to facilitate efficient and secure
collaboration in federated learning by implementing the FAIR
data principles. Figure 1 gives an overview of the system
architecture that enables the collaboration of data owners and
data consumers for federated learning, which includes the
following key components:

• Data Space (DS): An underlying metadata infrastruc-
ture providing APIs for metadata services where users
can register, store and manage the metadata of their
distributed machine-learning digital assets, ensuring that
data is findable, accessible, and interoperable.

• Blockchain Network: A distributed infrastructure with
smart contracts enables the secure and transparent man-
agement of the metadata, federated learning processes,
and access control.

• Data Consumers (DCs): Stakeholders with the federated
learning aggregation server infrastructure, which is re-
sponsible for aggregating model updates from multiple
Data Providers (DPs).

• Data Providers (DPs): Stakeholders who own the in-
frastructure for federated learning clients, to which data
is attached. DPs are responsible for managing the data
collection, training local models on their data and sharing
model updates with the federated learning server.

Both DCs and DPs have digital agents that facilitate inter-
actions with the blockchain network to securely and privately
manage various types of data, such as personal dataset meta-
data, algorithm metadata, and policy definitions for datasets
and algorithms.

In the proposed system, federated learning algorithms are
divided into the client algorithm for training and verifica-
tion, which is owned by DPs and the server algorithm for
aggregation, which is owned by DCs. These algorithms are
encapsulated in an Open Container Initiative-compliant1 image
(such as a Docker image) separately. By taking advantage
of containerization technologies, the execution of federated
learning is an operating system (OS)-independent, since the
necessary dependencies to run the code such as libraries and
packages are captured within the image. Consequentially, the
algorithm can be written in any programming language, such
as Python or R. Beyond these advantages, our proposed system

1https://opencontainers.org/

Fig. 1: System Architecture

is data source agnostic, i.e., the choice of data sources is
flexible since the data are attached during the execution.

By integrating these components, the proposed system ad-
dresses various requirements related to FAIR principles in
federated learning, paving the way for a more efficient secure,
and collaborative data ecosystem for DCs and DPs.

B. Metadata for Distributed Machine Learning

In order to implement FAIR data principles and ensure the
findability, accessibility, and interoperability of the metadata,
we develop Persistent Identifiers (PIDs) and a minimal meta-
data scheme for our proposed distributed machine learning
system.

PIDs are fundamental to FAIR data ensuring that data can be
reliably cited and referenced, required to be globally unique,
resolvable, and associated with a set of additional metadata [9].
DIDs are a kind of self-sovereign identifier registered on
a distributed ledger that provides a globally unique digital
identity for any entity or object. We propose to use DIDs
as PIDs because they are not only globally unique required
by FAIR principles, but also decentralized, self-sovereign, and
interoperable.

Rich metadata and standards, such as vocabularies and
ontologies, are essential components of FAIR data and good
drivers for enhancing findability as well as interoperability
and reuse. The concept of the FAIR Data Point (FDP) is
developed as an exemplary lightweight infrastructure com-
ponent and demonstrated compliance with the FAIR guiding
principles [10]. FDP uses global standards (e.g., Dublin Core2

2https://www.dublincore.org/specifications/dublin-core/
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and DCAT3) to provide access to structured metadata. Our
proposed FAIR metadata schema is based on FDP Metadata
and DCAT metadata with basic fifteen attributes to describe
the basic information of datasets and algorithms.

Additionally, we adopt the metadata schema in [11] for
distributed machine learning datasets and algorithms. For
datasets, we add three additional attributes: purposes, gaps,
and tasks. Purposes refer to the intended usage of the dataset
in relation to the algorithm type. Gaps define the specific
areas the dataset aims to address. Tasks describe the specific
machine learning tasks for which the dataset is designed.
Similarly, we add three attributes to the algorithm metadata:
version, entry point, and parameters. The version attribute
represents the current iteration of the algorithm. The entry
point specifies for example the URL of the algorithm’s Docker
image. Parameters encompass the necessary input parameters
for the algorithm to function correctly. Listing 1 and 2 show
simple examples of the metadata of CIFAR-10 dataset and
FedAvg algorithm in JSON.

{
...
"dmls:Identifier": "did:dmls:91d7ac8d-ac
f0-41cb-a256-18101f22dd04"
"dmls:Publisher": "did:dmls:f4911c39-ae
b8-468d-bf43-02c84c05af8a"
"dmls:Title": "The CIFAR-10 dataset"
"dmls:Purposes": "Image classification"
"dmls:Gaps": "Availability of labeled
image datasets for machine learning and
computer vision research"
"dmls:Tasks": "Image classification"

}

Listing 1: Metadata Example of the CIFAR-10 Dataset

{
...
"dmls:Identifier": "did:dmls:91d7ac8d-
acf0-41cb-a256-18101f22adbf"
"dmls:Publisher": "did:dmls:f4911c39-ae
b8-468d-bf43-02c84c05ajdhc"
"dmls:Title": "Federated Averaging
algorithm"
"dmls:Version": "v0.0.1"
"dmls:Entrypoint": "localhost:8080"
"dmls:Parameters": "Batch size, learning
rate, number of communication rounds,
client selection strategy, regularization"

}

Listing 2: Metadata Example of the FedAvg Algorithm

As a result, the metadata schema of the dataset and the
algorithm describes all the necessary resource information.
Both Dcs and DPs in the system are able to retrieve and
serialize JSON files. Once all machine learning objects are
registered according to the proposed metadata schema, the DC
and DP create access control policies for secure interaction.

C. Decentralized Authentication and Authorization
In our proposed system, we achieve decentralized authen-

tication and authorization with Self-Sovereign Identity (SSI)

3https://www.w3.org/TR/vocab-dcat-2/

Fig. 2: Access Control Architecture

by combining blockchain-empowered DIDs and VCs in the
access control architecture.

The authentication process is in the following steps:

1. The DC and DP register in the system through the
blockchain smart contract and are assigned DIDs that are
stored in the blockchain network.

2. The DC searches for desired datasets using the APIs
provided by the Data Space and sends an authentication
request to the corresponding DPs.

3. Upon receiving the request, the DPs verify the DC’s DID
using the evidence provided in the DID document.

If the DP grants the DC permission to use the data, the DC
receives a VC issued by the DPs through the FL contract.
At the same time, the DP makes the specific training datasets
available on the FL client.

Figure 2 shows the access control architecture for the
authorization process, which is built upon SSI and includes
four components: the Policy Information Point (PIP), Policy
Administration Point (PAP), Policy Decision Point (PDP), and
Policy Enforcement Point (PEP). The first three components
are smart contracts deployed on the blockchain. The PIP pro-
vides the policy ID for the requested resource of DC. The PAP
handles policy creation and updates. The PDP makes access
decisions. The PEP is a bridge between the FL client and PDP,
and integrates the blockchain network gateway component and
interacts with PDP’s exposed APIs. The authorization process
is described below:

1. DCs and DPs create policies on personal resources
through the PAP smart contract and store them locally.

2. FL server sends the access requests to the FL Client.
The request contains associated DIDs of the dataset and
algorithm.

3. The PEP reads the locally stored VC and sends the
required attributes to the PDP for decision-making.

4. The PDP smart contract calls the PIP to get the policy
DID, which is created on the requested resource.
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5. The PDP smart contract calls the PAP smart contract to
get the local policy through the policy DID.

6. The decision-making function in the PDP smart contract
evaluates the rules with the credential subject to make a
decision, which is then sent back to the PEP.

The PEP extracts a boolean variable as the operational
criterion. If true, the federated learning client can initiate
training; otherwise, training is disallowed. The decision is
stored in the blockchain network ledger and can be queried
for verification purposes.

D. Robust Aggregation with Model Verification

In order to achieve a robust aggregated global model, we
develop a model verification process before the aggregation.
Initially, the aggregation server at the DC divides all local
clients at DPs into training clients and verification clients.

Then the training clients begin model training on their own
datasets. After each training round, training clients submit their
model updates and local model weights to the aggregation
server. Next, the aggregation server sends the model updates
to verification clients for model assessment. Verification clients
test the updates on mixed datasets and return various metrics,
such as accuracy, error rate, precision, recall, and F1 score,
based on testing results. The aggregation server evaluates these
metrics and decides whether to aggregate the model updates
or not. If the results meet aggregation requirements, the server
proceeds with aggregation and submits the training record and
the qualified model update hash to the blockchain. Otherwise,
it discards the model updates and initiates a new training
round.

Compared to the traditional federated learning process,
incorporating model verification offers several advantages. By
introducing a verification step, the system ensures that model
updates from various nodes contribute positively to the global
model’s performance. This helps maintain high-quality models
and prevents poor updates from impacting the overall learning
process and potentially address the non-IID problem.

E. Blockchain-empowered Federated Learning

We develop a prototype of our proposed distributed machine
learning system with the blockchain-empowered process.

The motivation for incorporating blockchain into federated
learning is three-fold: audibility, provenance and trust. We
develop smart contracts for the federated learning process
that automate and enforce agreements between parties, en-
suring adherence to the agreed-upon protocols. Blockchain’s
immutable nature provides an ideal solution for maintaining
an auditable record of model updates and training history.
This enables tracking the model’s provenance. Blockchain
establishes trust among these nodes by offering a transparent
and verifiable record of transactions.

IV. EVALUATION

A. FAIRness Analysis

To evaluate the FAIRness of the proposed system, we
analyze the corresponding properties of different components

in the system. The following analysis with F, A, I and R is
based on the definition of the FAIR principles 4.

F1: Each dataset metadata and algorithm metadata is as-
signed a globally unique and persistent DID. Users can locate
the specific target dataset or algorithm by using the globally
unique DID. As such, the system satisfies the F1 requirement.

F2: All datasets and algorithms are described with extensive
metadata vocabularies, which encompasses all the necessary
attributes to fully describe a dataset or algorithm in a ma-
chine learning system. Therefore, the system satisfies the F2
requirement.

F3: The dataset and algorithm metadata include the pub-
lisher DID of the resource, which can be used to locate the
original resource in the publisher’s database. So the system
fulfills the F3 requirement.

F4: The metadata is stored in the Fabric sample network
ledger indexed by its globally unique DID, which is obvi-
ously a searchable repository. So the system fulfills the F4
requirement.

A1.1: The blockchain network can be read and written
through a gateway using a free and open communication
protocol, enabling efficient and standardized access to the
metadata. For example, the Ethereum Gateway is implemented
by JSON-RPC protocol and the Hyperledger Fabric Gateway
uses gRPC protocol. Thus, the system satisfies the A1.1
requirement.

A1.2: The blockchain gateway protocol needs a registered
user identity certificates and signature to authenticate and
authorize the gateway client access permission. Thus, the
system fulfills the A1.2 requirement.

A2: The metadata is accessible as long as the blockchain
network is deployed and the key-value pair is not deleted. It
does not depend on whether the original resource is available.
Even if the publisher does not share the usage of their
dataset or algorithm, the dataset or algorithm metadata is still
accessible to all users in the blockchain network. Therefore,
the system fulfills the A2 requirement.

I1: The metadata is based on FDP Metadata and DCAT
Metadata, represented in JSON format, which is machine-
readable and can be easily processed by various software
programs. Additionally, the Client Algorithm created by the
DP, which is containerized, is also interoperable. Therefore,
the system fulfills the I1 requirement.

I2: The metadata schema currently incorporates standard-
ised vocabularies that provide the necessary terms or concepts
to represent their content. Simultaneously, the vocabularies are
retrievable using the globally unique identifier. Consequently,
the system fully satisfies the I2 criterion of the FAIR princi-
ples.

I3: The metadata includes a qualified reference to other
data. So the system fulfills the I3 requirement.

R1.1: The Decentralized Authentication and Authorization
functionality offers strictly limited usage rights of the datasets
and algorithms, which fulfills the R1.1 requirement.

4https://www.go-fair.org/fair-principles/
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R1.2: Each dataset and algorithms metadata contains the
”dmls:Relation” attribute, which specifies where the resource
is from. The ”dmls:Creator” indicates who generates and
collects it. Thus, the requirement R1.2 is satisfied.

R1.3: All datasets and algorithms metadata are implemented
in a standardized way and include common vocabularies. Thus,
the requirement R1.3 is fulfilled.

In conclusion, the proposed system satisfies most aspects of
the FAIR Principles, demonstrating that the whole system is
findable, accessible, interoperable, and reusable. Additionally,
the metadata is distributed, visible, transparent, accessible, and
tamper-proof, keeping the characteristics of the blockchain
technology intact.

B. Model Performance
To demonstrate the effectiveness of our proposed federated

learning aggregation with the model verification process, we
conduct experiments for 5 runs with 10 clients on the CIFAR-
10 dataset, which consists of 50,000 training samples and
10,000 test samples and is distributed evenly across 10 distinct
classes. Each client holds a subset of the CIFAR-10 dataset
and trains a Convolutional Neural Network (CNN) on their
local data for 50 rounds. After each round of aggregation,
the global model is evaluated on the test dataset deployed on
the server. Accuracy and loss are reported as the evaluation
metrics for the model performance.

Our experimental results are shown in Figure 3. The differ-
ence between the lower and upper bounds of the loss values
and accuracy values is generally smaller for the system with
verification, which implies that the model with verification is
more consistent. The average values of accuracy for the system
with verification are consistently higher or comparable to those
without verification across all rounds, while the average loss
values are lower. When comparing the loss values between the
two systems, we can observe that the system with verification
tends to converge faster.

In summary, the integration of the verification process in
our proposed model aggregation method for federated learn-
ing helps maintain high-quality models by filtering out poor
updates, thus resulting in improved model performance, faster
convergence, and increased consistency across clients.

V. CONCLUSION

In this paper, we present a novel system that aims to in-
corporate FAIR data principles into federated learning ecosys-
tems. Our proposed system integrates key components such
as metadata for datasets and algorithms, decentralized au-
thentication and authorization mechanisms for secure data
access control, and robust aggregation with model verification.
Our system fosters a more efficient and collaborative data
ecosystem in federated learning, adhering to the FAIR data
principles and promoting data-driven innovation across various
industries. As future work, we plan to further develop and
evaluate the performance of our proposed system in real-world
federated learning scenarios, while continuing to explore novel
techniques and approaches to address the challenges of non-
IID data in distributed machine learning systems.

Fig. 3: Model Performance Evaluated on CIFAR-10 Test Set
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