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Abstract—IOTA blockchain is a new type of distributed ledger
systems that is lightweight without mining and feeless-of-using.
Rather than using a chain structure as in traditional blockchains,
IOTA organizes ledger records with a directed acyclic graph
(DAG), called Tangle. When message entries are committed into
the ledger, the ledger tangle grows in a special way where multiple
messages could be attached by different processing nodes in
parallel. Such a unique evolution process motivates us to study the
ledger tangle dynamics, which is unexplored so far. In this paper,
we present the first generative modeling for IOTA tangle based
on stochastic analysis. A key finding is that IOTA tangle renders a
double Pareto Lognormal (dPLN) distribution, rather not typical
network models (e.g., Power-Law and Exponential distributions).
Quantitative comparisons show that the fitting quality of our
model outperforms existing popular models on official real-
world datasets published by IOTA Foundation. Estimated model
parameters are provided, which is immediately instrumental for
a more realistic IOTA network generator design. The proposed
generative model also provides a deeper understanding of the
internal mechanics of IOTA network.

Index Terms—IOTA Blockchain Network, Network Modeling,
Network Dynamics, Degree Distribution

I. INTRODUCTION

In 2016, IOTA foundation (IF)1 proposed a new type of
blockchain–IOTA network. Instead of using a chain topology,
IOTA uses a Directed Acyclic Graph (DAG), called Tangle
topology, to organize ledger data on every processing node [1].
IOTA abandons proof-of-work (PoW) consensus and is feeless.
Thus, IOTA is suitable for many IoT applications, where com-
munications can be characterized as instant, massive exchange
of tiny messages. Although IOTA enjoys a high popularity in
research, most of the studies focus on statistical analysis [2],
protocol extension/enhancement [3] and applications [4], [5].
In contrast, we would like to gain more insights into theoretical
analysis, notably through network graph modeling, to reveal
and better understand the core mechanism of IOTA network.

IOTA tangle evolves in a special way. Specifically, every
vertex represents a single message record in the ledger (either a
value transaction or a simple data payload). For a new message
(e.g., submitted by a user), it will be attached as a new vertex
with introducing new directed edges to existing vertices in
the tangle. Semantically, each directed edge represents the
approval from the source vertex (message) of the target vertex
(message). Vertice selection is determined by specific selection
algorithms, defined by the distributed consensus protocol.
The key idea is to stimulate processing nodes attaching new

1The official IOTA development and operation consortium

messages biasing on tips, i.e., vertices having no approver
yet thus their in-degrees are zero. With the new vertices
independently added in the tangle by different nodes, the size
of the tangle will grow with multiple vertex- and edge-arrivals
over time.

In this paper, we are interested in the tangle ledger dynamics
driven by IOTA. It would be ideal to develop a formal
network model capable of correctly describing the evolution
of an operational IOTA tangle and in particular its stationary
degree distribution. Alas, it appears unlikely that usual network
models, e.g., random graphs [6]–[8] or the Barabási-Albert’s
Preferential Attachment (PA) model [9] can correctly explain
the IOTA tangle behavior. Key differences are as follows.

First of all, IOTA tangle typically grows non-uniformly,
in bursts, during which multiple new vertices are added at
the same time, each with more than one new edge. The
reason for such bursts is tangle consolidation: since every node
independently attaches incoming messages to its local tangle
ledger copy, at one point, those individual tangles need to be
consolidated and merged to one. During this phase, multiple
messages and edges are added in one batch. In contrast, prior
work usually assumes a single node arrival mode, and very
often simplifies the process further to single edge addition.
Hence, it is inaccurate to simplify IOTA tangle growing with
a single vertex arrival mode.

Secondly, vertex and edge additions do not follow a simple
PA model (or any of its variants). In PA model, a vertex
is randomly selected proportionally to its degree. In IOTA,
however, tip selection is a distributed decision-making process
to identify a valid branch, where a new vertex can safely attach
without causing conflicts. Such a process involves evaluating
other existing vertices (i.e., historical messages) in a sub-tangle
topology, thus it cannot be trivially abstracted as a simple
vertex attribute (e.g., a degree value) as in PA model.

We will see that an alternative is required in order to derive
a network model that can capture the essence of the ledger
dynamics. In summary, the main contributions of this paper
are as follows:

• We employ stochastic analysis to characterize IOTA
tangle evolution with an Stochastic Differential Equation
(SDE) that can approximately govern the vertex degree
dynamics over time;

• We discover that operational IOTA tangles can be ac-
curately described through the double Pareto Lognormal
(dPLN) distribution;

• We quantitatively compare fitting quality of the proposed
model against other popular candidate models with the978-1-6654-3540-6/22 © 2022 IEEE
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real-world data (whose size is around 320G) published
by IOTA Foundation (IF). The results confirm the cor-
rectness of our key finding, where IOTA tangles render a
dPLN degree distribution.

To the best of our knowledge, this is the first theoretical
work modeling IOTA network dynamics. Estimated model
parameters in this work are immediately instrumental for a
more realistic IOTA network generator design.

The structure of this paper is outlined. We review existing
network models in Section II and introduce IOTA preliminary
as a background in Section III; Section IV presents our model
and Section V introduces model fitting; after that Section VI
shows the comparison results with existing popular models;
Section VII concludes this paper.

II. RELATED WORK

Though there are very limited relevant theoretical works, we
observed several attempts on analytical performance modeling
about IOTA. In [10], [11], they built a rule-based discrete
model and a continuous-time model for IOTA, respectively, in
order to build the relationship of the number of tip vertices and
the vertices’ cumulative weights over time. In [12], the authors
analyzed the message attachment behavior of IOTA network
and proved that there exists a Nash equilibrium, revealing that
selfish nodes will cost more than non-selfish nodes. This work
targets to a different goal, which aims to theoretically model
how the tangle topology evolves and what a degree distribution
could best represent it.

The main difference of the IOTA network to random graph
models summarized in [6] is that IOTA’s ledger tangle is
growing, while random graph models consider graph’s size
unchanged. This motivates us to consider those models char-
acterizing evolving graph networks.

A famous growing/evolving network model (i.e., PA model)
was proposed in [9]. In this model, new vertices attach to
target vertices selected proportionally to their degree (often
periphrased as “rich gets richer”). The authors have shown that
applying this simple principle results in a scale-free network,
i.e., a graph with a Power-Law (PL) degree distribution).
Hence, PA is a popular generator for (a particular class of)
scale-free networks.

Cyclic PA (CPA) was introduced in [13] as a variant of the
PA model. In CPA model, the attachment probability depends
on the shortest path from the node to all other nodes. The
author used this model to analyze the real world network,
such as online social networks and relations amongst company
leaders. The finding is that the proposed CPA provides more
flexibility to model the real life networks. Additionally, [14]
proposed another PA model variant to model a phenomenon,
where a vertex acquires a new vertex depending on the density
of its local area in a graph. Authors analytically obtain stable
degree distributions and cluster in-degree correlations. They
show the emergence of a Power-Law (PL) distribution of the
resulting graph’s degrees.

Although PA-like models provide decent modeling for a
large number of evolving networks, the message attachment

in IOTA behaves differently. One key difference is that most of
PA models only consider a single vertex arrival mode, while
IOTA tangle grows with a batch arrival mode. Another key
difference is that the attachment probability is determined by
running an algorithm applied on a sub-tangle topology, which
cannot be written in an analytical form as in PA models.

In reality, many phenomena are not following PA mod-
els. Their degree distributions are also not Power-Law
(PL)/Exponential (Exp) distributions . For example, the au-
thors showed respectively that the file size [15], the city
size [16] and mobile call graphs [17] follow dPLN distri-
butions [18]. Compared to them, the IOTA network is a
distributed system and ledger dynamics are implicit. Hence,
a correct modeling is required.

III. IOTA PRELIMINARY

We here briefly introduce how IOTA works for a better
readability. IOTA is a distributed system consisting of pro-
cessing nodes, each of which maintains a full ledger in a
tangle structure. Every node has two main tasks: 1) attaching
messages into its tangle and 2) propagating new messages to
other nodes, forming a distributed consensus.

A. Message Attachment

A

B

C

D

E

F

M1

M2

Fig. 1: Message attachment on one node

A new message is submitted by a client to a node. After
an initial check (such as signature, balances and so on), the
message will be attached to one or more existing vertices in the
tangle (e.g., ‘M1’ and ‘M2’ in Fig. 1). In IOTA, semantically,
an attachment corresponds to an “approval” of the information
contained in the message that the new message attaches to and
is part of the consensus mechanism: the more vertices attach
to a given vertice (directly, or to its referrers), the higher the
confidence in the information that this vertex bears.

Hence, the selection of vertices is of utmost importance.
IOTA protocol always chooses among the tips, i.e., from the
vertices with in-degree equal 0 (e.g., ‘D’, ‘E’ and ‘F’ in Fig. 1).
The motivation behind this mechanism is to make every
node contribute to the IOTA network by approving “younger”
messages. In IOTA, every node has a Tip Selection Algorithm
(TSA) module dedicated to this task. Although the exact TSA
algorithms differ in IOTA 1.0 and 2.0, their outcomes for
IOTA ledger dynamics are the same in the sense that both
probabilistically select among the tips.

In principle, it is also possible to select other vertices for
attachment. For example, a node could also attach to a message
of a non-tip vertex (e.g., ‘M2’ could attach to ‘C’ in Fig. 1).
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Attaching to such messages is safer because they are already
approved and will not “disappear” as part of potential conflict
resolution during tangle consolidation; in addition, depending
on how the others select vertices (and the protocol version),
later it might also be faster to get approved.

B. Tangle Consolidation and Consensus

A

B

C

M1

Node 1

A

B

C M2
Node 2

M3

M1

M2 M3

M2

M3

M1

Message 
Propagation

Fig. 2: Tangle consolidations

As nodes own local ledger copies, their views differ. Hence,
tangle consolidation aims to propagate messages across the
network so that tangle copies converge (see in Fig. 2, where
‘Node 1’ and ‘Node 2’ propagate local messages to each
other). If the forwarded message exists, the node ignores it
but forwards to other neighbors (except to the expedient);
otherwise, a node saves the message and checks, if its two
referenced messages can be found locally; if so, the message
is merged into the local tangle; if missing, the message is
suspended, until all missing messages are found by sending
message requests recursively to neighbors.

Since distributed consensus is an intermediate phase before
a tangle actually grows, it does not fundamentally alter the
manner of network dynamics. In fact, message attachment
already takes the outcome of a distributed consensus into
consideration.

In summary, the key idea behind IOTA is that new messages
approve old messages. Attached messages will be propagated
across the whole network, thus tangles converge and consensus
opinions are formed with a distributed consensus protocol.
For more information, please refer to the IOTA protocol
specifications [19].

IV. IOTA TANGLE LEDGER DYNAMICS

A. Key Idea

We denote a subset of vertices in a tangle where all vertices
have the same degree k ∈ Z+∪{0} as Gk(t) at time t, called
a degree group. The cardinality (size) of a degree group is
|Gk(t)| = sk(t), called Degree Group Size (DGS). Let us
further denote all new edges, which are added from several
new messages to the same vertex, as et, called an edge group.
In IOTA network, sk(t) can change because of the following
two ways as illustrated in Fig. 3.

The first way is that sk(t) increases, because there could
be one or more vertices, whose original degrees are less than
k but an edge group et makes the degree increase to k by
adding |et| new edges. Va in Fig. 3 is such an example, where
Va joins in degree group Gk(t) and increases sk(t) by one.

The second way is that sk(t) decreases, because there could
be a vertex, whose degree is already k, but another edge group

Degree Group 

edges
added

Va edges
added

Va's degree  
increases to 

Vb's degree increases  
to 

Joining in DGS 

Leaving to DGS 

Vb

Fig. 3: Dynamics of DGS sk(t) of Gk(t)

e′t makes its degree increase to k′ by adding |e′t| new edges.
Vb in Fig. 3 is an example, where Vb leaves to degree group
Gk′(t) and decreases sk(t) by one.

Mapping to IOTA network, the first situation happens to
any vertex with a degree value between [0, k), and the second
situation happens to any vertex with a degree value is equal to
k, thus covering all types of vertices in a tangle. For instance,
a tip vertex (i.e., degree value is 0) will join in degree group
Gk(t), if an edge group et adds exactly k edges to it (i.e., |et|
is k); any non-tip vertex whose degree is < k will also join
in degree group Gk(t) if an edge group et adds up its degree
value to k. However, attaching to any vertex, whose degree is
already k will make the vertex leave the degree group Gk(t).
All vertex selection cases are introduced in Section III-A.

From a statistical view, the macro effect of the joining and
leaving vertices of a degree group Gk(t) can be viewed as a
Brownian motion [20], because how DGS sk(t) will exactly
change is a stochastic process, which is driven by the random
behaviors (e.g., random vertex selections) from processing
nodes in IOTA blockchain.

B. A Stochastic Model

Considering the above two possible ways sk(t) may change,
the ratio of the variation of sk(t) to its original value sk(t)
can be either positive, zero or negative. Mathematically, it can
be formulated with a Stochastic Differential Equation (SDE)
of DGS sk(t) as follows.

dsk(t)

sk(t)
= ω(t)dt+ σ(t)dB(t) , (1)

where ω(t) and σ(t) are coefficients characterizing the growth
rate of DGS and the variation of DGS resulting from random
selection behaviors, which is modeled as a Brownian motion
dB(t). Another implicit necessity is that sk(t) must be a non-
negative value. However, if we directly model the amount
change of sk(t) (rather than the ratio dsk(t)

sk(t)
as in Eq. (1)), the

Brownian motion term may lead to sk(t) becoming negative,
which would contradict its definition.

The SDE in Eq. (1) agrees the form of Geometric Brownian
Motion (GBM), which is analytically solvable if ω(t) and σ(t)
are time independent. Interested readers are referred to [21] for
the details of deriving GBM’s theoretical properties. Here we
recap them as follows:
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1) The solution of the SDE of sk(t) in Eq. (1):

sk(t) = sk(0) exp
{
(ω − σ2

2
)t︸ ︷︷ ︸

Denoted by µ

+σBt

}
, (2)

where the µ term is used in the following equations.
2) The Probability Density Function (PDF) of sk(t) at any

observation time t follows a Lognormal (LN) distribu-
tion:

pLN(x, t) =
1

xσ
√
2πt

exp
{−(log x− tµ)2

2tσ2

}
. (3)

3) The PDF of sk(t) at an exponentially distributed ob-
servation time t (i.e., pT (t) = ξe−λt) follows a dPLN
distribution:

pdPLN(x) =
αβ

α+ β

[
x−α−1A(α)Φ

( log x− µ− ασ2

σ

)
+ xβ−1A(−β)Φc

( log x− µ+ βσ2

σ

)]
,

(4)
where A(z) = exp(zµ + α2σ2/2) , z = {α,−β},
Φ(·) and Φc(·) are the Cumulative Density Function
(CDF) and complementary CDF of a standard normal
distribution, respectively. The model parameters of a
dPLN distribution are θ := [µ, σ2, α, β], which will be
estimated from observed data.

The interpretation to our problem is that the DGS sk(t)
grows along with the tangle over time t and the stoppage time
t is assumed exponentially distributed. Importantly, the PDF
in Eq. (4) tells what the probability density the size of a certain
degree group Gk(t) will be. After normalized with the total
tangle size n, it tells exactly the degree distribution of a tangle
that we target.

V. MODEL FITTING

A. Fitting Data Preparation

We use real ledger data generated from IOTA mainnet on
Internet that are published by IF2. The whole dataset contains
ledger records from 2016.11-2019.06 (Period I) and 2020.04-
2020.08 (Period II). Period I contains 96 tangles and Period
II contains 16 tangles (112 tangles in total). The number of
messages of reconstructed tangles vary from several thousands
to about 40 millions. To prepare the data for model fitting,
there are two main challenges when processing the original
datasets as follows.

The first challenge is that the published ledger data is repre-
sented in trytes but compressed in bytes. Thus, decompression
and data format conversion have to be done at the first place.
After the conversion, the datasets are converted into human-
readable format and saved as JSON files.

The second challenge is that tangle topology information is
not explicitly recorded. This means that tangle topology has
to be reconstructed manually. We iterate all message records
to identify their edges and connected vertices according to

2https://dbfiles.iota.org/

the hash values of the two referenced messages. A more
challenging case is that multiple tangles could exist in one
batch. This further requires us to cluster messages manually
that belong to the same tangle by identifying individual genesis
vertices and the last vertices attached to the tangle starting
from a particular genesis.

After all tangles are reconstructed, the vertex’s (in-)degree
value is calculated by summing up the total number of attached
messages of the considered vertex. For a certain degree group
Gk, its DGS sk is the number of vertices having the same
degree k in the tangle. For each vertex in Gk, ∀k∈[1,K], the
observed probability (proportion) of such a degree group yi =
sk
n . This thus gives the fitting data for the proposed model.

B. Model Parameter Estimation

Maximization Likelihood Estimation (MLE) is a general
method of estimating the parameters of an assumed probability
distribution model, given observed data. Mathematically, this
is achieved by maximizing the likelihood of observed data Y
with an presumed parametric model characterized by param-
eter θ. Specifically, we have:

θ∗ ← argmax
θ

ℓPDF(θ;Y) , (5)

where the ℓPDF(·) is the log-likelihood function defined as
follows:

ℓnLP(θ;Y) =
n∑

i=1

log fPDF(θ; yi) , (6)

where fPDF(·) is the PDF of the presumed model. For example,
it can be dPLN model’s PDF Eq. (4), or any other candidate
models.

To solve Eq. (5), in the simplest cases, where an analytical
solution of the optimal estimate exists, the optimal estimate
can be obtained directly. This situation exists to most of simple
statistical models such as PL and Exp distributions and so on.
In difficult cases, where the analytical solution does not exist,
solving MLE needs numerical algorithms. Since the fitting
algorithm is not the main focus of this work, we follow the
MLE formulation and use an optimizer ‘L-BFGS-B’, which
is a classical gradient-descent method proposed in [22], to
solve the MLE problem in Eq. (5). Note that this routine is
commercialized and directly available in Python library.

Note that though MLE is a principal way to handle the
parameter estimation problem, the key issue of using MLE is
that the likelihood function is usually not convex or concave
(due to the sum of a number of log-PDF terms). Hence,
whether or not the estimated parameter is a global optimum is
uncertain. In fact, there are rich research topics on non-linear
optimization, which is also planned as our future work for
studying the efficiency of dPLN’s parameter estimation.

VI. RESULTS

A. Candidate Models and Scoring Metrics

The candidate models for comparisons and their parameter
estimations are summarized in Table I. The model complexity
increases from PL and Exp to LN and dPLN. The number of
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Model PDF Model Parameters MLE Solution
PL ζx−γ γ Closed-Form
Exp ξe−λx λ Closed-Form
LN Eq. (3) µ, σ2 Closed-Form

dPLN Eq. (4) µ, σ2, α, β L-BFGS-B

TABLE I: Summary of candidate models (ζ and ξ: Normal-
ization Constants)

model parameters also increases from 1 to 4, thus becoming
reasonably representative for both model performance and
complexity.

We choose Root Mean Sqaured Logarithmic Error (rMSLE)
to measure the fitting quality of different models. Its definition
is given below:

rMSLE =

√√√√ 1

n

n∑
i=1

(log yi − log ŷi)2 , (7)

where n is the total number of observed vertices, and ŷi is the
predicted probability value of observed probability value yi.
rMSLE measures the relative errors of the predicted and actual
values. The reason to choose rMSLE is that the probabilities
between different types of vertices may be significantly dif-
ferent with several magnitudes. In this case, unit dependent
measures e.g. MAE (Mean Square Error) turns out to be
unsuitable because the absolute distances of errors from data
points with smaller proportions will be overwhelmed. rMSLE
solves this issue so that it becomes unit independent by taking
a log-difference/relative ratio.

B. Quantitative Fitting Comparison

Fig. 4 shows the four candidate models’ performance scored
by rMSLE on different parts of the vertex population. The
optimal rMSLE is 0 highlighted with a yellow bar, meaning
all observed and predicted data exactly match.

On the overall interval (Fig. 4a), the rMSLE mean of dPLN
model is 0.3. LN model is at the second place but its rMSLE
mean is about 0.5, which is worse than dPLN model’s. Both
Exp and PL are incorrect models to explain the observed in-
degree distributions of the tangle snapshots with much larger
rMSLEs.

On segmented parts, in the head and middle parts, LN
model performed slightly better than dPLN model (see Fig. 4b
and Fig. 4c). However, the rMSLE mean shown by two models
are actually quite close to each other, especially the median
rMSLE. Neither Exp nor PL models fits these two parts well,
especially in the head part. In the rear part (see Fig. 4d),
the best is dPLN model. Surprisingly, the performance of LN
model degrades significantly, although it performs well on the
previous two intervals even slightly wins against dPLN model.

As we know, the uniqueness of a population is determined
by the minority instead of majority features. The segmented
comparisons above justify this fact because although a candi-
date model can perform better to some common features, its
overall performance can still be hindered. For example, LN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rMSLE

PL

Expon

LN

dPLN

M
od

el

Mean

(a) rMSLE comparison on overall interval Gk ∈ [1,max]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rMSLE

PL

Expon

dPLN

LN

M
od

el

Mean

(b) rMSLE comparison on head part Gk ∈ [1, 2]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rMSLE

PL

Expon

dPLN

LN

M
od

el

Mean

(c) rMSLE comparison on middle part Gk ∈ [3, 5]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
rMSLE

Expon

LN

PL

dPLN

M
od

el

Mean

(d) rMSLE comparison on rear part Gk ∈ [6,max]

Fig. 4: Comparisons of candidate models with rMSLE

model strongly biases to fit vertices in the head and middle
parts, in which both are majority. However, LN model com-
pletely ignores the minority feature of higher degree vertices
in the tangles. Although the proportion of high degree vertices
is small, a significant divergence on them failed LN model’s
overall performance. In contrast, only dPLN model showed a
good balance between majority and minority features, which
explains why it can eventually achieve an overall quality fitting
results.

We also provide the estimated values of model parameters
in Section VI-B. These values can be directly used with our
model to generate tangles that give the most realistic topology
as in IOTA mainnet.

C. Graphical Fitting Comparison

We then provide a graphical comparison of the candidate
models with three tangle examples in Fig. 5. This helps readers
to capture the difference of model performances in a visual
way. For fairness, we pick the three tangle samples with
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(a) Tangle ♯34 (rMSLE = 0.15, Bottom 25%)
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(b) Tangle ♯26 (rMSLE = 0.22, Median)
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(c) Tangle ♯61 (rMSLE = 0.39, Top 25%)

Fig. 5: Graphical fitting comparison

Parameters µ σ2 α β
Mean 0.29 0.15 17.00 14.92

Variance 0.03 8e-3 517.93 185.28
1/4 Quartile 0.16 0.09 2.32 5.01

Median 0.32 0.18 3.17 9.65
3/4 Quartile 0.44 0.21 36.21 27.72

TABLE II: Statistics of estimated model parameters

top 25%, median and bottom 25% rMSLEs of dPLN model,
respectively. We also zoom in the fitting of degree group [1, 3]
in the subplots at the upper right corner.

Generally, the graphical fittings match the quantitative
results. Specifically, dPLN model (green-solid curves) fits
averagely closer to the observed distributions in all parts.
Additionally, LN model fits slightly better to the head part
but extremely poorer in the rear part. As we can see, it diverts
the farthest to the tails. Moreover, none of PL and Exp models
is a reasonable choice.

In summary, the evaluation results can tell that with the real-
world data from IOTA mainnet, the network dynamics result in
a dPLN distribution, which invalidates the typical assumption
of either PL or Exp models in this space.

VII. CONCLUSION

In this paper, we modeled IOTA ledger dynamics with
stochastic analysis and analytically derived its degree distribu-
tion. Our key finding is that the tangle topology of IOTA net-
work renders a dPLN distribution. This finding was confirmed
by fitting our model predictions to official datasets and the
proposed model outperforms other existing models. We hope
that this promotes a deeper understanding of the mechanism
of IOTA and hence benefit IOTA network generator design for
further research and/or application purposes.
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