
Fast Tip Selection for Burst Message Arrivals on A
DAG-based Blockchain Processing Node at Edge

†Xun Xiao, †‡Fengyang Guo, †Artur Hecker and ‡Schahram Dustdar
†Munich Research Center, Huawei Technologies, Munich, Germany

‡Distributed Systems Group, TU Wien, Vienna, Austria

Abstract—With the rapid evolution of blockchain technology,
a clear trend is that new blockchain systems (e.g., IOTA) tend to
use a Directed Acyclic Graph (DAG) rather a chain structure to
organize ledger records. Such a DAG-based blockchain system
shows higher scalability as multiple locations are available in the
ledger for new message attachment. To decide an attachment
location, a popular type of tip selection algorithms follow an
approach using weighted random walks on the DAG ledger. In
a burst message arrival scenario, however, a processing node
deployed at edge using such a method may become a bottle-
neck because sequentially repeating random walks significantly
increases processing delay. In this paper, we propose a new tip
selection algorithm for the burst message arrival scenario on an
edge node. Our solution abandons the weighted random walk
approach, instead, with similar efforts we transfer to calculate
in advance the tip selection probability distribution of the DAG
ledger. Such a new scheme reduces tip selection to a probability
distribution sampling task, which can be done extremely fast.
We implement our solution and demonstrate the benefits of our
approach by comparing with the random walk approach. We
believe our attempt can effectively mitigate the congestion at the
edge node and inspire tip selection algorithm design with a new
vision for DAG-based blockchain systems.

Index Terms—Edge Blockchain Systems, Directed Acyclic
Graph (DAG), Tip Selection, Random Walk,

I. INTRODUCTION

A widespread adoption of blockchain technology is hap-
pening in various business sectors across FinTech [1], de-
centralized marketplace [2], and decentralized Applications
(dApps) [3]. A blockchain system consists of distributed pro-
cessing nodes, each of which maintains a copy of a common
ledger. The ledger copy on every node is synchronized and
temper-proof with a distributed consensus protocol. For the
first time, blockchain technology makes information shared
on Internet trustworthy in a decentralized manner.

A recent trend promotes using a Directed Acyclic Graph
(DAG) to organize ledger records (e.g., IOTA [4]) on pro-
cessing nodes, rather than a chain of transcation blocks
widely used in traditional blockchains (e.g., Bitcoin [5] and
Ethereum [6]). In a DAG ledger, a vertex represents a single
message entry; and a directed edge represents an approval
from the pointing vertex to the pointed vertex. Such a change
brings several promising features e.g., multiple locations for
new message attachment, lightweight consensus procedures,
no miner/transaction fee and so on [7]. All these features
make DAG-based blockchain systems easier to be integrated

within edge/fog computing, thus bringing Internet-of-Things
(IoT) applications closer to the end users [8].

On a processing node of a DAG-based blockchain system, a
key processing logic is its tip selection module. A tip of a DAG
ledger is a message without any approval. A node has to decide
which tip(s) it shall approve by attaching a new message
behind there. Such a decision-making process is nontrivial
because the node has to make sure that: the selected tip(s)
and all their connected vertices in the branches do not conflict
with the new message; in addition, hopefully, the branches
of the selected tip(s) can be re-selected with a higher chance
afterwards, so that the new message itself can get approved
earlier as well. The more (direct or indirect) approvals a vertex
gets, the higher the weight the vertex earns. The cumulative
weight is an important metric indicating how many times a
message was repeatedly voted in history.

Many existing Tip Selection Algorithms (TSAs) widely used
on the processing nodes are designed based on the cumulative
weight metric, where typically a random walk is simulated
on a weighted DAG constructed from the ledger. Due to the
heterogeneous weight distribution among vertices, a random
walk will bias to some tips. The chance of a tip being
selected reflects the collective opinion of all nodes cast in
previous attachments. However, such an approach sometimes
is inefficient as a processing node indistinguishably repeats
random walks for tip selection of every single message.
Particularly, when messages arrive on an edge node in a burst,
due to a sudden long message queue and non-negligible time
of doing random walks, the node might become a bottleneck
in congestion, which postpones all the following phases, such
as ledger consolidation and so on. Alas, this kind of burst
scenarios are common in reality, e.g., crowds aggregating at a
hot spot (like sport events or a public area during rush hours)
to use a same service at one place. Obviously, a revisit is
needed for such a scenario.

In this paper, motivated with the above concern, we re-
consider the weighted random walk approach and try to
seek a new solution for an edge node. The key idea of our
solution is as follows: inspired by Absorbing Markov Chain
(AMC) theory, we discover that the weighted DAG enjoys a
nice property where the Tip Selection Probability Distribution
(TSPD) can be calculated straightforwardly. We will see that
pre-calculating the TSPD is worthy, because with the TSPD
information, tip selections simply reduce to drawing random
samples from the derived probability distribution, which not978-1-6654-3540-6/22 © 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1373

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
02

3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

only can be reused for multiple messages, but also can be
done extremely fast. This completely avoids the tediously
simulating random walks on the processing node. In summary,
our contributions are listed below:

• We model the DAG ledger on a processing node as
an AMC; we show that the stationary distribution of
the modeled AMC represents a statistical outcome of
sufficient random walks on the DAG, thus giving us
directly the Tip Selection Probability Distribution (TSPD)
of the DAG ledger;

• Based on the TSPD property, a sampling-based TSA
is proposed for handling burst message arrivals on an
edge node; the proposed TSA relies on a strategy of
periodically updating the TSPD along with the evolving
DAG ledger;

• We implement the proposed TSA and compare with the
typical weighted random walk TSA. Evaluation results
demonstrate that the proposed TSA can effectively mit-
igate Message Attachment Delay (MAD) in the burst
message arrival scenario at edge node.

To the best of our knowledge, our work is the first to ask if
there could be an alternative approach replacing the weighted
random walk, especially considering a DAG-based blockchain
processing node at edge.

This structure of the paper is outlined as follows. In Sec-
tion II, we review the existing literature; in Section III, we
formally introduce our AMC modeling; in Section IV, we
introduce our sampling-based Tip Selection Algorithm (TSA);
in Section V, we present our evaluation results and conclude
this paper in Section VI.

II. RELATED WORK

In this paper, we focus on a type of DAG-based blockchain
systems where a vertex in the DAG represents a single message
entry and will not develop to a multi-layer DAG topol-
ogy. Exemplary systems are IOTA [4] and its variants, e.g.,
Graphchain [9] and Avalanche [10]. Note that there are many
other graph-based blockchain systems such as Spectre [11] and
Hashgraph [12]. For instance, Spectre [11] batches messages
to blocks and then organizing as graphs. Nevertheless, those
systems are of already a mixture with many extra components,
thus considered out of scope in this work.

Within the interested scope, one line of research is to
propose auxiliary strategies when doing weighted random
walks for tip selection. For example, a TSA was proposed in
G-IOTA [13], where the mechanism chooses three tips, the first
two are selected by the weighted random walk and the third
is selected from left behind tips. Later, E-IOTA introduced
in [14] presented a mechanism to dynamically adjust system
parameters controlling the random walk simulation to reduce
the number of random walks.

Another line of research is to modify the vertex (edge)
weight definition so that the random walks can achieve dif-
ferent purposes. For example, in [15], the authors proposed a
new metric, called sharpness, to describe the extreme degree
in a part of the DAG. Based on the new weight definition,

Notation Meaning
Gt DAG ledger ⟨V,E⟩ at time t

G′
t Sub-DAG ledger ⊂ Gt

n Vertex size of the sub-DAG G′
t

vi A vertex (i.e., a message entry) in ledger Gt

eji A directed edge from vj to vi (i.e., vj approves vi)
ci Cumulative weight (i.e., approval count) of vi
Ṽ Tip set in Gt, i.e., ci = 0, ∀vi ∈ Ṽ

wij Edge weight eij , defined as |ci − cj |
s Required number of tip selections for a new message
vo Random walk starting point/head point of G′

t

vp Tip vertex in Gt

pij Jumping probability on edge eij (along reverse direction)
Pt Transition matrix of G′

t

π̃∗
t Tip selection probability distribution over Ṽ of G′

t

λ Message arrival rate with a Poisson process
τ Message window size

TABLE I: Main notations

the proposed algorithm aims to solve the splitting and fairness
problem in IOTA. In [16], the authors gave a novel definition
of message weight and time with integrating the information
from IoT devices; after that, another TSA called best tip selec-
tion method (BTSM) was proposed to enhance the resistance
to malicious attacks. Similarly, in [17], the authors studied a
TSA optimization problem by using tree theory. They defined
new labels on vertices for random walks in the DAG for tip
selection and a dynamic tree will be maintained to improve
the message validation efficiency.

Generally, the common ancestor of existing works is the
TSA originating from IOTA [4]. Existing works are still under
the framework of using a weighted random walk approach.
Comparing to this, differently, our goal is to look for a new
approach that does not require simulating weighted random
walks for a processing node at edge.

III. MODELING RANDOM WALK ON DAG AS AMC

Genesis
Vertex

Random Walk
Starting Vertex

Selected Tip of
Rnadom Walk

Fig. 1: Modeling weighted random walks on DAG ledger

In the following discussions, we use terms ‘vertex’ and
‘message’ interchangeably. For brevity, we also refer ‘node’
as the processing node of a DAG-based blockchain system
deployed at an edge network. For a better readability, in
addition, the main notations of this paper are summarized
in Table I.

As shown in Fig. 1, we denote a DAG ledger on a node
at time t as Gt := ⟨V,E⟩t. A vertex vi ∈ V represents
a message already in the ledger; a directed edge eji ∈ E

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1374

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

represents a direct approval from message vj to message vi.
A directed edge eji also implies an indirect approval from vj
to all ancestor messages of vi. Gt starts with a genesis vertex
v̄0 (i.e., the leftmost gray vertex). The rest of vertices can be
categorized into tip/non-tip vertices in terms of their in-degree
values (i.e., the direct approval count). Non-tip vertices have
their direct approval count greater than 0; and tips have zero
approval count (e.g., the blue vertex vp). We further denote
the set of tips in Gt as Ṽ .

We denote vi’s cumulative weight ci as the total count
of direct and indirect approvals vi earned at time t. This
definition is also used in many existing systems such as IOTA.
ci characterizes the confidence of a message credited in the
ledger. Based on ci, we denote edge weight wij as the weight
difference of its two endpoint vertices (i.e., wij = |ci − cj |).
The jump probability pij from vi to any of its direct approving
vertices vj is proportional to the edge weight wij . A weighted
random walk tip selection starts at a certain vertex (e.g., the
blue vertex vo in Fig. 1), and jumps hop-by-hop with the
jumping probability pij along the reverse direction of ingress
edges towards a tip vp ∈ Ṽ . For example, the highlighted blue
vertices in Fig. 1 form a realized path of a random walk from
vo to vp.

Notice that tips are always the final stop of a random walk
because there is no edge for further jumps. This is equivalent
to the absorbing states of an Absorbing Markov Chain (AMC),
i.e., a Markov chain containing states with self-transition
probabilities equal to 1 (e.g., the self-transition probability
of vp is 1). Actually, every random walk tip selection is a
realization of state transitions on an AMC. Hence, the state
transition on a sub-DAG G′

t (with a size n) starting with any
vo is fully characterized by a transition matrix Pt consisting
of jump probabilities pij of all edges in G′

t including the self-
transition probabilities of absorbing states.

An important property of an AMC is its stationary distri-
bution, denoted as π̃∗

t , which tells the staying probability of
every state of an AMC in the long run. On the one hand, since
non-tip vertices are transient states where a random walk never
stays, the staying probability of any non-tip vertex will be zero.
On the other hand, only tips in Ṽ will yield non-zero staying
probabilities. If the random walk is repeated with a sufficient
number of times, the selection probability of a tip is roughly
equal to the proportion of occurrences where the random walks
stop at the particular tip. Thus, the statistical outcome of
sufficient times of random walks is equivalent to the stationary
distribution π̃∗

t of the corresponding AMC, which just tells
the Tip Selection Probability Distribution (TSPD) of the DAG
ledger at time t.

IV. A SAMPLING-BASED TSA FOR EDGE NODES

A. Main Idea

A processing node usually needs to select s tips for ap-
proval1 (e.g., an IOTA node picks s ∈ [2, 8]). Thus, sk

1If two tip selections pick the same tip twice, then only one directed edge
will be added.

Cal.

rw1

Message Arrivals:

rw2 rw4Random walk tip selection:

Sampling-based tip selection:

rw3

's Delay

Message window with size

Fig. 2: Main idea illustration

times’ tip selections are needed for k messages in total.
When k messages arrive at the node in a short time (i.e., a
burst arrival), if the sk times’ random walks are sequentially
repeated for tip selections, this may significantly increase the
Message Attachment Delay (MAD) on the node. For example,
as illustrated by light blue blocks in Fig. 2, message v4 can
be processed only if all the previous random walks are done
for the first three messages (i.e., v1 to v3). Clearly, congestion
occurs due to the close and tight arrivals on the node.

Notice that here we exclude a trivial solution: paralleliz-
ing weighted random walk simulations on the node. As
explained, here we consider a processing node deployed at
edge, which might have limited resource onboard, e.g., a
virtualized microservice instantiated in an edge/fog computing
periphery. Therefore, arbitrarily parallelizing random walks on
a resource-constrained node is not an easy option.

Given such a challenge, we were wondering if the TSPD
π̃∗
t of the DAG ledger G′

t can be known in advance; if so, the
node can easily sample from π̃∗

t for tip selection without doing
random walk anymore. Intuitively, such a sampling-based TSA
shall be faster because: 1) the TSPD is calculated only once
but reused for multiple messages; and 2) repeated random
walk simulations are completely avoided, largely shortening
the MAD. This idea is illustrated by the light green blocks at
the lower part in Fig. 2. The only question is: how to calculate
the TSPD, which will be answered upon next.

B. Calculating TSPD π̃∗
t

The selection probability of a tip vp ∈ Ṽ equals the proba-
bility of realizing a random path leading vo to vp. Obviously,
the random path can visit different sets of intermediate vertices
(with or without overlaps) to reach the same tip vp. For an
intermediate jump, independently, it could be either a direct
jump from vi → vj or an indirect jump vi → [vk] → vj
via another vertex vk. Assume the set of all such feasible vk
is V̂ , the jump probability of such a transition according to
Champman-Kolmogorov equation [18] can be formally written
as:

p(vi|vj) = pdirect(vi|vj) +
∑
vk∈V̂

p(vi|vk) · p(vk|vj)

= pij +
∑
vk∈V̂

pik · pkj . (1)

Mathematically, Eq. (1) is the operation of the i-th row
vector multiplying the j-th column vector of transition matrix
Pt of G′

t. Hence, going over all rows and columns, the

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1375

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

transition probability of one-jump for all feasible cases can
be calculated with a matrix product as below:

P(1) = Pt × Pt = P2t . (2)

Extending the one-jump transition probability in Eq. (2) to
multiple jumps, we have:

P(ℓ) = Pt × · · · × Pt︸ ︷︷ ︸
ℓ + 1 terms

= Pℓ+1
t , (3)

where ℓ is the path length of a random walk in G′
t. P(ℓ)

in Eq. (3) gives the full transition probability after ℓ jumps
from any-to-any vertices.

In our problem, the situation is much simpler because: i)
the random walk always starts from a given vertex vo (i.e.,
not an arbitrary vertex); and ii) the DAG ledger G′

t at any
time is acyclic, thus the random walk stops in finite steps
deterministically (i.e., no circle path and infinite jumps). With
these nice features, we represent a random walk starting at vo
as a row vector π0 (i.e., an initial state). π0 has only the o-th
element non-zero (value is 1) and its length is equal to n, i.e.,
the size of G′

t. Hence, with Eq. (3), the state transition from
π0 after ℓ jumps can be calculated by:

πℓ = π0 × Pt × · · · × Pt = π0 × Pℓ+1
t . (4)

The maximum value of ℓ is the maximum path length in the
sub-DAG ledger G′

t, denoted by L. Immediately, this gives the
stationary distribution reaching any possible tip ∀vp ∈ Ṽ in
G′

t as follows:

π̃∗
t = π0 × PL+1

t . (5)

π̃∗
t given by Eq. (5) specifies the probability distribution

arriving at a set of vertices after L jumps starting from a chosen
point vo. As mentioned, since the random walk only goes
towards the tips, after L steps, this certainly covers the required
number of jumps arriving at any other tip(s) that distance
closer to vo. Additionally, only the elements at the indices
of tips (i.e., absorbing states) are non-zero in π̃∗

t , which is a
known property of the stationary distribution of an AMC [19].

C. The Sampling-based TSA

Knowing the TSPD π̃∗
t facilitates a node to quickly draw any

required number of random samples from the distribution for
tip selection. This can handle tip selections for multiple new
messages rapidly because sampling is much faster than random
walk, especially useful in a burst arrival scenario. However,
this approach has to consider the fact that the DAG ledger
G′

t is time-evolving after adding new messages. The topology
change will also alter the tip set Ṽ so as the transition matrix
Pt, thus π̃∗

t too. In our proposed TSA, we introduce a message
window size τ parameter to control the updating frequency of
π̃∗
t , where after every τ s, π̃∗

t has to be updated in order to
adapt with the latest DAG ledger topology change.

Our sampling-based TSA mainly consists of two modules:
The first module (pseudo code in Algorithm 1) is a periodic
TSPD update worker at the beginning of every message win-
dow. When calculating TSPD, accessing π̃∗

t will be blocked

Algorithm 1 TSPDUpdateWorker

Input: Pt
1: while Timer(τ) is up do
2: Lock π̃∗

t ▷ Preventing from conflict access
3: π̃∗

t ← calculateTSPD(Pt) with Eq. (5)
4: Unlock π̃∗

t ▷ Release for accessing
5: Reset τ Timer
6: end while

Algorithm 2 SamplingRoutine

Input: msgQ
1: loop
2: if msgQ.IsNotEmpty() AND π̃∗

t is unlocked then
3: vm ← msgQ.Dequeue()
4: Ṽm ← samplingFrom π̃∗

t for vm
5: Update Pt based on Gt ∪ {vm, Evm,Ṽm

}
6: end if
7: end loop

until its updating is finished at the worker side. Locking the
π̃∗
t prevents conflict accessing from the sampling module. The

second module (pseudo code shown in Algorithm 2) is the
sampling routine for every new message vm suspending in the
message queue msgQ, according to the derived π̃∗

t periodically
updated by the TSPD worker in Algorithm 1.

D. Remarks

First, calculating Eq. (5) practically is not time consuming.
The reasons are: with a specified starting point vo (i.e., π0

vector), Eq. (5) reduces to a vector-matrix product. This is
much faster than matrix-matrix product operations, in both
time and space complexities; in addition, for a DAG, the
transition matrix Pt is always an upper-triangle sparse ma-
trix, thus the actual complexity of the sparse vector-matrix
products in Eq. (5) is much lower than normal dense matrix
multiplications. In our evaluation, its cost is slightly more than
a single time random walk simulation.

Second, although calculating a TSPD consumes slightly
more time, such overheads pay off because the TSPD infor-
mation can benefit to the tip selections of following messages
dropping into the same message window while the weighted
random walk cannot. The delay can be largely mitigated after
knowing the TSPD because a rapid sampling from the TSPD
π̃∗
t replaces the random walk for every message (as illustrated

by the blue blocks in Fig. 2).
Third, the proposed TSA is backward compatible because

it is an optimization to the local tip selection module on one
node, which only relies on the information already available
from the node and does not require any external interaction
with neighboring nodes. It is not mandatory to have a full
installation of our TSA to the whole DAG-based blockchain
system.

Last but not least, the proposed TSA does not touch the
principle of tip selection. An invalid message is treated in

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1376

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

the same way, i.e., drop and re-sample a tip until a valid
one is identified. In other words, the proposed TSA considers
the efficiency issue when selecting a tip, thus neutral to all
following stages.

V. EVALUATION RESULTS

We implemented our sampling-based TSA (labeled as
‘Sampling’) in Python and compared with the typical
weighted random walk TSA (labeled as ‘RW’). In all eval-
uation tests, we set our sub-DAG G′

t size n = 1000, and we
set s = 3 (i.e., three tips have to be selected for each message).

A. Message Attachment Delay (MAD)

Given three different scales of the message arrival rate λ,
we first evaluated the two methods with Message Attachment
Delay (MAD) defined as δti = tci − tai , where tai is the time a
message enters the message queue and tci is the time its three
tips are selected. For each λ, we repeated the test K = 50
times and in each time we randomly generated m = 2000
messages. We are concerned with the median, mean and worst
cases of MAD with the two methods. The results are shown
in Fig. 3.

When the arrival rate is low (λ = 10), the two methods
have similar performances as shown in Fig. 3a’s column. For
the median MAD, both methods could make half of the traffic
loads experience MAD around 0.04 s, where the Sampling
method performed slightly better; for the worst case, few
more numbers of tests with our method showed longer MAD
(prolonging to the [1 s, 10 s] interval), this also worsened the
mean MAD of some tests with our method. As expected, the
proposed Sampling method does not enormously advantage in
a low arrival rate scenario due to similar costs of updating
TSPD π̃∗

t once and doing a single random walk.
However, when the arrival rate increases (e.g., λ = 40),

as shown in Fig. 3b’s column, the performance of the RW
method severely degraded, where half of the traffic loads (i.e.,
the median case) experienced their MADs in between 10 s and
50 s; for the worst case, there were 20% of tests experiencing
MAD > 50 s. Instead, the proposed Sampling method did not
degrade. Clearly, with a burst arrival, more messages dropped
in the same message window, and thereby could reuse the
calculated TSPD π̃∗

t for tip selection by sampling. Similarly,
when the arrival rate doubled to λ = 80, as shown in Fig. 3c’s
column, the median and mean cases of MAD with the RW
method prolonged to the interval of [20 s, 50 s] and its worst
case even prolonged beyond 100 s in some tests. Instead, our
method showed that only less than 20% of tests in the worst
case prolonged beyond 1 s but still less than 10 s.

The MAD evaluations clearly confirmed our motivation and
the key benefit of the proposed sampling-based TSA, where
the processing delay at the node can be effectively mitigated
especially in a burst message arrival scenario.

B. Total Processing Time

We then evaluated the total processing time T consumed by
the two methods for the tip selections for all new messages,

given three different message window size τ values 0.02 s,
0.04 s and 0.06 s. Similarly, for each τ value, we repeated
the tests K = 50 times and each test processed m = 2000
messages but with a fixed arrival rate λ = 40. The evaluation
result is shown in Fig. 4.

First, our proposed TSA consumed much less time to finish
tip selection for all messages than the RW method did (see
the three cold-color curves are all at the left-hand side of the
orange curve). Specifically, with our method, nearly 90% of
the tests consumed around 43 s, 30 s and 23 s, respectively
to finish the entire jobs. In contrast, 80% of tests with RW
method consumed 70 s to 90 s and the rest took up to 150 s.
This confirms that with the message window size τ increasing,
the frequency of updating the TSPD of every message window
became less often, while the chances of reusing a derived
TSPD increased gradually. This also shows the influence of
the message window size τ .

The evaluation results of the two different metrics above
confirm the idea of the proposed Sampling method, which
says that paying slightly more efforts to calculate TSPD π̃∗

t

is definitely beneficial. They also confirm that simulating
weighted random walk is not imperative to tip selection in
DAG-based blockchain systems. Instead, we do have a better
approach to achieve the same goal instead.

C. Features of the Proposed TSA

Last, we are also interested in the features of the proposed
Sampling method. Our Sampling method pays main efforts
on periodically updating a TSPD π̃∗

t , which is different to the
RW method where all time for tip selection is mainly spent on
random walks. Therefore, it is helpful to quantitatively mea-
sure the time proportion of the two modules (i.e., Algorithm 1
and Algorithm 2). The result is shown in Fig. 5 still with an
increasing τ value.

We can first notice that the proportion of time spent on
calculating TSPD π̃∗

t indeed dominates, comparing with the
time for sampling tips (i.e., the forward slash bars are much
higher than the purple bars). This again reflects the key idea
of the proposed TSA, where if the TSPD can be known, the
tip selection is easier. Secondly, we can find out that when
the message window size τ increases, the number of times
updating the TSPD π̃∗

t (i.e., the blue point clouds) decreases
from 2000 (i.e., no reuse at all) to around 450 times. This also
matches our expectation where the larger the message window
size τ , the less frequent TSPD updates will be.

As an initial attempt, clearly, many other interesting aspects
are not covered in this work, such as impacts to the DAG
topology evolution and so on, which is being undertaken as
ongoing work.

VI. CONCLUSION

In this paper, we focused on the tip selection module of
a DAG-based blockchain processing node. Instead of follow-
ing the existing approach using weighted random walks, we
proposed a different strategy that pre-calculates the TSPD of
the DAG ledger then sampling for tip selection. Evaluation

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1377

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Performance comparisons on Message Attachment Delay (MAD) δti (τ = 0.06 s)

Fig. 4: Comparison on total processing time (λ = 40)

Fig. 5: Time ratio of the two modules in Sampling method
(λ = 40)

results confirm that the proposed TSA can largely mitigate
Message Attachment Delay (MAD) at the edge node facing
burst arrivals. We believe that our new approach can further
enlighten a set of new TSAs for similar blockchain systems.

REFERENCES

[1] S. Fosso Wamba, J. R. Kala Kamdjoug, R. Epie Bawack, and J. G.
Keogh, “Bitcoin, blockchain and fintech: a systematic review and case
studies in the supply chain,” Production Planning & Control, vol. 31,
no. 2-3, pp. 115–142, 2020.

[2] H. Subramanian, “Decentralized blockchain-based electronic market-
places,” Communications of the ACM, vol. 61, no. 1, pp. 78–84, 2017.

[3] C. Antal, T. Cioara, I. Anghel, M. Antal, and I. Salomie, “Distributed
ledger technology review and decentralized applications development
guidelines,” Future Internet, vol. 13, no. 3, 2021. [Online]. Available:
https://www.mdpi.com/1999-5903/13/3/62

[4] S. Popov, “The tangle,” White paper, vol. 1, p. 3, 2018.
[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-

tralized Business Review, p. 21260, 2008.
[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[7] X. Fu, H. Wang, and P. Shi, “A survey of blockchain consensus algo-
rithms: mechanism, design and applications,” Science China Information
Sciences, vol. 64, no. 2, pp. 1–15, 2021.

[8] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge
computing for secure and scalable iiot critical infrastructures in industry
4.0,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2300–2317,
2020.

[9] X. Boyen, C. Carr, and T. Haines, “Graphchain: A blockchain-free
scalable decentralised ledger,” in Proceedings of the 2nd ACM Workshop
on Blockchains, Cryptocurrencies, and Contracts, 2018, pp. 21–33.

[10] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer, “Scalable
and probabilistic leaderless bft consensus through metastability,” arXiv
preprint arXiv:1906.08936, 2019.

[11] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” Cryptology ePrint Archive, 2016.

[12] L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzan-
tine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech.
Rep, vol. 34, 2016.

[13] G. Bu, Ö. Gürcan, and M. Potop-Butucaru, “G-IOTA: Fair and con-
fidence aware tangle,” in IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Apr.
2019, pp. 644–649.

[14] G. Bu, W. Hana, and M. Potop-Butucaru, “E-IOTA: An efficient and
fast metamorphism for IOTA,” in 2020 2nd Conference on Blockchain
Research Applications for Innovative Networks and Services (BRAINS),
Sep. 2020, pp. 9–16.

[15] J. Wang, J. Yang, and B. Wang, “Dynamic balance tip selec-
tion algorithm for iota,” in 2021 IEEE 5th Information Technol-
ogy,Networking,Electronic and Automation Control Conference (IT-
NEC), vol. 5, 2021, pp. 360–365.

[16] M. N. Halgamuge, “Optimization framework for best approver selection
method (basm) and best tip selection method (btsm) for iota tangle
network: Blockchain-enabled next generation industrial iot,” Computer
Networks, vol. 199, p. 108418, 2021.

[17] H. Wang and Z. Zhang, “A tsgp-based tip search optimization algo-
rithm,” in 2019 International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC). IEEE, 2019, pp. 424–
427.

[18] J. Karush, “On the chapman-kolmogorov equation,” The Annals of
Mathematical Statistics, vol. 32, no. 4, pp. 1333–1337, 1961.

[19] J. G. Kemeny and J. L. Snell, Finite Markov chains: with a new
appendix” Generalization of a fundamental matrix”. Springer, 1983.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

1378

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 23,2023 at 09:34:33 UTC from IEEE Xplore. Restrictions apply.

