
Gatica: Linked Sensed Data Enrichment and
Analytics Middleware for IoT Gateways

Soheil Qanbari∗, Negar Behinaein†, Rabee Rahimzadeh† and Schahram Dustdar∗
∗Distributed Systems Group, Vienna University of Technology, Vienna, Austria

{qanbari, dustdar}@dsg.tuwien.ac.at
†Baha’i Institute for Higher Education (BIHE)

{negar.behinaein, rabee.rahimzadeh}@bihe.org

Abstract—Raw sensed data lacks semantics. This poses a
challenge to apply analytics directly to raw IoT sensor data. Such
operational data requires an intensive enrichment processes to
drive value. Pragmatic use of naming conventions and taxonomies
can increase the quality of data and make it more interpretable. In
this paper, we incorporate semantic and linked data technologies
and offer a middleware called Gatica, to dynamically inject
semantics to make the raw streaming data of an IoT gateway
”Rich” on the device layer. Gatica collects the real-time sensor
data, enriches them using annotations then transforms and
exposes them in RDF triples, and finally streams RDF objects
to the analytic endpoint for querying the linked sensor streaming
data. Various analytic applications can utilize our middleware
by sending SPARQL requests over the sensor network to our
query interface and retrieving the results. Our middleware offers
the ability to discover hidden patterns of mutually correlated
variables and uncover actionable information within raw data
for more utility. This paper details Gatica’s architecture together
with its implementation.

I. INTRODUCTION

A data stream is a massive sequence of sensed data.
Sensing is a process of expressing true values in context.
Context refers to an environment of interest in which a sensor
is embedded. Such sensors might be a device or a service.
They represent the context behavior by streaming the values of
its computational objects attributes. To interpret the situation
of a thing in a context, semantics of such raw data seems
to be vital. An Internet of Things (IoT) incorporates cloud
computing[1] and virtualization mechanisms to expose such
data to analytic endpoints to drive context awareness. The W3C
Semantic Sensor Network Incubator Group (SSN-XG)1 has de-
veloped an ontology to elevate the quality of sensed data with
semantic web technologies. Project Haystack2 has developed
naming conventions and tags for environmental equipment like
buildings and lighting devices together with their operational
data. Having these conventions in place, clients are able to
consume Haystack REST APIs to discover, query, and tag
objects and the data collected and stored by IoT frameworks
like NiagaraAX3. IoT infrastructure is composed of resource-
constrained gateways and a network of devices. The above-
mentioned solutions are not lightweight and universal in terms
of their provisioning and deployment model. They also lack
analytic endpoints for reasoning purposes.

1http://www.w3.org/2005/Incubator/ssn/
2http://project-haystack.org
3http://www.niagaraax.com

To this end, our contribution is threefold: (i) A built-in
solution for the semantic sensor data retrieval on the IoT device
layer. We develop a semantic gateway middleware called
Gatica, which delivers automated and on-demand semantic
annotations, labels and taxonomies for sensor data acquisition
at scale. (ii) In support of such linked sensor data which was
collected and annotated by the wrappers, we provide a ”mani-
fest” as the meta-data dictionary of the sensor current readings.
This contributes to real-time semantic sensor data retrieval.
(iii) At streaming-time, the sensor annotated data object from
the wrapper is injected into the mediator and the mediator
virtually applies in lightweight transformations on raw data
resulting RDF triples. Our Gatica middleware implements a
layered approach to the interpretation of the sensor time-series
data. The linked data RDFs are then streamed to the analytics
endpoints for querying and reasoning purposes.

The paper continues with an initial analysis over the utility
of the data source being studied in this research in section II.
After the data utility mathematical model is detailed, sectionIII
presents the basic concepts and preliminaries of IoT gateways.
With some definitive clues on data source structure and its
associated annotations, we propose a novel IoT gateway mid-
dleware to fulfill sensor data enrichment. Section IV is devoted
to the core elements of Gatica layered architecture together
with its interacting components. In support of our model, we
deploy our middleware to production by processing the real-
world medical data set. Subsequently, section V surveys related
work. Finally, section VI concludes the paper and presents an
outlook on future research directions.

II. THE UTILITY OF SENSED DATA

There is a commendable survey[2] in which the authors ex-
plore the state of the art of how the health-care sensed data are
utilized by applying analytics and mining algorithms. Along
with such data use-cases, patients requiring intensive care
need continuous observation and treatment. This is achieved
via wearable or contextual sensors, which are connected to
medical devices measuring physical attributes and producing
a considerable amount of vital data on a per-patient basis.
Medical institutions that are collecting big amounts of such
data enable us to achieve a better understanding of the patient’s
current status and their recovery progress.

Having such data in place, the health-care service providers
are able to construct a wellness-function for the normal range
of the vitals and produce alerts upon on deviating from the

2015 3rd International Conference on Future Internet of Things and Cloud

978-1-4673-8103-1/15 $31.00 © 2015 IEEE

DOI 10.1109/FiCloud.2015.37

38

normal values. Through this vital range interpretation, various
disease patterns can be discovered together with its severity.

In this paper we have used the Massachusetts Gen-
eral Hospital/Marquette Foundation (MGH/MF) Waveform
Database[3] that represents a comprehensive collection of elec-
tronic recordings of hemodynamic and electrocardiographic
waveforms of stable and unstable patients in critical care units,
operating rooms, and cardiac categorization laboratories.

This data set is used as a real world motivation scenario in
putting Gatica in production mode. At any given time t, Gatica
provides enriched pieces of information about the medical
sensor observations. Such observations can be represented as
a column-vector ot ≡ [vt,1 vt,2 ... vt,n]

T ∈ Rn of sensor data
stream values at time t. The stream data can be regarded as a
frequently expanding t×n matrix Ot := [o1 o2 ... ot]

T ∈ Rt×n

where the new incoming streams are added as matrix rows at
each time interval t in real-time. In our health-care example,
Ot is the measurements column-vector at t over all the sensors,
where n is the length of the vector and indicates the number
of health-care sensors and t is the measurement time-stamp.
These vectors represent the set of measurements obtained by
the n sensor at a specific observation. In particular the rows
of the matrix represent the different observations in a given
period, while the columns the sample values detected from
each sensor during the observations.

In our scenario, as shown in Equation 1, let O be a matrix
representing the patient vital data measured by sensors in the
hospital ICU room. For instance, vector ECGi represents the
electro activity of heart beats, vector ARTj observes the blood
pressures and vector CO2k indicates the levels of blood carbon
dioxide in a period of time.

Ot,n =

⎛
⎜⎜⎝

ECG1,1 ART1,2 · · · CO21,n
ECG2,1 ART2,2 · · · CO22,n

...
...

. . .
...

ECGt,1 ARTt,2 · · · CO2t,n

⎞
⎟⎟⎠ (1)

Then we perform Principal Component Analysis (PCA)[4],
PCA(O)→ O′, which divides the matrix O into components
to extract the patients health behavior pattern. The PCA
orthogonalizes the columns (take set of orthogonal vectors) of
Ot,n with the Gram-schmidt4 process as shown in Equations
2 and 3.

v1 = w1 =

∣∣∣∣∣∣∣∣

ECG1,1

ECG2,1

...
ECGt,1

∣∣∣∣∣∣∣∣
· · ·w2 =

∣∣∣∣∣∣∣∣

ART1,2

ART2,2

...
ARTt,2

∣∣∣∣∣∣∣∣
(2)

v2 = w2 − 〈v1, w2〉
〈v1, v1〉 v1 (3)

where 〈v, w〉 denotes the inner product of the vectors v
and w. This recursive process generates the set of orthogonal
principal vectors as generalized in Equation 4.

4http://en.wikipedia.org/wiki/GramSchmidt process

vn = wn −
n−1∑
i=1

〈vi, wn〉
〈vi, vi〉 vi (4)

The result is matrix O′ with orthogonal components with
minimized dimension of f .

O′ =

∣∣∣∣∣∣∣∣

ECG′1,1
ECG′2,1

...
ECG′t,1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

ART ′1,2
ART ′2,2

...
ART ′t,2

∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣

CO2′1,f
CO2′2,f

...
CO2′t,f

∣∣∣∣∣∣∣∣
with f � n (5)

After performing the PCA, we will have a set of compo-
nents/vectors where each one represents observations of one
header in the data set.

These extracted vectors together with the patients profile
PP vector are then modelled as a matrix D in the Equation 6.
This matrix will be used to detect and discover the diagnoses
via some correlation pattern discovery.

D =

∣∣∣∣∣∣∣∣

PP1,1

PP2,1

...
PPt,1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

ECG′1,1
ECG′2,1

...
ECG′t,1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

ART ′1,2
ART ′2,2

...
ART ′t,2

∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣

CO2′1,f
CO2′2,f

...
CO2′t,f

∣∣∣∣∣∣∣∣
(6)

Using the above equation, we compute a correlation matrix
Cx,y where x and y represent matrix indices to find the rela-
tionships among variables. The Cx,y is given by the correlation
coefficient5 cx,y between the Dx and Dy .

Cx,y = Corr(Dx,Dy) =
σxy

σxσy
(7)

The Equation 7 contains terms of correlation where σxy

indicates the covariance between Dx and Dy . The two variables
of σx and σy represent the standard deviation of Dx and Dy .
This constructs various sub-matrices acquiring and utilizing
cross-correlation patterns of actual health status observations
over patient’s hospitalization profile within a specific intensive
care period. Such discovered patterns can be clustered using
K-means6 or Bond Energy Algorithm (BEA)[5] methods, for
instance, into a similar behavior patterns to diagnose the
disease based on their similarities to the centroids of the
cluster. These centroids of our k-means can be defined as the
attributes of a specific disease.

The major issue with this raw sensed data is the lack
of semantics to detect early diagnosis. The interpretation of
the sensor data into meaningful prescription requires a deep
understanding of the medical information and should be driven
by domain experts. Since the data is raw, the medical sensor
records should be linked with the labels to ease the disease
detection by doctors. This leads to improved delivery of care

5Pearson’s correlation coefficient between two variables is defined as the
covariance of the two variables divided by the product of their standard
deviations.

6http://en.wikipedia.org/wiki/K-means clustering

39

by providing the health caring services to patients in an
proactive fashion. With this motivation in mind, we proceed
with some IoT gateway preliminary concepts.

III. IOT GATEWAYS: TERMS & PRELIMINARIES

IoT gateways are resource-constraint devices (i.e, with
limited compute, memory, and storage amounts) which expose
connected sensors as cloud services to become addressable,
discoverable and controllable. In order to operate our gateway,
we use the size-optimized and tailored BusyBox7 OS which is
a combination of UNIX utilities into a single small executable.
On top of the OS, a provisioning framework is required to
deploy and manage the life-cycle of the lightweight execution
units or IoT tiny applications. In our architecture, we used the
Sedona8 framework for such large-scale application deploy-
ments in very constrained embedded environments.

In our architecture, we have utilized the Sedona framework
in the medical gateway to build a solution for aggregat-
ing device signals and performing some operations through
lightweight execution units (Sedona apps) which have been
deployed on each Gateway. Now, we elaborate a bit more into
Sedona core concepts:

♦ Classes: they extend the Component class to perform the
defined tasks. The component class includes Slots that specify
how the component is exposed.

♦ Kits: Sedona language sources are compiled into fine-
grained modularity archive files with the ”.kit” extension. Kits
include application’s Manifest and Intermediate Representation
(IR) file that is a non-executable compiled Component class in
Assembly. All kits are compiled into a compact SCode binary
image which will be executable on Sedona VM.

♦ Manifest: Each Sedona application has a manifest file
which contains meta-data of the Kit like name, version, build
host and dependencies.

♦ Sedona Virtual Machine: The SVM is a small interpreter
written in C designed for portability. It allows Kits to be
executed on any Sedona-enabled device.

Sedona is a component oriented language, so compos-
ing the application by assembling pre-defined components is
a principle in this framework. By assembling the required
components and compiling it, there will be a file with .sab
extension. This file is deployable on the Sedona device what
we call it lightweight execution unit in our gateway. In real
world, there are different Sedona Gateway devices with differ-
ent specifications, for instance, Raspberry Pi9 device including
Busybox linux 2.6.32 kernel. To simulate this device as our
gateway, we used BusyBox hosting the Sedona VM. This
image is running on a docker10 container to mimic the physical
gateway. Once the SVM is up and running, the device will
be discoverable from our client. Next, we detail the Gatica’s
architecture in the following section.

7http://www.busybox.net
8http://www.sedonadev.org
9http://en.wikipedia.org/wiki/Raspberry Pi
10https://www.docker.com

���� ����	�
� �
� �
�	���

���������	
�����
�������
������

��
�
�
��
�	

�
�

�

�
�
��
�
�
�

������������

�
��
	�
��
�

�

�

�
��

��
���

�

�

����
�����
�����

���	����
�
����������

���	����
�
�������
���

�
��
�

�
��
�

���������� ����� �����

�
	��

�
	��
��
�

�
�
��

����	�������	���������

�
��
��
��	
��
��
��
�

��
�
�
�
��
�

��	����

���!"#�"���$�%�����
��

��
��
�
�
��
�
��
	
�
�

�
��
�
��
�
�
��

�	�����
�� ��
�#�
&��

���	���
�
�
�!���	��
�

'�����(�
�������$

�
��
�

�
��
�

����

�
�
�

)��
*��
�+���,	�

������

�	�
��

�
�

�
	
�

�
�
�
��
��
��

�
�
�
�

��
����������������

 �
��!���"�#���$%&�

�
�
�
�

Fig. 1: Gatica Middleware layered architecture

IV. GATICA MIDDLEWARE ARCHITECTURE

Looking forward, Fig. 1. illustrates a schematic view on
architecting Gatica’s collaborating components. As a blueprint
for designing the architecture, the Gatica is organized into
four interconnected layers: (i) Medical Device Network, (ii)
Semantic IoT Gateway, (iii) Linked Device Middleware and
(iv) Analytic Query Endpoint. Here the whole architecture is
implemented11. Next each layer’s specification and capabilities
together with its implementation details are described.

11https://github.com/soheil4TUWien/Gatica

40

Fig. 2: Sensor ontology classes, objects and data properties

A. Sensor Data Retrieval

Now, we briefly review the data flow from the sensor/device
network to the upper layers. Gatica is designed to cope with
large amounts of real-time sensor data by transforming it into
linked data. This includes operations involved in collecting
data from external sensor data sources. Then, preprocessing
operations like cleansing noisy data are applied to the data
to prepare it for further analysis. The sensor data acquisition
is performed by the deployed kits in the device layer that
interfaces with sensors and feeds into the stream processing
system. This data is a time series consisting of ordered
sequences of [key,value] pairs of timestamps and data
elements.

In the MGH/MF Waveform Database, three files describe
each record. These files are .ari extension (beat and event anno-
tation), .dat extension (digitalized signal (s)) and .hea extension
(header file). In Device Signal Simulator, we have used the
mgh00112 waveform database. The headers for this waveform
record include the following nine elements: 1. Timestamp 2.
ECG lead I, 3. ECG lead II, 4. ECG lead V, 5. ART, 6. PAP,
7. CVP, 8. Resp. Imp, and 9. CO2 which are described in the
header file of the data set. We have implemented a C program
which simulates the sensor behavior by reading signal data
from mgh001. In effect, this utility iterates over total records of
database and will send each record including nine fields over a
TCP socket connection to DDC. DDC will receive each record
and tokenize the value into eight five-bits signal digits.

Each running SVM which is located in an ICU room has a
unique deployment ID. This enables us to extract information
for each SVM such as its IP address, location and the hos-
pitalized patient ID. In our implementation we have defined
a SVM ID variable in DDA kit. At this moment we have
assigned a default value to this variable to run the prototype.
DDA aggregates sensor data and sub-joins the SVM ID to the
aggregated data message, then sends it to the LDM. But in
a real world application, each SVM will ask the deployment
server a unique ID at startup. Then the server sends a unique

12http://physionet.org/physiobank/database/mghdb/mgh001.hea

ID (SVM unique ID + patient ID) to the SVM device. This
ID will be used in DDA kit.

In the Sedona framework, we implemented Device Data
Collector (DDC) and Device Data Aggregator (DDA) appli-
cations which receives sensor data through its listeners via
TCP Socket and aggregates the data for further processing.
More specifically, DDA kit receives data from proper input
slots which are linked to the outputs of DDC kit. The output-
input link tags are defined in DDA sax file. This kit merges all
inputs separated by semicolon and sends the aggregated byte
stream via a TCP Socket object on an IP and port number
which our next component, Device Data Retrieval (DDR) is
hosted.

B. Artefact Manifest Schema

In our aggregator application, we define properties of
WFDB fields as the meta-data for this SVM environment.
These properties will be stored in the manifest XML file
in compile-time. Then we use Sox protocol to retrieve each
property of the manifest using the Manifest Schema Loader
(MSL) in the next layer. To communicate with our Sedona
device remotely and retrieve information about running Se-
dona VM, we used Datagram Authentication Session Protocol
(DASP)13. In effect, we used DASP Socket in our middleware
to send a multi-cast group request (DISCOVER request).
Therefore each machine running Sedona VM (as server)
will respond to the client. Notice that the discovery request
will query a specific port address on destination machine
which in our case is Sedona default port number 1876. As
soon as each machine receive the discover request, it will
response with the Platform ID and its IP address. In our
case the DASP message received from server contain fol-
lowing SVM information: Discovered SVM IP/Port:
192.168.1.3:1876 and Platform ID: tridium-
generic-unix-1.2.28. Such information has two use-
cases of (i) sending commands to control the device from the
analytic endpoint side and, (ii) as a heartbeat to check if the
running SVMs are still alive and healthy.

C. Sensor Linked Data Model

The detected events, which in our particular case are user
health vital information, can be modelled in an ontology.
The ontology model as depicted in 3, consists of two parts
of sensor and patient parts. The patient part represents her
personal and medical profile like hospitalization ID and the
detected diagnosis, for instance. Every profile is linked via
hospitalization ID to deployment ID in sensor ontology.

Sensor ontology constitute a network of sensors which
are connected to a Sedona device and deployed in a Sedona
Virtual Machine (SVM). Such sensors read vital data from the
patient. For modeling sensor properties, capabilities and their
observations we incorporated the W3C SSN ontology14. We
utilize this ontology by representing our located Sedona device
instance. The Sedona VM is mapped to the system class
which is deployed on a platform with a specific deployment
ID. The sensors are considered as subsystems and declared
as slots. Slots have properties like ID, label, measurement unit

13http://www.sedonadev.org/doc/dasp.html
14http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

41

Fig. 3: Sensor ontology model representing the classes, relations and instances

together with their ranges like min or max values. They expose
their located context observation results.

As shown in Fig. 2. in addition to using object
and data properties of SSN ontology, we defined hasID,
hasObservationResultV alue and observationResultT ime
properties. The hasId is defined for assigning the re-
lated IDs to SVM, slot and deployment. As such, the
hasObservationResultV alue is defined for assigning sen-
sor readings value to observation of each slot. And finally,
the observationResultT ime for assigning an integer as a
timestamp of reading observation of each slot. The ontology
is built and loaded into the TDB RDF database15 using the
Jena TDB APIs to store and retrieve semantic sensor data in
RDF graphs. We developed our sensor ontology in Protege16.
Next, the manifest schema and observed values are written to
TDB. We have used its APIs to store and expose our enriched
sensor data as Triple RDF statements. Meanwhile some sample
patient hospitilization data is stored in the database for future
retrieval.

D. Manifest Schema Loader

We need to fetch the meta data of the deployed sensors
(slots) on the Sedona device. The manifest file contains an-
notation data related to each slot such as min, max or a
measurement unit. We use Sedona APIs to read such data that
exists in the manifest file. A simple sox client is implemented
which communicates, authenticates and listens on a sox port.
This thin client requests slot information like names, values,
flags, and annotations from the manifest schema. The response
holds the manifest data which will be written to the TDB
afterwards.

15https://jena.apache.org/documentation/tdb
16http://protege.stanford.edu

E. Device Data Retrieval

Next is to store the actual sensor observation values in the
DB. As described before, from each sensor the stream of data
(observations) are loaded in the Sedona device. Our Sedona
main application merges the SVM ID, slot ID, observed value
and its time-stamp, then sends them via TCP to a specific port.
At last, the DDR receives the data periodically and stores them
in the TDB.

Fig. 4: Gatica middleware analytic query endpoint

F. Analytic Query Endpoint

As shown in Fig. 4. we implement SPARQL querying
interface on the TDB by using Fuseki17 to serve RDF data

17http://jena.apache.org/documentation/serving data

42

over HTTP. After the Fuseki server is running, a SPARQL
endpoint is provided to respond to various SPARQL requests.
A sample response is presented in Fig. 5. Various analytic
applications can send SPARQL request to our Fuseki server
and retrieve the results.

Fig. 5: Sample response from the query interface

V. RELATED WORK

There is some valuable research regarding the IoT semantic
sensor streaming which elevates the semantic technologies
to Internet of Things domain. Banerjee et al.[6] proposed
an architecture for a semantic search engine on sensor data
where the sensed data is represented in form of triples (RDF),
concepts and relations in form of ontologies (OWL) and the
corresponding query language is SPARQL. In relation to our
approach, Le-Phuoc et al.[7], [8] survey the state of the art
Linked Stream Data processing systems, and highlights a
comparison among them regarding the design choices. Authors
in [9], propose a model and take a linked data approach
to annotate the streams. These papers do not provide any
implementation or evaluation of the proposed architecture.
They also proposed a Linked Sensor Middleware (LSM) [10]
that provides real-time data collection mechanisms using a
cloud-based infrastructure. It also features a web interface
for annotating and visualizing linked sensor data accompanied
with a SPARQL endpoint for querying streaming data. Their
focus is on annotating and provisioning of the data using
unified interfaces.

None of these solutions enable a lightweight IoT deploy-
ment model and is not applicable to resource-constraint IoT
devices like an IoT gateway environment. In contrast to all the
noted related work, our solution addresses universal and large-
scale application deployments in very constrained embedded
environments. The Sedona framework is deployable on very
resource limited devices with small memory, even less than 100
KB. Our solution is also based on a micro-service architecture
as each Sedona application is highly coherent and decoupled
from others. Last but not least, each container in the gateway is
accompanied with the manifest schema which enables dynamic
configurations of the annotations.

VI. CONCLUSION

In this paper, the authors offered and implemented a
resource-constrained middleware to enable the semantic IoT
linked data analytics. It dynamically injects semantics to make
the IoT raw sensor data enriched and meaningful. For modeling

a sensor’s properties, capabilities and their observations, we
extended the SSN ontology which represents our gateway con-
tainers. Gatica collects the real-time sensor data via gateways,
enrich them using annotations then transforms and exposes
them in RDF triples. Using principle component analysis we
are able to cluster the data and run queries over the streaming
sensor data to discover hidden patterns via analytic interfaces.
We have evaluated our model with a real-world healthcare
dataset to demonstrate the utility of our framework.

As an outlook, our future work includes further extension
to the Gatica middleware to support large scale distribution
of data processing capabilities over the increasing streaming
linked sensor data.

ACKNOWLEDGMENT

The research leading to these results is sponsored by the
Doctoral College of Adaptive Distributed Systems (ADSys)18

at the Vienna University of Technology.

REFERENCES

[1] T. G. P. M. Mell;, vol. The NIST Definition of Cloud Computing. NIST
SP - 800-145, September 28, 2011.

[2] D. Sow, D. Turaga, and M. Schmidt, “Mining of sensor data in
healthcare: A survey,” in Managing and Mining Sensor Data, C. C.
Aggarwal, Ed. Springer US, 2013, pp. 459–504. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-6309-2 14

[3] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, and H. E. Stanley, “Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic
signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000. [Online].
Available: http://circ.ahajournals.org/content/101/23/e215.abstract

[4] B. D. Abdi, Herve, Principal Component and Correspondence Analyses
Using R, ser. SpringerBriefs in Statistics, 2015. [Online]. Available:
http://www.springer.com/gp/book/9783319092553

[5] R. Watanabe, E. Morett, and E. Vallejo, “Inferring modules of
functionally interacting proteins using the bond energy algorithm,”
BMC Bioinformatics, vol. 9, no. 1, 2008. [Online]. Available:
http://dx.doi.org/10.1186/1471-2105-9-285

[6] S. Banerjee, A. Mishra, and R. Dasgupta, “Semantic exploration of
sensor data,” in Proceedings of the 5th International Workshop on
Web-scale Knowledge Representation Retrieval & Reasoning, ser.
Web-KR ’14. New York, NY, USA: ACM, 2014, pp. 55–58. [Online].
Available: http://doi.acm.org/10.1145/2663792.2663800

[7] D. Le-Phuoc, J. Xavier Parreira, and M. Hauswirth, “Linked
stream data processing,” in Reasoning Web. Semantic Technologies
for Advanced Query Answering, ser. Lecture Notes in Computer
Science, T. Eiter and T. Krennwallner, Eds. Springer Berlin
Heidelberg, 2012, vol. 7487, pp. 245–289. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33158-9 7

[8] D. Le-Phuoc, M. Dao-Tran, M. . Pham, P. Boncz, T. Eiter, and
M. Fink, Linked stream data processing engines: Facts and figures, ser.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012,
vol. 7650 LNCS, no. PART 2. [Online]. Available: www.scopus.com

[9] P. Barnaghi, W. Wang, L. Dong, and C. Wang, “A linked-data model
for semantic sensor streams,” in Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and Social
Computing, Aug 2013, pp. 468–475.

[10] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth, “A
middleware framework for scalable management of linked streams,”
Web Semant., vol. 16, pp. 42–51, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2012.06.003

18http://www.big.tuwien.ac.at/adaptive

43

