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Abstract—Continuous evaluation of Distributed Computing
Continuum Systems heavily relies on efficient communication
models, with event streaming Publish-Subscribe (Pub-Sub) sys-
tems playing a key role in ensuring fault tolerance, scalability,
and real-time analytics across heterogeneous tiers. On event
streaming platforms like Apache Kafka, consumer applications
often exhibit periodic or event-driven patterns when revisiting
historical events, which requires storing these events over time.
However, accumulating all events increases storage demands. To
address this challenge, Kafka’s default log retention policies,
governed by static time or size thresholds, may prematurely
delete data that will be revisited in future cycles. Unfortunately,
static time- or size-based retention policies are insufficient, as they
fail to maintain equilibrium between resource utilization, cost,
and quality of service (QoS). As a result, intelligent and adaptive
storage management strategies are required to minimize storage
requirements while maintaining enhanced QoS. In this context,
we propose a Light Gradient Boosting Machine (LightGBM)-
based adaptive storage optimization in event streaming Kafka
broker (namely, iKafka) to identify periodic consumer patterns
and determine near-optimal retention times for events. iKafka
also considers adversarial attacks by monitoring prediction ac-
curacy to determine whether to use the predicted retention times
or revert to default retention times. We evaluate the proposed
iKafka system with an air quality use case, and our results
demonstrate approximately 5.5× less memory resources over
traditional Kafka under ideal conditions.

Index Terms—Publish/subscribe systems; Kafka broker; event-
driven architecture; storage management; light gradient boosting
machine; and quality of service

I. INTRODUCTION

D ISTRIBUTED Computing Continuum Systems (DCCS)
integrate multiple tiers, including wearable embedded

devices, Internet of Things (IoT), Edge, Fog, and Cloud
infrastructures, working concurrently [1]–[5]. Each of these
tiers offers distinct advantages and challenges, contributing to
the overall performance and flexibility of the system. Due to its
flexibility and superior performance, this technology is widely
adopted across various applications, leading to an increase in
data and event communications. The Publish-Subscribe (Pub-
Sub) model [6], [7] is a widely used messaging paradigm in
internet technologies, and it blends seamlessly into DCCS [8],

(a) Streaming platform.

(b) Key patterns of event-driven architecture.

Fig. 1: General Publish/Subscribe communication patterns in
the event streaming systems.

enabling efficient, asynchronous communication [9] between
different tiers and enhancing real-time data exchange. In this
model, publishers generate messages (events) without direct
knowledge of their consumers, while subscribers register inter-
est in specific event categories, receiving only relevant data. A
broker or middleware (e.g., Kafka, MQTT, AMQP, RabbitMQ)
manages message flow, effectively decoupling producers from
consumers [10], [11]. The Pub-Sub model offers several key
benefits, including scalability, seamless decoupling of produc-
ers and consumers, and efficient event-driven communication,
making it a preferred choice for applications such as real-time
notifications, the IoT, stock market data feeds, and distributed
logging systems [12]–[14].

Despite its advantages, the traditional Pub-Sub model has
limitations, such as message reliability, message expiry, com-
plex subscription management, and high availability costs
[15], [16]. Event streaming (shown in Fig. 1) addresses these



limitations by extending the Pub-Sub model with persistent,
replayable event storage and real-time processing capabilities
[17], [18]. Unlike traditional Pub-Sub systems, where mes-
sages are transient and delivered in real time, event streaming
platforms store events in distributed logs, allowing subscribers
to access historical data as needed. This ensures reliable mes-
sage processing, even if a subscriber temporarily disconnects,
eliminating data loss [19]. In the literature, there are sev-
eral event streaming platforms, such as Apache Kafka1 [20],
Apache Pulsar2, and Amazon Kinesis3, enable fault tolerance,
scalability, and real-time analytics, making them essential
for large-scale, real-time applications. While event streaming
pub/sub systems offer significant advantages, it’s important to
note that they may introduce their own complexities, such as
the need for proper configuration and maintenance.

For example, storing each event in an event-streaming
architecture provides significant benefits, including flexibility,
the ability to backtrack events for analysis, and a more reliable
data processing solution [21], [22]. However, it also introduces
multiple challenges, such as increased storage requirements,
retrieval latency, maintenance complexity, etc., [6], [17]. As
the volume of stored events grows over time, the system must
allocate and manage substantial storage resources, which can
lead to higher operational costs. Additionally, most event-
streaming architectures employ replication strategies to en-
hance fault tolerance and data availability, further amplifying
storage demands. Additionally, retrieving specific events from
large data streams can introduce latency, particularly when
querying historical data across distributed nodes in a com-
puting continuum. Moreover, maintaining an event-streaming
system requires robust mechanisms for data retention policies,
log compaction, and efficient indexing to balance performance
and storage efficiency. Furthermore, ensuring system scal-
ability while managing event persistence can be complex,
especially in high-throughput environments where millions of
events are processed per second. In the literature, Chaves
et al. [23] introduced federated learning for collaborative
model training, enabling multiple devices or clients to work
together while keeping their data decentralized and secure.
Calderon et al. [24] evaluated in real use cases, highlighting
performance factors in Edge Nodes, Data Streaming, Cloud
Servers, and Search Engines. However, these works does not
address resource limitations or retention policies within Kafka.

Considering the challenges mentioned above, particularly
the increasing memory requirements for storing streaming
events, we introduce iKafka, an intelligent storage opti-
mization strategy for adaptive event streaming in the Kafka
architecture. The primary goal of iKafka is to achieve
equilibrium between resource usage, cost, and Quality of
Service (QoS). To accomplish this, we employ a widely-
used machine learning approach, the Light Gradient Boosting
Machine (LightGBM) model [25], [26], to analyze and predict

1https://kafka.apache.org/
2https://pulsar.apache.org/
3https://aws.amazon.com/kinesis/

Kafka consumers’ consumption patterns, focusing on their
periodic revisiting behavior to estimate message retention
times. Recognizing the potential risks associated with real-time
training accuracy, we implement a robust strategy to minimize
any impact on iKafka’s overall performance. For example,
if LightGBM prediction accuracy exceeds 90%, messages are
assigned to topics based on the predicted retention categories,
with retention policies adjusted to the near-optimal predicted
retention period. However, if accuracy falls below 90%, the
system defaults to the standard retention policy to maintain
reliability and consistency.

In this context, the key contributions of iKafka are sum-
marized as follows:

• Initially, we monitor and analyze the periodic behaviors
of Kafka consumers by examining their logs. This analy-
sis helps identify event reuse patterns, providing valuable
insights into the frequency with which Kafka stores and
retrieves events.

• Next, we predict consumer access patterns based on his-
torical data using the LightGBM algorithm. The primary
features of LightGBM–scalability, efficiency with limited
memory, and speed in handling large datasets—make it
ideal for iKafka.

• Further, we extend our framework to estimate near-
optimal event retention times, aiming to optimize memory
usage in Kafka by controlling resource allocation. This
ensures more efficient storage management.

• Finally, we evaluated iKafka’s performance using a
real-time air-quality monitoring use case, comparing it
against traditional Kafka retention policies. We also ac-
counted for adversarial attacks, monitoring prediction
accuracy to determine whether to apply the predicted
retention times or revert to the default Kafka settings.

Our results shows that iKafka reducing memory consump-
tion by up to 5.51× compared to traditional Kafka retention
policies under ideal conditions without compromising QoS.

II. RESEARCH GAPS AND PROBLEM DEFINITION

Consumer applications using event streaming platforms
(e.g., Apache Kafka) may exhibit periodic or event-driven
patterns in revisiting historical logs. For example, a financial
institution may periodically reprocess transaction logs for a
weekly fraud detection cycle, while an e-commerce platform
may revisit user activity data during a monthly sales audit.
These use cases generate recurring demands for data in specific
time windows, often aligned with business rhythms such as
financial quarters or regulatory timelines.

Kafka’s default log retention policies, which are governed
by static time or size thresholds, may prematurely delete data
that will be revisited in future cycles. Conversely, overly con-
servative retention settings can unnecessarily increase storage
requirements, cascading into multiple interconnected issues.
For example, as the volume of events increases, the system
must allocate and manage substantial storage resources. This
growing storage demand requires additional infrastructure to
support the expanding data. As a result, operational costs



rise, affecting hardware (servers, storage devices), energy con-
sumption, and system management overhead. Event retrieval,
particularly historical data across distributed nodes, introduces
latency. This latency can degrade system performance, causing
delays in processing data requests. To mitigate this, a more
powerful computing infrastructure or advanced data retrieval
strategies, such as caching, may be necessary, which will drive
up operational costs. Increasing resource utilization, such as
allocating more storage, improving indexing, or enhancing
computational power, can improve QoS by reducing retrieval
latency and ensuring real-time event availability. However, this
improvement comes at a higher cost, necessitating significant
infrastructure investment, which may not always be justifiable.

Conversely, cost reduction through limited storage or com-
putational resources can degrade QoS, leading to increased
latency, potential data loss, or decreased system reliability.
Focusing on QoS improvements, such as implementing re-
dundant data replication and high-speed retrieval mechanisms,
further amplifies cost and resource consumption. For example,
higher replication factors ensure fault tolerance and data avail-
ability but demand additional storage and processing power,
increasing operational expenses. Similarly, strategies aimed at
optimizing low-latency event retrieval, such as indexing and
caching, improve QoS but require additional resources, further
raising costs. The inter-dependencies between cost, resources,
and quality can be presented as a three dimensional Cartesian
Space [2]. To intelligently navigate the competing factors of
cost, resource utilization, and quality, adaptive retention and
resource management strategies are essential.

The proposed iKafka system addresses these challenges
by striking a balance between the right to drop and the need
to keep, allowing the discarding of unnecessary events while
retaining critical insights. It excels at determining optimal
retention policies for event-driven systems, where data must
often be retained for specific periods aligned with business
cycles. However, retaining excessive data or over-provisioning
resources can quickly escalate operational costs. In this con-
text, iKafka addresses the following research questions:

• RQ1: How can machine learning-based prediction mod-
els, like LightGBM, be incorporated to predict event
revisiting patterns, and how can these predictions influ-
ence dynamic retention policies to optimize storage while
minimizing costs?

• RQ2: What are the trade-offs between retaining events
for future access and the cost implications of resource
consumption, and how can a system balance these trade-
offs without compromising QoS?

• RQ3: How can adaptive data retrieval strategies to be
integrated into event streaming platforms to reduce la-
tency and improve system reliability without significantly
increasing infrastructure costs?

III. METHODOLOGY

In this section, we discuss our proposed iKafka and its
integration of the LightGBM model to uncover and analyze

periodic revisiting behaviors among consumers. By aggregat-
ing metadata, such as consumer offsets, access timestamps,
and frequently consumed events/data, LightGBM enable to
identify recurring patterns. These patterns may include weekly
or daily batch jobs that reprocess historical events or data
for compliance checks. In general, when using Kafka, certain
scenarios may arise where historical backtracking becomes
necessary. In such cases, consumers may need to revisit past
events that were not originally retained under default policies.

• If a Kafka consumer crashes or restarts due to issues such
as sensor malfunctions, hardware failures, or network
jitter, some messages may remain unprocessed. In such
cases, the consumer must reprocess these messages.

• If critical records, such as transaction details or user
profiles, are lost from a downstream database while
Kafka retains the historical data, it becomes necessary
to retrieve and replay messages from Kafka to restore
the missing information.

• In various real-time streaming applications, data analysts
often need to retrieve historical data over a specific
period for analysis, model training, or reprocessing. For
instance, in financial markets, maintaining unaltered and
chronologically accurate data is crucial for training pre-
dictive models. Similarly, in IoT streaming environments,
analytical algorithms are continuously refined, requiring
access to original data for recalibration and validation.

From the observations above, storing events becomes es-
sential; however, determining how long each event or data
should be retained remains a critical question. As previously
discussed, retaining all events or messages can lead to several
issues, making the calculation of optimal retention times
necessary. To address this challenge, iKafka provides a
solution for managing retention times to optimize memory
usage in real-world applications. The framework operates is
predicated as shown in Fig. 2. First, consumer logs for a
given period are collected, and the messages are analyzed by
examining the frequency of their offsets within each Kafka
partition. Next, the framework checks if these consumption
patterns exhibit periodic characteristics, such as recurring con-
sumption at specific intervals (e.g., weekly, daily). If periodic
patterns are identified, the retention time for each message is
calculated. This is done by subtracting the timestamp of the
producer’s initial message production from the timestamp of
the consumer’s last message consumption.

We illustrate the process by plotting and calculating the
change in retention time over time to identify any periodic
fluctuations in message consumption patterns. To better under-
stand this, we present an idealized periodic data flow, which
serves to illustrate the characteristics of a periodic retention-
time pattern. As shown in Fig. 3, we analyze the consumption
behavior of four distinct consumers, each displaying unique
periodic retention-time patterns.

Next, we apply the Fast Fourier Transform (FFT) to analyze
the time windows of each consumer’s consumption pattern,
followed by peak detection to identify any underlying periodic



Fig. 2: iKafka system event log retention process.
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Fig. 3: Periodic retention time for each of the four iKafka
consumers, with retention time measured in minutes.

TABLE I: Period estimation results for retention time.

Consumer FFT (s) Peak detection (s)
Consumer 1 294.14 300.00
Consumer 2 294.14 300.00
Consumer 3 294.14 60.00
Consumer 4 294.14 300.00

patterns. The quantitative results of the FFT analysis and peak
detection are presented in Table I. It reveal distinct periodic
patterns in consumer consumption behavior. For instance,
Consumer 3 exhibits a one-minute peak in retention time,
as it reviews data from the previous minute every minute,
resulting in a consistent one-minute retention pattern for the
first four minutes of each cycle. In contrast, Consumers 1, 2,
and 4 demonstrate a clear five-minute periodicity. These cyclic
consumption patterns across the consumers allow us to predict
the retention time for each message.

Given the cyclical nature of the iKafka consumer’s histor-
ical backtracking behavior, we employ LightGBM techniques
to predict the retention time for each message and assess the
model’s prediction accuracy. The primary reason for selecting
LightGBM is its suitability for predicting message retention

times and estimating the likelihood of messages adhering to
similar patterns in subsequent cycles. Since this is a regression
problem, LightGBM is an ideal choice due to its ability to
efficiently handle large-scale data. Its faster training speed,
lower memory consumption, and excellent scalability in pro-
cessing big data streams make it particularly well-suited for
deployment in large-scale applications [27].

To train the model, we split the dataset into a training set
(70% of the data) and a test set (30% of the data). The
retention time for each topic is determined by the longest
predicted retention time among all messages within that topic.
To account for potential delays, processing variations, or un-
expected consumption patterns, the retention time is generally
set slightly higher than the maximum predicted value. For
instance, if messages with predicted retention times of 20 and
50 minutes are grouped under one topic, a retention time of
one hour may be assigned to that topic, and messages will
be deleted once this retention period expires. Before applying
the newly predicted retention times, the model’s prediction
accuracy is validated. If the accuracy exceeds a predefined
threshold (in our case, 90%), the new retention times
are applied to each Kafka topic and partition. It is worth
noting that the threshold can be adjusted based on use case
requirements. A 90% threshold is commonly regarded as a
high-confidence level in industrial and ML practices. In more
sensitive domains such as finance or healthcare, this threshold
may be set to 95% or higher, while use cases with greater
tolerance for error may accept thresholds as low as 80–85%.

If the accuracy falls below this threshold, the framework
defaults to Kafka’s original retention policies to ensure system
reliability. When the buffer is full, messages with the highest
prediction accuracy are prioritized for deletion, if necessary.
This strategy allows Kafka to manage its retention buffer more
effectively, reducing unnecessary storage usage while ensuring
that essential data remains available for future retrieval.

IV. EXPERIMENTS AND RESULTS

A. Experiments

1) Consistent periodic consumer patterns across all rounds:
For the evaluation of iKafka system, we abstracted four



typical scenarios for Kafka’s historical backtracking to conduct
the experiment setup. For the scenarios requiring periodic
and historical data retrieval, we designed and tested iKafka
system consisting of one real-time data consumer alongside
four specialized consumers employing distinct consumption
strategies. The details of these scenarios, including the actions
for each consumer, are summarized in Table II.

We created seven producers, each producing one type of
air quality variable such as CO or PM2.5. Each variable type
contains 104 random measurements. These seven producers
run in parallel whereas each handled by a separate process.
For each consumer, we defined a five-minute cycle per round
to represent a specific time scope and repeated this pattern
for ten rounds to mimic cyclical and repetitive consumption
behaviors. While we use air quality data as a case study, our
system and retention prediction method are domain-agnostic
and apply to any setting with repetitive or temporally corre-
lated access patterns, such as finance, consumer behavior, or
high-frequency trading.

Fig. 4: iKafka-based air quality data streaming and back-
tracking system.

Fig. 4 illustrates the overall process of air quality data
production by seven producers and consumption by five con-
sumers. To process these consumers concurrently, we utilize
five separate processes, each assigned to a unique consumer
group with a distinct group ID. Since all five consumers
read from the same partition, the message offset remains
identical across consumers. This setup enables us to track
which messages are consumed in real-time and later revisited
by backtracking consumers. While the real-time consumer is
processing data, it records both the beginning and ending
offsets for each minute, as well as all offsets for the air quality
data (e.g., PM2.5). These recorded offsets are then used by the
other four consumers to retrieve messages from the same par-
tition. In this setup, the consumers record the message content,
which includes the production timestamp, the round, the time
sequence (at the minute level), the air quality variable, and
the measured value of the air quality variables. Additionally,
the consumers fetch the offset and record the corresponding
timestamp (received time) on the consumer side. After running
the data production and consumption process for 10 rounds,
we gather the records for each consumer.

We track the recall frequency of each message by mon-
itoring its offset. When a message’s offset matches that of
the real-time consumer, it signifies that the message has been
accessed by one or more of the four historical backtracking
consumers. In this way, we determine the retention time for
each message based on records collected from each round.

Fig. 5 depicts the results for retention time for each con-
sumer, obtained from the scenarios presented in Table II.
Notably, some retention times in Fig. 5 appear as fractional
values (e.g., 0.8 or 0.6). This occurs because retention time
is calculated as the difference between the exact final back-
tracking consumption time (e.g., 2025/3/3 11:24:02) and the
original production time (e.g., 2025/3/3 11:22:44). As a result,
data that arrives later within this time window will have
a shorter retention time. To address this, we compute the
mean retention time for each time sequence. Additionally, we
observe that the maximum retention time for each consumer
category aligns with the predefined consumer actions. For
instance, Consumer 1 backtracks the complete history for all
previous minutes every minute. From Consumer 1’s heatmap,
we can see that if we round up all retention times, the longest
retention time in the first minute is 4 minutes, gradually
decreasing by one minute per round.

Afterward, we use the time sequence (in minutes) and
variable type as features to train a LightGBM model that
predicts the retention time for each category, as depicted
in Fig. 6. From the results, we observe that the predicted
retention times align with our predefined values. For instance,
for Consumer 1, the maximum retention time in the first
minute is four minutes and decreases by one minute per time
sequence, matching the expected consumption pattern. For
Consumer 2, only data from the second minute is retained for
one minute, and the model correctly captures this behavior.
For Consumer 3, data from all four initial minutes has a
retention time of one minute, which is accurately reflected
in the model’s predictions. As for Consumer 4, only PM2.5

data is retained. However, the model’s accuracy for Consumer
4 is relatively low, leading to less precise predicted retention
times, as shown in the predicted heatmap.

Fig. 7 illustrates the accuracy of the predicted retention
times for consumers. The results show that when following an
ideal historical data consumption pattern, retention times can
be accurately predicted for Consumers 1, 2, and 3. However,
for Consumer 4, the accuracy of the predicted retention time
for certain variables falls below 90%, which may result in
approximately 13% of the data being retrieved again after
the predicted retention time expires. Therefore, in this case,
deleting messages based on the predicted retention time is not
advisable. The lower accuracy for Consumer 4 is primarily
due to the simultaneous generation of different variables by
all seven producers every minute. Consequently, the producer
timestamp and the received timestamp for PM2.5 data within
the same minute can vary significantly. For example, at the
beginning of a minute, a consumer might process 5,000 PM2.5
messages, and by the end of that minute, another 5,000 PM2.5

messages might be consumed. These two groups may have



TABLE II: Comparison of different data retention scenarios. Each scenario presents actions for each consumer.

Scenario
(Consumer)

Description Trigger Condition Data Scope Example

Full Retention
(Consumer 1)

Continuously revisits
all historical logs ev-
ery minute

Every minute The logs of previous
minutes from start of
the round to the current
minute

At 00:01:00 fetch the data from
00:00:00 to 00:01:00; at
00:02:00 fetch the data from
00:00:00 to 00:02:00

Certain Part
Retention
(Consumer 2)

Revisit logs only
when errors or a
task occur in a time
window

When an error or
task is detected

Logs are revisited only
during the error or task
period

There were errors or tasks at
00:03:00, data is always revisited
from 00:02:00 to 00:03:00

Regular
Retention
(Consumer 3)

Revisit previous
minute’s logs every
minute

Every minute Always revisits logs
from the most recent
minute

At 00:01:00 fetch the data from
00:00:00 to 00:01:00; at
00:02:00 fetch the data from
00:01:00 to 00:02:00

Certain Key
Retention
(Consumer 4)

Revisit only specified
data (e.g.,PM2.5) ev-
ery minute.

Every minute Only previous minutes
PM2.5 data

At 00:01:00 fetch the PM2.5 data
from 00:00:00 to 00:01:00; at
00:02:00 fetch the PM2.5 data from
00:00:00 to 00:02:00
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Fig. 5: Heatmap of message retention time across consumers.
“Time Seq.” denotes the time sequence (in minutes), and
“Retention Time” is defined as the interval between when the
producer creates the data and when the consumer performs its
last write operation (in minutes).

different retention times, introducing variations that negatively
impact prediction accuracy.

2) Intermittent periodic consumer patterns in select rounds:
If all rounds of retention times follow a consistent cyclical
revisit pattern, we can easily use the predicted retention time
to determine which data should be deleted when memory is
full. However, real-world scenarios are often unpredictable.
In some cases, users do not revisit data in every round;
instead, they may retrieve data only in specific rounds, often
randomly, due to errors or urgent data needs. To address this,
we introduce four additional consumers that retrieve data at
random intervals and apply the same model to predict retention
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Fig. 6: Predicted heatmap of message retention time across
consumers, follow the rules for Fig. 5.

times, even when data is not revisited in every round. The
actions of these four consumers are as follows:

• Consumer 1: backtracks the complete history for all
previous minutes every minute at round 1, 3, 5 and 7.

• Consumer 2: at minute 3, backtracks the historical data
for minute 2 at round 1, 3, 4, 5 and 7.

• Consumer 3: backtracks the previous minute’s data at
rounds 1, 2, 3, 4, 7, 8, and 9.

• Consumer 4: backtracks the historical PM2.5 data for the
preceding minute every minute at round 1 to round 9.

Next, we estimate R2 scores to evaluate how well our
trained model fits the intermittent periodic consumer patterns
(i.e., the newly introduced consumers) shown in Fig. 8. Our
observations found that the model cannot fully capture the



Consumer 1 Consumer 2 Consumer 3 Consumer 4
Consumers

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.99 1.00 1.00

0.87

Fig. 7: The accuracy of the retention time prediction.

consumption patterns across different consumer models, as
Consumers 1, 2, and 3 exhibit low R2 scores. However, Con-
sumer 4, which continues to follow its previous behavior over
nine rounds, till maintains moderate accuracy in predicting
retention time.
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Fig. 8: R2 scores for bootstrap configuration retention times.

We further generate the actual retention time heatmap
(shown in Fig. 9) for the intermittent periodic consumer
patterns. In this, we observe that the mean retention time
across all rounds is reduced compared to the results obtained
for consistent periodic consumer patterns across all rounds
(refer to Fig. 5). In the consistent periodic consumer patterns,
Consumer 1 exhibited retention times of approximately four,
three, two, and one minute(s) for each time sequence (in
minutes). However, in the original retention time heatmap
for intermittent periodic consumer patterns (Fig. 9), when
only four rounds follow the same revisit pattern, the mean
retention time is approximately 40% of what was observed
when running for 10 rounds. Similarly, for Consumer 2, the
mean retention time is about 50%; for Consumer 3, it is
approximately 70%; and for Consumer 4, it is around 90%.

Next, we generate a heat map of the predicted retention
times (shown in Fig. 10) for intermittent periodic consumer
patterns. The prediction results illustrate that the model strug-
gles to accurately predict retention times for rounds without
revisiting behaviors. As a result, the predicted mean retention
time is higher than the actual mean retention time. In the
absence of a clear periodic pattern, retention times that should
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Fig. 9: Heatmap of message random round configuration
retention time across consumers, (follow the rules for Fig. 5).

be zero are incorrectly predicted as non-zero. For example,
in the case of Consumer 2, where only 50% of the rounds
(1, 3, 4, 5, and 7) follow the revisit pattern, the model
mistakenly predicts a retention time of one minute for all
rounds. Moreover, the model occasionally predicts a retention
time of zero when a non-zero value is expected, potentially
resulting in premature data deletion.
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Fig. 10: Heatmap of message random round configuration
retention time across consumers.

In summary, for the intermittent periodic consumer patterns
observed in select rounds, our iKafka system designed to
handle message retention in real-world scenarios, showed that
the model’s accuracy did not reach 90%. As a result, these
messages will be placed in a topic with retention based on
Kafka’s default retention policies. In the next subsection, we
will test memory usage under our predicted retention time
policy using the retention times predicted for Consumer 1,



Consumer 2, and Consumer 3.
3) Memory usage evaluation based on predicted reten-

tion time policies: After predicting the retention time for
each message, we categorized the messages into five groups,
each with its own retention time, the producer will put
these messages into five topics according to the reten-
tion time policy of messages considering the time se-
quences (in minutes). To prevent messages from being
deleted before consumers process them, in our implemen-
tation design, we added one extra minute to each reten-
tion time. Furthermore, in the Kafka broker’s settings, we
set the log.retention.check.interval.ms param-
eter to one minute. This parameter defines the interval (in
milliseconds) at which Kafka scans logs to identify and
remove messages that have exceeded their retention period.
This means that the system checks every minute whether
any messages have reached their retention time and need
to be deleted. However, if a segment is active (i.e., data
is still being written into the segment), the deletion of the
data in the segment will be delayed even if the retention
time has been reached. To ensure that messages in each
topic are deleted when approaching to the messages assigned
retention time, in the broker we configured the topic-level
segment settings as follows: log.segment.ms = 3 × 104

and log.segment.bytes = 223. Our predicted retention
times of each topic from 1–5 are 1 minute, 2 minutes, 3
minutes, 4 minutes and 5 minutes, respectively.

This configuration ensures that segments roll over quickly
and become inactive once the specified time or maximum
storage size is reached, allowing historical data to be cleared
according to the retention policy. Once these settings are con-
figured, we conduct experiments to evaluate memory usage.
In this scenario, there are four consumers on the consumer
side, while the producer side consists of seven producers
that send messages to different topics based on the predicted
retention time of each message. In the followings, we explain
the behavior of each producer and consumer:
Consuming pattern of Consumer 1: The maximum predicted
retention time for messages in the first minute of each round is
4 minutes. As explained earlier, all retention times need to be
increased by one minute. Hence, we send these messages to
the topic with a retention time of five minutes. Similarly, the
messages from the second minute are sent to the topic with
a retention time of 4 minutes, and the messages from the 5th

minute are sent to the topic with one minute retention time.
Consumer 1 backtracks messages from five topics according
to the retrieval behavior (explained in Table II), while the
real-time consumer consumes messages from all five topics
simultaneously.
Consuming pattern of Consumer 2: The maximum predicted
retention time for messages in the second minute of each round
is one minute. Thus, these messages are sent to the topic with
a retention time of two minutes. All other messages are sent
to the topic with a retention time of one minute. Consumer
2 backtracks messages from these two topics following the
retrieval behavior (explained in Table II), while the real-time
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Fig. 11: Memory usage comparison: model-retention vs. de-
fault policy (default policy: 2.47×, 5.51×, 4.60× vs. Con-
sumers 1, 2, 3).

consumer consumes messages from five topics simultaneously.
Consuming pattern of Consumer 3: The maximum predicted
retention time for messages from the first to the fourth minute
of each round is one minute. Therefore, these messages are
sent to the topic with a retention time of two minutes. All
other messages are sent to the topic with a retention time of
one minute. Consumer 3 backtracks messages from these two
topics following the retrieval behavior (explained in Table II),
while the real-time consumer consumes messages from five
topics simultaneously.
Default retention policy: To get the comparison memory,
we also created one real-time consumer following the default
retention policy the retention time is 24 hours and producers
just send messages to the default retention time topic.

After each round, the producers sleep for two minutes to
ensure that all messages from the final minute are deleted.
Then, the process continues with the next round of experi-
ments, repeating for a total of 10 rounds.

B. Performance Analysis of Memory Usage

In the consistent periodic consumer patterns across all
rounds, we measured the memory usage for the broker. For
Consumers 1, 2, and 3, which achieve up to 99% accuracy, we
calculate their memory usage based on the predicted retention
time policy. This means that all messages are deleted within
one minute after their predicted retention time expires. In
addition, we compare this with the idealized memory usage
for a real-time consumer following the default retention time
policy. Fig. 11 depicts how memory usage compares between
these consumers.

From the figure, we observe that memory usage under the
default retention policy is approximately 2.47× higher than



that of Consumer 1, 5.51× higher than that of Consumer 2,
and 4.60× higher than that of Consumer 3 at peak usage.
In memory usage experiment (presented in previously), we
assume that all messages are deleted within one minute after
their retention time expires. However, in practical scenarios,
retention times should be categorized according to the number
of topics, with each topic storing messages that have different
maximum retention times. For instance, a message with a
retention time of 50 minutes might be placed in the same
topic as a message with a retention time of 30 minutes, with
both set to a retention time of one hour. As a result, messages
with a predicted retention time of 30 minutes will be stored
for an additional 30 minutes, leading to higher memory usage.

Our experiment involved seven producers, each sending
10,000 messages per minute, repeated over 10 rounds, with
each round lasting 5 minutes. Under these conditions, we
observed that memory usage under the default retention policy
was up to 5.51× higher than using our model-predicted reten-
tion times, which is also the maximum times (×) among three
consumers. In real-world big data scenarios, this difference
in memory usage could be even greater. Therefore, we can
conclude that, for long-term, large-scale data management, our
approach offers an effective solution for adjusting iKafka’s
retention time for periodically retrieved data streams, signifi-
cantly reducing memory usage.

V. DISCUSSION

Based on the performance of our model, we have developed
a method to address the data preservation challenge in Kafka
data streams. This approach enables the retention time to be
more effectively set, ultimately optimizing Kafka’s memory
usage across various scenarios. In our idealized experiment,
this method resulted in a memory savings of approximately
5.51×, which is particularly advantageous in high-concurrency
big data environments. Furthermore, we proposed a general
strategy for handling random data that does not exhibit peri-
odic patterns, broadening the applicability of our approach.

A. Limitations, Open challenges and Future works

While iKafka offers benefits for efficient data transmis-
sion and storage, there are also some associated limitations.
First, due to the lack of mechanisms to handle adversar-
ial attacks, we cannot fully guarantee accuracy under such
conditions. As a result, we rely on the default settings to
maintain system stability. In the future, we aim to enhance
the system so that it becomes fully adaptable and no longer
dependent on default settings. Secondly, Kafka topics are
designed to organize data based on themes or categories
rather than retention times. Therefore, if we were to divide
topics based on both categories and retention times, it could
lead to inefficient memory usage if not managed properly.
There are a few more possibilities to improve adaptive storage
management in iKafka as outlined below:

1) Sub-topics: In general, Kafka is efficient in topic-based
partitioning, but not necessarily for sub-topics [28]. Since

Kafka topics are primarily defined by business logic, if differ-
ent data lifecycles are required within the same context, it is
advisable to split the topics into smaller sub-topics. This ap-
proach allows for applying tailored policies to each sub-topic
while maintaining overall business logic. AI/ML can assist
by analyzing event context to automatically identify patterns,
determine the optimal number of sub-topics, predict when data
becomes less relevant, and enable dynamic adjustments [29].

2) Compression: Kafka’s built-in support for compression
formats like gzip, snappy, and LZ4 helps reduce storage
requirements and memory usage by compressing log data,
but they are computationally intensive [30]. Integrating AI/ML
into Kafka can enhance efficiency by enabling context-aware
compression, where the system intelligently adjusts compres-
sion based on factors such as resource availability (e.g.,
network bandwidth). AI can also monitor system performance
in real time and dynamically adjust compression settings to
maintain optimal throughput and latency [29].

3) Scalability under Large-Scale Producers and Con-
sumers: In general, iKafka inherits Kafka’s strong scalabil-
ity properties, as different brokers and partitions can be dis-
tributed across separate physical servers. Similarly, iKafka
enable to scale horizontally with minimal risk of resource
bottlenecks at the messaging layer. However, the adaptive
retention mechanism introduces a prediction component. If
not carefully designed, the centralized execution of prediction
tasks (e.g., metadata aggregation, model inference) could
become a scalability bottleneck. We extend this feature in
iKafka in future while considering offloading prediction to
distributed edge nodes.

4) Large Language Models (LLMs) or Generative AI
(GenAI): can play a key role in processing and understanding
events in a more intelligent way, reducing the need to store
all information [6]. Instead of retaining vast amounts of raw
event data, LLMs can be used to analyze and summarize
key insights, patterns (based on understanding the context of
events), and trends in real time. This enables Kafka or similar
event streaming systems to focus on storing essential data
while discarding redundant or less relevant information, ul-
timately reducing storage requirements and improving system
efficiency. In addition, LLMs can enhance prediction analytics
by providing real-time recommendations and insights based on
historical event data.

5) Noisy and Adversarial Attack Handling: To mitigate
potential adversarial attacks that might degrade prediction
accuracy (e.g., due to poisoned metadata or anomalous con-
sumer behaviors), we will implement a mechanism to track
the deviation between predicted retention durations and actual
message access patterns over time. To further enhance security,
iKafka plans to restrict access to retained messages, ensuring
only authorized consumers can retrieve them.

VI. CONCLUSIONS

This paper presents iKafka, an intelligent and adaptive
storage management system designed to optimize memory



usage in Apache Kafka by predicting consumer access pat-
terns. iKafka employs a Light Gradient Boosting Machine
model to analyze consumer logs, identify recurring data access
patterns, and enable dynamic retention policies. This brings
into focus the delicate balance between the right to be for-
gotten and the need to be remembered, where unnecessary
events can be discarded, while retaining essential insights.
Further, it achieve equilibrium in memory usage–minimizing
resource requirements while maximizing efficiency–alongside
cost optimization and maintaining QoS by dynamically adjust-
ing retention times based on predicted usage. Experimental
results using air quality data demonstrate significant memory
savings—up to 5.51× under ideal conditions—compared to
Kafka’s default retention policies. Looking ahead, further
advancements can enhance iKafka system, including in-
tegrating novel compression techniques, adopting LLMs for
intelligent event summarization and retrieval, and enhancing
real-time learning capabilities for even more efficient storage
management. We will also evaluate our enhanced version by
simultaneously connecting multiple applications, handling a
large number of publishers and subscribers under resource-
constrained environments.
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