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Abstract—Ensuring Service Level Objectives (SLOs) in large-
scale architectures, such as Distributed Computing Continuum
Systems (DCCS), is challenging due to their heterogeneous nature
and varying service requirements across different devices and
applications. Additionally, unpredictable workloads and resource
limitations lead to fluctuating performance and violated SLOs.
To improve SLO compliance in DCCS, one possibility is to apply
machine learning; however, the design choices are often left to the
developer. To that extent, we provide a benchmark of Active In-
ference—an emerging method from neuroscience—against three
established reinforcement learning algorithms (Deep Q-Network,
Advantage Actor-Critic, and Proximal Policy Optimization). We
consider a realistic DCCS use case: an edge device running a
video conferencing application alongside a WebSocket server
streaming videos. Using one of the respective algorithms, we
continuously monitor key performance metrics, such as latency
and bandwidth usage, to dynamically adjust parameters, in-
cluding the number of streams, frame rate, and resolution, to
optimize service quality and user experience. To test algorithms’
adaptability to constant system changes, we simulate dynamically
changing SLOs and both instant and gradual data-shift scenarios,
such as network bandwidth limitations and fluctuating device
thermal states. Although the evaluated algorithms all showed
advantages and limitations, our findings demonstrate that Active
Inference is a promising approach for ensuring SLO compliance
in DCCS, offering lower memory usage, stable CPU utilization,
and fast convergence.

Index Terms—distributed computing continuum systems, ser-
vice level objectives, active inference, reinforcement learning,
quality of service, quality of experience

I. INTRODUCTION

Over the decades, computing environments have evolved
cyclically, shifting between centralized, decentralized, and
distributed models based on technological advancements and
organizational needs [1]–[3]. Recently, distributed environ-
ments, particularly those incorporating edge computing and
IoT, have gained prominence due to their advantages, such as
low latency and enhanced privacy [4], [5]. In this ongoing evo-
lution, Distributed Computing Continuum Systems (DCCS)
have emerged as a powerful approach, efficiently integrating
multiple computational tiers into a cohesive ecosystem that
ensures a trade-off between cost, Quality of Service (QoS), and
resource utilization at scale [6]. In DCCS, tasks are allocated
dynamically based on multiple criteria, including proximity,

capacity, cost, and priority, enhancing real-time processing
and minimizing latency. Unlike traditional edge computing,
they offer fault tolerance by reallocating tasks to other avail-
able servers in case of device failure, ensuring uninterrupted
computation [7], [8]. Additionally, DCCS prioritize resource
efficiency, enabling scalable and adaptive computing across
the continuum. They maintain a high Quality of Experience
(QoE) despite changing system requirements and environmen-
tal uncertainties by effectively managing resources [9], [10].

Simultaneously, DCCS are complex, open systems, vul-
nerable to workload spikes, evolving requirements, and dy-
namic infrastructure changes [6]. These challenges necessitate
adaptive capabilities to maintain optimal performance and
resilience. However, anticipating all possible system config-
urations and environmental conditions is often impractical.
Therefore, DCCS require pervasive intelligence across the
entire continuum to ensure seamless integration, optimal per-
formance, and robust management. This intelligence enables
the system to respond to fluctuations in workload and chang-
ing conditions dynamically, ensuring reliability and efficiency
in real-time processing and resource allocation [11]. Thus,
Service Level Objectives (SLOs) [12]–[15] are introduced to
provide a structured approach for monitoring, predicting, and
managing or adapting system behavior across diverse comput-
ing environments. By establishing clear performance targets,
SLOs enable adaptive mechanisms that respond dynamically
to fluctuations in workload and changing conditions, ensuring
that the system meets predefined performance standards.

In the literature, various mechanisms have been explored
for the dynamic adaptation of workloads through effective
orchestration strategies [16]. While these topics are gradu-
ally addressed by applying different Machine Learning (ML)
mechanisms, e.g., [17], [18], these works fail to provide a
fundamental understanding of which ML techniques to apply
to ensure SLOs. For example, with Octopus [18], the authors
created an SLO-aware inference scheduler based on Advantage
Actor-Critic (A2C). For evaluation, the common scheme here
is to use baselines designed for a different use case or
have a completely different architecture. Within Octopus, the
open question is whether other ML techniques, e.g., Proximal
Policy Optimization (PPO), would have performed superiorly.



To provide a profound understanding of how different ML
techniques rank for ensuring SLOs in a DCCS application,
this paper provides benchmarks that target various aspects of
the techniques. While there exist benchmarking solutions for
pure edge computing [19], the evaluated solutions were not
intended for the DCCS. Also, runtime adaptations for stream
processing [20] have a long history, but they are designed
for static requirements, while SLOs, derived from a business
context, are an evolving system property.

Meanwhile, Active Inference (AIF) [21]—a concept from
neuroscience—is gaining significant attention due to its ability
to efficiently predict and adapt to changing conditions. AIF
attempts to explain the behavior and learning of sentient crea-
tures; to raise the level of intelligence in DCCS, AIF is also in-
creasingly adopted in computer science. Recent literature [22],
[23] has shown that AIF agents can effectively ensure SLO
compliance, maintain high QoS and QoE, and continuously
learn and adapt to dynamically changing environments and
requirements. The promising results of AIF in DCCS inspire
further exploration and also draw our curiosity to evaluate its
performance against Reinforcement Learning (RL) algorithms,
commonly used in literature, i.e., Deep Q-Network (DQN)
[24], A2C [25], and PPO [26]. These algorithms have recently
gained popularity and demonstrated significant benefits across
various applications.

To the best of our knowledge, we are thus the first to provide
a benchmarking solution for dynamic SLO compliance. During
our study, we found that many existing works are conducted
under simplified assumptions, lacking the complexity of real-
world application scenarios. Hence, we simulate realistic
video conferencing applications to rigorously test the afore-
mentioned algorithms, ensuring a comprehensive evaluation
of their performance and adaptability. In this context, our
contributions are threefold, as outlined below:

1) To evaluate algorithms in a realistic environment, we
implement a custom DCCS use case that contains (i) an
edge device running a video conferencing application
and (ii) a WebSocket server streaming videos to the
edge device. To ensure device SLOs, the server hosts
an intelligent agent that optimizes the number of video
streams, Frames per Second (FPS), and video resolution.

2) We provide a benchmark for dynamic QoS and QoE
fulfillment in DCCS. This simplifies the design choice
for stakeholders by providing insights into the different
capabilities of AIF and common RL algorithms.

3) To further compare the algorithms’ robustness against
dynamic changes in environment or system require-
ments, we perform a series of experiments, where:

a) We introduce an instant distribution shift by sig-
nificantly limiting network bandwidth.

b) We introduce a gradual distribution shift by sim-
ulating an overheating device. This shows if algo-
rithms can differentiate between dynamic system
evolution and environmental noise.

c) We change SLO thresholds to see whether algo-

rithms can dynamically adapt to new objectives.
The remaining sections of this paper are organized as

follows: Section II provides an overview of AIF and com-
mon RL algorithms. Section III presents a detailed use case,
SLO design, and algorithm implementation. In Section IV,
we provide a detailed discussion of the various criteria and
scenarios used for evaluating the benchmarks, along with the
experimental setup. Section V offers extensive results and
discussions, along with a summary of limitations and potential
extensions. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Although the merits of DCCS are openly discussed in
recent research [3], [27], the heterogeneity and dynamism of
DCCS are open challenges. To enhance the rigor and repro-
ducibility of our benchmarks, we compare AIF against three
well-established RL techniques, which serve as baseline ap-
proaches. Each technique offers distinct advantages in ensuring
SLO compliance. In this section, we provide a brief overview
of how these methods were applied in the context of dynamic
SLO management and analyze their respective strengths and
limitations. To effectively highlight the differences between
AIF and RL-based approaches, we categorize the three RL
techniques—DQN, A2C, and PPO.

A. Reinforcement Learning

Dynamic processing environments often suffer from fluc-
tuating workload patterns or multiple competing SLOs. To
ensure SLO compliance under these circumstances, RL has
been applied for proactive orchestration, e.g., using A2C to
adjust to client pattern [28] or using DQN to find a trade-
off between scaling actions [17]. Particularly for autoscaling,
DQN is applied by numerous researchers, e.g., for ensuring
high utilization in the cloud [29] or adjusting the size of
serverless containers [30]. However, the authors chose their
respective RL algorithms based on expert knowledge and
experience, i.e., not supported by empirical evidence.

Within the RL family, the three algorithms (i.e., DQN,
A2C, and PPO) have characteristic strengths and weaknesses
in terms of sample efficiency and stable convergence. As we
will see later in the results, this proves critical at cold starts
with few training samples or during distribution shifts.

B. Active Inference

Although AIF is not as widely applied for ensuring SLO
compliance, it has found its way from neuroscience, over
robotics, to computing systems [31]. In contrast to RL, the
challenge is not to maximize the expected reward but to
minimize free energy, a measure of the uncertainty in the
environment. More precisely, AIF agents must constantly
balance between actions that improve their understanding of
the environment and such that ensure high pragmatic value,
i.e., fulfill SLOs. One option for creating a model of the
environment is to train knowledge graphs from observations,
as done in [22], [32]. While training these structures poses an



overhead, they improve trustworthiness because the behavior
of agents can be traced empirically.

However, to the best of our knowledge, there exist no
scientific works that performed extensive evaluations between
RL and AIF techniques, which again leaves the choice with
the developer according to personal benefit. To support stake-
holders in making this design choice, the benchmarks created
in this paper will provide a profound idea of the advantages
of each technique. In the following, we describe how these
different algorithms are incorporated into our methodology.

III. METHODOLOGY

This section introduces an extensible benchmarking plat-
form designed to ensure SLO compliance in dynamic DCCS
environments. We begin by presenting a real-time video
conferencing use case, incorporating a realistic environment
setup. Then, we provide a comprehensive discussion on SLO
composition, considering various quality metrics. Finally, we
detail the implementation of key algorithms—AIF, DQN, A2C,
and PPO—while highlighting their primary hyperparameters.

A. Use Case

We consider a real-time video communication service as a
case study to compare the algorithms in realistic conditions.
Our simulated environment has two components:

1) Client: This is a video-conferencing application that runs
on an edge device (e.g., iPhone). By using the applica-
tion, a user may join a conference with N participants,
where each participant provides a video stream. Each
video stream is characterized by resolution and FPS.

2) Server: Provides a configurable video stream to clients.
To ensure high QoS and QoE for clients, the server hosts
an intelligent agent that continuously learns an optimal
policy (i.e., streaming configuration) through one of the
compared algorithms.

Streaming Process: Initially, the client connects to the
server, which is set up with a default configuration and SLOs
(refer to Table II). The server begins to stream videos to the
client, as visualized in Fig. 1. While rendering the streams,
the client locally collects performance metrics and transmits
them to the server at fixed intervals. The server then uses these
metrics to train its agent and infer a client configuration that
should improve SLO compliance. The client is then instructed
to operate with this new streaming configuration. This process
is repeated throughout the entire lifetime of the client-server
connection.

It is important to note that while local decision-making
is preferred, we implement learning and inference on the
server to accelerate simulation experiments through parallel
execution in the cloud using pre-collected metrics and to
enhance reproducibility. Additionally, server-side implemen-
tation allows us to leverage stable and reliable libraries.

B. SLO Composition

With the use case set, it remains to describe how our appli-
cation will be monitored and configured. For this, we capture

Fig. 1: Overview of the Streaming Process

a set of metrics that provide insights into the performance and
efficiency of the streaming pipeline. During runtime, a set of
SLOs must be fulfilled; in case they are violated, the server
can act by changing the streaming configuration.

Metrics: To quantify SLO compliance, train the agent, and
infer the next system configurations, the client collects various
performance metrics, including CPU usage (MCPU ), memory
usage (Mmem), throughput (Mtp), average latency (Mlat),
average render scale factor (Mrs) and thermal state (Mts).

Consider a system with dynamically changing configura-
tions, indexed by configuration timesteps c ∈ N+. At each
configuration timestep c, there is a set of video streams indexed
by i ∈ {1, . . . , Nc}. Each video stream i emits video frames
indexed by frame timesteps t ∈ N+, where each frame
has a size (in bytes) denoted as bi(t). These frames may
be captured at different real-world timestamps τi(t). Every
second, for each configuration c applied during that time
interval, the client receives Tc sets of video frames, represented
as {Fi(t)|∀i}Tc

t=1. In practice, configurations do not change
that frequently. Based on this setup, the average latency is
measured as shown in Eq. (1)

Mlat = α

Tc∑
t=2

β

Nc∑
i=1

(τi(t)− τi(t− 1)) (1)

where α = 1/(Tc−1) and β = 1/Nc. We calculate throughput
as the average amount of data received over the time period
Tc, as shown in Eq. (2)

Mtp = α

Tc∑
t=2

β

Nc∑
i=1

bi(t)

τi(t)− τi(t− 1)
. (2)

The average render scale factor is given by:

Mrs = α

Tc∑
t=2

β

Nc∑
i=1

√
Wi(t)×Hi(t)

wi(t)× hi(t)
(3)

where wi(t) and hi(t) are the pixel width and height of the
video stream, and Wi(t) and Hi(t) represent the corresponding
dimensions of the rendered area on the client device screen at
timestep t. The CPU usage is calculated according to Eq. (4).

MCPU = α

Tc∑
t=2

Uact(t)

Uref
(4)



where Uact(t) is the actual CPU usage at timestep t, and Uref

is the expected maximum CPU usage, which we set to 200%.
Similarly, memory usage is computed as shown in Eq.(5)

Mmem = α

Tc∑
t=2

Ract(t)

Rref
(5)

where Ract(t) denotes actual memory usage at timestep t, and
Rref the expected maximum memory usage, which we set to
200Mb. Finally, the thermal state of the device is determined
as:

Mts = max
t∈{2,...,Tc}

Θ(t) (6)

where Θ(t) ∈ {0, . . . , 3} represents the device’s thermal state
at timestep t, with 0 indicating a nominal state, 1 indicates
a fair state, 2 indicates a serious state and 3 representing a
critical state.

To ensure high QoE and QoS, the intelligent agent is
continuously learning system configurations that comply with
the following SLOs. For any metric Mx, where x represents a
placeholder for any metric type, variables Mmax

x and Mmin
x

denote the upper and lower SLO thresholds, respectively. For
an overview of possible assignments, refer to Table II.

1) Average render scale factor (Mmax
rs ): To maintain clear

video quality on the client device, stream resolution
should be sufficiently high. Consequently, we enforce
Mrs ≤ Mmax

rs to ensure that videos are not blurry.
2) Stream fulfillment (Mmin

sf ): To ensure that the con-
ference session is interactive, the application should
render a sufficient number of streams. Hence, we require
Msf ≥ Mmin

sf to guarantee an engaging experience.
3) Average latency (Mmax

lat ): To provide a pleasant user
experience, latency should be kept within reasonable
bounds. Therefore, we constrain Mlat ≤ Mmax

lat to
ensure that viewers perceive minimal delay.

4) Throughput (Mmax
tp ): To avoid draining the smart-

phone’s battery and overloading the server, the client
should not use the network excessively. Thus, we require
Mtp ≤ Mmax

tp to keep network usage controlled.
5) Thermal state (Mmax

ts ): To prevent the device from
reaching dangerously high temperatures, the application
should not overuse device resources. For this, we enforce
Mts ≤ Mmax

ts to keep the device temperature low.
We calculate SLO-compliance level Sx ∈ [0, 1] for any

given metric Mx according to the following formula:

Sx =

{
min(1,Mmax

x / Mx), if Mmax
x is defined

min(1,Mx / Mmin
x ), if Mmin

x is defined
(7)

Furthermore, we calculate the SLO-compliance levels for
QoE and QoS SLOs according to Eq. (8) and Eq. (9). Then,
we calculate the overall SLO compliance according to Eq.
(10). Each SLO-compliance level is in the range [0, 1], with 1
being ideal.

SQoE = (Srs + Ssf ) / 2 (8)

SQoS = (Slat + Stp + Sts) / 3 (9)

S = (SQoE + SQoS) / 2 (10)

TABLE I: Hyperparameters

Hyperparameter AIF DQN A2C PPO
surprise threshold factor 2.0 – – –
weight of past data 0.6 – – –
initial additional surprise 1.0 – – –
graph max indegree 8 – – –
hill climb epsilon 1.0 – – –
input size 32 1 1 1
batch size 32 128 64 128
learning rate – 10−4 10−4 10−4

exploration initial eps – 1.0 – –
exploration final eps – 0.05 – –
exploration fraction – 0.1 – –
train freq – 4 – –
grad steps – 4 – –
target update interval – 10000 – –
neurons – [128, 128] [128, 128] [64, 64]
gamma – 0.99 0.99 0.99
gae lambda – – 0.9 0.95
vf coef – – 0.75 0.25
ent coef – – 0.01 0.01
normalize advantage – – TRUE TRUE
n steps – – – 1280
n epochs – – – 10
clip range – – – 0.2

Actions: To maximize SLO compliance, the server can
take action, namely, change the streaming configuration. The
respective policy—which configuration to choose to optimize
SLO fulfillment—is learned over time. The system config-
uration itself is characterized by the following streaming
parameters:

1) Number of streams: The number of streams the client
receives and subsequently renders on the screen.

2) Resolution: Pixel dimensions of video streams.
3) FPS: Frame rate of video streams.

We constrain the parameters to the following possible
values: Astreams = {1, 2, 5, 10, 15, 20}, Aresolution =
{180, 360, 720} (equal widths and heights) and Afps =
{5, 10, 15, 20, 25, 30}. This forms an action (configuration)
space A = Astreams ×Aresolution ×Afps of size 108.

C. Algorithm Implementations

In this subsection, we discuss the implementations of the
evaluated algorithms. To achieve stable performance and high
SLO compliance, we optimize their key hyperparameters using
a grid search approach; the selected values are summarized in
Table I. When multiple hyperparameter assignments showed
identical performance, we preferred the most efficient assign-
ment in terms of CPU consumption time and memory usage.

1) Active Inference: Our implementation of the AIF agent
is based on [22] with several adjustments, reflecting the
increased complexity of our evaluation environment and facil-
itating fair comparison with RL methods. Specifically, we in-
troduce changes to the metric pre-processing and computation
and interpolation of a pragmatic value (pv) and risk assigned
(ra). These values, together with information gain (ig), serve
as criteria for selecting the next system configuration.



In the original approach, all metrics are discretized, with
SLO-related metrics being converted to binary values, accord-
ing to Eq. (11).

f(Mx) =

{
1 if Sx = 1

0 otherwise
(11)

These discrete and binary values are used to learn the
structure and parameters of a generative model used by AIF.
Consequently, pv and ra are computed as a joint probability
of SLO compliance with respect to all QoE and QoS SLOs,
accordingly. For example, let A be a random variable taking
values from the action space A. Given a configuration a ∈ A,
pv and ra are computed according to Eq. (12) and Eq. (13),
respectively.

pva = P (SQoE = 1|A = a) (12)

raa = P (SQoS = 1|A = a) (13)

This baseline approach has certain limitations; for example,
it does not consider the partial SLO compliance in system
configurations. Each SLO variable is in the continuous range
[0, 1] (refer to Eq. (7)), which is not captured by binary
variables. Further, there may be a high probability that at least
one of the QoS and QoE SLOs is fulfilled, but this is ignored
when considering joint distribution only. These assumptions
lead the algorithm to treat both suboptimal and partially
compliant configurations equivalently. While this may suffice
for straightforward scenarios, it introduces considerable bias
in more complex environments, particularly when achieving
full SLO compliance (i.e., S = 1) is infeasible. Therefore, we
introduce several modifications to the AIF implementation to
enhance its competitiveness with RL, enabling it to effectively
distinguish between varying SLO compliance levels.

First, we continue discretizing non-SLO metrics, namely,
CPU time and memory usage. We partition these vari-
ables into a set of ordered, non-overlapping intervals
{[0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8,+∞)} and as-
sign each observation a discrete value from {1, . . . , 5} based
on an interval it falls in. However, we also do a similar
procedure with SLO-compliance levels, but with intervals
{[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1), {1}} and la-
bels {0, . . . , 5}, respectively. In this case, we define this
mapping as the discretization operator D : R → N. This
formulates pv and ra more precisely and approximates expec-
tations over SQoE and SQoS . We calculate the true expected
SLO compliance given a configuration a ∈ A through

fx(a) = E[Sx|A = a] =
1

|Sx|
∑

Si∈Sx

∫ 1

0

sip(si|a)dsi (14)

where for pv we use fQoE(a) with SQoE = {Ssf , Srs} and
for ra fQoS(a) with SQoS = {Slat, Stp, Sts}, respectively.
However, as we discretize SLOs, calculating true expectation
is impossible; therefore, we approximate this function as
shown in Eq. (15):

f̃x(a) =
1

|Sx|
∑

Si∈Sx

∑
s̃∈D(Si)

µ(s̃)P (s̃|a) (15)

where µ(s̃) = min(1, 0.2s̃ + 0.1) approximates a true SLO-
compliance value. This approach allows AIF to differentiate
more precisely between partially SLO-compliant system con-
figurations, which is critical for fair comparison with RL.

Additionally, in Sedlak et al. [22], the configuration space
is two-dimensional, and they artificially increase initial ig
values for key configurations to facilitate the interpolation of
pv and ra matrices for unexplored parameters. In our work,
the configuration space is three-dimensional, therefore, we
use tensors. Similarly, we increase initial ig values for 8
configurations, located in the corners of this three-dimensional
space. These represent all possible combinations of {1, 20}
streams, {180, 720} resolutions and {5, 30} FPS values.

2) Reinforcement Learning: To oppose AIF, we benchmark
it with three well-established RL algorithms, namely, DQN,
A2C, and PPO. We use the implementations from Stable
Baselines3 [33], which are well-documented and standardized
for this purpose.

We standardize continuous metrics (CPU usage, memory
usage, throughput, average latency, and average render scale
factor) based on pre-collected metrics data (see Section IV),
and one-hot encode a categorical metric (thermal state) and
system configuration parameters. We stack together the result-
ing features into a vector of size 24. This vector corresponds to
an observation processed by DQN, A2C, and PPO algorithms.
For each observation, we compute a reward R, corresponding
to an SLO-compliance level for this observation as in Eq.
(10) (i.e., R ≡ S). With such observations and rewards,
RL algorithms have access to all available information and
can differentiate between partially complying configurations,
which enables fair comparison with AIF.

IV. EXPERIMENTAL DESIGN AND TEST CASES

We conduct a series of experiments to evaluate the perfor-
mance and efficiency of the benchmark algorithms in terms
of SLO compliance within dynamic and uncertain DCCS
environments. Initially, we pre-collect a dataset1 containing
various system performance metrics gathered from controlled
experimental conditions prior to simulation. This static dataset
serves as the foundation for accurately modeling the dynamics
of our environment. We sequentially accumulate metrics for
each possible system configuration over several minutes in
real time. The dataset used in experiments encompasses 512
records of metrics per configuration. During experiments,
when an agent selects a new configuration, we sample a batch
of corresponding metrics from the dataset as if they were
collected in real time. This approach makes training and evalu-
ation incomparably faster and facilitates the reproducibility of
results as we publish our data. Our experiments are evaluated
under both certain and uncertain conditions, including basic
preferences, instantaneous and gradual distribution shifts, and
changing SLO requirements, which are detailed below.

1https://github.com/AlfredsLapkovskis/VideoStreamEnv



TABLE II: Experiment SLOs

Experiment Mmax
tp Mmax

lat Mmin
sf Mmax

rs Mmax
ts

Basic 10 Mb/s 1/15 s 5 1.6 1
Instant Shift 10 Mb/s 1/15 s 5 1.6 1
Gradual Shift #1 10 Mb/s 1/15 s 5 1.6 1
Gradual Shift #2 10 Mb/s 1/15 s 5 1.6 1
Changing SLOs #1 256 Kb/s 1/30 s 20 0.25 1
Changing SLOs #2 5 Mb/s 1/15 s 10 1.0 1

1) Basic Performance and Efficiency Evaluation: Initially,
we perform a basic experiment where the algorithms operate
in regular environment conditions and are required to meet the
SLOs in Table II. During this experiment, we run algorithms
for 1.28 × 106 environment steps (RL processes individual
observations, while AIF batches of 32), each 6,400 steps per-
forming evaluation. Evaluation involves executing inference
deterministically, without learning, in a separate copy of the
environment. The evaluation sequence is repeated eight times
at once, each time for 640 steps, starting from one of eight
corner positions in our action space, A. This approach allows
us to summarize the performance of the algorithms with mean
and standard deviation across various starting points. In this
experiment, we evaluate the performance and efficiency of
the algorithms by measuring SLO compliance, CPU time, and
memory usage.

2) Instant Distribution Shift: DCCS are subject to unex-
pected network spikes, dynamically changing topology, and
various failures. Hence, it is critical that algorithms can detect
and handle such challenges. To assess the adaptable capa-
bilities of the algorithms, we conduct this experiment where
a client is suddenly facing a significantly reduced network
bandwidth (1 Mb/s). To simulate this, we implement this
limitation in our video streaming server and pre-collect the
respective metrics. Then, we proceed with the training and
evaluation of the pre-trained models (building on the basic
preferences and performance metrics discussed in the previous
subsection) using this new dataset while maintaining the same
SLOs as outlined in Table II.

3) Gradual Distribution Shift: Often, environmental dy-
namics may evolve more gradually. In such circumstances,
an intelligent algorithm within DCCS should capture the tra-
jectory of system metrics and act accordingly. This proactive
property—crucial for DCCS [6], [10], [34]—is inspected in
this experiment. Suppose a user is attending an online meeting
via a mobile device, and suddenly they expose the device to an
additional workload. This raises the device temperature, poten-
tially to a point that damages the device. To facilitate cooling,
applications should reduce their resource consumption.

To simulate device heating, at each environment step, we
calculate a target temperature T ∗, which represents the tem-
perature to which the device tends to heat up. We calculate it
as a function of throughput (as shown in Eq. (16)), as in our
case, it is a straightforward proxy to network, CPU, and other
resource utilization:

T ∗ = min

[
1, κ× exp

(
λMtp

1024× 1024

)]
. (16)

We explored SLO compliance distributions under various
values of coefficients κ and λ, and selected κ = 0.364 and
λ = 0.05 to simulate such environmental dynamics that full
SLO compliance would remain feasible, but the number of
optimal configurations would be significantly decreased. Then,
we plug T∗ into Newton’s law of cooling equation [35] to
calculate the temperature at the next environment state Tt+1:

Tt+1 = T ∗ + (Tt − T ∗)× exp(−k) (17)

where k represents the cooling constant that controls the rate at
which Tt approaches T ∗. We explored different values and se-
lected k = 0.03 and k = 0.07 to simulate diverse temperature
changing speeds, i.e., we conducted this experiment twice with
different k. In the former case, the evaluated algorithms could
potentially perceive significantly more temperature changing
cycles than in the latter. Finally, we linearly map Tt+1 to a
discrete value Θ ∈ {0, . . . , 3} to represent the device’s thermal
state. We do this to make the simulation closer to reality, as
iOS exposes temperature as a similar discrete value.

Similar to the previous experiment, we continue running the
simulation on the pre-trained models discussed in Subsection
IV-1. Thus, we can simulate dynamically heating/cooling the
device and introduce strong temporal dependence into our
system to evaluate the proactivity of the algorithms.

4) Changing SLOs: In DCCS, devices may be exposed to
changing requirements, which require the intelligent agents
to adapt according to the circumstances. To evaluate this, we
do exactly that—dynamically change SLOs. We conduct two
similar experiments in which we modify the SLOs such that
full compliance becomes unattainable. The distinction between
the two experiments lies in the feasibility of the objectives: one
experiment features objectives that are less feasible than the
other (see Table II). Similarly to the previous two experiment
types, we continue this evaluation on the pre-trained models.

A. Execution Setup

We generate metrics datasets for experiments using an
iPhone 16 simulator with iOS 18.2, available in Xcode IDE
(16.2), installed on a MacBook M2 Pro with macOS 15.0.1.
The application runs in the foreground in portrait device
orientation, as shown in Fig. 1. We execute hyperparameter
tuning and the experiments on a machine with two 32-core
Intel(R) Xeon(R) Gold 8358 CPU @ 2.6GHz with 512 GiB
RAM.

V. RESULTS AND DISCUSSION

To compare the SLO compliance of RL and AIF algorithms,
we ran experiments and simultaneously collected the respec-
tive metrics. Recall that RL algorithms operate on individual
observations, whereas AIF requires batches of 32. Hence, to
present the results of the uniform scale, we compute averages
of subsequences of 32 metrics for each RL algorithm. To
cover distribution shifts during runtime, we decided to learn
and improve the streaming configuration continuously; this
potentially presents an overhead, so we monitor CPU and
memory utilization. However, we present SLO-compliance



metrics from evaluation to avoid noise introduced by learning
and exploration. The curves and transparent regions in SLO-
compliance charts represent means and standard deviations
over batches of 32 observations from eight evaluation se-
quences performed. Means are computed according to Eq.
(18):

µ =
1

T ×N

T∑
t=1

N∑
i=1

Si(t) (18)

where our experiments assume N = 8 is a number of
evaluation sequences, T = 32 is a number of environment
steps in a batch and Si(t) is a SLO-compliance level for the
step t of evaluation i. In turn, standard deviations are computed
according to the law of total variance:

σ =
√
E[Var(S|T )] + Var(E[S|T ]) (19)

=

 1

T ×N

T∑
t=1

N∑
i=1

Si(t)−
1

N

N∑
j=1

Sj(t)

2

+
1

T

T∑
t=1

[
1

N

N∑
i=1

Si(t)−
1

T ×N

T∑
t=1

N∑
i=1

Si(t)

]2
1/2

.

For visual interpretability, we smooth the curves by averaging
over the last 15 batches. Additionally, since full SLO com-
pliance is infeasible in some experiments, we plot their lines
denoted by ”Exp.” that represent an average SLO compliance
of the most optimal configuration based on pre-collected
metrics used for the corresponding experiment.

A. Basic Preferences

Fig. 2 shows that all four algorithms were able to achieve
decently high SLO fulfillment rates under certain conditions.
Specifically, AIF showed remarkable sample efficiency by
converging significantly faster than other algorithms. However,
its solution is mildly suboptimal, which may be partially
attributed to environmental noise. In their turn, PPO and A2C
were able to converge to an optimal configuration but required
multiple times of AIF training time, especially A2C.

On the contrary, DQN showed the lowest SLO compliance
and high instability. Although the initial evaluation cycles
showed high performance, it progressively declined over time
until around batch 2300, where improvement was observed.

Overall, the results suggest that in the base case, AIF, PPO,
and A2C perform similarly, whereas DQN is distinguished by
its instability, sample inefficiency, and subpar performance.

In terms of efficiency, Fig. 3a demonstrates that AIF
required approximately equivalent CPU time as DQN on
average, i.e., 304ms vs. 289ms, respectively. However, there
are occurrences where DQN drastically exceeded this value,
reaching up to 2.04s per batch. In contrast, AIF demonstrated
numerous cases where it used substantially less CPU time, up
to 15ms.

A2C and PPO utilized approximately 2.3–2.5 times less
CPU time than DQN and AIF on average, i.e., 121ms and
122ms, respectively. However, they presented considerably

more outliers, reaching up to 6.39s for A2C and 1.13s for
PPO per batch. Although occasional violations of our CPU
utilization expectations in our setup were negligible, they
could be critical in some applications, and this should be
considered when choosing the right algorithm.

Overall, it is clear that the algorithms are comparable in
terms of CPU utilization, with A2C and PPO being more
efficient on average, though they occasionally introduced sig-
nificant overhead. In contrast, AIF used surprisingly less CPU
time for some batches, demonstrating a more efficient use of
resources.

Regarding memory utilization, Fig. 3b suggests that all
RL algorithms exhibited similar memory utilization dynamics,
close to linear, with memory for DQN growing slightly faster
than others. In contrast, AIF showcased a vastly lower memory
footprint, which was rather logarithmic. The memory usage of
the AIF process increased by only 372 MB from the beginning
to the end of training, whereas the three RL methods exhibited
a significantly higher increase of 2.12 GB, 1.86 GB, and 1.90
GB for DQN, A2C, and PPO, respectively. Furthermore, by
the end of training, the AIF process required approximately
2.1–2.3 times less memory than RL methods. This makes AIF
more advantageous for deploying to edge devices that have a
tightly limited memory capacity.

B. Distribution Shifts

1) Instant distribution shift: Fig. 4 shows that PPO and
A2C successfully detected the instant distribution shift and
acted accordingly to reach near-optimal SLO-compliance
level. A2C converged more slowly but to a slightly better
configuration. Conversely, DQN demonstrated a decline in
performance early on but continued to improve after batch
2000, eventually reaching SLO compliance close to PPO.
Surprisingly, AIF performed poorly. According to our investi-
gation, this was caused by an optimization employed to reduce
its computational overhead by limiting executions of structure
and parameter learning of the generative model in [22]. The
model’s parameters were re-learned only if ℑc > ℑ̃10, where
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Fig. 2: SLO Compliance during Basic Performance Evaluation
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Fig. 4: SLO Compliance after an Instant Distribution Shift

ℑc is the surprise caused by the current batch of data and ℑ̃10

is the median surprise over the last 10 batches; meanwhile,
the model’s structure was re-learned if ℑc > ℑ̃10 × h,
where h is some factor. While these constraints significantly
accelerate execution in the long run, they may also cause
prolonged stagnation in a suboptimal configuration—one that
is sufficiently surprising to be explored, yet not surprising
enough to trigger model updates.

Another issue with the AIF implementation is the inability
to forget outdated experiences. Fig. 5a shows that AIF con-
verged to a more optimal configuration after pre-training on
256,000 instead of 1.28 × 106 observations. Simultaneously,
Fig. 5b demonstrates AIF behavior when re-learning the model
structure every batch. After the instant distribution shift, there
were more fluctuations without performance improvements.
This suggests that mixing a new data distribution with the
outdated one is not an effective strategy. Naively limiting the
observation buffer does not contribute to improving results in
this case (Fig. 5c and Fig. 5d).

2) Gradual distribution shifts: In this scenario, Fig. 6
shows that most algorithms struggled to effectively capture
the pattern of thermal state variations. Increasing the parameter
k, which corresponds to a faster update of the thermal state,
would allow RL algorithms to consider a greater number
of temperature changing cycles. Consequently, we expected
higher k values to improve stability and performance. As
anticipated, DQN demonstrated better performance and greater
stability when k = 0.03 (Fig. 6a) compared to k = 0.07

(Fig. 6b), though its overall performance remained suboptimal.
PPO successfully adapted to different settings but exhibited a
more gradual adaptation at k = 0.07. Contrary to expectations,
A2C displayed increased fluctuations following a constant
pattern, suggesting its inability to detect temperature changing
trends. This behavior implies that dynamically changing dis-
crete temperature poses a challenge for A2C, and it is worth
exploring alternative techniques, such as utilizing continuous
temperature. However, the reason for the seemingly same
problem for AIF is different—the current implementation lacks
the capabilities to model relationships between consecutive
states.

As a result, it cannot effectively predict the long-term con-
sequences of actions. This is also the reason why Fig. 5a–5c
show very similar curves for experiments with temperature—
AIF’s generative model simply could not capture dependencies
of temperature on other variables, so, from AIF standpoint the
data distribution did not change, with exception that fulfillment
of the thermal state SLO became virtually random. Therefore,
to be generalizable to such non-stationary systems, AIF im-
plementations should have the capacity to model transitions
between states and plan a series of actions to achieve long-
term SLO compliance.

C. Changing SLOs

Similarly to the case of instant distribution shift (Fig. 4),
in both cases of changing SLOs (Fig. 7a and Fig. 7b) AIF
suffered the same issue—getting stuck with a suboptimal con-
figuration due to experiencing insufficient surprise to trigger
model updates. However, relieving the limitations of model
update frequencies showed even less stable and performant
results (Fig. 5a), which again prompts the need for exploration
of more advanced techniques for handling distribution shifts.
Although, Fig. 5c shows some improvement (even with less
stability) in case #1 of SLO change, this correlates with other
observations in Fig. 5c, where we see greater variance than
in other figures, which stems from both, re-learning model
every batch and having a small buffer with observations.
Nonetheless, AIF could maintain a high SLO-compliance level
in case #2 and, with greater stability, surpass DQN and even
PPO and A2C until around the 600th and 2500th batch,
respectively.

DQN remained consistent with previous experiments, ex-
hibiting high variance, but simultaneously, its performance
slowly improved, and it approached near-optimal SLO com-
pliance. Interestingly, both PPO and A2C initially remained
on the same SLO-compliance level and eventually could
detect SLO change. In a simpler case (#2), both algorithms
converged to a near-optimal configuration, and PPO converged
significantly faster. However, in case #1 A2C converged to
an optimal configuration, while PPO improved insufficiently.
This may stem from a higher stability of the PPO algorithm,
influenced by methods like gradient clipping and the Kullback-
Leibler divergence term, which hinders its exploration. Signifi-
cant objective shifts could cause larger gradient updates, which
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Fig. 5: SLO Compliance of AIF in each Experiment under Different Structure Learning Conditions (pre-trained on only 256,000
observations)
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Fig. 7: SLO Compliance after Changing SLOs

fostered exploration in A2C, but in PPO, these gradients were
clipped, and drastic policy changes were penalized.

D. Limitations and Future Work

Based on our observations, AIF remains a promising ap-
proach in the context of DCCS, demonstrating a lower memory
footprint than other algorithms, fair and predictable CPU
utilization, and fast convergence to a near-optimal SLO-
compliance level in our standard scenario. Although PPO and
A2C algorithms achieved high scores and stability in many
cases, AIF is also inherently explainable and, via the use of
Markov blankets, allows us to infer system configurations,
discarding irrelevant factors and thus accelerating inference
speed. This makes it attractive for embedding into highly
complex systems that require dependability. With that said, we
identified several issues with the current AIF implementation
for DCCS that should be addressed in future work:

1) AIF should capture relationships between consecutive
observations and plan a series of actions to predict ef-

fectively optimal system configurations in environments
where observations exhibit interdependencies.

2) AIF should more effectively balance updating a genera-
tive model and minimizing computational latency from
frequent learning to avoid hindering the exploration of
potentially better configurations.

3) AIF should more effectively utilize the accumulated
experience to minimize the negative impact caused by
discrepancies in distributions of new and past observa-
tions.

It is important to note that our study, particularly experi-
ments for efficiency comparison, are limited to concrete algo-
rithm implementations used. Other libraries or implementation
details may impact CPU and memory differently.

VI. CONCLUSION

This paper benchmarks the AIF method for SLO compliance
in DCCS and compares its performance with common RL
algorithms, including DQN, A2C, and PPO. We focus on
adapting to dynamic resource scaling and fluctuating work-
loads, which often introduce performance and efficiency chal-
lenges. To evaluate these approaches, we simulate a realistic
video conferencing application on an edge device and monitor
key metrics such as latency and bandwidth, to ensure service
quality by adjusting stream parameters. The experiments in-
corporate both instantaneous and gradual data shifts, such as
network limitations and device overheating, as well as SLO
changes to comprehensively assess the adaptability of each
algorithm. Our results indicate that PPO and A2C achieve
high and stable performance across various scenarios, whereas
DQN suffers from instability and sample inefficiency. Mean-
while, AIF demonstrates limited resource consumption and the
fastest convergence in a stable scenario, making it a promising
approach for DCCS. In the future, we will focus on enhancing
AIF for DCCS by planning a series of actions, balancing
generative model relevance with computational efficiency, and
exploiting accumulated experience to mitigate distribution
discrepancies in observations.
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