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Abstract—Smart environments use composable microservices
pipelines to process Internet of Things (IoT) data, where each
service is dependent on the outcome of its predecessor. To ensure
Quality of Service (QoS), individual services must fulfill Service
Level Objectives (SLOs); however, SLO fulfillment is dependent
on resources (e.g., processing or storage), which are scarcely
available within the Edge. Hence, when distributing services over
heterogeneous devices, this raises the question of where to deploy
each service to best fulfill both its own SLOs as well as those
imposed by dependent services. In this paper, we maximize SLO
fulfillment of a pipeline-based application by analyzing these
dependencies. To achieve this, services and hosting devices alike
are extended with a Markov blanket (MB) – a probabilistic view
into their internal processes – which are composed into one
overarching model. Given a mutable set of services, hosts, and
SLOs, the composed MB allows inferring the optimal assignment
between services and edge devices. We evaluated our method for
a smart city scenario, which assigned pipelined services (e.g.,
video processing) under constraints from subsequent services
(e.g., consumer latency). The results showed how our method can
support infrastructure providers by optimizing SLO fulfillment
for arbitrary devices currently available.

Index Terms—Service Level Objectives, Computing Contin-
uum, Markov Blanket, Quality of Service, Bayesian Networks

I. INTRODUCTION

Public spaces are increasingly covered with sensor net-
works, e.g., road surveillance or parking sensors, which are
used to build compound services such as offered by smart
cities [1] or smart homes. In particular, this can include
microservice pipelines, where one service (e.g., road analysis)
feeds its results to multiple other services (e.g., traffic routing).
While data collection is often carried out through Internet of
Things (IoT) devices, the tendency is to locate data processing
services at nearby edge devices; this promises low latency and
improved privacy. However, whereas the Cloud counted on
vast amounts of virtualized scalable resources [2], the limited
amount of Edge resources promoted the rise of the Computing
Continuum (CC) [3], [4] – a coherent integration of multiple
computational tiers, starting from the IoT, over Edge and Fog,
up to the Cloud. Thus, from data provisioning, over processing,
up to consumption, services can be allocated and scaled over
this large-scale multi-tenant distributed system [5].

To ensure high-level requirements, such as availability or
response time, the Cloud allows clients to specify Service
Level Objectives (SLOs); by evaluating Service Level Iden-
tifiers (SLIs), e.g., system metrics, it is decidable if SLOs
are fulfilled. To trace a system’s behavior at finer granularity,
high-level SLOs are diffused into smaller chunks [6], [7]; for

compound services (e.g., pipelines), this boils down to require-
ments that individual services must fulfill. Within a pipeline,
each service poses its own SLOs: a processing service, for
example, might aim for efficiency, whereas a consumer ser-
vice could aim for high video resolution, i.e., instances of
Quality of Service (QoS) and Quality of Experience (QoE).
Services, however, depend on the quality provided by their
predecessor(s) and expected by successor(s); this constrains
the actions of individual services because they must consider
how local changes influence dependent services. Furthermore,
SLO fulfillment is affected by hosting infrastructure [8], i.e.,
low-resource devices (e.g., Edge) might not be able to fulfill
performance constraints to the same extent as high-resource
devices (e.g., Fog/Cloud). Hence, the deployment of a service
has strong implications not only for its own SLO fulfillment
[9] but also for dependent services’.

To maximize SLO fulfillment throughout a pipeline, the
infrastructure provider must know where to deploy each ser-
vice – we call this an “assignment” between services and
hosts. Estimating the quality of an assignment requires (1)
an understanding of how dependent services constrain each
other’s requirements and (2) the implications for the service
and the deployed host, i.e., hardware utilization and SLO
fulfillment. However, existing works [10], [11] do not consider
transitive dependencies (i.e., imposed by dependent services)
nor estimate resource utilization per service. Without the latter,
deploying multiple services on one device (i.e., multi-tenancy)
is risky because it is uncertain whether multiple services
can coexist with their respective resources [12]. Brute-force
comparing all possible assignments empirically cannot be the
solution: first, the underlying optimization problem is NP-
hard [13], but secondly, even though you find the optimal
assignment for one pipeline, the insight is not transferable to
other scenarios. Services and hosts change over time due to
demand and availability; hence, any solution should be able
to repeatedly infer optimal assignments for changing setups.

In this paper, we present a 4-step methodology that finds the
optimal service assignment by analyzing intersections between
dependent services and their impact on hosting devices. In the
first step, services and devices are extended with a Markov
blanket (MB) – a probabilistic representation of their internal
processes [14]. This allows predicting how changes to one
variable (e.g., video resolution) change the conditional proba-
bilities of another variable (e.g., throughput) [15]. To consider
external factors, i.e., SLOs of dependent services, we propose
the Markov Blanket Composition (MBC): a MBC comprises
an entire pipeline and different processing hardware (i.e.,
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spread over the CC) in one coherent and modular structure.
Following our vision laid out in [3], [16], we use MBC to

model hierarchical dependencies between services, in partic-
ular, how their actions and perceptions influence each other.
Figure 1 shows how hierarchical services could take actions
based on dependent services’ observations. Given this MBC,
we estimated how assigning one service to a particular device
will impact its SLO and those of dependent services; by doing
this repeatedly, the assignment with maximum SLO fulfillment
can be inferred. Hence, the contributions of this article are:

1) The MBC as a mechanism for finding dependencies
between services and their implications to processing
hardware. Thus, services can incorporate and consider
SLO fulfillment of dependent services and their hosts.

2) The generalization of services’ resource utilization over
heterogeneous hardware. This extrapolates the resource
usage of a service at a particular device type and estimates
the implications for comparable services or devices.

3) A collective inference mechanism that maximizes SLO
fulfillment for a service pipeline by assigning services to
CC devices. This considers dependencies in terms of QoS
and QoE that services pose on their direct neighbors.

The remainder of the paper is structured as follows: Sec-
tion II introduces background knowledge and an illustrative
scenario, and Section III presents our methodology including
MBC, which is implemented and evaluated in Section IV.
Section V provides an overview of existing work in this field;
finally, Section VI, concludes our paper with a future scope.

II. PRELIMINARIES

This section provides an overview of concepts and defini-
tions used throughout the paper; in particular, this involves ex-
isting tools and techniques required as background knowledge.
Furthermore, this section provides an exemplary smart-city use
case that will help to put these concepts into practice.

A. Concepts & Definitions

In the context of this paper, the most important entities are
the (pipeline) services and hosting devices. We provide a for-
mal representation of them, as well as their joint assignment.

Definition 1 (Service, s). A service is a utility offered to other
(micro-)services or end users to fulfill a dedicated function; a
service is described as s = 〈in, f, out, Ms, Q〉, where in and
out are the data ingested and produced, respectively, and f is
the operation on the data. Q is a list of SLOs that must be
fulfilled during operation, and Ms contains a list of metrics
observable during service execution.

Microservice architectures (e.g., [17], [18]) form sequen-
tial processing pipelines by chaining together services. The
implications between services are either known upfront or
can be extracted with existing techniques [19]; the result is
a dependency graph K “ pS,Eq, where directed edges (E)
represent logical dependencies between services (S). Each
dependency consists of a predecessor (p) and a successor (q).
For two nodes tp, qu P S, pq P E indicates that q is dependent

Sensory State

Action State

Markov Blanket

Internal State

Fig. 1: Hierarchical dependencies between different Markov blankets

on p. Also, q operates on results produced by p; hence, q
is dependent on the time for executing fp, and the network
latency (nl) to transfer the result to q. The time for providing
p’s results (wt) to q is expressed as

wtpp, q, dq “ timepfppdqq ` nlpÑq (1)

where input data d is ingested to p. Any property of in and
out (e.g., data size), as well as timepfq and consequently wt,
can be observed as part of Ms. Naturally, nl depends on the
location (l) of host devices; however, notice that in the context
of this paper, we assume nl to be independent of data size.

Definition 2 (Host, h). A device provides infrastructure for
hosting services; a host is described as h = 〈l, Rh, Mh〉,
where l represents the geospatial location of the device, Rh

characterizes its entire processing resources, and Mh contains
a list of metrics that gives evidence about ongoing operation.

The current resource utilization is available as part of Mh.
While hosts do not have an explicit representation of SLOs,
their imperative requirement is to cap maximum utilization,
e.g., maintain cpu load below 100%. The SLO fulfillment
emerges from the deployments (e.g., hardware capabilities)
and the current environment (e.g., service demand or network
issues); given Ms,Mh, it is possible to evaluate all SLO.

The set of available hosts (H) is sampled from the CC’s
global pool of devices [20]; ideally, these hosts possess the
desired characteristics (i.e., to fulfill SLOs), but depending on
availability, it must optimize assignments for arbitrary hosts.

Definition 3 (Assignment, as). An assignment indicates that
a service is executed on a specific device; the assignment is
described by as = 〈s, h, Rs〉, where s is the service executed
at host h, and Rs is the share of the host’s resources (Rh)
utilized by executing s. A short notation for any as is s ˛ h.

Resources of multi-tenant devices are commonly partitioned
into VMs and containers, i.e., services deployed at the same
device do not access the same share of physical (processing)
resources [18]. Nevertheless, the entirety of resources dedi-
cated to n services assigned to a host h, plus all idle resources
(RI ) equal the total amount of device resources (Rh).

Rh “ RI `

n
ÿ

i“1

Rs,i (2)

Each tenant is treated as an individual deployment; neverthe-
less, services interact indirectly by pooling resources from the
same host. Hence, when assigning services over heterogeneous

129

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 03,2024 at 14:23:05 UTC from IEEE Xplore.  Restrictions apply. 



devices, the question extends from “which device can fulfill
SLOs to the maximum degree,” to “how much resources
would individual services demand.” The precise implications
of assigning a service to a host (s ˛ h) we call a “footprint”;
both sides will be composed into one model, i.e., the MB.

B. Background

Bayesian Networks (BNs), as applied by Pearl [21], are
structural causal models that can be represented as a Di-
rected Acyclic Graph (DAG): edges between variables (e.g.,
quality Ñ latency) indicate conditional dependencies. For
example, given that quality “ x, what is the probability that
latency “ y, can in Bayesian terms be expressed as

P plat | qualq “
P pqual | latq ˆ P platq

P pqualq
(3)

The causal edges in BNs are a distinctive feature that ex-
tends a system with explainability. Suppose we are interested
in the behavior of a specific variable (x), we can explain x’s
state given its parents, children, and co-parent nodes. This
subset is called its Markov Blanket (MB) – formally MBpxq –
and it disregards all variables that have no direct impact on x.
Given its MB, a random variable is conditionally independent
of all other variables, which is expressed by

P px | MBpxq, Y q “ P px | MBpxqq (4)

Learning the structure of BNs and extracting MBs through
data is not a simple task, many works are devoted to that;
see [22] for a thorough survey on the topic. Regardless of
their size, systems can be divided into smaller modules (i.e.,
MBs); thus, managed and controlled on a convenient scale.
Within previous work, we built explainable MBs around SLO-
governed components [7], [15]. To understand observable
processes, we trained a causal representation of a system’s
states – all contained within a MB. Conditional variable
dependencies could answer questions like “if quality rises,
what is the probability that latency rises too?”, expressed by
Eq.(3). Given MBplatencyq, conditional SLO fulfillment (i.e.,
latency ď x) was analyzed to indicate the optimal system
configuration (i.e., quality “ z) that fulfills SLOs.

SLOs follow the grammar var Ñ rel Ñ thresh, where
var P tMs Y Mhu, rel P tď,ěu, and thresh P Q; hence,
possible examples are latency ď 10, or cpu ď 95. The second
SLO type is supplied as obj Ñ var, where obj P tmin,maxu.
These objectives represent soft boundaries that are optimized
during operation, such as minpenergyq. Recall, that SLOs
characterize the QoS and QoE of individual services and their
interfaces, i.e., the quality expected of in and out, but there
is no knowledge how SLOs affect other services. By design,
these MBs contain only internal system variables.

Extracting the MB around multiple variables forms larger
subsets. For a service (s), its host (h), and m SLOs (Q), its
MB is the composition of the subsets expressed as

MBEpMs,Mh, Qq “

m
ď

i“1

MBpBNLpMs Y Mhq, Qiq (5)

Latency

Ingest video data

Supply results to dependent services

Alternative
deployments

SLO Fulfillment

Energy

Data Quality

Fig. 2: Smart-city services chained together as a compound application

where MB and BNL are algorithms for MB extraction and
BN learning, respectively, as presented in [15]; Ms and Mh

contains multidimensional metrics monitored by executing
s ˛ h. Whenever it is impractical to provide data for Bayesian
Network Learning (BNL) upfront, or there occur variable
shifts, our previous work [7] provides a remedy.

C. Illustrative Scenario

City spaces are increasingly crowded with sensor networks,
most of them even publicly accessible [23]. This provides
application developers access to vast amounts of data and
allows them to combine and assemble smart city services at
will. Figure 2 exemplifies how a service pipeline might be
plugged together – data flows along the red errors. In that
context, the following services and requirements (written in
bold) could be envisioned by an application developer:

‚ SmartCamera (grey) provides batches of images from IoT
cameras at a traffic junction. Can customize video quality.

‚ RoadAnalysis (red) analyzes video streams of a road
scene. Can get congested with high number of frames.

‚ TrafficRouting (green) consumes information about traffic
conditions and can control traffic lights or reroute vehicle
navigation systems. Requires information timely.

‚ TrafficPrediction (yellow) assists local governments in es-
timating how traffic evolves throughout the day. Requires
large amounts of fresh data to detect irregularities.

‚ LiveMonitoring (purple) allows remote inspection of an-
alyzed road scenes. Requires high video quality.
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#2: Compose Markov Blankets

Speed SLO

Resource SLO

#4: Infer Service Assignments

#3: Generalize Footprint

#1: Extract Bayesian Networks

SLOs

Fig. 3: Methodology for maximizing the SLO fulfillment of service pipelines
by composing MBs and assigning services over heterogeneous CC hardware

The application developer combines the services as Smart-
Camera Ñ RoadAnalysis Ñ {LiveMonitoring, TrafficPredic-
tion, TrafficRouting}; hence, the first two services in the
pipeline provide their results to subsequent services. The
immediate question here is how the requirements that each
service poses constrain the QoS that RoadAnalysis and Smart-
Camera must provide – these are the transitive dependencies.
The second question this unfolds is where to deploy individual
services; preferably, application developers can stay agnostic
in that regard and rely on the underlying CC infrastructure:
depending on availabilities, services get assigned to hosts so
that overall SLO fulfillment is maximized over the pipeline.

Both questions will be addressed as part of our methodol-
ogy: application developers can customize how they would like
their applications to operate (i.e., expressed in terms of SLOs)
and rely on the assignment mechanism that finds the optimal
hosting device for each service. To facilitate multi-tenancy for
CC devices, this involves in-depth knowledge of the amount
of resources required under a specific configuration.

III. METHODOLOGY

In the following, we present our 4-step methodology that
assigns a microservice pipeline over heterogeneous resources,
while maximizing SLO fulfillment. The sequential steps are
embedded into the respective subsections III-A to III-D; to
accompany explanations, Figure 3 provides a visual repre-
sentation of the methodology: first, it (1) extracts MBs of
individual services, then (2) performs MBC for the entire
pipeline, (3) generalizes the service footprints, and (4) infers
the assignment with maximum SLO fulfillment.

A. Markov Blanket Extraction

The training data for BNL is collected from past or ongoing
operations; in the best case, services and their hosts were
monitored over an extended period so that the underlying
processes can be modeled accurately. Metrics of s ˛ h are
collected simultaneously (Ms,Mh); this tuple is appended to
D, where the data of all empirically evaluated assignments
is collected. To generate training data, each service should
be executed at least once at an arbitrary host h P H; to avoid
perturbation through concurrent services, each service requires

an isolated environment that gives clear evidence about how
many resources (Rs) a service utilizes. Further, metrics of
dependent services must be captured under equal configura-
tions, e.g., if a pipeline contains two sequential microservices
CameraWrapper Ñ StreetAnalysis, the data produced by Cam-
eraWrapper must be the exact same received and processed
by StreetAnalysis. This can be assured by (1) capturing both
services’ metrics at the same time, or (2) maintaining their
interface variables aligned, e.g., by processing the same video
resolution. If this is impractical or there is not sufficient data
available, Section III-C can provide a remedy.

The BN training data is clearly created at the hosting
devices; however, the infrastructure provider can choose freely
where to execute any substep of the methodology, including
the BNL. Ideally, it is a central location in the CC (i.e., low
latency to all hosts) that can spare sufficient resources for
training; otherwise, the methodology could be split up and
executed separately by different hosts.

Given the training data (D), each tuple (Ms,Mh) is ingested
to MBE, which trains the BNs and extracts the MBs around
multiple SLOs (Q). This is also contained in Algo. 1, which
serves as a wrapper for the 4-step methodology; nevertheless,
Lines 2-5 are dedicated only to MB extraction. Afterward, X
contains all empirically evaluated footprints. The remaining
functions (i.e., MBC, etc) will be introduced in the next steps.

Algorithm 1 Wrapper for the 4 Methodology steps

Require: D, H , Q, K “ pS,Eq

Ensure: Z {Assignment with highest SLO fulfillment}
1: X,Vd, Vc, F Ð H

2: {MB Extraction – Step 1}
3: for each pMs,Mhq in D do
4: X Ð MBEpMs,Mh, Qsq Y X {Equals s ˛ h}
5: end for
6: Vc, Vd Ð MBCpE,Qq { – Step 2}
7: F Ð FPGpS,H,Xq { – Step 3}
8: Y Ð SASSpE, Vc, Vd, H,Q, F q { – Step 4.1}
9: Z Ð MAX_ASpY, “joint”q { – Step 4.2}

10: return Z

It is possible to logically separate the MBs of services and
hosts, or rather, contained variables. However, none of the
two exists without the other: service metrics (Ms) can only
be observed during runtime; device metrics (Mh) give little
insight when no service is executed. Hence, it makes no sense
to train their MBs separately. Extracting the MB of a service
also provides the impact on a hosting device – this is already
their composition, what remains is to run MBC for services.

B. Markov Blanket Composition

Dependencies between services indicate that their internal
states are influential to another service; thus, when aiming to
maximize the SLO fulfillment of multiple services, it must
be precisely determined how they affect each other. However,
individual MBs cannot give evidence about variables external
to their environment; also, training large BNs (e.g., [24], [25])
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from one composite data set poses considerable requirements
for BNL [7]. To this extent, we create an overarching system
model by composing the MBs of pipelined services. This
assembles a common behavioral model where it is evident
how one service’s state affects another service’s SLOs.

We assume that changes to individual services perpetuate
along the service pipeline – this path is encoded in the depen-
dency graph (K). Given K, we test dependencies between
any two services @p, q P S, ppq P Eq; we compose the
MBs of Ē instead of S̄2 intersections, i.e., only along the
pipeline instead of pairwise for all s1, s2 P S. For p, q and
two variables vp P Mp and vq P Mq , we test the statistical
dependency between vp and vq . Therefore, we compute the
difference between their probability distributions by applying
two-sample Wasserstein distance (WSD) [26]. Given that there
is a dependent variable vd shared by p and q, Eq. (4) does not
hold anymore; hence, their composition is linked by vd.

Factors that, in reality, influence a service can be wrong-
fully missing from its MB because BNL could not consider
them, e.g., the locations of dependent services are external.
Such factors are also called confounding variables because
they decrease model accuracy whenever they would have a
conditional impact. Due to this, WSD is a good choice because
it does not fail due to linear shifts in the distributions. For
instance, timepfppdqq from Eq. (1) translates to delay P Qq ,
but nlpÑq cannot be represented without knowing both p’s
and q’s location. Nevertheless, when testing their dependence,
WSD can detect that they are dependent and that there is a
linear confounder. Whether nl actually is the confounder is
another question; however, the evaluation does not contain
other confounders by design; hence, we will take it for granted
in this paper and address this issue in future work.

More commonly, there is no confounder involved and two
dependent variables can be directly mapped, e.g., a video
resolution P Mp likely resembles the respective consumer’s
vq P MBpqq. To differentiate between confounded relations and
the latter type, we compute the mismatch between states in the
probability distributions. Since the variable distributions in the
MBs represent discrete values, we use Jaccard similarity to
quantify the divergence between states of vp and vq .

Pairwise dependency tests would have to cover MBpp,Qpqˆ

MBpq,Qqq variable combinations; however, we are only in-
terested in the implications to the successor’s SLOs (Qq) –
reducing complexity to MBpp,Qpq ˆ Qq . For two dependent
variables vpvq with vq P Qq , the SLO around vq constrains the
states that p can take without violating q’s SLO; p does not
differentiate between its “own” SLOs (i.e., Qp) and transitive
ones imposed by q – both restrict p’s potential actions. Algo. 2
summarizes how the pipeline edges (E) are traversed to run
pairwise dependency tests. The results are two lists of (simply)
dependent (Vd) or confounded variable relations (Vc).

C. Generalize Service Footprint

The implications of running a service at a particular host
are unique for this pair, i.e., how much and which resources
are utilized. To find the assignment with the highest SLO

Algorithm 2 Markov Blanket Composition (MBC)

Require: E, Q
Ensure: Vc, Vd {Optimal assignment from all options}

1: for each pp, qq in E do
2: for each pvp, vqq in mbppq ˆ Qq do
3: if WSDpvp, vqq ă 0.1 then
4: if JDpvp, vqq ą 0.9 then
5: Vc Ð vq Y Vc

6: else
7: Vd Ð vq Y Vd

8: end if
9: end if

10: end for
11: end for
12: return Vc, Vd

fulfillment, a simple method is comparing the implications
of all combinations [15]. Empirically testing all these pairs,
however, is exhaustive for S ˆ H combinations, but limiting
potential assignments to those run empirically – X in Eq. (1)
– must also be avoided. For example, thx, hyu “ H and
tsxu “ S are available for assignment; however, there exists
no empirical information on sx ˛ hy – a likely situation if hy

was added recently to the device fleet – so that sx ˛ hx is the
only assessable assignment. The infrastructure provider, how-
ever, disposes of rich contextual information about services
and devices, which allows estimating the SLO fulfillment of
hypothetical assignments that were not tested empirically.

In particular, we use two information sources for this:
The first is the metadata description of services [27], e.g.,
the primary purpose or the position in the pipeline. Our
assumption is that services have similar hardware implications
depending on their position (pos) in K, e.g., consumers located
at the end have low hardware impact. The second source
is a sampling mechanism for CC infrastructure [20], which
provides a relative comparison of the hardware capabilities
for devices in H; h1 ą h2 implies that h1 has more
resources available. This information is used to extrapolate
from empirically evaluated assignments (X) to hypothetical
ones (F ); hence, F will contain ps ˛ hq for @s P S, h P H .

As depicted in Algo. 3, we distinguish four options to
estimate the footprint sx ˛ hx of any sx, hx P S ˆ H: (i)
the assignment was empirically evaluated (Line 3); (ii) a
comparable service (i.e., same pos) was evaluated at hx (Line
5); for this, we merge sx ˛ h (i.e., any host) and sy ˛ hx

by replacing all M̄h variables of h with those of hx. If
(iii) sx was empirically evaluated at a weaker device (hy),
we reuse s ˛ hy because we assume it cannot perform worse
on hx (Line 3 or), whereas for @hyphy ą hxq, we cannot
know the implications to more constrained devices. This case
can be adapted for comparable services as well – case (ii).
The last option (iv) is using the relative hardware difference
(r) between hx and an arbitrary host (h ), where sx was
empirically evaluated, and penalizing the SLOs contained in
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Algorithm 3 Footprint Generalization (FPG)

Require: S, H , X
Ensure: F {Generalized footprints for services ˛ hosts}

1: for each sx, hx in S ˆ H do
2: if psx ˛hxq P X or Dhyphy ď hx ^ sx ˛hy P Xq then
3: F Ð psx ˛ hxq Y F {Case 1 and 3}
4: else if Dsyppospsyq “ pospsxq and sy ˛ hx P Xq then
5: F Ð MERGEpsx ˛ h , sy ˛ hxq Y F
6: else
7: {assumes Dh psx ˛ h P Xq}
8: F Ð PENALpsx ˛ h , rphx, h qq Y F
9: end if

10: end for
11: return F

sx ˛ h according to r (Line 8). The interested reader finds
implementations of MERGE and PENAL in the code artifact.

D. Service Assignment

The last step remaining is to identify the assignment that
maximizes overall SLO fulfillment for all pipeline services;
to that extent, we compare all hypothetical assignments and
choose the one with the highest fulfillment as the sum

S
ÿ

s“1

Qs `

H1
ÿ

h“1

Qh (6)

where H 1 are all assigned hosts; notice that |H 1| can be 1 for a
multi-tenant scenario. For @s P S and @h P H , its footprint is
retrieved by F ps˛hq – this comprises the conditional variable
assignments for the service’s MBps,Qsq and the respective
hardware utilization of the host as MBph,Qhq. Transitive
dependencies imposed by other services are contained in
tVc, Vdu; for a service s, all variables that share dependencies
with other services are contained in exts (Line 2).

Given the footprints and the dependent variables, the SLO
fulfillment of each service (i.e., constrained by exts) is ob-
tained by ingesting the SLO thresholds (Q). As depicted
in Algo. 4 (Line 5 & 8), we infer this from a footprint
by providing variable assignments of the thresholds, and
hypothetical deployments of dependent services. Internally,
INF applies variable elimination1to marginalize all variables
R Qs Y Qh; hence, ending up with SLO fulfillment only. The
distinction (Line 5 or 8) takes care of the confounded variable,
i.e., latency. Estimating the conditional fulfillment of an SLO
(latency ď x) requires considering the hypothetical location
of all services in the pipeline, i.e., HS possible assignments.

Once SLO fulfillment under all possible assignments is
inferred (Y ), it remains to identify the optimal assignment;
this is the role of MAX_AS. Here, our approach is to act
either greedy or joint: greedy assigns services sequentially
by marginalizing the hypothetical deployments of other ser-
vices; hence, it estimates the expected SLO fulfillment of
a service without considering where dependent services will
be assigned, then, it chooses the host with the highest one.

Algorithm 4 Service Assignment (SASS)

Require: E, Vc, Vd, H , Q, F
Ensure: Y {Estimated SLO fulfillment per service ˆ host}

1: for each ps, q, h in E ˆ H do
2: exts Ð @vpv P mbpsq and v P pVc Y Vdqq

3: if pexts X Vcq ‰ H then
4: for each ps1h1, ..., sShHq in HS do
5: Y Ð INFpF ps˛hq, pQs YQh Yexts Ys1h1qqYY
6: end for
7: else
8: Y Ð INFpF ps ˛ hq, pQs Y Qh Y extsqq Y Y
9: end if

10: end for
11: return Y

The joint approach, however, assigns services collectively by
calculating the overall SLO fulfillment that all services would
reach for a hypothetical assignment. Whenever a combination
requires assigning multiple services to a single host h, the
respective hardware utilization (e.g., CPU load) is appended
to the existing one; as shown later in Table IV (red), such
combinations can exceed the available resources, and hence,
are disregarded because they violate the host’s SLOs (Qh).

When using joint, comparing all assignments in Y makes
it evident which combination promises the highest SLO
fulfillment. An advantage of joint is that it can precisely
evaluate latency SLOs and estimate the hardware utilization
of multi-tenant assignments upfront, which avoids sub-optimal
greedy assignments; however, the drawback of joint is its high
combinatorial complexity. The interested reader will find the
implementation of MAX_AS in the attached code artifact.

This concludes our 4-step methodology, which started by
analyzing the dependencies between services and devices
according to their MBs. To infer the optimal assignment
between services and hosts, we use composed MBs and
estimate the expected SLO fulfillment of different hypothetical
assignments. In the next section, we now present how this
methodology was implemented and evaluated.

IV. EVALUATION

To evaluate the ideas presented in this paper, we focus on the
individual steps of the methodology and highlight whether the
outcome fulfills the research goals. For this, we first outline
how the methodology and the evaluation environment were
implemented; then we present the experimental setup (incl.
services and hosts) and the results of our experiments. Lastly,
we summarize and discuss the implications of these results.

A. Implementation
We provide a Python-based prototype2that implements our

methodology; this includes all services used to generate BNL
training data. To extract the MBs, our prototype requires tab-

1Variable elimination can infer knowledge from BNs. It repeatedly elimi-
nates variables from a BN, while updating probabilities of remaining nodes,
ending up only with a set of target variables – in our case the SLOs.

2Prototype artifact available at GitHub, accessed Feb 28th 2024
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ular CSV files that are internally processed with pgmpy [28];
this step combines the data for each service, i.e., regardless
of whether it was hosted at Xavier or Orin. This increases
the general validity of trained BNs and adds conditional
information on different device types, e.g., P pcpu “ x | typeq.

For @p, q P K; pq P E, we run pairwise variable tests
to identify dependent variables; the required statistical tools
(e.g., WSD) are native to Python. Whenever WSD ď 0.13,
we flag it as a potentially confounded relation. Depending on
the Jaccard similarity, i.e., states match ě 90%, we declare
whether it is confounded or simple. In both cases, additional
constraints (i.e., external SLOs) are added to the dependent
service’s MB, which will be provided to INF (Algo. 4). Next,
the footprint generalization is integrated into the inference: we
iterate over all S ˆH combinations and estimate (1) expected
SLO fulfillment and (2) hardware utilization. The default
case is to perform joint service assignment, which internally
compares assignments for HS combinations; whenever this
exceeds the maximum complexity, greedy is an alternative.

To determine the network latency (nl) between different hy-
pothetical hosts, we rely on the knowledge of the infrastructure
provider: we assume a tabular representation (i.e., H ˆH) for
this, which provides for hx, hy P H the respective nlhxÑhy .

B. Experimental Setup

To embed and evaluate our implementation in a realistic
setup, we rebuild the scenario presented in Section II-C; this
means, that we use the five discussed services to instantiate our
service set (S): RoadAnalysis was implemented and executed
physically – for this we used the YOLOv84 model to detect
and highlight objects within a road scene5. The other services
were simulated based on the data ingested or produced by
RoadAnalysis. According to services’ position and purpose in
the pipeline, we will use shorter synonyms: Producer (P) for
SmartCamera, Worker (W) for RoadAnalysis, and Consumer
(C ) for {LiveMonitoring, TrafficPrediction, TrafficRouting}.
Services depend on the data provided by their predecessor;
hence, the dependency graph follows the inverse data flow
from Figure 2, i.e., K „ tC1, C2, C3u Ñ W Ñ P .

SLO variables and thresholds are chosen according to the
requirements in the service description. For simplicity, we
assumed that C1, C2, and C3 have the same tractable variables;
two of them are image size and data rate, which reflect the
video properties received by Consumers. Table I contains an
overview of all SLOs: W and C must ensure QoS SLOs,
e.g., maintain latency ď x or ensure image size ě y; P must
minimize energy, i.e., a soft-boundary SLO, that is optimized
as long as it does not violate any hard SLO (e.g., latency).

We provide a sampled set of devices (H) to host services,
as shown in Table II: for each device, it contains a short ID,
hardware stats, and how these stats (p, q) are classified relative
to other devices in H . Given this information, it is evident how
heterogeneous the devices are, e.g., the processing resources

3These two thresholds (i.e., 0.1 and 0.9) rendered satisfactory results.
4YOLOv8 model from ultralytics GitHub, accessed Feb 28th 2024
5Road racing video scene from YouTube, accessed Feb 1st 2024

TABLE I: SLOs inherent to each service

P W C1 C2 C3

latency – – ď 1s ď 70ms ď 40ms
image size – – ě 720p – –
data rate – – – ě 25f –

delta – ď 1
fps

– – –
energy* minpq – – – minpq

of Server dwarf Nano’s. Additionally, devices equipped with
a GPU can accelerate Worker’s video processing through
NVIDIA Cuda; this underlines the importance that hosts have
on services and SLO fulfillment. The last column contains the
networking delay (nl): we assume that devices are perfectly
aligned on a single line so that the nl between two hosts can
be computed based on their nl to Nano, e.g., communicating
from Xavier to Orin takes 5ms ´ 3ms “ 2ms.

We create different evaluation scenarios by repeatedly se-
lecting subsets of SˆH , as visible in Table III: for each of the
8 scenarios, it shows available services and hosts. For example,
for t0, tP,W,C1u must be assigned over tS,L,O,X,Nu. The
scenarios could reflect different positions in time, where more
or fewer hosts are available for different services. Nevertheless,
we evaluate scenarios separately and do not update assign-
ments at runtime. Depending on the service descriptions, we
decide that P must always be assigned to Nano – the local
device that bundled IoT video streams; further, we assume that
smart-city infrastructure (i.e., fed by C3) is located close to
N, hence, C3 must be assigned to any h P tN,X,Ou.

C. Results

We execute the experimental setup on the prototype of our
methodology; first, we show the resulting MB composition,
explain dependencies between services, and present the in-
ferred assignments. Afterward, we assess the quality of the
assignments according to three factors: (1) we observe their
empirical SLO fulfillment at runtime, and (2) compare the
runtime fulfillment to the expected fulfillment. Additionally,
we provide (3) an exhaustive comparison of how inferred
assignments score compared to all alternative assignments.
These three factors evaluate our solution in terms of QoS and
QoE and allow us to judge the feasibility of our approach.

1) Inference through MBC: Figure 4 shows the intermedi-
ary outcome after two steps, i.e., after MB extraction and com-
position. The purple, yellow, and green services represent the
Consumers, red the Worker, and grey the Provider. The upper
colored squares contain services’ MBs, including SLO vari-
ables (fully-colored nodes) or such related to SLO fulfillment
(black nodes). The blue squares contain the hosts’ respective
MBs, and how the services impact its variables. Dependent
variables between services are represented by dashed lines
and colored margins, e.g., size (purple) is found dependent on
pixel (red), and in further consequence on resolution (grey).
Hence, constraining the service provided by SmartCamera.
Now whenever red looks to infer a variable assignment that

6Prices adopted from sparkfun, accessed Feb 13th 2024
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TABLE II: List of hosting devices used for implementing and evaluating the presented methodology

Full Device Name ID Price6 CPU RAM CUDA GPU p [1,4] g [0,3] nlNÑ

Custom Server Build Server (S) 2500 C AMD Ryzen 7700 (8 core) 64 GB RTX 3090 Very High (4) High (3) 20 ms
ThinkPad X1 Gen 10 Laptop (L) 1700 C Intel i7-1260P (16 core) 32 GB ————– High (3) None (0) 10 ms
Nvidia Jetson Orin Orin (O) 500 C ARM Cortex A78 (6 core) 8 GB Volta 383 Medium (2) Medium (2) 5 ms
Nvidia Jetson Xavier Xavier (X) 300 C ARM Carmel v8.2 (6 core) 8 GB Amp 1024 Medium (2) Low (1) 3 ms
Nvidia Jetson Nano Nano (N) 200 C ARM Cortex A57 (4 core) 4 GB ————– Low (1) None (0) ——

TABLE III: Services and hosts available for assignment

Services Hosts

ti P W C1 C2 C3 S L O X N

0 ✓ ✓ ✓ – – ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ – ✓ – ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ – – ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ – – ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ – – – ✓ – ✓
6 ✓ ✓ ✓ ✓ – ✓ – – – ✓
7 ✓ ✓ ✓ ✓ – – ✓ ✓ – ✓

latency

rate

size

type

cpu gpu

memory

delay

in time pixel

power

fps

resolution

batch size

power
power

network

memory

cpu
gpu

cpu
memory

gpu

type

type

Fig. 4: Composed Markov blankets for Consumers, Worker, and Provider

fulfills its own SLO (i.e., in time), it constrains this to states
that fulfill purple’s SLOs as well.

The “soft” SLO, i.e., minppowerq, does not pose hard
constraints to INF; however, given multiple assignments with
equal SLO fulfillment, the one with lowest power is chosen:
For example, the MBC between P and any host has encoded
that low resolution and batch decrease power; hence, from
the parameter space that fulfills these SLOs, it chooses 480p
and 15fps, i.e., the state with lowest power. Notice, the most
influential variable for the host’s MB is always the device type
– whether Xavier or Server hosts the service has a big impact
on the conditional fulfillment of hosts’ SLOs (Qh).

We perform the remaining two steps of the methodology
and provide the inferred assignments for each scenario in
Table V. Each scenario’s first line (i.e., infer) shows how
services should be assigned (i.e., to optimize SLO fulfillment)
given the available hosts. For example, at t2, the pipeline S “

tP,W,C3u had to be assigned over H “ tS,L,O,X,Nu; the
inferred assignment is tP ˛N,W ˛O,C3 ˛Xu, where P ˛N
is preconditioned.

Table IV exemplifies why W was assigned to O at t2: under
the hood, the SLO fulfillment of all possible assignments (Y )

TABLE IV: Select assignment given service & host SLOs (t2)

# SLO Σ W CPU GPU Mem C3 Power Σ

1 1.70 Orin 50 30 119 Orin 8 W
2 1.52 Orin 24 30 73 Xavier 15 W
3 0.92 Server 3 31 12 Laptop 97 W
... ... ... ... ... ... ... ...

24 0.00 Nano 122 35 93 Laptop 26 W
25 0.00 Laptop 54 0 27 Laptop 21 W

TABLE V: SLO fulfillment of assignments (infer / eval)

Services

ti Mode W C1 C2 C3

0 infer X : 0.99 O : 1.00 – –
eval X : 1.00 O : 1.00 – –

1 infer S : 1.00 – S : 1.00 –
eval S : 0.98 – S : 0.99 –

2 infer O : 0.70 – – X : 0.82
eval O : 0.75 – – X : 0.76

3 infer O : 0.31 L : 1.00 L : 1.00 X : 0.36
eval O : 0.28 L : 1.00 L : 1.00 X : 0.28

4 infer O : 0.32 X : 1.00 X : 1.00 O : 0.39
eval O : 0.29 X : 1.00 X : 1.00 O : 0.29

5 infer X : 0.00 X : 1.00 N : 1.00 –
eval X : 0.02 X : 1.00 N : 0.99 –

6 infer S : 1.00 S : 1.00 S : 1.00 –
eval S : 0.97 S : 1.00 S : 0.99 –

7 infer O : 0.95 L : 1.00 L : 1.00 –
eval O : 0.99 L : 1.00 L : 0.99 –

Err I ´´0.02 ´´0.00 ´´0.01 ´´0.06

was compared in a joint fashion. This evaluates the fulfillment
given all 25 (“ H2) hypothetical deployments of W and C3.
In #1, we estimate that the collective SLO fulfillment (i.e.,
QW ` QC3) is 1.7; however, this assumes that W and C3

are both deployed at Orin, which is, on one hand, desirable
because keeping W close to C3 benefits its latency SLO, but
on the other hand, it is estimated that this would exceed Orin’s
memory (red cells). Hence, assignment #2 (green) promises
the highest SLO fulfillment, whereas #24 shows that Nano
would be incapable of running Worker, both in terms of service
requirements and hardware limitations (orange).

2) Quality of Assignments: Apart from the expected SLO
fulfillment, Table V also provides the experimental results of
the assignment at runtime (eval). For each scenario, we tracked
the services’ performance at their respective hosts for 10 min,
which generated in total roughly 70.000 observations. The last
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Fig. 5: Processing delay of Worker at their assigned host P{X, O, S}, combined
with the threshold they must meet to fulfill all their consumers’ SLOs
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Fig. 6: Combined empirical SLO fulfillment of Worker and C3 for the selected
assignment, compared to the SLO fulfillment of all alternative assignments

table row contains the average prediction error (i.e., over all
scenarios) between expected and actual SLO fulfillment.

Figure 5 shows the distribution of the processing delay in
different scenarios; the plots are separated due to the y-axis
scale – Server has significantly lower processing delay per
frame. The solid lines express the threshold (i.e., minus overall
nl) that W has to meet to satisfy the latency of dependent
Consumers. For example, in t2 and t3 the most restrictive
latency is imposed by C3, i.e., 40ms in Table I; given the
inferred assignment tW ˛ O,C3 ˛ Xu, we subtract nlNÑO “

5ms and nlOÑX “ 2ms, and set the bar to 33ms. Table V
confirms the validity of these distributions: t2 reached 0.75
fulfillment and t2 only 0.28. The difference between t2 and t3
occurs due to t3 demanding higher resolution, which impacts
delay (see Figure 4). Dotted thresholds are virtual boundaries
that fall outside the y-axis (i.e., 70 or 1000ms).

Finally, Figure 6 shows the SLO fulfillment of the inferred
assignment (blue line) in comparison to all alternative combi-
nations. Since P does not pose any hard SLOs, we calculate
overall SLO fulfillment as QW ` QC3. The boxplots contain
the 25 combinations of how these services can be deployed
over H , which were all evaluated empirically over 10 min.

D. Discussion

This section summarizes presented results and highlights
their implications: We report that (1) the MB extraction
provided interpretable relations within individual MBs – the
in time SLO was correctly attributed to fps and delay (see
Figure 4); the MB composition was able to (2) detect de-

pendencies between services and flag latency as confounded
due to the underlying nl. Further, we (3) correctly estimated
that Nano exceeds SLOs from service and hosts (orange table
cells), although W was not empirically evaluated at Nano.

Given the composed MBs, it could (4) consider the tran-
sitive SLOs imposed by other services – a good example is
comparing t2 and t3 in Figure 5, which shows how delay
changed due to more restrictive SLOs from C1. Further, we
(5) maximized the SLO fulfillment given a heterogeneous list
of hosts, e.g., t1 in Table V could roam freely and save energy
by assigning W to X , whereas for t5 the best option was still
unsatisfying due to tight constraints (from Table I). The fact
that (6) we identified the optimal assignments (Figure 6) was
mainly driven by low prediction errors (see Table V); ideally,
this error will be fed back to improve predictions.

E. Limitations

While this paper presents a novel approach for raising SLO
fulfillment of microservice pipelines, there remain limitations
that must be addressed in future work; in the following, we will
discuss three of them in more detail. Firstly, the initial process
of determining the MBs of individual microservices can be
computationally expensive and difficult to scale in large,
dynamic networks. In order to avoid any overhead impeding
regular device operation, it requires dedicated experiments that
analyze the scalability of the approach. This must include
a larger number of services and variables, as well as the
methodology’s performance on heterogeneous hardware.

Secondly, training an accurate BN and its corresponding
MB requires substantial and high-quality data. In environments
where data is sparse, noisy, or non-representative, the reliabil-
ity of the MB and any respective inference decisions can be
compromised. It remains to evaluate the presented approach
in such an environment. Thirdly, IoT and Edge computing
environments are often dynamic, with changes in node avail-
ability, service requirements, and network conditions. Static
BNs might not adapt to such changes, making the MB outdated
and less accurate over time. This issue was partly addressed in
previous work [7], [29], which focused on capturing changes
in variable distribution. Nevertheless, dynamic retraining of
the BN structure remains an open challenge.

V. RELATED WORK

In the context of this paper, we identified two main areas
of related work that intersect with our research: (1) modeling
large-scale BNs to estimate how system changes perpetuate or
can be countered, and (2) optimizing service deployments for
constrained devices according to QoS requirements.

A. Large-scale Bayesian Network Modelling

To assess the resilience of a pipeline system, Yazdi et
al. [24] presented a dynamic BN that provides insights under
which conditions QoS can be assured. Extending to compound
systems, Chen et al. [17] provided a dynamic causality graph
called CauseInfer that pinpoints issues during runtime. Cau-
seInfer uses a two-tier mechanism that splits the system into
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a device and a service layer. To trace fault propagation within
a vehicle control network, Wang et al. [25] transformed a
dynamic fault tree into a BN; this could infer the probability of
faults under different hypothetical setups. Multiple works use
BNs for anomaly detection in IoT systems [30]–[32]; however,
they are more focused on detecting, instead of mitigating
them. The largest BNs in comparable literature were provided
by Mengshoel et al. [33] as a large-scale diagnostic system
for simulating aircraft parts; however, individual blankets
were separated without intersections. BNL is still an actively
developing field, which is underlined by Kitson et al. [34];
they provide a comprehensive overview of BNL techniques
and algorithms that help create accurate causal models.

Given these works, we conclude that BNs are primarily used
for fault detection or system behavior prediction. Most graphs
featured a single large model, which appears feasible given
one central data set; however, in the CC, services (i.e., data
sources) are distributed, and training large BNs poses high
requirements to edge device. CauseInfer composes its model
from multiple subgraphs; nevertheless, it lacks a representation
of hardware utilization based on deployed services. Contrarily,
our method assembles a model at the desired granularity.

B. QoS-Aware Deployment in the Computing Continuum

To find optimal services configurations for multi-tenant
edge devices, Zhang et al. [10] presented Octopus, which
predicts SLO fulfillment of two variables based on a deep
neural network. To avoid resource contention, Qiu et al. [35]
created FIRM, which predicts the resource usage of services
for a multi-tenant device. Cardelli et al. [36] designed an
autonomous elasticity mechanism for Cloud and Edge that
ensures QoS of service chains; however, they did not imple-
ment it. Khoshkholghi et al. [37] presented a deployment and
load-balancing mechanism that assured QoS of Edge function
pipelines through deep learning. To maximize user satisfaction,
Sheu et al. [13] propose a model deployment algorithm for
the Edge that considers hardware limitations. The work of
Zobaed et al. [12] allows to meet the latency constraints of
multi-tenant applications. Confronted with the erratic activities
of mobile users, Lu et al. [38] predicted how QoS could
be assured through service updating. Their work provisioned
services for multi-tenant deployments. To assure high QoS
for composite services, Mehdi et al. [39] selected individual
services based on a computed trust score. They would then
construct a composite service through BNL.

Considering presented work, we conclude that multi-
tenancy is common for the Edge; there are several works that
estimate resource implications of services. However, none of
them would consider the generalization of service footprints
or transitive dependencies between services (i.e., tenants).
The exception is [39]; however, they lack implications on
the underlying hardware. Contrarily, our method provides the
precise utilization per tenant for composite service pipelines.

VI. CONCLUSION & FUTURE WORK

This paper presented a statistical reasoning model for as-
signing a microservice pipeline over a heterogeneous set of
devices, which are located from the Edge to the entire CC. To
maximize the requirement fulfillment throughout a pipeline,
our methodology analyzes dependencies between services; this
constrains the operation of individual services according to the
quality expected by dependent services. The evaluation of our
prototype showed that we could infer the optimal assignments
given a mutable list of services, hosting devices, and SLOs that
had to be ensured. We envision our methodology as a central
tool to simplify the development of compound services, e.g.,
in smart cities, where overall SLO fulfillment is optimized for
whatever resources the CC has available. In that regard, future
research will focus on runtime mechanisms that allow services
to scale vertically or horizontally over the hosting devices.
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