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Abstract—In recent years, visualizing high-quality 3D content
within modern applications (e.g., Augmented or Virtual Reality)
is increasingly being generated procedurally rather than explic-
itly. This manifests in producing highly detailed geometries entail-
ing resource-intensive computational workloads (i.e., Procedural
Geometry Workloads) with particular characteristics. Typically,
workloads with resource-intensive demands are executed in envi-
ronments with powerful resources (i.e., the cloud). However, the
enormous amount of data transmission, heterogeneous devices,
and networks involved impact overall latency and quality in
user-facing applications. To tackle these challenges, computing
entities (i.e., edge devices) located near end-users can be utilized
to generate 3D content. Our objective within this paper is to
evaluate performance and power consumption when executing
procedural geometric workloads on resource-constrained edge
devices. Through extensive experiments, we aim to comprehend
the limitations of different edge devices when generating 3D
content under different configurations.

Index Terms—Edge Architectures, Computational Workloads,
Computing Continuum, Resource-Constrained.

I. INTRODUCTION

Applications such as those within Augmented or Virtual

Reality (AR/VR) have unique software architecture require-

ments that must be able to handle latency, data transmission,

and performance. Visualizing and representing high-quality

3D digital models are computationally intensive, requiring

significant data transfer to clients. While these applications

are susceptible to latency delay, processing data on cloud

servers involves high latency caused by data transmission over

multiple networks, and heterogeneous devices [1]. In order to

tackle these challenges, recent advancements have resulted in

applications that can operate across all three computing tiers,

including the edge, fog, and cloud computing tiers [2], [3].

Edge computing is a novel computing paradigm that allows

computation to be performed very close to data sources.

Migrating all computing tasks to the cloud has proven to be

an effective method for processing data, as the cloud has a

higher computing power concentration than devices located

at the network edge. Despite this, the networks’ bandwidth

that transmits and receives data to and from the cloud hasn’t

grown substantially, leading to network bottlenecks as IoT

devices generate more data [4], [5]. Edge resources, also

known as edge devices, are often characterized as resource-

constrained and heterogeneous regarding hardware and soft-

ware capabilities. These devices can handle, store, and analyze

data locally and provide fast and efficient services to end

users. Furthermore, they can play a crucial role in supporting

applications in several ways, e.g., executing computational

tasks and processing data locally without transmitting it to

the cloud.

Visualizing high-quality 3D model content has become a

key requirement for various practical applications [6]. The

accurate digital models are particularly useful in the context

of simulating cities and are often used in maps for navigation,

or the simulation of natural and social phenomena [7], [8].

Using 3D representations in near real-time applications often

lacks in terms of quality and this is mainly impeded by

the sheer volume of the 3D data that must be transferred

between devices. To prevent the storage and transmission

of a significant amount of data, we generate the geometric

content procedurally instead of explicitly [9]. Procedural gen-

eration has been effectively utilized in numerous industries and

applications where compelling and immersive virtual urban

environments are crucial to enhance the visual experience [10],

[11]. Generally speaking, procedural modeling can generate

highly detailed geometry by repeatedly applying a set of rules

that describe spatial transformations to basic shapes, referred

to as an axiom (i.e., such as a box or quadrilateral). This

approach starts with a simple primitive shape and generates

more complex geometric structures. For instance, windows, or

balconies on a wall can be created by dividing a rectangle into

smaller rectangles and then applying extrusion operations and

different textures to each of the smaller rectangles. Similarly,

using additional rules the details on windows or doors can be

produced by further dividing, extruding, and mapping textures

to smaller shapes.

Procedural geometry is highly flexible in generating geo-

metric data. This means that the representation of 3D envi-

ronments in devices with minimal resources is possible under

different configurations (i.e., by tuning the level of detail

(LoD) [12] or margin). In addition, recent efforts show that

faster procedural geometry generations can be achieved by

executing workloads simultaneously in different devices [13].

Consequently, this enables procedural geometry workloads to

be distributed on a wide range of devices in the computing

continuum and improve overall performance. However, the

computing continuum infrastructures are heterogenous envi-

ronments; specifically, edge-based infrastructures consist of
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different devices featuring different hardware and software

capabilities. For instance, a smartphone user may request to

generate detailed geometric data of a nearby building within

a matter of milliseconds. Consequently, generating geometric

data may take place nearby the end-user, respectively, on an

edge device. Thus, evaluating the performance and power con-

sumption aspects of edge devices (i.e., with different hardware

architectures) during the execution of procedural geometric

workloads is a critical aspect. Therefore, our objective is to

comprehend the limitations of different edge devices when

performing such workloads with various configurations.

In this paper, we provide a comprehensive performance

evaluation of procedural geometric workloads on resource-

constrained devices. First, the workloads are packaged into

software containers so they can be executed on different

devices across the computing continuum. Second, we evaluate

the performance and energy consumption aspects of different

geometry workloads executed on state-of-the-art resource-

constrained devices (i.e., edge devices). Our evaluation find-

ings on a testbed with resource-constrained devices aim to

validate the feasibility and applicability aspect to enable the

execution of such workloads in proximity to end-users. Fur-

thermore, the results can aid developers and system engineers

in designing a system for executing procedural geometry

workloads in the computing continuum infrastructures.

The remaining sections are structured as follows. Related

work is presented in Section II. Section III discusses latency

challenges in 3D visualization and then discusses procedural

geometry workloads. Section IV evaluates performance as-

pects of procedural geometry workloads with different con-

figurations executed on low-powered and resource-constrained

devices. Finally, we conclude our discussion in Section V.

II. RELATED WORK

In recent years, modeling and simulating buildings and cities

have garnered the academic and industrial sectors’ attention.

It enables the observation of realistic models in a three-

dimensional virtual environment, such as those utilized in

simulations to recreate various scenarios. Procedural modeling

is one technique to achieve such goals, which requires minimal

input to create intricate scenes and structures. When combined

with parser generators, it becomes a more efficient and time-

saving approach. The resulting application provides users with

a quick and straightforward means to generate, model, and

design extremely complex structures [14].

Murturi et al. [15] introduce a novel architecture capable of

provisioning procedural geometry workloads in edge scenar-

ios. The paper discusses several aspects, including latency and

computation requirements, and the role of edge architectures in

supporting procedural geometry workloads execution. Greuter

et al. [16], propose a framework for the procedural generation

of entire virtual worlds in real-time. The paper demonstrates an

example of a virtual city populated with building structures,

streets, etc. In [17], the authors present an approach to the

procedural generation of ‘pseudo infinite’ virtual cities in real-

time. The authors investigated several performance results of

the virtual city, building generation algorithm, and LRU (least

recently used) cache. Goetz [18] propose a methodology for

the automatic generation of highly detailed City Geography

Markup Language (CityGML) models by using Volunteered

Geographic Information (VGI) from OpenStreetMap (OSM).

Kang et al. [19] categorize data for constructing indoor spaces

and established standards for the level of detail to provide

appropriate application services based on the type and repre-

sentation method of each data. Kemec et al. [20] propose a

conceptual framework for disaster management and a guide to

the design, implementation, and integration of the 3D urban

modeling tools into disaster risk visualization. In addition,

the authors contribute with a new indoor LoD hierarchy for

building objects. Furthermore, Hagedorn et al. [21], introduce

a classification of indoor objects and structures, and propose

a level-of-detail model for the generation of effective indoor

route visualization.

Nevertheless, the research works mentioned above focus

on solutions for procedural geometry generation techniques,

optimizations, automatic generation of highly detailed models,

and novel frameworks. However, there has not been any re-

search that investigates performance and energy consumption

aspects during the execution of procedural geometry work-

loads on low-powered and resource-constrained edge devices.

Therefore, this paper is a step towards introducing a novel

framework that will allow the low-latency generation of 3D

content in proximity to end-users and in a distributed manner.

III. PROCEDURAL GEOMETRY AS A COMPUTATIONAL

WORKLOAD

This section gives detailed information about procedural

geometry and explains the main focus of this study. Initially,

it provides an overview of 3D visualization and the challenges

associated with rendering and latency problems. Subsequently,

it briefly delves into the significance of a configurable level

of detail (LoD) in procedural geometry workloads.

A. 3D Visualization and Rendering Challenges

Visualizing 3D models with computer graphics has ad-

vanced significantly in recent years since numerous techniques

have become mature and are being implemented on hardware,

meaning that complex 3D scenes can now be seen in real-

time on a few hundred dollar game computers, as opposed

to requiring a million dollar computer architecture a few

years ago [22]. This progress has resulted in a significant

demand for more complex and accurate models in 3D content

[6]–[8], [23], but the problem is that even though the tools

for three-dimensional modeling are becoming increasingly

sophisticated, creating realistic models is challenging, time-

consuming, and expensive.

According to [24], the 3D graphics industry successfully

addresses the majority of issues related to large-scale and

dynamic data representations. The methods like real-time

rendering and multi-resolution modeling provide the necessary

tools and building blocks to develop expressive, effective, and

appropriate visual mappings. The research highlights that 3D
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technology enhances the use of dynamism in visualization.

Furthermore, advancements in high-quality real-time rendering

techniques have made it possible to create dynamic animated

representations and enable interactive exploration to create a

virtual reality experience. It is crucial to have the ability to

switch 3D viewpoints in real-time in such an environment.

As shown in [25], the simulation and display of a virtual

world at interactive frame rates are highly computationally in-

tensive components of a 3D interactive application. Therefore,

even with the use of powerful graphics workstations visualiz-

ing a complex virtual environment can result in a significant

amount of computational load, leading to noticeable lags that

can negatively impact display quality. Although rendering

images locally results in better responsive user experiences,

it usually calls for extensive computing resources that are

not always available to the user. This implies that users can

leverage the power of cloud computing for computationally

intensive rendering tasks; however, client devices (i.e., laptops,

tablets, smartphones, etc.) due to enormous data have to deal

with latency as a central problem [26].

Fig. 1: CityGML representation example [27].

The term ”latency” denotes the time delay between user

input and the corresponding output displayed in the user-

facing application. This delay cannot be ignored since the

computation of an image is time-consuming in all such sys-

tems, and a new image can be generated for each frame,

potentially resulting in a system with more than one frame of

latency [28]. Usually, this is due to pipelining, which enhances

graphics performance which improves graphics performance

by processing multiple frames simultaneously (i.e., as the

computation for a single frame is split into different stages).

Furthermore, due to the high latency brought on by network

congestion, 3D representations in navigation apps like Google

Earth1 or 3DCityDB2 shown in Figure 1, which are designed

to assist end-users as they are roaming inside a city are

frequently oversimplified, lacking in details and quality [15].

Unfortunately, their 3D representation often lacks in terms

of quality due to the vast amount of data that needs to be

transferred between devices.

1Google Earth, https://earth.google.com/
23DCityDB Database, https://www.3dcitydb.org/3dcitydb/

B. Procedural Geometry Workloads

Procedural Geometry [29] deals with generating geometrical

shapes using programming, e.g., a sphere-drawing routine,

where the center and radius are given as input. A suitable

group of triangles is identified from an algorithm that will be

used to define the surface of the sphere. Afterward, the surface

serves as an instance of procedural geometry and could be used

to draw the sphere in the future. There are various definitions

depending on whether geometrical shapes are produced by a

pre-processing routine (i.e., such as Terragen 3), or created in

real-time with content lower than the resolution of the raw

terrain data.

Objects in three-dimension can be characterized based on

the level of detail (LoD) that they use to depict real-world

objects. LoD is a key concept to keep in mind when using

procedural geometry because it has an impact on the output’s

complexity, i.e., an object that occupies only 4 pixels in

the final image does not need 10,000 polygons; a simple

representation using 10 polygons would be sufficient [30]. The

use of procedural geometry has proven to be successful in

computer graphics and has been advantageous for a variety

of reasons, including the ability to quickly and efficiently

generate content, therefore saving time.

Fig. 2: Procedural generation workload examples with

CityGML [15].

Dealing with accurate graphics and visualization applica-

tions nowadays requires enormous geometric data consisting

of many triangles to be processed; for example, a reasonable

LoD of 0.05 km2 near the center of Vienna requires one

million triangles, which generates approximately 30 MiB

of raw mesh data; whereas it takes less than 0.1 MiB in

input parameters to generate raw mesh data for dimensioning,

positioning, and orienting each axiom shape, as well as style

parameters, which are essential for detailed geometry as is to

be seen in Figure 2 where these parameters are extracted and

used on CityGML models [15].

Since procedural generation workloads require heavy com-

putation and data transfer, there is a trade-off for transferring

the entire 3D data equivalently. This indicates that one may

dynamically compute a certain level of detail depending on

3Terragen, https://planetside.co.uk/
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computation or time budgets [15]. The computation can occur

in any of the entities across computing continuum infrastruc-

tures (i.e., edge, fog, or cloud). Therefore, it is possible to

optimize computation and data transferring aspects; however,

this requires novel management techniques that overcome such

challenges, e.g., the generated mesh data for areas that end-

users frequently request can be cached and reused.

Within this paper, we do not address technical details on

how models are created or rules applied (i.e., see [31]). This

paper only evaluates procedural geometry workloads with

different parameter configurations and investigates their exe-

cution performance on low-powered and resource-constrained

devices (discussed in Section IV).

IV. EVALUATION

This section will serve as the foundation for this study by

evaluating performance aspects of procedural geometric work-

loads on resource-constrained devices. To ensure an accurate

evaluation, different types of devices will be tested using the

same set of cases. This approach will allow an appropriate

assessment under which device-specific issues can also be

identified. Therefore, the section begins by explaining the

execution and configuration details of procedural geometric

workloads. It then provides detailed information about testbed

architecture before moving on to evaluation methodology and

test scenarios. Finally, it finishes with an evaluation of the

devices by analyzing data and visualizing graphics about CPU

and memory usage, execution time, and power consumption.

A. Execution and Configuration Details

Creating an appropriate encapsulation of procedural gener-

ation that can run on heterogeneous hardware platforms is

challenging. First, the procedural generation mechanism is

implemented in Python and C++. The mentioned mechanism is

developed as a client-server model, i.e., a client with a specific

configuration request edge-server (i.e., resource-constrained

edge devices) for generating 3D visualization. Afterward, the

procedural generation mechanism is containerized such that it

can be executed in heterogeneous devices across the device-to-

cloud continuum. The following command in Listing 1 enables

building the mesh generator:

run python3 runcmake.py --num-gcc-threads
$NUM_GCC_THREADS --mesh-gen --build-only

Listing 1: Building the mesh generator.

The option --num-gcc-threads corresponds to the value for

the number of threads that the mesh generator can use, whereas

the options --mesh-gen and --build-only build the executable

without running it. Several other configurable variables like

edge-server port and host settings are configured beforehand

in a ”default.json” file. Furthermore, several other variables

can be configured, such as:

• num worker, which specifies the number of threads for

the mesh generator edge-server. This variable is labeled

in edge-server output as num server threads,

• margin, which for a value of 1, means that the meshes

for nine slices (one slice for the query position and eight

surrounding slices) will be generated and sent to the

client. Each new request may overwrite this value, and

the number of slices is calculated as follows: (margin x
2 + 1) x (margin x 2 + 1). If the query position is close

to the boundary, the resulting slices will be fewer,

• LoD means the default level of detail value, which can

also be overwritten in each request and corresponds to

the geometric details of the model, e.g., LoD = 2 results

in building walls with windows, and

• session queue max mebibytes corresponds to the maxi-

mum mebibytes (MiB) that can be used by a single HTTP

session queue. The default value is 64 (approximately the

size of serialized mesh data for a dense area with a margin

of 10), which is a soft limit. It is still possible to exceed

64 for the size of the queue if the generated mesh for a

single request is more than 64.

Once the container is running in the targeted resource-

constrained device, the initial output of the procedural gen-

eration mechanism gives information about the coordinates

of city lower and city upper (see Listing 2). The following

information is important since it shows the range of coordi-

nates that a client can request for 3D visualization. Therefore,

coordinates in a request from the client have to be inside this

range; otherwise, the mesh data will not be generated, and the

client will get a response with an error message. It’s also likely

that the query point is out in the middle of a barren area with

no surrounding buildings. However, note that the generated

mesh will be empty in this scenario.

run CPU mesh generator (Release)
log_dir: "/opt/ct2020/data/log"
ct_data_dir: "/opt/ct2020/data"
city lower: (-10749.2695312, 331344.71875)
city upper: (18183.7949219, 353381.9375)
city center: (3717.26269531, 342363.3125)
city size: (28933.0644531 x 22037.21875)
regular tile dim: 2000 x 2000
regular slice dim: 25 x 25
tiles grid dim: 15 x 12
slices grid dim: 80 x 80
hash code: 14872646704247140986
http session queue max mebibytes: 64
default margin: 1
default lod: 2
num_pgg_cpu_threads: 4
num_server_threads: 24
listening at: 192.168.110.1:34567

Listing 2: An example of mesh generator execution.

ct data dir and log dir give the paths of where the mesh

generator data is taken, respectively, where the logs will

be written if --log-to-file is set to true. The output then

gives information about regular tile dim, which denotes the

dimension of each regular tile in meters. On the other hand,
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regular slice dim stands for the dimension of each regular slice

in meters within a regular tile. The dimension of the regular

tile grid is represented by tiles grid dim and calculated by

the total number of regular tiles: 15 x 12, which corresponds

to 180 .rtile files in the directory ct2020-vol/rtiles, whereas

slices grid dim indicates the dimension of the regular slice

grid in each tile. The integrity of data is verified with hash
code, which is computed from city lower, city upper, regular
tile dim, and regular slice dim and written into each .rtile file

and in rtiles.conf.
The client can test the performance by sending an HTTP

GET request method to an edge-server, e.g., with a curl over

the terminal with margin=2 and lod=1, as presented in Listing

3:

curl -X GET "192.168.110.1:34567/ctgml/
${x-coord}/${y-coord}?margin=2&lod=1"
--output ctmesh.bin

Listing 3: Client request command.

As aforementioned, x-coordinate and y-coordinate have to

be in the range of city lower and city upper. The option --
output is used to save the output to a file named ctmesh.bin.

An edge-server responds to these requests by printing different

execution time data on the terminal or writing them to a

file, depending on the logging configuration. A Python script

is used for sending multiple requests to an edge-server and

creating sophisticated tests to evaluate the performance of

the devices. To evaluate the performance aspects, the mesh

generator is deployed and runs on each resource-constrained

edge device (see Table I).

B. Testbed and Methodology
This study conducts a comprehensive performance evalu-

ation in a test environment of four representative resource-

constrained devices as shown in Table I. As can be noted,

devices are with different architectures ranging from Intel to

ARM processors operating in the 64-bit mode. With CPU

speeds ranging from 1.2 GHz to 3.4 GHz, these devices

will provide a representative evaluation of performance and a

variety of results. Each of them runs on Linux-based operating

systems with Docker4 and Python installed. Furthermore,

devices are placed in proximity to end-users (i.e., clients that

request 3D visualization), meaning that clients and devices

are under the same administrative domain and connected via

wireless.

Device Processor CPU RAM
RPi3b ARM Cortex-A53 up to 1.2 GHz 1 GB
RPi4b ARM Cortex-A72 up to 1.5 GHz 4 GB

Xavier™ NX Carmel ARM® v8.2 up to 1.9 GHz 8 GB
Lenovo T540p Intel® Core™ i7-4700MQ 2.4 - 3.4 GHz 8 GB

TABLE I: Testbed overview of representative resource-

constrained edge devices.

In order to test whether the earlier mentioned trade-off

between low-latency and high-computational devices is worth

4Docker, www.docker.com

it, it is of significant interest for this study to see how well

these devices support the execution of the workload in terms

of execution time, memory usage, CPU usage, and power

consumption.

Each device has unique specifications, as described in the

subsection above. Additionally, they differ in how they are

powered, resulting in different ways of measuring power.

Raspberry Pi 3 (RPi3) and Raspberry Pi 4 (RPi4) are pow-

ered by a micro-USB power supply, while NVIDIA® Jetson

Xavier™ NX and Lenovo T540p use AC adapters. However,

the differences do not mean that each device should have

different test scenarios. Instead, the goal is to assess how

these differences with the same test scenarios affect the results.

As concluded in [32], performance-efficient CPUs, like Intel

processors, have shorter execution times compared to low-

power devices. Still, their power consumption is high, whereas

ARM processors, on the other hand, consume less power. The

former is used more in embedded systems and IoT devices,

while the latter is in personal computers.

The test cases are designed to push devices to their limits

and overload them, e.g., evaluating performance aspects of

an RPi3 with various configurations of procedural geometry

generations. To achieve this, variables such as LoD, which

specifies the level of detail, and margin, which generates the

mesh slices, can be configured. These two parameters are

included in an HTTP GET request sent to an edge-server,

which impacts execution time and other metrics.

C. Test Scenarios

For each device in the testbed, we execute 100 test cases

with a margin value ranging between 1-10 and for each LoD

value between 1-3. The margin begins with value 1 and

increases progressively to 10 (i.e., a set of 10 tests is executed

per margin). Increasing these configurable parameters results

in a higher load on resource-constrained devices that execute

the mesh generator mechanism. The x and y coordinates are

generated in different combinations, all in the range of the

city lower and city upper parameters. In the following, we

present possible workload configurations in terms of LoDs

and margins:

• margin 1, LoD 1 - a light test in terms of overloading

the system with the level of detail 1, meaning that walls

are simply rectangles, and margin 1 indicates generating

meshes for nine slices.

• margin 7, LoD 2 - a moderate test with a higher level of

detail and margin than the first test. The value of LoD 2

means that walls have windows, and the margin 7 builds

the meshes with (7 x 2 + 1) x (7 x 2 + 1) = 225 slices.

• margin 10, LoD 3 - test case that overloads the system

and qualifies as a stress test for this framework. Level

of detail 3 implies that a more detailed visualization

is represented than in the two first test cases, whereas

margin 10 indicates that 441 slices are necessary for

building meshes.

Figure 3 shows an illustration of a geometry generated and

delivered to the end user starting from LoD 0 (left) to the
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Fig. 3: An example of procedural geometry workload. Starting

from a CityGML baseline model with LoD: 0 (left) to the

detailed geometry with LoD: 3 (right).

detailed geometry with LoD 3 (right). Notice that LoD 0 serves

as a CityGML baseline model (i.e., typically a flat polygon)

upon which detailed geometries can be generated.

D. Results

In this subsection, we present in detail evaluation results

regarding 1) CPU usage, 2) Memory usage, 3) Execution

time, and 4) Power consumption. We measure performance

stats (i.e., CPU and Memory usage) by executing the ”docker

stats” command 5 . The CPU usage values are displayed in

percentage, which is a common method for measuring this

parameter, whereas the memory usage values are displayed

in Mebibytes (MiB). The power consumption is measured by

using three hardware and software tools. These tools include

UM25C USB Meter from Rui Deng [33] for both Raspberry

Pis, Tegrastats 6 for NVIDIA, and Powerstat [34] for Lenovo.

The values are displayed in Watts (W) and indicate the power

consumption of the entire device during execution time. To

obtain consistent results, for each result presented in the

following graphs, we calculated the 90 percent confidence

interval of means.

1) CPU usage: In Figure 4, we present results for CPU

usage during the execution of geometry workloads. As can

be noted, each of the visualized subgraphs has a specific LoD

value and margins ranging from 1 to 10. With a higher margin,

the device is expected to experience an increased CPU load

since it generates many slices to build the mesh. In Figure

4a, we present results for CPU usage during the execution of

geometry workloads with LoD 1. Due to its lower processing

and memory capabilities compared to other devices, the RPi3b

device is considered to be the ”weakest device” in terms of

technical specifications. The overall CPU utilization is around

20%, with the highest value being 95% which occurred in

the middle of the execution with LoD 3. The RPi4 performed

slightly better CPU utilization than RPi3, while surprisingly,

the NVIDIA Jetson device showed marginally higher CPU

5Docker Stats, https://docs.docker.com/
6Tegrastats utility - NVIDIA, https://docs.nvidia.com

utilization than other devices. Lenovo T540p provides the

best performance in terms of CPU usage, with values mainly

falling under 5%. In Figure 4b, we present results for CPU

usage during the execution of geometry workloads with LoD

2. Lenovo T540p provides the best performance in terms of

CPU usage, with values mainly falling under 10%, whereas

other devices deliver almost consistent values, with Raspberry

Pi 4 performing slightly better. In Figure 4c, we present results

for CPU usage during the execution of geometry workloads

with LoD 3. Similarly, Lenovo T540p provides the best

performance in terms of CPU usage, whereas other devices

deliver almost consistent values. These results indicate that

devices near end users can execute such workloads, especially

with LoD 1 & 2. However, with LoD 3, some devices could

experience high overload and not be feasible for executing

geometry workloads.

2) Memory usage: In Figure 5, we present results for

memory usage during the execution of geometry workloads

with different configurations. Regarding memory usage, the

results are displayed in Mebibytes (MiB). As shown in Figure

5a, the memory usage of devices with LoD 1 lies mainly

under 200 MiB. As LoD increases in Figure 5b, memory

usage increases as well, potentially exceeding 1000 MiB, as

shown with NVIDIA Jetson. Figure 5c shows that devices use

almost consistent memory values, while RPi3 uses slightly less

memory since the maximum memory size is 1GB; however,

this affects the overall time required to execute geometry

workloads. Similar to CPU usage, when increasing LoD,

some devices may encounter significant overloading while

performing these workloads. Nevertheless, the results indicate

that devices near end users can execute such workloads with

a specific range of coordinates that a client request for 3D

visualization.

3) Execution time: In Figure 6, we assess the time com-

plexity to execute geometry workloads with different configu-

rations. In Figure 6a, we present results of the time complexity

to execute geometry workloads with LoD 1. As can be noted,

the RPi3b generates 3D content around 0.5 seconds and a

maximum of 1.9 seconds. Lenovo T540p shows significantly

better processing time compared to other devices. In Figure

6b, we present results of the time complexity to execute

geometry workloads with LoD 2. As can be noted, the RPi3b

took around 3.2 seconds and a maximum of 13.5 seconds to

generate 3D content. In Figure 6c, we present results of the

time complexity to execute geometry workloads with LoD

3. The NVIDIA Jetson device performed slightly better in

the execution of workloads compared to previous results. The

RPi4 device generates 3D content in around 1.5 seconds and

a maximum of 3.2 seconds. In all test cases, Lenovo T540p

performed better since it has more processor cores compared

to other devices. Consequently, this affects the overall power

consumption required to execute geometry workloads. Nev-

ertheless, the results indicate that RPi3 and NVIDIA Jetson

compared to other devices, may not be suitable for low-latency

3D content generation. However, since there is a trade-off

between energy consumption and time requirements, we argue
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(a) (b) (c)

Fig. 4: Analysis of the CPU utilization on edge devices during the execution of geometry workloads with: (a) LoD 1, (b) LoD

2, and (c) LoD 3.

(a) (b) (c)

Fig. 5: Analysis of the memory utilization on edge devices during the execution of geometry workloads with: (a) LoD 1, (b)

LoD 2, and (c) LoD 3.

that both devices are feasible to execute geometry workloads;

however, this entirely depends on 3D generation requirements.

4) Power consumption: In Figure 7, we show an analysis of

the power consumption on edge devices during the execution

of geometry workloads in different configurations. In Figure

7a, the RPi3b uses minimum power consumption while execut-

ing workloads with Lod 1. The power consumption is within

the range of 2.5W and almost 3W, where the maximum stands

at 4.2W and the minimum at 1.6W. Similar power consump-

tion uses RPi4. At the same time, NVIDIA has shown slightly

higher power consumption. As expected, Lenovo T540p has

the highest power consumption due to the number of cores

used while executing the workloads. In Figure 7b, the power

consumption on edge devices running workload with LoD 2

remains almost similar to the previous graph, except for the

Lenovo T540p, which doubles power consumption by showing

values in the average of 9.6W and reaching a maximum of

30W. This aligns with earlier results regarding CPU, memory,

and time required to execute workloads. In Figure 7c, the

power consumption on edge devices running workload with

LoD 3 remains almost similar to the previous graph in Figure

7b. Nevertheless, the power consumption results indicate the

applicability and feasibility to execute geometry workload on

low-powered and resource-constrained edge devices. It is also

worth noting that the visualization of 3D content on edge

devices occurred within the range of the city lower and city
upper parameters mentioned in Section IV-C.

Lastly, Lenovo T540p demonstrated satisfactory perfor-

mance. Additionally, the RPi4 delivered noteworthy results.

Based on this study, it is also observable that when increasing

the level of detail and increasing the margin to generate more

mesh slices, the RPi3 may become unreliable since the values

provided, e.g., execution time, might sometimes be excessive.

E. Limitations

In this study, procedural geometric workloads are solely

executed on CPU hardware. This means that the procedural

geometry workloads were executed exclusively by the central
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(a) (b) (c)

Fig. 6: Time required to execute geometry workloads with: (a) LoD 1, (b) LoD 2, and (c) LoD 3.

(a) (b) (c)

Fig. 7: Analysis of the power consumption on edge devices during the execution of geometry workloads with: (a) LoD 1, (b)

LoD 2, and (c) LoD 3.

processing unit without using the graphic processing unit

(GPU). GPU-based execution [35] would significantly improve

overall execution time results (i.e., especially in the case of

the NVIDIA Jetson device since it has a GPU with 48 tensor

cores). Therefore, we acknowledge such a limitation and must

be carefully addressed in future work.

V. CONCLUSION

This research paper provided a comprehensive performance

evaluation to execute procedural geometric workloads in low-

powered and resource-constrained edge devices. Through ex-

tensive experiments, we showed and argued the applicabil-

ity and reliability of executing such workloads in proxim-

ity to end-users, respectively, in edge devices. Despite the

promising results, this paper is only a small step towards

implementing the operationalization of a framework aiming to

achieve efficient provisioning procedural geometry workload

on computing continuum infrastructures. Therefore, we aim

to provide a complete architectural framework and address

technical aspects in our future work.
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