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Abstract—The recent advancement in edge computing allows
IoT devices to be smart enough to collect the surrounding data
and react to the environment based on a predefined logic set
or the instructions from a remotely located control center such
as cloud computing. However, the intelligence in this smart
environment is primarily implemented in the central controller,
allowing no or little room for IoT devices to collaborate, share
knowledge, and take advantage of peer devices’ knowledge with
zero or minimal reliance on the central controller. This leaves the
whole system not scalable and inefficient in energy consumption.
In this paper, we propose an approach where edge intelligence
is imposed in a clustered and cohesive manner. This enables
the IoT devices to form one or more clusters based on the
intelligence they possess and operate collaboratively with or
without any intervention of the remote control center. This allows
IoT devices to efficiently collect and react to the environment,
resulting in better service quality and further reducing overall
energy consumption.

Index Terms—Edge Intelligence, IoT, clustered intelligence,
edge computing, smart environment, sensors.

I. INTRODUCTION

The tiny, affordable, and ability for mass production of

sensors equipped with the capability to exchange the data

with other sensors made it possible to establish a sophisticated

internet of things (IoT) infrastructure. Dedicated sensors, such

as CO2 detector, light sensor, fire detection, proximity sensors,

etc., are attached to existing electrical and electronic appli-

ances to make them smart enough to react to any change in

the surrounding environment. In general, such sensors send the

environmental data through multiple gateways and computing

environment to a centrally located controller (generally in a

cloud environment), which in turn is responsible for imple-

menting and ensuring the enforcement of the higher level of

automation logic [1], [2] , as shown in Figure 1.

When the number of collectors, which collect/sense the

surrounding data, and reactors/smart appliances, which react to

the collected/sensed environmental data, increases to hundreds

of thousands, it would become a cumbersome task for the

central controller to manage [3]–[5]. Further, the conventional

rule-based autonomous system may not be efficient enough.

Edge intelligence is one of the candidate solutions that enables

the IoT devices to be equipped with the required logic [6], [7].

This would allow edge devices to not only process a certain

amount of data but also can share and reuse other edge devices’
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Fig. 1: An abstract view of edge-cloud environment.

knowledge, enabling edge-to-edge transfer learning [8]. The

recent advancements in the application of edge intelligence [5],

[9]–[11] mainly focus on enabling the IoT devices intelligent

enough to react to the surrounding data, based on a set of pre-

defined rules that are confined only to the device itself. Further,

such smart appliances do not consider the impact they bring

after reacting to the environment. For instance, the smart bulb

may not consider if there is any change in the luminosity level

of the environment after it is turned ON.

Intelligence is imposed mainly on the central controller

and IoT devices in a master-slave approach [12]–[14].As

a result of this advancement, the smart environments are

becoming more centralized and IoT devices mainly depend

upon the central controller, leaving no room for collaboration

among IoT devices in close proximity. This introduces sev-

eral research challenges, such as higher energy consumption,

higher network congestion and inefficient implementation of

automation system, lesser scalability [4], [15] and inefficient

resource utilization [16], [17]. Higher network activity and

inefficient resource utilization lead to higher energy consump-
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Fig. 2: An illustrative example of the motivation for device-

centric and intelligence-centric clustering strategies

tion, which is the primary goal of this paper, as discussed in

Section III. Recent research also focuses on the insight of the

confluence of edge computing and Artificial Intelligence (AI)

and discussed the need of AI for edge computing to enable

the edge intelligence for several smart environments [18].

In this paper, we propose a clustered and cohesive edge

intelligence that allows IoT devices and smart appliances to

sense and react to the environment in a collaborative manner

through the exchange of their own intelligence with or without

the involvement of a central controller. This would obviously

reduce the dependency of edge devices on central controller

and hence reduce the network activity with the cloud. Lesser

network activity further infers lesser energy consumption [19].

As shown in Figure 1, multiple IoT devices may form a cluster

based on their location. Such a cluster of IoT devices would

collect the environmental data and react to the environment

collaboratively, improving the users’ experience.

A. Motivation and Contribution

In the conventional approach, edge devices are embedded

with the required intelligence to collect and process the

surrounding data. While doing so, such edge devices are

entirely managed and controlled by the central controller

usually residing in a cloud environment, as shown in Figure

2a. Hence all data, knowledge, and control instructions or the

commands go through intermediate devices such as gateways

and edge controllers. This also applies to devices with the

capability to communicate among other edge devices. This

leads to several challenges, such as energy waste during

communication, higher degrees of reliance on the central

controller, and inability to take advantage of device-device

communication.

To address the above-discussed challenges, the conventional

approaches allow the devices to be clustered, following device-

centric clustering strategies based on their location, types, and

other characteristics. The device-centric clustering allows the

cluster head to collect the data from other edge devices and

send the collected data to the central controller. However,

forming and managing the clusters become a cumbersome

task when the number of devices increases significantly. In

addition, managing intelligence embedded atop the devices

further introduces another layer of complexity. This motivates

us to shift from a device-centric clustering strategy to an

intelligence-centric clustering strategy that makes the edge

intelligence clustered and cohesive. This would allow the edge

devices to exchange their knowledge among others without a

central controller, as shown in Figure 2b.

Upon achieving the above, edge devices will be clustered

primarily considering the intelligence they are equipped with,

not by their type or location. The advantages of such an

approach can be realized while managing a large number

of edge devices. This would also reduce the reliance on the

central controller as the edge devices may operate based on

the knowledge of other peer edge devices and the current

state of the surrounding environment. This approach would

also allow the data to be with in the edge environment and

make data movement through cloud optional. The following

sections further discuss the proposed Clustered and Cohesive

Edge Intelligence in the IoT environment (CCEI-IoT).

Based on the above motivations, the main contributions of

this research can be summarized as follows:

• The current state of the arts towards clustered edge

intelligence are examined and proposed a mechanism to

cluster the edge intelligence with an objective to further

minimize the energy consumption.

• The concerned problem on energy minimization is math-

ematically formulated with an objective function and the

associated constraints.

• To evaluate the performance, the proposed CCEI-IoT is

simulated using a lightweight Java-based discrete event

simulator.

• This paper also discusses the open challenges that remain

unaddressed, such as intelligence discoverability and

observability, security, computation and communication

overhead.

The rest of the paper is organized as follows: Section II

summarizes the recent state-of-the-art on edge intelligence.

Section III formulates the concerned problem and models the

whole system followed by the proposed solution in Section IV.

The performance evaluation results and the open challenges

are discussed in Section V and VI, respectively. Section VII

presents the concluding remark and summarizes the future

works.

II. RELATED WORK

Edge intelligence promises to address several limitations

that cloud computing posses, such as higher latency, more net-

work congestion, reduced QoS and many more. This brings the

intelligence from central controller to the edge device taking

advantage of the computing and storage resource available at
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edge. However, some of the issues on communication overhead

with central controller and the energy efficiency of edge de-

vices remain unaddressed [20]–[22]. The recent advancements

mainly focuses on the enabling the edge device to form the

cluster and reduces the reliance on central controller [8], [23],

[24].

One of the research dimension of the edge intelligence

is how to cluster the underlined IoT devices more effective

manner, as discussed in [23]. Clustering helps the IoT infras-

tructure at the edge of the network to minimize the energy

consumption without compromising the QoS [23]. Clustering

at the edge takes different parameters into account such as

mobility or location of the edge device. For instance Bartoletti

et al. [24] present location-based analytics in 5G network that

cluster the people based on their type of mobility, such as

biking, cycling, walking, etc.

Lu et al. [8] demonstrate the advantage of edge-to-edge

transfer learning among edge cameras that reduces the band-

width and storage usage. However, the proposed mechanism

entirely focuses on a very specific use case and does not

generalize the clustering of edge intelligence. The other lim-

itation lies within its approach on device-centric learning

collaboration. Such approach makes the scalability of collabo-

rative learning cumbersome when the number of edge camera

increases significantly. A similar approach is applied on the

smoke detection in foggy surveillance environments by Khan

et al. [25]. However, the proposed mechanism relies entirely

on the on-board computing and storage resource and does not

take advantage of idle resources available with nearby edge

devices.

Many research results from the edge Intelligence perspective

show that clusters of edge devices serve as the backbone

for the implementation of edge intelligence as the devices

within the cluster are able to share the data and knowledge

around them and help the cluster-head to take a collaborative

and effective decision [26]. However the heterogeneity, trust

worthiness of the underlined IoT devices and their local

knowledge have become one of the primary hurdles to re-

alize maximum capacity of edge intelligence. The authors

attempted to address this issue by incorporating the blockchain

technology [27]. Considering the importance of an efficient

and secure service management, Zhang et al. [28] proposed

a cross-domain sharing inspired distributed heterogeneous

edge resource scheduling in industrial IoT. The blockchain

technology is applied to meet the edge resource transaction

consensus requirement for the edge nodes.

III. PROBLEM FORMULATION

Figure 1 shows a multi-layered IoT architecture of a smart

environment. A smart environment in this paper may refer to a

smart home, a smart building, a smart community, or a smart

city. In general, the IoT devices at the edge are managed by

the control center present in the cloud computing environment.

Some of the IoT devices sense the surroundings and send the

data to the control center. Based on the predefined logic, the

control center commands the smart appliances to change their

TABLE I: List of notations

Notation Description
C C = {c1, c2, . . . , cn}, the set of n number of

collector types.

cji The collector at index j of type ci, 1 ≤ j, 1 ≤ i ≤ n.
R R = {r1, r2, . . . rm}, the set of n number of Reactor

types.

rji The reactor at index j of type ri, 1 ≤ j, 1 ≤ i ≤ m.

C̈ C̈ = {ċ1, ċ2, . . . , ċq}, the set of q clusters.

b(rji , ċk) Indicates if the reactor rji ∈ R belong to cluster ċk ∈
C̈.

b(cji , ċk) Indicates if the collector cji ∈ C belong to cluster

ċk ∈ C̈.

St(I) St(I), I ∈ {C ∪R} be the state of an IoT device I ,
at time t.

et(I) et(I), I ∈ {C ∪ R}, be the energy consumption of
the IoT device I at time t.

ėtk Energy consumption of a cluster ċk at time t.
Et The total energy consumption at time t.

A(cji ) The set of dependent collectors and reactors.

B(rba) The set of dependent collectors in the same cluster
where reactor rba belongs to.

state. A smart environment consists of mainly two categories

of IoT devices: (a) Collector and (b) Reactor.

data flow

data flow

Collector-X 
( e.g. CO2, Temperature,
Proximity, Motion, Audio,

Light sensors etc.) Event 
flow

Event 
flow

Reactor-Z 
( e.g. Smart Ventilator,
Energy controller, TV,

bulb, Coffee, refrigerator,
etc.)

Collector-Y 
( e.g. CO2, Temperature,
Proximity, Motion, Audio,

Light sensors etc.)

Fig. 3: Overview of data and event flow among collectors and

reactors.

A. Collectors and Reactors

Collectors are the sensors that collect the surrounding data

by simply sensing the environment. The collection of data

is both event-driven and time-driven. The collected data are

essentially sent to the other reactors and the same collection

event is sent to other collectors in the same cluster. Let C =
{c1, c2, . . . , cn} be the set of n number of collector types.

ci = {c1i , c2i , . . . }, 1 ≤ i ≤ n be the set of collectors of same

type based on the specific data to be collected.

A Reactor device, on the other hand, only reacts to the

collected data sent by the collectors in the same cluster,

e.g., a smart bulb in a room reacts (or turns ON) when

a collector senses the presence of a person. In addition

to this, a reactor may also receive the command from the

central control center. The same reaction event is also sent to

other nearby collectors and reactors in the same cluster. Let,

R = {r1, r2, . . . rm} be the set of m number of reactor types,

where rj = {r1j , r2j , . . . }, 1 ≤ j ≤ m be the set of reactors of

same type.
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B. Intelligence Clusters

A set of collectors and reactors forms a cluster. All the

cluster members share their data, the related events, and

reaction events among others in the same cluster. A smart

environment may consist of a large number of clusters. Some

of the examples of clusters can be (a) all the IoT devices in

the kitchen of a smart home, (b) IoT devices in an apartment

of a smart community, (c) IoT devices in the corridor of a

smart building, (d) IoT devices in a shopping center of smart

city, etc. Clusters are created statically, either based on the

context, location, dependencies among devices, or time. A

collector or reactor can be a member of multiple clusters. Let

C̈ = {ċ1, ċ2, . . . , ċq} be the set of q clusters. The boolean

functions b(cji , ċk) and b(rji , ċk) indicates if a collector cji ∈ C
and reactor rji ∈ R belong to cluster ċk ∈ C̈, respectively.

Mathematically,

b(I, ċk) =

⎧⎨
⎩

1 If the collector or the reactor I

belongs to the cluster ċk ∈ C̈
0 Otherwise

(1)

Let St(I), I ∈ {C ∪ R} be the state of an IoT device I at

time t in the smart environment, where I represents an IoT

device that could be a collector or a reactor. The state of an

IoT device represents the state of the surrounding environment.

For instance, for a light sensor, the current luminosity level

of the environment is considered as the state of this collector.

However, for a reactor, the state represents the current capacity

at which the reactor is working. The state of a reactor must

satisfy the condition 0 < St(rji ) ≤ 100%, 0 < t, ∀rji ∈ R. For

example, a ventilator may operate at 40% of its full capacity,

which is the efficiency of the ventilator. Based on the state of

each IoT device, the state of a cluster at time t, denoted by

ṡtk = 〈St(I)|∀I ∈ {C ∪R}, b(I, ċk) = 1〉, can be defined as

a tuple of states of all the devices in that cluster at time t.
The state of the IoT devices are also used to form the

dependency graph. A collector cji is said to be dependent on

a reactor rba, only when a change in the state of the reactor

leads to a change in the state of the collector. Similarly, the

reverse relationship holds true. In other word, a reactor is said

to be dependent on a collector, only when a change in the

state of the collector leads to a change in the state of the

reactor. Mathematically the relationship between collector cji
and reactor rba can be represented as

SΔ(rba) ⇔ SΔ(cji ) (2)

, where SΔ(rba) =
∣∣St(rba)− St−1(rba)

∣∣ and SΔ(cji ) =∣∣∣St(cji )− St−1(cji )
∣∣∣.

Definition 1. A(cji ) be the set of collectors and reactors that
are dependent on the state of collector cji in the same cluster.
Mathematically,

A(cji ) = {I ∈ {C ∪R}|SΔ(cji ) ⇒ SΔ(I), SΔ(cji ) > 0,

SΔ(I) > 0, b(cji , ċk) = b(I, ċk) = 1, ∀cji ∈ C} (3)

Definition 2. B(rba) be the set of collectors only in the same
cluster, whose data changes when rba reacts.

B(rba) = {I ∈ {C}|SΔ(rba) ⇒ SΔ(I), SΔ(rba) > 0

, SΔ(I) > 0, b(rba, ċk) = b(I, ċk) = 1, ∀cji ∈ C} (4)

C. Objective

Some of the objectives behind making the edge intel-

ligence clustered and cohesive are minimizing the energy

consumption, reducing the reliance on the central controller

that resides in the cloud, reducing the network congestion

between the edge and the central controller, leveraging the

autonomy level of the edge device. However, in this paper,

minimizing the energy consumption of the IoT devices by

reducing the reliance on the central controller is considered

as the primary objective towards making the edge intelligence

clustered and cohesive.

Let et(I), I ∈ {C ∪ R}, be the energy consumption of the

IoT device I at time t, when the device is either collecting

the data or reacting to the environment. Using this value, the

energy consumption of a cluster ċk at any given point of time

t, can be defined as

ėtk =
∑

∀cji∈ċk

et(cji ) +
∑

∀rba∈ċk

et(rba) (5)

In general, the collectors consume significantly less energy

compared to that of the reactors and may not play a major role

in minimizing the total energy of the whole smart environment,

which is also discussed in the performance evaluation section.

For instance, a collector that collects the surrounding tem-

perature consumes a negligible amount of energy compared

to that of a smart bulb. Let Et denotes the total energy

consumption of all the reactors, after neglecting the total

energy consumption of all collectors. Considering the energy

consumption of the reactors only, the objective of this research

is to minimize the Et at time t by taking a clustered and

cohesive decision on changing the state of the collectors and

reactors.

Objective:

Minimize Et =
∑

∀rba∈R

et(rba) (6)

Constraints: ∑

∀ċk∈C̈

b(rba, ċk) ≥ 1 (7)

�ċk ∈ C̈, b(rba, ċk) ∗A(cji ) < 1, ∀cji ∈ C, b(cji , ċk) = 1 (8)

∀ċk ∈ C̈, ∀rba ∈ R, if b(rba, ċk) = 1, B(rba) �= φ (9)

0 < St(rba) ≤ 100%, 0 < t, ∀rba ∈ R (10)

The concerned objective in making edge intelligence clus-

tered and cohesive is to minimize the overall energy consump-

tion. However, this must satisfy the following constraints:
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• Constraint (7) ensures that each reactor must belong to

at least one cluster.

• It is essential to ensure that the cluster where the reactor

rba belongs to does contain at least one collector and must

satisfy the condition in Definition 1 as given in Constraint

(8)

• Similar to the above, Constraint (9), ensures that the

cluster where the reactor rba belongs to contains at least

one collector, cji ∈ C, whose data changes when the

reactor rba reacts to the environment.

• Constraint (10) ensures that the state of each reactor must

be a valid value between 0 and 100.

IV. CLUSTERED AND COHESIVE EDGE INTELLIGENCE

Based on the above formulation, this section proposed Clus-

tered and Cohesive Edge Intelligence in the IoT environment

(CCEI-IoT), a solution focusing on minimizing the overall

energy consumption.

Two algorithms are created, that work in two stages, to

achieve the objective mentioned in Eq. (6). In the first stage,

a data-event flow graph is created by considering the de-

pendencies among the collectors and reactors, as given in

Algorithm 1. In the second stage, the reactors are controlled

strategically to minimize the energy, as given in Algorithm 2.

Figure 3 shows the flow of data and events among collectors

and reactors. For example, the Collector-X (e.g. motion sensor)

may send its environmental data to the Reactor-Z(e.g. smart

bulb) and Collector-Y(e.g. light sensor) in the same cluster.

In response, the smart bulb may be turned ON and send the

event to another Collector-Y (i.e., light sensor). Based on the

event, the light sensor may collect the new luminosity level.

The change in the luminosity level would indicate if the smart

bulb should remain in the ON state or OFF state. Let �Rt(rji )
be the set of state values received by the reactor rji from other

collectors in the same cluster at time t.
Based on the above description, two sets A(cji ) and B(rji )

for all the IoT devices in each cluster are constructed, as given

in Algorithm 1. Algorithm 1 starts by initializing the sets

A(cji ) and B(rji ) as empty sets. As depicted in Figure 3, the

fundamental conditions imposed while constructing the sets

A(cji ) and B(rji ) are that a collector sends the surrounding

data to other collectors and reactors in the same cluster. In

contrast, a reactor sends its events to only other collectors in

the same cluster. By iterating the same process over all the

clusters, A(cji ) and B(rji ) for all the IoT devices in the smart

environment can be constructed, as given in Algorithm 1.

For each collector, cji in a cluster ċk, the algorithm finds

a set of dependent collectors and reactors in the same cluster

ċk. This set of devices are then merged with the current set

of A(cji ) using union operation, as in Line 3–6. Similarly, for

each reactor rji in the cluster ċk, the algorithm finds a set of

dependent collectors from the same cluster ċk and merged with

the set B(rji ), as in Line 7–10. The above-mentioned steps are

iterated over all the clusters present in set C̈, as in Line 2–11.

It is obvious that the two sets A(cji ) and B(rji ) may consist of

devices from multiple clusters. It is assumed that the dependent

Algorithm 1: Data-event flow graph

Input: Set of clusters C̈
1 A(cji ) = {φ}, ∀cji ∈ C ; B(rji ) = {φ}, ∀rji ∈ R;

2 foreach Cluster ċk in C̈ do
3 foreach Collector cji ∈ ċk do
4 tmp = Find the set of dependent collectors and

reactors in the same cluster, as per the

Definition 1.;

5 A(cji ) = A(cji ) ∪ tmp;

6 end
7 foreach Reactor rji ∈ ċk do
8 tmp = Find the list of dependent collectors in

the same cluster, as per the Definition 2.;

9 B(rji ) = B(rji ) ∪ tmp;

10 end
11 end

Algorithm 2: Energy minimization through CCEI-IoT

Input: Set of clusters C̈.

1 Time t = 0;

2 Populate the sets A(cji ) and B(rji ) using Algorithm 1;

3 while TRUE do
4 foreach cji ∈ ċk do
5 if St(cji ) �= St−1(cji ) then
6 ∀tmp ∈ A(cji ), S

t+1(tmp) ←− St(tmp);
7 end
8 end
9 foreach rji ∈ ċk do

10 if �Rt(rji ) �= Φ then
11 React to the environment iff

∀tmp ∈ B(rji ), S
t(tmp) �= St+1(tmp);

12 If rji reacted based on above statement,

calculate E using Eq. (6);

13 end
14 end
15 Wait for the current time cycle t to end;

16 end

set of collectors and reactors for each collector is known.

Similarly, for each reactor, the set of dependent collectors is

assumed to be known. Both the sets A(cji ) and B(rji ) are

further used to minimize the overall energy consumption of

the smart environment, as given in Algorithm 2.

Algorithm 2 presents the proposed mechanism to minimize

the energy consumption through a clustered and cohesive in-

telligence. Precisely, we try to use reactors or smart appliances

only when their impact on the environment and the state of

the other collectors satisfy a predefined threshold value. The

predefined threshold value is assumed to be calculated by

the service provider based on the context and the environ-

ment. Algorithm 2 starts by populating the sets A(cji ) and

B(rji ) using the Algorithm 1, as in Line 2. Algorithm 1
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constructs the data and event flow graph by examining the

logical interconnections among the collectors and reactors, as

shown in Figure 3. Upon constructing A(cji ) and B(rji ), each

collector continuously compares the current state value with

the previous one. In case of any change, the state value is

forwarded to all other collectors and reactors, as in Line 6.

On the other hand, upon receiving the state value from other

reactors, as in Line 10, the reactor reacts to the environment as

it is intended to be, if and only if the reaction brings an impact

to the surrounding and changes the state value of any other

collectors in set B(rji ), as in Line 11. In this case, the total

energy consumption will be calculated using Eq. (6), as given

in Line 12. All the steps from Line 3 to 14 are continuously

followed in each time cycle t, as in Line 15. By doing so,

the reactors depend on the current state of the environment

and depend on the future state of the environment, which

minimizes the E and improves the efficiency of the whole

smart environment.

In order to minimize the energy consumption and make

the edge devices more autonomous, the proposed CCEI-IOT

solution strategically controls the reactors. This is achieved by

firstly, allowing the reactors to react to the environment only

when the reaction brings a significant change and secondly, by

reducing the reliance on the central controller. The proposed

solution is further verified through simulation in a small-scale

environment, as discussed in the next section.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

CCEI-IoT using a lightweight Java-based discrete event sim-

ulator. The performance of the CCEI-IoT is compared with

the conventional automation system, where the reactors are

triggered based on the predefined events or at a regular time

interval. However, the proposed CCEI-IoT considers the after-

react impact on the environment through the other collectors

and decides whether to react. The average energy consumption

of all the collectors and reactors is used as the performance

matrix.
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Fig. 4: Percentage of collectors and reactors.

For the performance, a total of 100 IoT devices is consid-

ered, where each 10 devices form one cluster, resulting in a

total of 10 clusters. As a whole, out of 100 IoT devices, 52%
IoT devices are considered as collectors and 48% IoT devices

are considered as reactors, as shown in Figure 4. In each

cluster, the number of collectors is more than the number of

reactors. For instance, from the 30 IoT devices, 63.3% devices

are collectors and 36.6% of the devices are reactors.
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Fig. 5: Average energy consumption of IoT devices.

With the above set of collectors and reactors, the average

energy consumption is calculated using both the conventional

method and the proposed CCEI-IoT method, as shown in

Figure 5. The unit of the energy consumption is in Watt-

hour (Wh). It is assumed that the average energy consumption

of a reactor is significantly higher than that of a collector.

In the simulated environment, the minimum and maximum

energy consumption of a collector is set to 10−3 Wh and

10−2 Wh, respectively. On the other hand, the minimum and

maximum energy consumption of a reactor are set to 10 Wh
and 300 Wh, respectively. The energy consumption of each IoT

device is randomly assigned. With the above configuration,

it is observed that the average energy consumption for the

devices in cluster 1 or the first 10 IoT devices is 32.1 Wh using

conventional method and 30.49 Wh in the case of the proposed

CCEI-IoT method. When the number of IoT devices increases

to 100, the average energy consumption is approximately 67.9
Wh, which is approximately 7% less than the average energy

consumption using the conventional method. The improvement

is due to the fact that each reactor not only depends on the

time or the event from other collectors but also depends on if

their reaction brings a visible impact to the environment.

A further in-depth behavior related to energy consumption

can be observed by comparing the percentage of energy

consumed by collectors and reactors, as shown in Figure 6.

For a total of 10 IoT devices, the total energy consumption

is observed to be 321 Wh, of which more than 90% energy

consumed by only the reactors and less than 3% of the total

energy consumption is made by the collectors only. When the
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Fig. 6: Percentage of energy consumption by collectors and

reactors.

number of IoT devices increases to 100, the reactors consumed

more than 99% of total energy consumption. This shows an

almost negligible impact by the collectors on the total energy

consumption of the whole smart environment.

For further confirmation on the differences, the percentage

of energy consumption by collectors and reactors in each

cluster is observed, as shown in Figure 7(a). To support this,

Figure 7(b), shows the device distribution of all the clusters.

The number of devices varies between 7− 13, a total of 100
devices in all clusters. It is observed from Figure 7(a), energy

consumption by the reactors ranges between 97% − 99.7%,

whereas the energy consumption by collectors ranges between

0.3% − 2% for each cluster. This confirms the fact that the

reactors primarily consume a major portion of the energy.

VI. CHALLENGES IN CCEI-IOT

Despite numerous advantages, making the edge intelligence

clustered attracts several challenges, including intelligence

discoverability, observability, handling dynamic environment,

etc. These challenges are summarized along with the future

research directions as shown below.

• Intelligence discoverability and observability: The intel-

ligence discoverability enables the devices to be able

to find or locate the newly added intelligence or the

upgraded intelligence in the edge infrastructure. The intel-

ligence discoverability is inspired by the existing concept

of semantic web service discovery, device discovery in

IoT. On the other hand, another key challenge is the abil-

ity to observe a specific intelligence. Observability allows

other devices to deduce the current state of a particular

intelligence, such as its availability and reachability.

• Dynamic environment: In such an environment, several

reactors and the collector can be mobile in nature. In

such a highly dynamic environment, it is crucial to ensure

that the reactors and collectors exchange their knowledge

and data on the surrounding environment on a real-time

basis. This dynamic environment also has a great impact

on ensuring device-to-device communication.

• Computation overhead: By implementing a clustered

edge intelligence, another layer of computation overhead

atop the edge intelligence is introduced. The edge de-

vices are further responsible for processing the cluster

information at a regular time interval. Each edge device

needs to update the database of other cluster members.

This introduces a computation overhead atop the edge

infrastructure, which needs to be minimized to realize

the benefits of clustered edge intelligence.

• Communication overhead: The edge devices need to con-

stantly share the surrounding data and their knowledge

with peers, which attracts communication overhead on the

network. Such communications should be strategically

minimized so that the overall energy consumption for a

particular reactor is minimum.

• Security: When the edge devices communicate with only

a central controller, it is relatively easy to ensure the

security of the knowledge and data. However, when an

edge device listens to multiple edge devices and reacts

to their data/knowledge, it is essential to establish and

maintain secure communication among those devices. It

is a highly challenging task for any reactor to validate

the data source and ensure that the source device is not

an intruder [5].

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate conventional edge intelligence

where IoT devices mostly depend on remotely located central

controller and do not take advantage of the intelligence ob-

tained from the IoT devices’ data in proximity. Accordingly,

a clustered and cohesive edge intelligence for an internet of

things environment (CCEI-IoT) is proposed. The IoT devices

in the proximity form a cluster and share the surrounding

data and events among others in the same cluster. With

such capability, a smart appliance or a reactor not only gets

activated based on a specific event but also considers if its

reaction brings a visible impact to the environment through

other collectors/sensors. While doing so, all IoT devices’

overall energy consumption is observed through a small-scale

simulation.

The advantage can be realized with the large-scale im-

plementation in a smart environment, which is one of the

future works. Further, from this large-scale implementation,

the energy consumption due to high processing time in edge

device, efficiency of IoT devices, and users experience of the

whole system can be observed.
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