
Towards Extensibility-Aware Scheduling of
Industrial Applications on Fog Nodes

Mohammadreza Barzegaran∗, Vasileios Karagiannis†, Cosmin Avasalcai†

Paul Pop∗, Stefan Schulte† and Schahram Dustdar†

∗DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

{mohba, paupo}@dtu.dk
†Distributed Systems Group, TU Wien, Vienna, Austria

{v.karagiannis, c.avasalcai, s.schulte, dustdar}@dsg.tuwien.ac.at

Abstract—Fog computing has been identified as an enabler
for many modern technologies like connected vehicles and the
Industrial Internet of Things (IIoT). Such technologies are
characterized by the integration of applications with different
levels of criticality on shared platforms, which are referred to
as mixed-criticality systems. Mixed-criticality systems typically
use static scheduling for critical tasks; however, static scheduling
is not suitable for scenarios where fog nodes run dynamic non-
critical applications that implement, e.g., maintenance checks and
data analytics.

To address this challenge, in this paper, we differentiate be-
tween critical tasks that are statically allocated (called “native”)
and dynamic non-critical tasks that may migrate across fog
nodes (called “temporary”). We propose a static scheduling
approach that maximizes the number of temporary tasks that
can be added at runtime, without negatively impacting the
already scheduled native tasks. This approach enables fog nodes
to become more suitable for IIoT environments by configuring
them with extensible schedules for the native tasks. To evaluate
our approach, we perform experiments considering several test
cases, which show that given a number of native tasks, the
generated extensible schedules enable the fog nodes to run a
larger number of temporary tasks at the same time. Furthermore,
the extensible schedules exhibit 7.8% less missed deadlines (on
average), compared to the non-extensible schedules.

Index Terms—Fog computing, mixed-criticality systems,
scheduling, extensibility, optimization

I. INTRODUCTION

Computing at the edge of the network has emerged as

a promising paradigm for enabling applications in various

domains such as connected vehicles [1] and the Industrial

Internet of Things (IIoT) [2]. According to this paradigm,

the applications that demand guarantees in safety, security,

and real-time performance, are executed on a Fog Computing
Platform (FCP) which is extended from Cloud computing

towards the edge of the network. Other terms (e.g. Edge
Computing) with similar objectives and principles are also

used for such platforms [3]. An FCP includes nodes capa-

ble of communicating and executing computations, i.e., fog
nodes (FNs), in the proximity of the data source [4] to

guarantee effective collaboration between the devices, nodes

and the Cloud (see Figure 1). An FN is a compute node that

runs latency-sensitive applications on the available resources

at the edge of the network [5]. FNs which intend to cope with

low latency, need to consider that involved applications may

have different criticality levels. Systems that host applications

with different levels of criticality on the same platform, are

usually referred to as mixed-criticality systems [6]. There are

usually three levels of criticality in mixed-criticality systems:

(i) safety-critical, (ii) mission-critical, and (iii) non-critical [6];

considering their timing requirements that may (i) compromise

the safety of their surroundings, (ii) compromise their normal

operation, and (iii) be prone to delay.

Even though coping with mixed-criticality applications is

still a significant challenge in industrial Internet [7], both

the Edge Computing consortium [8] and the Industrial In-

ternet consortium [3] consider computing at the edge of

the network as an enabler of smart factories which are at

the very core of industrial Internet. So far, various methods

have been proposed for scheduling tasks in mixed-criticality

systems, such as hierarchical scheduling [9], task partitioning

and scheduling [10], and container-based scheduling [11]. In

addition, some approaches target FNs for mixed-criticality

systems [12], and automotive use cases [13] in particular.

However, none of these approaches consider the execution of

dynamic fog applications that produce tasks which migrate

across FNs. These applications are crucial for the operation

of the IIoT since it enables the system to perform tasks such

as maintenance checks, analytics, and software updates. For

this reason, in this work, we design a scheduling algorithm

for FNs, which considers both static critical tasks, i.e., the

required tasks to execute industrial applications, which we call

“native tasks”; and dynamic non-critical fog applications that

implement, e.g., analytic services and diagnostic checks, which

contain tasks that we call “temporary”.

To achieve this, we bring extensibility [14], [15] to the

schedules of FNs which supports adding a larger number of

temporary tasks to the FN without disrupting the execution of

the native tasks, i.e., without modifying the existing schedules.

Keeping existing schedules unmodified is desirable since it

preserves the performance level of the native tasks (including

critical control applications) [16], and does not require re-

certification of safety-critical applications. In particular, we

address the problem of scheduling optimization of native tasks

which are all critical with different levels of criticality on FNs,

considering the extensibility of the schedules.

More precisely, our contributions are: We motivate the need

for a novel scheduling optimization approach for FNs. We pro-

pose such a scheduling approach for optimizing extensibility

of FNs’ schedules, for which we have defined an extensibility

metric. The proposed scheduling approach uses static cyclic

scheduling policy to generate schedules which contain tasks’

activation times. We also allow preemption in our schedules

which is decided at the time of generating the schedules and

increases the solution space. Besides, we propose an approach

for scheduling of temporary tasks which considers the existing

schedules and runs at runtime. Moreover, we provide an eval-

uation that compares the different derivatives of our proposed

approach and shows the extensibility improvement.

67

2020 IEEE International Conference on Edge Computing (EDGE)

978-1-7281-8254-4/20/$31.00 ©2020 IEEE
DOI 10.1109/EDGE50951.2020.00018

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Fog Computing Platform: FNs (boxes) are places at the edge of the
network and connected via network (thick lines) to each other, equipment and
the Cloud. Applications are running on FNs and in the Cloud.

The rest of the paper is structured as follows. Section II

motivates our work by presenting the need for extensible

schedules on FNs, and Section III describes the related work.

Afterward, Section IV presents our underlying system model.

We give the problem definition in Section V, and Section VI

proposes our scheduling optimization approach. Finally, Sec-

tion VII evaluates the performance of our proposed approach,

and Section VIII concludes the paper.

II. MOTIVATION

Current computing platform architectures in industry consist

of different types of processing elements, e.g., programmable

logic controllers or industrial personal computers, which

run tasks that are typically high-critical [17]. Moreover, the

processing elements currently used in industry have major

limitations, such as lack of network capabilities, no support

for web services, limited resource capacities, or plug-and-

play features [17]. The paradigm of fog computing not only

eliminates these limitations but also brings increased pro-

ductivity and flexibility, mass customization, reduced time-

to-market, improved product quality, innovations, and new

business models [18], being an architectural means to realize

the Operational and Information Technologies (OT/IT) con-

vergence [19].

Both industry and academia have made a significant effort

to promote the convergence of OT/IT. Until recently, OT was

needed in small scale static networks within the industrial

domain, which is why there is no support for dynamic changes

and online reconfigurations [20]. This inability of OT now

becomes a necessity with the increase in network size [20].

For this reason, the convergence of OT/IT aims at integrating

mechanisms from the OT field into IT use cases to cope with

such concerns [20]. The outcome of this convergence can

increase the connectivity, interoperability, and scalability of

industrial systems [21].

In this paper, we assume that the OT/IT convergence has

taken place implementing the proposed platforms such as [22],

and FNs now replace the processing elements within the

industrial domain. An example of this assumption, imple-

mented in industrial use cases, is the solution developed by

Nebbiolo [23], where FNs are used in robotic applications.

These FNs implement scheduling algorithms that schedule

the execution of mixed-criticality tasks. Moreover, the FNs

Cloud

Fog device Fog device Fog device

Cloud Layer

Fog Layer

IoT sensors,
actuators,
and control

Fig. 2. Smart factory: an overview of the FCP.

can communicate with each other for potentially sharing the

load of the applications and also, they may communicate

with the Cloud for exploiting available resources there [24].

Figure 2 presents an overview of the FCP implemented in the

considered industrial use case.

For this environment, at design time, tasks which are all

critical with different levels of criticality are scheduled on

an FN. However, we make the key observation that due

to the dynamic nature of fog applications the FN may be

required to run additional tasks at runtime, which have not

been considered for scheduling at design time, e.g., periodic

maintenance tasks. Such tasks are non-critical but may have

timing requirements (e.g., deadlines), and in addition they may

be temporary, i.e., they may be replaced by other such tasks.

Moreover, there may be new temporary tasks that are added to

the FCP at a later time when the static scheduling of critical

native tasks is already in place. As a result, the execution

of these tasks may affect the timing requirements of the

existing native tasks and hence compromise their performance

and safety, e.g., if the native tasks are part of safety-critical

applications.

This work’s motivation stems from the need for industrial

equipment implemented as FNs to run mixed-criticality native

tasks alongside the temporary tasks for the industrial domain

similar to [25]. We aim to bring extensibility to FNs’ schedules

in order to accommodate temporary tasks into the static

schedules of native tasks, and thus efficiently use the available

resources of FNs. The advantages of the FNs over legacy

industrial processing elements become more evident when

bringing this extensibility feature to the FN’ schedules.

As a motivational example, let us consider an industrial

application with several robots which uses an FCP as the

architecture of the computing platform (see Figure 2). The

native tasks are the control operation of robots, which are

implemented on the FNs of the FCP; the static scheduling of

these tasks is determined at design time. This static schedule

is designed to ensure the correct functionality of the safety-

critical tasks on the current platform. However, after a period

of time, the system engineers define another set of tasks

for data analytics; tasks that must run on the FCP without

modifying the current schedule of native tasks. The engineers

need to run these temporary tasks to record data from FNs to

the Cloud for later analysis. The deployment strategy used to

place the temporary tasks on the FCP can be done at runtime

using a decentralized resource allocation technique [26]. Since

the FNs have extensible schedules, the analytic tasks can be

68

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

added to run on the FNs without disturbing the performance

of the control operation of robots.

III. RELATED WORK

There has been much research in the field of scheduling

algorithms for critical applications [27]. Thus, there are various

approaches in the literature, each one showing benefits when

applied to the targeted environment. The scheduling of crit-

ical applications with strict execution requirements has been

studied in [28], and specifically for mixed-criticality systems

in [29]. Besides, the scheduling of critical applications con-

sidering shared computation and communication resources has

been studied in [30]. Nevertheless, none of these approaches

takes into account the potential benefits of extensibility which

we consider in our work.

Various approaches in the literature propose scheduling

algorithms which target fog and edge computing environ-

ments [31]. Motivated by the challenge of scheduling tasks

with execution deadlines in IoT systems, Deng et al. [32]

describe a workload scheduling algorithm for delay-sensitive

IoT applications in fog computing. In this work, the workload

dynamic scheduling algorithm (WDSA) is designed to provide

task scheduling toward worst-case delay and optimal utility

for single hop Fog-IoT architectures. However, WDSA does

not allow to schedule additional tasks without rescheduling

the existing tasks. Barzegaran et al. [33] propose a scheduling

algorithm for industrial applications in an FCP considering

extra–functional requirements of the industrial control tasks.

The proposed algorithm generates static cyclic schedules for

the FNs, and also determines the mapping of tasks to the cores

of FNs. In the work at hand, we use the same heuristic-based

algorithm to generate static cyclic schedules. We consider

the extensibility of the schedules, and ignore the problem

of task mapping to cores. Moreover, we define a metric for

extensibility of the schedules in Section VI-B which is used

in our proposed algorithm as the optimization objective.

Yin et al. [11] propose a task scheduling algorithm for

delay-sensitive applications in an FCP, which schedules the

tasks either on the FNs or in the Cloud. This algorithm targets

smart manufacturing environments that can benefit from the

computational and storage services of fog computing, e.g.,

for fault detection or analysis of the state of the devices in

assembly lines. This task scheduling algorithm is modeled

considering the role of containers to cope with the limited

resources and the delay-sensitive services that hinder the

application of virtualization technologies in the scheduling.

However, this work does not address scenarios where tasks

may need to be scheduled on the FN temporarily, which is

the goal of our work.

Pham and Huh [34] design a task scheduling algorithm for

Cloud-fog computing environments. In this work, the authors

first formulate a task scheduling problem, and then they

propose a heuristic-based algorithm to balance execution time

and cost. The proposed algorithm is intended to be used by a

fog provider who wants to exploit both proprietary FNs and

leased Cloud nodes in order to perform application offloading

efficiently. Notably, the authors target scenarios such as a

shopping center that has many FNs deployed on different

floors for providing WiFi access and for delivering services.

Thus, critical applications that have strict latency requirements

are not considered.

Pop et al. [15] propose an incremental scheduling algorithm

TABLE I
SUMMARY OF NOTATION

Symbol Notation
N Set of all fog nodes

Ni ∈N fog node
Stemp Set of temporary schedule tables
Sext Set of extensible schedule tables

s j ∈ Stemp Temporary schedule table
si ∈ Sext Extensible schedule table
υ j ∈ si Execution slice
|si| Number of execution slices
H Hyperperiod

Γnative Set of all native applications
Γtemp Set of all temporary applications

γi Set of tasks
τ j ∈ γi Task

D j Deadline of a task
Tj Period of a task
C j WCET of a task
M The task mapping function to the fog nodes

for embedded systems which aims at facilitating applications

with deadlines. This approach considers a system with tasks

that have already started and generates extensible schedules

for adding specific future tasks considering that the existing

tasks should be disturbed as little as possible. In this work,

the authors use the idle time slots of the schedules in order to

provide extensibility. For the evaluation, an extensibility metric

is defined as the distribution of the idle time slot profiles in

the schedules concerning the future task sets.

Various other metrics have also been defined for extensible

schedules, such as the metrics in [14], [35]. Zhu et al. [35]

propose an approach for robust task scheduling in distributed

systems concerning the changes in task requirements. In this

work, the notion of extensibility is used for robustness. The

extensibility metric is defined as the weighted sum of each

task’s execution idle time over its period.

Zheng et al. [14] propose a mathematical modeling approach

for extensible scheduling to accommodate additional tasks. In

this work, the extensibility metric is defined as the maximum

execution time a schedule can accommodate for a new inde-

pendent task with certain period. This definition distributes

the idle time among all tasks and targets all variations of

future task sets, i.e., no prior specification of future tasks are

required. In our work, we define extensibility in a way that

our proposed approach provides general solutions independent

of the additional tasks’ specifications.

IV. SYSTEM MODEL

We assume an FCP with various FNs located at the edge of

the network, and each FN integrates the proposed scheduling

algorithm in order to handle critical tasks at design time, while

non-critical tasks may also be added to each FN at runtime.

The system model consists of an architecture model that

describes the architecture of the FCP and its FNs, and an ap-

plication model which describes the tasks. Table. I summarizes

the notation.

A. Architecture Model
The architecture consists of a set of FNs denoted by N .

Without loss of generality, we assume that each node Ni ∈N
has a single core CPU (multi-core FNs can be modeled by

adding multiple nodes to the architecture). We use static cyclic

scheduling to schedule the tasks once at design time and once

at runtime, concerning the schedule tables.

69

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example architecture with three FNs: The orange box shows the
extensible schedule table; the white box shows our proposed algorithm; the
purple box shows the migration mechanism [26]; the yellow box shows the
runtime schedule table.

The set of all the schedule tables which will be determined

by our proposed scheduling approach for extensibility at

design time, is denoted with Sext . We call these schedule tables

“extensible”. Our proposed scheduling approach may be run

at runtime to schedule the temporary tasks (see Section IV-B)

which determines the set of the schedule tables, denoted

with Stemp. We call these schedule tables “temporary”.

A static schedule table repeats with a hyperperiod denoted

by H, which is the least common multiple of all the assigned

task periods. To increase the design space of our solution, we

allow tasks to preempt each other in the generated schedule,

and thus our proposed approach may decide to execute a

task in several execution slices. The preemption granularity

is controlled by a parameter called macrotick [36], thus

improving the schedulability [37] and performance of control

tasks [16].

An example architecture model composed of three FNs is

shown in Fig. 3. The extensible schedule table (orange box)

is determined by our proposed algorithm (white box) during

design time. At runtime, our proposed algorithm schedules the

temporary tasks which have arrived with a migration mech-

anism (purple box), and determines the temporary schedule

table (yellow box).

The schedule table si has a set of execution slices denoted

by υ j ∈ si, which are time slices representing the task execu-

tions generated by capturing the start time and finishing time

of the tasks assigned to the core of Ni. We denote the number

of execution slices in the schedule table with |si|. We give an

example extensible schedule table s1 ∈ Sext of the node N1,

in Fig. 4 using a Gantt chart, where the boxes are execution

slices, and the arrows show task preemption. The example

has three tasks denoted with different colors with a total of

Fig. 4. Example schedule table of N1 with three tasks and fifteen execution
slices: different colors represent different tasks; boxes show execution slices;
arrows show preemption.

Fig. 5. Example application model with three applications and seven tasks

fifteen execution slices. The blue task interrupts the yellow

task as indicated by arrows. An extensible schedule table has

distributed idle times. Thus, an additional task can use the

idle times to be executed before its deadline (see extensibility

metric in Section. VI-B).

B. Application Model
Our application model consists of (i) a set of applications

considered at design time, denoted with Γnative, and (ii) a

set of applications considered at runtime, denoted with Γtemp.

Each native application γi ∈ Γnative is statically allocated to an

FN at design time, and consists only of native tasks which

are static critical tasks with different levels of criticality.

Furthermore, each temporary application γ j ∈ Γtemp will be

dynamically allocated to an FN and may migrate across the

FNs. The application consists only of temporary tasks which

are dynamic non-critical tasks.

Each application γi (whether native or temporary) is mod-

eled with a directed acyclic graph (DAG), where nodes and

edges represent tasks and data flows between the tasks. A

task τ j ∈ γi has a period Tj, a deadline D j, and a known worst-

case execution time (WCET) Cj on the mapped FN. Each task

is ready to execute when all its inputs have arrived. The output

of a task is produced upon the termination of the task. The

mapping of tasks to the FNs is known and captured by the

function M : τi −→N .

An example application model composed of three applica-

tions (and seven tasks) is shown in Fig. 5. The application γ3

and its tasks are temporary and the remainders are native. The

WCETs, periods, and deadlines of the tasks in milliseconds

are shown in the figure.

V. PROBLEM DEFINITION

We formally define the problem to be solved by our ap-

proach as follows. Given (i) a set of native applications Γnative,

(ii) a set of temporary applications Γtemp, (iii) an architecture

consisting of a set of fog nodes N , and (iv) the mapping of

tasks to the FNs captured by the function M, we want to

determine: (i) The set of extensible schedule tables Sext at

design time. (ii) The set of temporary schedule tables Stemp at

runtime. These need to be determined such that: (1) the dead-

lines of all the tasks (both native and temporary) are met, and

(2) the extensibility of the extensible schedules is maximized,

70

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 S = EASA(Γ,N ,M,Ψ)

1: i← 0
2: t ← Tstart
3: Φ←{Di};Θ←{0}
4: S← EDFSimulation(Γ,N ,M,Φ,Θ,Ψ)
5: Ω← CostFunction(S,Γ)
6: repeat
7: < Φi,Θi >← Neighbor(Γ,N ,M,Φ,Θ)
8: Si ← EDFSimulation(Γ,N ,M,Φi,Θi,Ψ)
9: Ωi ← CostFunction(Si,Γ)

10: λ ←Ωi−Ω
11: if λ < 0 or random[0,1)< Prob(λ , t) then
12: S← Si;Φ←Φi;Θ←Θi
13: end if
14: t ← t×α
15: until stopping criterion is true
16: return S

which enables adding a larger number of temporary tasks at

runtime.

VI. PROPOSED SOLUTION

In this section, we first describe our scheduling optimization

approach in detail and then define our objective function,

which considers extensibility with an example to support.

A. Scheduling algorithm
The proposed approach, named Extensibility–Aware

Scheduling Algorithm (EASA), is a Simulated Annealing (SA)-

based metaheuristic [38]. SA is an optimization heuristic that

tries to find the global optimum by randomly selecting a new

solution from the neighbours of the current solution [38].

SA uses moves to explore the search space and to generate

solutions from the neighbours which are evaluated with the

objective function, presented in Section VI-B. Naturally, SA,

as a heuristic, is not guaranteed to find the optimal solution.

The SA decides scheduling parameters which are task offsets

(earliest start time of tasks) and relative deadlines, denoted

by Θ and Φ respectively. The schedule tables are generated

based on an EDF simulation [27], using the scheduling

parameters which indicate when tasks become ready (based

on their offsets) and the priority of the ready tasks (based on

their relative deadline) for running at the time being. Deciding

different scheduling parameters generates different schedules,

thereby SA explores the search space to try finding the global

optimum. Our proposed EASA (shown in Algorithm 1) has

two variants which can be applied: (i) at design time for

determining the extensible schedules, and (ii) at runtime for

determining the temporary schedules. The configuration for

design time variant is: (1) Γ ←− Γnative, (2) Sext ←− S,

and (3) Ψ ←− ∅. The configuration for the runtime variant

is accordingly: (1) Γ ←− Γtemp, (2) Stemp ←− S, and (3)

Ψ←−Sext .

The EASA starts from a solution with the initial scheduling

parameters: the offsets Θ and relative deadline Φ are set to

zero and their deadline values, respectively (line 3 in Alg. 1),

and explores the solution space (lines 6–15). The schedule

tables S are generated from the EDF simulation (line 4) which

is performed for a hyperperiod H (see Section IV-A).

The EDF simulation creates jobs of tasks on the fly, and

gives the highest priority to the job which has the earliest

deadline with all its precedent jobs having arrived at the time

being. High-priority jobs run on the mapped cores captured by

the function M (for the design time variant: at the time being;

for the run time variant: at the earliest time when the associated

core becomes idle concerning the extensible schedules) for the

duration of their WCETs Ci. A high-priority ready job may

interrupt the currently running job (on the same core) if its

priority is higher considering the scheduling constraints, e.g.,

the data dependency (see Section IV-B) and the macrotick (see

Section IV-A). In the runtime variant of EASA, an idle space

coming to the end interrupts the currently running job (on the

same core), forcing the job to continue its execution from the

next idle space concerning the extensible schedules.

A new solution from the neighbours of the current solution

is generated using the moves iteratively which randomly varies

the scheduling parameters (line 7). The Deadline Adjustment
move randomly selects a task and sets its relative deadline Φ
in the range from its deadline Di to its period Ti. The Offset
Adjustment move randomly selects a task and sets its offset Θ
in the interval from 0 to its deadline Di.

The new solution is evaluated with the objective func-

tion Ω (line 9), see Section VI-B. EASA compares the Ωi value

of the new solution with the Ω value of the current solution,

and accepts the new solution if the cost is improved (line 11).

A new solution may be accepted with a certain probability

even if the cost is not improved, thus better exploring the

solution space. The acceptance probability is

Prob(λ , t) = e−
λ
t , (1)

where λ is the cost difference calculated in line 10. It

decreases as the temperature t cools down from an initial

temperature Tstart (line 2) with the rate of α as the time

passes in each iteration (line 14). A stopping criterion stops the

search (line 15). In the work at hand, the stopping criterion is

either that no improvement after a given number of iterations

occurs, that a temperature of zero is reached, and a time limit.

The one happening first is applied as stopping criterion.

B. Extensibility metric and objective function
We define the objective function Ω for evaluating the

solutions generated by EASA, in Eq.(2). The objective function

takes the schedule tables (Sext in the design time variant

and Stemp in the runtime variant) and calculates the cost

with the weighted summation of two terms: the extensibility

metric and task schedulablity constraints. The EASA controls

the search for schedulable solutions with optimized objective

decided with weights by choosing a lager β1 to the search for

optimized extensibility, and contrariwise for finding schedu-

lable solutions faster. The weight β1 is always zero in the

runtime variant of EASA.

Ω = β1×E +β2×Λ (2)

Our proposed extensibility definition is similar to the one

in [14]: The extensibility is captured by the function E which is

shown in Eq. 3. The function E first finds the idle time slices

in each schedule table si ∈ Sext , by removing the execution

slices υ j ∈ si from it (equivalent to the time slices in which

the assigned core is idle), denoted with Li
k. These time slices

– which are “idle spaces” – are where the temporary tasks

(assigned to the same FN) can run. The function E calculates

the variance of the duration of the idle spaces. A solution

with better extensibility has less deviation in the duration of

all idle spaces in each schedule table, thus, a smaller value of

function E.

71

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

(a) Extensible schedule table with optimization (NATIVE–OPTIMIZED)

(b) Temporary schedule table with optimization (TEMP–OPTIMIZED)

(c) Extensible schedule table without optimization (NATIVE–BASE)

(d) Temporary schedule table without optimization (TEMP–BASE)

Fig. 6. Four schedule tables for an illustrative example: NATIVE–OPTIMIZED is optimized for extensibility, TEMP–OPTIMIZED has successfully added
temporary tasks (hatched boxes represent native tasks), NATIVE–BASE does not consider extensibility, TEMP–BASE cannot successfully add temporary
tasks, thus, some tasks (shown with red border boxes) have missed their deadlines (hatched boxes represent native tasks).

∀si ∈ Sext ,m = |si|−1, j = {1, ..,m},υ j ∈ si,

Li
k =

∣∣∣startυ j+1
− endυ j

∣∣∣ ,
L̄=

∑Li
k

m
,σL =

√
∑ |Li

k−L̄|
m

:

E = σL×H−1

(3)

We present an illustrative example for the extensibility

metric in Fig. 6 where the schedules of the tasks from

Table II are shown. The colored boxes represent different

tasks. We generate an optimized extensible schedule for native

tasks (described in Fig. 6a as “NATIVE-OPTIMIZED”), and a

non-optimized extensible schedule table (described in Fig. 6c

as “NATIVE-BASE”). We applied the function E to both

“NATIVE-OPTIMIZED” and “NATIVE-BASE”, which have

thirteen and eight number of idle spaces respectively. All na-

tive tasks are successfully scheduled, and none of them misses

its deadline in both schedules. The function E reports the

values of 0.0035 and 0.0420 for “NATIVE-OPTIMIZED” and

“NATIVE-BASE” respectively, which shows that the duration

of idle spaces in “NATIVE-OPTIMIZED” is less deviated.

We generate temporary schedule tables at runtime for the

temporary tasks based on their existing schedules. We show

the temporary schedule table “TEMP-OPTIMIZED” in Fig. 6b

and the non-optimized version “TEMP-BASE” in Fig. 6d. All

temporary tasks are successfully scheduled, and none of them

misses its deadline in “TEMP-OPTIMIZED”, whereas, the

scheduling is not successful in “TEMP-BASE” and three tasks

TABLE II
DETAILS OF THE ILLUSTRATIVE EXAMPLE

Application set Applications Tasks C (μs) T (μs) D (μs)
γ1 τ1 500 5000 4000

Γnative τ2 1000 6000 4000
τ3 1200 10000 9000
τ4 1500 15000 7000

Γtemp γ2 τ5 1000 5000 4000
τ6 750 5000 3000

miss their deadlines.

The task schedulablity constraints are captured by the func-

tion Λ, which checks for deadline violations of all the tasks

in the schedule tables. Since the outcome of the function E
is in the range [0,1], we normalize Λ starting form 0, for no

violations, to 1, for the case in which all the jobs have missed

their deadlines.

VII. EVALUATION

Our proposed scheduling optimization approach, EASA, was

implemented in C# and all the experiments were run on a

computer with an i9 CPU at 3.6 GHz and 32 GB of RAM,

with a time limit of 10 to 30 minutes, depending on the size

of the test case.

The weights of the objective function Ω were determined

experimentally to guide the search faster towards feasible

solutions with optimized extensibility. We set the weight β1

and β2 to 0.25 and 1.0, respectively. The weight β1 can

be determined by analyzing periods and WCETs of native

and temporary tasks. The value of 1.0 for the weight β2

is a relatively large value considering that the terms of the

objective function are in the range [0,1].

We have evaluated our proposed method on eight synthetic

test cases and one realistic test case. We have generated the

synthetic test cases considering the overall CPU utilization

of all their tasks and progressively increasing number of

native tasks and applications. The details of the synthetic

test cases are shown in Table III. The realistic test case is

an FN inside a vehicle [39] which has three native applica-

tions (representing different engine control applications) and

two temporary applications (representing different passenger

comfort applications). The details of the realistic test case are

shown in Table IV.

A. Synthetic Test Cases
In this first set of experiments we were interested to evaluate

the ability of our proposed method to create extensible sched-

ules of native tasks that accommodate adding a larger number

of temporary tasks. The focus is on evaluating our algorithm,

72

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EVALUATION RESULTS FOR THE EIGHT SYNTHETIC TEST CASES

Test Total no. Total no. CPU Ω Perc. dev. Ω Missed Missed Missed
cases of native of temporary of of EASA/E deadlines deadlines deadlines

applications/tasks applications/tasks Utilization EASA from EASA with EASA with EASA/E with EASA/R
1 3/7 2/3 63% 0.0680 263% 0% 0% 0%
2 3/7 4/8 79% 0.0680 263% 0% 0% 0%
3 3/8 4/8 80% 0.0580 324% 0% 38% 0%
4 3/8 2/6 69% 0.0580 324% 0% 0% 0%
5 4/10 2/6 82% 0.0420 307% 0% 0% 0%
6 4/10 3/4 83% 0.0420 307% 0% 8% 0%
7 5/12 3/4 94% 0.0397 442% 4% 16% 0%
8 5/13 2/3 90% 0.0417 436% 0% 4% 0%

Average 80% 0.0522 333% 0.5% 8.3% 0%

hence look in isolation at a single fog node and consider

that the created schedule has to accommodate all temporary

applications from Table III on this fog node throughout the

execution. In order to facilitate evaluation, we have defined

two other solutions for comparison purposes: EASA/E, and

EASA/R.

The EASA/E is derived from EASA by ignoring the ex-

tensibility optimization. In this solution, the schedules are

generated concerning only the schedulability constraints by

setting the weight β1 to zero which removes the extensibility

metric value E in the evaluation of the visited solution. Hence,

leaving the weight β2 as the same value for EASA. Such a

solution could be in principle generated by a system engineer

with the state-of-the-art scheduling tools on the market.

The EASA/R is also derived from EASA by unifying both

temporary and native tasks and ignoring the extensible sched-

ules. The solution’s schedules are generated at runtime by

rescheduling both native and temporary tasks. Hence the

weight β1 is set to zero (ignoring the incremental scheduling

aspect) and the value of the weight β2 is the same as EASA’s.

The idea behind this solution is to adapt at runtime to changes

in tasks, i.e., instead of focusing of creating extensible sched-

ules at design time the alternative implemented by EASA/R
is to allow the schedules to completely change at runtime,

including allowing changes to native tasks.

The evaluation results are also presented in Table III. We

report the objective function values Ω for the extensible

schedules of EASA in column 5. The column 6 reports the

variation of objective function value for EASA/E comparing

to the values of EASA. No values are reported for EASA/R,

since the extensibility is not applicable to the solutions.

Since all the three solutions are considering the schedul-

ing constraints, we have reported the percentage of missed

scheduling constraints (missed task deadlines) for all the tasks

(both native and temporary tasks) in the table. In all test cases

the native tasks always meet their deadlines (there is enough

capacity for the native tasks in the fog node since it is expected

to handle additional temporary applications), so the percentage

of missed deadlines shows the deadlines missed by temporary

tasks.

As the results show, no missed deadlines are reported for

EASA/R which means that all the generated schedules are

feasible. This may indicate that it is preferable to re-generate

all schedules at runtime every time there is a change. However,

for the safety-critical native applications the safety standards

dictate the development processes and the certification pro-

cedures that have to be followed, increasing the cost of the

system. Furthermore, safety assurance practice dictates that

changes to a certified system result in the re-certification of the

system, adding further (re-certification) costs. For this reason,

changing the existing schedules of the native tasks at runtime

is not desirable, i.e., they have to be fixed at design time. Also,

by creating schedules for all tasks in the system (both native

and temporary) every time there is a change in temporary tasks

allocated to the fog node will generate a larger computational

overhead. Furthermore, when native tasks are scheduled at

the same time with temporary tasks, we increase the risk

of missing the deadlines for the native (critical) tasks, which

renders them unsafe. It is preferable that we miss deadlines

for the temporary tasks, which can be migrated to fog nodes

with more resources in order to successfully execute.

EASA/E, which does not consider extensibility, results in

missed deadlines for temporary tasks: up to 38% of deadlines

are missed in test case 3, and 8.3% on average. This is

expected, since EASA/E does not consider the need to extend

the native tasks’ schedules to accommodate temporary tasks.

The important result here is that our proposed EASA solution

that considers extensibility is able to successfully schedule

both the native and temporary tasks in all test cases, with a

single exception: 4% of deadlines are missed in test case 7 (the

assumption is that such temporary tasks that miss deadlines

could be migrated to another fog node with more resources).

On average, EASA improves over EASA/E in terms of satisfy-

ing the number of task deadlines with 7.8%.

In the table we also show the value of the cost function

Ω for EASA and the percentage deviation from this value

of EASA/E. These Ω columns indicate the reason why we

have less missed deadlines with EASA compared to EASA/E.

EASA has been able to obtain an average objective function Ω
of 0.0522, which shows the solutions have less deviated idle

space duration, compared to the average value of 0.2261 for

EASA/E. The Ω values for EASA are smaller in all the test

cases and the EASA’s schedules are optimized for extensibility,

thus allow adding more temporary tasks and less missed

deadlines as a result.

B. Realistic Test Case: Fog-based vehicle applications
In the second set of experiments we were interested to eval-

uate our proposed solution on a realistic test case consisting of

applications running on a fog node inside a vehicle. Future ve-

hicles are envisioned to be “fog nodes on wheels” [39] as they

integrate more and more functions and become interconnected

with each other. In this test case we consider the dynamic

nature of the fog, i.e., we evaluate our solution on scenarios

where temporary applications migrate in-and-out of the fog

node over time.

73

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
FOG-BASED VEHICLE APPLICATIONS: SENSOR READING (SR);

TEMPERATURE (TEMP); APPLICATION (APP.)

App Apps Tasks C T D
set (ms) (ms) (ms)

Coolant Temp SR (τ1) 0.7 20 18
Engine temp. (γ1) Fan speed set (τ2) 0.4 20 20
control Coolant Flow SR (τ3) 0.3 16 14.4
apps flow Throttle SR (τ4) 0.6 16 15

(Γnative) (γ2) Valve relay set (τ5) 1 16 16
Oil flow Oil flow SR (τ6) 1.8 12 7

(γ3) Indicator set (τ7) 1.5 12 11
Passenger Climate Temp SR (τ8) 0.1 30 18
comfort control Input reading (τ9) 0.1 30 19

apps (γ4) A/C set (τ10) 0.6 30 20
(Γtemp) Cabin Lighting SR (τ11) 0.2 30 23

light (γ5) Lights set (τ12) 0.3 30 25

The details of the test case are in Table IV. The seven native

tasks are distributed in three applications γ1, γ2, and γ3. The

FN on the vehicle is needed to run five temporary tasks in two

application γ4, γ5 which may also be removed/replaced from

the FN at runtime.

We scheduled the native tasks with our proposed method

at design time, and generated the extensible schedules Sext .

The generated solution successfully scheduled all the native

tasks, i.e., no deadlines are missed. EASA reported a value

of 0.0738 for the objective function Ω. We assume that the

FN has to run the temporary application γ4 at the passenger’s

request. EASA also successfully scheduled these temporary

tasks at runtime generating the temporary schedules Stemp.

In our considered scenario, the temporary application γ4 stops

after some time. Thus, EASA removes its tasks and rolls back

to the extensible schedules Sext . Afterwards, the application γ5

is migrated to run on the FN, and EASA successfully extended

the schedules Sext to accommodate the tasks of γ5. We also

evaluated our proposed solution on the scenario where both

applications γ4 and γ5 arrive at the same time. EASA also

successfully scheduled all the temporary tasks.

As indicated by this experiment, our proposed EASA shows

promising results in successful adding of temporary tasks

without impacting the native tasks also in the case of realistic

test cases. Besides, EASA being more successful in scheduling

of temporary tasks, avoids negatively impacting the native

tasks. The experiments in this section show that our proposed

EASA method is able to bring extensibility to FNs’ schedules.

VIII. CONCLUSIONS

Fog Computing is used in an increasing number of ap-

plication areas, including in areas with safety- and time-

critical applications. In the Industrial IoT area the vision is to

virtualize industrial equipment and services, including critical

control, and run these as software tasks on a Fog Comput-

ing Platform (FCP). However, in such application areas the

resources of the FCP have to be statically allocated at design

time to these critical in order to provide the dependability

guarantees required by safety assurance. These applications

then become native to (associated to) the fog nodes where

they are allocated.

The disadvantage of the design time static configuration

of the FCP is that it will not easily accommodate dynamic

non-critical fog applications. Hence, in this paper, we have

proposed a scheduling approach for fog nodes in an FCP that

aims at increasing the extensibility of the static configuration.

This approach can schedule statically allocated critical tasks

in a way that allows adding more dynamic non-critical tasks

without compromising the performance of the native tasks.

This makes our proposed approach applicable to industrial

environments where the fog nodes need to run critical tasks

but also, they need to run non-critical tasks which are not con-

sidered at design time such as maintenance checks, analytics,

etc. Our proposed method does not consider any assumption

about temporary tasks and generates extensible solutions. To

evaluate our approach, we evaluated its performance on several

test cases. The results show the validity of our approach and

its ability to synthesize extensible configurations, where more

temporary tasks can be added at runtime.

In our future work, we will consider the temporal separation

of tasks with different criticality levels in the extensible

schedules. We will take into account the possibility of having

isolated partitions for native and temporary tasks, and we will

also consider using Constraint Programming as an alternative

optimization technique, integrating both the scheduling of

tasks and the scheduling of messages.

ACKNOWLEDGEMENTS

The research leading to these results has received funding

from the European Union’s Horizon 2020 research and inno-

vation programme under the Marie Skłodowska-Curie grant

agreement No. 764785, FORA—Fog Computing for Robotics

and Industrial Automation.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Workshop on Mobile Cloud Computing
(MCC), pp. 13–16, ACM, 2012.

[2] C.-H. Chen, M.-Y. Lin, and C.-C. Liu, “Edge computing gateway of
the Industrial Internet of Things using multiple collaborative micro
controllers,” IEEE Network, vol. 32, no. 1, pp. 24–32, 2018.

[3] OpenFog Consortium, “OpenFog reference architecture for fog comput-
ing,” Technical Report, 2017.

[4] V. Karagiannis, S. Schulte, J. Leitao, and N. Preguica, “Enabling
fog computing using self-organizing compute nodes,” in International
Conference on Fog and Edge Computing (ICFEC), pp. 1–10, 2019.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[6] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Computing Surveys (CSUR), vol. 50, no. 6, p. 82, 2018.

[7] J.-Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan, “Industrial
Internet: A survey on the enabling technologies, applications, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1504–1526, 2017.

[8] Edge Computing Consortium, “Edge computing reference architecture
2.0,” Technical Report, 2017.

[9] Y. Wang, Y. Zhang, Y. Su, X. Wang, X. Chen, W. Ji, and F. Shi,
“An adaptive and hierarchical task scheduling scheme for multi-core
clusters,” Parallel Computing, vol. 40, no. 10, pp. 611 – 627, 2014.

[10] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in Euromicro
Conference on Real-Time Systems (ECRTS), pp. 239–248, IEEE, 2009.

[11] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712–4721,
2018.

[12] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
computing for the internet of things: A survey,” ACM Transactions on
Internet Technology, vol. 19, no. 2, pp. 1–41, 2019.

[13] F. Bonomi, S. Poledna, and W. Steiner, The role of fog computing in
the future of the automobile, pp. 189–210. Wiley Online Library, 2017.

[14] Wei Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli, “Extensible and scalable time triggered scheduling,” in
International Conference on Application of Concurrency to System
Design (ACSD), pp. 132–141, 2005.

[15] P. Pop, P. Eles, and Z. Peng, “Incremental mapping and scheduling
for distributed heterogeneous real-time systems,” Real-Time in Sweden,
2003.

74

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

[16] M. Barzegaran, A. Cervin, and P. Pop, “Performance optimization of
control applications on fog computing platforms using scheduling and
isolation,” IEEE Access, vol. 8, pp. 104085–104098, 2020.

[17] M. Jbair, B. Ahmad, M. H. Ahmad, and R. Harrison, “Industrial cyber
physical systems: A survey for control-engineering tools,” in IEEE
Industrial Cyber-Physical Systems, pp. 270–276, 2018.

[18] H. Bauer, C. Baur, D. Mohr, A. Tschiesner, T. Weskamp, K. Alicke,
and D. Wee, “Industry 4.0 after the initial hype–where manufacturers
are finding value and how they can best capture it,” McKinsey Digital,
2016.

[19] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
Computing for industrial automation through time-sensitive networking
(TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[20] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN networks,” in IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–8, 2017.

[21] O. Givehchi, K. Landsdorf, P. Simoens, and A. W. Colombo, “Interop-
erability for industrial cyber-physical systems: An approach for legacy
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 6,
pp. 3370–3378, 2017.

[22] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and
W. Steiner, “The FORA Fog Computing Platform for Industrial IoT,”
arXiv preprint arXiv:2007.02696, 2020.

[23] Nebbiolo Technologies, “Nebbiolo.” http://www.nebbiolo.tech, 2020 (ac-
cessed May 10, 2020).

[24] V. Karagiannis, “Compute node communication in the fog: Survey and
research challenges,” in Workshop on Fog Computing and the IoT (IoT-
Fog), pp. 1–5, ACM, 2019.

[25] M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, and
J. Kuusela, “Fogification of electric drives: An industrial use case,” in
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), p. 1–5, 2020.

[26] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Decentralized resource
auctioning for latency-sensitive edge computing,” in IEEE International
Conference on Edge Computing (EDGE), 2019.

[27] G. C. Buttazzo, Hard real-time computing systems: Predictable schedul-
ing algorithms and applications. Springer, 2011.

[28] P. Naghshtabrizi and J. P. Hespanha, “Analysis of distributed control
systems with shared communication and computation resources,” in
American Control Conference (ACC), pp. 3384–3389, 2009.

[29] D. Tamas-Selicean and P. Pop, “Design optimization of mixed-criticality
real-time systems,” ACM Transaction on Embedded Computing, vol. 14,
pp. 50–78, May 2015.

[30] D. Fontanelli and L. Palopoli, “Quality of service and quality of
control in real-time control systems,” in International Symposium on
Communications, Control and Signal Processing (ISCCSP), pp. 1–5,
IEEE, 2012.

[31] J. Bellendorf and Z. Á. Mann, “Classification of optimization problems
in fog computing,” Future Generation Computer Systems, vol. 107,
pp. 158–176, 2020.

[32] Y. Deng, Z. Chen, D. Zhang, and M. Zhao, “Workload scheduling
toward worst-case delay and optimal utility for single-hop Fog-IoT
architecture,” IET Communications, vol. 12, no. 17, pp. 2164–2173,
2018.

[33] M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-
aware scheduling of industrial applications on fog computing platforms,”
in Workshop on Fog Computing and the IoT (IoT-Fog), p. 1–5, ACM,
2019.

[34] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a Cloud-Fog
computing system,” in Asia-Pacific network operations and management
symposium (APNOMS), pp. 1–4, 2016.

[35] Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-
Vincentelli, “Optimizing extensibility in hard real-time distributed sys-
tems,” in Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pp. 275–284, 2009.

[36] S. S. Craciunas, R. Serna Oliver, and V. Ecker, “Optimal static schedul-
ing of real-time tasks on distributed time-triggered networked systems,”
in International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8, IEEE, 2014.

[37] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Systems
Symposium (RTSS), pp. 239–243, IEEE, 2007.

[38] E. K. Burke, G. Kendall, et al., Search methodologies. Springer, 2005.
[39] M. Chiang, B. Balasubramanian, and F. Bonomi, Fog for 5G and IoT,

vol. 288. Wiley Online Library, 2017.

75

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 05,2021 at 09:15:37 UTC from IEEE Xplore. Restrictions apply.

