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Abstract—The prevalence of Internet of Things (IoT) in
contemporary settings has induced systems composed of hetero-
geneous devices, computing infrastructures, and cloud services.
New paradigms have emerged where computational resources
are managed closer to IoT end-devices, within a general
theme of decoupling from the cloud. This is because meeting
application demands must occur at runtime, in the face of
uncertainty and in a decentralized manner. Taking advantage
of available resources closer to devices calls for novel resource
allocation techniques that comply with latency, privacy and
decentralization demands of IoT applications. To this end, we
propose a novel decentralized resource management technique
and accompanying technical framework for the deployment
of latency-sensitive IoT applications on edge devices. Our
technique is inspired from the functionality of an auction
house and has two objectives; (i) find a deployment mapping
for an arbitrary application, compliant with its individual
resource requirements and latency constraints, (ii) facilitate
privacy, as each device participates at their own will, based
on its own availability and privacy preferences. Our approach
ensures seamless deployment at runtime, assuming no design-
time knowledge of device resources or network topology.

Keywords-Internet of Things; Edge Computing; Resource
Management; Decentralization; Fog Computing;

I. INTRODUCTION

With the advancement of Internet of Things (IoT) devices

and network capabilities, new applications with more strin-

gent requirements have emerged, requiring low end-to-end

(e2e) latency and data privacy. The current state of the art

in IoT is a centralized infrastructure where data, processing

or control is situated on the cloud. However, the cloud-

IoT coupling is not viable anymore due to its high latency,

its being a central point of failure, and difficulties posing

to privacy and other requirements. Moreover, due to the

high volume of data generated by end-devices, there is an

increased risk of congestion and bandwidth waste [1].

As a solution to such challenges, edge paradigms aim

at moving computational, control or data resources from

the cloud closer to the edge of the network. By enabling

more processing capabilities at the edge, more responsive

IoT applications are obtained with low e2e latencies and fast

response times. Additionally, scalability is augmented since

most of the collected data is processed at the edge and only

some information is sent to the cloud. Privacy, a growing

important goal, is obtained by processing private data locally

[2]. However, to take advantage of these new available com-

putational resources, novel resource management techniques

are needed to manage the distributed resources appropriately.

Resource management [3] concerns controling resources’

utilization in a heterogeneous IoT network where edge

devices have limited computational resources and high un-

certainty exists due to the dynamic nature of the IoT. Such

uncertainty is introduced by (i) device heterogeneity, (ii)

mobility, as devices like smart cars and smartphones make

up the collective, and (iii) lack of knowledge at design time

of the operational configuration of the system. Resource

management has five different objectives; estimation, dis-

covery, allocation, sharing, and optimization. In this paper,

we propose a novel technique combining resource allocation

and resource sharing for task allocation. Task allocation at

the edge of the network has focused on offloading tasks from

constraint mobile devices to save energy consumption [4]

or relied on performing processing data and analytics in the

Cloud [5]. However, such a design is not suitable for latency-

sensitive application requirements and is unsuccessful in

preserving the privacy of user’s personal data.

In this paper, we propose a novel decentralized resource

management framework with the purpose of deploying IoT

applications at the edge of the network based on a set of

objectives. We consider as objectives the satisfiability of

some latency Service Level Agreement (SLA) and ensure

data privacy requirements. We treat privacy as respecting

resource preferences of each edge device, meaning that their

resources are not advertised system-wide. Specifically, our

contributions are as follows:

• A novel task allocation technique to share resources

with nearby nodes based on application requirements;

• Participating nodes on the network utilize multiple

bidding strategies, making their own choices regarding

their local available resources;

• We advocate decentralization, as the system can operate

without a stable connection to the cloud if there are

enough available resources at the edge.

II. DECENTRALIZED RESOURCE AUCTIONING

Our technical framework tackles decentralized resource

management at runtime, focusing on latency-sensitive IoT

applications. Its functionality is inspired by an auction
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house, reflecting core ideas of decentralization and device-

participation inherent in our approach. Once an application

arrives and is ready to be deployed, a list of auction

participant devices called the bidder nodes is created. The

participants share a direct communication link to the deploy-

ment node, which is called the dispatcher.

The dispatcher serves as the auction house owner for

every individual deployed IoT application, and advertises the

application that it desires to deploy on the network. Sub-

sequently, the bidders, according to their own preferences

and current state of free computational resources, bid for

parts of the application, called tasks, communicating to the

dispatcher their bids. The dispatcher, after collecting bids

finds an allocation of tasks to the bidding nodes that satisfies

given latency and other application requirements and deploys

the application on the node collective.

Motivational example. As a simple scenario serving as

a running exemplar, consider a public safety IoT application

that helps the authorities in solving missing person cases

faster. The application is based on video and image analysis

and uses available resources taken from smartphones, CCTV

and dashboards cameras found in the area of the incident,

to locate a missing person. Specifically, the application is

composed of components responsible for specific tasks, in-

cluding (i) image analysis, (ii) face recognition, (iii) motion

detection, and (iv) results generation.

Significant challenges emerge when deployment of such

an application takes place on the cloud. First, privacy issues

arise since collected data from user end-devices must be sent

to the cloud for further analysis. Second, in such a use case

time is valuable, hence the application requires fast response

times and availability even when cloud connectivity cannot

be established. As such, deployment close to the end-devices

is desired; with application operation right at the incident

location and distributed among participating devices.

III. PROBLEM FORMULATION

In edge computing, an application may utilize resources

distributed among various connected devices. In our concep-

tion, an application is composed of a set of interconnected

tasks, each of which may have resource requirements that

need to be met by some edge node upon deployment.

A. IoT Application and System Model

IoT applications may be deployed across different con-

nected devices; an application is assumed to be decomposed

in distinct computational blocks, called tasks. A task has

minimal requirements upon others, and requires certain re-
sources to execute. We assume that each application contains

a starting task which provides the required input data (i.e., a

sensing task) and an end task to take action on the obtained

results (i.e., an actuating task). This is in line with the fact

of limited computational resources found at the edge of the

network, where an application model reflects a division of

the entire application functionality in multiple tasks, since

the execution of the whole application in a single device

may be infeasible or impractical [6].

A division of an application into tasks offers the possibil-

ity of better utilization of distributed resources from devices

participating in the network. More concretely, we assume

that an application is described by a set of tasks T={t1,

t2, ... , tn}. Furthermore, since a workflow between tasks

exists, the application is modeled as a directed acyclic graph

(DAG), Gapp = (V, E), where vertices represent the tasks and

edges capture dependencies between them [4]. Considering

this, we can model the IoT application from our motivational

example as illustrated in Fig. 1 .

t2: Motion
Detection

t3: Face
Recognition

t4: Image
Analysis

t5: Result
Generation

t1: Input

Figure 1. Model of the public safety IoT application.

A task ti represents a set of instructions performing some

specific application feature; computational or other resources

may be required to execute the task. To this end, we assume

each task specification to include a set of resource require-

ments Rt={r1, r2, ... , rn} – these may reflect for instance

generic memory, storage or computational aspects required

to execute the task. However, resource requirements may

specify particular data that the task requires to be present, or

particular and domain-specific hardware, sensor or actuators.

For example, besides computational resources, the motion
detection task requires as input video data gathered from

the proximity of each device.

The edge computing architecture we consider consists

of multiple devices connected in a peer-to-peer manner.

Devices have software stacks able to execute program code,

and each device at any point in time has certain available

resources RE={r1, r2, ... , rn}. In essence, a correspondence

and allocation of task resources to device resources is

necessary to be established to execute tasks of an IoT

application. Let EN=E1, E2, ... , En denote all the devices

available in some local setting, e.g. they may be placed in the

same neighborhood or domain, such as a building or manu-

facturing floor. A device represents an edge node which may

gather information from its environment, e.g., smartphones

or small servers. We assume that every edge node trusts all

devices to which establishes a direct communication link;

they all belong to the same local administrative domain.

An edge li,j describes the latency between Ei and Ej. Each

node has an associated latency while communicating with its

neighbors. As a result, when a task ti is deployed on an edge

device Ei and tj is mapped on node Ej, the communication

latency between the two tasks is inherited from the two edge

nodes hosting them. Since knowing this latency is imperative

to the overall mapping strategy, we assume that the latency is

already provided by latency monitoring in place.We consider

implementation of the latency monitoring functionality as
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out of scope of the present paper; we assume latencies

between tasks are adequately monitored and provided.

B. Objectives

Latency is a prime concern for IoT applications and

has been one of the main drivers for edge computing; we

are concerned with a particular manifestation of latency,

which is the e2e delay of an application’s execution when

operational. We define the e2e delay as the duration of time

for an instance of the IoT application to be processed and

yield a result. Moreover, privacy plays an important role in

pervasive systems such the IoT-populated, edge computing

ones we target, so we consider privacy an orthogonal,

secondary objective that should always be satisfied by an

application deployment. This is often the case since personal

data found on edge devices should be especially protected

when resources are shared. To achieve these privacy require-

ments, we ensure that the data is processed locally, on the

device where it resides. In the end, we guarantee that the

personal data is processed in the proximity of the user, by

mapping tasks to the edge device containing the data.

Taking into account the two aforementioned objectives, a

centralized solution where the cloud or a more powerful de-

vice does the mapping is not viable since it requires knowl-

edge (i.e., device’s available resources, including stored data

of user) of the entire network to produce a mapping.

IV. RESOURCE MANAGEMENT TECHNICAL FRAMEWORK

Our technical framework is composed of two modules:

(i) the deployment policy module, a novel decentralized task

allocation technique that deploys tasks without prior network

topology knowledge, and (ii) the bidding policy module, con-

sisting of multiple bidding strategies used by edge devices

to take local decisions regarding its available resources.

A. Deployment policy module

The deployment policy module is designed to map tasks

at the edge of the network by advertising the IoT application

model to the neighborhood and decide how to distribute

them between participants such that the application meets its

requirements. The procedure of finding a solution begin once

a deployment request for an IoT application arrives. The

dispatcher first prepares an advertisement message contain-

ing the application model and broadcasts it to participants.

After all bids are collected, the dispatcher selects the winners

based on application-wide objectives; a bid of a particular

participant for certain tasks can be fully or partially satisfied.

We note that typically resource allocation solutions pre-

viously proposed to ensure that a set of objectives is

satisfied for application tasks, use a centralized approach

where the dispatcher node has ”unlimited” (e.g., cloud)

or limited but powerful computational resources [7], [8].

Due to the inherent problem complexity, such solutions use

traditionally metaheuristic optimization algorithms. Those

are a good choice when trying to find a near-optimal

mapping. However, an implementation like this requires a

longer computational time to yield a near-optimal solution

that meets the application requirements. At the same time,

if the simulation time is lower, we cannot guarantee that the

obtained solution satisfies the application constraints.

In contrast to heuristic, ad-hoc solutions, we use a tech-

nique with formal foundations offering guarantees that a

found solution always satisfies the application requirements.

Our proposed technical framework utilizes satisfiability

modulo theories (SMT) [9], a generalization of the boolean

satisfiability (SAT) problem. Using SMT, we ensure that

if a satisfiable solution exists, always satisfies the given

constraints of latency and privacy. Hence, to solve our task

allocation problem, we have created a SMT formula com-

posed of five different parts: i.e., tasks facts, domain facts,

latency facts, bid constraints, and constraint formulation.

In the task facts section, we define the rules required to

place correctly a task on an edge node. First of all, we ensure

that a task ti can be placed on a specific node only if a bid for

ti has been sent by that node to the dispatcher. Moreover,

since multiple participants can bid for the same task, the

dispatcher must ensure that only one bid is considered when

a solution is created. As a result, we avoid the case when in

the placement solution a task is mapped on multiple edge

nodes. As an example, consider that we want to deploy the

IoT application, presented in Fig. 1 on two participant nodes

E1 and E2. Let us assume that edge node E1 sends a bid for

tasks t1, t2 and t4, while E2 sends a bid for t1, t3 and t5.

In this case, we ensure that t2 and t4 can be deployed only

on E1 and t3 and t5 can be deployed only on E2.

The next two parts, latency and domain facts, constraint

further a possible mapping, by encoding communication

latency between tasks that have dependancies. In latency
facts, we initialize a set of symbols with the communication

latency between edge nodes in that area. This is an important

step in the creation of the final formulae encoding, since

all required knowledge must be available prior to finding

a solution. Considering the example above, symbol sE1E2
represents the latency lE1E2 between E1 and E2. Once the

latency between nodes is known, we create the domain
facts encoding formulae, which captures latency between

two tasks. Thus, if a task t1 is mapped to a specific node E1

and t2 is mapped to E2, it implies that the latency between

the two tasks lt1t2 is equal to sE1E2.

Next we create a set of rules with the purpose of aiding

the dispatcher in choosing a valid solution, that does not

exceed the available resources of the participants, based only

on the received bid. As a result, we have created a new

encoding, i.e., bid constraints, that limits the winner tasks

to the boundary of one offer. Let us consider the following

scenario; a participant E1 decides that it can process some

tasks of the motivation example application and creates a bid

containing three offers, B = o1, o2, o3, where each offer is

described as follow: o1 =[t1, t3], o2 =[t1, t2], and o3 =[t5].
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Based on the set of rules described above, the dispatcher

can select only tasks from one offer to be mapped on E1.

Now let’s assume that the dispatcher choose t1 as the first

task to be mapped on E1. As a result, o3 is blocked since it

does not contain t1, remaining to choose from the available

tasks from the other two offers since they both contain t1.

Finally, the last encoding section of our SMT formula

ensures that the solution satisfies the latency constraint. The

constraint formulation contains the rules which the found

solution must satisfy. Such constraints only account for the

latency defined in the e2e delay information, which can be

the network latency or some other latency that the developer

specified for a specific application.

B. Bidding policy module

The bidding policy module has the purpose of generating

an individual bid for the advertised tasks, enforcing privacy

requirements by construction. This occurs because only bids

satisfying privacy requirements are constructed by nodes that

have privacy preferences. Generally, each bid sent to the

dispatcher is composed of multiple offers generated based

on the available strategies. Every participant has a total of

four strategies with the purpose of providing wider coverage

of the tasks model, by ensuring each task receives at least

one bid and the system can ensure solutions for varying

task graph types. Each of the four strategies has a different

role in the overall bid. Therefore, we group the strategies

conceptually based on their role. We abstain from formally

defining them since they are based on well known algorithms

from dynamic programming and graph theory.

1) The first group, composed of one strategy based on

the 0-1 knapsack problem and the other on a random

selection of tasks, has the objective of maximizing the

available resources of a participant at the cost of not

being possible to win the entire bid since it will most

likely not meet the application objectives.

2) The second group is focused on generating offers that

have a higher chance of being fully satisfied since bids

contain tasks dependent on each other. The strongly
connected components strategy creates an offer se-

lecting components in the task graph that utilize the

maximum available resources. In contrast, the fan-out
strategy aims to find the tasks with the biggest fan-out

that can be locally mapped, and maximizes resource

utilization by adding dependent tasks.

V. EVALUATION

To provide concrete support for our framework, we real-

ized a prototypical tool based on the Z3 SMT solver [10].

Thereupon, we evaluate our approach discussing its perfor-

mance over an IoT application model by follow a quantita-

tive approach. Finally, we conclude with a discussion of the

obtained results.
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Figure 2. Mapping time over number of nodes and SMT formula size.

A. Performance: Experiments Setup and Results

We measure performance by the execution time required

to obtain an allocation for tasks and its ability to find

a satisfiable solution at the edge by the dispatcher node,

as this is the higly computationally-intensive operation in

our technique. For our experiment setup, we map an IoT

application to an edge computing architecture where we

incrementally increase the size of the participant devices.

We randomly allocate to every node a set of available

resources, chosen in the range of 10 to 20 units each. For the

IoT application in our experiments, we utilize the montage
graph, a real-world workflow [11] represented as a DAG.

The application is composed of 24 tasks and 50 edges,

for which we synthesize resource constraints in the range

of 1 to 10. Regarding other constraints of this application,

i.e., SLA and required data, we set the SLA to a large

value to ensure that found solutions are not discarded due

to resource randomization. We ignore data requirements of

tasks to maximize coverage of each task from bids, thus

each node is able to bid for all tasks with no restrictions.

We measure performance of our framework by deploying

the dispatcher on a machine with a single-core Intel i5

2.3GHz processor. We perform 100 tests for edge archi-

tectures of different sizes. We measure the time it takes to

calculate the mapping over different number of participating

nodes. Our results are shown in Fig. 2.

B. Discussion

With the aid of our experiments, we have demonstrated

that our framework is efficient in finding satisfiable solutions

in a decentralized resource management scenario. From the

results presented in Fig. 2, the impact of the number of

participants nodes and of the SMT formula size on the

execution time is illustrated. In this case, we can observe

that the three parameters are closely bound. The formula size

grows since the bid constraints, latency facts, and domain
facts increase with the number of nodes and tasks. Hence,

the time to find a solution rises as well.

Even though the evaluation is performed on a laptop,

we were able to correctly evaluate the performance of

our framework. We note the high computational demands
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of our technique, but point out that for relevant problem

sizes, it is highly feasible and it exhibits guarantees –

if a mapping exists, it is found.As a result, because the

framework becomes very computational demanding after 20

edge nodes, a suitable realistic size for the neighborhood

is between 5 to 15 nodes. In this range, high success rate

in a relatively small execution time (less than 1 second) is

obtained.

VI. RELATED WORK

Recently, research has focused on proposing resource

allocation solutions to utilize the newly available resources

found closer to end users and devices. Mobile Edge Comput-

ing (MEC) is one area where researchers have used auction-

based mechanisms to offload parts of an IoT application. In

[12], authors propose an auction-based mechanism to per-

form resource allocation to MECs and compute the afferent

price for each resource. Similarly, authors in [13] present a

double auction-based service to match the requests of the

users to the available resources of a MEC. Our auctioning

framework differs by creating bids with the purpose of

sharing resources, while the dispatcher only decides where

to deploy the tasks.

In the context of using the available resources found

on multiple edge devices, authors in [7] propose a col-

laborative approach where a pre-partitioned application is

distributed among edge nodes such that communication

latency is minimized, while [14] describes a competitive-

cooperative game-theoretic resource allocation framework

to deploy latency-sensitive application at the edge, ensuring

cooperation between nodes by offering incentives based on

their work. Compared to the two solutions presented above,

our technical framework differs from two perspectives; (i)

we guarantee that if there is a solution possible, it is always

found in a dependable manner, and (ii) we maintain data

privacy requirements by sending tasks to process privacy-

sensitive data locally at its data source.

VII. CONCLUSION

In this paper, we proposed a novel decentralized resource

management technique and accompanying technical frame-

work for deployment of latency-sensitive IoT applications

at the edge of the network. Our technique is inspired from

the functionality of an auction house; our results show that

our decentralized resource management technical framework

can efficiently utilize the available resources at the edge

and provide guarantees – if there exists a solution that

satisfies application latency and privacy objectives, it will be

found, as it amounts to a satisfiability problem. Regarding

future work, we plan to optimize our encoding with the

aim of reducing execution time, while increasing further the

accepted number of participant nodes.
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