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Kurzfassung

Die Komplexität servicebasierter Internetsysteme steigt zunehmend, da sie verschiedene Tech-

nologien verwenden und konsolidieren, für neue und aufstrebende Technologien adaptiert wer-

den und auferlegten Anforderungen genügen müssen. Viele dieser Systeme sind in Form von

präzise spezifizierten Modellen beschrieben; zum Beispiel im Kontext der modellgetriebenen

Entwicklung. Während in der modellgetriebenen Entwicklung Modelle hauptsächlich zur Desi-

gnzeit zum Einsatz kommen, sind wir der Ansicht, dass servicebasierte Systeme besser analy-

siert und überwacht werden können, wenn Modellinformationen zur Laufzeit zugänglich sind.

Zurzeit können modellgetriebene Systeme jedoch nicht auf Modelle zugreifen; z.B. auf Anfor-

derungsmodelle oder aber auf Systemmodelle, von denen sie generiert wurden. Gründe dafür

sind fehlende Rückverfolgbarkeitsinformationen nach einem Generationsschritt und Modellän-

derungen, die eine Koevolution von abhängigen Artefakten und Systemen erfordern. Die Kon-

solidierung der Modellnutzung und des -managements von Modellen zur Entwicklungs- und

Laufzeit wird im Rahmen dieser Dissertation erarbeitet. Hierfür schlagen wir vor, Modelle und

deren Elemente eindeutig identifizierbar und in einer verteilten Umgebung abrufbar zu machen

und präsentieren modellbewusste Systeme, die die Fähigkeit haben, über Modelle zur Laufzeit

zu reflektieren. Für das Monitoring von Anforderungen modellgetriebener Systeme benutzen

wir Modellierungstechniken, um Systemanforderungen zu spezifizieren. Wir verbinden diese auf

konzeptioneller Ebene mit Modellen, von denen Systeme generiert werden und wenden einen er-

eignisbasierten Ansatz für modellbewusstes Monitoring, das System- und Anforderungsmodelle

in Beziehung bringt, an. In einer industriellen Fallstudie demonstrieren wir, wie das Monitoring

von Anforderungen im Compliance Bereich von unserem Ansatz für die Überprüfung von Ver-

letzungen profitieren kann und zeigen, wie modellbewusstes Monitoring die Ursachenanalyse

solcher Verletzungen erleichtern kann. Um eine Modellevolution zu unterstützen, studieren wir

die Navigationskompatibilität von Modelländerungen, präsentieren einen Algorithmus zur Be-

stimmung solcher Kompatibilität und stellen eine in Kombination mit Universal Eindeutigen

Identifizierern geeignete transparente Modellversionierungstechnik vor, sodass modellbewusste

Systeme sich zu jeder Zeit auf ein Modell in einer spezifischen Version beziehen können.
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Abstract

Today, service-based Internet systems have become increasingly complex as they comprise and

consolidate various technologies, are adapted for new and emerging technologies, and need to

comply with imposing requirements. Many of these systems are described in terms of precisely

specified models, e.g., in the context of model-driven development (MDD). While models in

MDD are primarily used at design time, we argue that by making the information of these mod-

els accessible at runtime, we can provide better means for analyzing and monitoring the service-

based systems. Currently, model-driven systems are either not aware of their requirements or of

the models from which they have been generated. Reasons for this are missing traceability infor-

mation after a generation step and changes of models that demand the co-evolution of depending

artifacts and systems. This, in turn, is impractical for runtime systems that need to operate con-

tinuously. This thesis aims at adopting models at runtime, i.e., consolidating design- and run-

time use and management of models. For this we propose to make models and model elements

uniquely identifiable and retrievable within a distributed environment and present model-aware

systems that are capable of reflecting on models at runtime. For the requirements monitoring

of model-driven systems we further utilize modeling techniques for specifying system require-

ments, link these with the models from which systems are generated on a conceptual, modeling

level, and employ an event-based approach for model-aware monitoring that relates system and

requirement models. In an industrial case study we demonstrate how compliance monitoring

can benefit from model-aware monitoring for checking violations at runtime, and show how our

approach can ease the root cause analysis of such violations. For supporting model evolution

scenarios we conduct a study of the navigation compatibility of model changes, present an algo-

rithm for determining such compatibility, and present a transparent model versioning technique

that is suitable in combination with Universally Unique Identifiers, so that a model-aware service

can always relate to a model in a particular version.
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CHAPTER 1. INTRODUCTION 2

Modern software systems have become increasingly complex. Some reasons for this trend

are that software systems often unify different technologies and that their services are exposed

to heterogeneous environments. Model-driven engineering (MDE) [23] helps to master the com-

plexity of modern software systems at design time. It utilizes models as central artifacts of the

engineering process. In the generation step of the MDE process, models are eventually trans-

formed to source code. This code will be packaged and deployed, but this is where MDE usually

stops. This thesis focuses on adopting models at runtime.

This chapter introduces and gives an overview of the context of this thesis. It will point out

current research problems and, out of these, extract a set o focal points for this thesis.

1.1 Using Models as Abstractions of Reality

Models are generally used as an abstraction of reality. Stachowiak [152] designates a model to

be (1) a copy (or representation) and (2) a shortening of an original. Also a model has a (3)

pragmatic function (cf. [11]). Models are commonly used in scientific disciplines (cf. [66]) such

as mathematics and the natural and social sciences (cf. [11]). The atom model (cf. [143]) and

the molecular model (cf. [14]) in physics and chemistry are examples of physical models. Other

types of models are statistical models, economic models (cf. [71]), and conceptual models 2.

Models that abstract from an original or from reality can be studied, interpreted, and rep-

resented more easily. As they come with a pragmatic function, they are particularly suited for

certain purposes (e.g., for representing a system).

1.2 Models in Software Engineering

In many scientific disciplines, particularly natural sciences, models are daily companions, but in

the emerging and vibrating field of software engineering (SE) they where gradually developed:

In 1976 Chen [37] proposed the entity-relationship model (ERM) for data together with entity-

relationship diagrams (ERDs), suitable for database design. His work builds and relates to other

models, namely the network model (cf. [13]), the relational model (cf. [43]), and the entity set

model (cf. [146, 147, 148]). The object-modeling technique (OMT) (cf. [142]) defined object

models, dynamic models, and functional models. It was a predecessor of the Unified Modeling

Language [134] (UML), a general purpose modeling language, that was proposed to the Open
2Other terms and types of models such as described by Frigg and Hartmann [66] are scale models, idealized

models, analogical models, and phenomenological models.
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Management Group (OMG) in 1997 3. It is used in UML diagrams that represent structural 4

and behavioral 5 views of a system.

View models allow for separation of concerns (SoC) [97], which is one of the successful

approaches to manage complexity [70]: the concerns are separated into views that are suitable

for capturing and representing the respective concern. The idea of view models has already been

applied to software architectures by Kruchten [107] in 1995. His "4+1" view model consists of

a logical view, a process view, a development view, a physical view, and a scenarios view that

help different stakeholders of a system "to find out what they want to know about the software

architecture" [107, Conclusion].

In order to define the UML the OMG proposed the Meta-Object Facility [131] (MOF) in

2002, a closed meta-modeling architecture for defining meta-models. In 2003 the OMG re-

leased a guide for model-driven architecture [130] (MDA) that presents the novel model-driven

approach to software design and introduces platform-independent models (PIMs) and platform-

specific models (PSMs) from which systems are generated 6. The idea to not only design a

system in terms of models but also generate its software from such a specification is interesting.

Finally, models in SE had become prominent: the paradigm of MDE was born.

Today SE can claim to have a couple of generally accepted and internationally standardized

models. But with the model-driven approach something special happened as well: Models have

been assigned an exceptional function: to actually construct the objects they define. Thus, in

contrast to other models, models in MDE can be regarded as outstanding in the sense that they

do not reflect but actually constitute originals.

1.3 Fostering the Use of Models

Nowadays, there is a trend toward the use of precisely specified models, for example, for model-

driven development (MDD) [176]. Some reasons for using MDD include: Instances of the mod-

els can be validated for specified properties; Models can be defined and refined at different

abstraction levels; This makes the models suitable to be used by various stakeholders, e.g., do-

main experts who use high-level, graphical models and technical experts who work with more

low-level, textual models [125, 129]; Technical expertise can be captured in transformations,
3Its version 1.4.2 [94] became an ISO standard in 2005. Also version 2.1.2 [96] is in the standardization process.

The most recent version from 2010 is 2.3.
4i.e., class, component, composite structure, deployment, object, package, or profile diagrams
5i.e., activity, state machine, use case, or interaction (i.e., communication, overview, sequence, or timing) dia-

grams
6A PIM is a model of a software system that does not depend on the specific technologies or platforms used to

implement it while a PSM links to particular technologies or platforms.
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e.g., when PIMs are transformed to PSMs; This enhances portability and simplifies adaptations;

Recurring code can be generated, easing the maintenance of a model-driven system.

Because of these advantages, we can express a motivation for fostering the use of models.

We argue that while models can be used for describing and designing the system and its domain,

models can also be used at runtime. This would be worthwhile because models have precise

semantics and can be used for communication between the different stakeholders. Also we

argue that in a couple of scenarios such as service monitoring or adaptation (cf. [38]) it would

be desirable to have access to models (e.g., models from which the system has been generated).

For example, this can help to display or analyze the models that cause exceptional situations

in the system, or to react to such situations using a manual or automated adaptation of the

system. In this way, stakeholders can relate to the concepts of a model more easily. In addition,

services of the system may profit from introspecting models at runtime. We will demonstrate

our idea of expanding the usage of models from design time to runtime in a motivating scenario

in Section 1.5.

1.4 Challenges

In the broader view of model-driven systems in general, common problems in MDD systems

are collaboration, traceability, and model evolution. In this section, we want to motivate and

explain briefly how our approach helps to address these issues. We describe these common

problems also to set the scope for this thesis and delineate which parts of the general problems

are addressed by our approach and which are not.

1.4.1 Support for Collaboration in Model-Driven Systems

Most current tool support for MDD only focuses on the design time (cf. [175]) and comes with

limited collaboration features, if any. Model-aware services that we will introduce in this thesis,

however, rather assume a distributed environment, maybe even distributed development. In

order to facilitate various services of a distributed environment, to concurrently work with MDD

projects and artifacts we need to support the management of projects and artifacts, with (1)

versioning capabilities while capturing and keeping track of model relationships; (2) services

for the information retrieval (IR) and the management of these; For (3) facilitating collaboration

scenarios, we also need to (4) deal with concurrency, e.g., provide locking mechanisms, raise

the awareness for the work of others; offer compare and merge possibilities (cf. [9]) as well as

support for resolving conflicts (cf. [31]). To support various stakeholders appropriate model-

representations are required in form of domain-specific languages (DSLs). For security, role-
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based access controls (RBACs) can be applied to MDE artifacts.

This thesis covers the first two of these issues, versioning capabilities (cf. Section 3.4) and

services for IR and management (cf. Section 3.5). These features are also needed for the mon-

itoring, auditing, reporting, and business intelligence purposes (cf. Chapter 6) addressed by the

model-aware services approach (cf. Chapter 4) proposed in this thesis. For example, a moni-

toring component requires a service for retrieving model information and it requires the models

in the version of the model instance that it monitors. Please note that the collaboration features

could also be used for other scenarios, such as supporting the MDD process for distributed de-

velopment. While we do not neglect the importance of collaboration in the context of MDD,

this thesis has a particular focus that is positioned at the runtime of MDE – not at the design

time. Having said that, this work is not limited to the runtime but rather aims at bridging the gap

between design time and runtime in terms of model use and management.

1.4.2 Traceability in Model-Driven Systems

A particular problem of model-driven systems is traceability – asking the question: How do

models and model elements of different abstraction levels and/or code correspond to each other?

In particular, the traceability information for models that are transformed into other models or

code can get lost in model-driven approaches. On the one hand, a transformation rule describes

how source models are mapped to target models; on the other hand a traceability link to a target

model would allow for identifying the source models. Traceability is essential for meaningful

feedback from the runtime to stakeholders and for identifying and understanding the root cause,

e.g., in case of a failure or exception. Obviously, if we are able to trace the source model from

which a target (model or code) has been created (via generation or transformation), it is possible

to then use the information in the source model to analyze or debug the target.

Aizenbud et al. [5] discuss model traceability in the context of MDD. Among their sugges-

tions are to establish a standard traceability meta-model and to uniquely identify artifacts across

space and time which is typically not supported by the current toolchain [5]. The latter is within

the scope of our work as such unique identification is required for the runtime use of models, in

particular when these are subject to change. For the traceability of model-driven services (see

Section 4.1) we propose to (1) embed traceability information automatically and (2) expose this

information in a service-oriented fashion. A service is in the first place a distributed object that

is accessible via the network and has certain characteristics: The service offers a public inter-

face and is both platform- and protocol-independent. It is self-contained in the sense that it can

interdependently be used, and no implementation details need to be known for using the service.

Service-oriented architecture (SOA) is the main architectural style for service-oriented comput-
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ing (SOC). In Listing 4.1 we further propose a traceability matrix that is particularly suitable

for the annotation of process-driven SOAs (see also Section 4.2). In a process-driven SOA, a

process engine is used to orchestrate the services in order to implement business processes [80].

1.4.3 Model Evolution

The broad adoption of model-driven approaches, e.g., for the development of software systems,

resulted in an increasing importance of models as central artifacts. In the context of MDD

software systems are generated from models. Because such systems need to be maintained and

evolve in order to address new system requirements, also the respective models need to evolve

likewise.

Sometimes, for example in case of maintenance, changes are minor. During an evolutionary

step, however, changes are major. But a new version of a model may still have to be compatible

with the original version. A common problem when maintaining and evolving software systems

is the compatibility of the changed system and its original: is the new version compatible with

the old version? Particularly we would like to know if two models are navigation compatible.

That is, we would like to compare two models in a sense, so that we can deduce if they are

compatible in regard to the original navigation. In the context of MDD where software systems

are generated from models which in turn conform to meta-models, this question is especially

interesting. If we can facilitate such a check at the modeling level (e.g., for changes that occur

to meta-models) this will also be a step towards ensuring the compatibility of software systems

(cf. [62]). We will address this particular problem in the area of model evolution in Chapter 2.

1.5 Motivating Scenario

Often it is hard to manage, analyze, and monitor complex service-based systems at runtime,

because (1) the complexity of service-bases systems needs to be mastered and (2) requirements

that are imposed on such systems have to be monitored. For various reasons, many systems

(cf. [123, 186]) and requirements (cf. [150, 41]) today are modeled with precisely specified

and detailed models. One of these reasons is the increasing use of MDD that helps to master

the complexity of systems during development. Management, analysis, and monitoring results

could be improved by making the information in the precisely specified models accessible at

runtime.

Let us thus give a motivating scenario that exemplifies a general setup and will act as the

starting point for further discussion. Thus, we depict the context and introduce the prerequisites

of our work. In this scenario, MDD is applied in order to develop services of a SOA. Therefore,
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these services relate to models. At runtime a monitoring service (or monitor for short) first

receives notifications from the model-driven services of the SOA on invocation and termination.

This is realized via eventing. Hence, the services emit events and the monitor processes these

(cf. [48] for service level agreement (SLA) monitoring). Note that in our scenario the events

relate to models. That is, if a service is invoked, it emits an event with an identifier of the

model from which it has been generated. Also please note that this is a simple, generic setup

that can be extended if necessary. That is, if the monitor needs to receive more events than

just invocation and termination, or if it needs to consider additional information, this would be

provided by the model-driven services, e.g., by generating and embedding the required eventing

into the services.

In a next step, the monitor can use the information from the models to which the events

relate. For example, these can be the models from which the services have been generated. In a

more elaborate setup, such events can also relate to other models as well. Next, for facilitating

the governance, management, and adaptation of the SOA in such a scenario the monitor needs

to consider the information from the models. Typically, this is done by reflecting on the value

or state of model elements to which certain semantics have been attributed. For example, the

monitor can compare values against thresholds. Ideally, the monitor will be able to retrieve

relevant models dynamically at runtime. With the results from inspecting the various models, all

the necessary information is available to the monitor for reporting, realizing governance tasks,

or initiating an adaptation.

A monitor itself relies on configurations (e.g., thresholds). We argue that configurations

are captured ideally in the form of models, too (cf. [38] for goal models). This allows for

the generic use of models at runtime. Besides retrieving such configurations, a monitor for

adaptation typically also operates on models that are specific to the reporting, governance, or

adaptation. Such models can contain data from the monitoring such as aggregated statistics.

Thus, the monitor not only retrieves models at runtime but also operates on models.

There are a couple of obstacles prior to the adoption of models in SOAs. First, in a dis-

tributed and heterogeneous environment the identification and retrieval of models from services

is challenging. This is because of the need of unique identifiers across the SOA and the lack of

a common, unified, and service-based access to models. Second, if a meta-model is modified

on which a given monitor depends the monitoring service also has to be changed; i.e., it usually

has to be manually adapted to work with the new version. This implies a manual maintenance

of the source code, recompilation, testing, and redeployment of the monitoring service. Such

evolution steps thus impose manual effort and this in turn impedes the use of models at runtime.

Because this involves manual effort, adopting models without automation support becomes not

only expensive but also impractical. Beyond that, once a service model is used by autonomous
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services in a SOA, the service management must consider model evolution. That is, while new

versions of service models exist, old versions need to be supported and the various services in a

SOA need to relate and work with specific, coexisting versions.

1.6 Research Questions

In this section we summarize this thesis’ main research questions:

Artifacts, such as meta-models in model-driven engineering, are subject to change. Evo-
lution of meta-models may require co-evolution of artifacts and systems if navigability is
affected: How can navigation incompatibilities be detected? Systems may dynamically,

i.e., at runtime, reflect on models. If a change is introduced to a meta-model, to which models

conform, this may break systems. For this reason we would like to identify navigation compati-

ble model changes that – however limiting such changes may be – allow to change continuously

running model-driven systems. By answering this question we introduce the novel concepts of

navigation compatible models and navigation compatible model changes.

During execution, systems could benefit from reflecting on models. For adopting models at
runtime: How can model-driven engineering projects and artifacts – particularly models
and model elements – that are subject to change, be retrieved, searched for, and managed
both at design time and runtime in a distributed setting with services and developers in-
volved? Model-aware entities (i.e., system or human users) consume, produce, or reflect on

MDE artifacts such as models. This may take place during design time but can also happen at

runtime. We have developed a conceptual model (for the management) of MDE projects that is

the base constructive model for the Model-Aware Service Environment [82, 87, 86] (MORSE)

repository, which enables model-aware entities to concurrently work with MDE artifacts at de-

sign time as well as at runtime in a distributed, service-based environment.

Monitoring could be enhanced if conceptual models such as requirement and system mod-
els would be considered and related at runtime: How to facilitate root cause analysis of
runtime violations at the abstraction level of models? For this we relate runtime systems

with (1) models from which they have been generated and (2) their imposed requirements that

may be subject to change. With our preparatory work, i.e., model-aware system, we are able to

support the monitoring at the abstraction level of models that we call model-aware monitoring.

We will demonstrate the root cause analysis of runtime violations of process-driven service-

oriented systems in an industrial case study.
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1.7 Scientific Contributions

By addressing the research questions previously mentioned, this thesis achieves the following

scientific contributions:

• Given the continuously growing adoption of MDE practices and the rising complexity of

service-based systems, we show the usefulness of shifting the focus of model management

and use from design time to runtime.

• By applying a MDE approach while adopting models at runtime, this thesis demonstrates

a novel, direct linkage and correlation of system & requirement models.

• In particular, by coupling model-driven systems with event-driven architectures (EDAs)

at runtime, we enable dynamic, model-aware monitoring. That is, the monitoring can take

place at defined levels of abstraction as reflected by the models.

• For this we present novel model-aware services and processes that contain, emit, or expose

model traceability information that can be used for model look-up and reflection during

runtime.

• We define the novel notion of a navigation compatible model change and present an algo-

rithm for determining navigation compatibility that can be applied to facilitate continuous

evolution of models during MDE.

• Hiding the complexity of implicit versioning of models and model elements from users

while respecting the Universally Unique Identifier [113, 98] (UUID) principle, we present

a novel transparent UUID-based model versioning technique.

• In a distributed, service-oriented environment we make MDE artifacts, such as models

and model elements, uniquely identifiable and automate the generation of retrieval and

management services.

• By applying a service-oriented and UUID-based approach we unify the use and manage-

ment of MDE projects and artifacts for design time and runtime clients.
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1.8 Structure of Dissertation

This thesis is structured as follows:

Chapter 2 Models are subject to change; thus, in an evolving environment and for the man-

agement of model-driven systems we need to study and understand the implications of

such changes. In this chapter, we define and focus on one type of change: navigation

compatible model changes.

Chapter 3 For adopting models at runtime we will present our novel MORSE approach. We

will propose a model-driven approach for the generation of service-oriented model repos-

itories that bridge the gap between design time and runtime use and management of

models. While being suitable for design time tools, MORSE primarily targets runtime

systems, makes artifacts universally and uniquely identifiable and applies a transparent

UUID-based model versioning.

Chapter 4 With the established MORSE foundation for adopting models at runtime we will

then propose model-aware services and demonstrate how business processes, i.e., process-

driven SOAs, can be integrated with such model-aware services.

Chapter 5 Dynamic reflection on models is interesting in a monitoring and adaptation context,

e.g., the monitoring of system requirements. However, before we can focus on such mon-

itoring we first need to realize a connection between systems and system requirements on

a conceptual modeling level. Thus, in this chapter we will demonstrate how to model and

link these in the context of business compliance through the power of MDE.

Chapter 6 In this chapter we will concentrate on model-aware monitoring, a consecutive con-

tribution that builds on MORSE, model-aware services, and the view-based modeling of

systems and requirements. With model-aware monitoring the monitoring of runtime sys-

tems can take place at the model level. This chapter focuses on the runtime aspects of

process-driven service-oriented systems and closes a feedback loop from the MDE run-

time to the design time. In a case study we demonstrate this for the compliance monitoring

of business processes.

Chapter 7 Finally, we summarize our contributions and conclude with a prospect of further

work.
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Figure 1.1: Dependency Graph of the Dissertation’s Chapters

The dependency diagram in Figure 1.1 gives an overview of dependencies of the the disser-

tation’s chapters. Tags indicate if the chapter focuses on the design time, deployment time or

runtime. From the diagram we can see that, e.g., Chapter 3 – that covers design time, deploy-

ment time, and runtime – constitutes the foundation for the chapters on model-aware services –

that has a focus on the deployment time and runtime – and Chapter 5 that covers design time

aspects.
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Changes to models, for instance in the context of model-driven development (MDD), can

result in incompatibilities. For example, a model-to-code transformation template may not be

able to process a new version of a changed meta-model. Ideally, a developer who operates on

a model would receive some early feedback from a system in case of incompatibilities prior

to a code generation step. In this chapter we focus on the navigation compatibility of models

and discuss different modifications that can occur to models and their impact in the context of

MDD. Our approach, inspired by the idea of transitive reasoning, considers roles and multiplici-

ties and distinguishes between categories of navigation compatible relationships. In this chapter

we present an algorithm that determines the navigation compatibility of two models. Using an

original and modified version of a model this algorithm can be applied for checking the navi-

gation compatibility of a model change. It provides detailed feedback that can help developers

to identify and adjust navigation incompatibilities. Prior to the algorithm we present a detailed

study that builds on previous work from transitive reasoning and contributes a set of novel con-

clusions for not yet covered aspects such as navigability, roles, and multiplicities. Finally, we

evaluate the run-time performance and provide results from analyzing and applying our findings

to model-driven projects.

This chapter is structured as follows: In the next section we introduce the context and focus

of our work with a motivating example. For outlining the problem of navigation compatibility,

the succeeding section illustrates some model changes. Next, Section 2.3 introduces the idea of

transitive reasoning for reducing a changed model to its original and discusses the approach in

the context of MDD. We then present our algorithm for checking the navigation compatibility in

Section 2.4. Section 2.5 discusses results from analyzing a MDD project, presents the runtime

complexity of the algorithm as well as performance results from industrial and open-source

meta-models, and closes with a discussion on lessons learned and experiences in an industrial

setting. Finally, in Section 2.6 we compare to related work and we conclude in Section 2.7.

2.1 Motivating Example

In this section we illustrate the problem of navigation compatibility of model changes with a

motivating example. While our work can be applied on any models and model instances of

the same abstraction, the focus of this chapter lies on comparing meta-models in the M2 level

(cf. Open Management Group (OMG) definition [130]). Note that the term model is generally

applicable for any model level. For simplicity we continue to use the generic term model and

mean the meta-model M2 level unless otherwise mentioned.

We focus on such models because in a model-driven context they are used in model transfor-

mations. That is, instances of such models are transformed to code in case of a model-to-code
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transformation. Using model-to-model transformations they can also be transformed to instances

that conform to other models. For the development of a model transformation not the instances

but only the models (i.e., meta-models) are required. For example expressions such as Object

Constraint Language [133] (OCL) expressions that are used in transformation languages operate

on the model. Navigating expressions are a subset of such expressions that navigate through

relations.

Figure 2.1a displays an excerpt of a model from the domain of business compliance that is

applied by a European mobile virtual network operator (MVNO) (see also Section 2.5.5). The

company uses this model with a model-to-code template displayed in Figure 2.1b for generat-

ing documentation for a web page. In the model concepts such as Control, Compliance-

Requirement, and Risk are defined that are used by the template. The latter contains an

navigating expression c.requirements.risks.contains(r) that checks for a control c if

it is associated with a specific risk r through a requirement. That is, the expression navigates

from the control via requirements to risks.

*

*

*

implementations

requirements

risks

*

*

description: String
impact: EnumRiskCategory
likelihood: EnumRiskCategory

Risk

risks

*

*

0..1
subControls

*

NamedElement
*

section: String
conflictResolutionPriority: int

ComplianceRequirement

fulfills

implements

has

has

description: String
objective: String

Control

(a) Excerpt of a Compliance Model

<h2>Risk-Control Correlation Matrix</h2>
<table>
<tr>
<th>Risks/Controls</th>

«FOREACH cv.control AS c»
<th>
<a href="«cv.processName+
"_C_"+c.uuid+".html"»">«c.name»</a>

</th>
«ENDFOREACH»
</tr>

«FOREACH cv.risk AS r»
<tr>
<th>
<a href="«cv.processName+
"_R_"+r.uuid+".html"»">«r.name»</a>

</th>
«FOREACH cv.control AS c»
<td>
«IF (c.requirements.risks.contains(r))»
X

«ENDIF»
</td>

«ENDFOREACH»
</tr>

«ENDFOREACH»
</table>

(b) Model-to-Code Transformation Template

Figure 2.1: Meta-Model and Model Transformation Examples

In case a model is changed usually also transformations need to be aligned. For example,

if the risks would be directly associated with controls the navigating expression would have to
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be simplified to c.risks.contains(r). In this chapter we focus on changes that affect the

navigation compatibility of model changes (see also Definition 2 in the subsequent section).

In our example a navigation compatible change would not require an alignment in navigating

expressions, e.g., in a model transformation, whereas a navigation incompatible change would.

In the latter case it would be desirable to obtain detailed information on the incompatibilities so

that an alignment can be better supported.

2.2 Navigation Compatibility

In this section we first define the notion of a navigation compatible model with Definition 2

and illustrate the problem of navigation compatibility with some navigation compatible model

changes 2.

Definition 1 Let f be a bijective mapping function M →M ′ between model elements m ∈M
and m′ ∈M ′ that have the same model element type.

The mapping function from Definition 1 that we use in our definition for navigation com-

patibility either maps identical or renamed model elements and thus supports the renaming of

model elements.

Definition 2 A model M ′ is navigation compatible to a model M if ∀ concrete classes c ∈ M
there ∃ a class f(c) ∈ M ′ and if ∀ references r ∈ c referencing a class d ∈ M there ∃ a

reference f(r) ∈ f(c) that references a class or subclass of f(d) ∈M ′.

For further introducing the problem of navigation compatibility let us start with a few ex-

amples: Figure 2.2 shows two versions of models with the original versions on the left and the

modified versions on the right.

In our first example (Figure 2.2a) a reference to C was moved from B to the superclass A.

After the change B can still navigate to C via the inherited relationship using role c. Note that the

relationship in M1 is not navigable from C to B. If it would be, such a modification would result

in a navigation incompatibility, i.e., while a new navigation from C to A would be introduced,

the navigation from C to B would be missing in M ′1.

Another navigation compatible model change is illustrated in Figure 2.2b. First, the multi-

plicity of role b was modified. Second, the type of the relationship was changed from association
2Generally, we adopt terminology from the Meta-Object Facility [131] (MOF) [131] and Unified Modeling

Language [134] (UML) [134]. With concrete classes we mean classes that are not abstract. We further use the term
reference as an element of a class for (not only) uni-directional but also bi-directional relationships: in the latter case
both classes of the relationship ends contain a reference to the other class.
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(c) Extended the Object Hierarchy and Applied Various
Changes

Figure 2.2: Examples of Navigation Compatible Model Changes

to composition. Third, a common, abstract superclass C was introduced. Still, the navigation

from A to B and vice versa is possible as in the original version.

Finally, Figure 2.2c depicts an example of a more complex, navigation compatible, model

change that contains various modifications to the model. Note that some of these modifications

resemble the presented ones from Figure 2.2a and 2.2b. For example, similar to M1 the rela-

tionship from D to A in M3 was moved to a different class in the inheritance hierarchy. As in

M2, the type of the relationship between C and B was changed . Finally, new classes such as F

and additional relationships such as from D to F may be added to the model without affecting

the original navigability.
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A B C A C

A B C A C

(1)

(5)

A B C A C(119)

A B C A C(20)

A B C A C(3)

Figure 2.3: Some of the 121 Reduction Rules from Egyed [58]

2.3 Transitive Abstraction Rules

In the previous section we have given examples of navigation compatible modifications and with

Figure 2.2c we have grasped the idea that a navigation compatible model change can consist of

various simple navigation compatible modifications. If we find a model change to consist of

multiple navigation compatible modifications we can deduce from that that the overall model

change is navigation compatible. Pursuing this idea, this lead us to the following question: Is it

possible to reduce a changed model to its original using transitive abstraction? This problem is

covered by the literature, e.g., Egyed [58, 59] presents 121 transitive abstraction rules for trans-

forming “low-level” models to more abstract, “higher-level” models as depicted in Figure 2.3.

Thus, transitive abstraction reduces the complexity of a model by removing model elements

according to transitive reduction rules.

If we look at our examples, we find that we can apply Reduction Rule 3 on M ′1 in order

to obtain the original relationship between B and C of M1. Similarly, M ′2 can be reduced by

applying Rule 5. Reduction Rule 20 can be applied onM ′3 before Rule 1 simplifies the transitive

inheritance relationship between A, E, and C into the relationship between A and C as found in

M3.

While this approach is promising for our purposes of determining the navigation compat-

ibility of a model change, the presented work does not examine navigation compatibility in

transitive abstraction. Therefore it is not applicable for MDD. Particularly, navigability, roles

and multiplicities are not (sufficiently) covered by the work. As a consequence, some rules are

not applicable within the context of MDD. Having said that, many of the rules can be grouped

into categories for the purpose of examining the navigation compatibility. In the following we

will refer to conclusions of our study that we list in Section 2.3.5.
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2.3.1 Navigability

Within the context of MDD we cannot simply apply the rules from [58]: E.g., Rule 119 simpli-

fies the relationship of class A to class C via class B: An indirect relationship becomes a direct

relationship between the two classes. However, navigability cannot be simplified in MDD as

such: e.g., in a model-to-code template C cannot be accessed from A directly but needs to be

navigated via B (see also our motivating example from Section 2.1). Such a navigation in-

compatible change in the model would necessitate a change in the template. As a consequence,

associations must not be reduced via transitive rules for navigation compatibility (Conclusion 2).

Besides indirect relationships we also need to look at the navigability of a single relationship.

A relationship can change from a relationship with a single navigable end to a bidirectional

relationship with two navigable ends as represented by the model change ∆A in Figure 2.4

(Conclusion 3). This modification is also found in the model change in Figure 2.2c between the

classes B and C: a new role a is introduced with a multiplicity of 1. Note that we will discuss

roles and multiplicities below.

A relationship end can be explicitly marked as unnavigable. This semantic may – in case

the relationship is unidirectional – be added or removed (Conclusion 4) (see also ∆B and ∆C

in Figure 2.4). If both ends are explicitly marked as unnavigable and we would like to remove

the semantic on one end this end also has to become navigable (Conclusion 5) (see also ∆D in

Figure 2.4). By applying multiple rules we can draw further conclusions: e.g., that ends that are

explicitly specified as unnavigable can become navigable. Last but not least, for navigation com-

patibility, obviously, a navigable end must stay navigable after a model change (Conclusion 6).
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Figure 2.4: Navigation Compatible Changes to the Navigability of Relationship Ends
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2.3.2 Roles

Navigation over a reference is realized by a role. The role name is important within the context

of MDD, e.g., templates hard code roles in order to access referenced objects that act according

to a role. For example, if multiple references from one class A to another class B exist, the

object can distinguish referenced objects via role names. Thus, role names must not change

(Conclusion 7). Nonetheless, renames can be supported (see Definition 1 and Section 2.5.4).

2.3.3 Relationships

In some cases the type of the relationship may change without affecting the original navigability

of the model. For example in Figure 2.2b and Figure 2.2c we have seen how an association can

be changed to a composition and vice versa.

We distinguish two categories of relationships: First, generalization and realization. Sec-

ond, association, aggregation, and composition. The relationships within these categories are

similar in a sense that we may modify the type of the relationship within such a group with the

derived models to be navigation compatible (Conclusion 8). Contrary, if the new and old type

of a changed relationship are from different categories of relationships the change is navigation

incompatible.

2.3.4 Multiplicities

Another aspect that should be considered in the MDD context is the multiplicities of relationship

ends. That is, while multiplicities are mentioned in the work from Egyed, the discussion is lim-

ited to transitive abstraction. As with the navigability of relationship ends (cf. Section 2.3.1) we

also need to examine the modifications on the multiplicities of relationship ends. Multiplicities

are relevant in this discussion because, usually, different multiplicities are handled differently.

For multiplicities with an upper bound greater than one a transformation rule in a model-driven

template typically iterates over the instances (using a foreach statement) 3. For the case of op-

tionality (i.e., multiplicities with a lower bound equal to zero), typically a condition (using an if

statement) checks for the existence of objects 3. Table 2.1 specifies how relationships with dif-

ferent multiplicities are usually dealt with in transformation and programming languages. For

each possible multiplicity an example is given for a typical statement. In these statements b

refers to a role with a role name b.

Note that our examples from Figure 2.2 also contain some relevant modifications: in Fig-

ure 2.2b the multiplicity of role b was changed from 0..1 to 1, Figure 2.2c contains two mod-
3see also the model-to-code template in Figure 2.1b
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Table 2.1: Processing Relationships with Different Multiplicities

Multiplicity Constraints Statements
1 self.b

0..1 if self.b 6= ∅ : self.b
x x > 1 foreach e in b

0..x x > 1 if self.b 6= ∅ : foreach e in b
x..y x ≥ 0, y > x foreach e in b

ifications of the multiplicity of the roles a and b. Both examples eliminate optionality. This

is a navigation compatible modification (Conclusion 9) as the template would not have to be

changed: the condition that checks for the existence will successfully evaluate and execute the

statement as in the case without optionality.

The various modifications are summarized in Figure 2.5 and the Conclusions 9-13. When

enforced they do not involve the necessity to align navigating expressions (see Section 2.1).

An ancillary finding of this examination is the use of iterations in transformation templates:

Supposed the transformation language’s foreach statement could operate on single elements

in addition to sets it would be preferable to always use such a statement as in case of changed

multiplicities the transformation would not have to be changed. For the optionality and the con-

ditional check for existence, languages could similarly combine a check with the iteration of one

or more elements in a general applicable statement. Such a statement, if applied in preference

to the other statements, would have the advantage that, in case multiplicities of models change,

templates would not have to be modified.

2.3.5 Conclusions

The following list summarizes the conclusions from our examination for navigation compatible

changes:

Conclusion 1 New model elements such as classes and/or additional relationships MAY be

introduced with a model change without affecting the original navigability.

Conclusion 2 Rules that reduce associations MUST NOT be applied for transitive navigation

compatibility.

Conclusion 3 An unidirectional relationship MAY be changed to a bidirectional one.

Conclusion 4 The semantic of a relationship end to be unnavigable MAY be added or removed

in case of an unidirectional relationship.
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Figure 2.5: Changes to Multiplicities that do not break Navigating Expressions

Conclusion 5 An end of a relationship with two unnavigable ends MAY become navigable.

Conclusion 6 A navigable end MUST NOT be rendered unnavigable.

Conclusion 7 For navigation compatibility role names MUST NOT change. 4

Conclusion 8 A relationship of type generalization MAY be changed to a realization relation-

ship and vice versa. Also, association, aggregation, and composition relationships are

interchangeable.

Conclusion 9 The optionality of a multiplicity MAY be removed.

Conclusion 10 A change in the multiplicity SHOULD NOT introduce optionality.

Conclusion 11 A multiplicity of one SHOULD NOT be changed.

Conclusion 12 A multiplicity of 0..1 SHOULD NOT be changed to a multiplicity other than 1.

Conclusion 13 The upper bound of a multiplicity SHOULD NOT be reduced.
4We can relax this restriction if we consider renames (see Definition 1 and Section 2.5.4).
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In summary and according to our definition, a navigation compatible change is a precon-

dition for not having to co-evolve navigating expressions. Changes that SHOULD NOT apply

may imply the need for co-evolving navigating expressions, still according to our definition

for navigation compatible models in Section 2.2 such changes are navigation compatible. This

particularly concerns changes to multiplicities (see also Section 2.3.4 and Table 2.1) that may

require adaptation according to the language in which navigation expressions are formulated.

Our algorithm for checking the navigation compatibility that we present in the next section will

issue warnings in these cases for supporting an alignment.

2.4 Automated Navigation Compatibility Checks

In this section we present an algorithm 5 that can be applied for determining the navigation

compatibility of a model change. The input parameters for Algorithm 1 are two models, e.g.,

an original version m and the modified version m′ of a model change. Besides a logical result

that signifies the navigation compatibility of m′ against m, the algorithm may return hash tables

with warnings and errors in addition. These hash tables can contain information on a missing

class or relationship or warn about changed multiplicities. As a key the class name ofm in ques-

tion or the name of the role (with the class name and a dot as prefix) is used. This information

can serve as valuable feedback to a modeling tool and the user for interactive development.

After the existence of classes and references (covering Conclusion 7) have been ensured,

Algorithm 2 continues to verify the relationships (called at Line 20 of Algorithm 1). Please

note that by considering all generalizations and realizations (cf. Line 3-5 and 7 of Algorithm 2),

this part of the overall algorithm covers the various transitive reduction rules as relevant for our

purpose of navigation compatibility such as Rule 1, 3, and 20 from Figure 2.3. This simplifies

the algorithm, shortens the runtime, and thus improves performance. Note that the algorithm

allows a model change to introduce new model elements (covering Conclusion 1).

Besides the mentioned relationships, the algorithm makes use of references for verifying the

navigability of relationships. A reference from a class A to B represents an unidirectional rela-

tionship with navigability from A to B. The relationship type of a reference can be association,

aggregation, or generalization (covering Conclusion 8). A bidirectional relationship between

two classes is realized with two opposing references. Thus, the model change ∆A from Fig-

ure 2.4 results in a new reference from B to A (covered by Conclusion 1). The same applies for
5The formalism to describe the algorithm is derived from the Frag language [183, 184]. Particularly, statements

that operate on hashtables are expressed as $hashtable set $key $value and $hashtable get
$key. Note that the algorithm makes use of some additional helper functions that are not shown for brevity reasons
such as getSuperclasses($class).
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Algorithm 1: Navigation Compatibility Check
Input: m, m′ ∈M
Output: compatible ∈ {true, false}, warnings, errors
begin1

warnings, errors, className2class′←− ∅;2

for class′ ∈ getClasses(m′) do3

$className2class′ set getName($class′) $class′;4

for class ∈ getClasses(m) do5

className←− getName($class);6

class′←− $className2class′ get $className;7

if $class′ = ∅ then8

$errors set $className “missing”;9

else10

role2reference′←− ∅;11

for reference′ ∈ getReferences($class′ ∪ getSuperclasses($class′)) do12

$role2reference′ set getName($reference′) $reference′;13

for reference ∈ getReferences($class ∪ getSuperclasses($class)) do14

role←− getName($reference);15

reference′←− $role2reference′ get $role;16

if $reference′ = ∅ then17

$errors set “$className.$role” “missing”;18

else19

error←− Generalization Check ($reference, $reference′);20

if error 6= ∅ then21

$errors set “$className.$role” $error;22

else23

for warning ∈Multiplicity Check ($reference, $reference′) do24

$warnings set “$className.$role” $warning;25

←− {compatible←− $errors size = 0, warnings, errors};26

end27
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∆D. The other changes from Figure 2.4 (in order to cover the Conclusions 2-6), ∆B and ∆C ,

do not affect the navigability from B to A and do not have to be identified by the algorithm.

Algorithm 2: Generalization Check
Input: reference, reference′

Output: error
begin1

rClass′←− getClass($reference′);2

allRClassifierNames′←− ∅;3

for rClassifier′ ∈ $rClass′ ∪ getSuperclassifiers($rClass′) do4

allRClassifierNames′←− allRClassifierNames′ ∪ getName($rClassifier′);5

rClassName←− getName(getClass($reference));6

if $rClassName /∈ $allRClassifierNames′ then7

←− “not referencing class $rClassName any more”;8

else ←− ∅;9

end10

Finally, Algorithm 3 (called at Line 24 of Algorithm 1) implements the conclusions from

Section 2.3.4 effectively with conditional statements. This is possible as the statements operate

on the upper and lower bounds of the multiplicities. If the lower bound is changed and set to

zero (Line 2), this introduces optionality (addressing Conclusion 10). If an original upper bound

with the original value of one was changed (Line 5), it may introduce the necessity to iterate over

a set of elements instead of accessing one single element (addressing Conclusions 11 and 12).

In case the upper bound was lowered (Line 7), a warning is raised, as this may break navigating

expressions that access an element above the new upper bound. Finally, the algorithm allows for

removing the optionality of a multiplicity (covering Conclusion 9).

Note that the algorithm does not terminate in case of an error, e.g., a missing relationship,

but continues to process the model change. It collects all errors and warnings and returns this

together with a logical result that signifies the navigation compatibility of the model change.

Using the keys from the errors and warnings hash tables the user or a modeling tool can

identify the respective model element and, e.g., set an focus on it.

2.5 Evaluation

In this section we will first present results from analyzing model changes of a MDD project.

We will then discuss about the runtime complexity of the algorithm and show performance

evaluations from real world meta-models. Finally, we present some lessons learned and conclude

with experiences from applying our algorithm in an industrial setting.
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Algorithm 3: Multiplicity Check
Input: reference, reference′

Output: warnings
begin1

if getLower($reference) 6= 0 ∧ getLower($reference′) = 0 then2

warnings←− “optionality introduced”;3

else warnings←− ∅;4

if getUpper($reference) = 1 ∧ getUpper($reference′) 6= 1 then5

warnings←− $warnings ∪ “iteration necessary”;6

if getUpper($reference) > getUpper($reference′) then7

warnings←− $warnings ∪ “upper bound lowered”;8

←− $warnings;9

end10

2.5.1 Analyzing MDD Projects

With our ready to use algorithm we conducted navigation compatibility analysis of model

changes within model-driven projects. In Table 2.2 some results from the Model-Aware Service

Environment [82, 87, 86] (MORSE) project are summarized. We can see that the constructive

model that is used by the project for code generation was modified several times (only the first

results from the changes are displayed). While changes to the model from ∆5 on produced

navigation compatible models (n(Errors) = 0) the previous changes introduced navigation

incompatibilities. This is because the model was refactored in the beginning of the project and

thus was not stable yet.

Sometimes model elements simply have been renamed. Yet, for such renames the algorithm

produces errors as a model transformation that hardcodes names of model elements such as

classes or role names need to be aligned accordingly. Nonetheless, it would be desirable if

the algorithm could consider renames and instead of raising an error issues a warning for the

renamed model element. This is particularly useful if the MDD developer is aware of the rename

and/or it has been considered in transformations that process conforming model instances.

By extending the algorithm accordingly and by specifying a set of renames for the model

changes errors of the model change ∆1 could be reduced and for ∆3 even eliminated 6. That is,

we can say that the model change ∆3 resulted in a navigation compatible model when consider-

ing renames.

All checks completed within a fraction of a second and are thus satisfactory for our purposes.

Note that without considering renames for ∆1 the algorithm terminates rapidly as correspond-
6The results are found in the right, renames labeled columns.
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ing classes or references are not found and a further check simply does not to take place (cf.

Line 8 and 17 of Algorithm 1).

Table 2.2: Model Changes of the MORSE Project

∆ Compatible RunTime [ms] n(Warnings) n(Errors)
renames renames renames renames

∆1 false false 56 267 0 11 13 2
∆2 false false 406 327 0 0 9 9
∆3 false true 228 215 0 1 19 0
∆4 false false 164 162 0 0 20 20
∆5 true true 159 170 0 0 0 0
∆6 true true 193 221 0 0 0 0
∆7 true true 159 177 0 0 0 0
∆8 true true 161 163 0 0 0 0
∆9 true true 146 155 0 0 0 0
∆10 true true 140 143 0 0 0 0
∆11 true true 146 137 0 0 0 0
∆12 true true 133 126 0 0 0 0
∆13 true true 119 109 0 0 0 0
∆14 true true 114 121 0 0 0 0
∆15 true true 113 109 0 0 0 0

2.5.2 Runtime Complexity

The presented Algorithm 1 has a run time complexity of

O(c′(c+ r + r′)) (2.1)

with c = number of classes in the original model and c′ in the changed model and r = the

number of total references in the original model and r′ in the changed model. For a model

change with small changes we can conclude:

c ≈ c′ ∧ r ≈ r′ =⇒ O(c2 + cr) (2.2)

If we search for a large navigation compatible model m′ using a small model m we can expect

the following run time complexity:

c� c′ ∧ r � r′ =⇒ O(c′r′) (2.3)

As we will show next, for the MDD scenarios generally, the runtime is far satisfactory.

2.5.3 Performance Evaluation

For evaluating the performance of the algorithm we have conducted tests with 286 real world

meta-models, some – such as shown in Figure 2.1a – originating from industrial companies, oth-

ers have been retrieved from open source projects as well as the Atlantic Meta-Model Zoo [12].

Table 2.3 reflects the metrics of these models such as the number of classes (n(Classes)) and
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number of references (n(References)). These are summarized together with the results from

our evaluation in Table 2.4.

From the collected metrics we can assume typical MDD meta-models to have certain charac-

teristics: First, the number of references in meta-models is in the same dimension as the number

of classes. For such meta-models we can therefore – by refining Equations 2.1 and 2.2 – state a

run time complexity of

O(c′c) ≈ O(c2) | c ≈ c′ (2.4)

Second, we can assume typical MDD meta-models to have a size of less then twenty classes.

Indeed, half of the models contain not more than twelve classes (see also Figures 2.6b and 2.6c).

Table 2.3: Metrics of Industrial and Open Source Meta-Models

Min. 1st Qu. Median Mean 3rd Qu. Max
3.00 7.00 8.50 11.43 11.75 29.00 n(Classes)

Austrian Telecommunication Provider 0.000 0.000 0.500 3.714 5.750 16.000 n(Generalizations)
n(Models) = 14 2.00 7.00 13.50 14.79 20.50 37.00 n(References)

5.00 7.25 12.00 15.00 21.50 32.00 n(Classes)
European MVNO 0.0 0.5 4.5 7.6 10.5 26.0 n(Generalizations)
n(Models) = 10 6.0 8.0 13.0 15.6 18.5 42.0 n(References)

1.00 3.75 8.50 18.93 27.25 74.00 n(Classes)
EMF Projects [162] 0.00 0.00 6.50 16.95 21.25 83.00 n(Generalizations)
n(Models) = 44 0.00 3.75 9.50 19.89 29.50 125.00 n(References)

1.00 7.00 14.00 21.02 27.25 114.00 n(Classes)
Atlantic Meta-Model Zoo [12] 0.00 3.00 9.00 15.61 20.50 96.00 n(Generalizations)

n(Models) = 188 0.00 7.00 14.00 27.04 29.00 231.00 n(References)
30 30 30 30 30 30 n(Classes)

MORSE [82] 26 26 26 26 26 26 n(Generalizations)
n(Models) = 1 20 20 20 20 20 20 n(References)

3.000 6.000 7.000 9.273 10.000 27.000 n(Classes)
VbMF [173] 0.000 0.000 0.000 2.636 4.500 14.000 n(Generalizations)

n(Models) = 11 0.00 5.50 8.00 10.18 12.50 33.00 n(References)

We conducted the checks on the models without a change (i.e., m = m′). This way the

entire model with all its classes and relationships is checked by the algorithm. This equals the

worst case for the runtime and thus the execution is maximized. The results from evaluating the

runtime of the algorithm with the meta-models are displayed in Figure 2.6a. Figures 2.6b and

2.6c display half of the population using the median n(Classes) ≤ 12. Figures 2.6a and 2.6b

show the runtime as a function of the number of classes. Similarly, the abscissa in Figure 2.6c

uses the total number of references in the model. All test results (summarized in Table 2.4)

show a runtime that is less than a second. The average execution time of all models is 87.1ms.

Therefore the presented algorithm proves far satisfactory for MDD scenarios.
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Table 2.4: Summary of Meta-Models Metrics

Min. 1st Qu. Median Mean 3rd Qu. Max
1.0 6.0 12.0 19.5 26.0 114.0 n(Classes) []

0.00 2.00 7.50 14.42 16.25 96.00 n(Generalizations) []
0.00 6.00 13.00 24.08 27.25 231.00 n(References) []

0.0000 0.2857 0.6000 0.5537 0.8632 1.7140 n(Generalizations) / n(Classes) []
0.0000 0.7411 1.1500 1.2450 1.5770 6.8570 n(References) / n(Classes) []

2.0 18.0 39.5 87.1 98.5 725.0 RunTime [ms]
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Figure 2.6: Performance Evaluation of the Navigation Compatibility Check

2.5.4 Lessons Learned

When studying the results and looking at the errors identified by the algorithm, we found that

they sometimes result from simple renames of model elements. Such renames in a model need to

be aligned with corresponding navigating expressions (see Section 2.1), e.g., OCL expressions.

Supposed a MDD developer uses an integrated development environment (IDE) that supports the

rename of model elements by aligning navigating expressions as used in transformation rules,

we would like the algorithm to consider the renames for the navigation compatibility check as

well. For supporting this scenario we have conducted a slight adaptation: (possibly renamed)
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class and role names are resolved after Line 5 and 13 in Algorithm 1. Another finding was the

removal of abstract superclasses. It is reasonable that such modifications do not result in errors

(Line 7) in case of missing abstract superclasses, as such classes cannot be instantiated. Of

course if an abstract superclass is referenced, still an error is issued (Line 15).

Statements can be given if changes are necessary to navigating expressions in model trans-

formations after model changes using our algorithm. Yet we do not answer the question if any

changes in model transformations become necessary after a model has been changed. Besides

navigability issues there can be other model changes that require adjustments in model trans-

formations and thus introduce other incompatibilities. Thus, our presented work focuses and is

limited to the navigation compatibility of model changes.

2.5.5 Navigation Compatible Changes Applied in an Industrial Setting

Our algorithm has been applied, besides in the MORSE project, by an European MVNO during

the MDD and evolution. In this project, changes to meta-models such as shown in Figure 2.1a

have been evaluated continuously regarding their navigation compatibility. This was done for

ensuring the downwards-compatibility of evolved meta-model versions.

Of course, restricting the evolution of meta-models to navigation compatible changes

only makes limited sense. Herrmannsdörfer [81] describes the various drawbacks of such a

downwards-compatible evolution: On the one hand, the way in which a meta-model may evolve

is heavily restricted. On the other hand, the preservation of old constructs clutters and com-

plicates a meta-model. Despite these limitations, with a navigation compatible change, the

meta-model is adapted in such a way, that old models still conform to the new meta-model.

Thus, they do not have to be migrated. Also transformation templates do not need to be adapted.

For minimizing the effort of co-evolution, the company applied the following strategy:

• Whenever possible meta-model changes should be navigation compatible, MDD develop-

ers are free to undertake such changes frequently.

• Changes that break navigation compatibility, however, require a formal agreement of the

developers as this involves the co-evolution of other artifacts such as models and transfor-

mation templates.

As a result, the evolution of meta-models and related artifacts can be characterized by either

lines of navigation compatibility or moments of navigation incompatible changes.

If we compare this kind of evolution to the evolution of software libraries we find similarities.

A new version of the software might introduce major changes, some of them may break the
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downwards-compatibility. Nonetheless, updates may come with downward-compatible, non-

breaking changes within a certain version. An API of a software generally is not subject to

breaking changes. This way a developer who works with the software can assume updates of at

least the same software version to conform to the former API. When upgrading to a new version

the developer should be aware of the fact that this might break his code and that tests need to be

performed.

From our experience, we believe that MDD can profit from the experience and findings of

software evolution. Particularly, we found the implementation of navigation compatible changes

helpful for the evolution and maintenance of MDD projects. Meta-models may be managed in

different, navigation-compatible lines of versions. A set of MDD artifacts and systems is then

known to work with a certain navigation-compatible model. By benefiting from navigation

compatibility between small changes, this strategy does not exclude complex evolution to take

place.

2.6 Related Work

In this section we mention on work in the fields of model comparison and model co-evolution

and relate to our work.

Model Comparison

When we check if a model is navigation compatible against another model we compare these

models that can be two versions of a model representing a model change. The literature on model

comparison includes a multitude of related work, e.g., on model differences (e.g., [32, 6, 136])

and model merging (e.g., [6, 28, 102]). The former category is relevant to our work. For example

we need to check if classes or role names have been removed. A systematic overview of model

comparison approaches is given by Selonen [145]. He presents qualities of model comparison

techniques for evaluation and identifies common usage scenarios. Also, there is industrial real-

ization: the IBM Rational Software Architect has some support for the comparison and merging

of UML models [101]. For example it is possible to visualize differences between model ver-

sions in a local history. Finally, the Eclipse Foundation also hosts an EMF Compare [164]

project that aims at providing a framework for model comparison. For this the comparison pro-

cess is divided in a matching and differencing phase. In contrast to this two-step comparison our

algorithm processes two models and saves errors and warnings in one run. Moreover, to the best

of our knowledge, the specific problem of navigation compatibility as presented in this chapter

has not been focused at.
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Ohst et al. [136] specifically focus on UML models and the visualization of differences.

Besides the structure of models the work also considers the layout of UML diagrams. As ex-

plained in Section 2.1 our approach also operates on the meta-model M2 level and can work

with instances of, e.g., UML or Ecore [162] meta-meta-models. Few details are given about the

implementation. While the computation relies on a repository that stores the models and model

elements for comparison, our algorithm does not require the use of a repository. Instead two

serialized models can be processed by our algorithm. For this currently we support two different

M3 modeling languages.

Alanen and Porres [6] formally discuss the difference and union of models. Their imple-

mentations are meta-model independent but rely on a version control system (VCS). While their

work is generic to the problems of model differences and unions our work specifically focuses

on and is suited for the navigation compatibility of models.

Egyed [58, 59] presents rules and algorithms for abstracting “low-level” models to more

abstract “higher-level” models. Although, his work focuses on representing models at different

abstraction levels to humans, e.g., to different stakeholders of a software system, we found this

work quite suited for our purpose of model comparison. However, the transitive abstraction

presented does not consider the use case of navigation compatibility. Therefore, we had to

discuss the following points that arose within the context of MDD and that have not yet been

covered by his work: first, navigability between classes and of relationships could in some cases

be simplified for navigation compatibility, in others not. Second, the notion of roles is important

in regard to relationships. Finally, multiplicities between classes should be considered as well as

they are usually handled differently during the code generation step.

Model Co-Evolution

As the evolution of meta-models, poses a thread to the applicability of MDD, Gruschko et al. [73]

discuss the problem of model erosion that is caused by changes in corresponding meta-models.

They classify changes such as renames, deletion, addition, movement as well as changes of

association and type and propose a generic, semi-automated approach to the model migration.

A realization was carried out by Cicchetti et al. [42]. First, a (calculated) difference model

captures the meta-model evolution. Finally, model transformations are produced for co-evolving

conforming models. Besides atomic changes such as described in [73], and in order to deal with

realistic scenarios, they particularly focus on combination of changes that they categorize into

parallel independent and dependent changes.

Herrmannsdörfer et al. [81] propose COPE that realizes so-called coupled transactions, i.e.,

the coupled evolution of meta-models and models. In addition to custom coupled transactions
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that can be defined by a developer for complex migrations and that are specific to a meta-model,

a reusable coupled transaction can be used for recurring coupled transformations across meta-

models. For tool support, a non-invasive integration of COPE into the Eclipse Modeling Frame-

work [162] (EMF) meta-model editor has been realized.

Wachsmuth [177] defined several semantics- and instance-preservation properties in terms

of meta-model relations. For supporting the automatic meta-model evolution in a stepwise adap-

tation, the authors also present a set of transformations.

All of these works focus on the meta-model/model co-evolution. Thus changes that oc-

cur to meta-models are studied regarding their impact on conforming models. One of the re-

sults is the level of automatization that can be realized for co-evolving models. In contrast

to meta-model/model co-evolution, our work concerns meta-model/transformation template co-

evolution. Particularly we focus on navigating expressions and non-breaking changes to meta-

models.

Levendovszky et al. [114] present an approach to semi-automated evolution of model trans-

formation. With their work they target the problem of co-evolving transformations for meta-

models. Thus, for a given model transformation t : MMsrc → MMdst a model transformation

t′ : MM ′src → MM ′dst is wanted for the evolved meta-models. The authors present categories

of transformation operations that are fully or partially automated or fully semantic. In their

work, subtyping is only mentioned. Thus, details are missing for generalization and realiza-

tion relationships such as we have presented with Algorithm 2. Also changes to multiplicities

(cf. Figure 2.5 and Algorithm 3) or the navigability (cf. Figure 2.4) of relationships are not

discussed. In this chapter, in contrast, we have conducted a focused study on the topic of navi-

gation compatibility that we believe contributes to better support the (semi-automated) evolution

of meta-model co-evolution, e.g., model transformations.

2.7 Summary

Starting and inspired from the idea of transitive reasoning and related work we analyzed the

impact on the navigability of different model modifications. In our studies we identified a set of

conclusions that are supported by our algorithm that we presented in Section 2.4. This algorithm

determines the navigation compatibility of a model change, e.g., between two versions of a

model and gives detailed feedback in form of warnings and errors. This information in turn can

be used by a developer for interactive development. Using our algorithm, software developers

can run checks prior to the deployment of software systems in a new version. Such checks are

particularly meaningful during the modeling phase, i.e., at design time and after a feedback loop

from the runtime.
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In Chapter 5, e.g., we will make use of several meta-models such as displayed in Figure 5.5

that are subject to change. When these meta-models change, our algorithm – exposed as a

service within MORSE that we will present in the next chapter – helps developers to avoid or

identify navigation incompatibilities. Figure 6.3 in Chapter 6 displays a similar meta-model that

changed during a case study (cf. 6.2). In this case study, our Algorithm 1 that we presented for

determining the navigation compatibility of a model change eased the evolution of the system

and the monitoring.

Future Work

The algorithm does not have to operate on a model change necessarily. By specifying a model

m for Algorithm 1 we can search for some navigation compatible models m′. Thus, we plan to

extend and apply our algorithm for search scenarios in future.
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Usually in model-driven engineering (MDE) model management and use takes place at de-

sign time. Yet, currently there is no collaborative development environment (CDE) dedicated

to the domain of MDE, i.e., for managing MDE projects. In various model repositories, iden-

tification and retrieval of models, model elements, and other MDE artifacts – if supported by

the repository at all – in a distributed environment is sometimes not evident. This is mainly

due to problems arising from the versioning of these artifacts. Our approach to solve this issue

is a Model-Aware Service Environment [82, 87, 86] (MORSE). It consists of a service-oriented

model repository that manages MDE projects and artifacts, and model-aware services (explained

in the next chapter) that interact with the repository for performing reflective queries on the mod-

els stored in the repository. Thus, MORSE supports the dynamic, reflective look-up of models in

service-oriented systems and enables collaborative development in the context of MDE.

3.1 Introduction

Many model-driven development (MDD) approaches for service-oriented architectures (SOAs)

have been proposed (e.g., [153, 20, 123]). These approaches are model-driven in the sense

that the SOA is specified using models and large parts or the whole source code of the SOA

(including for example Web service code, Web Services Description Language [40] (WSDL)

files, policy code, business object implementations, and so on) is generated from those models.

While the model-driven SOA approach is highly useful in many cases, it has its limitations

for scenarios that require information from the models at runtime because generation currently

happens only at design time. Hence, all information that is needed at runtime from the models

must be foreseen by the developers and must be statically generated into the source code. Many

SOAs require “reflective” model information for monitoring, auditing, reporting, and business

intelligence purposes. The requirements for this kind of reflection on model information can

change quickly and are hard to foresee. However, regenerating and redeploying major parts of

the SOA source code, because a certain model element’s information is not exposed, is often not

feasible in large distributed architectures. In addition, developing new reflection functions for

each single model element is costly.

Finally, model information that is generated into or attached to a model-driven service is

only up-to-date at its generation time. This is problematic when the service needs to reflect on

information that was supplied after its generation and deployment. This is particularly true in a

distributed and persistently evolving environment. Statically generated services need to keep up

with changes such as additional model relations, e.g., new annotation models or a new version

of the model of a service.

Our approach to solve these issues, i.e., facilitate services to dynamically reflect on models,
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is to create model-aware systems for the SOA and support these with a service-based model

repository. We call such a SOA a Model-Aware Service Environment [82, 87, 86] (MORSE).

During the MDD process, each model of the SOA is placed in the model repository. Each

model and model element gets a Universally Unique Identifier [113, 98] (UUID) assigned, with

which the model or model element can be uniquely identified. The UUIDs are generated into

the source code of the model-aware services (and components). Hence, they are model-aware

in the sense that they can retrieve the models from which they have been generated from the

repository at runtime using a service. In the same way, other components such as monitoring,

auditing, reporting, and business intelligence components, or MDD tools such as a model-driven

generator, can retrieve these models. The repository service interface is a generic interface, and

the UUIDs are generically added to generated code. Hence, no changes of the generated SOA

are necessary in order to use a model element at runtime that has not been used before. Also

the model-aware services can access evolved models and model relationships that occurred after

generation time of the model-aware service.

3.2 Approach

For facilitating services and MDD developers to dynamically work with models in a SOA, we

propose the Model-Aware Service Environment [82, 87, 86] (MORSE). MORSE consists of a

model repository and model-aware services that interact with the model repository using service-

oriented interfaces (i.e., the MORSE services; see Section 3.5).

retrieve models by UUID

System that 
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Services
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Figure 3.1: Overview of the Model-Aware Service Environment

Figure 3.1 (that will be further explained and used in the next chapter) gives an overview of

the MORSE. From the repository model-aware services can be generated that interact with the
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information retrieval (IR) interface. Also services and processes with traceability information

that emit events to model-aware services can be generated (presented in the following chapter).
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Figure 3.2: Architecture of the MORSE Repository

Figure 3.2 gives an high-level overview of the model repository architecture. Different Web

service interfaces allow for the administration and resource management of MDD projects and

artifacts and offer IR functionality (see end of the following section) to model-aware services.

The models are created by human modelers using modeling tools. Using admin clients, MDD

projects in the MORSE repository can be created. Import clients allow the modelers to add mod-

els, model elements, and model relationships, or to provide them in a new version. The MORSE

builder service can create the model-aware services. Also it can weave UUIDs 2 of MORSE

objects into generated code. A deployment service is used for deploying resulting services and

processes on runtime engines (see Section 4.3).

Because all MDD projects and artifacts are managed in model repositories (see next section),

model-aware services can query these for any information on themselves and other model-driven

components. Although models and model relations may evolve over time, using UUIDs, it is

possible to retrieve a specific version of a MORSE object (this will be explained in more detail

in Section 3.4.2). Derived versions, e.g., new versions of the model that were created after

deployment time, can easily be identified, permitting a model-aware service to, e.g., retrieve and

work with the latest version of a model.
2Universally Unique Identifier are used in MORSE to uniquely identify models and model elements across dis-

tributed components, such as the model repository, model-aware services, and other components using the MORSE

services such as monitors.
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MORSE can also be beneficial for MDD tools, e.g., in a distributed CDE [27] while fostering

service-orientation to support the MDD design time tooling. In this case, not the model-aware

services or components monitoring them would retrieve and change the models, but the MDD

tools such as a model-driven generator.

3.3 A Collaborative Development Environment for MDE Projects

CDEs offer virtual spaces to stakeholders involved in distributed development. Booch and

Brown [27] enlist coordination, collaboration, and community building as common features of

CDEs and mention centralized information management as essential to the coordination aspect.

Applied to MDE – as an emerging software engineering discipline – management of artifacts

such as models, transformations, and templates is required. In order to support MDE with a

CDE, thus, an appropriate management of these MDE artifacts is essential. There are a couple

of CDEs dedicated to the domain of software engineering (SE) such as Codehaus [44], Collab-

Net [46], GForge [69], or Launchpad [35]. However, they do not yet specifically target MDE.

Notwithstanding the lack of CDEs for MDE, model repositories are used for MDE artifact man-

agement during MDD (cf. [64]).

In our concept, MDE artifacts and their management in repositories is essential for the

model-aware systems. That is, model-aware systems may interact at design- or runtime with

a repository, e.g., for model look-up. Some resulting benefits are

• For collaborative development, MDE projects and artifacts can be managed with version

control.

• MDE artifacts can be searched (e.g., for reuse scenarios) and explored.

• MDE artifacts can be retrieved at runtime for dynamic, model-based execution (cf. [78]).

3.3.1 Challenges on Deploying Model Repositories

Despite these benefits, repositories that manage MDE projects and their artifacts, particularly

models, are rarely employed as central components of model-driven systems and offer only lim-

ited basic functionality. This is because design and development of such repositories is complex:

• They use various technologies and need to be adapted to support emerging technologies

and requirements.

• They introduce dependencies to other MDE components, and proper system integration

becomes crucial for regular operation. An adequate repository may be connected with
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components for monitoring, notification, traceability, and so on. It is usually difficult to

modify or even replace a once deployed repository.

• Last but not least, interfaces and implementation of model repositories consist of recurring

code, such as code for storage and retrieval, that – if not supported by MDD – becomes

cumbersome to maintain.

3.3.2 A Model-Driven Approach

We address these issues by proposing a model-driven approach for developing repositories as

key components of a MORSE. That is, MORSE not only supports MDE, but is also itself built

using MDE techniques.

MORSE repositories allow for describing dependencies of MDE projects and artifacts. For

this purpose we make MDE artifacts uniquely identifiable in a distributed setting using UUIDs.

Finally, MORSE allows for the continuous integration (CI) (cf. [57]) of repositories with various

MDE components because the generation, build, and test of MORSE repositories have been fully

automated.

Our approach can be used to modify a CDE to support MDE. However, this would cover

only design time support for MDE tasks. Our approach can also be used for supporting the

runtime and other tasks of the MDE process.

While MORSE repositories support MDE projects, MORSE itself has been developed fol-

lowing the MDE approach. Therefore we start by illustrating a conceptual model 3 – that can be

customized if necessary – from which MORSE repositories are generated 4.

3.3.3 Conceptual Model of MDE Projects and Artifacts

The model repository is the main component of MORSE [87] and has been designed with the

goal to abstract from specific technologies. Thus, while concepts are taken from, e.g., the UML

and also version control systems (VCSs) (cf. [115, 121, 119, 159, 55]), MORSE is particularly

agnostic to specific modeling frameworks or technologies.
3We designed our model using the Eclipse Modeling Framework [162] (EMF) [34]. The resulting Ecore model

that is serialized in the XML Metadata Interchange [135, 95] (XMI) format is based on Essential Meta Object Fa-
cility [131] (EMOF), a Unified Modeling Language [134] (UML) [134] based meta-model that is part of the Meta-
Object Facility [131] (MOF) [131] of the Open Management Group (OMG).

4From this model we derive interfaces and implementations for IR and management of MDE projects and ar-
tifacts. We integrate various technologies in model-to-code templates. IR is eased by exploiting the relationships
between MDE artifacts. MORSE repositories provide versioning capabilities not only to the artifacts, but also their
relationships. For safeguarding the functionality of MORSE repositories we realized a test-driven approach by deriv-
ing automatic tests and integrate MORSE with a system for CI.
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The MORSE repository manages objects (MObject) such as projects (MProject) and arti-

facts (MArtifact) as shown in Figure 3.3 and 3.4a. Additional MORSE object types (explained

below) are shown in Figure 3.4b. All MObjects are identifiable by uuids and can be asso-

ciated with Dublin Core [108] (DC) metadata such as title, creator, or date. Note that

a UUID uniquely identifies a particular MORSE object. We will cover the topic of versioning

in the next section. By navigating across the original or modified relations, previous and

derived versions of a certain version can be identified.

Artifacts are used to manage models and model elements (for details see below), model

transformations, and MDD workflows. Besides the versioning of these, the repository supports

branching (MBranch) and tagging (MTag) of projects. Note that artifacts can be shared by

multiple projects as they can be associated by different tags and branches. They can be changed

independently and merged later on.

Typical MDD projects consist of models, transformations, and workflows. An example of

a MDD development framework that works with these artifacts is openArchitectureWare [138]

(oAW). We have adopted these artifact types and support them in MORSE as shown in Fig-

ure 3.4a.

Besides the general management of MDD artifacts, MORSE particularly realizes sup-

port for models. Models typically contain model elements and have relationships to other

models. By capturing and keeping track of these, MORSE facilitates reflection on mod-

els, model elements, and model relations. Figure 3.5 illustrates MModel, MModelElement,

and MModelRelation classes that represent these concepts. All these classes derive from

MObject and are identifiable and versionable as such. Moreover, MModels are MArtifacts

and can use the data attribute to save a serialized form of a model. Examples of different

relations are instance-of (MInstanceRelation), inheritance (MInheritanceRelation),

and annotation (MAnnotationRelation) relations as shown in Figure 3.4b. A model relation

(MModelRelation) has a source (src) and destination (dest) model, e.g., an annotated model

is the destination model of a MAnnotationRelation and the annotation model depicts the

corresponding source model. Besides referring to the models, a model relation may also specify

actual model elements (srcElement and destElement).

While it would be possible to further specify details, e.g., of model elements, the presented

concepts are sufficient for our purposes, i.e., to make models and model elements identifiable

and to capture dependencies between different models as introduced though their relations. The

models that are stored and versionised within MModels can be retrieved in a serialized form and

can further be processed by technology-specific tools, e.g., for introspection, model transforma-

tion, or model validation.

For the presented classes and concepts, the model repository exposes different services as
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context MObject
inv: metadata.uuid = uuid and metadata.dc.identifier = uuid
inv: opposite notEmpty() implies ((head xor opposite.head) and opposite.oclIsTypeOf(self))
inv: original notEmpty() implies original.oclIsTypeOf(self)

context MProject inv: mainBranch.project = self
context MTag inv: parent notEmpty() implies parent.project = project

Figure 3.3: MORSE Objects and Projects

indicated in Figure 3.2. Besides an administrative and resource management interface, the repos-

itory particularly offers an IR interface to model-aware services.

3.4 Model Versioning

Common VCSs such as Concurrent Versions System [55] (CVS), Subversion [159] (SVN),

Bazaar [119], Git [115], or Mercurial [121] are not suitable for model versioning. This is because

they are only able to store serialized forms of models and problems may arise when concurrent

changes occur. That is, these changes may not affect each other but still conflicts may occur due

to the serialization of the model. Besides the versioning aspect, also the search for models in

such repositories is unfavorable. Therefore we aim for a repository that is particularly tailored
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Figure 3.4: MDD Artifacts and additional MORSE Objects
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context MModelRelation
inv: dest notEmpty() and destElement notEmpty()

implies dest.elements includes(destElement)
inv: src notEmpty() and srcElement notEmpty()

implies src.elements includes(srcElement)

Figure 3.5: Model Element and Model Relations

for models and the management of model versions.

3.4.1 MORSE Repository

A model contains model elements such as classes, attributes, and references (cf. Ecore [162]

and EMOF [131] classes and properties). In the MORSE repository each instance 5 of a class
5M2, meta-model class (cf. to the OMG [131] definition)
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corresponds to a table in a relational database 6. An instance thereof is stored as a row in

such a table. A respective record thus holds the values for the respective attributes and also the

references in the form of foreign keys and is the smallest unit of versioning (cf. [137, p.4]) (UV)

in the MORSE repository. If the value of an attribute changes, the record is updated. Similarly,

the records are updated in case references are set, deleted, or changed. As a value the UUIDs of

the opposite model class instance(s) are used.

3.4.2 Transparent UUID-Based Model Versioning

In a MORSE, models (i.e., meta-models and conforming models (cf. [23])) are stored in and

accessible from model repositories. This repository needs to support the versioning of models,

as different versions of models can be used by different services. At runtime the services that

dynamically interact with the repository need to retrieve specific model versions. In contrast,

modeling tools and end users such as system stakeholders typically expect a transparent ver-

sioning. That is, they can reuse an identifier of a previously updated model for obtaining the

current model in its latest version.

Problems arise however when UUIDs are used as identifiers as they are required to be unique

"across both space and time, with respect to the space of all UUIDs" [113]. Thus, two versions

of a model or model element cannot be identifiable by the same UUID 7. If this is not respected

in versioning, UUIDs get duplicated and when this happens they degenerate into ordinary iden-

tifiers (IDs) as they will not be unique any more.

In software configuration management [88, 92] (SCM), usually an additional identifier for

specifying a particular version is used. In contrast with UUID-based identification no composite

identifiers are possible. While this restriction may be regarded as a limitation of UUIDs, this

is on purpose and comes with the advantage of a unique identification. Thus, no additional

information or identifiers are required but a single UUID suffices to specifically and uniquely

identify an object.

As we aim to adopt models at runtime and need to relate to models and model elements

easily, the idea to uniquely identify a model or model element in a distributed environment is

important to our approach. Thus, UUIDs appear not only appropriate but also appealing due to

their simplicity: a UUID has a size of 128 bits and is represented in its canonical form as a 36

character string, consisting of 32 hexadecimal digits and four hyphens as depicted in Table 3.1.

A UUID can be generated autonomously without the need for a central authority and can
6The MORSE repository is realized with Teneo [167] that utilizes the EMF. For the persistence we chose

EclipseLink [163] as a Java Persistence API [54] (JPA) implementation and a relational database management system
(RDBMS) such as PostgreSQL [140] or Apache Derby [156].

7In contrast, a model may be identifiable by multiple UUIDs.
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Table 3.1: Canonical and URN Representations of a UUID

Canonical Form of a UUID 1787475b-5a32-48b9-9b8a-6d813bfc6e51
URN Representation of a UUID urn:uuid:1787475b-5a32-48b9-9b8a-6d813bfc6e51

easily be exchanged in form of a Uniform Resource Name [77, 120] (URN) (cf. [113]; see also

Table 3.1). Yet, in order to apply them for model management and versioning a problem had to

be solved: how to realize a transparent UUID-based versioning of models. In the following we

propose a solution to this problem that we realized for the versioning of models in the MORSE

repository.

With our transparent UUID-based model versioning technique we propose to store – in addi-

tion to version-specific models – a copy of the latest version in the form of a version-independent

model (head). All of these models and its model elements are identifiable by UUIDs. Hence, for

the identification of models we distinguish between version-independent UUIDs (VIIDs) and

version-specific UUIDs (VSIDs). Thus, a VIID/VSID identifies models or model elements of

the head/a certain revision. Note that by distinguishing between version-specific objects and the

head we respect the uniqueness property of UUIDs as in our approach a UUID particularly iden-

tifies either a version-independent model (element) or a model (element) from a specific version.

Across all models, model elements, and all their versions any UUID is just used once and thus

is unique. There are further characteristics: version-specific UUIDs identify objects that are not

subject to change. In contrast, an object identified by a version-independent UUID is. Thus, if a

certain version of an object is required, e.g., by a runtime service, it is best identified by a VSID.

In contrast, for working with the up-to-date version VIIDs can be used, e.g., by modeling tools.

Figure 3.6 depicts our solution for the transparent UUID-based model versioning. On the

left hand side, the version-independent model (Head) is displayed in four different revisions.

On the right hand side, the version-specific objects are displayed. Note that in the MORSE

repository (see Figure 3.3) the head property of an MObject indicates if the object is version-

independent or -specific. Also note that a corresponding opposite object is navigable. Thus,

a version-independent object references the latest version-specific object and a version-specific

object holds a reference to the version-independent object (if existent).

Typically a model change introduces new, changes existing, or eliminates model elements.

That is, not the entire model is updated in an evolution step but only parts of it change. Our

model versioning approach respects this and operates on small changes in a space saving way.

In Revision 1 two model elements A and B exist. The first change introduces a reference

from the former to the latter. In MORSE the reference is stored as part of A. Therefore, A is



CHAPTER 3. MODEL-AWARE SERVICE ENVIRONMENT 45

state = inactive

B

Version Specific ObjectsHead

Revision 1

Revision 2

Revision 1

Revision 1

Revision 2

Revision 3

Revision 1

Revision 2

Revision 3

Revision 4

head model instances

deleted/removed model instances

shadowed model instances from former revisions

tim
e

tim
e

tim
e

A UUID 1

A UUID 1 B UUID 2

A UUID 1 B UUID 2

A UUID 1 B UUID 2

A UUID 3 B UUID 4

A UUID 3 B UUID 4

A UUID 5

A UUID 3 B UUID 4

A UUID 5

B UUID 6

A UUID 3 B UUID 4

A UUID 5

B UUID 6

A UUID 7 UUID 8

Figure 3.6: Transparent Model Versioning for UUID-Based Model Repositories

updated. Note that a new version-specific object is created that references B, shadowing the

model element from the previous revision. That is, for obtaining a certain revision of a model

only the most recent model element until the revision is considered and the older revisions are

not; thus, we say, they are shadowed. In Revision 3 a new reference from B to A is added.

Similarly to the previous change, B is updated. Note that in the version-specific objects of that

revision the reference from A still points to the now shadowed B from Revision 1. This is no

problem however, if for obtaining a model of a specific revision the reference is updated to the

most recent version of B. Finally, the last change removes B from the model. This implies that

also the reference from A is removed. Therefore A is updated and B is removed. The latter

is realized by introducing a new B that shadows former instances and explicitly is marked as

deleted (state = inactive).

For retrieving a specific model version an algorithm is applied on the version-specific ob-

jects. This is shown in Algorithm 4 that describes how a specific version of a model can be
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calculated from the version-specific objects. First the various model elements of a model in a

specific version are retrieved (Line 5). Only model elements that have not been removed (Line 8)

are registered (Line 9). The returned model equals to the formerly version-independent objects

for the revision. For this, the version-specific elements are transformed to version-independent

elements (Line 7) and the UUIDs of the references are updated (Line 15).

Algorithm 4: Reconstructing a Revision of a Model from Version-Specific Objects
Input: UUIDs, revision ∈ Revisions
Output: Model
begin1

model←− ∅;2

vsid2viid←− ∅;3

for uuid ∈ UUIDs do4

element←− retrieve(uuid, revision);5

vsid2viid.put(getVSID(element), uuid);6

makeVI(element);7

if ¬ isInactive(element) then8

model.put(uuid, element);9

for reference ∈ getReferences(model) do10

vsid←− getUUID(reference);11

viid←− vsid2viid.get(vsid);12

if ∅ = viid then13

viid←− retrieveVIID(vsid);14

setUUID(reference, viid);15

←− model;16

end17

3.5 MORSE Services

For supporting both model evolution and the use of models at runtime we propose a model-

driven and service-based approach for services to dynamically work with models in a SOA.

For this, we automatically generate MORSE services for managing models as depicted in

Figure 3.7. Usually, a domain expert starts to design a domain model (Step 1), that is, a meta-

model with concepts of a certain domain. Next, a technical expert refines the model (Step 2),

e.g., by enriching the model with technical details as needed in further model-driven process

steps. Domain-specific languages (DSLs) can assist the different stakeholders to formulate the

model. Finally, in order to support the use of the resulting model in a SOA, MORSE services are
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Figure 3.7: Generating MORSE Services for Models

automatically generated and deployed (Steps 3-5) that can be used by other services for sharing,

storing, and retrieving models 8.

In order to support the development of a monitor MORSE can also automatically generate

ready to use service requester agents that interact with the MORSE services. This is demonstrated

in Figure 3.8 (Step 2). After deployment (Step 1), the exposed MORSE services can be used by

the monitoring service, which is a model-aware service, for storing and retrieving models (Step

4). Note that, while model-aware services can be manually developed by a service developer as
8For model transformation we use Frag, a dynamic programming language that specifically is designed to support

MDE. For model transformation we particularly profit from Frag’s dynamic class concept and structural reflection
using introspection options (cf. [185]) that allow for efficient exploitation of models. The transformation has been
realized as follows: First we transform the Ecore model to a Frag model. For model-to-code transformation we have
then implemented code generators that produce corresponding interfaces and concrete implementations.

For demonstrating and safeguarding the functionality of MORSE repositories we have developed executable tests.
Like the implementation of MORSE these tests are model-driven and automatically generated. In a test class, a set of
objects with their properties and references – as derived from the model – is first populated and filled with random
values according to their type. Various tests follow that check the functionality of the implementation, such as the
creation of MDE projects, artifacts, and their associations. For maximizing the coverage of these tests, we made use
of a coverage-based testing tool [181, 56] during development. Besides these model-driven tests, additional tests can
be supplied. Also the template itself can be extended.

Finally, we have coupled MORSE repositories with a system for CI [155, 100]. A CI server creates and tests a
build by executing the appropriate MDE workflow of a project. As Maven [157] is commonly used by CI systems
for building and testing we generate appropriate project object model (POM) files for MORSE repositories and the
registry. Besides a component test of MORSE repositories and the registry, the CI server runs automatic system tests
with other MDE components that it manages: when changes to the MORSE repository, the registry, or other MDE
components occur, the CI server performs all necessary tests and in case of a failure gives rapid feedback to the
developers. This way, evolution of the MORSE repository or other MDE components is eased, as errors due to the
integration of components are detected early and can be fixed timely.
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depicted in the figure (Step 3), they may be also automatically generated from models.

If a meta-model evolves, MORSE generates appropriate services and service requester

agents. This simplifies maintenance of the model-aware services that can also automatically be

instructed to work with the new version.

MORSE
Services

MORSE
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Repository

1 generate & deploy

2 generate service clients

Model-Aware 
Services

4 store & retrieve models

3 develop

Service
Developer

Figure 3.8: Supporting Model-Aware Services with Service Clients

We will now describe the MORSE services that provide retrieve and storage functionalities

for models in a SOA and realize the transparent UUID-based model versioning as explained

in Section 3.4.2. These services are automatically generated from meta-models and exposed as

XML 9 and representational state transfer (REST)ful 10 Web services. Model-aware services can

thus choose between these implementations. Note that in addition to a service implementation

MORSE also generates service requester agents, i.e., proxies, (see also Step 2 of Figure 3.8) for

using the MORSE services.

All of the generated software modules are organized as Maven [157] projects and distributed

using a Maven repository [116]. In this way, service developers such as displayed in Figure 3.8

are provided with the client software modules for integrating with the MORSE services and are

thus supported for using models at runtime. With Maven it is very easy to setup a dependency

(see also Listing 6.3) that automates the retrieval and use of required modules.

With the model-driven generation, the deployment of services, and the distribution of service

requester agents the major part for supporting a new or evolved model at runtime is realized and

fully automated. At present, for this, MORSE supports two different modeling technologies with

Ecore – which is the EMF [162] implementation of the EMOF M3 meta-meta-model (cf. [131])

– to be natively supported. Models that conform to other M3 models can be supported with a

model-to-model transformation and a mapping to Ecore if necessary as well. Please note that
9realized with the Java API for XML - Web Services [104] (JAX-WS)

10realized with the Java API for RESTful Web Services [75] (JAX-RS)
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while for a technical realization MORSE itself builds on EMF, MORSE tries not to place any

restrictions on the use of different model technologies. MORSE services and its operations in

particular are agnostic to modeling technologies and serialization formats. Support for further

modeling technologies can be realized in the MORSE services if necessary. As a result, model-

aware services are not limited to work with EMF but can use different model technologies as

well.

Table 3.2: MORSE Service Operations

Response Operation Description
boolean exists does a model with a UUID exist?
boolean isHead is the object (specified by UUID) version-independent?
UUID[] list returns the VIIDs of all models
UUID[] versions returns all VSIDs of a model
<Class>[] query search for models; support of

various query parameters
<Class> retrieve a model is retrieved by UUID
UUID create a VIID is returned
UUID update a VSID is returned
UUID delete a VSID is returned
UUID[] list<Role> returns the UUIDs for a role
UUID add<Role> a VSID is returned
UUID remove<Role> a VSID is returned
UUID clear<Role> a VSID is returned

For each class of a meta-model a service is generated with basic operations such as create,

retrieve, update, and delete (CRUD) for the management of models as listed in Table 3.2.

The UUIDs of all version-independent models can be obtained by calling the list operation.

Similar operations are generated for the management of references.

The exists operation checks if a model for a provided UUID is found in the repository.

Whether a UUID is a version-independent or version-specific UUID can easily be checked using

the isHead operation. The versions operation returns the various version-specific UUIDs of

a model. The query operation returns a set of serialized 11 models that match specified query

parameters. These parameters support the various Java Persistence Query Language [54] (JPQL)

clauses such as JOIN, WHERE, or ORDER. For pagination (cf. [54]) also an index for the first result

can be specified as well as the number of maximum results returned.
11The EMF supports XMI [135] and Extensible Markup Language [29] (XML) [29] for the serialization of Ecore-

based models. Support for other modeling technologies and serialization formats can be added as mentioned.
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3.6 Related Work

The MORSE approach particularly focuses on the management of models of service-based sys-

tems and their accessibility during runtime. For this reason, a model repository with versioning

capabilities is deployed (see Section 3.4.2). It abstracts from modeling technologies and its

UUID-based implementation allows for a straightforward identification of models and model

elements. There are a number of related model repositories. In Table 3.3 we list their methods

of identification for models and model elements. Table 3.4 indicates supported modeling tech-

nologies and the smallest UV. Finally Table 3.5 compares navigation and search capabilities of

the different model repositories. In the following we will compare to the related work and to the

data from the tables.

Table 3.3: Identification of Model and Model Elements in Model Repositories

Repository Model Model Element
Identification Identification

AMOR [9, 30] URL ID
AtlanticZoo [12] URL NO

CDO [160] URL URI-Fragment
EMFStore [112, 111, 110] ID ID
MDR [122] ID URI-Fragment
ModelBus [151, 7, 79] URL NO

MORSE UUID UUID
Odyssey-SCM [128, 137] ID URI-Fragment
Odyssey-VCS 2 [127] ID URI-Fragment

The Adaptable Model Versioning [9] (AMOR) model repository, the successor of the Mod-

elCVS [106] and SMoVer [8] model repositories, has a focus on the versioning aspect of

model management (see also [10]), e.g., for the conflict resolution in collaborative development

(cf. [31]). For this reason the smallest UV can be set to model elements. Models in AMOR

are identifiable by Uniform Resource Locator [77, 22]s (URLs). In addition IDs are assigned

to model elements. While these are unique across models they are not over time, i.e., model

elements from different versions of a model contain the same ID. AMOR builds on top of EMF,

focuses on the design time and addresses important research questions in the field of conflict

detection and resolution.

The AtlanticZoo [12] is a simple, web-based model repository, thus models are accessible

via URLs. It aims at constituting a recognized repository for open-source models. For this

purpose and for maximizing potential usage of contributed models they are automatically trans-
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formed from and into diverse languages such as Ecore, Kernel Meta Meta Model [99, 165]

(KM3), Web Ontology Language [17] (OWL), or UML. Versioning is not in focus of this repos-

itory that rather can be characterized as a collection of models. These are stored in a serialized

form. For this reason the repository is agnostic to modeling technologies and is ignorant of

model elements. Thus, no model element identifiers exist that are supported by the repository.

Table 3.4: Modeling Technologies and Units of Versioning in Model Repositories

Repository Modeling Unit of
Technology Versioning

AMOR EMF ANY

AtlanticZoo ANY model
CDO EMF M2 class instance
EMFStore EMF ANY

MDR MOF 1.4 [132] ANY

ModelBus ANY model
MORSE ANY M2 class instance
Odyssey-SCM MOF 1.4 ANY

Odyssey-VCS 2 EMF ANY

The Connected Data Objects model repository [160] (CDO) is a server-client framework for

EMF models. In EMF a model element is identifiable within a model 12 via a so called Uniform

Resource Identifier [77] (URI)-fragment. Usually, although pluggable in CDO, a RDBMS is

used as a persistence backend (e.g., with Teneo [167]) in which case the smallest UV is at anM2

class instance level. The CDO framework establishes a CDO protocol on top of the Net4j [166]

communication framework and also aims to support the execution of server-side queries.

EMFStore [112, 111, 110] is a model repository for the Eclipse integrated development en-

vironment (IDE) that employs operation-based change tracking, conflict detection, and merging.

As a result it is specific to EMF models that Ecore class instances need to inherit an EMFStore

class in order to be tracked and managed by EMFStore. While EMFStore does not support

complex queries, (server-side) model navigation may be realized. IDs are used for identifying

models and model elements. These are unique across the space of models and model elements

but not across time, i.e., models from previous versions contain the same IDs. The UV in EMF-

Store due to its operation-based approach can be of any size.

The NetBeans metadata repository [122] (MDR) was a MOF 1.4 compliant model repository

for the NetBeans IDE that is not actively developed and maintained any more. It was used as a

persistence backend by Odyysey-SCM (see below).
12A Resource (identifiable by a URL), to be more precise in terms of EMF
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ModelBus [151, 7, 79] is a model-based tool integration framework. It addresses the het-

erogeneity and distribution of model tools and realizes transparent model update. Designed as

an open environment, ModelBus focuses on integrating functionality such as model verification,

transformation, or testing into a service bus. It is agnostic to modeling languages and uses a VCS

as persistence backend. Thus, models are stored in their serialized forms. As a consequence the

UV is the entire model and no navigation or search capabilities exist. Models in ModelBus are

identified by URLs but no identifiers exist for model elements.

Table 3.5: Model Navigation and Search in Model Repositories

Repository Model Complex
Navigation Search

AMOR NO NO

AtlanticZoo NO NO

CDO YES YES

EMFStore YES NO

MDR NO NO

ModelBus NO NO

MORSE YES YES

Odyssey-SCM NO NO

Odyssey-VCS 2 NO NO

Odyssey-SCM [128, 137] and Odyssey-VCS 2 [127] identify models using XMI IDs.

Model elements are identified with additional URI-fragments. While Odyssey-SCM used

MOF 1.4 [132], Odyssey-VCS 2 builds on EMF. Great focus is dedicated to the versioning

aspect and conflict detection. For this the authors defined the terms unit of versioning (cf. [137,

p.4]) (UV) and unit of comparision (cf. [137, p.3]) (UC) and make these customizable for the

SCM of UML model elements. While complex model search scenarios and navigation are

not supported by the repository, model navigation is at least possible for source and destina-

tion models of model transformations in Odyssey-MEC [51] through exogenous "records of

transformation".

In contrast to the mentioned model repositories and model-based tool integration frame-

works, Moogle [118], a model search engine, realizes an inverse approach of indexing and

potentially managing models. It allows for complex queries and can help finding relevant mod-

els for MDD projects during design time. As such it is not (yet) suited for our purposes that

target runtime systems.

All mentioned model repository approaches do not provide transparent UUID-based model
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(element) versioning capabilities, a central contribution of our work. From the compared repos-

itories, MORSE is the only model repository that allows models and model elements to be iden-

tified by means of simple UUIDs, i.e., without the need of multiple identifiers. We consider the

unique identification of models and model elements as important in regard to the runtime use of

models. This is because different runtime systems may require different versions of a model or

model element. Hence, model evolution is harder in these approaches.

In contrast to most model repositories, the MORSE repository abstracts from technologies

and focuses on MDD projects. This is, the MORSE repository comes with explicit support for

the management of MDD projects and supports the MDD process (e.g., through a navigation

compatibility check as presented in the previous chapter or a generation service), something that

is not supported by many other repositories (e.g., workflows, that cover processes of MDD, have

to be defined on top of ModelBus).

MORSE is the first model repository that specifically targets at integration with runtime ser-

vices. Other work mainly focuses on the design time, e.g., in order to support the MDD process.

With our MORSE approach however we aim at adopting models at runtime, i.e., using mod-

els beyond the model-driven generation step. Thus, MORSE focuses on runtime services and

processes and their integration, e.g., through monitoring, with the repository and builds on the

simple identification for making models accessible at runtime.

None of the mentioned model repositories offers an integration scheme for runtime events as

we will show in Chapter 6 or the automated model generation and deployment capabilities. As

shown in this chapter, however, for supporting models at runtime, if model evolution is possible

some similar capabilities would be needed. However, our approach is general enough and not

limited to MORSE: It should be possible to extend all the model repository approaches that we

mentioned using a frontend that extends them with transparent UUID-based model versioning

capabilities and/or at least UUID-based identification and provides a model-driven component

for runtime generation and deployment.

3.7 Summary

We have presented the Model-Aware Service Environment [82, 87, 86] (MORSE) for facilitating

services to dynamically reflect on models. For this purpose we have proposed a model repository

that manages MDD projects and supports the identification of and reflection on models, model

elements, and model relationships.

Many features of CDEs, such as instant messaging, discussion forums, or voting can be

applied to any domain. In contrast to these, information management is more domain depen-

dent: By contextualizing information, a CDE gains an understanding on its type, semantics,
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dependencies, and properties. A repository that manages these information, allows for tailored

information retrieval (IR). MORSE repositories with their conceptual model of MDE projects

and artifacts allow for this kind of IR, and, thus, address the information management challenge

of CDEs with regard to MDE.

The MORSE repository stores and manages models, model elements, model instances, and

other MDD artifacts. It offers read and write access to all artifacts at runtime and design time.

Moreover, it stores relationships among the MDD artifacts, e.g., model relationships such as

instance, inheritance, and annotation relations. Information retrieval (i.e., the querying of mod-

els) is supported for all MDD artifacts and relationships via service-based interfaces, which ease

the integration of MORSE into service-oriented environments. For reflectively exploiting the

relationships of MDD artifacts, the MORSE IR interface provides various methods, too. An

example of such a reflective relationship access is to retrieve all model instances for a model.

By traversing the relationships and exploiting properties, queries can be constructed in an inter-

active, stepwise manner. For performance reasons queries can also be combined and executed

as complex queries (e.g., return all projects that models annotate model instances of a certain

model). We addressed the need for the management of different model versions with a transpar-

ent versioning in MORSE. This way, models can be manipulated at runtime of the client system

with minimal problems regarding maintenance and consistency. New versions and old versions

of the models can be maintained in parallel, so that old model versions can be used until, e.g.,

all their model instances are either deleted or migrated to the new model version.

For facilitating services to work with models at runtime, MORSE services are automatically

generated and deployed for domain concepts that are expressed as EMF models. That is, for

every concept a service is generated with basic create, retrieve, update, delete, and query oper-

ations. For the different relations between concepts appropriate add and remove operations are

generated in addition for associating and deassociating role instances.

These services, that realize the transparent versioning, can be used by other services, that

we called model-aware services. For easing the development of such services MORSE can also

automatically generate appropriate service requester agents.

The presented services of the model repository are not only of interest for the runtime but

also for design time components. With appropriate tool support, the MORSE repository con-

stitutes a common space for developers in a distributed environment for storing and managing

MDD projects and models that can be consulted by the runtime as well. This way, MORSE

bridges the gap between the MDE phases and unifies the use of models in MDE. In the follow-

ing chapter we discuss model-aware systems that may interact with MORSE for dynamic model

look-up and reflection.
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In a number of scenarios, services generated using a model-driven development (MDD) ap-

proach could benefit from “reflective” access to the information in the models from which they

have been generated. Examples are monitoring, auditing, reporting, and business intelligence

scenarios. Some of the information contained in the models of a service can statically be gen-

erated into its source code. In a distributed and changing environment this approach is limited,

however, due to the fact that models and their relations evolve after the generation and deploy-

ment of a service. For example, the current model of a service might be different from the

deployed version of the service. Thus, for retrieving an up-to-date version of a model, dynamic

model look-up during runtime becomes necessary.

We call systems, services, and processes that contain, emit, or use model traceability in-

formation for model look-up and reflection model-aware. These systems may interact with the

previously presented Model-Aware Service Environment [82, 87, 86] (MORSE) at runtime and

can profit from its reflective functionalities. In this chapter we illustrate how model-aware ser-

vices can interact with the repository and what information they may expose. Also we will show

how they can be used by other services and how they can be created. Finally, we demonstrate an

integration of process-driven service-oriented architectures (SOAs) with model-aware services,

the foundation for model-aware monitoring of business processes that we will present in the

following chapter.

4.1 Model-Aware Services

In a model-driven SOA, the services are in large parts generated from models. To facilitate

monitoring, governance, and self-adaptation of SOAs, the information in these models can be

used by services that monitor, manage, or adapt the SOA at runtime. If a service for monitoring,

management, or adaptation in an SOA is dependent on models, and the meta-model changes,

usually the service needs to be manually adapted to work with the new version, recompiled, and

redeployed. This manual effort impedes the use of models at runtime. Besides the navigation

compatibility check (see Section 2.4), we have presented the automatic generation of MORSE

services (see Section 3.5) to address this problem. Model-aware services, that we introduce in

this section, are supported with these services from the Model-Aware Service Environment that

manages models and offers transparent versioning of them (see previous chapter). MORSE uses

the model-driven approach to automatically generate and deploy MORSE services that can be

used by the model-aware services to access models in the correct version. In this way, moni-

toring and adaptation in SOAs can be better supported and the manual effort to evolve services

for monitoring, management, or adaptation, which are based on models at runtime, can be min-

imized. To the best of our knowledge, our approach is the first approach that makes this link
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between services and the models from which they are generated at runtime.

4.1.1 Interaction with MORSE

Model-driven, model-aware services can retrieve the MORSE objects from which they have been

generated. This is achieved by embedding the Universally Unique Identifier [113, 98]s (UUIDs)

of the objects into the services, such as the UUID of the build as well as UUIDs of corresponding

models, model elements, or transformations. At runtime, the services can access these UUIDs

and retrieve the MORSE objects from the repository. A model-aware service typically reflects

on the information and applies some logic for its further execution or uses the information for

performing model-transformations.

Figure 4.1 illustrates a sequence diagram of a model-aware service. After a project and MDD

artifacts have been created and checked into the repository, a build for the project is initiated by

a service client. The builder service retrieves the artifacts and generates a model-aware service,

weaving corresponding UUIDs into the code for traceability. Afterward, it is deployed to a Web

service framework. Next, a requester agent invokes the service and causes it to interact with

the repository. For the models from which it has been generated, it needs, e.g., to discover and

consider new model relations such as new annotations. Therefore it passes the embedded UUIDs

of its models to the information retrieval (IR) interface of the model repository and requests

for the model relations. These are then retrieved and evaluated. Relevant model relations are

identified and the related models are requested. Finally, the models are processed and a response

is issued to the service requester.

Please note that the MORSE builder in Figure 4.1 uses the MORSE repository to obtain the

models of the model-aware services in order to generate code for them. This sequence diagram

hence illustrates how an MDD tool (in this case the generator of MORSE) can make use of the

MORSE architecture in the same way as other components querying models, such as monitoring

components.

4.1.2 Informational Operation

We have seen how model-aware services can interact with the repository, e.g., after invocation.

Besides this, model-aware services may also offer information on them to other services (see Λ in

Figure 3.1), i.e., disclose the UUID of their MBuild. The caller can use the returned UUID from

the model-aware service for requesting further information from the MORSE repository such as

the MProject or the MArtifacts that have been used for the MBuild, i.e., for generating the

model-aware service.



CHAPTER 4. MODEL-AWARE SYSTEMS 58

IDE : 
Client

MORSERepository 
: ModelRepository

create project

design
MDD artifacts

The 
generator 
is created 
and 
invoked by 
the 
repository.

MORSE Builder 
: CodeGenerator

retrieve artifacts

Generates
model-aware

service

create build

checkin
MDD artifacts

Model-
AwareService 
: WebService

run build

deploy

look up MORSE object(s)

Service
needs to 
reflect on 
the models 
from which 
it has been 
generated 
(e.g., to 
discover 
new model 
relations).
For its 
embedded 
UUID(s) it 
performs 
lookups.

The 
generator 
fetches the 
artifacts 
from the 
repository 
for running 
a build.

UUIDs are 
assigned for 
MDD artifacts 
that are 
associated 
with the 
project.

WSFramework : 
RuntimeEngine

Client : 
WebService

invoke

Weave UUIDs 
of MORSE
objects into the 
code for 
traceability.

A client 
invokes 
the 
model-
aware 
Web 
service.

reflect on
models

Identify 
relevant 
model 
relations.

look up MORSE object(s)

process
models

respond

Works 
with the 
models.

The
relevant, 
related 
models are 
requested.

create instance

Figure 4.1: Sequence Diagram of a Model-Aware Service

4.1.3 Creating Model-Aware Services

The MORSE builder supports the generation of the presented types of model-aware services, i.e.,

it creates Web Services Description Language [40] (WSDL) or Web Application Description

Language [74] (WADL) interfaces and Java implementations, as follows:

• For any build of a MDD project, a dedicated, standalone Web service can be generated

that provides information on the build. For the endpoint of such a Web service that shall

contain a uuid operation that returns the UUID of the MBuild of the service we pro-

pose a Uniform Resource Identifier [77] (URI) that ends with /mas/MBuild as a naming

convention.
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• For generating model-aware services, templates can be reused in projects for extending

the interface with the desired operation, for embedding the UUIDs to the service, and for

generating the service requester implementation for interaction with the repository.

4.2 Integrating with Model-Aware Services

A service or process may integrate with and use model-aware services (see also B in Figure 3.1).

A model-aware service can support model-driven systems in the sense that it can look-up and

work with the MDD artifacts from which they have been generated. During runtime, it receives

events from these systems that contain MORSE identifiers and queries the model repository.

4.2.1 Enriching Process-Driven SOAs with Traceability

As an example let us consider processes with the Business Process Execution Language [139]

(BPEL) as a target technology for a process-driven SOA. Such processes can be generated from

platform-independent, conceptual models as we will illustrate in the following chapter. The

model repository manages the respective MDD projects and artifacts. In general, processes and

process engines do not interact with the model repository or model-aware services. However,

they can integrate with model-aware services in the sense that the latter receive events from

the engine that hold the UUIDs of MORSE objects. Thus, these UUIDs have to be supplied as

traceability information to the process and during process execution UUIDs have to be emitted

that correspond to the process or process activities.

For example, BPEL extensions provide a standard way to realize this (cf. Listing 6.1 in

Section 6.3). The traceability element – defined in the Extensible Markup Language [29]

(XML) Schema [170, 25] shown in Listing 4.1 – that indicates the UUID of the build as

an attribute, is a sequence of rows that maps BPEL elements to the uuids of corresponding

MORSE objects. The XML Path Query Language [21] (XPath) is chosen as the default query

language for selecting the XML elements of the BPEL code. For extensibility, an optional

queryLanguage attribute, that has the same semantics as in BPEL (cf. [139, Section 8.2]), can

specify an alternative query language or XPath version.

<?xml version="1.0" encoding="UTF−8" standalone="no"?>
<schema

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:morse="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability"
xmlns:xmi="http://www.omg.org/XMI"
targetNamespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability">

<import namespace="http://www.omg.org/XMI"
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schemaLocation="http://www.omg.org/spec/XMI/20071213/XMI.xsd"/>
<complexType name="Traceability">

<choice maxOccurs="unbounded" minOccurs="0">
<element name="row" type="morse:TraceabilityRow"/>
<element ref="xmi:Extension"/>

</choice>
<attribute ref="xmi:id"/>
<attributeGroup ref="xmi:ObjectAttribs"/>
<attribute name="build" type="string"/>

</complexType>
<element name="traceability" type="morse:Traceability"/>
<complexType name="TraceabilityRow">

<choice maxOccurs="unbounded" minOccurs="0">
<element name="uuid" nillable="true" type="string"/>
<element ref="xmi:Extension"/>

</choice>
<attribute ref="xmi:id"/>
<attributeGroup ref="xmi:ObjectAttribs"/>
<attribute name="queryLanguage" type="string"/>
<attribute name="query" type="string" use="required"/>

</complexType>
<element name="traceabilityRow" type="morse:TraceabilityRow"/>

</schema>

Listing 4.1: MORSE Traceability XML Schema

Note that this traceability matrix can annotate any XML-based target code and can

often be supplied as an inline extension 3 and does not have to be defined in a separate file. As

a consequence, our approach is not limited to BPEL but can directly be applied to other XML

and Web service based technologies and standards. The traceability information can also be

applied to programming languages such as Java or C#, e.g., as annotations to classes, interfaces,

methods, and parameters. These annotations can be added to the source code (cf. [33]) or can be

realized exogenously in an annotation file that decorates annotated classes.

In our BPEL example, during generation time, the MORSE builder (cf. Figure 3.2 and Sec-

tion 4.2.2) weaves UUIDs of the MORSE objects into BPEL code (see A in Figure 3.1). At

deployment time, the BPEL engine needs to support the BPEL extension, i.e., for the names-

pace that is used for the MORSE traceability extension, there is an implementation at the BPEL

engine in place. At runtime, this extension submits events that contain the identifiers of, e.g.,
3Supposed that such extensibility is provided with an any element in the XML schema.



CHAPTER 4. MODEL-AWARE SYSTEMS 61

the process or process activities, an event type, and optional further properties. Some events

of interest are process instantiation and termination and pre-events and post-events for the ex-

ecution of activities. Finally, the events are received by model-aware services that look-up the

MORSE objects for, e.g., monitoring, auditing, reporting, or business intelligence scenarios. We

will cover the topic of monitoring in Chapter 6.

4.2.2 Creating Services and Processes that support Model-Aware Services

For services and processes that rely on model-aware services, UUIDs need to be supplied for

services or processes as well. During generation time, the MORSE builder creates a traceability

mapping that can be embedded into XML documents as demonstrated. Although we have shown

an integration with model-aware services using model-driven BPEL processes, this approach

can similarly be applied to different technologies and frameworks, e.g., message interceptors for

Web services.

4.3 Deployment Service

The MORSE builder service is complemented with a deployment service that supports the de-

ployment of business processes and Web services. For the deployment of business processes

we have developed a validation/deployment/execution (VDE) framework (cf. [109, 84]). This

framework permits generic validation, (un-)deployment, and execution of BPEL processes. In

this way flexibility concerning the BPEL engine of choice is given and a unique interface for

validation, deployment, and execution can be used.

In order to establish a software architecture that fulfills the requirement to include additional

BPEL engines without having to recompile the framework, a plug-in 4 architecture was chosen

using the abstract factory software pattern [68, 67]. In the remainder of this section we describe

the basic functionality of the VDE framework that interface is described in Table 4.1.

Validation Similarly to the deployment (see below), also a validation of business processes,

can be realized in a plug-in fashion. A foundational unifying framework based on the π–calculus

that could be used for validating various properties of a business process within the VDE frame-

work has been developed in [117] and [124]. Alternative semantic validation may also be real-

ized, e.g., after transforming BPEL to petri nets [182].
4Providers for ActiveBPEL [2] and the Apache Orchestration Director Engine [158] (Apache ODE) have been

implemented.
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Table 4.1: Service Operations of the VDE Framework

Method Description
create archive create an engine specific process archive
deploy deploy an archive / BPEL process
execute execute a BPEL process operation
get deployment information general information on the provider
list deployments list all deployed processes
load deployments load an existing deployment
validate validate the BPEL process
undeploy undeploy the archive / BPEL process

Archive Creation An important functionality for simplifying and unifying the deployment of

processes realized by the VDE framework is the creation of a BPEL archive. Different BPEL

engines require such an archive for the deployment of business processes. However there are

differences in the required structure: In order to generate an appropriate archive for the BPEL en-

gine of choice typically specific descriptors have to be provided together with the BPEL/WSDL

files within a compressed file.

Deployment After a BPEL archive has been generated, deployment can take place. Deploy-

ment of a BPEL archive can be realized in various ways, e.g., by copying the archive to a specific

destination on the file system or by invoking a Web service.

Execution After deployment, instances of the process may be initialized and executed (e.g.,

by invoking a receive activity). For this, the VDE framework particularly supports the In-Only

message exchange pattern [39] (MEP) for the instantiation and execution of business processes.

4.4 Case Study

In order to demonstrate the applicability of the presented approach, we explain a case study.

In this case study a European telecommunication company offers rich multimedia services to

customers. Particularly, the company’s customer can subscribe to content such as video or audio

streams and files, i.e., the customer can, e.g., download tracks from music albums and watch

movies.

In this context, licensing information on the content constitutes a crucial issue: (under which

conditions) is the customer allowed to access a resource? Often, e.g., broadcasting content can

only be obtained if a user executes the request to access such content within the country of the
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broadcasting company. Other possible restrictions are the contract and status of the customer.

Similarly, payment depends on various factors such as the price of the requested content, the

conditions of the customers contract and/or of effective special offers.

The telecommunication company decided to apply MDD technologies for its services.

Therefore, it designed various models, e.g., for licensing and payment information. When the

company modifies its business models for multimedia content, e.g., introduces a special offer, or

if it changes the licensing information, it creates or modifies models accordingly. For enabling

runtime services to dynamically work with these models, the company employs MORSE, i.e.,

models are stored within the model repository and the SOA contains model-aware services that

interact with the repository. As a result, the company is able to address the following issues:

• The current price for the content as well as effective conditions such as originating from

valid special offers or the customers contract conditions are considered for calculating the

price. A special offer can simply be introduced as a new model relation, i.e., the service

does not have to be modified or redeployed.

• Access is granted as specified in the effective licensing model.

• For analyzing customer services the corresponding processes are monitored and related to

their originating models.

Using the builder (see Sections 4.1.3 and 4.2.2) and deployment (see Section 4.3) ser-

vices the ConsumeMultimediaProcess is available at the process engine. An instance is

created when the user wants to download some multimedia content. This process invokes an

AccountingService and a LicensingController service and returns detailed informa-

tion on payment and licensing to the user for acceptance. Both services retrieve the model

instances from the repository and apply an algorithm. If necessary, also the algorithms can be

stored as models and can dynamically be retrieved and executed by the services. We will demon-

strate such a model-aware service in more detail by focusing on the payment service. Its service

invocation from the process is shown in Figure 4.2.

The orchestrating process also notifies a monitor by transmitting the UUID of the model

from which it has been generated. This is shown in Figure 4.3. From the process models BPEL

code is generated with a BPEL extension that notifies the monitor at invocation, as explained

in Section 4.2. A monitor collects information from various processes and process versions and

correlates them for generating statistical reports (containing, e.g., process versions, number &

time of invocations, and duration).

After the AccountingService is invoked, it calculates a price with the effective payment

and content models according to the conditions of the contract and of effective special offers.
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The models are retrieved from the MORSE repository (see also Figure 4.1). Figure 4.4 shows

models that are processed by Algorithm 5 for calculating the price. Besides customer, content,

and purchase information, the models store conditions of a contract and optionally of special of-

fers. For calculating the price, first the effective conditions are determined by applying present

special offers. If the flat rate condition is valid, the customer will not be charged for the down-
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Figure 4.4: Payment Model Instances

Algorithm 5: Payment Algorithm
Input: r ∈ Content, c ∈ Contract
Output: price ∈ Price
begin1

cc←− c.conditions;2

for special ∈ c.subContracts→forAll(sc|isValid(sc)) do3

applyConditions(special.conditions, cc);4

if cc.flatrate then5

return 0;6

if ∅ 6= c.purchases→forAll(p|p.date+24h>now() ∧ p.content=r) then7

return 0;8

if getTotalDownloadVolume(c) < c.conditions.freeDowloadVolume then9

return 0;10

else11

return r.price ∗ cc.discountFactor;12

end13

load. Similarly, a customer may download a content that he already retrieved within the last day

for free. Otherwise, he will be charged the price of the content by considering a discount if he

exceeds his free download volume. After the ConsumeMultimediaProcess determined the

licensing conditions and calculated the price, the customer is informed and can decide to accept

the terms for eventually purchasing the multimedia content. In case access is denied as caused by

some licensing condition, the user can be provided with detailed information for understanding
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the reason. Similarly, he can retrace the payment information by reflecting on the models.

4.5 Related Work

France and Rumpe [65] portray a vision of a model-driven engineering (MDE) research roadmap

that classifies and discusses various problems in the field of MDE. The authors distinguish de-

velopment models 5 and runtime models, that present aspects of an executing system. They state,

however, that – as MDE research matures – this classification may be blurred as both type of

models may be used similarly (e.g., in different phases of the MDE process). Although in our

work we do not specifically define and utilize runtime models, we do contribute to the universal

adoption of models: Model look-up is generically supported (i.e., for all types of models) in

model-aware systems through MORSE.

In contrast to the runtime use of models that describe systems (cf. development models [65]),

a community of researchers focuses on the use of runtime models that represent views of an

executing system: For the generation of middleware configurations, modeling, meta-modeling,

and reflection is combined by Bencomo et al. [18]; Two reflective middleware implementations,

Open ORB and DynamicTAO, are presented by Kon et al. [103] that allow for the inspection

and adaptation of the middleware system; Blair et al. [26] motivate the use of runtime models

for dynamic adaptation scenarios (e.g., in ultra-large-scale (ULS) systems); Finally, the idea to

use models at runtime is pursued by Bencomo et al. [19] that propose an approach for a runtime

reflection in the context of system requirements and employ requirements as runtime entities.

All of these works and our approach focus on runtime reflection on models in runtime sys-

tems (e.g., for system adaptation). For this MDE modeling and generation techniques are utilized

for creating and adapting systems. One point that distinguishes our approach from the literature

is that traceability information is embedded during the generation step into model-driven sys-

tems, making them model-aware. As a result model-aware systems can expose their traceability

information to other systems and can emit the information within events. Beyond that, and for

the reflection on models, they can dynamically retrieve information from the models via model

look-up in a distributed environment, which is an important distinction in our work. In a pull

style, model-aware systems can actively query, retrieve, and reflect on models at runtime in a

SOA. In contrast, in [19] goal models are synchronized with the architecture in a push style. For

scalability reasons we propose to realize such synchronization in a publish/subscribe manner,

however. For this the MORSE repository notifies interested parties by exposing a Really Simple

Syndication [179] (RSS) feed or by applying an event-driven approach (e.g., in combination

with complex event processing (CEP)): In case a model is changed, an event with traceability
5I.e., requirements, architectural, implementation, and deployment models
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information is raised (submitted to a CEP engine and reflected in the RSS feed) and – using the

MORSE services – model-aware services can retrieve the respective models.

Model-aware systems constitute a general approach for dynamic model reflection in a dis-

tributed Internet-based environment at runtime. As such it can easily be employed for different

scenarios (e.g., in Chapter 6 we will apply it to the compliance monitoring of business pro-

cesses). Our general approach also eases the unification of model use and management during

different phases of the MDE process: this way, we particularly support that use and management

of development models (cf. [65]) at runtime. The existing literature either is concerned with de-

velopment or runtime aspects; in contrast, and following the idea from France and Rumpe [65],

we argue that by making the information of development models accessible at runtime we pro-

vide richer means for analyzing and monitoring service-based systems. In the following chapter

we will illustrate a scenario in which we combine different models through the power of MDE,

model-aware systems can reflect on during runtime.

4.6 Summary

In this chapter we have presented model-aware services that may interact with the MORSE ser-

vices for dynamic information retrieval on models and MDD projects. We have shown how

traceability information is introduced and exposed. Also, we have demonstrated how services

and processes can integrate with model-aware services, e.g., for monitoring purposes. For this,

traceability information emitted in process events is used and dynamic model look-up is sup-

ported through MORSE that consolidates design- and runtime use and management of models.

Finally, we have showcased our contributions with a case study.
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At present requirements are rarely directly connected to the systems they apply to on a con-

ceptual level. That is, requirements as captured in form of models are not formally related to

system models. Although requirement models and monitoring systems may have been devel-

oped using a model-driven engineering (MDE) methodology its system requirements are speci-

fied independently from the system models. Yet, they are not modeled in the design phase of the

MDE project and linked to the system models. This is partly due to the isolation of the MDE

phases as induced by the generation step: generated systems usually do not comprise traceabil-

ity information and are not per se aware of their requirements. Another reason, also related to

the isolation of the MDE phases, why requirements are expressed separately from the modeling

of system models as realized in the design phase is that they may change during runtime dy-

namically. However, the generation step is static. Besides this it may only be partly beneficial

to apply MDE for specifying system requirements and so far no incentives exist for develop-

ers to relate resulting requirements models to system models. As a consequence model-driven

systems are either not aware of their requirements themselves 2 or cannot relate both system

and requirement models at runtime. This, however, would ease the indexroot cause!analysisroot

cause analysis in case of violations (cf. next chapter). In order to address these issues we pro-

pose to (1) utilize modeling techniques for specifying system requirements and (2) link these

with the models systems are generated from. In this chapter, we investigate on the feasibility of

a domain-specific requirements view in the context of a model-driven project. Finally, depicting

requirements as an architectural view [97] supports separation of concerns (SoC) with regard

to the various models in the system which is one of the successful approaches to manage com-

plexity [70]. We demonstrate our approach for a compliance metadata view for process-driven

service-oriented architecture (SOA) systems that specifies compliance requirements and ratio-

nales of an architecture. Thus, models are used for describing the system in terms of process

models and its system requirements are specified in a requirements view model.

5.1 Compliance in Service-Oriented Architectures

We use a case from the area of business compliance in process-driven SOAs to illustrate our

model-driven and domain-specific requirements view approach. Information technology (IT)

compliance means in general complying with laws and regulations applying to an IT system,

such as the Basel II Accord [15], the International Financial Reporting Standard [91]s (IFRSs),

the Markets in Financial Instruments Directive [60] (MiFID), the Financial Security Law of

France (LSF) [126], the Dutch Corporate Governance Code [169] (Code-Tabaksblat), and the
2I.e., additional components such as monitors non-intrusively need to examine the systems behavior in regard to

its requirements.
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Sarbanes-Oxley Act [49] (SOX). These cover issues such as auditor independence, corporate

governance, and enhanced financial disclosure. Laws and regulations are, however, just one

example of compliance concerns that occur in process-driven SOAs. There are many other

rules and constraints in a SOA that have similar characteristics. Some examples are service

composition and deployment rules, service execution order rules, information exchange policies,

security policies, quality of service (QoS) rules, internal business rules, laws, and licenses.

Compliance concerns stemming from regulations or other compliance sources can be real-

ized using a number of so-called controls. A control is any measure taken to assure a compliance

requirement is met. For instance, an intrusion detection system, a firewall, or a business process

realizing separation of duties (SoD) are all controls for ensuring systems security. As regula-

tions such as SOX are not very concrete on how to realize the controls, usually, the regulations

are mapped to established norms and standards describing more concretely how to realize the

controls for a regulation. For example, Control Objectives for Information and Related Tech-

nology [90] (COBIT) is a standard framework that defines among others controls for ensuring

system security like the examples named before. A risk assessment is necessary to understand

for instance the possible impacts of missing or failing controls. Controls can be realized in a

number of different ways, including manual controls, reports, or automated controls.

5.2 View-Based Modeling Framework

In this section, we give an overview of the View-based Modeling Framework [173, 84, 171, 172]

(VbMF) that is used as a foundation for implementing our requirements view. Integrated with

the Model-Aware Service Environment [82, 87, 86] (MORSE), it is a model-driven infrastruc-

ture that can generate code for process-driven SOAs in a view-based fashion. For collaborative

development, all models (i.e., meta-models and their instances) are stored and versionized in the

MORSE repository. These can latter on be accessed by runtime clients (i.e. by model-aware sys-

tems that we presented in the previous chapter). Changes to meta-models, when undertaken, are

regularly checked for navigation compatibility (cf. Chapter 2) so that developers retrieve early

feedback on the necessity of co-evolution.

After explaining the basics of VbMF, we explain the view extension mechanisms used to

implement our domain-specific requirement view for compliance. Having such view extension

mechanisms in place is an important part of our solution for model-driven requirements views:

This way the requirements view can extend or annotate the existing models that are used to

generate the system.

A typical business process in a SOA embodies various tangled concerns, such as the control

flow, data processing, service and process invocations, fault handling, event handling, human
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Figure 5.1: Layered Architecture of the View-based, Model-driven Approach

interactions, transactions, to name but a few. The entanglement of those concerns increases

the complexity of process development and maintenance as the number of involved services

and processes grow. In order to deal with this complexity, we use the notion of architectural

views [97] to describe the various SOA concerns. In particular, a view is a representation of one

particular concern of a process. We devise different view models for formalizing the concept of

architectural view.

Figure 5.1 shows basic process concerns such as the control flow, service invocations, and

data processing, in terms of the flow view, collaboration view, and information view model,

respectively. In addition to these concerns, the human view (cf. [85]) captures human aspects

of business processes, i.e., the participation of users in processes. Finally, the transaction view

allows to define transactions within the control flow. All these view models are built up around

a Core model shown in Figure 5.2. The Core model is intentionally developed for conceptually

representing the essence of a business process and the services with which it interoperates. That

is, the Core model covers three distinct concepts: the process, the relationships between process

and the environment, i.e., the services, and the internal representation of the process, i.e., the

process views. Process concerns described by the view models merely relate to these concepts

in the sense that each concern involves either the process’s interior or exterior, or both. In
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other words, the other view models derive and extend the foundational concepts provided in the

Core model. As a result, the Core model plays an important role in our approach because it

provides the basis for extending and integrating view models, and establishing and maintaining

the dependencies between view models [173].

Element

Service Process View**

view

*
requires

1..*
provides

element*

name:String
nsURI:String

NamedElement

CoreModel

process1service*

Figure 5.2: VbMF Core Model – Used for View Integration

5.2.1 Separation of Concerns

Our view-based approach is not limited to these concerns, but can be extended to cover various

other concerns. For instance, human interactions, transactions, event handling have been realized

as extensions [173, 85]. This view extension mechanism is also used later for introducing our

domain-specific requirements view.

A new concern can be integrated into our approach by using a corresponding New-Concern-

View model that extends the basic concepts of the Core model and defines additional concepts

of that concern. By adding new view models for additional process concerns, we can extend the

view-based approach along the horizontal dimension, i.e., the dimension of process concerns, to

deal with the complexity caused by the various tangled process concerns.

5.2.2 Abstraction Levels

There are many stakeholders involved in process development at different levels of abstraction.

For instance, business experts require high-level abstractions that offer domain or business con-

cepts concerning their distinct knowledge, skills, and needs, while IT experts merely work with

low-level, technology-specific descriptions.
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The model-driven development (MDD) paradigm [176] provides a potential solution to this

problem by separating the platform-independent models (PIMs) and platform-specific models

(PSMs). Leveraging this advantage of the MDD paradigm, we devise a model-driven stack that

has two basic layers: abstract and technology-specific. The abstract layer includes the views

without the technical details such that the business experts can understand and manipulate. Then,

the IT experts can refine or map these abstract concepts into platform- and technology-specific

views.

The technology-specific layer contains the views that embody concrete information of tech-

nologies or platforms. On the one hand, a technology-specific view model can be directly de-

rived from the Core model, such as the transaction view model shown in Figure 5.1. On the other

hand, a technology-specific view model can also be an extension of an abstract one, for instance,

the Business Process Execution Language [139] (BPEL) collaboration view model extends the

collaboration view model, the WS-BPEL Extension for People [3] (BPEL4People) view model

extends the human view model, etc., by using the model refinement mechanism. By refining

an abstract layer down to a technology-specific layer, our view-based approach helps bridging

the abstraction levels along the vertical dimension, i.e., the dimension of abstraction, which is

orthogonal to the horizontal dimension.

According to the specific needs and knowledge of the stakeholders, views can be combined

to provide a richer view or a more thorough view of a certain process. For instance, IT ex-

perts may need to involve the process control flow along with service interactions which is only

provided via an integration of the flow view with either the collaboration view or BPEL collab-

oration view.

Based on the aforementioned view model specifications, stakeholders can create different

types of views for describing specific business processes. These process views can be instances

of the concerns’ view models, extension view models, or integrated view models (see Fig-

ure 5.1). They can be manipulated by the stakeholders to achieve a certain business goal, or adapt

to new requirements in business environment or changes in technology and platform. Finally,

we provide model-to-code transformations (or so-called code generations) that take these views

as inputs and generate process implementations and deployment configurations. The resulting

code and configurations, which may be augmented with hand-written code, can be deployed in

process engines and application servers for execution.

5.2.3 Integration of Views

Views can be integrated via integration points to produce a richer view or a more thorough

view of the business process. We devise a name-based matching algorithm (see Algorithm 6)
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Figure 5.3: Flow View: Travel Booking Example

for realizing the view integration mechanism. This algorithm is simple, but effectively used

at the view level (or model level) because from a modeler’s point of view in reality, it makes

sense, and is reasonable, to assign the same name to the modeling entities that pose the same

functionality and semantics. Nonetheless, other view integration approaches such as those using

class hierarchical structures or ontology-based structures are applicable in our approach with

reasonable effort as well (see [173] for details).
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Algorithm 6: Name-Based Matching
Input: Entity v1 ∈ View V1, View V2
Output: Entity v2 ∈ V2 ∨ ∅
begin1

for v2 ∈ V2 do2

if v2.name = v1.name then3

←− v2;4

←− ∅;5

end6

5.2.4 Example: Travel Booking Process

Figure 5.3 shows an example of the flow view for a travel booking application (modeled using

the VbMF Eclipse perspective). As can be seen the usual concepts of process modeling can be

used in the flow view. Figure 5.4 shows two extensional views in the BPEL specific variant: the

BPEL collaboration and information views. The collaboration view depicts information on the

components (i.e., services) the process collaborates with and how collaboration is achieved. The

information view depicts information on how data is passed in, into, and out of the process, as

well as the business objects the process deals with.

The views are inter–related implicitly via the integration points from the Core view. Follow-

ing the name-based matching convention we use the same names – e.g., for the services – in the

different views.

5.3 Design of a Domain-Specific Requirements View

In this section, we illustrate the design of a compliance metadata view as an example for a

requirement view. This view allows for annotation of SOA elements with different compliance

requirements. This is done by annotating process-driven model instances with the compliance

metadata. This is a generic approach and can similarly be realized for requirements in other

domains as well. In the case of business compliance, we elaborate on how to express compliance

requirements originating from some compliance documents for process-driven SOAs using the

VbMF. That is, we want to implement a compliance control for, e.g., a compliance regulation,

standard, or norm, for a process or service.

The Compliance Metadata view provides domain-specific requirements for the domain of a

process-driven SOA for compliance: It describes which parts of the SOA, i.e. which services and

processes, have which roles in the compliance architecture (i.e., are they compliance controls?)

and to which compliance requirements they are linked. This knowledge describes important
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a) TravelBooking BpelCollaborationView b) TravelBooking BpelInformationView

Figure 5.4: BPEL Collaboration and Information View: Travel Booking Example

architectural decisions, e.g., why certain services and processes are assembled in a certain archi-

tectural configurations. But in addition, the Compliance Metadata view has other useful aspects

for the project: From it, we can automatically generate compliance documentation for offline

use (i.e., Portable Document Format [93] (PDF) documents) and for online use (see also Sec-

tion 5.4). Online compliance documentation is for instance used in monitoring applications that

can explain the architectural configuration and rationale behind it, when a compliance violation

occurs, making it easier for the operator to inspect and understand the violation.

A compliance requirement may directly relate to a process, a service, or a business con-
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Figure 5.5: The Compliance Metadata Model

cern. Nonetheless compliance requirements not only introduce new but also depict orthogonal

concerns to these: although usually related to process-driven SOA elements, they are often per-

vasive throughout the SOA and express independent concerns. In particular, compliance require-

ments can be formulated independently until applied to a SOA. As a consequence, compliance

requirements can be reused, e.g., for different processes or process elements.

Figure 5.5 shows our proposed Compliance Metadata view. Annotation of specific SOA el-

ements with compliance metadata is done using compliance Controls that relate to concrete

implementations such as a process or service (these are defined in other views of the VbMF).

A Control can have subControls. This way compliance controls can be grouped and com-

bined. Controls fulfill ComplianceRequirements that relate to ComplianceDocuments

such as a Regulation, Legislation, or InternalPolicy. Such RegulatoryDocuments

can be mapped to Standards that represent another type of ComplianceDocument. Different

categories of ComplianceRequirements are shown in Table 5.1.

When there exists a compliance requirement, it usually comes with risks that arise from

a violation of it. Risks have dimensions such as likelihood or impact. In this work we

provide basic support for specifying such dimensions using linear comparable constants. Of



CHAPTER 5. LINKING SYSTEMS AND REQUIREMENTS THROUGH MDE 78

Compliance Concern Description
Control flow Order and execution of process elements
Locative

Execution location of processes and process elements (e.g., a certain host,
within a company, or a country)

Information Syntax and semantics of used or produced information
Resource Involvement of resources in processes (e.g., human resources, CPU cycles,

memory, disk-space)
Temporal Temporal constraints on process execution (e.g., deadlines, scheduled activi-

ties)

Table 5.1: Categories of Compliance Requirements

course, these can be refined with more elaborative modeling elements that allow for non-trivial

functions and the use of parameters, e.g., for probability density functions.

One important aspect when specifying requirements for a system is that we want to cap-

ture their rationales (cf. pre-requirement specification traceability [72]) as well. In the context

of business compliance we want to persist the relationship of a compliance requirement as de-

rived from, e.g., a certain regulation or standard with the respective annotated SOA element.

This allows for the identification and resolution of SOA elements, compliance controls, regula-

tions, risks and compliance documents, e.g., in the case of a root cause analysis of compliance

violations.

For documentation purposes and for the implementation of compliance controls the Control-

StandardAttributes help to specify general metadata for compliance controls, e.g., if the

control is automated or manual (isAutomatedManual). Besides these standard attributes,

individual ControlAttributes can be defined for a compliance control within Control-

AttributeGroups.

Figure 5.6 shows an example for compliance metadata that contains a directive from the

European Union on the protection of individuals with regard to the processing of personal data.

The example extends the travel booking application example presented already in Figures 5.3

and 5.4. In particular, the compliance control is implemented by the services of the travel book-

ing process. Hence, the views in Figures 5.3 and 5.4 provide the architectural configuration

of the processes and services, and Figure 5.6 provides the compliance-related rationale for the

design of this configuration.

The C1 compliance control instance for a secure transmission of personal data annotates

the TravelBooking service of the process. The fulfilled requirement CR1 follows the leg-

islative document and is associated with an AbuseRisk. Via the name-based matching con-

vention (see Section 5.2.3) the SOA elements are annotated in the compliance metadata view:

on the left of Figure 5.6 the various services of the travel booking process are displayed next
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description = „Abuse of individual-related data“
impact = HIGH
likelihood = LOW
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Figure 5.6: Compliance Metadata: Travel Booking Example

to the object instances of the compliance metadata view. The compliance control C1 asso-

ciates various NamedElements that hold the same name as the corresponding services from the

BpelCollaborationView as shown in Figure 5.4).

With the proposed compliance view, it is possible to specify compliance statements such as

CR1 is a compliance requirement that follows the EU Directive 95/46/EC on Individual Protec-

tion [61] and is implemented by the TravelBooking service. within the VbMF.

This information is useful for the project in terms of compliance documentation, and hence

likely to be maintained and kept up-to-date by the developers and users of the system, because it

can be used for generating the compliance documentation that is required for auditing purposes.

But in this model also important architectural knowledge (AK) is captured: In particular the

requirements for the process and the services that implement the control are specified. That is,

this information can be used to explain the architectural configuration of the process and the

services connected via a secure protocols connector.

5.4 Generating Compliance Documentation

The compliance metadata not only serves for specifying requirements of a process-driven SOA

as described in the previous section but also can be used for reporting and documentation pur-
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poses. In particular, it can be used for generating documentations. Such documentations visu-

alize compliance relevant information for various stakeholders, such as executive managers and

auditors, and therefore, help them to quickly gain an overview of a thorough view. Hyperlinks to

other documentation pages allow the user to navigate to related information or to request more

specific details. In Figure 5.7 a model-to-code Xpand [168] transformation template is shown

that generates HyperText Markup Language [180] (HTML) code for online documentation. The

generated website displays a matrix of controls from a compliance metadata view instance that

are correlated against risks.

<h2>Risk-Control Correlation Matrix</h2>
<table>
<tr>
<th>Risks/Controls</th>

«FOREACH cv.control AS c»
<th>
<a href="«cv.processName+

"_C_"+c.uuid+".html"»">«c.name»</a>
</th>

«ENDFOREACH»
</tr>

«FOREACH cv.risk AS r»
<tr>
<th>
<a href="«cv.processName+

"_R_"+r.uuid+".html"»">«r.name»</a>
</th>

«FOREACH cv.control AS c»
<td>
«IF (c.requirements.risks.contains(r))»X«ENDIF»

</td>
«ENDFOREACH»
</tr>

«ENDFOREACH»
</table>

Figure 5.7: A Transformation Template for Generating Compliance Documentation

Other generated documentation of the compliance metadata focuses on, e.g., the relation

of compliance requirements and compliance documents, such as standards or legislative docu-

ments. Also, the coverage of SOA elements in regard to compliance aspects with their relation

to compliance documents can be visualized and highlighted. Thus, while the generation of

process code may already consider the metadata during transformation (e.g., in order to make

sure that a secure protocol is used for services that are annotated accordingly), documentation

that describes the requirements can be automatically created and updated. The former – i.e.,

the use of domain-specific requirements during code-generation, e.g., for ensuring the security
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of the system as in our example – is a clear incentive for a developer to specify and provide

the requirements for the SOA. The latter – i.e., the model-driven generation – comes with the

advantage of keeping the documentation up-to-date.

5.5 Related Work

Gotel and Finklestein [72] discuss the requirements traceability problem, i.e., introduce pre- and

post- requirement specification traceability that refer to requirements production and require-

ments deployment. Applying a MDD approach the latter traceability is automated, e.g., for the

generation of business processes and the model-aware monitoring as we will show in the next

chapter. Pre-requirement specification traceability is strengthened in a requirements view that

also captures rationales: in our domain-specific compliance metadata view the requirements are

linked to compliance documents. Our approach is extensible and improvements can be realized

by, e.g., also relating users such as compliance experts with artifacts they work on.

A recommendation for specifying software requirements [89] was published by the Institute

of Electrical and Electronics Engineers (IEEE) in 1998. If desired and when appropriate, our

model-driven approach can be combined with this recommendation; e.g., for generating soft-

ware requirement specification (SRS) documents. For this a meta-model suitable for capturing

information from these documents could be populated with information from the various views

and would generate the documents similarly to how we generate the compliance documentation

as shown in Section 5.4.

By annotating process-driven SOAs with requirements we establish traceability links be-

tween requirements and systems on a modeling level. Model traceability in the context of MDD

has been discussed by Aizenbud et al. [5]. They propose to establish a standard traceability meta-

model and point out the importance of a unique identification of artifacts across space and time.

While with our transparent UUID-based model versioning approach (cf. Section 3.4.2) we sat-

isfy the latter, in this work we have not made use of a dedicated traceability meta-model. Instead,

by applying annotation via name-based matching, we establish manual relationships between

requirements and systems with a predefined, implicit semantic. Yet, a traceability meta-model

such as VbTrace [172] as presented for the VbMF can be introduced for this purpose, i.e., for

making the requirement traceability explicit.

The requirements as captured in the compliance metadata view can also be considered as

kind of AK. This is because the requirements may drive the architecture of the system (e.g., the

choice to use secure connectors) and thus constitute rationals for design decisions. Thus AK that

is domain-specific to the area of (compliance) requirements is recorded in our view.

In the area of AK, much work has been done in the area of architectural decision modeling.
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Jansen and Bosch see software architecture as being composed of a set of design decisions [149].

They introduce a generic meta-model to capture decisions, including elements such as problems,

solutions, and attributes of the AK. Another generic meta-model that is more detailed has been

proposed by Zimmermann et al. [187]. Tyree and Akermann proposed a highly detailed, generic

template for architectural decision capturing [174].

The related work on architectural decision modeling focuses on generic knowledge captur-

ing. In contrast, our approach proposes to capture AK that is related to the system requirements

in a domain-specific fashion, as needed by a project. Hence in our work some AK is not as

explicit as in the other approaches. For example, the collaborations of components are shown in

the collaboration view, whereas the other approaches rather use a typical component and connec-

tor view. The decision drivers and consequences of the decisions are reported in the compliance

sources and as risks. That means, our domain-specific requirements view adopts the terminology

from the compliance field, and it must be mapped to the AK terminology in order to understand

the overlaps.

None of the related works provide detailed guidelines how to support the AK models or

views through MDD. In contrast, this is a focus of our work.

5.6 Lessons Learned and Conclusions

We have presented a novel and generic approach of how to relate system models and system

requirements models. We have demonstrated this approach for specifying requirements that are

imposed on business processes within the context of compliance. Our feasibility study showed

that it is feasible in a model-driven project to add an additional model-driven view that adds

requirements metadata with reasonable effort.

In case of static requirements, that can be considered during code generation, the require-

ments view helps the model-driven approach to build conforming systems.

Hence, it makes sense to connect the requirements as captured in the requirement view with

other metadata that needs to be specified in the project anyway, so that there is an additional

incentive for developers. In our case, we could demonstrate an area where this is feasible: com-

pliance in service-oriented systems. A lacking or missing compliance documentation can have

severe legal consequences, which is a great incentive to specify the compliance requirements

correctly. Our general approach can also be applied for custom requirements without such addi-

tional incentives.

There is the danger in our approach that only specific requirements – linked to a domain-

specific area like compliance – are specified and other requirements get lost. It is the responsi-

bility of a project to make sure that all requirements are specified.
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We can conclude that it is possible and useful to add a domain-specific requirements view to

a model-driven project – with reasonable effort. If extra incentives can be found, such as gener-

ating a documentation or documenting compliance, they should be used to motivate developers

to keep the information in the requirements view up-to-date and consistent with the system.

Our approach assumes a model-driven approach is used for the system. It is possible to

introduce our approach into a non-model-driven project (e.g., as a first step into model-driven

development). For doing this at least a way to identify the existing architectural elements, such

as components and connectors, must be found. But this would be considerably more work than

adding the view to an existing model-driven project.

In this chapter we have presented a novel, direct linkage of system models with require-

ments models that we have established in the context of MDE through modeling techniques.

Combined with our dynamic and reflective model-aware systems approach (presented in the

previous chapter), this opens up new possibilities, e.g., for the monitoring of such systems as we

will demonstrate next.
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Model-Aware Monitoring

Is it not delightful to acquire knowledge and put it into practice from time to time?
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As service-based Internet systems get increasingly complex they become harder to manage

at design time as well as at runtime. Nowadays, many systems are described in terms of pre-

cisely specified models, e.g., in the context of model-driven development (MDD). By making

the information in these models accessible at runtime, we provide better means for analyzing and

monitoring the service-based systems. By combing the Model-Aware Service Environment [82,

87, 86] (MORSE) approach for business processes with event-based monitoring, this chapter

focuses on enabling us to monitor, interpret, and analyze the monitored information. In an in-

dustrial case study, we demonstrate how compliance monitoring can benefit from MORSE to

monitor violations at runtime and how MORSE can ease the root cause analysis of such viola-

tions. Performance and scalability evaluations show the applicability of our approach for the

intended use cases and that models can be retrieved during execution at low cost.

6.1 Introduction

As an illustrative case for system requirements, consider compliance to regulations: A business

information system (IS) needs to comply with regulations, such as Basel II [15] or the Sarbanes-

Oxley Act [49] (SOX). Runtime monitoring of service-based business processes can be used to

detect violations of such regulations at execution time. If a violation is detected, a report can be

generated and a root cause analysis started. In order to trace back from process instances that

have caused a violation to the model elements that have driven the execution of those instances,

information described in models of the system needs to be queried.

In addition, service-based systems not only require read access to the models, but also write

access. In the compliance management case, for example, once a root cause analysis indicates a

problem in a model, the developer should be able to (1) open the respective model for modifica-

tion, (2) perform the modifications on-the-fly, and (3) add the new model version to the running

system so that newly created model instances can immediately use the corrected, evolved ver-

sion.

In this chapter, we propose to address these issues with MORSE. MORSE supports the tasks

of the MDD life cycle by managing MDD artifacts, such as models, model instances, and

transformation templates. Models are first-class citizens in MORSE, and they can be queried,

changed, and updated both at design- and runtime. That is, the models in the repository can

be used by the generated service-based system (e.g., the compliance monitoring infrastructure)

via Web services to query and change the models while the system runs. Thanks to its generic,

service-based interfaces, MORSE can be integrated in various monitoring and analysis infras-

tructures. We have evaluated our prototype using exhaustive performance and scalability tests to

validate the applicability of the approach in practice.
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6.2 Approach

Before we present some parts of the architecture in more detail, we first provide an overview of

our approach. For this, we introduce model-aware and event-based monitoring. Our approach

comprises the following steps:

• For the design and development of processes we apply MDD. We use the View-based

Modeling Framework [173, 84, 171, 172] (VbMF) to design process models and generate

Business Process Execution Language [139] (BPEL) code. We propose to store these

process models in a model repository, and require that each model and model element is

uniquely identifiable.

• During code generation we embed traceability information into the BPEL processes for

relating the code with original models that we make identifiable by unique identifiers, i.e.,

Universally Unique Identifier [113, 98]s (UUIDs)

• The BPEL process, instrumented with traceability information, contains a BPEL exten-

sion for transmitting low-level events, e.g., for process invocation, containing traceability

information.

• The low-level events are processed by a complex event processing (CEP) engine. Business

events are recognized and raised.

• An interested component consumes the business events and provides for adaptation, com-

pensation, or synchronization.

We illustrate our approach in Figure 6.1. Business processes, represented as process mod-

els, are at the center of our approach. We propose to store these process models (1) in a model

repository that can be queried (7a and 8a). Each process model and element in the repository

is identifiable by a UUID. The model repository manages and versionizes models and model

instances. Additional information about related models or models in other versions can be dis-

covered by querying the repository.

In a generation step (2), traceability information is embedded into the process definition.

That is, the process and the process elements are linked in the code via UUIDs to the models.

After this model-to-code transformation an executable form of a business process, such as BPEL,

is provided to a process engine (3). Each process execution essentially orchestrates different

business activities to realize the entire process. In order to monitor a process execution (4), we

monitor the progress of each process instance through events that are emitted by the process

engine (5). Within these events, we embed the UUIDs of the instance’s process model. Events
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Figure 6.1: Model-Aware Monitoring Approach

emitted by the process engine are considered low-level events. In order to detect events at a

business level, CEP techniques are applied (6). Business events containing, among other things,

the relevant UUIDs are passed on to a component, say business intelligence component, that can

perform subsequent retrieval and reflection on the process models (7a and 8a). For accessing

instance data, we assume the process engine also exposes an interface for querying (7b).

In the following sections we present the details of our model-aware, event-based monitoring

approach.

6.3 Case Study

To demonstrate the applicability of the presented approach we discuss a case study. In this case

study, a European telecommunication company monitors the compliance of business processes.

As explained in the previous chapter, compliance in an information technology (IT) context

means in general complying with laws and regulations applying to an IT system (cf. [52]).
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For this, a model for the compliance domain was created as displayed in Figure 6.2. It

contains concepts from the compliance domain such as Compliance Requirements that are

derived from Compliance Sources and which are realized by Controls. Compliance do-

main experts have developed this model together with technical experts. That is, domain experts

described the concepts and their relations and technical experts specified details such as the

relationships and multiplicities in iterative steps.
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Figure 6.2: Excerpt of a Compliance Model

Note, that the resulting model from the collaboration of the stakeholders was not intended to

be final but rather there was the requirement that it shall be maintained and that the system and

service-oriented architecture (SOA) shall support an evolution of this model. From time to time

during the case study the model was modified and a new version of the compliance model was

developed. A former version of the model is shown in Figure 6.3. During the evolution of the

model, some concepts have been renamed, new concepts have been introduced and relationships

have been modified.

In this case study, different services in the SOA – the company operates for the execution

and monitoring of its business processes – use the compliance concepts from the model. These

services are realized as model-aware services. As such, they

• are able to work with and share instances of the compliance model in a distributed envi-

ronment,
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Figure 6.3: A Former Version of the Compliance Model

• can relate to and work with specific versions of compliance model instances, and

• can be upgraded to work with an evolved compliance model with a minimum of effort.

Figure 6.4 gives an overview of the relevant parts of the architecture. Business processes

are executed by a process engine that emits events containing traceability information that relate

to models or model elements such as a compliance requirement. Listing 6.1 shows a generated

BPEL process that contains traceability information as a BPEL extension. For this the MORSE

traceability matrix from Listing 4.1 is used, its XML namespace is imported and declared as a

BPEL extension. The executing BPEL engine emits events for, e.g., the process activities that

contain matching UUIDs. Finally, the events are processed by the monitoring infrastructure.

An online or offline analysis of the events checks the compliant process execution. The in-

formation from the monitor is used and assembled for a comprehensive reporting in a dashboard.

Also notification, compensation, and adaptation tasks can be triggered by the monitor. Thus, in

this setup the monitoring and adaptation in the SOA is based on the use of compliance models

at runtime.

After the compliance model has been deployed (i.e., services have been generated and de-

ployed), a compliance expert specifies reusable compliance requirements that can be used for the

specification of the compliance concerns of business processes. Listing 6.2 shows an example
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from a script that populates MORSE with instances of compliance concepts using the generated

service requester agents. In the example a compliance source that relates to SOX Section 409

and a compliance risk are associated with a compliance requirement. Up to Line 8 generated

model code is used and the statements from Line 9 on relate to the generated code for the service
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<process name="ReportIntrusion"
xmlns="http://docs.oasis−open.org/wsbpel/2.0/process/executable">

<extensions>
<extension mustUnderstand="yes"

namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
/>

</extensions>
<import importType="http://www.w3.org/2001/XMLSchema"

namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
location="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"

/>
<morse:traceability build="56810150−5bd8−4e8e−9ec5−0b88a205946b">

<row query="/process[1]">
<uuid>6338b114−3790−4566−a5c4−a35aa4efe41b</uuid>
<uuid>cd2865e2−73a7−4c8d−8235−974057a40228</uuid>
<uuid>4bcf3d70−9c23−4713−8602−3b64160c45e8</uuid>
<uuid>c568c290−e03e−46c8−9a9a−d7afde80cc3a</uuid>

</row>
<row query="/process[1]/sequence[1]/receive[1]">

<uuid>354b5161−dfab−44ef−9d52−3fb6a9d3411d</uuid>
</row>
<row query="/process[1]/sequence[1]/invoke[3]">

<uuid>7d32b4f4−4f63−4223−8860−db213f7e0fe1</uuid>
</row>

</morse:traceability>
<sequence>

<!−− ... //−−>
</sequence>

</process>

Listing 6.1: Case Study: Traceability of the Report Intrusion Process

requester agent. In Line 9, first, a requester agent for invoking the MORSE service for compli-

ance requirements is created. Next, the requirement object defined in Line 7 and 8 is created in

MORSE as a model. Finally, in Line 11 and 12 the source and risk are created and associated

with the requirement. A modeling tool realizes this interaction with the MORSE services at a

technical level and assists stakeholders such as compliance experts and business administrators

on a conceptual level to specify the compliance concerns of business processes at design time.

Once the compliance concerns for business processes have been specified, the processes

are deployed on a process engine. During the execution of such process instances, events are

emitted with data from traceability information that has been embedded into the processes and

that relates to the compliance requirements. These events are analyzed by the monitor at runtime
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1 CSource source = FACTORY.createCSource();
2 source.setDescription("SOX Sec.409");
3 CRisk risk = FACTORY.createCRisk();
4 risk.setDescription("Penalty");
5 risk.setImpact(EnumWeight.HIGH);
6 risk.setProbability(EnumWeight.LOW);
7 CRequirement req = FACTORY.createCRequirement();
8 req.setDescription("Rapid publication of Form 8−K");
9 CRequirementService requirementService = new CRequirementWSProxy(req);

10 requirementService.create();
11 requirementService.addSources(source);
12 requirementService.addRisks(risk);

Listing 6.2: Populating MORSE with Instances of Compliance Concepts

for the governance and adaptation. At this stage the monitor retrieves specific instances from

compliance concepts such as compliance controls and related compliance rules from MORSE.

Note that at runtime different versions of the compliance instances might be used in parallel.

That is, stakeholders might change business processes and respective compliance concerns, yet

currently running process instances must continue to operate using their original specifications

in parallel. This can continue until, e.g., all old process instances have terminated. With the

transparent versioning of models and the use of version-specific UUIDs at runtime the parallel

execution of different process versions and compliance concerns is realized.

Finally, also the evolution of the compliance model itself is possible and supported through

the automatic generation of MORSE service providers and requester agents. Model instances

can be migrated through model-to-model transformation and model-aware services can be auto-

matically instructed to work with the new model version, i.e., model code and MORSE services.

Listing 6.3 shows a snipplet for setting a Maven dependency to the Web service requester agents

in a model-aware service project. Thanks to Maven’s transitive dependency management this is

everything such a project needs to specify in order to use the necessary modules that enable the

service to work with the models as well as the MORSE services at runtime. When a model evo-

lution takes place the version number is simply updated. Please note that in case the service only

operates on concepts that did not change in the evolution step, no modifications in the source

code or model-driven templates that generate the model-aware service are necessary. For this,

Algorithm 1 from Chapter 2 checks the navigation compatibility of a model change. If a change

introduces incompatibility, however, new MORSE services will be generated and the SOA can

be migrated to work with these when desired, e.g., after a review and formal approval by the

management (cf. Section 2.5.5).
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<dependency>
<groupId>compliance.concepts</groupId>
<artifactId>ws−proxy</artifactId>
<version>2.0</version>

</dependency>

Listing 6.3: Maven Dependency for the Web Service Requester Agent

6.3.1 Business Compliance Monitoring

Let us now consider a United States (U.S.) credit card company that wants to comply with Sec-

tion 409 (Real Time Issuer Disclosures) of SOX. Section 409 requires that a publicly traded com-

pany discloses information regarding material changes in the financial condition of the company

in real-time (usually meaning “within two to four business days”), see also Figure 6.5. Changes

in the financial condition of a company that demand for disclosure are, for example, bad debts,

loss of production capacity, changes in credit ratings for the company or large clients, mergers,

acquisitions, or major discoveries.

For the case of the credit card company, we consider the following reference scenario re-

garding the change in the financial condition: security breaches are detected in the company’s

IT system, where personal information about customers might get stolen or lost. The business

process in the lower part of Figure 6.5 shows a possible practice that the company may internally

follow to react to a detected intrusion. After an initial assessment of the severity of the intrusion,

the company immediately starts the necessary response action to mitigate risks and prevent simi-

lar future intrusions. After the response, if personal information got lost or stolen, the disclosure

procedure is started. As detailed in the process, the actual disclosure is performed by filing a

so-called Form 8-K report, a specific form used to notify investors and the U.S. Securities and

Exchange Commission (who is in charge of controlling the compliance with SOX).

Note that full compliance with Section 409, of course, requires that all business practices in

the company are compliant; the case of stolen or lost personal information represents only one

out of multiple business practices in the credit card company that are subject to Section 409 of

SOX.

The sole implementation of the compliant business process does not yet guarantee compli-

ance: failures during process execution may happen (e.g., due to human errors, system failures,

or the like), and the preparation and publication of the Form 8-K might be delayed, erroneous,

or even forgotten. Awareness of such problems is of utmost importance to the company, in order

to be able to react timely and, hence, to assure business continuity. In this regard, the ability

to perform root cause analyzes to understand the reason for specific compliance violations is
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Figure 6.5: SOX Example

needed.

We assume that the monitoring infrastructure in Figure 6.1 is used throughout the architec-

ture and that MDD is used to make sure, all models are placed in the MORSE repository, and

the UUIDs are used in all events emitted in the system. The MORSE repository can be used

to support creating reports and running root cause analysis by making all MDD artifacts ac-

cessible at runtime. Once the cause of a violation has been understood, the developers of the

company should be able to redesign the MDD artifacts (e.g., the business processes) to avoid

similar violations in the future.

Figure 6.6 illustrates the interplay of MORSE, the monitoring infrastructure, and the compli-

ance governance Web user interface (UI) when dealing with compliance violations. All models

are placed in the MORSE repository. A model of a business process is annotated by compli-

ance models. They relate to a certain regulation or specify details for an implementation. In

our example, a ComplianceRequirement annotates the process and a PublishDeadline

annotates the process activity Publish Form 8-K. These annotation models will be retrieved

and evaluated by the monitoring infrastructure for detecting violations during runtime. From

MORSE, the business process is automatically deployed on a business process engine (1). The

business process engine emits various events such as when a process is initialized or when an
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Figure 6.6: Resolved SOX Example

activity is invoked or completed (2). These events contain the corresponding UUIDs and are

intercepted by the monitoring infrastructure, which requests the compliance rules related to the

intercepted events from MORSE (3).

Validation then takes place in online or offline operation mode (4). In case of a vi-

olation (i.e., Form 8-K has not been published within two business days according to the

PublishDeadline), it is signaled in the dashboard. To present meaningful information to the

user of the dashboard, the models responsible for the violation are retrieved from the MORSE

repository and shown to the user (5). That is, the monitoring infrastructure first requests the

original MDD artifact by UUID and then explores its relationships. Particularly, a compliance

requirement model instance that relates to the process or process activity can be identified and

displayed for adequate feedback towards the user (6).

The user can now analyze the violation by traversing the models and/or performing ad-

ditional queries. That is, the dashboard or the user consults the repository for resolving and

identifying the root cause of the violation. In our example, the root cause lies in the sequential

structure of the control flow of the process. The user can now improve the responsible model so
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that new processes may not violate the compliance requirement any longer (7). In our example,

the business expert improves the process so that independent tasks are executed in parallel. As

a result the execution becomes faster and fewer violations occur. Using the MORSE version-

ing capabilities, the new model can be added to the repository, and used in MDD generations

henceforth.

6.3.2 Performance and Scalability Evaluation

In the model-aware services there is only a small performance overhead for raising the events,

which is often needed anyway. For instance, in our case study the events must be raised and

logged for legal auditing purposes. The rest of the environment has no negative performance

impact on the SOA that is monitored: For determining how many queries per second can be

processed by the MORSE repository, we have conducted runtime performance and scalability

tests on our prototype as shown in Figure 6.7. We measured the execution time for queries

(ordinate) of a repository containing a given number of models (abscissa) and found polynomial

execution time (R2 > 0.99). For example, to interpret Figure 6.7, a MORSE repository with up

to 217 (131 072) models can process at least 15 queries (≤ (216.04/1024/103)−1) within one

second. This means, performance and scalability is far better than what is needed in scenarios

similar to our case study that work with long-running process instances which emit events only

from time to time.

Thus, models can be retrieved during execution at a low cost, especially when assuming

typical Web service invocation latency. Limitations of our prototype and hardware arise with in-

creased number of models, process instances, and events that trigger look-ups, e.g., huge MORSE

repositories with more than ≈ 217 models cannot perform 106 look-ups per day (arising, e.g.,

from 102 processes with 102 instances each that generate 102 events per day each). Further

scalability, however, can be achieved using clusters and caches.

6.4 Related Work

There are a couple of relevant topics concerning the monitoring of SOAs such as event-based,

service, or requirements monitoring. In the following we will compare our approach to related

work in these areas.

6.4.1 Event-Based Monitoring

The idea of monitoring the execution of a business process is not new and has been researched

previously. For example Hagen and Alonso [76] use events for direct communication between
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Figure 6.7: MORSE Performance and Scalability

processes. This way decisions can be made on how to proceed with the execution of process

instances.

For raising events during the execution of the workflow, Casati and Discenza [36] extend the

workflow model. For this the user can customize the types and occurrences of events that should

be emitted. In contrast we automatically enrich the BPEL process with traceability information

and – together with an implementation for a traceability BPEL extension – utilize the standard

BPEL eventing as supported by BPEL engines 2.

What distinguishes our approach is to combine the eventing with a traceability to models.

This allows the monitoring infrastructure to look-up and reflect on models. As a consequence

the monitoring can take place at the abstraction level of the models that are – or that are related

to – models as used for the design and generation of business processes. Examples are a control

flow of the process or a compliance requirement that annotates a process activity as shown in

Figure 6.6.
2cf. http://ode.apache.org/ode-execution-events.html for the event types supported by the

Apache Orchestration Director Engine [158] (Apache ODE)

http://ode.apache.org/ode-execution-events.html
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6.4.2 Service Monitoring

The topic of service (cf. [4, 48]) and process (cf. [16]) monitoring is well covered by the lit-

erature, e.g., in the areas of quality of service (QoS) and service level agreement (SLA). Yet

by applying a model-aware service environment for service monitoring we contribute a novel

approach, i.e., the use of service models at runtime.

A model-based design for the runtime monitoring of QoS aspects is presented by Ahluwalia

et al. [4]. In particular, an interaction domain model and an infrastructure for the monitoring of

deadlines are illustrated. In that approach, system functions are abstracted from interacting com-

ponents. While a model-driven approach is applied for code generation, the presented model of

system services is not (also) a source model for the model-driven development of the services. In

contrast, MORSE manages and is aware of the service models from which systems are generated

and/or relate to. This allows for supporting the monitoring and adaptation in SOAs and the root

cause analysis and evolution as demonstrated in the presented case study (see Figure 6.6).

Commuzi et al. [48] explicate the link between SLA negotiation and monitoring of complex

service-based systems. While being specific to SLA, their proposed monitoring architecture has

similarities to our MORSE setup. We believe that by applying our approach to that work some

parts of the architecture could be automatically generated while others could profit from the

available MORSE service requester agents.

In contrast to these works, our MORSE approach, that allows for the management and ver-

sioning of (service) models, is a generic approach for the use of models at runtime for supporting

service monitoring. It is generic because it is agnostic to the actual domain such as QoS, SLA,

or compliance. In our case study we have applied our approach to compliance monitoring. The

monitoring for the specific domain is realized by the model-aware services. As a consequence,

all of the mentioned monitoring approaches can be supported by MORSE. For this a domain

model needs to be deployed and model-aware services need to realize the domain-specific mon-

itoring. From applying MORSE to these monitoring domains we expect profits in the areas of

evolution and management.

6.4.3 Requirements Monitoring

In our approach we assume that a monitoring infrastructure is used throughout the architecture

for observing and analyzing runtime events (cf. Section 6.2). While such monitoring infrastruc-

ture can be integrated with MORSE and used for the compliance checking, our work particularly

focuses on relating to models from which the monitored systems have been generated. Thus, our

work makes such models accessible at runtime. Note, that not only, e.g., process models but also

compliance concern models are managed by MORSE. This allows for the novel and direct link-
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age and correlation of model-driven system and requirements models (cf. previous chapter). In

this section we refer and relate to work in the areas of runtime requirements-monitoring (please

also cf. Section 5.5).

Feather et al. [63] discuss an architecture and a development process for monitoring system

requirements at runtime. It builds on work on goal-driven requirements engeneering (RE) [53]

and runtime requirements monitoring [45].

Skene and Emmerich [150] apply MDD technologies for producing runtime requirements

monitoring systems. This is, required behavior is modeled and code is generated for, e.g., the

eventing infrastructure. Finally, a metadata repository collects system data and runs consistency

checks to discover violations. While in our work we also showcase the generation of code for the

eventing infrastructure (see Section 4.2.1), our approach assumes an existent monitoring infras-

tructure. In case of a violation the MORSE approach not only allows us to relate to requirement

models but also to the models of the monitored system.

Chowdhary et al. [41] present a MDD framework and methodology for creating business

process management (BPM) solutions. This is, a guideline is described for implementing com-

plex BPM solutions using an MDD approach. Also, with inter alia the specification of BPM

requirements and goals the framework provides runtime support for (generating) the eventing

infrastructure, data warehouse, and dashboard. The presented approach allows for the monitor-

ing and analysis of business processes in respect of their performance. Thus, similarly to our

approach, compliance concerns such as QoS concerns as found in SLAs can be specified and

monitored by the framework. Besides the monitoring of business processes and service-based

systems in general, our approach particularly focuses on also relating to conceptual models of

the systems from the runtime, not only their requirements. As a consequence, the system and

end-users can directly relate to the MDD artifacts of a system in case of a violation. This allows

for the subsequent reflection, adaptation, and evolution of the system. In contrast, the BPM

solution supports compensation, i.e., the execution of business actions according to a decision

map.

6.5 Summary

With the presented work we identified and proposed solutions for using models for service mon-

itoring and adaptation. Monitoring and analysis of models and model elements at runtime is a

real and urgent requirement in complex, Internet-based systems. Given the continuously grow-

ing adoption of MDD practices and the rising complexity of service-based systems, we have

shown the usefulness of shifting the focus of model management from design time to runtime.

The MORSE approach, that treats models as first-class citizens at runtime of a service-based
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system, significantly eases the management of complex service-based systems by improving the

analyzability, e.g., of monitoring data. For this, we proposed model-aware monitoring for the

runtime monitoring of business compliance in process-driven SOAs. Our approach leverages a

model repository and event-based monitoring. Business process models are stored in a model

repository that can be queried. The process models are uniquely identifiable, and relations be-

tween process models can also be discovered.

We proposed a repository-based approach, in which the MDD models of a service-based

system and its system requirements can be used at runtime to interactively interpret or analyze

the monitored information. In the context of compliance monitoring for example and by relating

processes and process activities to compliance models a business intelligence has richer means

of analyzing the runtime process execution as dynamic reflection on the models and related

models becomes possible. This has been demonstrated in an industrial case study for compliance

management (see Section 6.3.1). The benefits of our approach can be achieved with acceptable

performance and scalability impacts. While our approach facilitates monitoring, it can also be

beneficial to other fields of application that profit from accessing models at runtime, e.g., in

adaptive systems.



CHAPTER 7
Summary

I’m begging you, let me work!

—手塚治虫 1

In this thesis, we have presented – to the best of our knowledge – the first model reposi-

tory based approach to support models at runtime in service-oriented computing (SOC). In our

experiences the maintainability of models at runtime is difficult, especially in large scale sys-

tems, such as service-oriented architectures (SOAs), because the system keeps evolving during

its lifetime (see, for example, the sample model in our case study in Section 6.3). Hence, dif-

ferent services of the SOA rely on different models or model elements in distinct versions. This

problem has not yet been fully addressed in the existing literature. We have provided the trans-

parent UUID-based model versioning approach to deal with this situation in a practice-oriented

fashion. As illustrated by our case study, our approach is easily applicable, even to frequently

changing central meta-models, on which many services, some developed by third parties, are

based. We have used the information in the models successfully for monitoring the system and

supporting some semi-automated adaptations.

However, one caveat in this approach was that initially we were only able to provide a

generic interface to query the models in the repository. These are rather difficult to work with.

To improve this situation, we developed XML and RESTful services (the MORSE services) that

offered the specific interfaces needed for querying and traversing the models in the repository.

As our approach is a model-driven approach, it was an obvious idea to use the model-driven gen-

erator for this task. However, the model-driven approach is usually used at design time; hence,
1OSAMU TEZUKA
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we needed to extend the Model-Aware Service Environment [82, 87, 86] (MORSE) repository

to automatically generate and deploy the MORSE services in the background. In this way, every

time a new meta-model version is created, MORSE services are generated and deployed auto-

matically, thus enabling users and runtime systems to easily deal with these versions. To the

best of our knowledge, no other model management approach supports the automatic generation

of specialized traversal and query services upon deployment of the meta-model version. This

approach greatly enhances the usability of models at runtime.

The transparent versioning and the full automation of the MORSE service generation allow

developers to better maintain models at runtime. To use them to better support the monitoring

and adaptation in SOAs, one final problem had to be addressed: The unambiguous identification

of models, model elements, and versions thereof. For this task we use UUIDs that are auto-

matically generated into the services during the model-driven generation, making the services

model-aware. This novel approach to model and model version identification allows us to gen-

erate events from services that enable monitoring and adaptation services to access the correct

service model version.

Using modeling techniques to relate systems and system requirements we have shown the

usefulness of our model-aware monitoring approach in the context of business compliance. To

support an evolution of meta-models, on which operating model-aware services depend, we

defined the notion of navigation compatible model changes, presented an algorithm that gives

developers detailed feedback.

A drawback of our approach is that it combines a number of approaches and raises the overall

complexity of the system. But the large degree of automation means that users usually need to

interact only with the frontend parts of the MORSE for using models at runtime.

Future Work

As a first step for adopting models at runtime we have presented the MORSE approach in this

thesis for the generation of model-aware services and the enabling of model-aware monitoring.

We consider this work as a basis for further, constructive work and more advanced model-aware

scenarios that establish models in model-aware systems as central artifacts.

To continue the idea of model views and also to apply it to a runtime context, it should be

considered to support model-aware systems with suited, customized, e.g., context-dependent,

views to models. That is, similarly to how stakeholders can be supported by the provision

of views using, e.g., domain-specific languages (DSLs), model-aware systems could also profit

from an appropriate presentation in form of a view model, having a specified level of abstraction.

We expect such an undertaking to not only strengthen the position and role of models in software



CHAPTER 7. SUMMARY 103

systems but also to gain experiences and useful insights in how to deal with different models,

views, and abstraction levels for different stakeholders and systems.

A resulting unified framework that exceeds the basics of MORSE and supports variable view

representations of models for different model-aware systems and stakeholders should also cover

authorization and provenance issues in regard to models.

A question, on which we only partially focused, is how to deal with the evolution of meta-

models in operating runtime model-aware systems. It would be interesting if inter-operating

model-aware systems that work with different, navigation incompatible versions of these could

collaborate (i.e., if they would dynamically reconcile the problem of changed meta-models by

transforming conforming models on the fly).

It is hoped that the contributions presented in this thesis will be excelled by an advancement

of models that will penetrate the fields of software engineering and service-oriented comput-

ing, that models will be assigned the role of pivotal points in service-oriented architectures, and

last but not least that the pervasive adoption of models will lead us to better understand, mon-

itor, manage, and adapt complex software systems and facilitate new forms of (model-based)

collaboration.
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