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Kurzfassung

Bei Erstpreisauktionen mit verdeckten Geboten, wie sie zum Beispiel für
Staatsanleihen durchgeführt werden, treten üblicherweise hohe Lastspitzen
kurz vor dem Auktionsende auf, da ein spätes Bieten es den Bietern erlaubt
ihr Gebot besser an die jeweilige Marktsituation anzupassen. Weiters gibt es
hohe Anforderungen an die Zuverlässigkeit, da Ausfälle des Auktionsservers
zu signifikanten finanziellen Verlusten führen können, falls sich bis zur Wieder-
holung der Auktion die Situation an den Finanzmärkten erheblich verändert.
Aus diesem Grund müssen Systeme für hohe Lastspitzen und hohe Verfüg-
barkeit ausgelegt werden, was zu entsprechend hohen Kosten führt. Gerade
in Bereichen, in denen Auktionen nur wenige Male pro Jahr durchgeführt
werden, wie zum Beispiel Auktionen von Staatsanleihen, ist so eine Lösung
nicht praktikabel, da die Systeme während der restlichen Zeit nicht verwendet
werden. In vielen Fällen sind Alternativen wie Cloud-Computing aufgrund
der gegebenen Sicherheitsanforderungen ebenfalls keine Lösung.

Grundidee hinter dem Lösungsansatz dieser Dissertation ist es, hohe Ver-
fügbarkeit zu erreichen, indem ein Teil der vorhandenen Sicherheit gegen
Verfügbarkeit eintauscht wird. In einem zweiten Schritt werden dann die neu
entstandenen Sicherheitsprobleme gelöst. Zuerst wird die Verfügbarkeit erhöht,
indem einzelne Komponenten des Systems zeitlich voneinander entkoppelt
werden. Dadurch können Bieter Gebote direkt an eine sichere Smartcard
übermitteln, und erst zu einem späteren Zeitpunkt zum Server übertragen.
Allerdings entstehen dadurch neue Sicherheitsprobleme, da Angreifer neue
Möglichkeiten erhalten das System zu attackieren. Diese Probleme werden
durch Beiträge in folgenden Bereichen gelöst: (i) Adaptiver Regelung, (ii) si-
chere Zeitsynchronisation und Zeitstempel und (iii) sichere Kommunikation
und Transaktionsauthentifizierung.

Das Ergebnis unserer Evaluierungen zeigt, dass unsere zeitliche Entkopplung es
erlaubt, den Einfluss von Lastspitzen auf die Server entscheidend zu verringern
und damit die Anzahl der pro Server unterstützbaren Bieter zu erhöhen.
Weiters ist es möglich, die Gebote nicht nur in der zeitlichen Ebene gleichmäßig
zu verteilen, sondern auch die Gesamtanzahl der Geboten zu reduzieren, da in
bestimmten Fällen später abgegebene Gebote frühere Gebote überschreiben
können. Unser Interval-basierendes Zeitstempelprotokoll verhindert, dass
Zeitstempel von Bietern manipuliert werden können, wodurch diese einen
Vorteil gegenüber anderen Bietern erhalten würden. Weiters gewährleistet
unser Authentifizierungsverfahren die Sicherheit während einer Auktion in
Fällen, in denen ein Bieter einen unsicheren Computer verwendet, welcher
möglicherweise mit Malware infiziert ist. Dies ermöglicht Nachweisbarkeit von
Geboten, da es aufgrund der Sicherheitsmaßnahmen für Bieter schwieriger
wird abzustreiten ein bestimmtes Gebot platziert zu haben.
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Abstract

First-price sealed-bid auction scenarios generally exhibit high peak loads
around the auction deadline as a majority of bidders tries to submit bids
shortly before the deadline. Moreover, these auctions also exhibit high
dependability requirements as an auction canceled due to service failures
can lead to significant financial losses, because of financial market conditions
changing over time. As a consequence, systems need to be designed for
excessive workloads and high availability, leading to massive over-provisioning
and high costs. However, for some governmental auctions, such as bond
auctions and CO2 certificate auctions, this over-provisioning is not cost
efficient as auctions are only conducted a few times a year with the hardware
being idle during the remaining time. Moreover, cloud computing solutions
are not an option due to security issues such as data ownership.

Key idea of our approach is to alleviate the dependability problems by shifting
them into the security domain and by consequently solving the new security
problems. We increase dependability of the system by temporally decoupling
the individual components of the system from each other and allowing users
to place bids on trusted devices physically located at their place. However, by
doing so we decrease the security as we give adversaries new options to attack
the system. To address those issues, we provide contributions in the areas of
(i) adaptive rate control, (ii) secure time synchronization and timestamping,
and (iii) secure communication and transaction authentication, as those areas
are primarily affected by our temporal decoupling approach.

Evaluation of our contributions shows that our temporal decoupling approach
is able to considerably reduce the impact of peak load on servers and thereby
increase the system’s performance. We are not only able to distribute requests
in the temporal domain, but due to the fact that some requests can deprecate
earlier requests by the same client we can also reduce the overall amount
of transmitted information. In addition, our secure time synchronization
and timestamping protocol prevents bidders from manipulating timestamps
and thereby ensures fairness of auctions. Finally, our secure communication
and transaction authentication approaches provide security of transactions
in cases where untrusted clients are used. Thereby, those contributions also
provide non-repudiation, as they prevent malware on the local terminal from
successfully manipulating bids.
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Chapter 1

Introduction

First-price sealed-bid auctions [MM87] as used for state bonds generally
exhibit high dependability requirements and high peak loads and therefore
require systems designed for excessive workloads and high availability. This
thesis contributes with techniques to trade dependability, security, and per-
formance, allowing to provide such characteristics without changes to the
server infrastructure. Key idea of the approach followed in this thesis is to
alleviate dependability problems by shifting them into the security domain
and by consequently solving the new security problems [FG08]. We increase
dependability of the system by temporally decoupling the individual com-
ponents of the system from each other, and allowing users to place bids on
trusted devices physically connected to their computer. However, by doing so
we decrease the security of the system, as we give adversaries new options to
attack the system. To address these issues we designed and implemented a
secure timestamping protocol that allows us to assign accurate timestamps to
bids when they are placed and—in the case of high peak loads or temporary
outages—to queue the bids at the client and transfer them to the server at a
later point in time.

One security problem with client-side timestamping is that software running on
clients cannot be protected against attacks by malicious users. Manipulating
the timestamps would enable a user to place bids even after the auction’s
deadline, and to gain potential advantages from information available after
the deadline that may influence the user’s decision on the bid. By shifting
the timestamping process from an untrusted computer to a secure device
we can prevent users from tampering with critical parts of the software.
However, only securing the software is not sufficient as users still retain full
control over the network between the secure device and the auctioneer. As a
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consequence, malicious users can selectively delay packets and cause deliberate
offsets during time synchronization. Our timestamping protocol mitigates
these issues by enhancing on existing interval-based time synchronization
techniques.

In addition to the protection of auctions against potentially malicious bidders,
we also need to ensure the security of honest bidders. Therefore, we introduce
two security extensions facilitating secure transaction authentication and
secure smart card communication.

Summarized, the main contributions of this thesis are in the areas of (i) adap-
tive rate control and performance, (ii) time synchronization and timestamping,
and (iii) secure communication and transaction authentication. The contribu-
tions in the first area allow us to increase the dependability of the system at
the cost of security, while the contributions in the subsequent two areas solve
the resulting security problems.

In this chapter we first introduce our application scenario, followed by a
discussion of the structure and the contributions of this thesis.

1.1 Application scenario

The introduction of our application scenario is partitioned into four main
parts: First, we discuss the characteristics of first-price sealed-bid auctions,
followed by an examination of our temporal decoupling approach. We then
proceed with a discussion about our system architecture and conclude the
section with an introduction to our trust model.

1.1.1 First-price sealed-bid auctions

In first-price sealed-bid auctions the time of bid placement does not have an
influence on the auction outcome, as long as bids are placed before the fixed
auction deadline. Moreover, bidders do not learn about each others’ bids
until the end of the auction and are allowed to submit updates to their bids
until the auction deadline. Examples of such first-price sealed bid auctions
are governmental bond auctions and CO2 certificate auctions.

In this thesis we consider first-price sealed-bid auctions as used for the auc-
tioning of bonds. These auctions exhibit high peak loads around the auction
deadline as a majority of bidders tries to submit bids shortly before the dead-
line. Moreover, these auctions also exhibit high dependability requirements as
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an auction canceled due to technical reasons can lead to significant financial
losses, because financial market conditions change over time. Unlike in the
case of eBay-style auctions, only few non-overlapping auctions are conducted
per year. Therefore, it is not possible to schedule multiple auctions in a way
that the combination of the individual auction peaks produces a more or less
constant load, which would lead to good overall server utilization.

As a consequence, systems need to be designed for excessive peak loads and
high availability, leading to massive over-provisioning and excessive costs.
While cloud services would allow to mitigate some of the availability and
performance issues, the high trust requirements, the high monetary amounts,
and policy issues eliminate cloud services as an option for deployment.

1.1.2 Temporal decoupling

To address the peak loads and availability issues, we use temporal decoupling.
The key idea of temporal decoupling is to decouple bid submission at the client
from bid transmission to the server. An example is given in Figure 1.1. The
grey line depicts the amount of bids placed by the users in a first-price sealed-
bid auction, while the black line indicates the amount of bids transmitted to
the server. The deadlines for both lines are different. Thus, once the user
places a bid locally, it can be transferred to the server at a later point in
time, as long as it arrives before the deadline for messages. Due to the longer
duration for bid transmission, the peak load can be decreased, as the bids
can be spread in the temporal domain.

However, delaying a bid is not possible without a secure means to determine
the original time when the bid was placed. We facilitate secure timestamps
with a secure time synchronization and a secure timestamping protocol
executed on smart cards that are distributed to the users. As users do not
have direct access to the software running on the smart cards, it is not easily
possible to assign manipulated timestamps to individual bids. After receiving
a bid, the server can read the secure timestamp, to ensure that the bid has
been placed before the deadline for bids.

By decoupling the deadline for bids from the deadline for message reception
at the server (as depicted in Figure 1.1), we increase system performance,
availability and scalability during peak loads:

1. We increase performance and scalability, as we can intentionally delay
transmission of bids during brief periods of peak loads. This decreases
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auction 
start

deadline 
for bids

deadline for 
messages

time

# bids

original 
peak load peak load with 

temporal decoupling

Figure 1.1: Effect of temporal decoupling. The deadline for bids specifies the
deadline until which a user can place a bid, while the deadline for messages
specifies the deadline until which the bid has to be received at the server.

peak loads at the server and increases the amount of bids that can be
placed at clients.

2. We increase availability, as in case of transient problems we can allow
bids to be transferred to the server at a later time.

For the availability, it is sufficient to apply correct timestamps locally. If the
client is able to communicate with the server, it can immediately transfer
bids to the server. Otherwise, it defers transmission until the server becomes
available. For performance and scalability we additionally use a decoupling
strategy in combination with a PID (Proportional-Integral-Derivative) con-
troller and a distributed feedback channel, which enables an optimal utilization
of the server.

While our approach increases the effective performance of the system under
peak loads, it also introduces new security challenges, as malicious bidders
could tamper with the timestamp, thereby cheating the system. Therefore,
we do not define a single global deadline for messages—as in the simplified
example in Figure 1.1—but instead define an individual deadline for each single
message by restricting the maximum transmission delay of each message. Thus,
an attacker trying to manipulate timestamps has less time to tamper with
bid information stored on the smart card and cannot assign arbitrary values
to timestamps. In case of server failures that prevent clients from abiding to
these deadlines, the individual deadlines can be adaptively prolonged on the
server-side by the auctioneer.
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1.1.3 System architecture

Due to our temporal decoupling approach and due to the smart cards dis-
tributed to users, our system architecture is different from traditional auction
scenarios. Figure 1.2 depicts the individual components of our system ar-
chitecture. The smart card is connected to the user’s computer that relays
messages between smart card and auctioneer. A circumventive user is able to
attack different parts of the system. For example, physical attacks can be
used against the smart card itself, delay attacks can be used against time
synchronization messages relayed by the computer, and any software running
on the computer may be manipulated.

Untrusted client

Auctioneer

Smart card

Adversary

Server

Figure 1.2: Application scenario

• The auction server is responsible for hosting the auction Web application
and additionally acts as a time server. Bids timestamped by a smart
card are relayed over the untrusted client to the auction server.

• The smart card timestamps bids provided by the untrusted client with
the current time. It obtains the time using a time synchronization
protocol. Messages between smart cards and time servers are relayed
by the untrusted client in between. Messages between smart cards
and bidders are secured with QR-TANs (Quick Response - Transaction
Authentication Numbers).
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• The untrusted client enables communication between smart cards and
the auctioneer. Messages transmitted between a smart card and an
untrusted client are encoded as APDU (Application Protocol Data
Unit), while the untrusted client uses standard Internet protocols, such
as the TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol), to communicate with the auction server. Only non-security-
critical software operations are executed on the untrusted client.

To provide correct time on trusted devices, such as smart cards, we employ a
secure time synchronization protocol. The reference time is obtained from
servers under control of the auctioneer.

1.1.4 Trust model

In addition to the system architecture discussed in Section 1.1.3 our trust
model also differs from traditional time synchronization and timestamping
scenarios. While in traditional time synchronization protocols individuals
interested in obtaining accurate timestamps have full control over clients,
in our scenario the auctioneer has full control over the time servers, but no
physical control over the clients. In addition, the user can be considered as a
potential adversary with full control over the network.

Figure 1.3 shows the trust relationships in our application scenario. Green
solid arrows indicate that the respective role is able to reasonably trust another
role or component, if appropriate security mechanisms, e.g., encryption of
network links or intrusion detection mechanisms, are applied or contracts
between different roles are arranged. Otherwise, the untrusted relationship is
indicated via a red dashed arrow.

Based upon existing technology, the auctioneer is able to trust the own infras-
tructure (auction server, network links, and smart card), the issuer, and the
time server infrastructure. Although, we assume the auctioneer may trust the
bidder in general, they cannot fully trust the bidder as the manipulation of the
clock on the bidder’s terminal is undetectable. Consequently, the auctioneer
has to distrust the bidder with this respect. Similarly, the auctioneer has
to distrust the bidder’s terminal and the communication channel between
terminal and smart card.

The communication between the smart card and the time server can be trusted
with respect to message integrity, but as communication is only performed
via the bidder’s terminal, communication delays might be introduced by the
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BidderIssuer

Auctioneer

Bidder s terminal

Time serverAuction server

Smart card

Figure 1.3: Trust model

bidder to influence the time synchronization algorithm. Therefore, this estab-
lishes a source of distrust for smart card–timeserver communication. Similar
considerations apply to the communication link between the bidder’s terminal
and auction server as the bidder might interrupt the network connection to
pretend a network failure.

1.2 Structure and contributions

This thesis contributes in the areas of (i) adaptive load control and perfor-
mance, (ii) time synchronization and timestamping, as well as (iii) secure
communication and transaction authentication. In particular, the contribu-
tions are provided in the following chapters:

Adaptive load control and performance

• Chapter 2 contributes with scalable techniques for client-side request-
rate control, combined with actual load reduction for first-price sealed-
bid online auctions, especially with a focus on peak load situations [1].
In particular, the main contribution is the integration of (i) a distributed
feedback channel to transmit control information from the server to the
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clients with (ii) decoupling strategies that allow to constrain client re-
quests directly at the client side and (iii) a PID controller that adaptively
controls the input parameters of those decoupling strategies to facilitate
an optimal server load. The contributions of this chapter enable our
adaptive load control approach and allow us to trade dependability,
security, and performance.

Time synchronization and timestamping

• Chapter 3 contributes with a secure time synchronization and times-
tamping protocol tailored to online auctions where we apply secure
timestamps on smart cards locally connected to the bidder’s computer [2].
Moreover, our timestamping protocol is robust with respect to man-
in-the-middle delay attacks. Finally, we prove the feasibility of our
approach based on a .NET smart card implementation and conclude
with a discussion of current smart card limitations.

• Chapter 4 contributes with: (i) A distributed timestamp protocol
addressing practical applicability issues with an efficient overlay routing
architecture able to minimize the effects of node churn and connection
establishment delays at the cost of higher impacts of hop-to-hop latencies,
(ii) smart card integration to introduce a distributed web of trust and
hence increase the security of applied timestamps, and (iii) an evaluation
using a prototype implementation and network simulation that shows
the performance gains of our protocol in comparison to the state-of-
the-art [3]. The properties of our protocol allow for its application in
scenarios where distributed timestamping protocols have not been an
option so far, for example, because of mutually distrusting users.

Secure communication and transaction authentication

• Chapter 5 contributes with the QR-TAN authentication technique,
which is based on two-dimensional barcodes [4]. Compared to other
established techniques, such as TANs (Transaction Authentication Num-
bers), QR-TANs show three advantages: First, QR-TANs allow the
user to directly validate the content of a transaction with a trusted
device. Second, validation is secure even if an attacker manages to
gain full control over a user’s computer. Finally, QR-TANs can be
used in combination with smart cards instead of a server, facilitating
authentication when no network is available. In our application scenario
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QR-TANs can increase the security of auctions by preventing malware
from successfully manipulating a user’s bids.

• Chapter 6 contributes with techniques to Web-enable smart cards and
to address the risks of malicious attacks [5]. In particular, our contribu-
tions are: (i) A single generic proxy to allow a multitude of authorized
Web applications to communicate with existing smart cards and (ii) two
security extensions to mitigate the effects of malware. Overall, this
allows us to mitigate the security risks of Web-based smart card trans-
actions in our application scenario and—at the same time—increases
the usability for users.

Chapter 7 discusses alternative application scenarios and concludes the thesis
with an outlook on future work.

The publications authored and co-authored by the writer of this dissertation
provided in the references above and within the dissertation in numeric
references are used in parts of this dissertation without always being referenced
explicitly.



Chapter 2

Adaptive rate control

In this chapter we contribute in the area of adaptive load control and per-
formance, by presenting an adaptive rate control technique that facilitates
our temporal decoupling approach discussed in Section 1.1.2. In particular,
our contribution allows to adjust client transmission rates based on a server’s
effective load. While temporal decoupling would also be possible without
adaptive rate control, adaptivity allows clients to better adapt to a server’s
resources and a server’s load, and to thereby reduce the transmission delay of
placed bids. In addition, our adaptive rate control approach allows to increase
the security of the system, as it limits the time until which a bid has to be
transmitted to the server.

To specify when a client is allowed to transmit information, we introduce
two decoupling strategies that defer requests directly at the client. The first
decoupling strategy specifies which clients are allowed to transmit information
at a particular point in time, while the second decoupling strategy controls
the transmission rate of clients. For both decoupling strategies the input
parameters can be adapted to alter the load at the server. To prevent overload
and to enable an optimal utilization of the server we combine the decoupling
mechanisms with a server-side PID controller. To minimize the additional load
at the server caused due to operation of the controller’s feedback channel we
use a distributed feedback channel operated mainly by the clients themselves.
Hence, the server-side cost for operation of the feedback channel becomes
independent of the total number of clients, allowing for better performance
during peak loads than state-of-the-art systems.

Summarized, our main contribution in this chapter is the integration of (i) a
distributed feedback channel to transmit control information from the server
to the clients with (ii) decoupling strategies that allow to constrain client
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requests directly at the client side and (iii) a PID controller that adaptively
controls the input parameters of those decoupling strategies to facilitate an
optimal server utilization.

First, Section 2.1 presents our decoupling strategies, followed by Section 2.2
which continues with our request rate control loop and the distributed feedback
channel. Section 2.3 evaluates the effectiveness of our approach, complemented
by Section 2.4 discussing the limitations. Section 2.5 proceeds by reviewing
our security vs. dependability trade-off. Afterwards, Section 2.6 compares
our adaptive rate control approach to related work. We conclude the chapter
in Section 2.7.

2.1 Decoupling strategies

This section provides our first contribution: decoupling strategies and sim-
ulations of their expected influence on the clients’ transmission rate. A
decoupling strategy specifies when and how long a placed bid is held back
on the local client. In this section we consider open-loop control [KBE99],
where fixed input parameters are used for the decoupling strategies. In later
sections we extend this open-loop approach by providing closed-loop control,
which augments open-loop control with (i) a distributed feedback channel
(control channel) and (ii) a PID controller to dynamically adapt the input
parameters to attain an optimal server utilization.

Each of the examined rate control strategies can be used in two different
variants: Data-overwrite and data-queue. In the data-queue variant, all sub-
mitted data are queued and eventually transmitted to the server, while in
the data-overwrite variant, items not yet sent are overwritten by subsequent
items—only one item per-auction is queued at a time. The data-overwrite
strategy is applicable to all temporally decoupled systems where later infor-
mation obsoletes former information, such as bids in a first-price sealed-bid
auction system.

2.1.1 Group-based control

With group-based rate control we partition the set of clients into disjoint
subsets, where at a given point in time only the clients within a particular
subset are allowed to transmit data to the server. There are two distinct
steps: (i) Partitioning the original set into a set of disjoint groups and
(ii) the selection of an active group. In our approach these two concepts are



2.1. DECOUPLING STRATEGIES 12

intertwined: Each client has a unique ID (Identification Data). When the
server wants to select a particular group it broadcasts two values: A divisor
and a modulo value. The divisor specifies how many groups exist, while the
modulo value specifies which of these groups is currently active. Each client
divides its ID by the divisor and verifies if the congruence class modulo the
divisor matches the modulo value. If this is the case, the client is within
the active group. Otherwise, the client needs to wait until its group gets
activated.

The modulo value is incremented in predefined time intervals, enabling
iteration over existing groups. This interval between groups in combina-
tion with the amount of groups determines the maximum possible delay of
client requests. In the worst case a client wants to issue a request right
at the moment where it became inactive. Thus, the client has to wait
interval_between_groups · (amount_of _groups − 1) time units until it is
able to transmit the request.

2.1.2 Interval-based rate control

Interval-based rate control exploits the fact that during a peak not only the
overall system load increases, but also the transmission rate of individual
clients. The idea is to partition time into disjoint intervals with length i and
to allow each client to send at most one data item during such an interval. If
a client has not transmitted any data to the server in a particular interval,
it can transmit the next data item directly to the server without any delay.
Otherwise, the client needs to wait for the next interval to be able to send
further data. It is crucial that the start points of the intervals differ between
clients. Otherwise, all clients with queued packets that wait for the next
interval would start submitting their queued packets at exactly the same
time.

An advantage of the interval-based approach is that it does not delay data
transmission under low load, i.e, when new data items are created at a client
in time intervals larger than the submission interval. Only in cases where
more than one data item per interval is created, transmission of data will be
delayed. This approach can be seen as a special case of token bucket based
rate control with a bucket size of one and a new token added each i seconds.
To control the request rate of clients, the size of the interval i can be adapted.
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2.1.3 Simulation

In this section we use discrete event simulation [HOP+86] to validate the
performance benefit of our temporal decoupling approaches. Compared to
traditional simulation approaches, discrete event simulation allows for efficient
simulation of long time spans within short amounts of time. The simulation
uses a priority queue of events sorted after the events’ time from which events
are iteratively dequeued and processed. When an event is executed, the
simulated clock is updated to the value of the event’s time. The execution of
an event can lead to additional events that are pushed on the priority queue.

First, we generate a load curve that represents when bids are submitted
by users during the peak load. Afterwards, we examine the effectiveness
of our two temporal decoupling strategies. For each of the strategies we
provide performance evaluations for different parameters and both variants
(data-overwriting and data-queuing). Neither the shape of the curves nor
the relative load at a particular point in time depend on the total number
of clients. Therefore, we give the load relative to the peak load that occurs
when no decoupling strategy is used.

Bid behavior

For the simulation of the bidder’s behavior we focus on the area around the
peak load. Using statistical data obtained from real world auctions of our
industrial project partner we observe that 2

3
of the bids are placed during the

peak load in the final five minutes of an auction. We exploit the fact that
in a Gaussian distribution 68.27% of all measurements are located within a
distance of σ from μ. As these 68.27% roughly correspond to the 2

3
of the bids,

we can assume a value of 150 seconds for σ, to let the Gaussian distribution
approximate a peak load over a duration of five minutes. For μ we use a value
of zero, placing the peak of the load at the null point of the diagram.

The resulting load curve representing the bidding behavior is shown as grey
line in the diagrams in Figures 2.1–2.5. The x-axis represents the time in
seconds and the y-axis represents the amount of placed bids per second given
in percentage of the peak load of the original load curve, where 100% typically
refers to 30 000 bids per second in our simulation. This load curve is used as
input for our two different decoupling strategies.
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Group-based rate control

For the simulation of the group-based strategies we simulated the load with
two different sets of input parameters: In the first case we used 20 groups—
shown in Figure 2.1—while in the second case we used 75 groups—shown in
Figure 2.2. In both cases we switch groups in 4 second intervals. In addition,
we simulated the data-overwriting behavior (in red with dashed linestyle)
and the data-queuing behavior (in blue with solid linestyle). The parameters
used in the simulation have been chosen according to the constraints—such
as the maximum time span between the deadline for bids and the deadline
for messages—in real-world first-price sealed-bid auctions.
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Figure 2.1: Group strategy: 20 groups, iteration each 4 seconds

First, we observe that there are no considerable differences between the
original load curve and the decoupled load curves when data-queuing is used.
The only difference is that in the case of data-queuing the load curve is slightly
shifted to the right, which is the expected behavior, as the total amount of
transmitted bids does not differ and as bid submission is never delayed for
more than one full iteration of all groups. However, when data-overwriting is
used, significant load reductions can be observed, with a peak load less than
50% of the original peak. Again, this is the expected behavior, as at most
one bid is queued while the node itself is not active, even if multiple bids are
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Figure 2.2: Group strategy: 75 groups, iteration each 4 seconds

placed. Rate reduction with data-overwriting is only effective, if—on average—
more than one bid is placed on a client while it is inactive, as otherwise the
resulting rate would be the same as in the data-queuing scenario.

Interval-based rate control

Similarly to the previous strategy, we simulated the results for two different
parameters. In the first case we used an interval size of 80 seconds (shown in
Figure 2.3), allowing only one bid to be transmitted within an interval of 80
seconds. Bids that cannot be placed immediately are delayed and placed after
the interval’s end. In the second case we used an interval size of 300 seconds
(shown in Figure 2.4). In both cases we simulated the data-overwriting and
the data-queuing variants. As in the case of group-based rate control the
parameters have been chosen according to the constraints of real-world first-
price sealed-bid auctions. Therefore, the maximum possible delay in the two
interval-based data-overwriting cases corresponds to the maximum possible
delay in the two group-based data-overwriting cases.

In the results we can observe a brief overshoot and then a relatively stable
amount of load. This is the expected behavior: The overshoot occurs as
during the increasing overall bid rates some clients have not yet transmitted
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Figure 2.3: Interval limit strategy: 80 seconds

−1000 −500 0 500 1000

time [s]

0

20

40

60

80

100

b
id
s
p
er

se
co
n
d
[%

of
p
ea
k
lo
ad

] data-queuing
data-overwriting
original loadcurve

Figure 2.4: Interval limit strategy: 300 seconds
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a bid in the current interval. Thus, they can immediately transmit a newly
placed bid without any rate restrictions. Once the interval-based rate control
sets in, this is not possible as clients typically transmit bids in each individual
interval.

In the data-overwriting variant, the height and the width of the load curve
are comparable to the group-based strategy examined in the previous section.
However, in the data-queuing variant, there is a fundamental difference
between the group-based strategy and the interval limitation strategy: While
in the group-based strategy data-queuing leads to a higher load when compared
to the data-overwriting case, in the interval limitation strategy, data-queuing
does not show a higher peak load, but an increased duration. Again, this is
the expected behavior, as interval-based rate control restricts the possible
transmission rate. Thus, in data-queuing the larger amount of bids leads
to additional transmission delays. With an interval size of 80 seconds, we
can observe that the decoupled curve shows a peak at around 50% of the
original curve—which essentially doubles the amount of users a system can
handle. With larger delays or intervals the peak load can be even further
decreased. However, larger interval sizes also imply larger time spans between
the deadline for bids and the earliest possible deadline for messages.

Transmission failures

Figure 2.5 shows the performance of interval-based rate control in case of
transmission failures. In the depicted scenario, bids cannot be transmitted to
the server between the time values 0 and 180 on the x-axis. For the simulation
an interval size of 80 is used. The re-transmission strategy of a client is to
try again when the next local interval starts. In the data-overwriting variant
the only difference to Figure 2.3 is that the transmission rate drops to zero
during the outage. As each client can have at most one outstanding bid,
the point until all bids have been received at the server is not substantially
deferred. In the data-queuing variant each single bid needs to be transferred
to the server. Therefore, the duration until all bids have been collected at
the server is prolonged by approximately the duration of the outage. Due to
the re-transmission strategy, the transmission rates of clients do not change
when the server is not available. In the figure this can be observed by the
server’s load instantly reaching its normal value as soon as transmission is
possible again.
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Figure 2.5: Transmission failure mitigation

Results

Our results show that the group-based and interval-based decoupling strategies
are suitable for temporal decoupling to mitigate temporary peak loads. The
group-based strategy allows to mitigate peak loads by assigning nodes to a
set of groups and allowing nodes to transmit data only when their particular
group is active. We have evaluated this strategy with two different variants:
Data-queuing and data-overwriting. As bids that are placed while the node’s
respective group is inactive are delayed, both variants also slightly shift the
load curve to the right. However, for a given delay parameter the data-
overwriting variant is able to reach a considerably lower peak load then the
data-queuing variant.

The idea behind the interval limit strategy is to limit the maximum transmis-
sion rate of each single client. Therefore, from a bidder’s point of view bids are
not delayed until the local transmission rate exceeds the allowed transmission
rate. For both variants—data-queuing and data-overwriting—the resulting
peak load is the same for a given parameter. However, the time until all bids
have been collected at the server is longer when data-queuing is used, due to
the larger amount of total bids.
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The simulations in this section used predefined input parameters, such as the
amount of groups or the interval size. While those input parameters allow
to reduce request rates, they are open-loop control approaches that do not
take actual load at the server into account. Thus, these approaches are not
able to prevent server overload if input parameters are suboptimally chosen,
e.g., if the amount of active clients changes over time. Moreover, open-loop
control only achieves a sub-optimal server utilization. In the next section we
upgrade this open-loop approach to a closed-loop approach, allowing for an
optimal server utilization.

2.2 Closed-loop control

In this section we contribute with our closed-loop control approach that
integrates our decoupling strategies with (i) a distributed feedback channel
and (ii) a PID controller to induce an optimal utilization at the server. The
PID controller dynamically adapts the input parameters of our decoupling
strategies, while the distributed feedback channel can relay control information
to the clients with only minimal overhead at the server.

The advantage of closed-loop control in comparison to the open-loop strategies
presented in Section 2.1 is that the PID controller allows the system to adapt
to changing transmission rates of clients, as well as a changing number of
overall clients. While open-loop decoupling strategies can adapt to the worst-
case considering the highest potential overall server load, this unnecessarily
delays bid transmission at the clients at times where the system is not fully
loaded. Consequently, malicious bidders would have more time to tamper
with the stored bids, thereby increasing the system’s security threats.

System and software architectures are depicted and described in Figure 2.6.
First, we discuss the setup at the client-side. Then we proceed with a discus-
sion of the controller. Finally, we conclude the section with our distributed
feedback channel.

2.2.1 Clients

On the client-side we use a decoupling application to facilitate request rate
control. This decoupling application performs two tasks: (i) It acts as actuator
by receiving control information over the distributed feedback channel and
by controlling request rates of the Internet application accordingly, and
(ii) it is itself part of the distributed feedback channel as it forwards control
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Figure 2.6: Control loop architecture overview. The individual clients send re-
quests to the server. At the server the sensor measures the server-side queuing
and processing delay and the controller uses the input provided by the sensor
to adjust the output, e.g., the interval length or group size of our decoupling
strategies. A distributed feedback channel is used to scalably propagate the
control output back to the clients. On each client the Internet application orig-
inates the application-level requests, while the decoupling application (labeled
P) receives input from the controller over the distributed feedback channel and
provides input to other peers and the Internet application.

information to other clients. Due to our closed user group, installation of
custom client-side software is a feasible approach. As a consequence, we do
not target generic Internet applications, but specific types of applications
such as first-price sealed-bid auctions that benefit from temporal decoupling
as outlined in the introduction in Section 1.1.2.

2.2.2 Controller

The task of the controller discussed in this section is to adaptively control the
parameters of the rate control techniques introduced in Section 2.1. We use a
closed-loop control approach that allows the controller to provide feedback
to individual clients and thereby provides a better performance in case of
unpredictable loads and unanticipated load changes.

The setup of our controller is depicted in Figure 2.7. The controller is
implemented as PID controller, as measurements showed that it provides a
lower standard deviation of the PV (Process Variable) than a P (Proportional)
or PI (Proportional-Integral) controller in our application scenario. Clients
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regularly send requests to the server. The input to the controller is provided
by a sensor at the server that measures the process variable. The controller
then compares the error (or deviation) e between the given SP (Setpoint) and
the measured process variable. The goal of the controller is to minimize e by
adapting the input parameters of the system accordingly. In our system the
process variable is—depending on the configuration—either the queue length
of requests waiting to be processed, or—alternatively—the request processing
delay at the server. Consequently, the setpoint is the target value of the system
and given in the same unit as the process variable. The MV (Manipulated
Variable) is the input to the process, in our system this corresponds to the
input parameters of the decoupling mechanisms introduced in Section 2.1.
In case of group-based decoupling this parameter reflects the percentage of
active clients, while in the case of interval-based decoupling the parameter
reflects the interval size.

Controller

System 
input

Measured 
error

Setpoint

Measured output

Server

Controlled System

S
en

sor

Figure 2.7: Control loop. Our controlled system consists of the individual
clients and the server. A sensor at the server measures the processing delay.
The measured error between an externally provided setpoint and the measured
output is fed into the controller, which adjusts the system input accordingly.
The system input is provided via a distributed feedback channel back to the
clients.

Due to the fact that the system behavior differs between application scenarios
and as we anticipate that in real-world deployments at best a heuristic tuning
or auto-tuning method will be used, we use the Ziegler-Nichols heuristic
method [ZN42, HÅ02] to obtain P, I, and D gains with a quality that can be
compared to such real-world deployments. First, the P gain is increased until
the system starts to oscillate. Then, the Ziegler-Nichols charts are used to
calculate the respective gains for a PID controller.
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2.2.3 Distributed feedback channel

The task of the distributed feedback channel is to transmit control information
from the controller to the clients. The typical implementation approach is to
let the server communicate with each individual client. However, previous
work has shown that for large amounts of clients such a system cannot be
easily implemented without a specialized broadcasting infrastructure [HJ99].

Consequently, we contribute with the integration of a broadcasting infras-
tructure based on an overlay network that can be used to flood information
to the set of clients. We use application-level broadcast [YLE04] based on a
tree-based network structure as depicted in Figure 2.8. Therefore the height
of the tree—and thereby the propagation delay—grows only logarithmically
with the amount of clients. To prevent failures caused by single clients, we
use multiple independent trees, so that each client receives broadcasts from
multiple sources. To detect partitions we use a keep-alive mechanism. The
server regularly broadcasts cryptographically secured sequence numbers to
the tree. A client can detect problems, if it has not received sequence numbers
for some time or if individual sequence numbers are missing. However, due to
the closed user group in our application scenario we expect a low node churn.

Client Client

Client Client Client Client

Application
servers

D
ead

 T
im

e

Figure 2.8: Distributed feedback channel. The servers send information to
only a few clients with a tree-based network structure used to propagate data
between clients. Parameters of the tree are the arity and the height.

For our distributed broadcast channel there is a trade-off between the total
number of clients and the stability of our system:

• With a growing number of clients the height and/or arity of the tree
have to increase to accommodate more clients. However, with a growing
height or arity the dead time of our system increases as well, which in
turn leads to instabilities such as oscillation.
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• With increasing height of the tree, the clients’ average distance to the
server increases. Thus, it takes longer until a server broadcast is received
by a majority of the clients. Similarly, with increasing arity each client
has to transmit information to a larger amount of children, lowering
the bandwidth available for each individual transmission.

• When the dead time of the system increases, this decreases the stability,
making the system susceptible to overshoots or oscillation. It is possible
to mitigate this issue by decreasing the gains of the controller. However,
this slows down the system, potentially preventing it from responding
to load changes in time.

By adapting the arity and the height of the N-ary tree, we can control the
trade-off between the maximum amount of clients and the dead time. For
example, consider an average propagation delay between two clients of 100 ms
and a maximum tolerable dead time of 5 seconds. This would allow a total
tree height of 50. When using a binary tree, this equals a theoretic total
of 22.5 · 1014 clients. In practice, the number of clients is therefore not
limited by our broadcast channel, but by the lower bound of the request rate
acceptable for each individual client. Under most configurations, the feedback
channel itself is capable of supporting an amount of clients several dimensions
higher than the maximum amount reasonably supported by the servers of
the system. As a consequence, we can use the additional capacity to increase
the redundancy of our tree, allowing for correct propagation of broadcasts in
cases where individual clients fail.

As a majority of bidders generally places bids shortly before the auction
deadline and as the set of bidders is pre-defined for each auction, node churn
during this critical period is typically smaller than in comparable application
scenarios—if not non-existent at all. Therefore, our distributed feedback
channel is not specifically adapted to high node-churn scenarios. However—
depending on the concrete scenario—alternative application-level broadcast
protocols can be used for such cases.

2.3 Evaluation and measurements

In this section we evaluate the effectiveness of our rate control approach.
The goal of the measurements is to evaluate different system configurations
in regard to stability and performance. While there are several common
benchmarks for evaluating Web applications, they are not applicable to
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our temporally decoupled system. RUBiS (Rice University Bidding Sys-
tem) [CMZ02] models an auction site similar to eBay. While in RUBiS
the typical user interactions such as browsing of auctions and consulting
of bid histories are modeled, in our system the focus lies on the request
rate control of temporally decoupled bid submissions. Similarly to RUBiS,
TPC-W (TPC Benchmark W) [Tra02] models a Web shop to test the per-
formance of Web server and database systems. As a consequence, neither
RUBiS nor TPC-W can be used in their current specification to evaluate
our rate control system, as they are not applicable to temporally decoupled
systems. Instead, we evaluate our system in the auction scenario specified in
Section 2.3.4.

In the following evaluations we first examine the open-loop behavior of our
system and the system’s response to changes in the input. Then, we examine
the closed-loop behavior of our controller in a simulated auction scenario using
group-based and interval-based control. In addition, we also compare our
approach to alternative solution approaches, such as an approach piggybacking
control information in HTTP (Hypertext Transfer Protocol) requests and
another approach rejecting requests on the server-side [ASB02].

2.3.1 Configuration

In the evaluation we focus on single-threaded clients using data-queue for
transmission and the processing and queuing delay as metric. In addition, we
also conducted measurements where we limited the number of concurrently
processed requests at the server to 1, and subsequently used the size of an
unbounded queue of the waiting requests as a metric for the controller. Such
a setup better reflects application servers with a fixed number of worker
threads. However, as we did not observe significant differences in comparison
to the processing and queuing delay metric, we only show the results for the
processing and queuing delay metric in this section, which also reflect our
results for the queuing size metric.

2.3.2 Test setup

For the evaluation, we measure how our controller works for a CPU (Central
Processing Unit) bound service, as this has been indicated by our industrial
partner to be the limiting factor. Our service performs a simple calculation—
prime factorization—that requires about 100 ms of processing time. An
increasing concurrency rate also increases the processing delay for each indi-
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vidual request. The hardware setup consists of six standard PCs (Personal
Computers) running on Ubuntu 8.04 server edition. The first PC hosts the
server, while the remaining PCs act as load generators. The server is imple-
mented as Java application using Jetty to provide HTTP access. The clients
are also implemented in Java with one thread per simulated client. Each load
generator is responsible for the simulation of multiple clients. Due to the fact
that we test a CPU bound service, local network performance is not an issue.

As all clients run on the same local network and as multiple clients run on the
same host, the propagation delay between individual clients is low. To account
for the fact that dead time has a considerable influence on the performance of
a controlled system, we implemented dead time simulation into the distributed
broadcast channel used to propagate control information to clients. This
simulation works by enabling a client to hold feedback information for a
particular amount of time before forwarding this information to the next
client. This allows to simulate different network conditions, such as latency
on WANs (Wide Area Networks).

2.3.3 Response to request rate change

First, we evaluate how fast our system reacts to sudden changes of the request
rate. The evaluation was done in two distinct steps depicted in Figure 2.9.

In the “No Control” curve the behavior of the uncontrolled system is shown
and in the “PID Controller” curve our system is extended with a PID controller
that provides closed-loop control. In both cases we double the amount of
active clients and verify how the system reacts to this input change. In the “No
Control” case, doubling the amount of clients also doubles the processing time
at the server. In the “PID Controller” case, the controller aims to keep the
response time stable at 1 000 ms. We can see a peak at the beginning, when
the controller needs to find an optimal range at the start of the simulation,
and during the change, when the controller needs to adapt group sizes to the
new number of clients accordingly (see circles).

Stability of the controller is a considerable factor, as it does not only affect
the processing time at the server, but also the total throughput of the system.
With a low stability caused by an unstable PID controller, there are time
periods where no clients send requests, although the server is not fully loaded.
In addition, also the case where too many requests are sent by clients can
cause decreased throughput due to overload at the server. Generally, the goal
of a controller is to reach the best performance possible with a given limit for
the stability.
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Figure 2.9: Response to system change: Without controller and with PID
controller in place

2.3.4 Auction scenario

For the second test we examine the behavior of our controller when used for
the characteristic load of our auction scenario. In particular, we examine
the performance during the peak load that resembles the bids of a first-price
sealed-bid auction [MM87].

To model the peak load we distribute each client’s request rate according to
a Gaussian distribution with σ = 50 seconds and μ = 130 seconds. There is
a total of 1 000 clients and each client transmits a total of 30 requests. For
each request at the server, the server executes a calculation that takes 100 ms.
The set-point of the controller that reflects the acceptable processing delay is
set to 1 000 ms.

The results of this evaluation for group-based rate control are presented in
Figure 2.10. In the first measurement we examine the response time when no
rate control is used, i.e., not even open-loop. The maximum response time
peaks at around 10 000 ms. The reason for the plateau at 10 000 ms is given
by the fact that the concurrency of each client is limited to 1 and that thus for
100 concurrent requests for an operation that takes 100 ms the total average
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will not exceed 10 000 ms. In the next three measurements we examine the
behavior of our PID controller for different amounts of dead time.
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Figure 2.10: Auction scenario with: PID controller, group-based control,
average process delay metric

In the first case, the simulated dead time is near zero. The actual dead time
is non-zero due to inevitable delays in our broadcast channel. In the second
case we simulate a dead time of 500 ms per level of the broadcast tree and
in the third case a dead time of 2 000 ms. In each of the cases there is a
total of 3 levels in a quinary (5-ary) tree. While the controller is able to
constrain the processing delay in the first case, in the second case it takes
some time until the system is stable. In the third case we see a relatively
large oscillation during the whole test, suggesting that the dead time is too
high for our controller. In a real-world application scenario such propagation
delays between nodes are considerably lower. If we assume an propagation
delay of 50 ms, a total of 30 levels would yield a maximum propagation delay
of 1500 ms, comparable to the maximum propagation delay of the simulation
with a dead time of 500 ms. A quinary tree with 30 levels would support a
theoretical maximum of 1.16 · 1021 nodes, which is more than anyone would
need in practice.

During the evaluation of group-based rate control we observed that the
limited granularity of possible group sizes can have a negative impact on the
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performance of the system. Especially when large groups are used, the possible
group sizes that can be declared using a single divisor and a single modulo
value often considerably differ from the manipulated variable calculated by
the controller. As mitigation strategy, we enhanced group-based control to
use lists of divisors and modulo values, instead of two single values. Clients
matching a divisor/modulo combination in the list are allowed to transmit
information. This allows for a more fine-grained specification of group-sizes,
and thereby for a better stability of the controller.

In Figure 2.11 we show the results for interval based rate control. While the
output of interval-based control is stable after the initial peak, variations
are slightly larger than with group-based rate control. The stable behavior
in Figure 2.11 is achieved by limiting the maximum difference between two
consecutive rate control parameters calculated and broadcast by the controller.
The respective limit is automatically derived based on the estimated amount
of clients and the measured average time per operation. Due to this limitation
the controller requires some time until it can reduce the load during steeply
increasing client request rates.
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Figure 2.11: Auction scenario with: PID controller, interval-based control,
average process delay metric
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2.3.5 Comparison

In this section we compare the effectiveness of our approach with two al-
ternative approaches found in related work (Section 2.6) that work without
distributed feedback channels.

In the first approach in Figure 2.12 we use a piggyback strategy where we
embed rate control feedback in HTTP responses. When an HTTP client sends
an HTTP request to a server, the server includes rate control information
in the HTTP response. The results show that the piggyback approach is
unstable and leads to oscillation. A major cause for this problem are variable
dead times and the fact that control information at clients cannot be updated
between individual requests of a client. Thus, the system is only able to
provide request rate control, but not admission control as our distributed
feedback channel.
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Figure 2.12: Comparison between distributed feedback channel and piggyback
approach

In the second approach in Figure 2.13 we use a reject strategy similar to
the control-theoretic approach by Abdelzaher et al. [ASB02] where we reject
requests at the server instead of the client. When a client is not able to
establish a connection to the server, we use an exponential backoff strategy
similar to TCP’s retransmission timer [PA00] without the adjustments using
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the SRTT (Smoothed Round Trip Time) [Pos81]. The original approach
is not directly applicable to our application scenario, as implementation of
a reject/request-ratio would not allow us to reject requests on a per-client
basis. Furthermore, such an approach would allow unfair clients to gain an
advantage by establishing connections with a high frequency. Instead, we
reject requests at HTTP level instead of TCP level, as our existing decoupling
mechanism depends on the client IDs. As a consequence, the performance of
the reject approach in our evaluation is restricted by our required adaptations.
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Figure 2.13: Evaluation of different reject/request-ratios

With the reject strategy the stability depends on the ratio between the
cost of accepting a request and the cost of rejecting a request. Figure 2.13
depicts the results for different ratios between accepting requests and rejecting
requests. In the first case processing a request takes 100 ms, while we do not
artificially delay the time for rejecting a request. In the additional two cases
we increase the time for rejecting a request to 10 ms and 100 ms to simulate a
reject/request-ratio of 0.1 and 1 respectively. While the results show that the
stability does not significantly differ between different reject/request-ratios,
there is a considerable difference in the throughput. While our distributed
feedback channel is able to achieve a throughput of 8.6 requests per second, the
throughput in the best reject approach is only 7.0 requests per second. When
increasing the reject/request-ratio the throughput declines further to 5.0 and
2.9 requests per second accordingly. Therefore, the benefits of our distributed
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feedback channel are primarily relevant in scenarios with a high reject/request-
ratio, where the cost of rejecting a request is not negligible. Abdelzaher et
al. have shown that this is the case in Web-server end systems, where they
measured a reject overhead of 1.1 ms per request, while processing a request
for a zero-sized URL (Uniform Resource Locator) took 1.604 ms [ASB02]. A
more detailed examination of the reject/request-ratio’s influence is given in
the next section.

2.4 Limitations

The applicability of our approach for certain application scenarios can be
determined by comparing the effort required at the server for processing
requests with the effort required for rejecting requests and with the typical
ratio between average load and peak load. For comparison, we assume a
simple system that does not use distributed load control: If a request cannot
be processed, it is rejected by the system and the client does not try to
retransmit the request.

First, we examine the theoretical limitations due to the cost difference be-
tween accepting and rejecting requests. We then proceed by discussing the
implications of these trade-offs on real-world application scenarios.

2.4.1 Theoretical limitations

We denote the maximum request rate that the system can sustain without
rejecting requests as rprocess , the factor between the system load under normal
operation and the system load during a peak as factorpeak , and the factor
between the cost of accepting a request and rejecting a request as factor request
(= cost for request

cost for reject
). We then calculate an upper bound for the server’s effort

of rejecting requests when not all requests can be processed by calculating
rprocess · factorpeak

factorrequest
: We have factorpeak as many requests, but rejecting each

request only takes 1
factorrequest

of the time it would take to process these requests.

If factorpeak is equal to factor request the system is not able to handle any
business requests during peak load, as rejecting requests takes up all available
resources. Thus, in this case our distributed broadcast channel would be able
to double the effective capacity of the system, as the resources previously
used for load control can now be used for request processing. With a higher
factor request the advantage of our distributed broadcast channel decreases,
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while with a lower factor request the advantage increases. For example, if
factor request is 100, but factorpeak is only 10, the upper bound of rejection
costs during the peak load is about 1

10
of the system’s overall performance.

In this case, the advantage of outsourcing the broadcast channel is rather
limited.

2.4.2 Real-world applications

In a real world system the examination of our system’s advantages are more
complex than the calculations for the simplified model given in Section 2.4.1:
(i) Our model does not deal with retransmission of requests. If a request is
rejected, the client would need to try a retransmission at some point. This
increases the advantage of our approach. (ii) We assume that each request
is transmitted independently of other requests. In reality, a client can use
information from earlier requests to optimize the rate for later requests. This
in turn decreases the advantage of our approach, but may lead to unstable
behavior as shown in Figure 2.12.

While our approach cannot prevent clients from trying to cheat by ignoring
control information, the server can easily verify if individual clients act
according to the broadcast control information. If clients continuously violate
those rules, the server can ban those clients from further participation in
the auction by rejecting requests without processing them. In addition, to
prevent clients from injecting bogus messages into the network, clients will
only forward messages digitally signed by the server.

2.5 Security vs. dependability

As discussed in Section 2.2 there is a security vs. dependability trade-off
given by the maximum allowed delay for a bid. A small delay increases
security, as this delay corresponds to the amount of time by which an attacker
can theoretically backdate a bid. However, a small delay also decreases
dependability, as in the case of transmission problems clients have less time
to resubmit a bid. There are two extremes between which the value for the
maximum allowed delay can be set:

• From a security point of view the optimal maximum allowed delay
is zero. Such a value effectively disables decoupling, as the allowed
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timestamp of a bid must always correspond to the time when the bid is
received at the server.

• From a dependability point of view the optimal maximum allowed delay
is not limited. However, for practical reasons a limit is required to
evaluate the outcome of the auction.

Those two extremes also influence the strategies used for bid transmission.
For example, if bid overwriting is used, in case of the second extreme there is
no motivation for a client to submit any but the final bid, as transmission
of prior bids does not influence the outcome of the auction. The ultimate
goal of our decoupling approach is to allow for both—adequate security and
adequate dependability. We facilitate this goal via the following steps:

• First, we extend our decoupling strategies to not only limit the trans-
mission rate of clients, but to also control the maximum allowed delay
for a bid. The maximum allowed delay is given as offset to the smallest
allowed delay specified by the decoupling strategy. For example, if a
decoupling strategy mandates that the next bid can be transmitted in
one minute from now, we can specify a maximum allowed delay of ten
seconds, implying that the bid must be transmitted within one minute
and ten seconds from now.

• Second, we allow to adaptively increase the maximum allowed delay
in case of failures. For example, if the auctioneer observes overload of
the network or server infrastructure, bids from bidders can be accepted
even though they do not arrive in time.

Concluding, the goal of our decoupling strategies is not only to facilitate an
optimal server load, but also to keep transmission delays at the individual
clients’ low, as this allows to decrease the range of possible time values that
an adversary can assign to a bid.

2.6 Related work

Our adaptive rate control approach is not the first effort to dynamically control
request rates of clients on higher level application layers. For example, several
papers [ASB02, LLA+02, PPBG09] describe approaches that use controllers
to react to system load and thereby manage to improve the system’s overall
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performance. The main difference to our work is that we do not take actions
on the server side (such as rejecting requests or content adaption), but rather
try to solve the problem directly at the source—at the client side. This section
gives a brief overview of relevant and related work. First, we discuss load
control mechanisms in standard Internet protocols. Afterwards, we proceed
to specialized solutions for particular types of Internet and Web applications.

TCP based servers [Pos81] are able to implicitly control the transmission rate
of clients by only allowing a particular amount of parallel connections and
by using a window to restrict the amount of data waiting to be processed.
If SYN packets of clients are dropped, clients use an exponential backoff ap-
proach [PA00, MK08] to time retransmissions, which can further be improved
with a PI controller [LY09]. In our application scenario, TCP based rate
control is not fully applicable as our goal is to prevent overload by filtering
requests directly at the clients.

The goal of RacingSnail [GSTBU10] is to monitor and optimize the perfor-
mance of existing systems. The authors state that each system exhibits an
optimal performance at a specific request rate. With a lower request rate the
system is underloaded, and with a higher request rate the system is overloaded.
RacingSnail is implemented using a blackbox approach where one module is
responsible for measuring and analyzing the server’s performance, and another
module is responsible for slowing down client request rates. Compared to
our adaptive rate control approach the application scenario and the solution
approach are different. While our system deals with scalability aspects in
case of large amounts of clients distributed over the Internet, the application
scenario of RacingSnail deals with smaller amounts of clients and thus does
not require a scalable feedback channel. As a consequence, our system mostly
contributes with techniques required to facilitate request rate control for large
amounts of clients, while RacingSnail deals with issues such as how existing
blackbox services can be slowed down.

A control-theoretical approach for performance guarantees for Web server
end-systems [ASB02] by Abdelzaher et al. describes performance control of a
Web server using classical feedback control theory, thereby providing overload
protection, performance guarantees, and service differentiation in the presence
of unpredictable loads. The goals of the authors are performance isolation
(to isolate virtual hosts from each other), service differentiation (to give more
priority to more important clients), and QoS (Quality of Service) content
adaption (to adapt the content according to the designated quality of service,
e.g., by serving pictures with a lower quality in case of high server load). The
main difference to our approach is that we filter requests before they are
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transmitted to the server, instead of rejecting requests at the server. Rejecting
requests on the TCP layer is not directly applicable to our protocol, as we
first need to identify a client to determine if a request should be rejected. In
addition, implementing a reject/request-ratio for all clients is not meaningful
in our application scenario, as such a ratio would allow unfair clients to gain
an advantage by establishing connections with a high frequency.

Q-PID, another control-theoretic approach for Web services has been suggested
by Lim et al. in a paper that describes adaptive admission control for a
cluster-based Web server system [LLA+02]. It uses a controller based on
a feedback method. By averaging the response times of previous requests,
the controller calculates an accept ratio that specifies which percentage of
incoming requests should be rejected. Thus, the system is able to guarantee
bounded and predictive response times by the Web service. As in the case
of Abdelzaher’s approach the main difference to our contribution is that we
directly control the request rates of clients, while the Q-PID approach rejects
requests at the server.

Chan et al. propose a fuzzy PI controller to guarantee proportional delay
differentiation on Web servers [CC07]. They argue that it is not economically
feasible to design Web servers for peak load, and that even such a design does
not protect Web servers from overload. Additionally, they identify that during
peaks not all requests can be served in a timely manner. Consequently, their
solution approach is to use a fuzzy PI controller to provide a better service
to a premium class of users. Such an approach is not directly applicable to
our application scenario, where all users should have the same conditions for
submitting bids. However, the general idea could complement our solution, if
we specify a premium class of requests, instead of a premium class of users.
This would allow us to provide a better service for more important types of
requests when the server is overloaded.

Philippe et al. describe an approach for a self-adapting service level [PPBG09]
that allows some components in an application server to dynamically degrade
or upgrade their level of service, thereby trading a lower service level for a
better overall performance of the server. This could complement our solution
in general, but is not applicable for our specific application scenario.

In addition to the discussed publications there is a number of publica-
tions [MOZ+09, KRAW08, SRS00, VG02a, VG02b] that deal with admission
control for Web server systems. Most existing systems adapt parameters at
the server to influence the load produced by clients, e.g., by deciding which
requests should be rejected. In contrast, our technique frees the server from
rejecting individual requests, as we directly filter requests at the client.
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2.7 Conclusions

This chapter presents a new approach for adaptive load control and per-
formance in our application scenario of first-price sealed-bid auctions. Our
main contribution is the integration of (i) a distributed feedback channel to
transmit control information from the server to the clients with (ii) decoupling
strategies that allow to constrain client requests directly at the client side
and (iii) a PID controller that adaptively controls the input parameters of
those decoupling strategies to facilitate an optimal server utilization.

In comparison to established techniques, our system allows to control the
quality of higher layer protocols without relying only on the load control
mechanisms provided by lower layer protocols. Unlike related work, the
servers in our system do not need to communicate with each single client
individually. In particular, we can control request rates of clients even before
a connection to a server is established, leading to a significant reduction
in the required server-side resources. Our system does not only prevent
clients from overwhelming the capacity of the servers, but also allows to
reduce the capacity required at the server-side infrastructure for applications
that show temporary peaks in transmission rate or that can queue and send
client requests in a single batch request, whereby data obsoleted by newer
information can already be filtered at the client side.

Concluding, our approach provides viable means to manage high loads in
first-price sealed-bid auctions without requiring large clusters able to cope
with brief peak loads. Controlling transmission rates at clients decreases the
number of required servers and makes more efficient use of available resources.
A potential drawback is the necessity of a distributed feedback channel, which,
however, could be approximated through similar infrastructures.



Chapter 3

Interval-based timestamping

This is the first of two chapters in the area of time synchronization and
timestamping. In particular, our contributions in this chapter are: (i) A
timestamping protocol and implementation capable of operation on smart
cards, (ii) an examination of the restrictions placed by common smart card
environments, and (iii) an experimental evaluation of the time synchronization
capabilities of different smart card environments.

In our application scenario interval-based time synchronization and timestamp-
ing is required for the secure timestamping of bids that are not immediately
transferred to the auction server. When synchronizing the time our interval-
based protocol is less susceptible to network delays caused by adversaries, as
such delays are directly reflected in the interval size. In addition, our smart
card implementation is essential for security: Secure timestamping cannot be
performed on the bidder’s computer, as this would make it trivial for bidders
to manipulate timestamps.

In Section 3.1 we define the problem, followed by Section 3.2 where we
contribute with our interval-based time synchronization protocol. Based on
our smart card implementations we then prove the feasibility of our approach
in Section 3.3. Afterwards, Section 3.4 discusses related work. Finally, we
draw our conclusions in Section 3.5.
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3.1 Problem definition

To motivate our interval-based time synchronization protocol this section
examines the means of an attacker to tamper with time synchronization
requests when traditional time synchronization protocols are used.

NTP (Network Time Protocol) [MMBK10] is a time synchronization protocol
used on the Internet. To obtain timestamps from a remote server, NTP
records four timestamps (T1. . .T4) as depicted in Figure 3.1. T1 and T4 are
assigned according to the client’s clock, while T2 and T3 are assigned according
to the server’s clock. NTP then uses the formula (T2−T1)−(T4−T3)

2
to determine

the offset between the client’s and the server’s clock. Using the offset, it
tries to estimate the skew of the local clock in relation to the server’s clock
and then gradually corrects the value and the frequency of the clock using a
software-based PLL (Phase-Locked-Loop) implementation.
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Figure 3.1: Asymmetric propagation delay

Figure 3.1 shows an example of how an adversary can use asymmetric prop-
agation delays to affect time synchronization when a time synchronization
protocol assumes symmetric propagation delays and uses the offset formula
used by NTP. Initially, client and server are perfectly synchronized. The
client sends its request at 8:00:00, which is received by the server at 8:00:01.
The server processes the request and sends the response at 8:00:05. On the
way back to the client, the response is delayed by an adversary, causing the
client to receive the delayed response at 8:00:36. When the client calculates
the offset to the server, this yields a value of −15 seconds, implying the time
8:00:36 on the client’s clock corresponds to the time 8:00:21 at the server’s
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clock. Therefore, the adversary delaying the message on the way back to the
client eventually delays the client’s clock by 15 seconds.

3.2 Time synchronization and timestamps

To mitigate the problems described in the previous section we use an interval
based approach based on Marzullo’s work [MO85], allowing us to represent
time as a correctness interval that represents the inaccuracies due to network
delays and clock characteristics, such as clock skew and limited precision.
An interval representing a particular time is correct, if the represented time
is within the bounds of the interval. Two intervals are compatible if they
represent the same time value, such as “5 pm” or “now”. Two intervals are
consistent if their intersection is not zero. Thus, in the case where two
compatible intervals are not consistent, at least one of these intervals must
be incorrect. In our algorithm we use offset intervals that represent the
difference between the smart card’s local clock value and the values of the
two intervals endpoints.

Both, our time synchronization and timestamping algorithms are adapted to
smart card environments that may exhibit high propagation delays between
smart card and timeserver. In particular, our contributions over the state of
the art are:

• An adaption of Marzullo’s interval approach to guarantee that each
time synchronization step—independent of the propagation delay—only
increases, but never decreases, the accuracy of the local clock.

• An adaption of Marzullo’s intersection approach to a single time server
scenario, allowing us to detect if an attacker has been able to successfully
tamper with the time on the smart card.

• A roundtrip delay mitigation approach that allows use to decrease the
size of intervals applied as timestamps, if there are confirmed problems
at the auctioneers infrastructure that lead to consistent, measurable
delays in the processing of time stamps.

The definitions used in this section are based on Network Time Protocol
Version 4 – Reference and Implementation Guide [Mil06b] by David L. Mills
and on Maintaining the time in a distributed system [MO85] by Marzullo and
Owicki.
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3.2.1 Time synchronization

We define our time synchronization protocol based on algorithms implementing
the different functions: Algorithm 1 illustrates the main control loop in the
client. The time transfer from the server to the client is done by Algorithm 2
with Algorithm 3 being responsible for increasing the interval’s size due to
clock skew. Both algorithms work with offset intervals that represent the
uncertainty in clock synchronization due to clock skew and network delays,
for example. As these offset intervals do not represent a real point in time,
Algorithm 4 converts the offset intervals to absolute time intervals that are
then cryptographically signed in Algorithm 5. The interpretation of the
timestamped intervals is the server’s task and illustrated in Algorithm 6.

Time synchronization protocol

Algorithm 1 shows the time synchronization algorithm running on the client.
First, the algorithm initializes the offset interval ilocal to [−∞,∞]—as we
do not have any information about the current time yet. It proceeds, by
obtaining an interval from the timeserver that is subsequently stored in iserver .
The local clock value returned by get_time() when the time synchronization
step was started is stored in tlast_set .

If the two compatible intervals ilocal and iserver representing the current time do
not overlap, we can conclude that one of these intervals must be incorrect. In
this case this represents a fatal error and we disable the smart card, requiring
the bidder to use other means to submit bids. As the inverse condition does
not need to be true (two compatible intervals may intersect if one or both of
these intervals are incorrect), this test does not detect all types of failures.
However, the maximum error in these cases can be considered rather low,
as it cannot be larger then the smallest value of iserver obtained during all
preceding time synchronization steps.

When assuming that both ilocal and iserver are correct, we can follow that the
intersection of ilocal and iserver will also represent the correct time. Therefore,
we replace ilocal with the intersection of ilocal and iserver to decrease the size
of the resulting interval and to more accurately represent the current time.
An example is given in Figure 3.2.

Finally, the algorithm waits for the next time synchronization step while
allowing the smart card to timestamp bids in between. Before executing the
next round, we increase the size of ilocal with the extend() function, to account
for inaccuracies due to clock skew.
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Figure 3.2: Intersection between two intervals

Algorithm 1 Obtaining time from server
ilocal ← [−∞,∞]
loop
tlast_set ← get_time()
iserver ← recv_interval()
if intersection(ilocal , iserver) == 0 then
abort_with_error()

end if
ilocal = intersection(ilocal , iserver)
while wait_for_timeout() do

{Apply timestamps on incoming bids}
end while
ilocal = extend(ilocal)

end loop

Time transfer from server to client

The recv_interval() function given in Algorithm 2 is used to obtain the time
from a remote server: After receiving the response by the server, the smart
card first calculates the server’s synchronization distance (Γ) from the server’s
root dispersion (E) and the server’s root delay (Δ), which are both part of the
NTP response message [MMBK10]. The synchronization distance represents
the maximum error in the server’s response due to all causes. Afterwards
two offsets are calculated, by decreasing and increasing the obtained offsets
by half the roundtrip delay of the time synchronization request. Finally, the
offset values are combined with the synchronization distance and returned as
a single offset interval.
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Algorithm 2 recv_interval(): Time synchronization request
response ← receive_response_from_server()
Γ← response.E + response.Δ

2

o1 ← (T3 − T4) {(T3 − T4) == offset − roundtrip_time

2
}

o2 ← (T2 − T1) {(T2 − T1) == offset +
roundtrip_time

2
}

iserver ← [o1 − Γ, o2 + Γ]
return iserver

Clock skew

The extend() function in Algorithm 3 increases an interval to account for the
effects of clock skew. ρK represents the precision of the remote clock and is
included as part of the time server’s response. ρ represents the precision of the
local clock and is estimated by the auctioneer. Φ(X) represents the maximum
error due to clock skew during a period of length X. In our application we are
interested in the clock skew since the last time synchronization step tlast_set .
extend() combines the different effects of these components, and increases the
size of the interval accordingly.

Algorithm 3 extend(i): Transform offset interval due to effects such as clock
skew
ε← ρK + ρ+ Φ(get_time()− tlast_set)
inew ← [i.left_offset − ε, i.right_offset + ε]
return inew

3.2.2 Timestamping

When timestamping a bid we first convert the offset intervals ilocal and iserver
to absolute intervals with the approach shown in Algorithm 4. Afterwards,
we append these absolute intervals plus a sequence number to the bid, and
sign the resulting data with a digital signature as shown in Algorithm 5.

Algorithm 4 abstime(i): Transform offset interval to current time
tcurrent ← get_time()
i← extend(i)
iabs ← [tcurrent + i.left_offset , tcurrent + i.right_offset ]
return iabs
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Algorithm 5 timestamp(bid , ilocal , iserver , tlocal): Timestamp incoming bid
seq ← seq + 1
ts local ← abstime(ilocal)
tsserver ← abstime(iserver)
data ← concat(bid, seq, ts local , tsserver , get_time())
sign(data)

While it would be sufficient to only include the absolute interval derived from
ilocal in the timestamp, the interval derived from iserver allows the auctioneer
the mitigation of high peak loads as described later on.

A sequence number is required to verify that all bids signed by the smart
card have been received at the server. After the auction ended, we therefore
require the smart card to transfer the value of its sequence number to the
server.

Server-side timestamp interpretation

Algorithm 6 shows how timestamps are interpreted at the server. First, it
is checked if there have been confirmed problems at the auctioneer during
the time represented by the timestamp. If this is the case, we can use the
adapt() function, to decrease the size of tsserver accordingly.

As example, consider that the auctioneer’s monitoring infrastructure confirms
that there has been an additional network delay of 10 seconds for messages
that travel from the network to the auctioneer. This would result in the right
hand side of each interval obtained over the network during this delay—given
as (T2 − T1)—to be increased by 10 seconds. Therefore, our adapt() function
can shift the right hand side of the interval 10 seconds to the left, to mitigate
for the increased propagation delay.

Finally, the algorithm calculates the actual timestamp by building the inter-
section of tslocal and tsserver . While under normal conditions tslocal is already
a subset or equal to tsserver , in cases where tsserver was recalculated with
adapt(), the intersection potentially allows to reduce the size of the interval.

Decision if a bid should be accepted

Our application scenario requires that any bid timestamped before the auction
deadline must be accepted, while any bid timestamped after the deadline
must be rejected. In cases where both interval endpoints are either before or
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Algorithm 6 Timestamp processing at server
if signature incorrect then
abort_with_error()

else if tsserver ⊆ tconfirmed_problems_at_auctioneer then
tsserver ← adapt(tsserver)

end if
tstimestamp ← intersection(tslocal , tsserver)

after the deadline, the decision is clear. However, in cases where the interval
overlaps with the deadline as shown in Figure 3.3, the auctioneer cannot fully
assert, if a bid was placed before, or after the deadline.

Time
Deadline

Interval

Figure 3.3: Interval overlaps with deadline

In most cases, intervals of timestamps are relatively small. The only case
when a large interval will be assigned is if there has not been any single time
synchronization step with a reasonable roundtrip delay and—additionally—if
the auctioneer did not detect any overload at his local network, and thus does
not call adapt() on the assigned timestamp. In such cases it can be possible
that large intervals are caused by delay attacks caused by malicious bidders.

To mitigate for potential attacks, we always compare the right hand side
of an interval—which represents the latest possible time of a bid—to the
deadline. In cases where intervals are small, it does not matter which part of
the interval is compared with the deadline, as the expected interval size is at
most a few hundred milliseconds. However, in cases of large intervals—e.g.,
due to delay attacks—comparing the right hand side to the deadline prevents
these large intervals from delaying the auction deadline for a particular user.

The worst case from the bidders’ perspective occurs if every single time
synchronization step features high propagation delays to the server, while
there are no confirmed problems at the auctioneers infrastructure. In such
cases, the deadline comparison with the interval’s right endpoint advances the
bidders’ deadline, and thereby requires bidders to submit bids sometime before
the auction deadline. However, as bidders can always query the smart card’s
time, they can detect such cases in advance, allowing them to also use other
mitigation strategies, such as switching to a different network connection.
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Figure 3.4 shows how this approach affects the accuracy of time stamps with
measurements based on our protocol implementation. The example simulates
a delay attack with high propagation delays for responses sent from the server.
The “reference clock” is regarded as the server’s time, while the “offset against
reference clock” is the right hand endpoint of the interval stored on the smart
card. In the example the effects of clock skew are negligible and therefore not
visible.
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Figure 3.4: Response to delay attack

Initially, the “offset against reference clock” is equal to the propagation delay
of the first time synchronization message sent from the client to the server,
as the formula for the right endpoint (T2 − T1) is only dependent on the
propagation delay to the server, but not on the propagation delay of responses
sent by the server.

Subsequent time synchronization steps will calculate the intersection of the
smart card’s local offset interval and the offset interval obtained from the time
server. Therefore, with each time synchronization step the right endpoint can
either stay equal or move to the left, but never to the right. This behavior
can be seen in Figure 3.4, as the “offset against reference clock” only decreases
but never increases as clock skew is negligible.

In cases where the smart card’s clock skew would be noticeable, the “offset
against reference clock” would slowly increase over time, but still be reset by
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each time synchronization step, where the propagation delay to the server is
lower than the offset.

3.3 Smart card implementation

In this section we examine techniques to implement our approach on .NET
cards and Java cards. While our general approach is also applicable to other
types of secure devices, such as TPMs (Trusted Platform Modules), our
original application scenario, and thereby also our evaluation, targets smart
card environments.

To implement our time synchronization protocol on a smart card, the smart
card needs to possess the following capabilities:

1. Access to an internal timer clocked by an oscillator internal to the smart
card. The frequency of the oscillator must not depend on the frequency
provided by the card reader to the CLK contact.

2. A means to detect if the counter has been reset, e.g., because the power
supply to the smart card was interrupted.

3. The ability to detect overflows of the counter. However, as explained
later on, a software based workaround is possible, if this feature is
missing.

A read-only timer is sufficient, as the difference between the reference time and
the timer’s value can be stored as a variable on the smart card. Furthermore,
we do not presume a battery powered clock that allows keeping the time
while the secure device is not connected to a computer, as this feature is not
available on a majority of examined devices.

The NTP packet format is a potential cause for compatibility issues as
smart cards need to successfully generate and parse the individual fields of
packets. This parsing cannot be outsourced to external applications as smart
cards must be able to verify signatures applied by the time server. If the
values would be extracted by outside applications, smart cards would have
no means of verifying that the extracted values actually correspond to the
cryptographically signed response of an NTP server.

NTP messages are parsed and generated on-card. The smart card com-
municates via APDUs with a client application running on the local PC,
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relaying NTP messages between smart card and Internet. We use MD5
(Message-Digest algorithm 5) based signatures as described in [Mil06a] with
an individual key for each smart card, requiring smart cards to provide an
MD5 hash function to on-card applications. While collisions in MD5 have
been found [WY05], control over both, NTP client and server implementa-
tions, allows us to increase the security beyond the NTP specification by
replacing MD5 with any alternative hash function.

For the evaluation discussed below we implemented our protocol on a Gemalto
.NET IM V2 smart card and—additionally—tested the capabilities of a
technology preview release (simulator) of the connected edition for Java
card 3 and evaluated the limitations of Java card 2 based on a NXP (NXP
Semiconductors) JCOP (Java Card OpenPlatform) 41 V2.2.1/72k card. All
three types of cards are programmable and allow the installation of appropriate
on-card applications.

3.3.1 .NET card

The .NET smart card API (Application Programming Interface) provides
access to the 32-bit read-only TickCount property in System.Environment
that returns the the number of milliseconds passed since the smart card has
been powered on. The timer within .NET cards runs continuously for 24.9
days until it reaches Int32.MaxValue. Afterwards, it wraps back to zero.
According to the API, the resolution of the TickCount property is at least 500
milliseconds. Similar to currentTimeMillis() in Java card 3, the TickCount
property can be used to measure the time between two invocations.

The TickCount property overflows after 24.9 days, making it impossible for
the software running on the smart card to assess whether, e.g., 25.0 days or
0.1 days have passed. This is mostly a theoretical issue, as the usual duration
of auctions is much shorter in our application scenario. Detection of overflows
would be possible if the software running on the smart card could check the
value of the TickCount property in intervals smaller than 24.9 days. However,
the .NET API does not allow for the execution of background threads. Hence,
code execution depends on external APDUs transmitted to the smart card.
As these APDUs need to be transmitted over the bidders computer, it cannot
be guaranteed that the bidder abides by a policy of sending APDUs with
intervals smaller than 24.9 days.

To work around this problem, the auctioneer can limit the maximum time
allowed between the application of a timestamp and the transmission to the
auction system to an interval smaller than the maximum value that can
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be represented by the timer. While this does not prevent the timer from
overflowing, it allows the auction system to detect if an overflow occurred.

Concluding, the .NET card fulfills our requirements with the overflow restric-
tion described above.

3.3.2 Java card 3

In Java card 3 the Application Programming Interface for the Java card Plat-
form, Connected Edition provides a System.currentTimeMillis() method
that returns the current time in milliseconds. While the Java card API also
provides a method synchronizeTime() that allows obtaining the time from
an external time reference, the API does not specify what external time
reference is used by implementations. Therefore, we cannot trust that the
time obtained by a Java card 3 is valid, as the external time reference can be
under control of an adversary, e.g., if the time is obtained from an external
card reader. As a consequence, our only assumption is that the difference in
the responses of two System.currentTimeMillis() invocation reflects the
interval in milliseconds between these invocations.

A further complication is that some future Java card 3 implementations
might automatically obtain the time from an external reference. In order
to detect such events, Java card 3 allows to register a event handler for
event:///platform/clock/resynced events. Such events are fired after
the Java card obtained its time from an external reference. The time delta
between the old time and the new time is included in the arguments of the
event handler. Capturing the events allows a time synchronization protocol
to mitigate the offsets caused by such synchronization steps.

While Java card version 3 has been standardized, there are currently no cards
available on the market. Consequently, Java card 3 only represents an option
for the future.

3.3.3 Java card 2

The official Java card 2 API does not include methods to access the timers of
smart cards. However, there are implementations of Java card 2 compatible
devices that include access to an internal clock, such as the DS1955B and
DS1957B cryptographic iButtons produced by Dallas Semiconductor (now a
subsidiary of Maxim Integrated Products). The internal clock of these devices
is quartz-driven and powered by an internal battery. However, according to
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information we received by a Maxim engineer, Java-powered iButtons have
been discontinued.

As a consequence, we based our Java card 2 prototype version on standard
Java cards. While the API of these cards does not provide access to a
timer, we used a software based timer simulation for evaluation purposes,
by regularly updating the value of an internal timer variable with incoming
APDUs and by providing a corresponding access function that guarantees a
strictly monotonic increasing behavior.

In our implementation it was not possible to provide an interface compatible
to System.currentTimeMillis(), as currentTimeMillis() returns a 64-
bit long value, while the largest data type supported by Java card 2 is
(depending on the card) either signed 16-bit or signed 32-bit. However, Java
card version 2.2.2 provides a BigNumber class that allows using multiple
smaller data types to simulate a larger data type. As, we could not obtain
Java cards implementing the relatively recent Java card 2.2.2 specification,
we implemented our own BigNumber-like class based on a subset of the
BigInteger class in Java SE (Java Platform, Standard Edition).

In a first preliminary performance evaluation we tested a simple application
that sums all integers between 10 000 and 20 000. On a JCOP card this
test shows about 200 operations per second. In comparison, a .NET card
natively implementing the required data types is able to execute about 5 800
operations per second, nearly a thirty-fold difference.

To sum up, Java cards version 2 are not adequate for time synchronization.
They miss standardized access to a timer as well as appropriate data types to
process time synchronization packets.

3.4 Related work

While secure devices and time synchronization protocols are both well re-
searched topics, the combination of using a secure time synchronization
protocol in trusted hardware devices under physical control of potential ad-
versaries has not been adequately researched in the academic area. In this
section we therefore provide related work in the area of time synchronization.
First we discuss generic work, and later on concrete time synchronization
protocols.

Lundelius and Lynch proved that the optimum bound achievable when syn-
chronizing n clocks is u ×

(
1− 1

n

)
, where u is the uncertainty in message
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transmission time and n is the number of hosts [LL84]. In a traditional
client-server setup where a single client obtains its time from a single server,
the maximum message transmission delay between client and server limits the
uncertainty, and thereby the possibilities of an attacker to u

2
. In terms of the

four timestamps T1–T4 we can define the maximum error as (T4−T1)−(T3−T2)
2

.

Interval based time synchronization [MO83] as proposed by Marzullo and
Owicki is an alternative view on time synchronization. Interval based protocols
account for the fact that time synchronization with perfect precision and
accuracy is not possible and therefore try to determine an interval that
contains the real time, instead of a single point that represents the real time.
An accuracy interval represents the fuzziness in setting, keeping and reading
the time of a clock. For a perfect clock the length of such an accuracy interval
is zero. In the real world, the effects of clock skew and network delays lead
to an accuracy interval with a length larger than zero. With increasing time
(without time synchronization) the size of the accuracy interval increases
because of inaccuracies of the clock.

A security analysis of NTP protocol version 2 was conducted in 1990 by M.
Bishop [Bis90]. While the evaluated NTP version is dated, the analyzed
attacks, such as replay attacks, delay attacks, and denial-of-service attacks,
are still relevant to today’s time synchronization protocols.

RADclock (Robust Absolute and Difference Clock) [RV10, VRK09] is a project
at the University of Melbourne which is developing replacements for NTP
clients and servers. As our interval-based approach, RADclock is designed to
be robust against asynchronous and variable delays on the network. Unlike
NTP, which uses a feedback design, RADclock uses a feed-forward design.
The main advantage of such a design is that it can mitigate the problems of
a PLL (Phase-Locked-Loop) and FLL (Frequency-Locked-Loop) in case of
high variable delays. In particular, there are two main disadvantages of PLL
and FLL approaches in comparison to feed-forward designs [RV10]: First, the
stability of such approaches cannot be guaranteed and if they lose their lock
this can result in shifts to high-error modes. Second, it is not possible to
define difference clocks—which provide higher accuracy and higher robustness
than absolute clocks—in a feedback framework. RADclock obtains the time
in two distinct steps: (i) It uses rate synchronization to bootstrap a clock
that can act as a difference clock, and (ii) it uses the synchronized difference
clock to assess the round-trip delay during synchronization of an absolute
clock. Compared to RADclock, our protocol does not have a notion of quality.
Instead, our interval-approach automatically prefers time synchronization
steps with low round-trip delays. In addition, our interval based approach is
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able to combine information from several time synchronization steps, in order
to reduce the combined interval size.

3.5 Conclusions

In this chapter we contributed with a secure time synchronization and times-
tamping approach for our first-price sealed-bid auction application scenario.
In traditional timestamping protocols such as NTP, adversaries can use net-
work delays to tamper with the results of time synchronization. Depending
on the exact nature of those delays this either allows to advance a clock, or
to delay a clock. In our interval-based timestamping protocol we mitigate
this problem by using interval sizes that reflect network delays during time
synchronization. Therefore, the auctioneer is able to detect possible attacks
and to treat them accordingly.

Furthermore, even in case of systematic inaccuracies that cannot be mitigated
by our interval-based approach our protocol shows benefits in comparison to
a traditional auction system, where delays are not known beforehand:

• In our protocol systematic inaccuracies can decrease the accuracy of a
timestamp, thereby forcing the user to place the bid already some time
before the deadline. However, we can detect such cases and inform the
bidder before a bid is placed.

• In a traditional auction scenario network latency delays the time of bid
placement. However, the user does only learn that such latencies have
occurred after the bid has been transmitted to the server. In contrast,
in our approach the user can learn about latencies before submitting a
bid. Therefore, the user can take mitigation strategies, such as placing a
bid already some time before the auction deadline or using an alternate
trusted time source.

• Finally, continuous high network latencies lead to larger time intervals
at the client. In case of problems at the auctioneer’s infrastructure, the
auctioneer can detect and mitigate these problems. First the auctioneer
needs to measure the transmission and processing delay occurring at the
auction server and the network on which the auction server is located.
In the second step the auctioneer can then retroactively decrease the
interval sizes assigned to timestamps, if such high latencies occur over
longer durations.
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In addition, we implemented our protocol on different types of smart cards and
provided an evaluation of the results. The smart card implementation secures
the protocol against attacks by malicious bidders, as those bidders cannot
manipulate the software running inside the smart card. Our evaluation shows
that .NET cards are currently the most feasible option for the implementation
of our protocol. However, once Java card 3 is commercially available, those
cards may constitute an alternative to .NET cards.



Chapter 4

Distributed timestamping

This is the second of two chapters in the area of time synchronization and
timestamping. In the previous chapter we introduced our interval-based
timestamping approach. In this chapter we improve on the original protocol,
by introducing a distributed timestamping protocol that timestamps data
with multiple smart cards, instead of only a single smart card. This allows us
to better mitigate physical attacks against smart cards.

In our application scenario distributed timestamping is an alternative to our
original interval-based timestamping approach. The applicability depends on
the relation between the cost to successfully launch a physical attack against
a single smart card and the maximum gain possible with such an attack. In
cases where the gain is higher than the cost distributed timestamping is more
appropriate than interval-based timestamping.

Distributed timestamping influences our original approach of trading de-
pendability and security, by increasing security at the cost dependability and
thereby shifting the trade-off back in the opposite direction. Security increases,
as it is not sufficient for an adversary to manipulate only a single smart card.
However, this comes at the cost of dependability, as distributed timestamping
cannot be used during outages of the client’s Internet connection. Depending
on the required security vs. dependability trade-off it is possible to adaptively
adjust the parameters used by our distributed timestamping protocol. For
example, increasing the amount of timestamps required for each bid increases
the protocol’s security, but also decreases dependability.

First, Section 4.1 gives an introduction to distributed timestamping. Then,
Section 4.2 discusses our timestamping protocol with a focus on our overlay
routing approach and efficient connection establishment. Based on this,
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Section 4.3 continues with the evaluation using our prototype implementation
and a protocol simulation using the PeerSim [MJ09a] network simulator.
Finally, Section 4.4 discusses related work and Section 4.5 concludes the
chapter.

4.1 Introduction

Timestamping protocols allow to certify that a particular document existed at
a particular point in time. In practice, central timestamping servers operated
by trusted third parties are typically used. While such central timestamp
servers work fine in application scenarios where availability is only secondary,
they exhibit a lower dependability than distributed timestamping approaches
as server or network outages or overload can lead to a loss of service or to
inaccurate timestamps.

Security issues in today’s distributed protocols are one of the reasons why
mostly centralized protocols are used, as in the case of distributed protocols
each participant needs to trust that a sufficient percentage of other participants
will cooperate. In addition, communication between nodes is a problem.
Usually, distributed timestamping protocols are built on the assumption
that each node can directly request a timestamp from every other node.
However, NAT (Network Address Translation) traversal is often required for
communication between nodes on the Internet, leading to increased connection
setup times, and thus decreased timestamp accuracy. In addition, some of
the nodes might not be active due to node churn. In a traditional distributed
timestamping protocol such inactive nodes will only be detected after trying
to send a request to these nodes, which can lead to inaccurate timestamps.

In this chapter we present our distributed timestamping protocol. Untrusted
terminals are used for network communication and as interface to the user,
while smart cards are responsible for timestamping, cryptographic aspects,
and application level routing decisions. Thus, even an attacker with full
control over a user’s terminal has only limited options to attack our protocol.
In addition, we provide an efficient overlay routing protocol, which trades sim-
plicity in connection setup and maintenance for a lower latency in timestamp
transmission. While pre-establishment of outgoing connections leads to higher
bandwidth and computational requirements, it allows to efficiently route
requests along pre-existing connections, without connection establishment or
node lookup delays. However, this comes at the cost of a higher impact of
hop-to-hop latencies, as messages now have to be routed along several hops.
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4.2 Timestamping protocol

This section discusses our distributed timestamping protocol that enables ac-
curate and secure distributed timestamping in real world application scenarios.
In comparison to the state-of-the-art, our protocol allows for minimum latency
when deployed on the public Internet. In addition, we increase the security
by restricting which nodes are allowed to timestamp particular messages.

In comparison to traditional “k among n” based protocols [BLGB06]—where
k timestamps are obtained from a set of n nodes—our protocol benefits from
the following characteristics:

• Deterministic calculations without global state

We deterministically assign nodes responsible to timestamp a particular
document allowing to subsequently verify if a given document has
been timestamped by the correct nodes. Only an agreement on the
approximate size of the network is required, instead of a global agreement
on the set n.

• Small latencies between hosts

Our protocol takes real-world network conditions into account and is
optimized for the fact that connection establishment can be expensive
due to NAT traversal. As we pre-establish connections, connection setup
times do not influence the accuracy of timestamping. Furthermore, pre-
established connections allow to use keep-alive messages as simple failure
detector to detect unavailable nodes.

• Anonymity

While full anonymity is not a goal of our protocol, we strive for semi-
anonymity to make it more difficult to assert the originator of a times-
tamping request. This prevents individual participants from, e.g., delib-
erately delaying requests of certain other participants.

• Smart card based security

Existing distributed timestamping protocols typically assume semi-
trusted nodes for the application of each other’s timestamps, which is
often not a reasonable assumption. Therefore, we decrease trust require-
ments by combining the user’s terminal with a smart card responsible
for security-critical functionality.
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To provide these benefits, we take the following trade-offs in comparison with
a traditional “k among n” approach into account:

• Increased hop count

In comparison to “k among n” approaches, which do not route mes-
sages along multiple hops, we increase the overall length of the routing
path and thereby the influence of latency on the timestamp accuracy.
However, we keep hop-to-hop latencies low by pre-establishing connec-
tions. Furthermore, nodes can detect slow neighbors with our keep-alive
mechanism, allowing to replace them with faster nodes.

• Higher overhead

There is a higher total overhead due to the pre-established connections
and the use of a DHT (Distributed Hash Table). However, this overhead
does not affect the accuracy of timestamping requests and is a deliberate
trade-off.

In the following subsections we first give a protocol overview, followed by
an examination of our Node IDs and how values derived from these IDs are
calculated. We then continue by discussing our network structure, message
routing, and connection establishment techniques.

4.2.1 Protocol overview

In our protocol each node is represented by the user’s computer under full
control of the user, as well as the trusted smart card emitted by a trusted
third party. While the main protocol tasks are executed by the user’s terminal,
the smart card is responsible for the timestamping itself. In addition, the
smart card is also able to restrict routing decisions by the terminal. Apart
from users, nodes can also be operated by trusted third parties to enhance
the security of the protocol by providing more trustworthy timestamps.

Our protocol is implemented as overlay network, with timestamp routing
performed on this overlay network. The network is partitioned into sets of ad-
dress ranges, where each node belongs to exactly one particular address range.
To mitigate node churn, address ranges can be reassigned (see Section 4.2.2)
when the total number of nodes changes, so that the number of nodes within
an address range is relatively constant. Each outgoing connection of a node
has a unique index number and is established to one node within a determin-
istically identified address range. The respective address range to which a
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connection is established is determined by factors such as the index number of
the outgoing connection, the local node’s own address range, and the current
time. Thus, a node is restricted in the choice of outgoing connections. Open
outgoing connections are regularly recycled to increase diversity in routing
paths.

When a timestamp request arrives, the hash of the request determines the
routing path, which corresponds to the index numbers at the respective nodes.
Thus, timestamp requests can be efficiently routed along the already pre-
established connections, without needing to establish new connections. Due
to the deterministic routing decisions, external nodes can verify if timestamp
requests have been routed along the correct path.

4.2.2 Node IDs

A fundamental security feature of our protocol is to restrict the nodes that
are allowed to apply a timestamp for a given document. Typically, such
restrictions are implemented with “k among n” schemes [HS91], where k
nodes are required that can be chosen from a set of n nodes. In our case
we determine the set n from factors such as the hash of the local node and
the current time. We cannot directly use IP (Internet Protocol) addresses in
this set, as these addresses are sparse and unevenly assigned, which makes it
difficult to define a function that returns an address range with a predefined
number of active nodes. Definition of such a function would only be possible
with the knowledge of all active node’s IDs.

Instead, we use an overlay network and perform the operations on overlay
node IDs, which are assigned in a circular address space. IDs are derived
by hashing the user’s public key and are thus randomly distributed. As the
public key pair of a node is generated directly on the smart card while the
card is still under physical control of the trusted third party, the user cannot
use brute-force attacks to force a node ID in a chosen ID range.

Furthermore, each node ID is member of exactly one address range, with
the whole address space partitioned into r different ranges. While for each
particular point in time there is a deterministic mapping between node IDs
and address ranges, r can change over time, thereby affecting the mapping of
node IDs to address ranges. In practice, r will be adapted to the total number
of nodes, leading to a relatively stable amount of active nodes within each
particular address range. Depending on the concrete application scenario
there are different approaches to estimate the total amount of nodes. For
example, if the Kademlia DHT [MM02] is used, trusted nodes can estimate



4.2. TIMESTAMPING PROTOCOL 58

the amount of total nodes by looking at the Kademlia bucket utilization and
then cryptographically sign and broadcast this information via the overlay.

4.2.3 Derived values

In our protocol we use different derived values to determine values such as
address ranges. These derived values are used in place of random values (e.g.,
to determine the routing path). Because of the deterministic calculation,
dishonest nodes cannot choose values at will, as external observers can verify
if the correct rules have been used to obtain the values. In this section we
specify how we map these input values to their respective output values.

Derived values are the result of a hash function with the source element from
which a value is derived combined with an index used as the input. The
index serves as distinguishing element when the same input element is used to
produce multiple output elements. For example, to derive an address range for
the fifth outgoing connection from the node’s own address range we calculate
new_range = hash(local_range + index ), where new_range identifies the
resulting address range, local_range identifies the node’s own address range,
and index is set to 5 to represent the fifth outgoing connection.

In related work sometimes pseudo-random number generators are used for
a similar purpose in “k among n” schemes [HS91]. However, using a hash
function allows for non-sequential access to the individual values, while
a pseudo-random number generators would require the calculation of all
preceding values. For example, if the smart card is used to verify the value of
a particular outgoing connection. Furthermore, on smart cards the respective
optimized native implementations can be used for hash functions, while the use
of pseudo-random number generators would require access to the generator’s
seed which is often not possible.

4.2.4 Network structure

Our network is built as an overlay network between nodes. At each point
in time each node has exactly co outgoing and approximately ci incoming
connections. When a node sends a timestamp request to an outgoing connec-
tion, the request arrives at the incoming connection of another node. While
communication channels are bidirectional, requests only travel along outgoing
connections, while replies travel in the reverse directions.
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When a new connection is established, this step is split into two tasks: First,
we use a mapping function that takes (i) the particular index of the outgoing
connection, (ii) the node’s own address range, and (iii) the time as input. The
output of of this function is the address range to which the connection will
be established. Afterwards, the terminal looks up one of the nodes within
this address range and establishes an outgoing connection. For even better
handling of node churn, redundant connections into the same address range
can be established for immediate failover. This approach is explained in detail
in Section 4.2.6.

Each of the outgoing connections is assigned an index from 0 to co − 1. The
routing path is calculated by the source node and included within the message.
For example, a source node may specify that a message should travel along
the edges 1–2. The source node then relays the message to its outgoing
connection with the index 1, where the node receiving the message continues
relaying the message to it’s own outgoing connection with the index 2.

The exact lookup mechanism used by the protocol to find nodes within
particular address ranges is not fixed and can vary across implementations.
For example, if a DHT such as Kademlia is used, a range query can be used
to find suitable candidates, while in the case of JXTA [JXT] advertisements
stored in a SRDI (Shared Resource Distributed Index) would be used.

4.2.5 Message routing

This section describes how a message for a particular timestamp is routed
along the nodes. First, the node requesting a timestamp uses the hash
of the document to calculate the routing path of the message. For the
routing path each hop is iteratively calculated with the formula hopnext =
hash(document_hash + hop_cnt), where hop_cnt indicates the index of the
particular hop. The routing path is then embedded within the message that is
to be timestamped. Before sending a message, the originating node removes
the first element from the routing path, and forwards the message on the
outgoing connection that is identified by the element. Each node receiving
the message in sequence removes the first element from the routing path and
forwards the message to the respective outgoing connection. Once the routing
path in the message is empty the message is not forwarded any further. An
example of this routing strategy is given in Figure 4.1 where the root node
calculates the routing path “1-2”.

To mitigate message loops where a message is relayed back to a node that has
already received this message in a previous step, the first node originating
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Figure 4.1: Path selection: Path 1-2

the message validates that each address range is only traversed once. To
do so, the node simulates the message path, as it can locally calculate to
which address range an outgoing connection of another node will connect.
If a potential loop is detected, because the message is relayed back to an
address range from which it has previously been forwarded, the hop_cnt used
in the formula above is incremented, thus shifting the hop_cnt of the affected
element and all remaining elements by one. This algorithm is deterministic
and only depends on the partitioning of the system into the different address
ranges. Therefore, it allows to externally verify that the correct routing path
was used. This verification depends on the cryptographically signed address
range partitioning parameter r (Section 4.2.2) that is embedded within the
timestamp.

When a node sends or relays a message, the message itself is generated and
signed by the smart card. This step is required to prevent malicious nodes
from injecting bogus messages into the network. Therefore, the message also
needs to contain the concrete node ID of the next node, as otherwise the
user’s terminal would be able to inject a single timestamping message to
multiple nodes within the same address range. The signatures applied by
smart cards are only used on a hop-by-hop basis. Thus, removal of an element
from the routing list does not affect signatures applied by a preceding hop.

When a node receives a message from a neighboring node it first verifies
if the message has indeed been signed by its neighbor and if the existing
timestamp(s) in the message are still current. Additionally, it verifies if
the destination field of the message matches its own local node ID. Before
forwarding the message, the node locally stores a timestamp for this message
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and the node ID from the node from which the message was received, but
does not include this timestamp in the relayed message. When the last node
on the routing list receives the message it includes a timestamp and relays the
message back to the node from which it has been received. Each node then
includes its previously stored timestamp and continues relaying the message
in the reverse direction. When the message arrives at the initial originator of
the request, the message contains the timestamps assigned by all the nodes
along the routing path.

4.2.6 Connection establishment

For regular connection establishment we use an approach that continuously
reestablishes connections into new node ranges to provide diversity in the pos-
sible routing paths. With each step only one single connection is reestablished,
thereby minimizing the impact on the network setup. In addition, we adapt
our routing approach to prevent routing paths over outgoing connections
that will be renewed soon, as this would prevent the sender from uniquely
determining the routing path, which is required for loop mitigation.

For example, consider that each node has 10 outgoing connections and that
within a 10 minute interval each outgoing connection should reconnect to
a new address range. When updating connections continuously, we can
reconnect a single connection once per minute. To avoid any routing problems
due to reconnecting nodes, a node can establish a connection to the new
address range in advance, and then just switch connections when the interval
of the current connection ends. If the node is still waiting for a reply message
that was initially forwarded over the old connection, it can additionally leave
the old connection open until the reply message has been received.

While the renewal of a connection does not directly affect messages in transit,
this renewal can lead to routing loops, as the original mitigation strategy
presented in Section 4.2.5 only considers the network configuration at the time
of message creation. To mitigate such loops, we adapt the routing mechanism
not to use connections that will be renewed soon, e.g., to never use the next
connection that will be renewed. In such a case a similar strategy as for
loop mitigation is used: hop_cnt is incremented, causing the algorithm to
calculate a different route. Of course, such an approach requires that all
nodes have a synchronized time. This is not a problem in our case, as such a
synchronized time is already required for timestamping purposes.

To account for node churn, e.g., active nodes that change their status to
inactive, we use regular keep-alives to detect stale connections. In this case a
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node will re-establish the connection to another node within the same address
range. Such a connection establishment cannot lead to a routing loop, as
the address range of the old connection and the new connection is the same.
While node churn leads to overhead due to higher reconnect rates, it does not
affect latency, as messages are routed only along pre-existing connections.

4.3 Evaluation

The evaluation of our protocol was conducted in two distinct steps. First, we
used a prototype implementation to show the feasibility of our approach and
for performance tests with low amounts of nodes. This implementation is
based on JXTA [JXT]. The Netem Linux kernel module is used to simulate
network latency. Second, we used the PeerSim [MJ09a] network simulator to
examine the effects of latency and churn. Significant parts of the prototype
implementation’s code have been reused in the simulation, ensuring that the
simulation’s behavior matches the prototype. We also validated if the results
of the simulation match the results obtained in the prototype implementation.

Figure 4.2 shows a comparison between the average latency in our overlay
routing approach and an alternative approach that requires connection estab-
lishment for forwarding. To model node-churn, we assume a node-failure rate
of 5%. If a message is transmitted to a failed node, it cannot be processed,
but is re-transmitted to another node.

In the results we observe that the latency without an overlay network is
roughly twice as high as the latency in our overlay approach. While in time
synchronization protocols latency can be mitigated by assuming synchronous
network delays, this is not possible in timestamping. Therefore, the latency
directly affects the timestamps assigned to individual documents. While in
some application scenarios timeliness of timestamps is only secondary—e.g.,
when only an approximate date is required—in other application scenarios such
as our deadline-based online auctions timeliness is a fundamental property.

In addition, our simulation has shown that the results also depend on the
assumed application scenario: In application scenarios without node churn
where UDP communication without NAT traversal can be used between nodes,
the differences between a traditional approach and our approach are smaller,
while in application scenarios with considerable node churn the differences
are higher. For example, if we decrease the node failure rate from 5% to 0%
in the scenario without overlay network, this decreases the average delay at
the fifth hop from 355 ms to 338 ms, which is only a marginal improvement.
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Figure 4.2: Hop latency

On the other hand, if we increase the node failure rate to 30% this increases
the average delay to 482 ms. However, even in the first example with lower
differences our protocol allows for more efficient routing without requiring
nodes to know all other nodes, while a traditional protocol would require
nodes to store information about other nodes, if nodes are to be selected
according to the document’s hash.

To examine the effects of node churn we simulated our protocol with different
median session times and tracked the number of failed request. A request
fails, if a node sending a request does not receive the corresponding response,
because an intermediate node cannot forward the request as no outgoing
connections to the respective node range are available. For our tests we
assumed a hop count of 5 hops as well as 3 redundant connections into each
node range. The results in Figure 4.3 show that request failure rates are an
issue for median session times below approximately 40 minutes. While failure
rates are high for very low session times, they decrease to less than 5% for
median session times of 20 minutes or more and to less than 1% for median
session times of 40 minutes or more.
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Figure 4.3: Median session time vs. failure rate

4.4 Related work

Distributed timestamping protocols are discussed in [HS91, MAQ99, BLGB06,
GKŁ06, Tul06, LBG08, NM08], but only Nishikawa and Matsuoka [NM08]
seem to actually have implemented their protocol and also consider lower
level issues such as techniques for timestamp transmission. As the protocol
requires individual TCP connections, it leads to higher latency than our over-
lay approach. [BLGB06] presents a “k among n” timestamping scheme with
redundancy to mitigate failed servers. Unlike our approach it requires syn-
chronization between servers and does not mitigate delays during connection
establishment. [Tul06] suggests a timestamping scheme with better scalability
than classical tree-based linking scheme. In their work client latency depends
mainly on the transmission delay which can be reduced with our approach.
While [GKŁ06] uses onion routing over an overlay network for timestamping,
it differs from our approach as the path of the onion route is not dependent on
the input document and hence does not allow to specify and verify whether
correct timestamping nodes were chosen.
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4.5 Conclusions

In this chapter we presented our protocol for secure distributed timestamping
in our online auction scenario. The initial motivation for the protocol was to
increase the security of interval-based timestamping as discussed in Chapter 3,
in cases where the security provided by smart cards is not sufficient.

The main goal for the protocol is to provide a secure low-latency mechanism
for document-dependent routing and to decrease information required at
individual nodes to facilitate implementation on smart cards. As a solution
approach we decouple the setup of the overlay network from the underlying
routing mechanism. This allows for variable routing paths, while at the same
time allowing the system to route all messages along pre-existing connec-
tions, which leads to a higher overhead for connection setup and connection
maintenance. Our evaluation has shown that routing messages along ex-
isting connections on an overlay network provides for considerably better
performance than state-of-the-art protocols.



Chapter 5

Transaction authentication

This is the first of two chapters in the area of secure communication and
transaction authentication. The goal of those two chapters is to improve
the security from an honest bidder’s point of view, e.g., by ensuring that
malware or other malicious bidders are not able to manipulate placed bids.
In this chapter we present our QR-TAN (Quick Response - Transaction
Authentication Number) transaction authentication technique that allows
bidders to use a secure device to verify and confirm the content of their
transactions.

In our application scenario QR-TAN is an essential component, as successful
attacks against an auction reduce the reputation of the auctioneer, even in
cases where attacks are enabled by weak security at a bidder’s terminal. In
addition, QR-TAN increases the non-repudiation properties of bids, as the
increased security makes it harder for a bidder to plausibly claim that a given
bid has been placed or been manipulated by malware.

In Section 5.1 we give an introduction to our QR-TAN protocol, followed by
Section 5.2 where we provide a problem definition. We then discuss related
work in Section 5.3 and contribute with our QR-TAN protocol in Section 5.4.
Afterwards, we analyze specific attacks against today’s smart phones when
used as secure device for QR-TANs in Section 5.5. We discuss related work
in Section 5.6 and conclude the chapter in Section 5.7.
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5.1 Introduction

In traditional signature mechanisms, the user who applies a signature has
full control over the signature process. In contrast, in the case of electronic
signatures the user depends on a client that often cannot be trusted. Even
if a secure smart card is used, the user is often not able to assert that the
information displayed on the screen is actually equal to the information signed
by the smart card.

This problem is present in all types of electronic transactions that require
some type of signature by the user. Examples include online banking and
electronic signatures for contracts. The main problem is that information
on the client can be arbitrarily modified by malicious software. The article
Secure Internet Banking Authentication [HKW06] by Thorsten Kramp and
Thomas Weigold provides a taxonomy of techniques classified by resilience
against offline and online attacks. The only evaluated technique that is robust
against content-manipulation attacks is transaction-signing. This method
requires the user to execute critical operations on a trusted reader device.

In this chapter we propose an authentication technique called QR-TAN.
QR-TANs use a transaction-signing method that has been adapted to fit
the capabilities of commonly used Web-based applications. QR-TANs are
based on two-dimensional QR (Quick Response) barcodes. Similar to other
approaches [BF99, MPR05, MvO07, CGK+02, OBDS04], QR-TANs authen-
ticate transactions by using a trusted device. This device can be a mobile
phone with a display and a camera with a modest resolution. QR-TANs use
QR codes for the transmission of information.

If smart card technology is combined with QR-TANs, transactions can be
conducted completely offline without any network connection. QR-TANs do
not require any special hardware support on the terminal and could thus
easily be used by any kind of Web application. QR-TANs improve on the
properties of mobile TANs by not requiring any networking capabilities on the
trusted device and by using secure encryption techniques to provide security
if an attacker gains access to the trusted device.

5.2 Problem definition

The main problem in today’s electronic transactions is that the user cannot
fully trust the terminal. An attacker might be able to control the terminal
and to manipulate any transaction. Therefore, the user cannot assert that the
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authentication is applied to the same data as the data displayed on the screen.
In Secure Input for Web Applications [SKK07] the three phases of an attack
against a user’s computer are described. In the first phase, executable malware
is installed on the computer. In the second phase, the malware monitors the
user’s interaction with Web applications. If the malware detects a security
critical operation, it modifies or captures the transmitted information in the
final phase.

For most electronic transactions, it is in the interest of both parties that the
transactions cannot be forged. Furthermore, it should not be possible for
a party to repudiate a transaction. The term non-repudiation means that
a party must not be able to dispute such a transaction after it has been
completed. In order to guarantee non-repudiation in our application scenario,
we must not only ensure the security of the auctioneer’s systems, but also the
security on the client side. Therefore, malicious software must not be able to
create transactions that have not been approved by the signing party.

We assume that an attacker has full control over the computer and may read
and modify any message transferred between the user and a trusted server.

5.3 State of the art

In the past, different approaches have been suggested and used to address
the problem of the untrusted client. Many of them have been developed in
the context of online banking applications. This section discusses the state of
the art of techniques that are currently used in commercial settings.

TAN codes

TAN codes have traditionally been used by banks to prevent attackers from
using a captured password to authenticate transactions. Each user receives a
private list of TAN codes and each code may only be used once. An attacker
cannot use a captured TAN code if it has already been used before. TAN
codes are not able to assure the content of a transaction. A malicious terminal
might accept transaction data and a TAN code from a user, but then relay
different transaction data to a server. Furthermore, phishing attacks may
cause users to provide their TAN codes to an attacker.
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Mobile TANs

Mobile TANs are an alternative to traditional TANs. When a user needs to
authenticate a transaction, the bank sends a summary of the transaction in
combination with a TAN code via SMS (Short Message Service). The user
then verifies that the summary matches the intended transaction and enters
the TAN code into their computer. Hence, the advantages of mobile TANs
in comparison to traditional TANs are that users do not need a TAN list
and that users can use their mobile phones as secure device to approve and
validate transactions.

However, mobile TANs also exhibit several disadvantages. First, they result in
additional costs for the transmission of messages. Furthermore, there are also
problems with the encryption used in mobile networks. The GSM (Global
System for Mobile Communications) protocol uses the A5/1 and A5/2 ciphers
that suffer from well-known vulnerabilities. A5/2 can already be cracked in
real-time with a cipher-text only attack [BBK03]. According to a presentation
held by the security researchers David Hulton and Steve Muller at the Black
Hat 2008 security conference in Washington, D.C., A5/1 can be decoded in
about thirty seconds with equipment that consists of 16 128 GB (Gigabyte)
flash hard drives and 32 FPGAs (Field Programmable Gate Arrays).

Security tokens

Security tokens are small electronic devices that can be used for two-factor
authentication. Typically, they are either directly connected to a computer
or a time-dependent number displayed by the device has to be entered into
the computer. Security tokens suffer from the same vulnerabilities as TAN
codes: The user has no possibility to verify that the data displayed by the
computer is actually equal to the data validated with the security token.

Smart cards

Smart cards are credit-card sized devices able to perform cryptographic
operations. They are typically used to apply digital signatures or to provide
two-factor authentication to a system. A smart card usually does not provide
a screen or a keyboard. Therefore, a terminal is required for communication
with the user. Unfortunately, smart cards do not generally prevent attacks
performed on untrusted terminals, because man-in-the-middle attacks on the
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terminal may modify any information transferred between the smart card
and the user [SS99].

5.4 QR-TAN

In order to address the shortcomings of existing solutions, we propose QR-
TANs as new transaction authentication technique based on two-dimensional
barcodes. QR-TANs allow a user to validate and approve a transaction using
an untrusted terminal connected over an untrusted network. We do not place
any requirements on the security that must be provided by the terminal. In
fact, even if an attacker would be able to fully control the terminal, this would
not decrease the security provided by QR-TAN.

This section first gives a short introduction to QR codes. Afterwards, the
QR-TAN protocol used for transaction authentication is described, followed
by a discussion on the design decisions and implementation details.

5.4.1 QR codes

QR codes have been invented by Denso Wave Incorporated1 in 1994. The
two-dimensional structure of QR codes allows for codes with a lower resolution
in any single dimension than a comparable one-dimensional code. Therefore,
they can be better recognized by cameras, as the resolution of these cameras
is typically the same in both directions. In contrast, one-dimensional barcodes
require higher resolution cameras, as more information is stored in a single
dimension.

There are different QR code versions that mainly differ by the amount of
data that can be stored and by the size of the two-dimensional barcode.
For example, version 1 contains 21x21 modules and can encode up to 25
alphanumerical characters. Version 2 has a size of 25x25 modules and can
encode up to 47 alphanumerical characters. The largest amount of data can
be stored in QR codes of version 40 with a size of 177x177 modules, they can
store up to 4,296 alphanumeric characters (or 2,953 binary 8-bit characters).
The practical limit on the size of a QR code is the camera used to capture
the code. The main factors are the resolution of the camera and whether the
camera is able to focus on an object. Figure 5.1 shows an example of a QR
code over the “data+nonce” arrow that contains the string “QR-TAN! ”.

1http://www.denso-wave.com/qrcode/
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5.4.2 QR-TAN protocol

The QR-TAN approach uses a challenge-response mechanism to validate
individual transactions. The challenge is transmitted to the phone by the
use of two-dimensional barcodes, the response is a few-letter code typed into
the computer by the user. A malicious man-in-the-middle is able to learn
information about individual transactions, but is neither able to create new
transactions nor able to modify existing transactions.

Figure 5.1 shows the messages that are transmitted during the authentication
process. In order to sign a message, the following steps are executed:

confirmation  code (optional)

data T + hash
hash

data T + nonce N nonce N

request nonce Nshared 
secret

shared 
secret

M LUC RTC

Figure 5.1: QR-TAN authentication

1. The user U , who intends to perform a transaction, generates the trans-
action data T on the local untrusted computer LUC . It is assumed
that an attacker is able to read and modify any data stored or relayed
by the LUC .

2. The LUC requests a nonce N from the remote trusted computer RTC ,
e.g., a bank’s server. The nonce is required to prevent replay attacks
and to prove the freshness of transactions. The RTC is the trusted
device in charge of the transaction. In the case of offline transactions a
smart card could also perform the tasks of the RTC .
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3. The LUC concatenates T and N , encrypts them with the public key of
the user’s mobile phone M and displays the result as a QR barcode.

4. U uses the mobile phone M to extract T and N and to read T . M acts
as a trusted device.

5. To approve T the user enters the secret password on M to decrypt the
device password D. The device password is a shared secret between
the device and the server. It can be initially distributed to the user via
letter post as a QR code.

6. M calculates HMACD(T +N + approve + cnt) [KBC97], converts the
result to an alphanumeric format and displays the first X characters.
The approve value serves as an indicator that the user wants to accept
the transaction. If the user prefers to explicitly reject a transaction,
they can calculate the hash value of HMACD(T + N + reject + cnt).
The cnt field is usually set to zero. However, if the resulting shortened
hash values for approve and reject match, cnt is increased until the two
hash values differ.

7. U reads the first X characters and inputs them on LUC .

8. LUC transmits T and the hash to the RTC .

9. RTC does the calculation for the two possible hashes in step 6 itself and
checks if the received hash matches one of the two hashes. Furthermore,
the RTC computes the confirmation hash HMACD(T +N +check) and
transmits it back to the LUC .

10. M computes the confirmation hash using the same formula as the RTC .
If the hashes displayed by M and LUC match, the user knows that the
transaction has been confirmed by the RTC .

5.4.3 Design decisions

One of the main design decisions was that manual work required by the user
and computational requirements on the trusted device should be kept to a
minimum. Unlike other approaches that require the user to perform manual
calculations or approaches that require a separate channel, e.g., via Bluetooth,
QR-TAN only requires the user to validate the transaction on their trusted
device and to approve the transaction by entering a short number into their
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computer. The effort required by the user to learn the QR-TAN mechanism
is therefore comparable to other TAN based approaches.

In order to design a technique that is also applicable to commercial applica-
tions, we placed several requirements on the resulting QR-TAN protocol:

• QR-TANs must not require any manual computations or other complex
tasks by the user.

• QR-TANs must provide the same (or a better) security than other
existing established approaches.

• It should be possible to use QR-TANs offline by embedding the server
side tasks within a smart card (only standard algorithms like AES
(Advanced Encryption Standard)/SHA-1 (Secure Hash Algorithm 1)
should be used).

• Implementation and usage should be possible with only modest expenses.
Operation should be cheaper than the commonly used mTAN (Mobile
Transaction Authentication Number) technique.

When comparing the transport mechanism, there is an important asymmetry.
While the path to the mobile phone could easily convey several tens of bytes
to several hundreds of bytes, the path from the phone to the computer can
only transport a few bytes. The reason is that the user manually needs to
enter the information displayed on the phone onto the keyboard. Therefore,
this restricts how the QR-TAN technique is designed and which cryptographic
techniques can be used. For example, if the output is encrypted with public
key cryptography or a block cipher like AES, there is a minimum length for the
cipher text. In most situations, however, expecting that a user manually types
information of this length into the computer is not an acceptable solution.

5.4.4 Discussion

This section discusses details affecting the security of QR-TANs as well as
selected implementation details.

Encryption

Most of the data are not signed or encrypted as these security measures would
not provide any additional security. The nonce can only be used by M . An
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attacker who knows the nonce cannot generate valid hashes or replay any
transactions. If an attacker manipulates the nonce, this would cause M to
generate an invalid hash. The same is true for the transmitted hashes as
knowledge of these hashes does not provide any viable information to an
attacker.

A nonce is required to prove the freshness of the data and to prevent replay
attacks. If it is not possible to obtain a nonce from the RTC , the LUC
could instead include a timestamp in the data. The user then verifies the
timestamp and only signs the data if the timestamp is correct. When the
data are transmitted to the RTC , the LUC also includes the timestamp that
is part of the hash. The RTC can then check if the timestamp agrees with
the hash and if the timestamp is near the current time. By rejecting identical
transaction data with a timestamp that is identical to another timestamp,
during the validity period of both timestamps, the RTC can prevent replay
attacks.

The purpose of the public key algorithm used to encrypt messages to the
mobile phone is to prevent some types of attacks. For example, an attacker
who is physically located near the user, but who is not able to decipher the
individual characters on the screen might still be able to decode the displayed
QR barcode.

For the symmetric encryption of the data, any encryption scheme could be
used. For the asymmetric encryption, a public key algorithm that yields a
small ciphertext would be advantageous. Therefore, if possible ECC (Elliptic
Curve Cryptography) should be used instead of RSA. When compared to
RSA, the ciphertexts generated by ECC are smaller for a given plaintext and
for a given level of security.

The password used to decrypt the shared secret for the message signatures
must not be related to the decryption of the QR codes read by the mobile
device, e.g., by securing the private key with this password. Otherwise, if
an attacker would be able to obtain the device, to extract the private key,
and obtain a picture of a QR code destined for the device, the attacker could
brute-force attack the user’s password and verify the result by checking if the
decrypted QR code contains reasonable data. This password could then also
be used by the attacker to sign transactions. If the user’s password is only
used for signatures, the attacker has no prior indication if the password is
correct. Therefore, the RTC could block the account if there are more than
a given number of failed attempts.
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Resilience against attacks

For the generation of the hash displayed on the mobile phone and transmitted
by the user to the LUC , the binary data needs to be recoded to a format
that can easily be handled by the user. As a trivial solution, this data can
be converted to a format that contains only case-sensitive alphanumerical
characters. This would yield 62 different possibilities per position. If two of
these possibilities are removed in order to prevent user’s from mistaking l with
1 (one) or O with 0 (zero), this leaves 60 possibilities per position. With a
hash length of four characters the total number of combinations is 12 960 000.
The chance of guessing the correct code is therefore roughly comparable to
the chance of winning the jackpot in a 6 from 49 lottery. A hash length of
six characters would already yield 46 656 000 000 different combinations. As
the number of accepted trials by the RTC can be set to a low value, this
effectively prevents brute force attacks that could be used to guess the correct
hash.

Hash options

The decision if a user wants to approve or reject a transaction is encoded in
the hash as this prevents the LUC from learning the information. Depending
on the application, additional values may be used. If it is allowable that the
LUC is able to learn the choice of the user, a user could also omit the input
of any hash value. Consequently, this would lead to a timeout for the nonce
at the server.

The confirmation hash generated with the check option allows the user to
verify that a transaction has been received by the RTC. It can be displayed
as a shortened hash or by using hash visualization techniques [PS99]. The
confirmation hash helps the user to discover that the LUC does not forward
transactions accordingly. However, if a user does not receive any confirmation
hash by the LUC they cannot detect if the message containing the transaction,
or the message containing the confirmation was lost. This is a more general
problem related to the Two Army Problem [AEH75] that cannot be fully
solved.
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5.5 Attacks and security

In this section we analyze potential attacks against smart phones used as secure
device for QR-TAN authentication. First, we discuss smart phone security
issues in Section 5.5.1, followed by Section 5.5.2 analyzing the consequences
of these security issues for QR-TAN.

5.5.1 Smart phones

While modern smart phone operating systems typically include security models
that are more advanced than the security models of standard desktop operating
systems, these security models can only protect against malicious software
if there are no exploitable bugs in the operating system itself. However, in
the past iOS and Android contained security problems that allowed arbitrary
applications to gain root privileges. Moreover, some of those problems have
been unpatched for several weeks even though they were publicly known.

Examples of recent security problems are the combination of two iOS exploits,
where the first exploit [CVE10a] allows to execute arbitrary code on the system
and the second exploit [CVE10b] allows code running on the system to gain
system privileges. As the first problem concerns the PDF (Portable Document
Format) rendering engine of the Web browser, it cannot only be abused by
local applications, but also by arbitrary web sites. On Android a similar
exploit was possible for an installed application by installing itself as callback
function for the hotplug functionality. Thus, upon enabling or disabling any
hotplug device this application is executed with system privileges. However,
unlike in the case of iOS this problem could could not be exploited remotely.

In addition to the security issues stated above, social engineering is an issue
that needs to be considered as well. For example, variants of the ZeuS malware
first infect a user’s PC and then prompt the user to install a software update
on their smart phone [Bun10]. However, this software update is not genuine,
but does itself contain malicious code. Thus, an adversary is able to control
both devices used for two-factor authentication.

5.5.2 QR-TAN

In Two-Factor Authentication: Too Little, Too Late [Sch05] Bruce Schneier
argues that even modern two-factor authentication techniques will not solve
today’s phishing problems as they do not solve man-in-the-middle attacks and
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trojan attacks. This reasoning is valid if the user has no possibility to assert
that the content of a transaction is correct. However, in the case of QR-TANs
a user directly validates each transaction on a secure device. Therefore, the
user can check if the transaction displayed on the secure device matches the
transaction that has been input in the computer.

Attackers are only able to calculate the hash code, if they are able to obtain
the key shared between the user’s phone and the RTC . However, the key is
protected by the user’s personal password and optionally also stored within a
secure element (e.g., on a smart card chip).

To successfully issue a malicious transaction, an attacker would need to
(i) know the password required to login to the bank’s website, (ii) steal the
mobile phone of the user and bypass access controls (e.g., the password of
a screensaver), and (iii) know the personal password of the user required to
approve transactions on the phone.

If the mobile phone is considered insecure, for example because an attacker
might be able to execute software on the phone as discussed in Section 5.5.1,
the attacker would still need to gain control over the phone and over the
terminal. If the cryptographic algorithm as well as the required user credentials
are stored within the phone’s smart card, access to the phone is required at
the time of the transaction.

For high security applications it might therefore make sense to use a device
similar to security tokens for the authentication of transactions. This device
could feature a simple camera used to scan QR codes and a display to show
TAN codes. The device does not need any connection to the Internet or other
types of networks. Therefore, the attacker would require physical access to
the device in order to install malicious software.

5.6 Related work

This section describes related work to our QR-TAN transaction authentication
technique. A number of other papers propose methods that can be used to
implement secure transaction authentication on untrusted terminals. There
are two different types of approaches: Some of these methods use external
devices that are used to validate transactions. They therefore shift the
security burden from an untrusted device to an external trusted device. Other
approaches require the user to manually validate that a transaction is correct.
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The Axsionics Internet PassportTM [MJ09b, Mül08a] is a secure mobile device
that provides mutual authentication and transaction authentication. Unlike
QR-TANs, it does not use QR codes to transmit information, but a flicker-
ing code [MJCLR07] that can be decoded with the help of optical sensors.
Therefore, no camera is required and simpler optical sensor elements are suffi-
cient. Axsionics describes their security token as three-factor authentication
device, as it also includes a digital fingerprint reader to identify the user. A
similar device is sold by Gemalto under the name ezio optical reader. Unlike
Axsionics’ device it does not include a fingerprint reader, but allows to use
smart cards for authentication. Compared to QR-TAN, the main difference
to these approaches is the implementation of the optical transmission channel.
In addition, while our original QR-TAN approach currently does not support
three-factor authentication, we explicitly anticipate such authentication mech-
anisms by allowing to store the shared key on the phone’s SIM (Subscriber
Identification Module) card.

A set of related authentication systems using QR codes has been developed by
Borchert and Reinhardt at the University of Tübingen [BR08]: Sesame allows
a mobile phone to use information included within a QR code to generate a
one-time password to login to a Web site. Foto-PIN (Personal Identification
Number) works similar, but instead of generating a password it allows users
to securely enter PIN codes. With this technique the users needs to enter the
PIN on a shuffled on-screen keyboard, with the labels of the individual keys
displayed only on the mobile phone. Foto-TAN works analog to Foto-PIN,
but allows to digitally sign transactions. Unlike in the case of Foto-PIN it
therefore also displays the transaction data on the mobile phone. Conceptually,
QR-TAN correspond to Foto-TAN. However, QR-TAN can also be used to
login to Web sites, similar to the Sesame approach. The main difference
between QR-TAN and the discussed approaches is the communication channel
from the mobile phone to the computer: While QR-TANs directly allow the
user to enter a short hash code on the keyboard, the discussed approaches
use a virtual on-screen keyboard, where users need to enter their code using
a computer mouse.

Bottoni and Dini [BD07] use a secure device to secure transactions between
a user and a merchant. While this is conceptually similar to our QR-TAN
approach [4], it requires direct end-to-end communication—e.g., over SMS or
UDP—between the merchant and the secure device.

Aussel et. al [AdC+09] include security-hardened monitors into applications
running on untrusted platforms and use USB (Universal Serial Bus) smart
cards to verify the log data provided by the monitors. While this approach
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could complement our techniques for secure smart card communication (Chap-
ter 6) it provides less security than a dedicated secure hardware device.

Lu et al. [LA04] increase security with respect to online identity theft by
placing confidential information inside a smart card from where it can be
transferred to a remote authenticated server. This reduces the risk of confiden-
tial information being captured by malware at a user’s computer. However,
it does not guarantee that data entered on the computer are not changed on
the way to the server, which is the focus of our QR-TAN approach and our
two smart card security extensions.

MP-Auth [MvO07] allows the user to securely login to a website and to
approve transactions using a cell phone. The user’s long-term secret password
is entered on the trusted mobile device, while the untrusted device only gains
access to a temporary secret. Unlike QR-TANs, the MP-Auth mechanism
requires bidirectional data transfer between a cell phone and a terminal, such
as Bluetooth or wired connections. Furthermore, software installation on the
untrusted terminal is required.

Clarke et al. describe [CGK+02] how a trusted mobile device can be used to
validate transactions that are conducted over an untrusted device. The main
difference to QR-TANs is the way how the information is transferred from the
untrusted computer to the mobile device. The paper presents two different
options to read data from a screen. Pixel mapping establishes a mapping
between the camera’s pixels and the screen’s pixels. Compared to QR-TANs,
this approach has higher requirements on the resolution of the camera and on
the computational power of the device. As a consequence, an implementation
is not feasible on today’s mobile phones.

The goal of qualified mobile server signatures [OCK10] is to provide an alter-
native to smart cards in citizen card applications, as smart card application
are affected by issues such as the low pervasiveness of smart card read-
ers [OCK10, Roß08]. The key approach behind mobile server signatures is
similar to mTANs used in banking applications. However, instead of executing
a transaction, such as a bank transfer, after a successful confirmation of the
code within the SMS, the remote server signs a digital document. When
compared to QR-TANs, qualified mobile server signatures have a possibly
higher operating cost due to transmission of SMS. In addition, this technique
is not compatible with our temporal decoupling approach, as the process of
signing a bid must not be temporally decoupled due to security reasons.
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5.7 Conclusions

In this chapter we presented our QR-TAN protocol for secure transaction
authentication. An advantage of QR-TANs over existing authentication
techniques is that they do not require any additional software installation on
the terminal. While a software implementation of the QR-TAN authentication
technique is required on the trusted device, this implementation does not need
to be tailored to any particular service provider. Therefore, such software can
be pre-installed on mobile phones or dedicated secure devices.

As we expect the following technology changes in the future, it is likely that
QR-TANs can be used for a wide range of different applications.

• New cameras with higher resolutions will be available in mobile phones.

• Processing power of mobile phones will increase. Therefore, more
complex barcode algorithms can be used.

• Current QR codes are black/white only. More advanced barcodes that
also use different colors (e.g., Microsoft’s High Capacity Color Barcode)
are able to store more information.

In summary, QR-TANs are able to substantially increase the security of
electronic transactions. User’s can use their own mobile phone to approve
transactions that have been created on untrusted terminals. QR-TANs
use a visual communication channel and do not require any network-based
communication link between the mobile trusted device and the untrusted
terminal. Therefore, they do not require the installation or configuration of
additional software on the untrusted terminal. This is a main advantage over
other techniques that use secure devices, as these techniques often require a
bidirectional link between the trusted and the untrusted device.

When compared to the established mTAN authentication technique, QR-TANs
allow for less costs at the service provider while at the same time providing
a higher level of security. Unlike other proposed techniques, QR-TANs only
require modest communication and computation capabilities at the trusted
device. Therefore, we are convinced that the usage of QR-TANs in security
critical environments such as our application scenario is reasonable and that
QR-TANs provide a viable alternative to today’s established authentication
techniques.



Chapter 6

Smart card proxy

This is the second of two chapters in the area of secure communication
and transaction authentication. In this chapter we present our smart card
proxy that allows to Web-enable existing smart cards. Unlike state-of-the-art
software for smart card access on a PC, our approach provides a well-defined
standard protocol for the proxy interface, so that a single generic proxy can
be used for multiple Web applications. Therefore, client-side installation is
only required once—either included in the Web browser or a single, trusted
standalone application. In addition, we provide two security extensions that
allow to increase the proxy’s security in case of man-in-the-middle attacks,
when used in combination with customized smart cards.

In our application scenario we use the smart card proxy for the communication
between the Web application and the smart card, as security and convenience
of existing solution approaches are unsatisfactory for our application. Due
to the flexible run-time configuration of our proxy a one-time installation on
a bidder’s computer is sufficient, even if new functionality is added to our
application or if the protocol between the Web application and the smart
card changes.

First, Section 6.1 gives an introduction and a problem description. Then,
Section 6.2 presents the architecture and trust model of our application.
Section 6.3 introduces our generic Web mapping. Section 6.4 extends our
mapping approach with TPM-based attestation, while Section 6.5 provides
alternative security measures based on QR-TAN authentication. Finally,
Section 6.7 concludes the chapter.
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6.1 Introduction

Despite ongoing efforts to Web-enable smart cards [Lu07] there is still a media
discontinuity when using smart cards in combination with Web applications,
as smart cards typically require a native helper application as proxy to
communicate with the Web browser. One reason is that the Web security
model is fundamentally different from the smart card security model, leading
to potential security issues even for simple questions such as: “Is a particular
Web application allowed to access a particular smart card?”.

Ongoing research to Web-enable smart cards typically either requires com-
putational capabilities at smart cards higher than the capabilities provided
by today’s smart cards or requires users to install software customized to
particular types of Web applications [LHP02]. In contrast, our generic map-
ping proxy enables access from arbitrary Web applications to arbitrary smart
cards, while using access control to protect smart cards from malicious Web
applications, without requiring any on-card software modifications.

However, guarding only against malicious Web applications is not sufficient,
if the local computer is potentially controlled by malware. Consequently,
we enhance our mapping approach to provide end-to-end security between
a user and a smart card, but this enhancement requires the possibility to
adapt on-card software. In particular, we allow the user to (i) either use the
TPM inside their computer or, (ii) alternatively, use a trusted secure device
to secure communication with the smart card.

Summarized, the contributions in this chapter are:

• A smart card Web communication protocol that provides a secure way
for Web applications to interact with existing smart cards. Unlike
state-of-the-art technologies, our approach allows any Web application
to interact with any given smart card where communication is allowed
based on our authorization and access control mechanisms.

• A first extension to our protocol that uses the Trusted Computing
facilities part of recent PC hardware. This allows us to mitigate the
effects of malware on the local computer, but requires modification of
the on-card software.

• A second extension to our protocol that uses QR-TANs [4] instead of
a TPM. Thus, the security is provided by an external security device
instead of a PC. This also requires modification of the on-card software.
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6.2 Architecture and trust model

This section presents our overall system architecture and the different security
constraints. Due to the different trust requirements of the different entities,
the problem we solve can be seen as a type of multilateral security [Ran00]
problem. For example, the user and the Web server both trust the smart
card, but neither does the user trust executable code provided by the Web
server, nor does the Web server trust executable code provided by the user.
And while the user may place considerable trust into their own hardware, this
hardware may not be trustworthy enough for the Web application in regard
to non-repudiability requirements.

An overview of our architecture is given in Figure 6.1, which illustrates
the major components and communication paths, but not the sequence
of interactions detailed later. Figure 6.1(a) shows the architecture when
used in combination with TPM and Figure 6.1(b) shows the architecture
when used in combination with QR-TAN. The black arrows indicate direct
communication paths between two entities while the highlighted broader
lines in the background depict the secure channels in our system. If a secure
channel spans several black arrows, this means that the intermediate entities
are untrusted and data are passed through that entities by means of encryption
or digital signatures. The trust relations between the constituents described
in the following paragraphs are depicted in Figure 6.2. Arrows labelled “high”
indicate that a component is highly trusted, while “partial” indicates a lower
trust relationship.

Web application and Web server. The Web application is an entity
that wants to interact with the smart card; for example a banking site that
requires a digital signature before conducting a transaction. The user trusts
the Web application for communication with the smart card. However, the
user does not trust the Web application with unrestricted access to their
computer—e.g., to execute binary code obtained from the Web application.
The server-side part of the Web application is running on the Web server,
while the client-side part of the Web application is implemented in JavaScript
and running on the Web browser. The term “Web application” refers to the
combination of these two components.

Web browser. The Web browser is the entity used to interact with the
smart card. It hosts the client-side part of the Web application and interacts
with the server-side part of the Web application and the smart card. The
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user needs to trust the Web browser for the type of executed transaction. For
low security transactions such as reading a stored-value counter, a normal
Web browser can be used. For high security transactions, the trust in the
Web browser can either be increased by executing the Web browser inside a
trusted environment (see Section 6.4), or the trust requirements in the Web
browser can be decreased by outsourcing part of the transaction to a trusted
secure device (see Section 6.5).

Proxy. The proxy is our application responsible for mapping requests from
a Web browser to a smart card. Combined with our generic mapping approach
(Section 6.3), only a single generic proxy provided by a trusted vendor is
required to be installed in order to allow access to smart cards from a multitude
of authorized Web applications using state-of-the-art Web technologies. The
trust requirements in the proxy are two-fold: From a user’s perspective, the
proxy is running on a semi-trusted platform as the proxy is started on their
local operating system. However, from a smart card issuers perspective the
proxy is not necessarily trusted, as malware could control the computer. Thus,
the smart card issuer can mandate additional security measures such as the
authentication over a TPM (Section 6.4) or QR-TANs [4] (Section 6.5).

Smart card. A smart card is issued by an entity such as a local bank and
is responsible for signing sensible data or for executing sensitive transactions.
User and Web application have trust in the smart card’s correctness. However,
the user does not have a direct input and output path to the smart card.
Thus, malware can manipulate the user’s communication with the smart card.

6.3 Generic proxy and mapping approach

Our generic proxy Web-enables smart cards without installation of custom
on-card software and hence is applicable to a large range of existing smart
cards. In sections 6.4 and 6.5, we enhance our approach to provide even better
security in particular against malware for cases where the on-card software
can be adapted.

The developed mapping technique uses a proxy to provide Web applications
with access to smart cards and—in addition—protect smart cards from
malicious Web applications. In contrast to existing techniques, our generic
mapping allows a single executable trusted by the user to be used for a
diverse set of Web applications and smart cards, not requiring the user to
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trust and execute code obtained from many different Web sites. We validated
our concepts with prototype implementations, showing that (i) the proxy
concept is feasible in practice, (ii) correctly serves as a filter between Web
applications and smart cards, and (iii) allows Web access to smart cards using
state-of-the-art Web technologies.

Our system uses a mapping configuration to map abstract method calls
to APDUs; an example is shown in Figure 6.3. This configuration defines
how invoked methods and their arguments are mapped to APDUs and how
results are mapped back to a structure. Furthermore, it includes a list of
trusted origins, defining Web sites that may use the mapping, and a list of
ATRs (Answer To Resets)—identifying accessible cards. An AID (Application
Identifier) identifies the respective smart card application. The mapping is
cryptographically signed by the card issuer with a key certified by a Privacy
CA (Certificate Authority).

Mapping procedure. The following steps detail how a Web application
can call a particular method defined in the mapping file. The interaction
between the different components is shown in Figure 6.4.

1. The Web browser obtains a mapping definition and transmits the
mapping to the proxy via an RPC (Remote Procedure Call) call by
using JavaScript.



6.3. GENERIC PROXY AND MAPPING APPROACH 87

<mapping>
<smartcard atr="3b134028351180" aid="A00000006203010C0202" />
<method name="login">

<request>
<args><arg name="pin" type="STRING" /></args>
<apdu−mapping is="D4"><argument name="pin" /></apdu−mapping>

</request>
<response />

</method>
</mapping>

Figure 6.3: Request mapping example

2. The proxy verifies that the origin of the client-side Web application
part running in the Web browser matches the origin defined in the
mapping file and verifies the signature of the mapping. To verify the
origin the proxy can provide a secret to the Web application’s callback
URL defined in the mapping file that the Web application needs to
include in subsequent requests to the proxy.

3. The proxy verifies that there is a card in the reader and that the ATR
of the card matches the ATR of the mapping. If the ATR is different,
or if during the remaining process the ATR changes (e.g., because the
card is replaced), the proxy will reset.

4. The proxy either asks the smart card if the public key used to sign the
mapping should be trusted, or—alternatively—only verifies if the public
key has been signed by a trusted certificate authority. In both cases the
process is continued. Otherwise, the process is aborted.

5. The proxy receives RPC requests from the Web application’s JavaScript
code running inside the browser and converts them to APDUs according
to the mapping. These APDUs are subsequently transmitted to the
smart card. After the response APDU is received from the smart card
it is converted and sent back to the application running in the Web
browser.

Summarized, to protect smart cards from malicious Web applications we first
identify the type of smart card connected to the PC. We proceed by verifying if
the smart card provider has authorized the mapping file1 provided by the Web

1The authorization of a Web application’s mapping file is an administrative task in
contrast to the development and installation of on-card software, which would require
re-distribution of smart cards.
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application for this particular type of smart card. If this verification succeeds,
this mapping is then used to restrict which Web applications can access the
smart card and to restrict the type of APDUs that the Web application may
transmit to the smart card.

Card reader

Mapping
Smart card Proxy Web browser

Figure 6.4: Mapping procedure

6.4 Smart card-based TPM attestation

This and the next section show extensions for establishment of a secure
channel between the smart card and either (i) the Web browser running in a
secure environment, or (ii) a mobile device trusted by the user. The primary
motivation for these extensions is to mitigate attacks by adversaries with
access to the user’s computer. Both extensions require the support of on-card
software.

The first approach discussed in this section uses an end-to-end security protocol
between the smart card and the Web browser that provides authentication,
integrity and confidentiality between the two endpoints. Our protocol works on
a layer between APDU transmission and APDU interpretation. Conceptually,
it can be compared to TLS (Transport Layer Security). However, instead
of desktop computers it targets smart cards and uses the remote attestation
features of TPM that allow a remote party to verify if a computer is running
a particular software configuration. The main requirements of our protocol
are: (i) Authentication: Each party must be able to securely authenticate
the other party. (ii) Integrity : Each party must be able to verify that the
transmitted data has not been manipulated. (iii) Confidentiality (optionally):
End-to-end encryption between the parties must be possible.

The first two items are required to prevent manipulation of transmitted
data: Without authentication of the remote party, an attacker could directly
establish a connection to one of the parties. Furthermore, without integrity
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of individual data items, an attacker could use a man-in-the-middle attack
to manipulate these data items while in transit. The third item is optional:
Without encryption, a man-in-the-middle is able to read transmitted informa-
tion, but not able to manipulate this information. By using encryption, we
can prevent an attacker from learning information about ongoing transactions.

In the following sections we first introduce the TPM functionality we use for
remote attestation. Afterwards, we continue with a description of our secure
channel that provides authentication, integrity and confidentiality. While
a secure channel is already part of the Global Platform specification2, the
specification assumes that there is a shared secret key between smart card
and accessor. However, as we want to enable access to smart cards from
many different Web sites, a shared secret between the smart card and each
individual Web site is infeasible.

6.4.1 Secure computer model

For the endpoint of our end-to-end security protocol on the local computer
(see Figure 6.1(a)) we assume a computer model that allows to create a secure
runtime partition in which software is executed that cannot be accessed or
manipulated by the user’s (default) operating system. This secure partition
hosts a browser instance used for communication with the smart card. Further-
more, the secure partition allows for remote attestation—allowing a remote
entity to securely identify the executed software. To provide compatibility
across different types of trusted environments, our model does not assume
any further characteristics. In particular, we do not assume that it is possible
to open a secure channel to I/O (Input/Output) devices such as smart card
readers. This is in accordance with the current state of trusted environments,
where applications can open secure channels only to some types of I/O devices
such as monitors and keyboards [Mül08b, CYC+07].

There are different technologies that allow for the creation of such a secure
partition. One technology is Intel’s TXT (Trusted Execution Technology)
that complements the functionality of a TPM by allowing a secure hypervisor
to provide virtual environments that are protected from access by malicious
applications. For remote attestation a TPM can be used. The Xen hypervisor
provides a vTPM [BCG+06] implementation that provides virtual TPM
chips [EL08] to the executed instances. These virtual TPMs use features of
the host’s hardware TPM for the secure implementation of their functionality.

2http://www.globalplatform.org/
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6.4.2 Establishing a shared secret for HMAC and en-
cryption

As basis for encryption and authentication we use a shared secret between
smart card and Web application running in a trusted environment. To
establish this secret we use an authenticated DH (Diffie-Hellman) key ex-
change [DH76] as depicted in Figure 6.5. The variables g, p, A, B in the
figure are Diffie-Hellman parameters. For authentication, we sign the pa-
rameter set sent by each of the parties with digital signatures that prevent
man-in-the-middle attacks. On the smart card we use an asymmetric key
that is certified by the smart card manufacturer, while on the TPM we use
the AIK (Attestation Identity Key) for authentication.

Instead of using Diffie-Hellman, it would also be possible to generate the
symmetric key on one of the endpoints and use asymmetric encryption to
transfer this key to the other endpoint. However, with such a method the
long-term security of the communication would depend on the security of
the particular asymmetric key. If the asymmetric key would be broken, each
symmetric key encrypted with this key in the past would be compromised.
With Diffie-Hellman on the other hand, an attacker needs to crack each session
key individually.

DH parameters #1: 
g,p,A,NonceEven,signatureFromCard(hash(g,p,A,nonceOdd);
DH parameters #2: 
B,signatureFromTPM(hash(B,NonceEven));
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Figure 6.5: Exchange of Diffie-Hellman parameters for secure channel. A
nonce is used to prevent replay attacks. Each endpoint transfers cryptographi-
cally signed DH parameters to the other endpoint. These parameters are then
used to establish the key for the secure channel.
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6.4.3 Mutual authentication and integrity

Mutual authentication allows each endpoint of a conversation to authenticate
the identity of the opposing endpoint. Authentication and integrity are
intertwined concepts: When endpoint authentication is used without data
integrity, an adversary can exchange data while in transit. Likewise, if data
integrity is used without endpoint authentication, an endpoint knows that the
data have not been modified, but does not know the identity of the remote
endpoint.

In this section we provide our approach for authentication and integrity. There
are two endpoints (see Figure 6.1(a)): The smart card and the Web browser
running in a trusted environment. Authentication uses authenticated Diffie-
Hellman key exchange, while integrity uses HMACs (Hash-based Message
Authentication Codes).

Each smart card stores a custom key pair generated on initialization and
digitally signed by the smart card issuer. When transmitting Diffie-Hellman
parameters, the smart card signs them with its private key and appends the
public key together with the certificate of the issuer to the data structure.

On the PC, the TPM_Quote command of the TPM is used to sign the content
of particular PCRs (Platform Configuration Registers) that contain mea-
surements of the executed software used to identify a particular software
configuration. When PCRs are updated, the TPM combines the existing
value with the new value, thus software running on the computer is not able
to set the registers to arbitrary values. By cryptographically signing the
values within the registers, the TPM chip can attest the state of the system
to a remote system. This functionality is also called remote attestation.

The certification of the TPM’s key is more complex than in the case of the
smart card. Figure 6.6 shows the certification and attestation procedure,
illustrating which entity certifies which other entity to build up a chain
of trust that allows the smart card to verify a correct software execution
environment. The TPM contains two different types of keys: The unmodifiable
EK (Endorsement Key) generated during production and certified by the
TPM’s manufacturer and a modifiable AIK used for attestation. A Privacy
CA with knowledge about EK and AIK is responsible for certifying the
AIK [Mül08b, CYC+07]. During attestation, the AIK signs a set of values
that identifies the executed software. The smart card compares these values
with a set of reference values identifying a particular browser appliance and
signed by a trusted party (e.g., the smart card issuer).



6.4. SMART CARD-BASED TPM ATTESTATION 92

EK

AIK

ce
rt

if
ie

s

Privacy 
CA

PCR 
State

Expected 
PCR 
State

Trusted 
party

certifiescertifies

certifies

co
m

p
ar

e

TPM

TPM
manu-
facturer

certifies

Smart 
card

Figure 6.6: Certification and attestation procedure

6.4.4 APDU encryption and authentication

For encryption and authentication of APDUs we use a protocol similar to
smart card secure messaging defined in ISO (International Organization for
Standardization)/IEC (International Electrotechnical Commission) 7816-4.
The main reason why we cannot directly use secure messaging is that secure
messaging requires a shared key between smart card and terminal. However,
in our application scenario, this is not feasible as we want to enable secure
communication with the smart card from a wide range of Web applications.

In theory, it would be possible to use the secret we established in Section 6.4.2
as the basis of a ISO/IEC 7816-4 compliant communication established
directly by the smart card’s operating system. However, as common smart
card operating systems do not allow for access to the particular layer by
client applications, this option is not possible. Instead, we re-implement
comparable functionality inside the application layer, transmitting secured
data as payload in APDUs. Therefore, APDU encryption and authentication
allows us to establish a secure channel between smart card and Web browser.

APDUs are encrypted and authenticated by calculating encrypt(session_key,
hmac(session_key, orig_apdu + counter) + orig_apdu + counter) using a
symmetric encryption protocol such as AES. If no encryption is required,
using an HMAC without encryption is possible. The HMAC serves to detect
manipulation attempts of the APDU. The counter allows to detect replay
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attacks: In the beginning, a counter value derived from the shared key is used.
As the session proceeds, each endpoint increases the counter value by one
for each request and each response. Furthermore, each endpoint can detect
if the received counter value matches the expected counter value. As a side
effect, the counter also acts as a type of IV (Initialization Vector), as two
equal APDUs encrypt to two different cipher texts.

6.4.5 Security discussion

One issue with the certification of the PCR state by the smart card is that
if the Privacy CA only certifies that the AIK belongs to any valid TPM
implementation, it would be sufficient for an adversary to obtain the private
key of any certified TPM to apply signatures. To cause a security problem
the adversary would need to (i) break the user’s environment so that the
browser does not run inside a secure environment with the effect that malware
has access to the software and (ii) to sign the TPM’s side of the transaction
with a certified key from another broken TPM implementation.

One option for the mitigation of such an issue would be for the Privacy CA
to not only certify that the key belongs to any TPM implementation, but to
further include a user identifier in the certificate. This certificate can then be
used by the smart card to verify that the TPM belongs to an authorized user.
Another option is to remember the first TPM key used for authentication and
to only allow this particular key for future transactions. While this does not
help against malware on a freshly installed PC, it protects the user against
later attacks. However, to use another PC, a user would first need to obtain
a certificate from the card issuer that instructs the smart card to reset the
stored key.

When a secure channel is used, there is an important difference in the behavior
of the intermediate smart card proxy: In unencrypted communication, the
proxy is responsible for filtering the requests, i.e., to only allow requests
whitelisted in the mapping to pass. However, when encryption is used, such a
filtering is not possible as the proxy does not have access to the plain text.
Thus, the proxy cannot verify if a particular encrypted APDU is allowed by
the mapping file. As the proxy cannot filter requests sent to smart cards
in that case, smart cards need to be developed with the assumption that
potentially any Web site can send requests. While a majority of smart cards
is already designed to withstand external attacks, the optimal mitigation
strategies in our scenario are different. Traditionally, a smart card does,
e.g., deactivate itself, if large amounts of failed authentication attempts are
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detected. However, if any Web application can communicate with the smart
card, a Web application could abuse such a behavior for a DOS (Denial Of
Service) attack: By deliberately causing failed authentication attempts, any
Web application could disable the smart card.

As mitigation strategy, smart cards should not take any destructive actions
in case of failed authentication attempts or other types of security alerts
that can be caused by external Web applications. For example, instead of
deactivating the smart card in case of multiple failed authentication attempts
the smart card could just increase the minimum interval required between
each authentication attempt. As an alternative, the on-card application
responsible for the secure connection can filter requests according to the
information in the mapping—and thereby accomplish the filtering task of the
proxy. However, the drawback of this approach is that it leads to a higher
complexity of the on-card application.

6.5 Authentication with QR-TAN

This section presents the second option to increase the security of the proxy,
by extending our system with our QR-TAN protocol discussed in Chapter 5.
In comparison to our original QR-TAN approach [4], our modifications allow
the use of QR-TANs without the interaction of a server.

Conceptually, it is sufficient to replace the RTC (Remote Trusted Computer)
in the original approach with a smart card. However, due to the different
capabilities of smart cards and servers, modifications to the original approach
allow for better integration. In particular, our modifications address the
following issues:

1. On smart cards, the generation of textual authentication requests in-
tended for humans is more complicated than on servers. Especially as
the smart card’s memory restricts the amount of stored localizations
and as it is rather complex to update the messages once the card has
been issued.

2. The smart card should have the capability to decide if external transac-
tion authentication is required. For example, in banking applications
a smart card may allow daily transactions of up to a particular total
value without authentication, only requiring authentication above that
value.
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3. Usage of QR-TAN should be transparent to applications using the proxy.
Thus, only the smart card, the proxy, and the secure device should
contain QR-TAN specific code.

To enable these properties, we extend our mapping description to contain
information about QR-TAN authentication. In particular, we introduce
a new <auth /> section that describes which status words in the APDU
response indicate that QR-TAN authentication is required and how human
readable text is generated from the structure returned by the smart card. For
authentication the following steps depicted in Figure 6.7 are used:

Smart 
card

Web browser

h(mapping)

tx request tx request

auth request

User

auth request
tx data

confirm

hash
hash

hash, ...

tx response

tx response

Secure 
device

mapping

Proxy

cert(mapping)

Figure 6.7: QR-TAN authentication steps

1. On initialization the browser provides the mapping to the proxy. The
proxy transmits a hash and a certificate of the used mapping file signed
by a trusted third party to the smart card. The smart card verifies that
the certificate allows use of the given mapping file.

2. The Web browser sends its transaction request to the smart card.
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3. The smart card responds with a particular status word indicating that
QR-TAN authentication is required for this type of transaction. The
data of the response contains a structure with information about the
transaction, a nonce, and the secure hash of the used mapping file.

4. The proxy reads the response by the smart card and converts it to a
QR code that is subsequently displayed to and scanned by the user’s
secure device.

5. The secure device first checks if it has stored the mapping file indicated
in the QR code. If not, it prompts the user to install the mapping
file—e.g., by scanning a compressed QR code containing the mapping
file. Otherwise, it generates a human readable text according to the
information in the mapping file and asks the user for confirmation.

6. If the user confirms, the secure device generates a shortened hash based
on the data structure of the original request (in step 2), the nonce, and
the hash of the mapping file and presents this shortened hash to the
user.

7. When the user provides this shortened hash to the proxy, it generates an
APDU with this information and sends it together with the nonce and
the hash of the mapping file to the smart card. The smart card validates
if the locally computed hash for transaction matches the shortened hash
within the APDU.

8. In case of success, the smart card returns the response of the original
APDU request issued in step 2.

The conversion of the transaction data to a human readable text can be done
on either one of the two endpoints of the QR-TAN authentication: Inside
the smart card or inside the trusted secure device. It is not possible to do
this conversion on any device between these two endpoints as this would
prevent successful end-to-end authentication. In our approach we perform
this conversion inside the secure device. While generating the text directly
within the smart card would be conceptually simpler, it would require the
smart card to store potentially large amounts of textual data—e.g., if multiple
localizations are required. Furthermore, it is not easily possible to adapt the
text once the smart card has been issued.

As the secure device uses a mapping file to convert the structure with infor-
mation about the transaction to a textual format, it must ensure that the
mapping file is also authenticated. Otherwise, an attacker would be able to
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send a manipulated mapping file to the secure device, causing the device to
show incorrect transaction information to the user. It is not sufficient for the
secure device to only validate if the mapping file has been signed by a trusted
party: As the secure device cannot securely obtain the ATR of the smart
card, it cannot ensure that the mapping file belongs to a particular smart
card. Instead, we include a hash of the mapping file in the structure that
is hashed by the secure device, allowing the smart card to ensure that the
QR-TAN belongs to a particular mapping. While the smart card does not
need to know the content of the mapping file, it needs to know the digital
signature to decide if it can trust the mapping. Thus, the proxy can send the
signature of a mapping to the smart card via APDUs.

By integrating our QR-TAN approach directly with the proxy, the proxy
is responsible for displaying the QR code and for forwarding the QR-TAN
back to the smart card. Thus, the whole process can be transparent to
applications using the mapping, as the only difference between authentication
and non-authentication is the additional delay of the authentication process.

6.6 Related work

This section describes related work to Web-enabled smart cards as provided
by our smart card proxy. Work related to the QR-TAN extension of our proxy
is discussed in context of QR-TAN in Section 5.6.

Itoi et al. [IFH00] describe an approach for secure Internet smart cards that
allows users to access remote smart cards over the Internet. In contrast, we
provide the client-side part of a Web application running in a Web browser with
access to smart cards at the local computer. Thus, the security assumptions
and implementation details differ fundamentally.

An expired IETF (Internet Engineering Task Force) Internet draft for SmartTP
by P. Urien [Uri01] specifies a unique software stack applicable to different
types of smart cards, but—unlike our approach—requires software support
from the smart card. Hence, it is not applicable to legacy cards.

The TLS-Tandem approach [Uri09] seems to use smart cards for access control
to a Web server, while we aim at Web-enabling smart cards to mitigate man-
in-the-middle attacks.

The OMA (Open Mobile Alliance) SCWS (Smartcard Webserver) specification
defines the interface to an HTTP server on a smart card. However, compared
to our proxy such an approach is not directly applicable to desktop operating
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systems as the specification is targeted against mobile devices with smart cards
used as USIM (Universal Subscriber Identification Module), UICC (Universal
Integrated Circuit Card), or R-UIM (Removable User Identification Module).
As a consequence, no device drivers that provide SCWS-based HTTP support
to desktop operating systems are available.

In addition to the works discussed above, a comprehensive examination
of approaches to provide smart cards with network access is provided by
HongQian [Lu07].

6.7 Conclusions

In this chapter we presented a secure approach for Web-based smart card
communication. Our overall contributions are: (i) a secure technique using
a single generic proxy to allow a multitude of authorized Web applications
to communicate with existing smart cards and (ii) techniques for new smart
cards that allow for secure end-to-end communication between a user and
a smart card. In particular, our security extensions cover the usage of (i) a
TPM and (ii) QR-TANs to secure communication with smart cards.

Compared to related approaches, our system works with existing smart cards
without requiring changes to on-card software. Thereby, we can increase the
security of the user’s system, by not requiring the user to install privileged
software distributed by Web sites that require access to a smart card. Further-
more, in cases where it is feasible to adapt on-card software, we can increase
the security over the state-of-the-art even further, as we can use the TPM or
QR-TANs to secure transactions that would otherwise be affected by malware
on the terminal.



Chapter 7

Conclusions and future work

In this chapter we first discuss alternative application scenarios in Section 7.1.
We then proceed to our conclusions regarding the contributions of this thesis
in Section 7.2. Finally, we discuss future work in Section 7.3.

7.1 Alternative application scenarios

This section discusses alternative application scenarios for our contributions
with the discussion into the following three areas: (i) Adaptive rate control
and performance, (ii) time synchronization and timestamping, and (iii) secure
communication and transaction authentication.

7.1.1 Adaptive rate control and performance

In theory our adaptive rate control approach is applicable to all application
scenarios where it is essential to control the request rates of a set of clients,
such as Web applications. However, in practice the applicability of our
approach is limited due to the required protocol adaptations, as such changes
are not compatible with all types of existing protocols. In addition, the
feasibility of the required adaptations also depends on the fact whether a
piggyback approach is sufficient, or a distributed feedback channel is required.

A rather general application scenario are Web services, if those services allow
requests to be delayed. In such cases our adaptive rate control approach can
mitigate peak loads on the server by buffering requests directly on the client,
if the server’s load is too high. If the original time of a request is not essential,
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or if all participants of such a service are operated by entities fully trusting
each other, our adaptive rate control approach can be implemented without
our smart card based timestamping protocol.

As an example of potential benefits possible with our temporal decoupling
approach, consider the talk of Google engineer Luiz André Barroso at the
O’Reilly Velocity 2008 conference1 who stated that Google’s servers are
dormant most of the time with only occasional spikes of peak activity. The
primary problem in such cases is that servers need to be dimensioned for peak
loads, instead of average loads. Our temporal decoupling approach allows
to reduce peak loads in certain application scenarios and would therefore
potentially allow to reduce the amount of required servers.

Furthermore, our distributed feedback channel can complement related
work [GSTBU10], as it allows to efficiently broadcast client request rate
settings to a set of clients. This decreases the load of the server, as the server
does not need to reject requests by individual clients anymore, and thereby
also increases the amount of clients a particular server can handle.

7.1.2 Time synchronization and timestamping

Our main contributions in this area are interval-based time synchronization,
smart card based time synchronization, and distributed timestamping.

One potential application scenario are distributed computer games, where
a major issue is to prevent players from cheating. In a fully distributed
game where player’s exchange actions with each other, individual players
can gain an unfair advantage by holding back the transmission of their own
actions until they have received the actions of the other players. In such cases
malicious players can react to the actions they receive by transmitting their
own actions with backdated timestamps. While today’s protocols such as the
Lockstep protocol [BL01] can mitigate this problem, they exhibit a higher
latency than simple approaches where players directly exchange messages.
With our secure smart card and interval-based timestamping approaches it
would be possible to enforce client-side timestamps for actions before they are
relayed to other players. While this does not prevent malicious players from
delaying transmission of their actions, they cannot backdate their own actions
anymore, and thus do not gain an essential advantage over other players.

Another application scenario are electronic transactions, such as processed
by banks. In such cases there may be a regulatory agency that needs to be

1see http://velocityconf.com/velocity2008/public/schedule/detail/3694
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able to verify the validity of transactions without receiving a copy of each
individual transaction. For example, verification can be beneficial if there
is a dispute over a transaction between the bank and a customer. With
our secure timestamping approach the regulatory agency can issue smart
cards that are used to locally timestamp transactions at the individual banks.
In case of disputes, a bank can prove that information about a particular
transaction existed at a given point in time. While this does not prevent a bank
from creating a forged transaction, it prevents the bank from retroactively
tampering with transactions. A related scenario are log files on a server,
where a secure timestamping approach can prevent potential intruders from
retroactively manipulating information within a log file.

While both application scenarios can be implemented using our smart card
based timestamping approach, their security can be increased with our dis-
tributed timestamping protocol, which prevents adversaries from successfully
using physical attacks against a single smart card to manipulate timestamps.

7.1.3 Secure communication and transaction authenti-
cation

Our main contributions in the area of secure communication and transaction
authentication are our QR-TAN transaction authentication protocol and our
smart card proxy.

QR-TAN is applicable to any type of service that requires secure transaction
authentication. Examples are banking transactions, where QR-TANs can be
used instead of traditional TAN codes. However, as QR-TAN software can be
deployed to standard smartphones, QR-TANs can also be used in application
scenarios where the distribution of traditional TAN codes or mobile TANs
would be too expensive, such as Web sites that require an increased security
of their login process. The demand for such secure user authentication is
shown by the fact that service providers such as Google recently started to
offer optional two-factor authentication for some of their services. The main
advantage of QR-TANs over existing solutions is that QR-TANs can be used
with any smartphone that includes a camera. In addition, use of QR-TANs
does not require an Internet connection. Thus, QR-TAN authentication can
also be used when traveling at locations where no data-roaming is available.

Our smart card proxy is applicable to all types of existing smart card ap-
plications, where access to the smart card is required by a Web application.
Examples of such services are citizen card applications and electronic banking
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transactions secured with smart cards. Due to the characteristics of our pro-
tocol, our proxy can be used for existing services without requiring changes
to on-card applications.

7.2 Conclusions

In this thesis we contributed with techniques to increase the performance,
availability, and security of first-price sealed-bid online auctions. First-price
sealed-bid auction [MM87] scenarios generally exhibit high peak loads around
the auction deadline as a majority of bidders tries to submit bids shortly
before the deadline. Moreover, these auctions also exhibit high dependability
requirements as an auction canceled due to technical reasons can lead to
significant financial losses, because of market conditions changing over time.
As a consequence, systems need to be designed for excessive workloads and
high availability, leading to massive over-provisioning and high costs.

In addition to our temporal decoupling techniques for first-price sealed-bid
auctions, this thesis deals with security issues in time synchronization and
timestamping, as well as with security issues in transaction authentication
and smart card communication. In particular, the contributions of this thesis
are split into the following three main areas:

• In the area of adaptive load control and performance for first-price
sealed-bid auctions our main contribution is the integration of (i) a
distributed feedback channel to transmit control information from the
server to the clients with (ii) decoupling strategies that allow to constrain
client requests directly at the client-side and (iii) a PID controller that
adaptively controls the input parameters of those decoupling strategies
to facilitate an optimal server utilization.

• In the area of time synchronization and timestamping we first con-
tributed with a secure time synchronization and timestamping protocol
for resource-constrained devices to enable secure timestamps to be
applied within smart cards, for example. Moreover, we showed the
feasibility of our approach based on a .NET smart card implementation.
In addition, we presented a smart card based approach for distributed
timestamping that is able to provide low latencies due to connection
pre-establishment.

• In the area of security we contributed with the QR-TAN technique for
secure transaction authentication and a smart card proxy that allows



7.3. FUTURE WORK 103

Web applications to communicate with smart cards. In addition, we
presented two techniques for secure end-to-end communication between
the user and the smart card.

Key idea of the approach presented in this thesis is to alleviate the dependabil-
ity problems by shifting them into the security domain and by consequently
solving the new security problems. We increase dependability of the system
by temporally decoupling the individual components of the system from each
other, and allowing users to place bids on trusted devices physically located
at their place. However, by doing so we decrease the security of the system,
as we give adversaries new options to attack the system.

Therefore, we subsequently solve the security problems: Software running
on clients cannot be protected against attacks by malicious users. As a
consequence, we introduced a smart card based time synchronization and
timestamping protocol that is able to mitigate asynchronous delays and delay
attacks. However, even smart cards do not necessarily provide adequate
security against physical attacks. Therefore, we extended our timestamping
protocol to work in a distributed mode, in order to split the trust requirements
amongst several smart cards at different physical locations.

Using smart cards requires a secure mechanism for communication between a
Web application and a smart card. Current state-of-the art does not allow for
this type of secure communication, as it typically requires the user to fully
trust executable code obtained by each individual service provider. Instead,
our approach allows generic Web applications to access generic smart cards.
We then increase the security of this approach by introducing QR-TANs
for transaction authentication and TPM based transactions for malware
mitigation.

7.3 Future work

Peak load reduction is a major issue, in today’s cloud deployments, espe-
cially due to requirements such as energy efficiency. Traditional solutions
to decrease such peak loads primarily deal with load distribution amongst
servers, for example by scheduling transactions in such a way that the load
is equally spread within a cluster. Our temporal decoupling technique is a
complementary approach that spreads the load of individual transactions in
the temporal domain. While only applicable to application scenarios that
can be temporally decoupled, the solution approach is fundamentally differ-
ent from existing work. Consequently, a goal for future work is to identify
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how to combine our temporal decoupling approach with existing solutions.
This would not only allow to increase the efficiency of certain types of cloud
deployments, but does potentially also allow to improve the performance of
our decoupling approach when deployed in a cluster setup. In addition, the
performance of the controller is only suboptimal when a piggyback approach
is used. Therefore, a further goal for future work is to use a Smith predic-
tor [SO03, ZLM07] to compensate for dead time due to delays and thereby
stabilize the controller as well as an evaluation of fuzzy controllers [CC07] to
verify if they are able to yield acceptable results in our system.

In the area of time synchronization NTP is currently the standard protocol.
However, the possible accuracy of NTP is limited in case of asynchronous
delays. While our time synchronization and timestamping protocol discussed
in Chapter 3 can improve on the state-of-the-art for certain application sce-
narios, it is currently not optimized for cases where determining a single point
in time is more important than being able to determine an interval containing
the correct time. Consequently, adaption of our time synchronization and
timestamping protocols for a wider range of application scenarios is one future
research goal. For example, in distributed computer games such a timestamp-
ing approach would allow to improve on the performance of the Lockstep
protocol [BL01, MKY+07]. However, adaption of our protocol would require
performance optimizations, to prevent high amounts of actions on each client
to overload the smart card.

In comparison to related work our distributed timestamping protocol discussed
in Chapter 4 can deterministically choose nodes responsible for timestamping,
provided that the nodes in the network are able to reach an approximate
agreement on the network size. While we outline techniques on how such
an agreement can be reached, those techniques partly depend on central
components within the network. To increase the availability of our protocol,
it would be beneficial to minimize dependence on such central components.
In addition, while hop-to-hop latencies are amplified by our overlay approach,
this can be mitigated with techniques such as Pharos [CXS+07] that allow to
find nodes with low latencies. Furthermore, our protocol currently provides
semi-anonymity, but there are no formal security guarantees yet. As future
work we therefore identify an examination on how to increase the provided
level of anonymity and a subsequent definition of formal security guarantees.

In the area of secure communication and transaction authentication our QR-
TAN protocol allows for secure transaction authentication. While QR-TANs
are designed to work with any type of secure device capable to scan QR codes,
our primary application scenario are smart phones. As a consequence, there
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are various approaches that can be used to further increase the security of
QR-TANs against adversaries. For example, JSR-177 (Security and Trust
Services API for J2ME) defines a secure storage element to protect sensitive
data. When used in combination with QR-TAN this would allow to protect
the shared secrets used by the protocol from adversaries with physical access
to the phone.

In regard to our smart card proxy—which constitutes our second contribution
in this area—our general approach of Web-enabling smart cards is also
applicable to other areas that do not use APDUs. For example, in the area
of home automation our proxy approach can be used to Web-enable legacy
devices. As in the case of smart cards, security characteristics are essential
to prevent adversaries from tampering with the functionality of such devices.
As future work we identify the combination with state-of-the-art approaches
for automatic generation of network protocol gateways [BRLM09], as this
would allow for more efficient generation of Web to smart card mapping
files. In addition, recent developments such as the TEM (Trusted Execution
Module) [CSvDD08] will allow for the implementation of more powerful
on-card request mapping approaches.
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