
Efficient IoT Application Delivery
and Management in Smart City

Environments
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Michael Vögler
Matrikelnummer 0625617

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Univ.Prof. Schahram Dustdar

Diese Dissertation haben begutachtet:

(Univ.Prof. Schahram Dustdar) (Prof. Frank Leymann)

Wien, 11.04.2016
(Michael Vögler)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Efficient IoT Application Delivery
and Management in Smart City

Environments
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Michael Vögler
Registration Number 0625617

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Schahram Dustdar

The dissertation has been reviewed by:

(Univ.Prof. Schahram Dustdar) (Prof. Frank Leymann)

Wien, 11.04.2016
(Michael Vögler)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Vögler
Macholdastraße 24/4/79, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

This work was partly supported by the Pacific Controls Cloud Computing Lab (PC3L)1,
a joint lab between Pacific Controls L.L.C., Scheikh Zayed Road, Dubai, United Arab
Emirates and the Distributed Systems Group of the TU Wien.

1http://pc3l.infosys.tuwien.ac.at/

iii

Danksagung

Mit dem Schreiben dieser Zeilen beende ich nun nicht nur diese Dissertation, sondern
schließe auch mein Informatikstudium ab, an dem ich mittlerweile fast eine Dekade
gearbeitet habe. Rückblickend betrachtet, wäre diese Arbeit nie ohne das Zutun und die
Unterstützung zahlreicher Personen möglich gewesen, denen ich in Form dieser Zeilen
danken möchte.

Als Erstes möchte ich mich bei meinem Betreuer, Prof. Schahram Dustdar, für die
Unterstützung und die Chance bedanken, meine Dissertation in der Distributed Systems
Group (DSG) zu schreiben, in der ich meine Forschungsideen großteils eigenständig
verfolgen und umsetzen konnte. Des Weiteren danke ich Prof. Frank Leymann für seine
interessanten Vorträge über die Grundsätze der Cloud und für die Zweitbegutachtung
dieser Arbeit.

Natürlich möchte ich mich auch bei meinen Kollegen der DSG bedanken, die mich
auf meinem Weg mit guter Zusammenarbeit und hilfreichem Feedback begleitet haben.
Insbesondere möchte ich mich bei Christian Inzinger und Johannes M. Schleicher bedan-
ken, die an allen meinen Forschungsarbeiten beteiligt waren, mir immer mit Rat und Tat
zur Seite standen und dadurch die vorliegende Arbeit erst möglich gemacht haben.

Mein Dank gilt natürlich auch meinen Eltern, die mir das Studium ermöglicht und
mich immer in meinen Vorhaben und Träumen unterstützt haben. Weiters möchte ich
mich bei meiner gesamten Familie und natürlich auch meinen Freunden für die Unter-
stützung bedanken.

Darüber hinaus, gebührt der meiste Dank Kara Wieland, die mich im kompletten
Verlauf meines Studiums begleitet hat, Höhen und Tiefen mit mir überstanden hat, es
mit Engelsgeduld ertragen hat, wenn ich Abende und Wochenenden vor dem Laptop
verbracht habe und mir immer Mut zugesprochen hat, auch wenn sie selbst gerade eine
stressige Zeit durchmachte.

v

Abstract

The smart city concept initially emerged as an umbrella term for the use of information
and communication technology (ICT) in cities with the goal of delivering additional
services to their citizens and generally becoming more efficient in terms of resource
utilization. Traditionally, these resources were mainly limited to energy and mobility
systems. However, with the evolution and ubiquitous availability of information technol-
ogy, potential target domains and resources that are addressable in a smart city changed
significantly. New areas like smart buildings or smart traffic systems can now be tackled.
With the recent advent of the Internet of Things (IoT), more and more stakeholders in
the smart city domain start to deploy connected IoT devices that allow for sensing and
controlling the physical environment they are residing in. Based on the deployed IoT
devices and the available smart city infrastructure, IoT applications emerged as a central
enabler for stakeholders to build new innovative smart city services for citizens. Such
IoT applications need to efficiently manage large amounts of data provided by connected
devices, which in combination with the rapid growth of IoT, is challenging. Furthermore,
deployed IoT applications need the ability to fully utilize the underlying smart city in-
frastructure resources to optimally fulfill their requirements at all times. Apart from
the intrinsic challenges of operating and managing IoT applications in the smart city
domain, such applications must also support the seamless integration of stakeholders and
data from different domains to help building new applications that are able to tackle the
increasingly complex challenges of today’s smart cities.

In this thesis we present a set of novel approaches that allow for efficient operation
and management of IoT applications in a smart city ecosystem. We first introduce a
methodology that makes IoT devices first class citizens in the design, development, and
operation of IoT applications, which allows for leveraging the available capabilities of these
resources to build more resilient and performant applications. We present an approach for
elastic provisioning of software and application capabilities on resource-constrained IoT
devices that explicitly considers the significant heterogeneity in terms of available storage
and processing power of these devices. Next, we introduce a declarative, constraint-based
model to describe IoT applications as a set of clearly separated components. Based on this
model, we derive an approach to dynamically generate optimized deployment topologies
for IoT applications that are tailored to the currently available physical infrastructure.
Since the monitoring of IoT applications is an essential part of application operation,
we introduce a non-intrusive monitoring approach that supports in-depth analysis of
data-intensive IoT applications independent of the underlying execution environment.

vii

Finally, to ensure the efficient execution of IoT applications, we present an approach
for analyzing monitored infrastructure data to optimize the overall IoT application
deployment. By using a set of illustrative scenarios, we extensively evaluate the results
of our investigations and show that our contributions support the efficient delivery of
robust and flexible IoT applications by allowing them to fully utilize the complete range
of infrastructure resources available in a smart city ecosystem.

Kurzfassung

Das Konzept intelligenter Städte entstand ursprünglich als Oberbegriff für die Nutzung
von Informations- und Kommunikationstechnologie in Städten, mit dem Ziel Bürgern
zusätzliche Dienstleistungen anzubieten und im Allgemeinen effizienter mit vorhanden
Ressourcen umzugehen. Zu Beginn waren diese Ressourcen in erster Linie auf Energie-
und Mobilitätssysteme beschränkt. Mit der raschen technologischen Entwicklung und
der damit einhergehenden allgegenwärtigen Verfügbarkeit von Informationstechnologie
vergrößerten sich jedoch auch die potenziellen Zieldomänen und Ressourcen, die man
in intelligenten Städten ansprechen konnte. Dementsprechend ist es nun möglich, neue
Bereiche, wie etwa intelligente Gebäude oder intelligente Verkehrssysteme, zu erschließen.
Mit der Entstehung des Internet der Dinge (IoT), haben immer mehr Akteure begonnen
vernetzte IoT Geräte in intelligenten Städten einzusetzen, die es wiederum ermöglichen,
die physische Umgebung, in der sie sich befinden, zu erfassen und zu steuern. Basierend
auf den installierten IoT Geräten und der verfügbaren Infrastruktur von intelligenten
Städten, sind sogenannte IoT Anwendungen zu mächtigen Mechanismen für Akteure
geworden, um neue und innovative Dienstleistungen für Bürger zu entwickeln und diesen
bereitzustellen. Allerdings müssen solche Anwendungen effizient mit großen Datenmengen
umgehen können, was in Kombination mit dem rasanten Wachstum des IoT eine große
Herausforderung darstellt. Darüber hinaus brauchen laufende IoT Anwendungen die
Möglichkeit, die zugrunde liegenden Infrastrukturressourcen von intelligenten Städten
im vollen Umfang zu nutzen, da sie nur so die an sie gestellten Anforderungen jederzeit
optimal erfüllen können. Neben den intrinsischen Herausforderungen, die durch den
Betrieb und die Verwaltung von IoT Applikationen in intelligenten Städten entstehen,
müssen Anwendungen auch die nahtlose Integration von Interessenvertretern und Daten
aus den unterschiedlichsten Bereichen unterstützen. Erst dadurch ist es möglich, neue
Anwendungen zu entwickeln, die in der Lage sind, die immer komplexer werdenden
Herausforderungen intelligenter Städte zu bewältigen.

In dieser Arbeit stellen wir eine Reihe von neuartigen Ansätzen vor, die den effizienten
Betrieb und eine ebensolche Verwaltung von IoT Anwendungen im Ökosystem intelligen-
ter Städte ermöglichen. Wir beginnen mit einer Methodologie, die IoT Geräte zu wichtigen
Elementen in der Konzeption, der Entwicklung und dem Betrieb von IoT Applikationen
macht. Dieser Ansatz ermöglicht es, die verfügbaren Ressourcen dieser Geräte zu nutzen,
um belastbarere und performantere Applikationen zu bauen. Als Nächstes präsentieren
wir einen Ansatz zur elastischen Installation von Software- und Applikationskomponen-
ten auf IoT Geräten, die eingeschränkte Ressourcen zur Verfügung stellen. Der Ansatz

ix

berücksichtigt dabei explizit die signifikante Heterogenität dieser Geräte im Bezug auf
den verfügbaren Speicher oder die vorhandene Rechenleistung. Weiters stellen wir ein
deklaratives Modell vor, mit dem IoT Applikationen beschrieben werden können, die aus
klar getrennten und eigenständigen Komponenten bestehen. Basierend auf diesem Modell
leiten wir einen Ansatz zur dynamischen Erzeugung von optimierten Verteilungstopologi-
en für IoT Applikationen ab, die auf die verfügbare physische Infrastruktur zugeschnitten
sind. Da die Überwachung von laufenden IoT Anwendungen ein wesentlicher Bestandteil
des Anwendungsbetriebes ist, führen wir einen eingriffsfreien Überwachungsansatz ein.
Dieser Ansatz unterstützt die gründliche Analyse von datenintensiven IoT Anwendun-
gen unabhängig von der zugrunde liegenden Ausführungsumgebung. Um eine effiziente
Ausführung von IoT Anwendungen zu gewährleisten, wird schließlich ein Verfahren zur
Analyse von verfügbaren Infrastrukturdaten vorgestellt, das es ermöglicht, Verteilungsto-
pologien von IoT Applikationen zu optimieren. Durch Verwendung repräsentativer Bei-
spielszenarien werden die vorgestellten Ergebnisse unserer Untersuchungen ausführlich
evaluiert und zeigen, dass unsere Ansätze die effiziente Bereitstellung von robusten und
flexiblen IoT Anwendungen unterstützen, indem Anwendungen die Möglichkeit gegeben
wird, die komplette Bandbreite an verfügbaren Infrastrukturressourcen im Ökosystem
intelligenter Städte zu nutzen.

Contents

Acknowledgements iii

Danksagung v

Abstract vii

Kurzfassung ix

List of Figures xv

List of Listings xvii

List of Publications xix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Scientific Contributions . 5
1.4 Organization of this Thesis . 7

2 Background 9
2.1 Smart City . 9
2.2 Cloud Computing . 11
2.3 Internet of Things . 12
2.4 Server Provisioning and Deployment Automation 13

3 Motivating Scenario 17
3.1 Building Management System . 17
3.2 Identified Requirements . 21

4 Provisioning large-scale IoT Deployments 23
4.1 Overview . 23
4.2 Requirements . 25
4.3 The LEONORE Framework . 26
4.4 LEONORE Optimization . 32

xi

4.5 Evaluation . 36
4.6 Summary . 44

5 Deploying elastic IoT Applications 47
5.1 Overview . 47
5.2 Requirements . 49
5.3 The DIANE Framework . 50
5.4 DIANE Optimization . 55
5.5 Evaluation . 61
5.6 Summary . 70

6 Deploying IoT Applications with TOSCA 71
6.1 Overview . 71
6.2 Modeling traditional IoT Applications . 72
6.3 Deploying IoT Application Artifacts . 80
6.4 Discussion . 85
6.5 Summary . 86

7 Monitoring IoT Applications 87
7.1 Overview . 87
7.2 Requirements . 88
7.3 The MOSAIC Framework . 89
7.4 Evaluation . 96
7.5 Summary . 102

8 Analyzing large-scale IoT Deployments 105
8.1 Overview . 105
8.2 Requirements . 106
8.3 The Ahab Framework . 107
8.4 Evaluation . 113
8.5 Summary . 117

9 Related Work 119
9.1 Related Work on Provisioning IoT Deployments 119
9.2 Related Work on Deploying and Optimizing IoT Applications 120
9.3 Related Work on Monitoring IoT Applications 123
9.4 Related Work on Analyzing IoT Deployments 124

10 Conclusions 127
10.1 Summary of Contributions . 127
10.2 Research Questions Revisited . 129
10.3 Future Work . 131
10.4 Ongoing Work . 132

Bibliography 137

xii

A Curriculum Vitae 153

xiii

List of Figures

1.1 Smart City Application Ecosystem . 2

2.1 Smart City – Overview . 10
2.2 Cloud Service Models (adapted from [139]) 12
2.3 Internet of Things – Vision (adapted from [116]) 13
2.4 Internet of Things – Perspectives (adapted from [11]) 14

3.1 BMS Application – Physical View . 18
3.2 Traditional IoT Application – Architectural View 19
3.3 Envisioned IoT Application – Architectural View 20

4.1 LEONORE – Overview . 26
4.2 LEONORE – Balancer . 31
4.3 LEONORE – Local Provisioner . 33
4.4 Evaluation – Setup . 37
4.5 Provisioning Time – Pull Strategy . 38
4.6 Provisioning Time – Push Strategy . 39
4.7 Provisioning Time – Push Strategy, Large Deployment 41
4.8 Provisioning Time – LEONORE local node 42
4.9 Provisioning Time – Large Deployment, LEONORE local node 43

5.1 DIANE – Overview . 50
5.2 DIANE extended . 57
5.3 DIANE Optimizer . 59
5.4 Evaluation – Setup . 62
5.5 Evaluation Results – IoT Application Deployment & Execution 63
5.6 Evaluation Results – IoT Application Topology Optimization (Step Load

Pattern) . 67
5.7 Evaluation Results – IoT Application Topology Optimization (Pyramid Load

Pattern) . 69

6.1 Air Handling Unit Usecase . 74
6.2 Node Types . 75
6.3 Sedona artifacts . 83

xv

7.1 MOSAIC – Overview . 90
7.2 Monitoring of a Processing Step with a Runtime Aspect 96
7.3 Sample application – Overview . 97
7.4 Sample application – Implementation . 98
7.5 Evaluation Results – Duration per process step 100
7.6 Evaluation Results – Latency between process steps 101
7.7 Evaluation Results – Absolute total duration 102

8.1 Ahab – Overview . 107
8.2 Evaluation Results – Scenario 1 . 115
8.3 Evaluation Results – Scenario 2 . 116

10.1 Smart City Operating System – Thesis Contributions 128
10.2 Smart City Operating System – Ongoing Work 132

xvi

List of Listings

5.1 Technical Unit . 51
5.2 Deployment Unit . 51
5.3 Deployment Instance . 52
5.4 Optimization Unit . 56
6.1 Base Node Types . 76
6.2 Base Node Types Properties . 77
6.3 Domain-specific Node Types . 77
6.4 Concrete Node Types . 78
6.5 Node Templates . 78
6.6 Relationship Types . 79
6.7 Artifact Types . 80
6.8 Artifact Types Properties . 81
6.9 Niagara Artifact Templates . 82
6.10 Sedona Artifact Templates . 84
7.1 Abstract Runtime Performance Aspect . 95
7.2 Configuration (aop.xml) Example . 95
8.1 Sample IoT Infrastructure Definition . 108

xvii

List of Publications

The work presented in this thesis is based on research that has been published in the
following conference papers and journal articles. For a full publication list of the author
please refer to the website at http://dsg.tuwien.ac.at/staff/mvoegler.

• Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Efficient and
Scalable IoT Service Delivery on Cloud. In Proceedings of the 6th International
Conference on Cloud Computing, CLOUD’13, pages 740–747, 2013. doi:10.1109/
CLOUD.2013.64

• Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Towards Auto-
mated IoT Application Deployment by a Cloud-Based Approach. In Proceedings of
the 6th International Conference on Service-Oriented Computing and Applications,
SOCA’13, pages 61–68, 2013. doi:10.1109/SOCA.2013.12

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. LEONORE – Large-Scale Provisioning of Resource-
Constrained IoT Deployments. In Proceedings of the 9th Symposium on Service-
Oriented System Engineering, SOSE’15, pages 78–87. IEEE, 2015. doi:10.1109/
SOSE.2015.23

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dust-
dar. DIANE – Dynamic IoT Application Deployment. In Proceedings of the 4th
International Conference on Mobile Services, MS’15, pages 298–305, 2015. doi:10.
1109/MobServ.2015.49

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dustdar.
A Scalable Framework for Provisioning Large-scale IoT Deployments. ACM Trans-
actions on Internet Technology, 16(2):11:1–11:20, March 2016. doi:10.1145/2850416

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Bernhard Nickel, and
Schahram Dustdar. Non-Intrusive Monitoring of Stream Processing Applications.
In Proceedings of the 10th International Symposium on Service-Oriented System
Engineering, SOSE’16, pages 190–199. IEEE, 2016. doi:10.1109/SOSE.2016.11

• Johannes M Schleicher, Michael Vögler, Schahram Dustdar, and Christian Inzinger.
Enabling a Smart City Application Ecosystem: Requirements and Architectural

xix

http://dsg.tuwien.ac.at/staff/mvoegler/#publications
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/SOCA.2013.12
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1145/2850416
http://dx.doi.org/10.1109/SOSE.2016.11

Aspects. IEEE Internet Computing, 20(2):58–65, Mar 2016. doi:10.1109/MIC.2016.
39

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Schahram Dustdar,
and Rajiv Ranjan. Migrating Smart City Applications to the Cloud. IEEE Cloud
Computing, page to appear, Mar-Apr. 2016

• Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar.
Ahab: A Cloud-based Distributed Big Data Analytics Framework for the Internet
of Things. Software: Practice and Experience, page to appear, 2016

xx

http://dx.doi.org/10.1109/MIC.2016.39
http://dx.doi.org/10.1109/MIC.2016.39

CHAPTER 1
Introduction

The smart city concept has emerged as an umbrella term for the pervasive implementation
of information and communication technology (ICT) systems designed to improve various
areas of today’s cities, such as citizen well-being, infrastructure, industry, and govern-
ment. Predominantly, these areas are seen as vertical applications that operate on highly
heterogeneous sets of infrastructures that are managed by different providers in order
to serve multiple stakeholders. Currently, the fundamental stakeholders in a smart city
are energy and transportation providers, as well as government agencies, which produce
large amounts of data about certain aspects (e.g., public transportation) of a city and
its citizens. Increasingly, these stakeholders deploy connected Internet of Things (IoT)
devices that deliver large amounts of near real-time data and allow to enact changes in
the physical environment. On top of the deployed IoT devices and available smart city
infrastructure, more and more IoT applications emerge that operate in this dynamic
environment to better integrate the large number of stakeholders that not only provide
data for applications, but can also contribute functionality or impose (possibly conflicting)
requirements. For IoT applications the efficient management of large volumes of data pro-
duced by a quickly growing number of connected resources is challenging, especially since
data gathered by IoT devices might have critical security and privacy requirements that
must be respected at all times. Nevertheless, utilizing IoT applications as the key enabler
for smart cities presents a significant opportunity to closely integrate stakeholders and
data from different domains to create new types of applications that are able to tackle the
increasingly complex challenges of today’s cities, such as autonomous traffic management,
efficient building management, and emergency response systems. Furthermore, future
IoT applications must also be able to operate across city infrastructure boundaries to
create a global interconnected system of systems for the future Internet of Cities [109].
Thus, in this thesis we argue that such applications will be designed, implemented, and
operated as cloud-native applications allowing them to elastically respond to changes in
request load, stakeholder requirements, and unexpected changes in their environment.

1

Sm
art C

ity
O

perating System

C
ro

ss-C
u
ttin

g

C
o
n
c
e
rn

s

Infrastructure Layer

Data Layer

Application Layer

Applications

Infrastructure

Cloud !

Server "

Edge

Applications
Applications
Applications Applications

Applications
Applications
Applications

Providers

MobilityEnergy Asset

IoT

Figure 1.1: Smart City Application Ecosystem

To address the intrinsic complexities of delivering applications in such environments,
we envisioned a Smart City Application Ecosystem [112], which is depicted in Figure 1.1.
By introducing such an ecosystem we aim to closely integrate requirements, functionality,
and capabilities of multiple stakeholders in a seamless and manageable way in order to
enable the full potential of IoT applications in the smart city domain. To implement such
an ecosystem, in this thesis we will provide novel approaches to efficiently operate and
manage IoT applications, which will build the foundation for a Smart City Operating
System, a central element of future smart city application ecosystems.

1.1 Problem Statement

To enable the creation of IoT applications that run in the previously introduced smart
city application ecosystem, it is necessary to provide sensible abstractions that hide the
underlying complexities of operating, analyzing, and managing complex IoT applications
in the smart city domain. Much like today’s mobile application ecosystems, a smart city
application ecosystem must enable stakeholders to focus on the application development
itself without the necessity to think about infrastructure, data, or application management.
In order to achieve this ease of development, such an ecosystem must address several
challenges that arise from the highly dynamic and complex nature of the smart city
domain itself.

2

First, in order to incorporate and enable the heterogeneous sets of available infras-
tructures in a smart city, an application ecosystem needs the ability to manage and
operate the large number of devices that emerge in today’s IoT infrastructures in order
to integrate them as vital information providers and as a mechanism to enact changes
in their physical environment. This calls for novel means for staging, deploying, and
organizing such IoT resources to ensure that their full potential can be realized in IoT
applications.

Second, IoT applications need to be able to run on and integrate a plethora of
different infrastructure types to fully utilize the available resources in order to operate
with maximum performance. To enable this the application ecosystem must be able to
handle a large number of different resources, ranging from traditional servers and hosted
cloud solutions to the dormant computational potential of edge resources. Moreover,
the large number of providers with different infrastructures along with the rapid pace
of infrastructure evolution, call for means to move applications and their respective
deployment topologies seamlessly between providers in the smart city domain (e.g., from
a dedicated server setup to a hosted cloud to the edge of the infrastructure itself).

Third, IoT applications need the ability to deal with and facilitate the massive amounts
of data that are emitted by the smart city. Therefore, to enable data-driven IoT applica-
tions that are essential for every aspect of smart city development, it is vital to provide
smart data management mechanisms. Among other things, these mechanisms need to
handle high-volume data streams as well as large batches of data in structured and
unstructured formats, which calls for novel integrated processing approaches.

Finally, to enable IoT applications that are able to seamlessly incorporate data
and infrastructure resources made available in this ecosystem, it is essential to provide
novel means for designing and developing such applications. To support practitioners in
developing applications for this complex domain, a comprehensive toolset is required that
hides the intricacies of the heterogeneous physical infrastructure in order to provide simple
and transparent access to the underlying resources. This not only calls for novel design
and development methodologies, but also for a sophisticated runtime environment that
enables adaptive execution of IoT applications by utilizing the available heterogeneous
infrastructures.

1.2 Research Questions
The problems identified in Section 1.1 serve as motivation for the research conducted
throughout this thesis. Specifically, this work addresses the following research questions.

Research Question I:
How can resource-constrained edge devices be seamlessly incorporated in the

provisioning process of IoT applications in smart city ecosystems?

As discussed in Section 1.1, the rise of IoT with its constantly growing number of
connected nodes has led to massive numbers of devices that provide data and need to be

3

managed. To deal with this complexity we need the ability to manage this heterogenous
infrastructure, which includes enabling the efficient provisioning for both cloud and
edge infrastructures. While at first glance traditional IT automation and configuration
management tools like Chef [93] or Puppet [101] seem like a good fit, these tools are not
equipped to incorporate and manage edge resources like the massive sensor arrays and
gateways that emerge in the smart city domain. Furthermore, current IoT application
development methodologies consider IoT devices as external dependencies that only act
as data sources or command receivers. This, however, does not consider the available
capabilities of new types of edge devices, even though they provide viable processing
power. To incorporate these elements we have to rethink the role of these devices and
enable them as first class resources in smart city infrastructures.

Research Question II:
How can IoT applications and respective topologies be optimally deployed while

specifically considering available infrastructure resources in smart city ecosystems?

We have to respect that IoT applications are large-scale distributed systems that react
and control, as well as analyze and reason about their physical environment by using the
underlying infrastructures. The inherently dynamic nature of these applications poses sev-
eral challenges when deploying, executing, and managing such applications. Applications
need to quickly react to changes in requirements and have to deal with unreliable and
expensive network links. In addition, applications have to provide stable Quality of Ser-
vice (QoS) even when experiencing infrastructure outages. Finally, applications need the
ability to scale computations across different infrastructures in order to handle the ever
increasing load generated by the environment they are operating in. In order to address
these challenges we need to separate application-specific topologies and requirements
from the actual deployment infrastructure. Based on that, applications and respective
topologies can be deployed on and run in different execution environments, reaching from
traditional application servers running in the cloud, to novel approaches that also consider
other forms of infrastructure resources (e.g., container-based environments provided by
the edge infrastructure).

Research Question III:
How can running IoT applications and utilized infrastructure resources be

generically analyzed in order to optimize the overall IoT application deployment
topology?

Once deployed and running, IoT applications operating in smart city ecosystems
produce an ever-growing amount of data that needs to be handled. These large sets of
diverse data, commonly referred to as big data, have to be efficiently collected, stored, and
analyzed. Therefore, supporting the constant monitoring and collection of information
from facilitated resources, using available monitoring capabilities of respective infras-
tructure or commonly applied monitoring tools is of utmost importance. In addition, a

4

mechanism for managing produced logs, events, and faults is essential to conduct perfor-
mance analyses that can be used for optimizing resource utilization or evolve the overall
infrastructure deployment. Based on that, fine-grained analysis information can be used
to adapt application topologies in order to react to defined requirements like SLAs.

1.3 Scientific Contributions
The work conducted during the course of this thesis, guided by the research questions
introduced in Section 1.2, has led to the following contributions.

Contribution I:
An approach for seamless provisioning of large-scale IoT deployments on

heterogeneous infrastructure resources

In the smart city domain, more and more IoT devices with embedded execution envi-
ronments emerge that support offloading parts of the application logic towards the edge
of the infrastructure. Leveraging these currently untapped processing capabilities of IoT
devices allows for improving dependability, resilience, and performance of IoT applica-
tions. However, the heterogeneity of available IoT devices poses challenges for application
delivery due to significant differences in provided capabilities (e.g., available storage and
processing resources), as well as deployed and deployable software components. To accom-
modate this diversity, a structured approach is needed to uniformly and transparently
deploy application components onto a large number of heterogeneous devices, which is
especially important in the context of current large-scale IoT applications, such as in the
smart city domain. Therefore, we introduce an approach that provides elastic provision-
ing of application components on resource-constrained and heterogeneous edge devices
in large-scale IoT deployments. Details are presented in Chapter 4. Contribution I was
originally presented in [129, 131].

Contribution II:
An approach for generating and maintaining optimal IoT application deployment

topologies

Utilizing the previously untapped processing power of IoT devices to offload custom
logic directly to these edge resources will not only increase the overall robustness of
the application, but can also reduce communication overhead. However, to allow the
flexible provisioning of applications whose deployment topology evolves over time, a clear
separation of independently executable application components is needed. Therefore, we
introduce an approach for the dynamic generation of optimized deployment topologies
for IoT applications that are tailored to the currently available physical infrastructure
based on a declarative, constraint-based model of the desired application deployment. In
addition, to also providing an optimal deployment of IoT applications that follow tradi-
tional application design paradigms, we introduce a TOSCA-based approach allowing

5

to formally describe components and deployment topologies of such applications. Fur-
thermore based on this formal description the approach enables automating the overall
IoT application deployment process. Details are presented in Chapter 5 and Chapter 6
respectively. Contribution II was originally presented in [68, 128].

Contribution III:
An approach for non-intrusive monitoring of IoT applications

Among predominant IoT applications, stream processing applications have emerged
as a popular way for implementing high-volume data processing tasks. To cope with
the intrinsic request load, components of such applications are usually distributed across
multiple infrastructure resources. In this context, performance monitoring and testing are
naturally important for understanding as well as analyzing the runtime characteristics of
deployed applications in order to identify issues and inform decisions. However, existing
approaches for monitoring the performance of distributed systems do not provide sufficient
support for targeted monitoring of data-intensive IoT applications. Therefore, we present
an approach that allows for in-depth analysis of stream processing applications by non-
intrusively adding functionality to acquire and publish performance measurements at
runtime, to the application. Details are presented in Chapter 7. Contribution III was
originally presented in [133].

Contribution IV:
An approach for analyzing and optimizing large-scale IoT application deployments

at runtime

IoT applications that are operated in smart city environments generate large amounts
of operational data during their execution. This data contains information from infras-
tructure monitoring, performance and health events from used toolsets, and application
execution logs. These produced data streams contain vital information about the appli-
cation execution environment that can be used to fine-tune or optimize different layers of
the utilized deployment infrastructure. Current approaches do not sufficiently address the
efficient collection, processing, and storage of this information in the smart city domain.
Therefore, we introduce a generic, scalable, and fault-tolerant data processing approach
that allows to perform online and offline analyses on gathered data to better understand
the behavior of the available infrastructure in order to optimize the overall IoT appli-
cation deployment. Details are presented in Chapter 8. Contribution IV was originally
presented in [130].

6

1.4 Organization of this Thesis
The remainder of this thesis is structured as follows.

• Chapter 2 provides background information on basic concepts used in this thesis.
Specifically, the topics smart city, cloud computing, and IoT, as well as their relation
to each other are introduced.

• Chapter 3 introduces a scenario that will be used throughout this thesis to motivate
and evaluate our contributions.

• Chapter 4 presents an approach for provisioning resource-constrained, heteroge-
neous edge devices in large-scale IoT deployments.

• Chapter 5 discusses an approach for dynamically generating optimized deployment
topologies for IoT applications that are tailored to the available physical infrastruc-
ture.

• Chapter 6 introduces a TOSCA-based approach for formally describing the internal
topology as well as the deployment process of traditional IoT applications.

• Chapter 7 presents a monitoring approach that provides a flexible mechanism to
add functionality for acquiring and publishing of performance measurements, at
runtime to data-intensive IoT applications.

• Chapter 8 introduces an approach that allows performing online and offline analyses
on gathered operational data produced by running IoT applications and utilized
infrastructure resources.

• Chapter 9 presents related work categorized according to the contributions pre-
sented in Section 1.3.

• Chapter 10 concludes this thesis, discusses the presented contributions in light
of the identified research questions, and offers an outlook for ongoing and future
research.

7

CHAPTER 2
Background

In this chapter, we introduce several basic concepts that are used in the remainder of this
thesis. First, we illustrate the fundamental properties of the smart city concept, followed
by an introduction of cloud computing and the Internet of Things, and discuss how they
relate to each other as these topics represent the context of the work conducted in this
thesis.

2.1 Smart City
Modern cities are evolving towards smart cities [46, 84] by integrating multiple com-
munication technologies to deliver services to their citizens. In addition, using available
information technologies allows cities to become smarter and more efficient in terms of
resource utilization. Initially these resources were mainly limited to energy and mobility
systems. However, the rapid change of information technology now allows cities to ad-
dress additional resources and areas like smart buildings, smart traffic systems and roads,
energy management, water/waste and pollution management, and emerging concepts
such as urban farming.

In essence, the ultimate goal of a smart city is to increase the quality of life of its
citizens by providing services that meet their needs more efficiently. Utilizing information
and communication technologies (ICT) enables city officials to closely interact with
citizens, allows them to analyze and plan the overall evolution of the city, and helps them
to decide how to improve the quality of provided services. Supporting city officials in
addressing these vital aspects directly improves citizens’ quality of life. In order to enable
the smart city concept, modern cities and their officials use a plethora of installed devices
to collect data from citizens and various areas of everyday life in order to process and
analyze gathered data to unveil possible shortcomings in terms of resource utilization or
citizen well-being. ICT, in the context of the smart city concept, is used to improve the
quality and responsiveness of urban services, provide efficient resource utilization to reduce
costs, and encourage close collaboration and interaction of citizens and governments.

9

Furthermore, the smart city concept wants to overcome the traditional relationship
among citizens and service providers by empowering citizens to become vital stakeholders
of the city that provide feedback for services, or report problems. Additionally, a smart
city has to enable citizens to utilize and engage with provided services easily and con-
veniently to incorporate various infrastructure types [12], such as hard infrastructures,
social networks, as well as ICT in order to empower sustainable economic evolution and
represent an inviting environment for citizens.

City

Internet of Things

Infrastructure Stack

Verticals

!
" #

Social NetworksSmart Sensors Autonomous Vehicles WearablesSmart DevicesSmart Grids Smart MetersSmart RoadsRobots

Industry &
Manufacturing

Building & Traffic
Management

Energy
Management

Urban Mining
& Farming

Citizen
Participation

Legacy Servers Datacenters Clouds

Figure 2.1: Smart City – Overview

Figure 2.1 provides a conceptual overview of a smart city and illustrates the different
layers that are required for evolving a modern city towards a smart city. In this figure
we see that in order to provide added value for citizens that live in a city, services are
provided that incorporate physical devices provided by the Internet of Things (IoT) like
smart meters, sensor networks, or other smart objects. Since these services are often
designed for one specific area of a smart city (e.g., energy management) and therefore
only focus on devices and data of this specific area, they are referred to as verticals
respectively vertical solutions. Finally, to allow citizens to use the provided services,
these vertical solutions are deployed and operated on heterogenous infrastructure stacks
consisting of legacy servers, datacenters, or clouds.

In order to build smart city services, solution providers have to deal with significant
challenges due to the lack of available real-world infrastructure that can be used for cre-
ating and testing these applications that allow for respecting functional, non-functional,
and regulatory requirements. Predominantly, smart city applications are built for and
tested on small-scale testbeds [95] or tailored simulations that emulate real-world envi-
ronments (e.g., Anylogic1). These solutions, however, are not ideal, since environmental
changes in the real world need to be mirrored in simulations or testbeds, which is usually

1http://www.anylogic.com

10

http://www.anylogic.com

a tedious manual task. In addition, this approach requires additional planning and efforts
for migrating an application from a test infrastructure to a real-world deployment, which
has to be repeated for each application release.

2.2 Cloud Computing
The cloud computing paradigm [8, 17, 19] emerged in recent years, which according the
US National Institute of Standards and Technology (NIST) is defined as “a model for en-
abling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)” [78].
Compared to provisioned resources in traditional datacenter infrastructures, cloud com-
puting has the following essential characteristics:

1. On-demand self-service, allowing costumers to request an arbitrary number of
computing resources automatically.

2. Broad network access, providing computing resources over the network in order to
access these resources by using standard mechanisms.

3. Resource pooling, allowing providers to serve multiple customers by using a multi-
tenant model that dynamically assigns different resources (physical or virtual) based
on customer demand.

4. Rapid elasticity, allowing elastic provisioning and releasing of resources in order to
enable scaling in/out to accommodate load fluctuations.

5. Measured service, enabling monitoring, controlling, and reporting of resource usage
for both provider and customer of provided services.

Leveraging these properties allows building elastic applications that are able to dy-
namically adjust resources based on current demand. Predominantly, cloud providers
offer services in varying granularity starting with basic infrastructure resources such as
Virtual Machines (VMs), platforms that are partially managed by providers, and services
that are completely managed by providers and only consumed by customers. According
to NIST, these different levels can be categorized into the following three service models
(illustrated in Figure 2.2):

• Infrastructure as a Service (IaaS), allows customers to provision computing re-
sources that can be used to deploy and run arbitrary software including operating
systems and applications. In this model providers control and manage the underly-
ing cloud infrastructure, while customers have full control over operating systems,
storage, and deployed applications.

• Platform as a Service (PaaS), allows customers to develop and deploy applications
on managed cloud infrastructure by using pre-configured software environments

11

Cloud Application
(SaaS)

Cloud Software Environment
(PaaS)

Cloud Software Infrastructure
(IaaS)

Figure 2.2: Cloud Service Models (adapted from [139])

supported by (possibly different) providers. In this model providers manage the
underlying cloud infrastructure and installed software, while customers are control-
ling the deployed applications and are able to configure the provided application
runtime environment.

• Software as a Service (SaaS), allows customers to use applications, which are of-
fered by (possibly different) providers and are running on their cloud infrastructure.
In this model the provider manages and controls the underlying cloud infrastruc-
ture, software, and applications, while customers are able to configure user-specific
application settings.

2.3 Internet of Things
The Internet of Things (IoT) is an emerging paradigm that in combination with the smart
city concept allows extending network connectivity and computing capabilities to physical
objects, sensors, devices, and other everyday items that are usually not considered as
computers, to allow them to generate, collect, consume, and exchange data. Based on
this concept, IoT enables these smart objects to be connected, sensed, and controlled over
existing network infrastructure, which allows the physical world to be tighter integrated
into computer-based systems to improve the efficiency and accuracy of provided services.

The overall vision of IoT is to extend today’s Internet to an Internet of Things
by incorporating devices from various application domains (Figure 2.3). Shelby and
Bormann [116] claim that today’s Internet is composed of the core and fringe Internet,
as well as the IoT. The core Internet includes servers, backbone routers, and millions of
network-related nodes, whose deployment topology rarely changes. On top of the core
elements, the vast majority of today’s Internet consists of personal computers, laptops,
and smart phones that are connected to the Internet, which are referred to as the fringe
Internet. Compared to the core elements, the fringe consists of billions of devices that
change rapidly according to the number of Internet users. IoT, also sometimes referred to
as the embedded fringe, is represented by interconnected, IP-enabled embedded devices
like sensors, machines, RFID readers, and building automation equipment. Since the

12

Internet of Things
Trillion nodes

Fringe Internet
Billion nodes

Core Internet
Million nodes

Smart
metering

Industrial
automation

Logistics

Transportation

Personal
sensors

Phones

Building
Automation

Figure 2.3: Internet of Things – Vision (adapted from [116])

number of nodes in IoT is not dependent on the number of users, an exact estimation
on its size is not possible, but it is assumed that IoT will soon exceed the rest of the
Internet and will continue to grow rapidly.

IoT can be separated into the following three main perspectives [11] as depicted
in Figure 2.4. First, the “Things oriented” perspective focuses on equipping objects
with intelligence, typically based on embedded micro-controllers, sensors, and actuators.
Second, the “Internet oriented” perspective mainly focuses on the communication-related
aspects of smart objects such as communication protocols and providing integrations
as well as interoperability by using Web technologies. Third, the “Semantic oriented”
perspective of IoT deals with semantic concepts in order to represent, store, interconnect,
search, and organize information generated by the IoT.

In order to transform the IoT concept to the real world, IoT applications are built to
integrate objects with the help of enabling mechanisms such as sensing and communication
features, and a middleware that hides the underlying diverse technology stacks. The huge
potential offered by IoT enables the development of a plethora of applications that
are usually classified in the following domains [11]: (i) Transportation and logistics,
(ii) Healthcare, (iii) Smart environment (home, office, plant), and (iv) Personal and social
domain.

2.4 Server Provisioning and Deployment Automation

In essence, server provisioning [56, 125] includes a set of steps that are necessary for
preparing a server with an operating system and other system software, in order to provide
it via the network. Typically provisioning comprises the following actions: (1) select an

13

“Semantic oriented”
“Internet oriented”

“Things oriented”

Internet
of

Things
Semantic

Technologies

Reasoning
over data

Semantic execution
enviroments

Smart
Semantic

Middleware

Web of
Things

Internet of
Things

Communication
things

Connectivity
for anythig

RFID

UID

Smart
Items

NFC

Wireless
Sensors and

Actuators
Everyday
Objects

Figure 2.4: Internet of Things – Perspectives (adapted from [11])

available server from a pool of servers, (2) select an image that has to be installed or
an image that can be executed, depending if a physical or virtual server is provisioned,
(3) install and boot the selected image, (4) assign and configure system resources like
network or storage, (5) install and configure appropriate middleware, (6) install and
configure necessary applications. Typically, service providers perform these tasks with
the help of configuration management (CM) tools like Chef [93] or Puppet [101] that
allow for automating this process.

When taking a closer look at the necessary list of actions, we see that according
to the last item the installation and configuration of applications is already part of
provisioning and therefore one can argue that deployment automation [47] is a subset
of server provisioning. However, several aspects are specific to deployment automation,
which allow for distinguishing deployment from provisioning. First, usually server pro-
visioning is solely done by the operations team, while deployment automation shares
responsibilities between application developers and operators. This means that develop-
ers create the application that needs to be deployed, whereas the operators manage the
execution environment the application has to be run on top of. Therefore, tools that sup-
port deployment automation have to respect these different ways of application delivery.
Second, the overall lifecycle of servers and applications is inherently different. Generally,
multiple applications can be deployed on one provisioned server, where it is likely that
each application can be redeployed multiple times. In comparison, the provisioning of
servers is usually only done once throughout multiple application lifecycles. This means
that deployment automation tools need to support developers, testers, and operators in
performing this magnitude of deployment requests.

14

However, emerging trends like DevOps [50] do not promote such a clear separation of
provisioning and deployment, since they employ a closely integrated team of developers
and operators that are not only responsible for application development and deployment,
but also deal with installing and configuring the required infrastructure. In addition, the
rapid adoption of cloud infrastructure in the overall application delivery process means
that virtual servers are provisioned more often and therefore server provisioning and
deployment automation tools are getting more integrated.

Nevertheless, in the smart city and IoT domain application delivery still follows het-
erogenous and often manual processes, where the provisioning of infrastructure resources
is still completely separated from the actual application deployment. Therefore, in this
thesis we distinguish between the concepts of provisioning and deployment.

15

CHAPTER 3
Motivating Scenario

In this chapter, we present the scenario as well as high-level requirements that we will
use throughout this thesis to motivate and evaluate the contributions of this work.

3.1 Building Management System

Building management systems (BMS) are one of the prominent usage domains of IoT
applications in a smart city. A BMS generally aims at efficiently managing building
facilities (e.g., heating, ventilation, and air conditioning – HVAC, light controls, power
systems, security monitoring, life safety systems and so on) in order to conserve energy,
save operation costs, and improve safety and security. Figure 3.1 provides a physical view
on such a BMS application. Generally, a BMS project starts with a solution provider
collecting information about the target building, which can either be a building already in
use or a new building in design. The former would often require retrofitting devices and
building facilities, where as the latter is synchronized with the development progress of
the building. The scale of a project can range from a single building to a large compound
of various building types, such as airports, business districts, and university campuses.
Therefore, the number of devices, the volume of data to be processed and the complexity
of applications can vary significantly. After surveying and design for the specific building,
the solution provider will acquire suitable hardware devices from OEMs, integrate them
into an infrastructure solution, develop analytical and control applications, and deploy
the applications on dedicated server resources.

This process, however, produces many vertically isolated solutions [27] (often referred
to as “silos”), which lead to the following problems for solution providers. First, the
more silos are provisioned, the more system instances the solution provider needs to
maintain. System maintenance becomes a particularly painful process, since hardware
devices are monitored in separate systems, and software instances need to be updated
separately and tested on-site with the specific hardware configurations. Second, many

17

Physical Sensors &
Actuators

Building Management
System

sense &
control

Access &
Security

Energy
Management

HVAC
Control

Lighting
Control

Figure 3.1: BMS Application – Physical View

campuses and building compounds expand continuously to accommodate new users. This
is particularly common in large-scale projects, which are usually planned for multiple
progressive phases. In this silo-based service delivery model, such expansion may require
a bottom-up re-configuration of the whole system and provisioning of new computing
resources because of the tight coupling of devices, middleware, and applications. Figure 3.2
illustrates the architecture of a typical isolated IoT application in this context. Currently,
these IoT applications are designed and implemented as layered architectures [2], where
the bottom layer consists of deployed IoT devices (e.g., sensors, actuators, and gateways),
an abstraction layer to uniformly collect data and send operations to the underlying
IoT infrastructure, and an application that implements the business logic. According to
this layered approach, the application is operated in on-premise infrastructures or in the
cloud, whereas the IoT devices reside at the edge of the infrastructure to send data and
react to the environment [28].

However, in practice, more and more IoT devices emerge that provide constrained exe-
cution environments that can be used for offloading parts of the business logic. Therefore,
in this thesis we want to enable these new forms of IoT devices as computing resources
that can be utilized in order to build more flexible and resilient IoT applications. Fig-

18

C
loud / O

n-Prem
ise

Infrastructure
IoT Infrastructure

A
c
c
e
ss

M
a
n
a
g
e
m

e
n
t

Device Management

Devices

IoT Application

Sensors Actuators

Gateways

Sensors Actuators

GatewaysGateways

Event Processing

Analytics

Business Logic

Visualization

Figure 3.2: Traditional IoT Application – Architectural View

ure 3.3 depicts the architecture of the envisioned IoT applications, which we will use to
motivate the contributions in this thesis.

It is worth noting that the limitations demonstrated in delivering BMS solutions
are commonly observed in many other IoT application domains, such as smart homes,
healthcare, fleet management, and so on. Taking fleet management as an example,multiple
fleet management solutions are used to manage different fleets. Each fleet may have a
different number of vehicles, which are of different types and serve different purpose (e.g.,
transportation of goods, emergency services). The silo-based delivery model is commonly
applied in state-of-the-art fleet management solutions.

19

Infrastructure
R

esources
Sm

art C
ity

O
perating System

Cloud ! Server "Edge IoT

C
ro

ss-C
u
ttin

g

C
o
n
c
e
rn

s

Infrastructure Layer

IoT Application

Business Logic

Data Layer

Application Layer

Visualization

Figure 3.3: Envisioned IoT Application – Architectural View

20

3.2 Identified Requirements
In order to allow for building and operating IoT applications that are able to utilize various
infrastructure resources, specifically incorporating new types of IoT devices as computing
resources, which are omnipresent in the smart city domain, we identify the following high-
level requirements that will serve as guidelines for our contributions throughout this
thesis:

1. We need the ability to manage and operate the massive amounts of IoT devices,
which includes provisioning these devices in order to deploy and execute application
logic on the devices.

2. We need a model that demands that IoT applications are designed and developed
as clearly separated components that can be independently deployed.

3. We need the ability to describe and deploy dynamic IoT application topologies on
multiple computing resources including resource-constrained IoT devices.

4. We need the ability to generically monitor deployed and running IoT applications,
which are distributed among various computing resources and possibly do not follow
traditional data processing models.

5. Finally, we need the ability to analyze running IoT applications and utilized com-
puting resources based on available monitoring data in order to optimize the overall
infrastructure deployments.

21

CHAPTER 4
Provisioning large-scale IoT

Deployments

In this chapter, we present an approach that enables elastic provisioning of application
components on resource-constrained and heterogeneous edge devices in large-scale IoT
deployments. Our approach supports push-based as well as pull-based deployments. In
addition, to improve scalability and reduce generated network traffic between cloud and
edge infrastructure, we present a distributed provisioning approach that is able to operate
within the deployment infrastructure close to the actual edge devices. We show that our
solution is able to elastically provision large numbers of devices using a testbed based on
a real-world industry scenario.

4.1 Overview

Traditional approaches for developing and designing IoT applications, such as AWS IoT1

and Bluemix IoT Solutions2, are based on rigid layered architectures [2]. The bottom
layer, consisting of deployed IoT devices and their communication facilities, is managed
using a middleware layer that exposes the underlying hardware in a unified manner for
consumption by a top-level application layer, which executes relevant business logic and
visualizes processed sensor data [73]. Such a layered architecture implies that business
logic is only executed in the application layer, and IoT devices are assumed to be deployed
with appropriate software and readily available [28]. However, in practice this is not the
case. Currently, configuration and provisioning of IoT devices must largely be performed
manually, making it difficult to quickly react to changes in application or infrastructure
requirements. Moreover, we see the emergence of IoT devices (e.g., Intel IoT gateway3,

1http://aws.amazon.com/iot/
2https://www.ibm.com/cloud-computing/bluemix/solutions/iot/
3https://www-ssl.intel.com/content/www/us/en/embedded/solutions/iot-gateway/overview.html

23

http://aws.amazon.com/iot/
https://www.ibm.com/cloud-computing/bluemix/solutions/iot/
https://www-ssl.intel.com/content/www/us/en/embedded/solutions/iot-gateway/overview.html

SmartThings Hub4, and Raspberry Pi5) that offer functionality beyond basic connected
sensors and provide constrained execution environments with limited processing, storage,
and memory resources to execute device firmware. These currently unused execution
environments can be incorporated in IoT systems to offload parts of the business logic
onto devices. In the context of our work, we refer to these devices as IoT gateways.

In large-scale IoT systems, such as in the smart city domain, leveraging the processing
capabilities of gateways is especially promising, as their currently untapped processing
capabilities can be used to improve dependability, resilience, and performance of IoT
applications by moving parts of the business logic towards the edge of the infrastructure.
Incorporating edge devices as first-class execution environments in the design of IoT
applications allows them to dynamically adapt to inevitable changes, such as new require-
ments or adjustments in regulations, by modifying their component deployment topology
and edge processing logic. System integrators can avoid infrastructure silos and vendor
lock-in by implementing custom business logic to be executed on gateways, and even
purchase and sell such application components in IoT application markets [127]. However,
the heterogeneity of currently available IoT gateways poses challenges for application
delivery due to significant differences in device capabilities (e.g., available storage and
processing resources), as well as deployed and deployable software components. Further-
more, the large number of devices in typical IoT systems calls for a scalable and elastic
provisioning solution that is specifically tailored to the resource-constrained nature of
IoT devices.

In this chapter, we present LEONORE, an infrastructure and toolset for provisioning
application components on edge devices in large-scale IoT deployments. To accommo-
date the resource constraints of IoT gateways, installable application packages are fully
prepared on the provisioning server and specifically catered to the device platform to be
provisioned. Our solution allows for both, push- and pull-based provisioning of devices.
Pull-based provisioning, a common approach in contemporary configuration management
systems, allows devices to independently schedule provisioning runs at off-peak times,
whereas push-based provisioning allows for greater control over the deployed application
landscape by immediately initiating critical software updates or security fixes. Further-
more, our framework provides a distributed provisioning approach that allows deploying
framework components within the deployment infrastructure to reduce network overhead.
We illustrate the feasibility of our solution using a testbed based on a real-world IoT
deployment from one of our industry partners. We show that LEONORE is able to
elastically provision large numbers of IoT gateways in reasonable time. By deploying
application packages with significantly different sizes, we furthermore show that our dis-
tributed provisioning mechanism can successfully scale with the size of IoT deployments
and can substantially reduce required network bandwidth between edge devices and the
central provisioning component.

The remainder of this chapter is structured as follows: In Section 4.2 we motivate our
work and outline the specific requirements to be tackled. In Section 4.3 we introduce the

4http://www.smartthings.com/
5https://www.raspberrypi.org/

24

http://www.smartthings.com/
https://www.raspberrypi.org/

LEONORE infrastructure and toolset to address the identified requirements in deploying
large-scale IoT systems, and present our distributed provisioning approach in Section 4.4.
We provide detailed evaluations in Section 4.5, followed by a conclusion in Section 4.6.

4.2 Requirements

One of the most demanding aspects in the smart city domain is the ability to connect
and manage millions of heterogeneous devices, which are emerging from the IoT. The
extremely fast-paced evolution within the IoT and the changing requirements in the
smart city domain itself make this not only a matter of handling large-scale deployments,
but more importantly about supporting the ability to manage this change. A specifically
demanding area facing these specific challenges is large-scale Building Management and
Operations (BMO). BMO providers not only need to be able to manage and stage large
numbers of new devices, they also need to be able to react on rapidly changing require-
ments to their existing infrastructure. However, current solutions are mostly manual
and only deal with fragments of a BMO providers’s infrastructure, which leads to the
incapability of dealing with the vast amount of devices and changing requirements in an
efficient, reliable, and cost-effective way. BMOs dealing with large-scale IoT systems need
to be able to handle two distinct stages. The first is the initial deployment and staging of
devices, the second is the management of updates of varying frequency and priorities. To
illustrate this, we consider the case of a BMO that manages several hundreds of buildings
with a broad variety of tenants in a large city. These buildings are equipped with a huge
amount of heterogeneous IoT devices including simple sensors to detect smoke and heat,
elevator and door controls, as well as complex cooling and heating systems. To reliably
operate this infrastructure, the BMO relies on physical gateways [143], which provide
constrained execution environments with limited processing, storage, and memory re-
sources to execute the device firmware and simple routines. These gateways are usually
installed once in a specific location in a building and then connected and integrated into
an infrastructure solution to enable the basic bundling and management of a wide variety
of connected devices. The current lack of standardization in this novel field combined
with the current market situation leads to a significant heterogeneity in terms of software
environments when it comes to these gateways. Initially, the gateways need to be staged
with the necessary capabilities to ensure their basic functionality. They need to support
the connected sensors, must run the latest firmware and have to be integrated into a
specific deployment structure. This is followed by long term evolution requirements like
changing deployments, shifting capabilities, as well as updating the software environment
or firmware. A special case of updates are security updates and hot fixes that need to
be deployed quickly to ensure that the infrastructure stays operational. Delays in these
updates can expose severe security risks, which make them time critical. The increasing
number of connected devices leads to an increased vulnerability to hacks and exploits,
and in the IoT domain, where these devices are connected to the real world, this poses a
major threat.

We therefore identify the following requirements in the context of this scenario:

25

• A provisioning framework must consider that participating gateways are resource-
constrained in terms of their processing, memory, and storage capabilities.

• Scenarios dealing with large-scale deployments comprising thousands of gateways
with a wide variety of different execution environments must be supported.

• Requirements of deployed applications change over time, which makes updates
necessary. These updates can either be non-time-critical or time-critical.

• In order to sustain operations, updates need to be efficient and fast, and therefore
have to be performed at runtime.

4.3 The LEONORE Framework

LEONORE

Package Management
IoT Gateway
Management

Package Repository

D
ependency M

anagem
ent Provisioning Handler

A
rtifact R

epository

Repository API

IoT Gateway Repository

D
evice A

P
I

IoT Gateway HandlerPackage Builder

R
epository A

P
I

IoT Gateway

P
rovisioning C

onnectivity

Provisioning Agent

Profiler

Package Container

Package

Package

B
alancer

User API

Figure 4.1: LEONORE – Overview

In order to address the previously defined requirements, we present LEONORE, an
infrastructure to provision application components on gateways in large-scale IoT deploy-
ments. The overall architecture of our approach is depicted in Figure 4.1 and consists of the
following components: (i) Application Packages, (ii) IoT gateways, and (iii) LEONORE,
the provisioning framework. In the following, we discuss these components in more detail.

4.3.1 Application Packages

Usually an application in the IoT domain consists of different application components
and supporting files (e.g., libraries and binaries), which we refer to as artifacts. To
enable automatic provisioning of these artifacts, LEONORE builds gateway-specific
application packages, which are a compound of various artifacts and have the following
structure. First, each package has an id, which uniquely identifies the package. Second,
each package contains a binary folder, to store required artifacts. Furthermore, it also
contains the resolved application dependencies to avoid expensive dependency resolution

26

on the gateway. Finally, in the control folder all instructions for installing, uninstalling,
starting and stopping this package are included. Additionally, a path file defines the
installation paths and the order of installing/uninstalling artifacts. With this approach
the heavy lifting is done by the framework, and gateways only have to unpack the package
and execute the provided installation instructions, which usually just copy artifacts in
place without any additional processing.

4.3.2 IoT Gateway

To efficiently provision edge devices, we first need a general and generic representation of
such devices. We analyzed the capabilities of several gateways that are commonly applied
by our industry partners in the domain of Building Management Systems. Our findings
show that in general such gateways have limited hardware components and use some
rudimentary, tailored operating system (e.g., a BusyBox6 user land on a stripped down
Linux distribution). Installing or updating software components is a tedious manual
task, since there are no supporting packaging or updating tools in place, as known
from full-featured operating system distributions7. Furthermore, due to limited resources
in terms of disk space, adding new capabilities often requires the removal of already
installed components. Taking all these limitations into account, we derived the final
representation of a gateway for our approach as depicted on the right-hand side in
Figure 4.1. The IoT gateway has the following components: (i) a container, hosting
application packages, (ii) a profiler, monitoring the current status of the gateway, (iii) an
agent, communicating with the provisioning framework, and (iv) a connectivity layer,
supporting different communication protocols and provisioning strategies.

Profiler

As mentioned above, gateways are usually resource-constrained, which means that they
only provide limited disk space, memory and processing power. Therefore, keeping track of
these resources is of utmost importance. In order to do that the profiler uses pre-defined
interfaces to constantly monitor the underlying system (e.g., static information like
ID, MAC-address, and instruction set, or dynamic information like disk- and memory-
consumption). The profiler sends the collected information either periodically or on
request to the provisioning framework. Based on this heartbeat information the provi-
sioning framework can detect failures (e.g., gateway has a malfunction), which allows
notifying the operator. Once the framework receives the heartbeat again, the gateway is
considered back and running.

Application Package and Container

All packages that are not pre-installed on the IoT gateway have to be provisioned by
the framework at runtime. Therefore, the IoT gateway uses a runtime container to store

6http://www.busybox.net
7e.g., apt (https://packages.qa.debian.org/a/apt.html) or rpm (http://www.rpm.org/)

27

http://www.busybox.net
https://packages.qa.debian.org/a/apt.html
http://www.rpm.org/

and run application packages. By using a separate container we ensure that installing or
removing packages does not interfere with the underlying system, and avoids expensive
reboots or configuration procedures.

Provisioning Agent

An essential part of the overall provisioning framework is the provisioning agent. The
pre-installed agent runs on each IoT gateway and manages application packages that
are locally hosted and stored. The management tasks of the agent comprise installing,
uninstalling, starting, and stopping packages. Furthermore, the agent is responsible for
handling requests from the framework and triggers the respective actions on the IoT
gateways (e.g., gather latest information via the profiler or trigger the provisioning of an
application package).

Connectivity Layer

Since gateways usually use different software communication protocols in large real world
deployments (e.g., oBIX8 or CoAP9), our approach provides a pluggable connectivity
layer. This layer can either reuse the deployed software communication protocols or
extend services provided by the underlying operating system. Additionally, this layer
provides extensible strategies to provision the gateway. In the current implementation, we
provide two strategies: (i) a pull-based approach where the provisioning agent queries the
framework for provisioning tasks, and (ii) a push-based approach where the framework
pushes new updates to the gateway and the agent triggers the local provisioning.

4.3.3 The LEONORE Provisioning Framework

The enabling framework to provision edge devices in large-scale deployments is depicted
on the left-hand side in Figure 4.1. LEONORE is a cloud-based framework and the overall
design follows the microservice architecture [87]. This approach enables building scalable,
flexible, and evolvable applications. Especially the flexible management and scaling of
components is important for LEONORE when dealing with large-scale deployments.
In the following, we introduce the main components of LEONORE and discuss the
balancer-based scaling approach.

Repositories

To manage all relevant information for LEONORE, the framework relies on a number of
repositories:

Artifact repository Usually, an application consists of multiple artifacts that are
linked together to fulfill specific requirements. To handle these artifacts and make them

8http://www.obix.org
9http://coap.technology

28

http://www.obix.org
http://coap.technology

reusable, a repository is used. The repository manages artifacts by storing source code, pre-
built binaries, dependencies, possible configurations, and further necessary information
that is required for the application building process. Furthermore, the repository provides
a mechanism to store different versions of an artifact.

IoT gateway repository This repository stores relevant gateway specific informa-
tion that is needed for creating the deployable application package. This information
includes: hardware configuration (e.g., disk space, memory, processor), software (e.g.,
kernel version, installed components/tools), as well as supported provisioning strategies
and communication protocols. Additionally, for each IoT gateway the repository stores
the provisioned application packages, which is important in case a different version of
an installed package needs to be provisioned, since this might require the removal of an
already installed version.

Package repository Application packages specifically built for a set of IoT gateways
are stored in the package repository. This approach guarantees that packages are only
built once, and all compatible gateways are provisioned with the same package. Further-
more, by storing the packages in a repository it is easier to scale the framework, since
no data is stored in memory and therefore components can be easily replicated. After
IoT gateways are successfully provisioned, the package is removed after a configurable
amount of time to avoid storing unnecessary data.

Package Management

To provision application packages with LEONORE, users have to add artifacts via
the package management component. This component is responsible for retrieving all
necessary information (e.g., name and version), required binaries, available source files,
configurations, policies, and dependencies on other artifacts, from the user. After the user
has provided this information along with the artifacts, the package management stores
them in the respective repository. The structure of the repository follows the layout of
conventional software package management systems (e.g., Maven10).

Dependency Management

Since many applications depend on libraries or other applications, LEONORE utilizes the
following mechanism to resolve these application dependencies. The data model for the
dependency management consists of artifacts, releases, and dependencies between these
releases. Each artifact has a set of releases, and each release has a set of dependencies
to other artifacts. Thus, the releases and dependencies create a well-structured directed
graph where releases are nodes and dependencies are directed edges. This model allows us
to reuse well-known graph algorithms (i.e., depth-first search) to find all dependencies for a
specific release. Therefore, according to the desired artifact, the dependency management

10http://maven.apache.org

29

http://maven.apache.org

finds a list of suitable artifacts and provides a plan that can be used to build the actual
application package. The plan includes a dependency tree and all needed artifacts. The
dependencies are represented as a directed graph, with nodes representing artifacts like
applications, libraries, operating system tools, and hardware components, whereas edges
represent dependencies between nodes. As an example, let us consider a Java application,
where the application code is packaged as a jar file. In order to execute this application,
it has a dependency on the JVM 1.8 for ARM runtime.

Package Builder

To create the actual application package that can be provisioned, the package builder is
used. In order to build an application package, the builder performs the following steps:
(i) retrieve gateway-specific information from the IoT gateway management, (ii) gather a
list of suitable plans using the dependency management, (iii) build an application package
based on the plan, (iv) notify the provisioning handler to trigger the actual provisioning if
the build was successful, (v) try next plan in list if the build failed, (vi) store application
package in package repository.

IoT Gateway Management and IoT Gateway Handler

In order to deal with the bootstrapping problem, i.e., to know which IoT gateways are
available for provisioning, LEONORE follows the following approach. When an IoT gate-
way starts for the first time, the local provisioning agent registers the gateway with the
framework by providing its unique identifier (e.g., derived from name, ID and mac-address)
and the gathered profile data. Based on this information the IoT gateway management
creates an entry in the IoT gateway repository and stores the provided information. The
registration process is finalized by negotiating the supported provisioning strategy and
communication protocol. This is possible, since each IoT gateway is pre-configured and
provides some already installed communication protocols and provisioning strategies.
Next, a suitable IoT gateway handler is assigned to this gateway. The handler is responsi-
ble for handling any further communication with the gateways, by providing the required
communication protocols and provisioning strategies. IoT gateways that use the same
protocols and strategies are grouped together and managed by a designated IoT gateway
handler. This assures more flexibility and avoids mediating between protocols. Once the
registration process is successful, the IoT gateway can be provisioned via the framework.

Provisioning Handler

To provision application packages, the provisioning handler first chooses a suitable provi-
sioning strategy according to the information provided by the IoT gateway management.
Then the handler checks if the respective package is already present in the package
repository. If it is available it will be used, if not the handler triggers the building of
gateway-specific application packages by invoking the package builder. Then, the pro-
visioning handler executes the provisioning strategy. This means that the IoT gateway

30

can either query the framework for application packages or the handler delegates the
provisioning request to the respective IoT gateway handler, which pushes the update to
the gateway and triggers the provisioning.

Balancer

LEONORE

LEONORE node 1

B
alancer

D
ependency M

anagem
ent

User API

R
epository A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

IoT Gateway
Handler

Package
Builder

D
evice A

P
I

Deployment 1

IoT Gateway
1_1

IoT Gateway
1_n

Repository API

Deployment 2

IoT Gateway
2_1

IoT Gateway
2_2

IoT Gateway
2_3

IoT Gateway
2_4

IoT Gateway
2_5

IoT Gateway
2_n

LEONORE
node 2

Deployment n

IoT Gateway
n_1

IoT Gateway
n_n

LEONORE
node n

Figure 4.2: LEONORE – Balancer

Since LEONORE needs to provision large-scale deployments of IoT gateways, scal-
ability is essential. Therefore, we provide several strategies to deal with the immense
workload. First, the framework’s design follows the microservice architecture principle.
Thus, optimizing single components is relatively easy by moving them from one host to a
more powerful host. Additionally, it is possible to scale components by replicating them
and therefore distributing the workload across multiple computing resources. Following
this approach, components of LEONORE are classified in scalable and not scalable. Com-
ponents that should be scaleable are grouped together in so-called LEONORE nodes.
These nodes comprise all components that are required to handle and provision IoT
gateways. The classification in scalable and not scalable is flexible and can be adapted
depending on the requirements. Now that LEONORE provides the ability to replicate
components via the notion of nodes, we further need a component that is responsible for
creating and destroying these nodes, as well as distributing incoming requests to them.
To this end, we introduce a balancer. In general, a balancer aims to optimize resource
usage, to minimize response time and to maximize throughput. Figure 4.2 depicts how
LEONORE scales up with a growing number of deployments by using the balancer. In
Figure 4.2 we see that the balancer receives incoming requests from IoT gateways de-
ployed in different areas. Based on a pluggable strategy the balancer gathers a suitable
node from the pool of available LEONORE nodes and assigns the gateway to this node.
The node is then responsible for handling any further interaction with the respective IoT

31

gateway. LEONORE nodes are deployed using a N +1 strategy with one active node and
one hot standby initially. As load increases above the capacity of one node, the framework
will immediately start to use the standby node for handling device provisioning requests,
and furthermore start another LEONORE node to again maintain a hot standby node.
Currently, LEONORE scales nodes based on the number of gateways to be provisioned.
In the future, we will provide additional strategies, such as a location-aware strategy that
aims at deploying nodes close to affected IoT gateways to reduce network overhead.

4.3.4 Provisioning of Application Packages

Whenever an artifact is requested for a certain deployment, LEONORE performs the
following steps: (1) check if the requested artifact is available; (2) resolve the given
deployment to retrieve the set of IoT gateways that need to provisioned; (3) find the
responsible LEONORE nodes, group the gateways according to their node assignment
and delegate the provisioning task to the node; (4) on each node: analyze if the requested
artifact is compatible with every IoT gateway, and group gateways that require the same
application package (e.g., equal hardware or installed packages); (5) on each node: for
each group of IoT gateways resolve dependencies and create application package; (6) on
each node: execute required provisioning strategy for each IoT gateway; (7) on each node:
wait until IoT gateways successfully provisioned the package to complete the provisioning
task; (8) check if all nodes have completed their provisioning task to finalize the overall
provisioning.

4.4 LEONORE Optimization
After presenting the overall approach and the realization in the previous section, we
now want to discuss certain limitations of our approach and propose an optimization
addressing these shortcomings. In the approach presented so far, we assumed that the
communication between the cloud and edge infrastructure is always available, reliable,
and cheap. However, real world deployments use wireless communication links like 3G or
GPRS that are not only slow and unreliable [117], but also expensive as they are usually
charged based on transferred data. Additionally, the current approach puts the server-side
framework under heavy load, which we already partly addressed by introducing a scalable
LEONORE node concept. Nevertheless, by scaling LEONORE across several nodes and
therefore provisioning more resources in the cloud, operating expenses increase along
with the additional overhead of managing the provisioning and releasing of these nodes.
In order to tackle these limitations, we apply the core notion of offloading business logic
to the infrastructure edge to LEONORE itself, moving parts of the provisioning logic to
suitable gateways in the field.

4.4.1 Server-side Extensions

To allow for the new concept of LEONORE local nodes, we extend LEONORE by adding
several new components, which we describe in the following and are depicted on the

32

LEONORE

LEONORE node

B
alancer

D
ependency

M
anagem

ent

User API

S
ervice A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

IoT Gateway
Handler

Package
Builder

D
evice A

P
I

Deployment 1

IoT Gateway
1_1

IoT Gateway
1_n

Repository API

Deployment 2

IoT Gateway
2_1

IoT Gateway
2_2

IoT Gateway
2_n

LEONORE local node

Local
Provisioner

Local
Repository

Bootstrapper

Local Gateway
Manager

M
onitoring

Local Node Repository

Figure 4.3: LEONORE – Local Provisioner

left-hand side in Figure 4.3.

Monitoring

We introduce a central (i.e., not replicated) monitoring component that collects the fol-
lowing information of the overall framework: (i) The number of provisioned packages.
(ii) The consumed bandwidth based on the number of provisioned packages and incoming
pulling requests. (iii) The overall time that is needed for provisioning the edge infrastruc-
ture. (iv) Information about the provisioned gateways, e.g., used disk space, memory and
processing power. (v) For each deployed LEONORE node, relevant metrics of the node
(e.g., average response time, uptime, and load average). Based on this monitoring data,
collected by LEONORE, it is possible to decide that a LEONORE local node needs to
be provisioned and where in the edge infrastructure it is feasible to do so.

Service API

Since in the current version LEONORE does not automatically decide when and where
to provision a LEONORE local node, we created a service API that allows operators to
retrieve the collected data from the monitoring component. Additionally, operators query
for gateways that are suitable for hosting a LEONORE local node. Finally, the service
API allows operators to trigger the provisioning and releasing of LEONORE local nodes
in the edge infrastructure.

Local Node Repository

To keep track of provisioned LEONORE local nodes, we added a separate repository. For
each LEONORE local node deployment, we store in this repository the ID of the node
and the gateway in the edge infrastructure that is provisioned with the respective node.
The combination of node ID, gateway ID, and gateway IP uniquely identifies the node

33

deployment. Furthermore, the repository stores the current status of a LEONORE local
node using the monitoring component.

4.4.2 LEONORE Local Node

In essence, the LEONORE local node provides the same capabilities as the server-side
LEONORE node, but is specifically catered to be more lightweight in terms of memory
consumption and CPU usage. This approach allows to execute LEONORE local nodes
on gateways residing in the edge infrastructure, which only provide a fraction of the
processing power of cloud resources. The architecture of the LEONORE local node is
depicted on the right-hand side in Figure 4.3. In the following, we outline the basic
components of a LEONORE local node.

Local Gateway Handler

Like the gateway handler on the server-side LEONORE node, this component manages
a local cluster of gateways. In order to know which gateways need to be handled, how
to communicate with them, and what kind of provisioning strategy needs to be used,
LEONORE provides this information when provisioning a LEONORE local node. Com-
pared to the server-side manager, this approach is not as flexible, but since the local
gateway handler is specifically built for this local cluster of gateways, we keep the over-
all footprint of the node small by avoiding resource expensive protocol mediation and
bootstrapping of gateways.

Local Repository

In order to save bandwidth, the application package that needs to provisioned is not
transferred to each gateway, but only sent to the LEONORE local node, which then
takes care of provisioning the respective gateways. The node stores the package in a
local cache repository using available RAM and/or disk resources if available. This allows
for fast read and write access, while explicitly considering the underlying resources of
the gateway. After successful provisioning, the cache is cleared to save memory on the
gateway.

Local Provisioner

In contrast to the provisioner on the server-side LEONORE node, the local provisioner is
more lightweight, since it does not have to deal with the process of building application
packages, but only uses the already transferred application package to provision the
gateways. Furthermore, the local provisioner provides an optimized local provisioning
strategy, which solely supports the push mechanism, since it consumes less resources and
puts the node under less load compared to polling in short intervals.

34

Bootstrapper

Once a LEONORE local node gets provisioned, the bootstrapper component of the local
node takes care of the following two tasks. First, it registers the respective local node at
LEONORE, which guarantees that the framework is aware of all deployed local nodes.
Second, once the registration was successful and the framework accepted the registration
request, the bootstrapper gathers health and status information about the local node.
This information is then periodically published at a configurable interval, which is then
collected by LEONORE.

4.4.3 LEONORE Local Node Deployment

In order to deploy a LEONORE local node in the edge infrastructure, the operator uses
the previously described LEONORE service API to retrieve a list of suitable gateways
that are capable to run a local node. Next, the operator chooses how to distribute the
local nodes across the edge infrastructure. Since the distribution of nodes can depend on
various factors, such as available connectivity or logical location, LEONORE provides a
pluggable distribution mechanism that can be easily extended. Following our microservice
architecture, this can be done by adding an additional microservice to the framework that
specifically implements a new distribution approach. In the current implementation, we
form clusters of gateways based on physical proximity (e.g., all gateways that are residing
on the same floor). Based on these clusters, the distribution mechanism elects a suitable
gateway to host the LEONORE local node. Next, after selecting the gateways that will
host the local nodes, LEONORE provisions them using the same approach we use for
ordinary artifacts. This means that the local node artifacts, which are already residing
in the artifact repository, get bundled to an application package and then transferred
to the gateway. On the gateway the application package is installed and started by the
provisioning agent. Finally, after the startup of the local node the bootstrapper registers
the local node at LEONORE. After registration, the LEONORE local node is ready for
serving provisioning requests.

4.4.4 Application Provisioning with LEONORE Local Nodes

As described in Section 4.3.4, when an artifact is requested for a specific deployment,
LEONORE checks if the artifact is available, finds the responsible LEONORE node
according to the retrieved set of gateways and delegates the provisioning to the respec-
tive server-side node. On the server side, the gateways are grouped based on available
capabilities and application packages are created. Additionally, each server-side node now
clusters gateways based on their physical proximity. For each cluster, the server-side node
queries the local node repository for an available LEONORE local node. If no local node
is present, the server-side node follows the original approach described in Section 4.3.4
and executes the required provisioning strategy for each gateway. However, if a local
node is available, it transfers the application package and the directive to provision the

35

cluster of gateways to this local node. The local node then takes care of provisioning
these gateways by executing the optimized push-based approach.

4.5 Evaluation

To evaluate our provisioning framework we created a test setup in the cloud using CoreOS
to virtualize devices as Docker containers. IoT gateways in our experiments use two types
of provisioning strategies – a pull and a push based approach.

When an IoT gateway uses the pull approach, the gateway’s agent polls the provision-
ing framework for new tasks in a configurable interval (e.g., every second). The framework
only provides new provisioning tasks for the IoT gateway, which collects and executes
these tasks. With short polling intervals, this approach generates increased load on the
framework, consumes more bandwidth, and uses more resources on the IoT gateways, but
is more fault-tolerant in case of connectivity problems due to inherently frequent retries.
For the push-based approach, the IoT gateway’s agent only registers the gateway once
at the framework and then remains idle until the framework pushes an update. When
the agent gets pushed by the framework, it collects the provisioning task, executes it and
returns to the idle state. In general, the push-based approach generates less load on both
the IoT gateway and framework, but is more vulnerable to connectivity problems and
operators need to take care to not inadvertently disrupt gateway operations by placing
additional load on it.

To simulate real-world provisioning requests, we use the following two application
packages. The first package uses the Sedona Virtual Machine11 (SVM). SVM is written
in ANSI C and is highly portable by design. It allows to execute applications written
in the Sedona programming language and is optimized to run on platforms with less
than 100KB of memory. For our experiments we developed a small sample application
and used SVM Version 1.2.28. The final application package created by LEONORE has
approximately 120KB – including the application code (.sab, .sax, .scode and Kits-file)
and the required SVM binary.

As second package we use Java 8 for ARM12 (JVM). In general, using Java on an
embedded device is a challenging task, since the JVM binary is quite big and often does
not fit due to limited disk space. However, for our experiments we created a compact13

Java package specifically for our gateway. Additionally, we developed a small sample
application that pushes temperature readings to a web server. In total, the JVM applica-
tion package created by LEONORE has approximately 12MB – including the application
code (compiled .class files), JVM binary, and libraries.

In the remainder of this section we give an overview of the used cloud setup, present
four scenarios, and analyze the gathered results.

11http://www.sedonadev.org
12http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
13http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/jrecreate.htm

36

http://www.sedonadev.org
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/jrecreate.htm

4.5.1 Setup

To see how LEONORE deals with large-scale deployments, we created an IoT testbed
(Figure 4.4) in our private OpenStack14 cloud. In order to simulate large-scale deploy-
ments, we first created a snapshot of a real-world gateway that is used by our industry
partner. Based on this snapshot, we created an image that can be run in Docker15. The
running image (Docker container) is then used to virtualize and mimic the physical
gateway in our cloud.

CoreOS-Host

CoreOS-Host

CoreOS-Host

CoreOS-Host

CoreOS-Host

CoreOS-Host

CoreOS-Host

CoreOS-Host

Ubuntu-Host

Balancer

Ubuntu-Host

LEONORE
node 1

Ubuntu-Host

LEONORE
node 2

Virtualized gateway (Docker container)

IoT Testbed

LEONORE

Figure 4.4: Evaluation – Setup

Since for our evaluation we want to use several thousand virtualized gateways, we
employed CoreOS16 clusters. In general, CoreOS is a light-weight Linux distribution
designed for security, consistency, and reliability. Instead of installing packages via a
package management system like apt, CoreOS uses Docker to manage services at a
higher level of abstraction. The service code and all dependencies are packaged within
a container that can be run on one or many CoreOS machines. Containers provide
benefits similar to full-blown virtual machines, but focus on applications instead of entire
virtualized hosts. Since containers use the Linux kernel of the host, they have very little
performance overhead, reducing the amount of required compute resources compared

14http://www.openstack.org
15https://www.docker.com
16https://coreos.com

37

http://www.openstack.org
https://www.docker.com
https://coreos.com

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Figure 4.5: Provisioning Time – Pull Strategy

to VMs. CoreOS also provides fleet17, a distributed init system that allows to treat a
CoreOS cluster as if it is a single shared init system. We used fleet’s notion of service
units to dynamically generate according fleet unit files and use fleet for the automated
deployment of virtualized gateways.

For our experiments we used the following setup: a CoreOS cluster of 8-16 virtual
machines (depending on the scenario), where each VM is based on CoreOS 647.0.0
and uses the m1.medium flavor (3750MB RAM, 2 VCPUs and 40GB Disk space). Our
gateway-specific framework components are pre-installed in the containers.

The LEONORE framework is initially distributed over 2 VMs using Ubuntu 14.04.
The first VM hosts the balancer and uses the m1.medium flavor (3750MB RAM, 2 VCPUs
and 40GB Disk space). In order to represent a LEONORE node we created a reusable
snapshot of a VM hosting all necessary LEONORE framework components and reposito-
ries. For the initial deployment of LEONORE two instances of this snapshot are started
at the beginning of the experiment. However, only of of them is initially used by the
framework, whereas the other acts as standby node. During the experiments LEONORE,
more precisely the balancer, spins up this additional standby node to distribute the load
created by the gateways. The VMs hosting the LEONORE nodes use the m2.medium
flavor (5760MB Ram, 3 VCPUs and 40GB Disk space).

In the following scenarios we measured the overall execution time needed for provi-
sioning an increasing number of devices. The provisioning time includes analyzing desired
gateways, building gateway-specific application packages, transferring the packages to
the gateways, installing the packages on the gateway, and executing them.

4.5.2 Scenario 1: 100 - 1000 IoT Gateways

For the first experiments we picked a scenario with 1000 virtual gateways. The scale of
this scenario corresponds to a medium building management system, containing several
big buildings (each with more than 10 floors). The 1000 virtual gateways are distributed

17https://github.com/coreos/fleet

38

https://github.com/coreos/fleet

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Figure 4.6: Provisioning Time – Push Strategy

among a CoreOS cluster consisting of 8 machines, where each machine hosts 125 contain-
ers. To demonstrate the scalability of our framework we show how our approach behaves
with increasing load (number of gateways). For this scenario the balancer uses a scaling
strategy that spins up another standby node when reaching 500 IoT gateways.

Figure 4.5 shows the overall execution time of the provisioning process for different
deployments using the pull-based (gateways poll the framework every second) approach.
In Figure 4.5a we show the execution time for provisioning the SVM application package.
We see that the execution time increases almost linear until reaching 300 IoT gateways and
then shows a sharper increase up to 500. When reaching 500 gateways, the balancer spins
up another standby node and evenly schedules requests to the two active nodes. Therefore,
provisioning time slightly decreases and at approximately 600 becomes constant. When
reaching 900 IoT gateways, the provisioning time starts to rise again, which means that at
this point both LEONORE nodes are fully loaded. In order to investigate possible outliers
during the evaluation, we created a scatter plot, which is also depicted in Figure 4.5a.
Since the SVM application is quite small and the polling interval of one second has
a strong impact on the overall execution time, we executed each experiment 30 times.
In the scatter plot we notice that at 600 IoT gateways we have some executions that
finished more slowly, which is caused by the high network load and small polling interval.
In general, the deviation of provisioning times is small. This shows that provisioning
using the polling strategy is stable and provides reliable results.

Figure 4.5b shows the execution time when provisioning the JVM application package.
We clearly see that due to the increased size of the package the provisioning takes
noticeably longer than for the SVM package. When the deployment reaches 500 IoT
gateways, the balancer kicks in, which leads to a slight increase. In general, we notice
that the provisioning of the JVM package scales linearly and produces almost no outliers,
as one can see in the scatter plot in Figure 4.5b. Since this application package is quite
big and therefore the provisioning time also increases significantly, the overhead of the
polling approach is not noticeable.

Figure 4.6 shows the overall execution time of the provisioning process for different
deployments using the push-based (framework pushes provisioning tasks to IoT gateways)

39

approach. In Figure 4.6a we see the overall execution time for provisioning the SVM
application package. We notice a sharp increase up to 500 IoT gateways, which is due
to the framework pushing requests to all gateways at once and therefore leads to a
high load on both the IoT gateways and the framework. Once the balancer spins up
another standby node, the execution time is almost constant, because the load is evenly
distributed. When the deployment size reaches 900 IoT gateways, the execution time
starts to rise again, which indicates that at this scale both nodes are fully loaded. The
corresponding scatter plot is also depicted in Figure 4.6a, which reveals that there is only
a very small deviation among the data points.

Figure 4.6b depicts the provisioning time when using the JVM application package.
Taking the results of the polling approach into account, we notice that the initial execution
times are identical. However, at 300 IoT gateways we see that the initial overhead of the
pushing approach is compensated and therefore the execution time decreases a little bit.
From 400 to 500 IoT gateways, the node reaches maximal load. After the deployment
size reaches 500, the balancer schedules the load evenly on two LEONORE nodes. The
corresponding scatter plot, depicted in Figure 4.6b, shows that the deviation of data
points is very small and the execution time increases linearly.

After comparing both approaches, we see that our framework scales almost linearly
and that for smaller application packages the pull-based approach is faster. For bigger
packages both approaches put the framework under heavy load, but produced similar
results.

4.5.3 Scenario 2: 500 - 4000 IoT Gateways

For the second experiment we used a scenario with 4000 virtual gateways, which corre-
sponds to a large building management system containing dozens of big buildings (each
with more than 10 floors). The 4000 virtual gateways are distributed among two CoreOS
clusters, each consisting of 8 machines, where each machine hosts 250 containers. With
this scenario we investigate how our framework scales when dealing with a large-scale
deployment by using a scaling strategy that spins up another standby node when reaching
2500 IoT gateways.

Figure 4.7 shows the overall execution time of the provisioning process for different
numbers of gateways using the push-based approach. In Figure 4.7a we notice that due
to the deployment scale the overall execution time for provisioning the SVM application
package got slower compared to the first scenario. This is expected since for this scenario
we doubled the amount of CoreOS hosts and deployed twice as many containers on
each CoreOS machine. This increase, in both the hosts and containers, generates a lot
of traffic for the underlying network infrastructure of our cloud, which causes slower
response times and therefore the overall provisioning takes longer. Furthermore, for this
scenario we configured the balancer to handle 2500 IoT gateways per LEONORE node.
We clearly see that up to 2500 IoT gateways, the execution time increases almost linearly.
At 2500 the balancer schedules the requests evenly to two nodes, which causes a constant
execution time. When reaching 3000 deployments, the execution time rises again, but once
more starts to flatten at 4000. When looking at the scatter plot depicted in Figure 4.7a

40

��

������

������

������

������

������

������

������

������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

��

�������

�������

�������

�������

�������

�������

�������

�������

�������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Figure 4.7: Provisioning Time – Push Strategy, Large Deployment

we see that at the beginning of the experiments the deviation among data points is
very small and gets bigger with increasing number of IoT gateways. Figure 4.7b depicts
the provisioning time when using the JVM application package. Compared to the first
scenario, we also notice that the overall execution time got slower. However, now we see
that the execution time increases linearly throughout the complete experiment, which
provides stable provisioning results. This fact is also supported by the scatter plot that
shows only small deviations among the results. Taking both experiments into account,
we clearly see that our framework deals well with this rather large scenario and provides
almost linear scale.

Distributed Provisioning using LEONORE Local Nodes. In order to evaluate the
LEONORE local node optimization, we reused the setup discussed in Section 4.5.1. How-
ever, for this evaluation we spawn additional IoT gateways for hosting the LEONORE
local nodes. For the first scenario, where we evaluate the provisioning time by using up
to 1000 virtual gateways, we start 8 additional gateways. These 8 additional gateways,
are distributed across the IoT testbed, so that on each CoreOS-Host one of these ad-
ditional gateways is running. For the second scenario, where we provision up to 4000
virtual gateways, we use 16 additional gateways (i.e., one on each CoreOS Host). After
distributing these additional gateways, we then provisioned them to run the LEONORE
local node. Once these gateways got provisioned, their sole purpose is to host the local
nodes and they are not changed throughout the evaluation. We decided to pre-provision
the local nodes to conduct experiments that follow the same provisioning process as used
in the evaluation above. Additionally, we argue that the provisioning and distribution of
LEONORE local nodes will only happen sporadically and therefore this additional time
should not contribute to the overall provisioning time.

4.5.4 Scenario 3: 100 - 1000 IoT Gateways

For the first experiments we picked a scenario with 1000 virtual gateways, which cor-
responds to a medium building management system. The 1000 virtual gateways are
distributed among a CoreOS cluster consisting of 8 machines, where each machine hosts

41

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Figure 4.8: Provisioning Time – LEONORE local node

125 containers and an additional container hosting the LEONORE local node. To demon-
strate the scalability of our framework we show how our approach behaves with increasing
load (number of gateways).

Figure 4.8 shows the overall execution times of the provisioning process for different
deployments by using the push-based approach (framework pushes provisioning tasks
to IoT gateways), with LEONORE local nodes in place. In Figure 4.8a we see the
overall execution time for provisioning the SVM application package. Compared to
the basic provisioning approach (Figure 4.6a), we notice an initial steeper increase of
the provisioning time for the LEONORE local node approach. This initial overhead is
expected, since the local nodes deployed on the gateway are not as powerful as the server-
side nodes and therefore need considerably longer for serving the gateways. However,
after 500 the initial overhead is compensated and the local node provisioning provides
faster results. We see that the provisioning time for the local node stays stable after
500 gateways and results in better overall provisioning times, compared to the original
approach. This fact can also be seen in the included scatter plot. The overall improvement
can be explained by the fact that the overall load on the framework is more evenly
distributed among the local nodes and therefore provides faster provisioning times. We
see that the provisioning time improves on average by 10% using the SVM package with
the LEONORE local node approach.

Figure 4.8b depicts the provisioning time when using the JVM application package.
We notice that initially the execution times of both the original (Figure 4.6b) and local
node provisioning approach are identical. However, after reaching 200 gateways we see
that the optimized approach starts to outperform the server-based provisioning. The
improvement becomes more significant after reaching 500 gateways, since from that scale
onwards the provisioning using LEONORE local nodes provides a constant and good
execution time, compared to the ever increasing server-side provisioning. This effect
is expected, since each local provisioning node only has to handle a fraction of the
total gateway deployment. Additionally, considering the fact that the JVM package is
quite big, the local node provisioning approach generates significantly less cloud to edge
communication, since the application package gets only sent once to each local node

42

��

������

������

������

������

������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

��

������

�������

�������

�������

�������

�������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Figure 4.9: Provisioning Time – Large Deployment, LEONORE local node

and further provisioning happens only within the edge infrastructure. These facts lead
to an average improvement of 17% when provisioning the JVM application package.
Furthermore, in general the local node approach creates more stable results, which can
be seen in the scatter plot depicted in Figure 4.8b.

4.5.5 Scenario 4: 500 - 4000 IoT Gateways

For the second experiment we used a scenario with 4000 virtual gateways, which corre-
sponds to a large building management system containing dozens of big buildings (each
with more than 10 floors). The 4000 virtual gateways are distributed among two CoreOS
clusters, each consisting of 8 machines, where each machine hosts 250 containers and an
additional container hosting the LEONORE local node. With this scenario we want to
see how our framework scales when dealing with a large-scale deployment.

Figure 4.9 shows the overall execution times of the local node provisioning process
for different numbers of deployments by using the push-based approach and the SVM
respectively the JVM application package. Once again we compare the provisioning
times with (Figure 4.9) and without (Figure 4.7) local nodes in place. In Figure 4.9a we
notice that the execution time increases almost linearly when using the SVM application
package. However, due to the scale of the scenario we see that the server-side nodes need
to handle a lot of load, compared to the distributed local node setup, which explains
why the local node setup provides better provisioning times from the beginning. When
reaching 2000 IoT gateways, the execution time using the local node provisioning stays
constant and does not increase anymore. Here, the LEONORE local node approach
generates only a fraction of the load on the server-side framework, compared to the
original approach, which causes the drastic improvement in execution time. On average,
the distributed work model and reduced bandwidth consumption of LEONORE local
nodes, improves the provisioning time by 49%. In Figure 4.9b we notice that the local
node provisioning approach for the JVM package also provides significantly better results
than the server side approach. Since the JVM package is quite big, the distributed work
model performs even better and therefore improves the overall provisioning time on

43

average by 64%. Furthermore, by looking at the included scatter plots in both figures we
see that the optimized provisioning approach provides stable results, since the deviation
among data points is very small. We clearly see that even though our framework already
dealt well with this rather large scenario, by introducing LEONORE local nodes we were
able to further improve the overall provisioning time.

4.5.6 Final Remarks

After finishing our experiments and evaluating the results, we see that the introduction
of LEONORE local nodes leads to a significant improvement in terms of provisioning
time. Additionally, next to the measurement of the provisioning time, we also monitored
the amount of data that gets transferred from the cloud to the edge infrastructure during
the provisioning of gateway deployments. Our findings show that by using local nodes
deployed in the edge, which are managing a cluster of gateways, we reduce the bandwidth
usage drastically, since by using local nodes we avoid sending the provisioning package
to each gateway, but only send this package once to a local node managing this cluster.
Even by taking into account that the LEONORE local nodes need to be provisioned
initially, does not diminish the savings. In order to illustrate the bandwidth savings, we
will use some numbers from the evaluation scenario above. Let us consider the scenario
where we need to provision 1000 gateways with the SVM application package, which
has a size of 120KB. With the original provisioning approach, two server-side nodes of
LEONORE would transfer the package to each gateway, resulting in 120MB of data that
gets sent from the cloud to the edge for each provisioning request. Compared to that,
by using LEONORE local nodes we cluster the gateway deployment to 8 clusters and
therefore deploy 8 LEONORE local nodes. The local node application package has a
size of 14MB and therefore the transferred data sums up to 112MB. Additionally, when
provisioning the 1000 gateways we now transfer the SVM application package only to
these 8 local nodes and therefore produce in total 112.96MB. For a the relatively small
SVM application package, we already save 6% for the initial provisioning cycle. After that,
since the LEONORE local nodes are already deployed, we save 99% of the bandwidth
for every additional provisioning request.

4.6 Summary

In this chapter we presented LEONORE, a novel infrastructure and toolset to elasti-
cally provision application packages on resource-constrained, heterogeneous edge devices
in large-scale IoT deployments. LEONORE enables push-based as well as pull-based
deployments supporting a vast array of different IoT topology and infrastructure require-
ments. By introducing the concept of LEONORE local nodes we further enabled efficient
distributed deployments in these constrained environments in order to further improve
scalability and reduce generated network traffic between cloud and edge infrastructure.
For evaluation purposes we utilized a large scale testbed based on a real-world indus-
try scenario. Our evaluation clearly demonstrated that LEONORE is able to elastically

44

provision large numbers of devices in an efficient manner. We further showed that our
local node extension significantly improved provisioning time while drastically reducing
bandwidth consumption, a factor that is crucial in such constrained environments.

45

CHAPTER 5
Deploying elastic IoT

Applications

In this chapter, we present an approach for the dynamic generation of optimized deploy-
ment topologies for IoT applications that are tailored to the currently available physical
infrastructure. Based on a declarative, constraint-based model of the desired application
deployment, our approach enables flexible provisioning of application components on edge
devices deployed in the field. Using our approach, applications can furthermore evolve
their deployment topologies at runtime in order to react on environmental changes, such
as changing request loads. Our approach supports different IoT application topologies and
we show that our solution elastically provisions application deployment topologies using
a cloud-based testbed.

5.1 Overview

IoT applications are expected to manage and integrate an ever-increasing number of het-
erogeneous devices to sense and manipulate their environment. Increasingly, such devices
do not only serve as simple sensors or actors, but also provide constrained execution
environments with limited processing, memory, and storage capabilities. In the context
of our work, we refer to such devices as IoT gateways. By exploiting this accrued execu-
tion capabilities offered by IoT gateways, applications can offload parts of their business
logic to the edge of the infrastructure to reduce communication overhead and increase
application robustness [129]. This explicit consideration of edge devices in IoT appli-
cation design is especially important for applications deployed on cloud computing [8]
infrastructure. The cloud provides access to virtually unlimited resources that can be
programmatically provisioned with a pay-as-you-go pricing model, enabling applications
to elastically adjust their deployment topology to match their current resource usage and
according cost to the actual request load.

47

In addition to the traditional design considerations for cloud applications, IoT cloud
applications must be designed to cope with issues arising from geographic distribution of
edge devices, network latency and outages, as well as regulatory requirements. We argue
that edge devices must be treated as first-class citizens when designing IoT cloud applica-
tions and the traditional notion of cloud resource elasticity [35] needs to be extended to
include such heterogeneous IoT gateways deployed at the infrastructure edge, enabling
interaction with the physical world. To allow for the flexible provisioning of applications
whose deployment topology changes over time due to components being offloaded to IoT
gateways, applications need to be composed of clearly separated components that can
be independently deployed. The microservices architecture [87] recently emerged as a
pragmatic implementation of the service-oriented architecture paradigm and provides
a natural fit for creating such IoT cloud applications. We argue that future large-scale
IoT systems will use this architectural style to cope with their inherent complexities and
allow for seamless adaptation of their deployment topologies. Uptake of the microservice
architecture will furthermore allow for the creation of IoT application markets (e.g., [127])
for practitioners to purchase and sell domain-specific application components.

IoT gateways can be considered an extension of the available cloud infrastructure,
but their constrained execution environments and the fact that they are deployed at
customer premises to integrate and connect to local sensors and actors requires special
consideration when provisioning components on IoT gateways. By carefully deciding when
to deploy certain components on gateways or cloud infrastructure, IoT cloud applications
can effectively manage the inherent cost-benefit trade-off of using edge infrastructure,
leveraging cheap communication at the infrastructure edge while minimizing expensive
(and possibly slow or unreliable) communication to the cloud, while also considering
processing, memory, and storage capabilities of available IoT gateways. It is important
to note that changes in application deployment topologies will not only be necessary
whenever a new application needs to be deployed, but can also be caused by environmental
changes, such as changing request patterns, changes in the physical edge infrastructure
(e.g., adding/removing sensors or IoT gateways), evolutionary changes in application
business logic throughout its lifecycle, or evolving non-functional requirements.

In this chapter, we present DIANE, a framework for dynamically generating opti-
mized deployment topologies for IoT cloud applications tailored to the available physical
infrastructure. Using a declarative, constraint-based model of the desired application
deployment, our approach enables flexible provisioning of application components on
both, cloud infrastructure, as well as deployed IoT gateways. DIANE is furthermore con-
tinuously monitoring the available edge infrastructure and can autonomously optimize
application deployment topologies in reaction to changes in the application environment,
such as significant changes in request load, network partitions, or device failures. In
addition, we introduce a two-fold optimization mechanism that enables the evolution of
application deployment topologies at runtime in reaction to changes in their execution
environment.

The remainder of this chapter is structured as follows: In Section 5.2 we outline
specific requirements that need to be addressed. In Section 5.3 we introduce the DI-

48

ANE framework to dynamically create application deployment topologies for large-scale
IoT cloud systems, and present our approach for optimizing deployments at runtime in
Section 5.4. We provide detailed evaluations in Section 5.5, followed by a conclusion in
Section 5.6.

5.2 Requirements
The emergence of the IoT in combination with the advent and rapid adoption of the smart
city paradigm give rise to a domain of edge devices that are pervasively deployed in large
numbers around the globe. As outlined previously, the convergence of cloud computing
and IoT paradigms, and especially the evolution of IoT gateways to include constrained
execution environments, allows for systems with ever changing deployment topologies
due to various evolving factors. Specifically, vital aspects of the smart city domain, like
BMSs that need to deal with billions of devices, or Traffic Control Systems (TCS) that
depend on optimal resource utilization in order to handle large amounts of sensor data,
need to be able to optimize their deployment topologies both during deployment and at
runtime in order to enable optimal resource utilization.

To allow for dynamic generation of optimal deployment topologies for such applica-
tions, a solution must meet the following requirements:

1. It needs to enable optimal utilization of edge devices with

2. the ability to dynamically move application logic to these devices.

3. Furthermore, it shall allow for deployment topologies to evolve during runtime and

4. needs to respect non-functional requirements that arise in this context.

49

5.3 The DIANE Framework

LEONORE

Deployment

IoT Gateway 1_1 IoT Gateway 1_2 IoT Gateway 1_n

LEONORE node 1

Balancer

S
ervice A

P
I

R
epository A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

Device API

DIANE
User API

Provisioner

Deployment Generator

Constraint Handler

Artifact Management

Registry API

Dependency
Management

Deployment Registry

D
eploym

ent H
andler

Figure 5.1: DIANE – Overview

In order to address the previously identified requirements, we present DIANE, a
framework for the dynamic generation of deployment topologies for IoT applications and
application components, and the respective provisioning of these deployment topologies
on edge devices in large-scale IoT deployments. The overall architecture of our approach
is depicted in Figure 5.1 and consists of the following top-level components: (i) DIANE,
and (ii) LEONORE. In the following, we describe these components in more detail and
discuss the design and implementation of IoT applications.

5.3.1 IoT Application Design and Implementation

To dynamically generate deployment topologies for IoT applications, the design and
implementation of such applications have to follow the microservices architecture ap-
proach [87], which enables developers to build flexible applications whose components can
be independently evolved and managed. Therefore, each component of an application has
to be self-contained, able to run separately, and facilitate loosely coupled communication
for interacting with other components. In addition to this application design approach,
we are using MADCAT [54] for describing the overall application and its components.
MADCAT allows for the creation of applications by addressing the complete application
lifecycle, from architectural design to concrete deployment topologies provisioned and
executed on actual infrastructure. For our approach, we focus on Technical Units (TUs)
and Deployment Units (DUs) to describe applications and their components.

Technical Units are used to describe application components by considering
abstract architectural concerns and concrete deployment artifacts to capture technology
decisions that depend on the actual implementation. To manage multiple possible TUs
to realize a specific application component, MADCAT employs decision trees that assist
developers of such applications in creating TUs. An example of a TU can be seen in

50

Listing 5.1. We are using the JSON-LD1 format to store and transfer MADCAT units.

Listing 5.1: Technical Unit
{

"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "TechnicalUnit",
"name": "BMS/Unit",
"artifact-uri": "...",
"language": "java",
"build": {

"assembly": {"file": "unit.jar"},
"steps": [{"step": 1, "tool": "maven", "cmd": "mvn clean install"}]

},
"execute": [{"step": 1, "tool": "java", "cmd": "java -jar @build.assembly.

file"}],
"configuration": [{"key": "broker.url", "value": "@MGT.broker.url"}],
"dependencies": [{"name": "MGT", "technicalUnit": {"name": "BMS/Management"

}}],
"constraints": {"type": "...","framework": "Spring Boot","runtime": "JRE 1.

7","memory": "..."}
}

A TU starts with a context to specify the structure of the information and a
specific type. The name uniquely identifies the TU and should refer to the application
name and the specific component that is described by the TU. The artifact-uri
defines the repository that stores the application sources and artifacts. The language
field describes the used programming language and an optional version. In order to
create an executable, build specifies an assembly that describes the location within
a repository and the name of the executable. Furthermore, build defines steps that
need to be executed to create the executable. Next, execute defines the necessary steps
for running the executable. In addition to the execution steps, configuration stores a
possible runtime configuration (e.g., environment variables) that is needed for execution.
To allow configuration items to map to other application components, dependencies
reference TUs of other application components. Finally, the TU enables developers to
provide relevant constraints that help users of the application to decide on a suitable
deployment infrastructure.

For each TU an operations manager can create one or more Deployment Units
(DUs). In essence, a DU describes how an associated TU can be deployed on concrete
infrastructure. To create a specific DU the provider uses the information contained in
the TU and its knowledge about the owned infrastructure. Listing 5.2 shows an example
DU created for the TU above.

Listing 5.2: Deployment Unit
{

"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "DeploymentUnit",

1http://json-ld.org

51

http://json-ld.org

"name": "BMS/Unit",
"technicalUnits": [{"name": "BMS/Unit"}],
"constraints": [{

"hardware": [{"type": "...", "os": "...", "capabilities": [{"name": "
JRE", "version": "1.7"}], "memory": "..."}],

"software": [{"replication": [{"min": "all"}]}]
}],
"steps": [...]

}

Like a TU, a DU also has a context, type, and name. Next, technicalUnits
allow referencing TUs that are deployed using this specific DU. Based on the information
provided in the TU (e.g., constraints) the infrastructure provider defines constraints
for hardware and software that are used to decide on suitable infrastructure resources
for executing an application component. Finally, steps list the necessary deployment
steps.

By using TUs and corresponding DUs it is possible to completely describe an IoT
application. To finally provision an application deployment, DIANE uses TUs, DUs and
concrete infrastructure knowledge to generate Deployment Instances (DIs). DIs
represent concrete deployments on actual machines of the infrastructure, by considering
defined software and hardware constraints. An example of a DI using the DU and TU
from above can be seen in Listing 5.3.

Listing 5.3: Deployment Instance
{

"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "DeploymentInstance",
"name": "...",
"machine": {"id": "...", "ip": "..."},
"application": {"name": "BMS/Unit", "version": "1.0.0", "environment": [{"

key": "broker.url", "value": "failover:tcp://10.99.0.40:61616"}]}
}

Again, a DI has a context, type, and name. The machine field stores data
about the concrete machine that is provisioned with an application component. Run-
time information, needed for executing the application component, is represented by
the application attribute. It contains the name and the version of the application
component. Finally, runtime configurations required by the component are resolved by
the framework and represented in environment.

5.3.2 DIANE Framework

The framework that allows generating IoT application deployment topologies and deals
with the provisioning of these deployments on edge devices in large-scale IoT deployments
is depicted on the left hand side of Figure 5.1. DIANE is a scalable and flexible cloud-
based framework and its overall design follows the microservices architecture principle. In
the following, we introduce the main components of DIANE and discuss the integration
with LEONORE, which we introduced in Chapter 4, for provisioning edge devices. Finally,

52

we describe the concrete process of generating and provisioning application deployment
topologies.

To keep track of deployments and their relation to TUs and DUs, DIANE provides
a Deployment Registry. The registry stores units and deployments using a tree
structure that represents the relations among them. By managing TUs and corresponding
DUs, the framework can provide application deployment provisioning at a finer granularity.
This means that it is possible with DIANE to provision an application deployment
topology in one batch, but also provision each component separately.

In order to provision an IoT application deployment topology with DIANE, the
user of the framework has to invoke the User API by providing the following required
information: (i) TUs, (ii) corresponding DUs, and (iii) optional artifacts that are needed by
the deployment (e.g., executables) but cannot be resolved automatically by the framework,
such as private repositories that are not publicly accessible. Since the focus of our work
is on generating and provisioning DIs, a user of the framework is responsible for creating
the required MADCAT units and necessary application artifacts. The Deployment
Handler is responsible for handling user interaction and finally triggers the provisioning
of application deployments.

In addition to the discussed units, the framework also requires corresponding appli-
cation artifacts. Therefore, the Artifact Management component receives artifacts,
resolves all references, and creates an artifact package that is transferred to LEONORE.
Each created artifact package contains an executable, a version, and the commands to
start and stop the artifact.

To generate DIs, the Deployment Generator resolves the dependencies among
the provided TUs and DUs by using the Dependency Management. The management
component returns a tree structure that represents dependencies among units. In addition,
the generator handles possible deployment constraints that are specified in the DUs by
invoking the Constraint Handler. The invoked handler returns a list of infrastructure
resources that comply with the specified constraints. Before generating DIs, the generator
needs to resolve application runtime configurations (e.g., application properties) in the
TUs. This is done by delegating the configuration resolving process to the constraint
handler, which provides a temporary configuration. Finally, the generator creates the
actual DIs by mapping DUs to concrete machines and updating possible links in the
temporary configuration that correspond to infrastructure properties (e.g., IP address of
a machine).

Since units in our approach reference each other, the Dependency Management is
responsible for resolving these dependencies. For representing the dependencies among
the units the management component creates a tree structure. The process of dependency
resolution first creates for each TU a new root node. After creating the root nodes it
checks if a TU has a reference to another TU and if so creates a new leaf node linking
to the respective root node. Next, it checks the provided DUs and appends them to the
respective TU node as a leaf. In case a reference cannot be resolved based on the provided
units, it queries the Deployment Registry. The final product of this process is a tree
topology, where each root node represents a TU and the leaves are the corresponding

53

DUs or a reference to another TU.
To find suitable machines for the deployment of application components, DUs allow

defining deployment constraints. In our approach we distinguish hardware and software
constraints. Hardware constraints deal with actual infrastructure constraints (e.g., oper-
ating system or the installed capabilities of a machine). Whereas, software constraints
define requirements that correspond to the application component respectively its de-
ployment (e.g., should this component be replicated and if so on how many machines).
In order to provide a list of suitable machines the Constraint Handler retrieves a
list of all known machines and their corresponding metadata from LEONORE. Then,
based on the defined constraints in the DU, it filters out the ones that do not fit or are
not needed in case software constraints only demand for a certain number of machines.

For actually provisioning the final DIs the Provisioner component is used. The
component receives generated DIs and the respective topology of TUs, DUs, and their
dependencies. The provisioner then traverses the topology and for each TU and DU
combination, it deploys the corresponding DIs by invoking LEONORE, adds the DIs to
the respective DU as leaf node and updates the deployment registry.

5.3.3 Provisioning of IoT Application Deployment Topologies

The provisioning of IoT application deployment topologies is started when DIANE re-
ceives a request to deploy a specific IoT application or application component. The overall
process comprises the following steps: (1) In order to generate the deployment topology
of an application or application component with DIANE, the user provides an optional
list of artifacts and a mandatory list of MADCAT units (i.e., TUs and DUs). Next, the
deployment manager is responsible for handling deployment requests and forwarding
them to the artifact manager. (2) The artifact manager resolves artifacts according to
the provided information in the TUs by either loading them from a specified repository
or using the provided artifacts. (3) After resolving the artifacts, the artifact manager
invokes the service API to transfer the artifacts to LEONORE. (4) LEONORE receives
the artifacts to subsequently pack and store them in its internal repository. (5) For each
TU and DU the deployment handler does the following: (6) Forward the list of TUs and
DUs to the dependency management component to resolve dependencies and relations
among the units. (7) Resolve possible infrastructure constraints that are defined in the
DUs by using the constraint handler. (8) The constraint handler gathers all managed
machines and their corresponding context (e.g., IP, name, runtime) from LEONORE.
(9) According to specified constraints the handler returns a set of machines that are
suitable for deploying a specific DU. (10) Invoke the constraint handler again to gen-
erate runtime configurations that are specified in the TU, and generate DIs using the
gathered suitable machines and runtime configurations. (11) Finally, for each DI the
handler invokes the provisioner that stores the DI and corresponding DUs and TU in the
deployment registry, deploys the DI by invoking the service API of LEONORE, which
then takes care of provisioning the application deployment on the actual infrastructure.

54

5.4 DIANE Optimization

After presenting the overall approach and the respective realization in the previous sec-
tion, we now discuss an extension for optimizing the application deployment topology
at runtime. In the approach presented so far, we only consider the initial deployment of
application topologies and its respective components. However, since IoT applications
have to deal with varying loads during operation, we need a mechanism that allows
for adapting application topologies at runtime in order to provide the necessary perfor-
mance and flexibility. Furthermore, this would also enable applications to fully utilize
the available processing power of the edge infrastructure. To address these requirements,
we extend DIANE to add a two-fold optimization approach, and apply the introduced
notion of offloading business logic to the infrastructure edge to DIANE itself.

5.4.1 Elastic Application Deployment

To allow for the optimization of application topologies at runtime, we introduce the notion
of an Elastic Application Deployment. In contrast to our initial approach that
only deploys application components on a set of pre-defined edge devices, we now extend
the provisioning mechanism to allow operators to define a hot pool of devices. On theses
additional devices, application components are provisioned, but remain idle until they
get started. Therefore, this hot pool will be used for optimizing application components,
e.g., by scaling application components up or down depending on the application load.
In essence, the elastic application deployment consists of a set of devices that host
deployed and running application components, and an additional pool of devices that are
provisioned with redundant application components that are initially idle. To manage
this new form of deployment, we introduce DIANE Optimizers that get provisioned by
DIANE and are running on actual edge devices.

5.4.2 MADCAT Unit Extensions

In order to enable DIANE to start adapting the topology of a running application, we
need an approach that allows the acquisition of runtime information of this application.
This information should comprise both, details about the facilitated deployment on the
infrastructure (e.g., currently used number of edge devices), as well as application-specific
performance metrics like current request load. Based on this information, DIANE can
then decide on the best optimization strategy and how to apply the strategy appropriately.

Therefore, we extend our application description approach, which is based on the
MADCAT methodology. First, we introduce so called endpoint attributes in a DU.
An endpoint represents a URL where application-specific performance metrics can be
acquired. Since we want to provide an extensible approach, the defined endpoint can
either be provided by the application itself or by an external monitoring tool. Furthermore,
to support multiple performance metrics, an application can have a list of endpoints that
can be used by DIANE for gathering runtime information. To identify endpoints, each
provided endpoint has a unique name within a DU.

55

Next, based on monitoring information, we need a mechanism to define certain criteria
that allow for deciding if an application topology needs to be adapted. Consequently,
we extend the overall MADCAT methodology to introduce Optimization Units. An
Optimization Unit (OU) is used to describe two types of rules that can be used
for optimizing an application deployment. First, application-rules define criteria
for application-specific performance metrics. Second, infrastructure-rules define
criteria that are targeted towards the used deployment infrastructure. An example of an
OU can be seen in Listing 5.4.

Listing 5.4: Optimization Unit
{

"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "OptimizationUnit",
"name": "BMS",
"technicalUnits": [{"name": "BMS/Control"}],
"application-rules": [
{"name": "response", "endpoint": "@BMS/Control.endpoints.response", "

contract": "UNDER", "value": "3"}],
"infrastructure-rules": [
{"name": "cpu", "contract": "MIN"}],

"action-policies": [{"name": "ScalingPolicy"}]
}

Listing 5.4 describes an application rule that defines that the response time that can be
measured from the given endpoint should be under 3 seconds. Next, an infrastructure rule
is defined that demands that the application deployment running on the infrastructure
should keep the consumed processing power minimal. The difference between these two
types of rules is that the former requires monitoring the application itself by using
the defined endpoints, whereas the latter requires in-depth knowledge about the used
infrastructure resources.

Next, an OU provides an action-policies attribute that references either pre-
defined or custom-built action policies. These policies define a set of actions that have
to be used for optimizing the application in case any application-rules are violated.
For example, an action policy can define that in order to react to increased load, the
application deployment needs to be scaled up by using more available machines, or scale
down if performance metrics indicate that the current load can be managed with a smaller
deployment.

By using the described unit extensions, operators can now define how a deployed
application can be monitored and under which circumstances its deployment should be
optimized.

56

5.4.3 Server-side Extension

LEO
N
O
R
E

Deployment

IoT Gateway 1_5

IoT Gateway 1_n

IoT Gateway 1_4

DIANE
User API

O
ptim

ization R
egistry

D
eploym

ent
O

ptim
izer

Elastic Application Deployment

IoT Gateway 1_2 IoT Gateway 1_3

IoT App IoT App

IoT Gateway 1_1

DIANE OptimizerM
onitoring

DIANE Base
Components

R
egistry A

P
I

Figure 5.2: DIANE extended

To enable the optimization of deployed application topologies, we extend DIANE by
adding several new components, which are depicted in Figure 5.2. In the following, we
describe them in more detail.

We extend the User API to allow operators to upload OUs that define criteria for
triggering the optimization of an application’s deployment. Next, operators can use the
user API to define custom action policies for describing how an application can be opti-
mized. Since we demand that applications deployed with DIANE follow the microservice
architecture approach, optimizing the deployment of an application is relatively easy by
evolving the deployment topology. For example, a simple approach to deal with increased
load that demands more processing power, is to scale up the application deployment by
using additional resources. Uploaded OUs and defined action policies are stored in the
optimization registry.

We introduce a Monitoring component to collect runtime measurements from de-
ployed and running applications. Based on the details defined in an OU, the monitoring
component creates application-specific listeners for the given endpoints to acquire perfor-
mance measurements from the application in a configurable interval. The collected data
is then forwarded to the deployment optimizer, which takes care of further processing.

To optimize the deployment of an application based on defined rules, we introduce a
separate Deployment Optimizer component. The optimizer receives collected data
from the monitoring component and then analyzes the data based on the defined rules
and thresholds in the corresponding OU. When the optimizer detects that the application
no longer meets the defined criteria it provides the following two optimization modes:

1. Blackbox Mode: In blackbox mode, DIANE optimizes the application deployment
by treating the deployment infrastructure as black box, which means that the
deployment optimizer has no specific knowledge about the used edge devices and
their respective resources. In this mode, the deployment optimizer can only optimize
for application-rules.

57

2. Whitebox Mode: In whitebox mode, the deployment optimizer has full knowl-
edge of the used deployment infrastructure and can therefore also optimize for
infrastructure-rules.

In order to enable these optimization modes, we present the DIANE Optimizer, which
can be deployed in the edge infrastructure. The DIANE Optimizer monitors and controls
an elastic application deployment that allows for optimizing the deployment topology
of an application by either starting currently idle application components, or stopping
unnecessary components.

To allow DIANE to facilitate the DIANE Optimizer, the optimizer needs to be
associated with an application and then deployed in the edge infrastructure. This is done
using the following approach: (i) When an OU is uploaded by an operator via the service
API, DIANE extracts which application and respective components are affected. (ii) Next,
the respective DIs are analyzed to gather the used deployment in the infrastructure.
(iii) To form an elastic application deployment based on the defined action policies, the
deployment generator is used to generate a fresh set of DIs that is provisioned, but not
yet started to form a pool of idle components to allow for the evolution of the application
topology. (iv) Then, the constraint handler is used for finding a suitable machine for
running the DIANE Optimizer, and the provisioner is used for deploying the optimizer
on the selected machine. (v) Finally, once the optimizer registers itself with DIANE, it
is provided with the deployment topology of the application, as well as the provisioned
but not yet started DIs that can be used for optimizing the application deployment.

To keep track of uploaded OUs, corresponding action policies, and deployed DIANE
Optimizers, we add an Optimization Registry. In this repository, for each applica-
tion that is handled by DIANE, we store defined OUs and additional action polices. In
addition, for each DIANE Optimizer deployment, we store the ID of the optimizer as well
as the machine in the infrastructure that is hosting the optimizer. The combination of
optimizer ID, and machine IP and ID allows DIANE to uniquely identify the optimizer
deployment.

5.4.4 DIANE Optimizer

The DIANE Optimizer enables the optimization of an application topology by monitoring
the actual deployment infrastructure, which provides valuable insights on the infrastruc-
ture performance. The DIANE Optimizer is specifically catered to be lightweight in terms
of memory consumption and CPU usage, so that it can be executed on machines residing
in the edge infrastructure that only provide a fraction of the processing power of cloud
resources. The architecture of the DIANE Optimizer is depicted in Figure 5.3. In the
following, we outline the basic components of a DIANE Optimizer.

Once a DIANE Optimizer is deployed in the edge infrastructure, the Bootstrapper
component of the optimizer is responsible for registering the deployment with DIANE.
Based on this information, the server-side framework can keep track of deployed optimizers.
Furthermore, during the registration process the optimizer receives the list of machines
representing the current deployment of the application, as well as a hot pool of machines

58

DIANE Optimizer
Service API

Local OptimizerBootstrapper

Monitoring Topology Handler

Monitoring
Repository

Topology
Repository

Figure 5.3: DIANE Optimizer

where application components are already provisioned, but not yet started. These lists
are then forwarded to the topology handler for further processing.

To form an elastic application deployment the Topology Handler first extracts
the devices that represent the current application deployment based on the provided
information from the bootstrapper. This topology representation is then enriched with
the current hot pool of application components and then updated in the Topology
Repository. Based on this stored topology, the DIANE Optimizer knows which devices
are currently used by the application and is also able to optimize the overall application
topology by starting idle or stopping running components.

To gather valuable insights from the used deployment infrastructure, the DIANE
Optimizer uses a dedicated Monitoring component. According to the stored appli-
cation topology, the monitoring extracts the respective machines. In order to acquire
performance measurements from these machines, the DIANE Optimizer facilitates the
LEONORE profiler that is pre-installed on the machines to extract performance data
like used CPU and consumed memory. Therefore, whenever the application topology is
updated (e.g., new machines are added) the monitoring component contacts each ma-
chine of the deployment to register an endpoint where the machines, respectively their
LEONORE profilers, publish the profiled monitoring information in a configurable inter-
val. The published performance profiles of the machines are then grouped by machine
and stored for later analysis in the local Monitoring Repository. The repository
is implemented as a local cache using available RAM and/or disk resources if available,
which allows fast read and write access, while still considering the resource-constraint
nature of the underlying infrastructure. To save memory, the cache only keeps the most
recent profiles.

In the current version, a DIANE Optimizer does not automatically decide when to
optimize its corresponding elastic application topology. Therefore, it provides a Service
API that allows DIANE to trigger a deployment evolution. Whenever DIANE decides that

59

based on a defined application rule the application deployment has to be optimized, it finds
the responsible DIANE Optimizer and invokes the service API by providing infrastructure
rules and action policies that need to be respected. Next, the request is forwarded to the
local optimizer, which is then responsible for choosing suitable optimization actions and
executing them accordingly.

Once DIANE triggers an optimization by invoking the DIANE Optimizer, the Local
Optimizer performs the following steps in order to process the request: (i) Analyze
the given application policy to identify a set of possible deployments that need to be
updated for optimizing the application topology. (ii) If infrastructure rules are defined,
the set of possible deployments is filtered by using gathered monitoring information. For
example, if an application rule describes that the used CPU of the deployment has to be
kept minimal, the optimizer will use the performance profiles stored in the monitoring
repository to choose a small deployment that can deal with the load by only consuming
a fraction of the provided total resources. (iii) If no application rules are defined, the
set is reduced by picking deployments naïvely. (iv) After the set of deployments that
need to be updated is finalized, the application policy is executed. This means that the
application deployment topology is optimized by either starting idle or stopping running
application components. (v) Finally, the topology handler is notified to store the evolved
application deployment in the topology repository.

5.4.5 Optimizing an Elastic Application Deployment

The process of optimizing an elastic application deployment is initiated by an operator
that defines an OU and corresponding action policies. To describe the overall process
let us consider that we want to scale up an application deployment to a maximum of 20
machines (action policy) whenever the response time of the application is over a defined
threshold (application rule). Furthermore, during scale up the deployment should be kept
minimal in terms of used CPU (infrastructure rule). After describing these requirements,
the operator uploads the OU and the action policy to DIANE. Based on the input,
DIANE creates an elastic application deployment and deploys a DIANE Optimizer.
Next, the monitoring component starts collecting response time measurements from the
defined endpoints of the application. Once DIANE detects that the response time of the
application violates the defined threshold in the OU, it invokes the respective DIANE
Optimizer by providing the defined scale up action policy and infrastructure rule. Then,
the DIANE Optimizer decides that based on the provided input and gathered performance
profiles of the machines, it is sufficient to scale up the application deployment by only
using 2 additional devices and queues further scale up requests from DIANE until these
devices are fully utilized. In case no infrastructure rules are defined by the operator,
the overall approach follows the same steps as above, except that no infrastructure
information is used by the DIANE Optimizer and the deployment is scaled up by using
a naïve approach (e.g., 5 devices for each scale up request).

Using explicit infrastructure knowledge (whitebox mode) allows the DIANE Optimizer
to optimize the application deployment topology more efficiently compared to an approach
that only uses pre-defined or naïve adaptation steps (blackbox mode).

60

5.5 Evaluation

5.5.1 IoT Application Deployment and Execution

To evaluate our approach we implemented a demo IoT application based on a case study
conducted in our lab in cooperation with a business partner in the building management
domain. In this case study we identified the requirements and basic components of
commonly applied applications in this domain. Based on this knowledge we developed
an IoT application for managing and controlling air handling units in buildings, where
the design and implementation follows the microservices architecture approach. Next,
we created a test setup in the cloud using CoreOS2 to virtualize edge devices as Docker3

containers. We reuse LEONORE’s notion of IoT gateways as representation of edge
device in our experiments.

In the remainder of this section we give an overview of the developed demo application
and the created evaluation setup, present different evaluation scenarios, and analyze the
gathered results.

BMS Demo Application

Currently, IoT applications are designed and implemented as layered architectures [2].
This means that the bottom layer consists of deployed IoT devices, a middleware that
provides a unified view of the deployed IoT infrastructure, and an application layer that
executes business logic [73]. According to this layered approach, business logic only runs
in the application layer and the IoT infrastructure is provisioned with appropriate soft-
ware, sends data, and reacts on its environment [28]. However, in practice more and more
IoT devices provide constrained execution environments that can be used for offloading
parts of the business logic. To compare these two deployment approaches we develop an
application for a building management system that consists of the following components:
(1) An Air Handling Unit (unit) is deployed on an IoT device, reads data (e.g., tem-
perature) from a sensor, transmits the data to and reacts on control commands received
from the upper layer. (2) A Temperature Management (management) represents the
processing component of the application and gathers the status information of the units.
It receives high level directives from the upper layer and based on the processed unit
data and the received directives, forwards appropriate control commands to the unit.
(3) Finally, the Building Controller (control) is the top level component and de-
cides for each handled management component the directive it has to execute. In the
traditional deployment topology that follows the common IoT application deployment
model, the unit component is deployed on devices in the IoT infrastructure, and both
the processing and control components are executed on a platform in the cloud. We refer
to this deployment as traditional application topology. In contrast, in a contemporary
deployment topology, some of the processing logic is offloaded onto devices in the IoT
infrastructure, which we refer to as evolved application topology.

2https://coreos.com
3https://www.docker.com

61

https://coreos.com
https://www.docker.com

Setup

Ubuntu-Host
Balancer

Ubuntu-Host
LEONORE Node

Virtualized gateway (Docker container)

CoreOS-Host CoreOS-Host CoreOS-Host

CoreOS-Host CoreOS-Host

Ubuntu-Host
DIANE

BMS Platform

Ubuntu-Host

Controller

Management

IoT Testbed

LEONORE

DIANE

Figure 5.4: Evaluation – Setup

For the evaluation of our framework we create an IoT testbed in our private Open-
Stack4 cloud. We reuse a Docker image that was created for LEONORE to virtualize
and mimic a physical gateway in our cloud. To run several of these virtualized gateways,
we use CoreOS clusters and fleet5, a distributed init system, for handling these clusters.
Based on fleet’s service unit files, we dynamically generate according fleet unit files and
use them to automatically create, run, and stop virtualized gateways. Figure 5.4 depicts
the overall setup that we use for our experiments. As foundation of our setup, an IoT
Testbed consists of a CoreOS cluster of 5 virtual machines, where each VM is based on
CoreOS 607.0.0 and uses the m1.medium flavor (3750MB RAM, 2 VCPUs and 40GB Disk
space). The IoT gateway-specific framework components of LEONORE are pre-installed
in the containers. On top of the testbed, the LEONORE framework is distributed over
2 VMs using Ubuntu 14.04. The first VM hosts the balancer and uses the m1.medium
flavor, whereas the second VM uses the m2.medium flavor (5760MB Ram, 3 VCPUs
and 40GB Disk space) and is deployed with a LEONORE node. On top, DIANE is
hosted in one VM using Ubuntu 14.04 with the m1.medium flavor. Finally, the platform
components of the BMS demo application are deployed on a separate VM using Ubuntu
14.04 and the m1.small flavor (1920MB Ram, 1 VCPUs and 40GB Disk space).

4http://www.openstack.org
5https://github.com/coreos/fleet

62

http://www.openstack.org
https://github.com/coreos/fleet

��

������

������

������

������

������

������

��� ��� ��� ��� ���

�
��
�

�
��
�
�

����������������������

�����������������������
�������������������������

�������������������
���������������������

(a) Deployment Time

��

���

���

���

���

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
���
��
�
���
�

�
��
�

��������

�����������������
�������������

��������������������
����������������

(b) Device Utilization

��

����

�����

�����

�����

�����

��� ��� ��� ��� ���

�
�
�
�
�
��
��

�
��
�
�

����������������������

������������������������������
��������������������������

(c) Application Execution - Bandwidth

������

������

������

������

������

������

��� ��� ��� ��� ���

�
��
�

�
��
�
�

����������������������

�����������������������
�������������������������

�������������������
���������������������

(d) Application Execution - Time

Figure 5.5: Evaluation Results – IoT Application Deployment & Execution

In order to evaluate and compare the two discussed deployment topologies of the
application, the BMS platform initially comprises controller and management (tradi-
tional application topology), and is then reduced to only host the controller, since the
management component is deployed on the devices (evolved application topology). In
both scenarios the unit component is deployed and running on the devices in the IoT
infrastructure.

IoT Application Deployment

In the first experiment we measure the time that is needed for dynamically creating
application deployments for the two BMS IoT application deployment topologies and
provisioning of these deployments on IoT devices. In the second experiment we compare
the device resource utilization when executing the provisioned application deployments.

Deployment Time Figure 5.5a shows the overall time that is needed for creating and
provisioning of application deployments on an increasing number of devices. The time
measurement begins when DIANE is invoked and ends when DIANE reports the successful
deployment. To deal with possible outliers and provide more accurate information we
executed each measurement 10 times and calculated both the average and median time.
In Figure 5.5a we see that for the traditional application topology the framework provides

63

a stable and acceptable overall deployment time. In comparison, the deployment of the
evolved application topology takes in total almost twice as long, but also provides a stable
deployment time. Taking into account that the evolved application topology requires
deploying twice as many application components and corresponding artifacts, however, we
argue that this increase is reasonable, since the limiting factor is the actual provisioning
of devices as we create application packages that have more than doubled in size.

Gateway Resource Utilization Figure 5.5b depicts the CPU and memory utilization
of one device when provisioning and executing the two IoT application deployment
topologies. The figure shows that initially there is no application component running
on the device. After 15 seconds we initiate the deployment via our framework, which
provisions the application deployments and starts the execution. Then, the deployments
run for 30 seconds. Afterwards, the framework stops the execution. When provisioning
the traditional application topology, we clearly see that the CPU utilization has a short
high peak due to the startup of the deployment. However, after this high peak the overall
utilization of the device is low and leaves room for using this untapped processing power
to offload business logic components on the device. To illustrate the feasibility of this
claim, we also provision and execute the evolved application topology on the device. We
see that in comparison to the traditional application topology, the load on the device is
almost twice as high, but except for the high initial CPU load peak, the overall utilization
of the device is still acceptable and reasonable.

IoT Application Execution

In the second experiment we collect runtime information from the BMS application to
compare both deployment topologies. In order to do that, we deploy both topologies with
our framework on an increasing number of devices. However, now we measure bandwidth
consumption and execution time when invoking the application’s business logic. The
measurement begins by invoking the control component of the application to specify a
virtual set-point temperature on each device, where each unit component on the device
has the same initial temperature reading. To provide reliable results, we execute each
measurement 10 times and freshly provision the devices after each measurement with
DIANE. Depending on the BMS application deployment topology, the management
component is either executed in the platform (i.e., the cloud) or on each device.

Bandwidth Consumption Figure 5.5c shows the average bandwidth consumption
that results from invoking the business logic of the two application deployment topologies.
We see that the traditional application topology causes a significant amount of data
transmission between platform and IoT infrastructure. As a result the transmitted data
produces a high load on the network and consumes a lot of bandwidth. This behavior is
obvious, since the complete business logic is executed on the platform and devices are
only sending measurements and reacting to control messages. In contrast, the evolved
application topology produces less traffic and therefore consumes on average only 13% of

64

the bandwidth. This is due to the offloading of the processing (management) component
to each device, which therefore drastically reduces the transmitted data between platform
and IoT infrastructure.

Execution Time Figure 5.5d shows the time that is needed for executing the pre-
viously described business operation of the BMS application for the two application
deployment topologies. We see that for both topologies the application scales well and
provides reasonably fast results. However, we notice that the offloading of the processing
components on the devices reduces the execution time by 7%, since application com-
ponent interaction within a device is faster than the interaction between device and
platform.

After presenting and evaluating the gathered experiment results, we can deduce the
following: DIANE is capable of dealing with different application topologies and changes
in the IoT infrastructure. The framework scales well with increasing size of application
deployment topologies and does not add additional overhead to the overall time that
is needed for provisioning the IoT infrastructure. Note that for very large deployments
the use of multiple coordinated LEONORE nodes is required. Furthermore, depending
on the scenario, it is feasible to offload application components from a cloud platform
to devices in the IoT infrastructure. Examples of such scenarios are applications that
generate a significant amount of traffic between the platform and the IoT infrastructure
and therefore justify the additional deployment overhead.

5.5.2 Elastic Application Deployment

To evaluate our application deployment optimization mechanism we implemented a
smart city demo application and reused the test setup presented in Section 5.5.1. In
the remainder of this section we give an overview of the developed smart city demo
application, discuss the concrete evaluation setup, present different evaluation scenarios,
and analyze the gathered results.

Smart City Demo Application

For this experiments we use a demo application that implements the concept of Au-
tonomous Intersection Management6, which enables autonomous cars in a smart city
environment. In our scenario we want to handle large numbers of cars, which requires
smart city operators to optimize the deployment topology of such intelligent control
systems by using any kind of available processing power.

To analyze this approach, we develop a simple traffic control application that manages
incoming requests sent from autonomous cars. The incoming requests need to be processed
by the application to calculate if a car’s intended path is valid (e.g., safe to use). Since the
autonomous cars generate a huge load, the application allows scaling the computation
logic across infrastructure boundaries. Therefore, the application is separated into two

6http://www.cs.utexas.edu/~aim/

65

http://www.cs.utexas.edu/~aim/

components. A possibly replicated processing component that provides the calculation
logic. On top, a central platform component that receives requests by autonomous cars
and forwards them to the underlying processing components. Furthermore, to analyze
application performance, it provides endpoints to acquire metrics like request load and
response time.

Setup

In order to evaluate the introduced application deployment optimization using the DIANE
Optimizer, we reuse the setup presented in Section 5.5.1. However, for this evaluation,
we exchange the VM hosting the components of the BMS IoT application, with a new
VM using Ubuntu 14.04 and the m1.small flavor to host the platform component of the
smart city demo application. In order to evaluate and compare the different optimization
modes, the processing component of the smart city demo application is deployed and
executed on the devices in the IoT infrastructure.

IoT Application Topology Optimization

In the following experiments we use DIANE to optimize the deployment topology of the
smart city demo application by scaling it across the available IoT infrastructure. We create
an OU that defines the allowed threshold for the response time of the application and that
the used application deployment should keep the CPU usage across the infrastructure
to a minimum. Furthermore, we also define a policy for scaling up the deployment when
the response time is over the defined threshold, as well as a policy for scaling down the
application by stopping unused infrastructure devices. Additionally, for the experiments
we assume that an elastic application deployment was already formed by using a total
of 40 machines, plus one additional machine for hosting the DIANE Optimizer.

Next, for comparing the two different optimization modes (blackbox and whitebox) we
use different patterns for generating load on the application. In the first scenario, we use
a load pattern that simulates a stepwise increase and decrease in requests. In the second
scenario, we use a pyramid-like load pattern for sending requests to the application.
For the blackbox optimization mode, the deployment topology of the application is
scaled without using the provided infrastructure rule, whereas for the whitebox mode we
facilitate gathered knowledge about the infrastructure to provide an optimized scaling
approach according to the infrastructure rule.

Scenario 1: Step Load Pattern Figure 5.6 illustrates the evaluation results for the
first scenario. The x-axis shows the temporal course of the evaluation in seconds. In the
’requests per second’ section we see that we begin the evaluation by sending 4 concurrent
requests per second to the application and increase the load stepwise every 30 seconds to
see if DIANE is able to scale up the application. Finally, at 120 seconds we reduce the
load to 4 requests per second to see if DIANE is also able to scale down the application.
In the ’response time’ section we see the response time for each incoming request. The
’deployment’ section illustrates the number of facilitated edge devices by the deployment.

66

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

������������������

(a) Blackbox

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

������������������

(b) Whitebox

Figure 5.6: Evaluation Results – IoT Application Topology Optimization (Step Load
Pattern)

Finally, the ’total CPU’ section represents how much of the total available CPU is used
by the application deployment at the given time.

By comparing Figure 5.6a that represents the blackbox optimization mode, and
Figure 5.6b, which shows the result for using the whitebox optimization mode, we notice
that for the first interval of requests the response time of the application is almost constant
for both approaches. At 30 seconds, when the request load doubles we notice that in both
cases the response time rises. For both modes, at approximately 34 seconds DIANE starts

67

scaling up the application by invoking the DIANE Optimizer, since the response time
of the application violates the provided threshold. However, by looking at the results,
we notice several differences during the deployment optimization process. The blackbox
mode uses a naïve approach that scales up the deployment until the response time is
no longer violated. This, in combination with a lot of queued up requests, leads to the
fact that the blackbox mode uses a lot of infrastructure resources for a relatively long
time before they are released again. In comparison, in the whitebox mode the DIANE
Optimizer uses gathered monitoring information from the deployment infrastructure and
only scales up the application when the currently used resources are fully utilized. This
allows the application to handle the queued up requests with a smaller deployment in
shorter time. For the following two increases in requests per second at 60 and 90 seconds,
we see that the framework is also able to detect and analogously handle them. Finally, at
120 seconds, we see that the load drops, which is detected by the whitebox mode almost
immediately, due to the fact that DIANE Optimizer constantly receives information
about the used resources. The blackbox mode needs significantly more time to detect
the changed load by monitoring the application and therefore uses resources for a longer
period. After comparing both modes using the stepwise load pattern, we can conclude
that both approaches allow for optimizing the application deployment according to the
provided OU. However, by using gathered knowledge of the infrastructure deployment,
the whitebox mode is able to evolve the application topology by using less resources and
therefore reduces the total overall CPU utilization by approximately 15%. In addition,
we also notice that in total the whitebox mode produces approximately 25% less response
time violations compared to the blackbox approach.

Scenario 2: Pyramid Load Pattern Figure 5.7 illustrates the evaluation results for
the second scenario. We compare the blackbox optimization mode (Figure 5.7a) and the
whitebox approach (Figure 5.7b) using a pyramid-like load pattern. We notice that for
the first 20 seconds the response time of the application for both modes is stable. At 20
seconds the first pyramid load pattern starts increasing the load on the application. We
see that it takes a considerable amount of time until DIANE triggers the scale up of the
application deployment. Compared to the first scenario, we see that both optimization
modes are struggling with this type of load pattern and provide almost identical results.
However, by comparing both results, we notice that for the first pyramid-like increase
and drop in load, the blackbox mode performs better in terms of violated response times
compared to the whitebox approach. This can be explained by the fact that the extremely
fast load change does not allow the whitebox mode to utilize gathered infrastructure
information. In addition, by looking at the deployment size we see that the whitebox
mode uses a smaller deployment for a longer time, compared to the blackbox mode. For
the next load increase at 75 seconds we see that the blackbox mode uses one small
and one big scale up, in terms of deployment size, to compensate for the response time
violations, which leads to a high deployment utilization. In contrast, the whitebox mode
is able to use the infrastructure resources more efficiently by using more machines for
the first scale up, and an additional scale up for a shorter period of time. Therefore, for

68

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

�����

����� ������������������

(a) Blackbox

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

�����

����� ������������������

(b) Whitebox

Figure 5.7: Evaluation Results – IoT Application Topology Optimization (Pyramid Load
Pattern)

the second pyramid-like load change, the whitebox mode uses in total less resources, but
again generates more response time violations. After comparing both modes when using
the pyramid-like load pattern, we can conclude that on the one hand the whitebox mode
in total uses approximately 5% less resources in terms of utilized total CPU. However,
on the other hand the blackbox mode produces approximately 30% less response time
violations.

To summarize the results, we see that both proposed optimization approaches allow

69

for evolving the application deployment topology at runtime. However, by comparing the
results of both scenarios we see that choosing an optimal optimization approach depends
on various factors, such as the expected load on the application, and the tradeoff between
application performance violations (i.e., response time) and cost benefit by using less
infrastructure resources.

5.6 Summary
In order to sense and manipulate their environment, IoT applications are required to
integrate and manage a large number of heterogenous devices, which traditionally serve
as simple sensors and actuators. Recently, however, devices emerged that in addition to
basic sensing and actuating features, also provide constrained execution environments
with limited processing, memory, and storage capabilities. To exploit this untapped pro-
cessing power, applications can offload parts of their business logic onto edge devices.
This offloading of application components not only increases the robustness of the overall
application deployment, but also allows for cutting down costs by reducing expensive
cloud to edge communication overhead. The consideration of edge devices is especially
important for IoT applications that are deployed in the cloud, as the cloud allows applica-
tions to react to changing requirements by elastically adapting their overall deployment
topology. Therefore, in addition to the traditional design considerations for cloud appli-
cations, specific issues like the geographical distribution of edge devices and the resulting
network latencies need to be explicitly considered in the design of IoT cloud applications.
Furthermore, applications need to be designed as clearly separated components that can
be deployed independently. This application design approach enables the flexible pro-
visioning of applications whose deployment topology evolves by dynamically offloading
components to edge devices.

To support this, in this chapter we introduced DIANE, an approach that dynamically
generates optimized deployment topologies for IoT cloud applications, which are tailored
to the currently available physical infrastructure. DIANE uses a declarative, constraint-
based model of the desired application deployment to allow for flexible provisioning of
application components on both, cloud infrastructure, as well as edge devices deployed
in the IoT infrastructure. In addition, DIANE provides an optimization approach that
allows for evolving application deployment topologies at runtime to enable applications
to autonomously react to environmental changes (e.g., changing request patterns).

70

CHAPTER 6
Deploying IoT Applications with

TOSCA

In this chapter, we discuss a complementary deployment approach that employs TOSCA,
a standard for cloud service management, to systematically specify the components and
configurations of traditional IoT applications. We demonstrate that by using TOSCA,
application models can be reused and deployment processes can be automated in heteroge-
neous IoT system environments.

6.1 Overview

IoT solutions [80] are typically domain-specific, relying on heterogeneous hardware (e.g.
sensors, actuators and gateways), communication protocols and data models. To deal with
such complexity, a lot of industrial and academic efforts are put into developing gateway
frameworks that facilitate device integration and application development. However, such
efforts have also led to many proprietary application runtime environments [57, 143] with
non-standardized service management processes.

In our previous work, we have developed the IoT PaaS [67] architecture to improve the
efficiency and scalability of IoT service delivery. It allows IoT solutions to be delivered
on a PaaS cloud as virtual verticals, which are composite, configurable, and able to
share the underlying cloud platform services and computing resources with other IoT
solutions. Although the architecture allows service providers to efficiently deliver and
scale up IoT services, the service management tasks, such as application deployment,
driver installation and gateway configuration are still handled manually in a case-by-case
manner, due to the underlying heterogeneity of IoT infrastructures. The problem is that
the state-of-the-art IoT service frameworks, either gateway-based or cloud-based, lack
a systematic methodology to specify and maintain the intricate software and hardware
dependencies in IoT applications.

71

This chapter is motivated by the challenges we have experienced in deploying tra-
ditional IoT solutions at various scales and in multiple application domains1 (mostly
building automation and vehicle tracking). In order to improve the reusability of ser-
vice management processes and automate IoT application deployment in heterogeneous
environments, we propose to employ the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [14, 90] for IoT service management. TOSCA is a new
standard aiming at describing the topology of cloud applications by using a common set
of vocabulary and syntax. In this chapter, we will demonstrate the feasibility of using
TOSCA to specify a typical IoT application in building automation, the Air Handling
Unit (AHU). The common IoT components such as gateways and drivers will be modeled,
and the gateway-specific artifacts that are necessary for application deployment will also
be specified. Based on the case-driven modeling, we will discuss our early experience
gained from applying TOSCA for IoT applications. This work is in line with our ongoing
effort of enabling the convergence of IoT and cloud [69]. To the best of our knowledge,
this is also the first attempt of explicitly addressing the IoT application deployment
problem using a cloud-based approach.

The rest of the chapter is organized as follows: In Section 6.2 we provide a short
introduction on the preliminaries of this work, and start to model the TOSCA nodes and
relationships of a traditional IoT application. The gateway specific application artifacts
are specified in Section 6.3. Finally, we discuss the experiences of using TOSCA in
Section 6.4. The chapter concludes in Section 6.5.

6.2 Modeling traditional IoT Applications

In this section we provide some preliminaries, before modeling a traditional IoT appli-
cation in building automation systems to demonstrate the complexity of predominant
applications in IoT as well as the feasibility of facilitating TOSCA for the deployment
of these applications.

6.2.1 Preliminaries

IoT PaaS

IoT services are often delivered in physically isolated verticals (often referred to as
"silos"), in which hardware, middleware and application logics are tightly coupled to fulfill
domain or even project-specific requirements. IoT PaaS [67] is a novel IoT service delivery
platform that leverages the service delivery model of PaaS cloud. On this architecture,
we offer the possibility of providing end-to-end IoT solutions as virtual verticals on
cloud, opposed to the traditional delivery model of physically-isolated and tightly-coupled
vertical solutions. IoT PaaS is a generic, domain-independent architecture that relies
on domain mediators to integrate domain-specific control protocols and data models.
We have demonstrated the domain mediation mechanism with an oBIX (Open Building

1http://www.pacificcontrols.net/projects/ict-project.html

72

http://www.pacificcontrols.net/projects/ict-project.html

Information Exchange) [91] mediator for building automation applications. Our approach
further leverages this cloud platform with TOSCA to address the challenges in IoT service
delivery.

Gateways

To handle the multitude of field devices in IoT solutions, gateways [124, 143][122] are de-
signed to connect heterogeneous, resource-constraint devices. Gateways support various
device drivers and protocol stacks to communicate with devices, for example 6LoWPAN
(IPv6 over Lower power Wireless Personal Area Networks). Depending on their applica-
tions, they may also support domain-specific, device-oriented data exchange protocols
such as BACNet (Building Automation and Control Networks). Gateways can also pro-
vide service interfaces, such as the RESTful interfaces of oBIX and CoAP [51](Constrained
Application Protocol) to ease the integration of lower-level IoT infrastructures with en-
terprise applications. In brief, the basic function of gateways is to provide an abstraction
of IoT infrastructure by effectively translating device/network interfaces into software
interfaces. The process is generally known as device virtualization [41]. On top of this core
function, most modern gateways are also built with application runtime environments,
which are usually proprietary or non-standardized.

TOSCA

TOSCA is a new OASIS standard for improving portability of cloud applications in face
of growingly heterogeneous cloud application environments. In the following we briefly
describe the core concepts of TOSCA.

TOSCA specifies a meta-model for describing both the structure and management of
IT services. The structure of a service is defined by the Topology Template, which consists
of Node Templates and Relationship Templates. Together they represent a service by a
directed graph. In this graph, every component is represented by a Node Template that
instantiates a Node Type, which defines the properties and operations of a component.
To support reusability, Node Types are defined separately and just referenced in Node
Templates. Furthermore, in addition to the reference, usage constraints of components,
e.g. number of occurrences, can be specified. In the topology of a service, nodes are
connected by relations. Relationship Templates specify the relationship among nodes in
the Topology Template, where each Relationship Template refers to a separately defined
Relationship Type, which in turn defines the semantics and any properties that can
be used to represent a relationship, such as “dependOn” or “connectTo”. The actual
scripts, configuration files and application archives required by an application are called
Artifacts, which are explicitly specified in Artifact Types and Artifact Templates. Artifacts
are specific to each runtime environment and configuration of an application.

The management process of creating, deploying and terminating a service can be
defined by Plans. Plans are process models that can be implemented as complex workflows.
The specification of these process models relies on existing standards, such as BPMN or
BPEL, to automate management processes in different application environments. TOSCA

73

provides two ways of using plans—a container to use a reference of a process model (via
Plan Model Reference) and to include an actual model in the plan (via Plan Model).
The process model contains tasks that refer to operations of Interfaces of either Node
Templates, Relationship Templates or any other available interface. This guarantees that
a plan can directly manipulate nodes of the service topology or interact with external
systems.

The topology templates, plans and artifacts of an application are packaged in a
Cloud Service Archive (.csar file) and deployed in a TOSCA environment, which is able
to interpret the models and perform specified management operations.

It is worth noting that plans are not always required in using TOSCA. The TOSCA
environment is able to infer the correct topology and management procedure just by
interpreting the topology template. This is known as a “declarative” approach. Plans
realize an “imperative” approach that explicitly specifies how each management process
should be done. As the first attempt of employing TOSCA for IoT applications, this work
uses the declarative approach, i.e. only applying the concepts in Topology Template.

6.2.2 Application description

AHU

connectTo

oBIX Driver

Niagara
Gateway

Sedona
Gateway

JCAirFlow
Controller

JCAirTemperature
Controller

deployedOn

dependOn

installedOn

Figure 6.1: Air Handling Unit Usecase

The Air Handling Unit (AHU) is a common facility in modern buildings. Its basic
function is to condition and circulate air. In building automation solutions, sensors
and actuators are applied to AHUs in order to remotely monitor and control them.
Figure 6.1 illustrates a simplified deployment view of an AHU that is commonly found
in commercial solutions. Two core components produced by Johnson Controls (JC)—Air
Temperature Controller and Air Flow Rate Controller—are connected to output fresh
air at a temperature point set by an operator. Other than the control interface defined
by Johnson Controls, the AHU relies on the oBIX protocol for applications to access it.

74

Such AHU applications will be deployed in various gateway models due to the technical
requirements of other facilities (e.g., lighting) and legacy building automation systems.
We demonstrate the deployment with two gateway frameworks—Niagara and Sedona.

6.2.3 Modeling the nodes

Gateway
Base

Node Types Driver Controller Sensor

oBIX Driver AirFlow
Controller

AirTemperature
Controller

Niagara
Gateway

Sedona
Gateway

JCAirFlow
Controller

JCAirTemperature
Controller

Domain-specific
Node Types

Concrete
Node Types

Figure 6.2: Node Types

Modeling nodes is the first step in using TOSCA to model IoT applications. Figure 6.2
illustrates the hierarchical node model we developed for the AHU application.

Base Node Types

The Base Node Types are directly derived from a generic TOSCA root node type. This
puts them at the same level as other common cloud application nodes, including server,
database and so on. The nodes at this level present the most fundamental concepts in IoT
applications. Listing 6.1 presents the type definition of three basic node types, namely
Controller, Gateway and Driver, in pseudo-XML2. Sensor is not used in our application,
thus not listed.

The most important element of the node types is the Interface. Interfaces define the
operations that application providers can apply to the class of components. The opera-
tions presented in our example belong to a Lifecycle interface, which is able to instruct the
TOSCA environment to change the status of these nodes. The concrete implementations
of these node types need to provide corresponding interface implementations and define
required parameters. The properties of these three node types are listed in Listing 6.2.

2For emphasizing the core concepts and saving space, we do not use name spaces. When the embedded
structure of XML elements are too redundant, we also remove the end tags.

75

Listing 6.1: Base Node Types
<NodeType name="Controller">
<DerivedFrom typeRef="RootNodeType" />
<NodeTypeProperties element=
"ControllerProperties" />

<Interfaces>
<Interface name="lifecycle">

<Operation name="deploy" />
<Operation name="configure" />
<Operation name="start" />
<Operation name="stop" />
<Operation name="undeploy" />

...
</NodeType>

<NodeType name="Gateway">
<DerivedFrom typeRef="RootNodeType" />
<NodeTypeProperties element=
"GatewayProperties" />

<Interfaces>
<Interface name="lifecycle">

<Operation name="poweron" />
<Operation name="poweroff" />
<Operation name="reboot" />

...
</NodeType>

<NodeType name="Driver">
<DerivedFrom typeRef="RootNodeType" />
<NodeTypeProperties element=
"DriverProperties" />

<Interfaces>
<Interface name="lifecycle">
<Operation name="install" />
<Operation name="uninstall" />

...
</NodeType>

Domain-specific Node Types

The Domain-specific Node Types are related to IoT applications in a certain industrial
domain, which is building automation in our case. For example, oBIX is a protocol widely
used in building automation projects. It is based on web standards including XML, HTTP
and URI to access building information and control facilities. AirFlowController and
AirTemperatureController are common node types in AHU applications. Listing 6.3
demonstrates their description based on TOSCA.

Derived from the base controller properties, these two specific controllers add the
controller-specific operations–ChangeSetPoint and ChangeAirFlowRate, respectively with

76

Listing 6.2: Base Node Types Properties
<element name="ControllerProperties">

<complexType>
<sequence>

<element name="Driver" type="string" />
...

</element>

<element name="GatewayProperties">
<complexType>
<sequence>
<element name="User" type="string" />
<element name="Password" type="string" />

...
</element>

<element name="DriverProperties">
<complexType>
<sequence>
<element name="Version" type="string" />

...
</element>

Listing 6.3: Domain-specific Node Types
<NodeType name="AirTempController">
<DerivedFrom typeRef="Controller"/>
<NodeTypeProperties element="AirTempProperties"/>
<Interfaces>
<Interface name="AirTempInterface">
<Operation name="ChangeSetPoint">
<InputParameters>
<InputParameter name="SetPoint"
type="xs:double"/>

...
</NodeType>

<NodeType name="AirFlowController">
<DerivedFrom typeRef="Controller"/>
<NodeTypeProperties element="AirFlowProperties"/>
<Interfaces>
<Interface name="AirFlowInterface">
<Operation name="ChangeAirFlowRate">

<InputParameters>
<InputParameter name="FlowRate"

type="xs:double"/>
...

</NodeType>

77

SetPoint and FlowRate parameters. In our case, the controller properties are the same
as the input parameters, thus not listed.

Concrete Node Types

The Concrete Node Types define the node types to be used in a specific application, with
information about specific hardware and software vendors, models and versions. We only
present the type definition of a Niagara Gateway in Listing 6.4 as an example, because
other concrete node types follow the similar inherited relationship with their parent node
as illustrated in Figure 6.2. The properties include information about the hardware model
and software version.

Listing 6.4: Concrete Node Types
<NodeType name="NiagaraGateway">
<DerivedFrom typeRef="Gateway" />
<NodeTypeProperties element=
"NiagaraGatewayProperties"/>

</NodeType>

Node Templates

According to the TOSCA specification, Node Templates describe the specific instances
of node types. The properties of a certain node type should be set in node templates.
Essentially, Node Types describe the model of nodes, whereas Node Templates describe
the actual nodes to be used in a certain application deployment. Listing 6.5 presents a
template of Air Temperature Controller by Johnson Controls. Since there is an interface
to set the output temperature, the SetPoint property can be changed at runtime.

Listing 6.5: Node Templates
<NodeTemplate id="JCAirTempControllerTemp"

name="Johnson Controls Air Temperature Controller"
type="JCAirTempController">

<Properties>
<ControllerProperties>
<Driver>oBIX</Driver>

</ControllerProperties>
<AirTempProperties>

<SetPoint>21</SetPoint>
</AirTempProperties>

</Properties>
</NodeTemplate>

78

6.2.4 Modeling the relationships

The relationships required in our AHU application are common to many IoT applications.
Listing 6.6 presents the four basic relationships illustrated in Figure 6.1. The names of
the relationship types are self-explanatory. Each of the relationships are characterized by
a source type and a target type. The relationship definitions can be used to specify the
semantics of links between nodes and the methods of connections. Similar to node types,
relationship types can also be inherited with more concrete properties, and instantiated
into Relationship Templates.

Listing 6.6: Relationship Types
<RelationshipType name="dependOn">

<DerivedFrom typeRef="RootRelationshipType" />
<ValidSource typeRef="Controller" />
<ValidTarget typeRef="Driver" />

</RelationshipType>

<RelationshipType name="connectedTo">
<DerivedFrom typeRef="RootRelationshipType" />
<ValidSource typeRef="Controller" />
<ValidTarget typeRef="Controller" />

</RelationshipType>

<RelationshipType name="installedOn">
<DerivedFrom typeRef="RootRelationshipType" />
<ValidSource typeRef="Driver" />
<ValidTarget typeRef="Gateway" />

</RelationshipType>

<RelationshipType name="deployedOn">
<DerivedFrom typeRef="RootRelationshipType" />
<ValidSource typeRef="Controller" />
<ValidTarget typeRef="Gateway" />

</RelationshipType>

79

6.3 Deploying IoT Application Artifacts

Artifacts are the actual scripts, files, packages, executables and all other necessary soft-
ware pieces to be deployed in order to run an application. Common artifacts in cloud
applications may include installation scripts, configuration files, archives and so on. For
traditional IoT applications, even though the basic artifact types are similar to cloud
applications, the actual artifacts required by each application are highly dependent on
the deployment environments. Based on the basic modeling in the previous section,
we will demonstrate how TOSCA can help to manage IoT application deployment on
heterogeneous environments.

6.3.1 Artifact Types

The two gateways used in our implementation—Niagara and Sedona—feature different
runtime environments, programming languages and deployment procedures. However,
the basic artifact types can be modeled in the same way as cloud applications3.

File Artifact Generic artifact type that contains certain information required during
an application’s lifecycle.

Script Artifact Executable or interpretable artifact that encapsulates instructions in
a script language for a certain operation.

Archive Artifact A collection of files that are packaged for deployment.

For the deployment on gateway environments, we extend these basic artifact types to
two other common types: SourceArtifact and BinaryArtifact. They are listed in Listing 6.7,
and their properties in Listing 6.8. Sources are to be compiled by a compiler decided by the
language of the source, whereas binaries are executed in a specific runtime environment.

Listing 6.7: Artifact Types
<ArtifactType name="SourceArtifact">
<DerivedFrom typeRef="FileArtifact" />
<PropertiesDefinition element=
"SourceArtifactProperties" />

</ArtifactType>

<ArtifactType name="BinaryArtifact">
<DerivedFrom typeRef="FileArtifact" />
<PropertiesDefinition element=
"BinaryArtifactProperties" />

</ArtifactType>

3http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

80

http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-v1.0.html

Listing 6.8: Artifact Types Properties
<element name="SourceArtifactProperties">

<complexType>
<sequence>

<element name="Language" type="string" />
<element name="Compiler" type="string" />

...
</element>
<element name="BinaryArtifactProperties">

<complexType>
<sequence>
<element name="Environment" type="string" />

...
</element>

6.3.2 Artifact Templates

Application deployment usually constitutes a series of operations specified by the vendor
of a gateway. These operations transform artifacts, put them into specified locations,
and set their status. We will model the Niagara and Sedona artifacts respectively in the
following.

Niagara artifacts

Similar to nodes and relationships, the actual artifacts used in an application are specified
in templates. There are four files required in deploying a Niagara application, explained
as follows.

Slots In Niagara, a component is defined as a collection of slots, which specify the
properties, actions and topics of events that the component is listening to. Although
Niagara is essentially a Java runtime environment, the vendor, Tridium, made a
customized process based on slot definitions. Slots are included in a comment
section at the beginning of a class in java source. Thus the Java source file has to
be preprocessed by a tool called Slot-o-matic, which translates the slot definition
into actual java code that invokes BAJA (Building Automation Java Architecture)
API. This has to be reflected in the artifact definition.

module-include.xml This file indicates Niagara environment to register the compo-
nents to an internal registry.

module.palette This file specifies where to display the components in Niagara Devel-
opment Environment, which puts the components in a tree-like structure.

The actual contents of these artifacts are out of the scope of this chapter. Due
to the similarity of simple file artifact specifications, we only exemplify the first two
artifacts in Listing 6.9. Note that the language and compiler property of the slot artifact

81

are respectively slot and Slot-o-matic. At deployment stage, this will indicate TOSCA
environment to invoke the Slot-o-matic tool for the source code.

Listing 6.9: Niagara Artifact Templates
<ArtifactTemplate id="uid:iot-niagara-file-1"
type="SourceArtifact">
<Properties>
<FileArtifactProperties>

<FileType>java</FileType>
</FileArtifactProperties>
<SourceArtifactProperties>

<Language>slot</Language>
<Compiler>Slot-o-matic</Compiler>

</SourceArtifactProperties>
</Properties>
<ArtifactReferences>
<ArtifactReference reference="src">

<Include pattern="*.java" />
...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-niagara-file-2"
type="FileArtifact">
<Properties>
<FileArtifactProperties>

<FileType>xml</FileType>
</FileArtifactProperties>

</Properties>
<ArtifactReferences>
<ArtifactReference reference="/">
<Include pattern="module-include.xml" />

...
</ArtifactTemplate>

Sedona artifacts

Sedona framework is an open source IoT application environment. Compared to Niagara
framework, Sedona is designed to keep the framework and application footprints small
so that they can be deployed on resource-constraint devices. Applications are portable
among devices with Sedona framework thanks to the Sedona Virtual Machine (SVM),
which is similar to the concept of JVM. In fact, Sedona language is also similar to Java.

The artifacts required by the Sedona framework to deploy an application are more
complicated. Figure 6.3 illustrates the artifact structure using a screenshot from the
development environment. The function and type of each artifact is explained as follows.

Sedona source files. These files are indicated by the “.sedona” extension and compiled
by the sedonac tool.

82

Figure 6.3: Sedona artifacts

kit.xml Each Sedona component is called a kit. The kit.xml file defines the metadata
for compiling sources into a kit.

kits.xml specifies the kits that are needed to build a deployable image, or the archive
that can be deployed to SVM for running an application. The oBIX driver required
to run the AHU application is compiled into the image.

*.scode The image file built according to the specifications in kits.xml.

*.sax Sax file constitutes the actual application configuration including for example the
communication port and access credential.

*.sab It is the executable binary file that is compiled according to the specification in
the corresponding .sax file. The control logic of the AHU application is realized in
this file.

All the required artifacts described above have to be correctly presented in the
directory structure defined by the Sedona framework. Listing 6.10 presents examples of
using TOSCA to specify the source, binary and deployable image to ensure that the files
are correctly deployed.

83

Listing 6.10: Sedona Artifact Templates
<ArtifactTemplate id="uid:iot-sedona-file-1"
type="SourceArtifact">
<Properties>
<FileArtifactProperties>

<FileType>sedona</FileType>
</FileArtifactProperties>
<SourceArtifactProperties>

<Language>sedona</Language>
<Compiler>sedonac</Compiler>

</SourceArtifactProperties>
</Properties>
<ArtifactReferences>
<ArtifactReference reference="src">

<Include pattern="*.sedona" />
...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-sedona-file-6"
type="BinaryArtifact">
<Properties>
<FileArtifactProperties>

<FileType>sab</FileType>
</FileArtifactProperties>
<BinaryArtifactProperties>

<Environment>SVM</Environment>
</SourceArtifactProperties>

</Properties>
<ArtifactReferences>
<ArtifactReference reference="platform">

<Include pattern="*.sab" />
...

</ArtifactTemplate>

<ArtifactTemplate id="uid:iot-sedona-file-7"
type="ArchiveArtifact">
<Properties>
<FileArtifactProperties>

<FileType>scode</FileType>
</FileArtifactProperties>

</Properties>
<ArtifactReferences>
<ArtifactReference reference="platform">
<Include pattern="*.scode" />

...
</ArtifactTemplate>

84

6.4 Discussion
TOSCA, as a newly established standard to counter growing complexity and isolation
in cloud application environments, is gaining momentum in industrial adoption as well
as academic interests. Following the first edition of TOSCA standard, we have showed
that it is capable of specifying the basic constructs of IoT applications. By archiving the
previous specifications and corresponding artifacts into a csar file, and deploying it in
a TOSCA environment, the deployment of the AHU application onto various gateways
can be automated. This section will further discuss our experience gained from attempt-
ing to employ TOSCA in the IoT domain that is abundant of proprietary and largely
heterogeneous frameworks.

Acknowledge the heterogeneity In our previous work, we have proposed and proto-
typed the IoT PaaS framework that aims at more efficient and scalable IoT service
delivery. The basic assumption is that IoT infrastructure is heterogeneous and will
continue to be so. Thus, rather than proposing another “universal” architecture, we
try to develop a methodology to easily integrate different domain-specific protocols
and data models. That is domain mediator in the IoT PaaS architecture. Even
worse than the situation in data exchange protocols, the deployment processes of
an application can vary among IoT solutions even if the applications are realizing
the same service. Following the same principle of avoiding proposing another “uni-
versal” management process, we leverage TOSCA to manage such heterogeneity in
a coherent way—using a common vocabulary and syntax to describe application
configurations and their deployment processes. As demonstrated in our AHU exam-
ple, the node and relationship models can be shared for the same application, and
the artifact models can be reused for gateways using the same software framework.

Other TOSCA features We used several main features of TOSCA, namely Node types,
Relationship types, Artifact types, Properties, Interfaces and corresponding tem-
plates. This assumes that TOSCA will process this service template in a declar-
ative manner—the process of deployment is implicitly inferred according to the
relationships expressed in the topology template. This will work for relatively simple
applications as the simplified AHU. However, for more complicated applications,
Plans, or the imperative approach, will be needed to explicitly invoke lifecycle
operations and automate complex management processes. Furthermore, explicitly
expressing the Requirement and Capability types will help the TOSCA environment
to more accurately understand the dependencies between nodes, thus improve the
reusability of models.

Tooling and efforts of applying TOSCA As a new standard, the implementation
of corresponding TOSCA tools is still in progress. The available tools have not
realized all the standardized features. We are in the process of connecting the work-
in-progress TOSCA environment with established IoT frameworks. We view this as
a crucial effort in the early stage of the new standard. When the tool is matured and
user contributions grow, more efforts will fall on collecting and improving models so

85

that they can easily be reused. The tedious efforts of modeling each tiny aspect of
IoT applications will eventually be rewarded with greater efficiency and reusability
in the application management process.

6.5 Summary
In the face of the growing heterogeneity in IoT infrastructure and the need for more
reusable and scalable IoT solutions, we propose to leverage cloud as a horizontal platform
for managing the lifecycle of traditional IoT applications. In this chapter, we presented
the first efforts of using TOSCA to formally describe the internal topology of application
components and the deployment process of IoT applications. The feasibility of TOSCA
for this purpose is demonstrated by describing the application components, relationships
and artifacts of the AHU application using the first edition of the TOSCA specification.
By inputing these descriptions to the TOSCA environment, the deployment process can
be interpreted and automated.

86

CHAPTER 7
Monitoring IoT Applications

In this chapter we present an approach that allows for in-depth analysis of data-intensive
IoT applications by non-intrusively adding functionality for acquiring and publishing
performance measurements at runtime, to the application. Furthermore, our approach
provides a flexible mechanism for integrating different execution environments, which
can be used for deploying and monitoring applications independent from a specific opera-
tor model. Additionally, we present an extensible approach for gathering and analyzing
measurement data. In order to evaluate our solution, we developed a scenario applica-
tion, which we used for testing and monitoring its performance on different execution
environments.

7.1 Overview

Modern information systems need to process an ever-increasing volume of data from
various sources while providing timely responses to requests from stakeholders. Tradi-
tionally, such systems persist incoming data in a database and then execute queries
on the stored data to perform required analyses and produce desired results, but are
increasingly incapable of coping with the sheer volume of data to process, often making it
infeasible to even store all incoming raw data [49]. The requirement for timely responses
to complex queries over continuous streams of high-volume data led to the emergence
of stream processing systems that do not rely on traditional data processing models.
Stream processing systems are designed to continuously process and analyze incoming
data streams to produce results in reaction to events observed in the incoming data, as
opposed to separately triggered requests to analyze previously stored data.

Due to their intrinsic requirements, performance testing and monitoring [82] of stream
processing applications are inherently important for stakeholders to assess and understand
the status and runtime characteristics of deployed applications. Since the capabilities of
single machines are insufficient for providing the necessary processing power for handling

87

these huge amounts of data, stream processing applications have to scale computations
across multiple machines and face the challenge of becoming inherently distributed [142].
In addition to several design and management challenges, this also leads to increased
complexity when dealing with performance testing and monitoring. Especially for applica-
tions where monitoring was not considered initially, gathering meaningful measurements
is challenging.

While there is a host of existing monitoring systems for gathering performance data
about applications [39, 64, 88] and their runtime infrastructure [34, 75], to the best of our
knowledge, there is no solution that specifically targets stream processing applications
and their structure in a way that allows for detailed examination and comparison of their
runtime characteristics, independent of the used stream processing framework. Further-
more, emitting data to monitoring systems usually requires code changes in applications
that specifically target the used monitoring system.

In this chapter, we introduce MOSAIC, a service oriented framework for monitoring
the runtime performance of distributed stream processing applications, independent from
a particular operator model (e.g., query, graph, or API). In addition, we present an ap-
proach that allows adding monitoring functionality to existing JVM-based applications,
without changing the applications’ code or requiring recompilation. MOSAIC allows
for the integration of different stream processing engines for executing and monitoring
applications, and provides a flexible mechanism for gathering and analyzing performance
measurements based on a generic domain model. We illustrate the feasibility of our
approach by monitoring and analyzing the performance of a representative stream pro-
cessing application deployed on two different stream processing engines.

The remainder of this chapter is structured as follows: In Section 7.2 we further
motivate our work and outline the specific problem and requirements in the context of
our work in the smart city domain. In Section 7.3 we introduce the MOSAIC framework
and accompanying toolset to address the identified problems. We provide a detailed
evaluation of framework characteristics and capabilities in Section 7.4, followed by a
conclusion in Section 7.5.

7.2 Requirements

The rapid adoption of the smart city paradigm combined with the extensive growth of
today’s metropolises have led to a significant increase of monitoring and control system
deployments [59]. These systems penetrate all vital areas of today’s cities, including
building monitoring and management, traffic control, as well as energy management
systems via smart meters. Naturally, these system rely on stream processing applications
that allow to rapidly process and react to relevant events that occur in associated, large-
volume data sources. Performance, availability, and reliability of these systems has become
a critical factor in the operation of modern city infrastructures.

However, the enormous scale combined with the distributed and heterogeneous nature
of the deployed stream processing applications poses significant challenges for monitoring
mechanisms. Due to the wide variety of available stream processing frameworks and

88

used processing models, finding the right framework for any given task and objectively
assessing the resulting application are not trivial. In order to enable a holistic approach
to monitor such applications, we argue that the following requirements must be met:

• Distributed Operation: A monitoring mechanism must be able to handle the in-
herent distributed nature of modern stream processing applications. Since single
machines cannot provide the necessary processing power for running such applica-
tions, computations must be scaled across a distributed infrastructure. Apart from
the overhead of managing and provisioning these infrastructures, also monitoring
gets more complex as performance measurements of multiple resources have to be
considered and appropriately handled.

• Non-Intrusiveness: A monitoring mechanism should allow to extend the set of
measured metrics beyond traditional performance monitoring, in order to provide an
in-depth look into relevant application characteristics without requiring code-level
changes, or having to rebuild the stream processing application itself. Furthermore,
it should also be possible to acquire measurement data from applications, where
monitoring was not considered from the beginning.

• Model Independence: A monitoring mechanism should provide means to monitor
applications independent from a particular processing model or execution environ-
ment, in order to enable an integrated and holistic monitoring concept. Current
stream processing frameworks employ various models to define application logic
(e.g., queries based on domain-specific languages (DSLs), operator graphs, or pro-
gramming APIs), which should be supported by the monitoring framework without
requiring changes to the application code.

To provide accurate performance monitoring, a solution that respects the requirements
defined above should also allow for the analysis of application performance behavior, which
comprises the following steps: (i) Acquisition: the process of measuring performance data,
(ii) Publication: the process of publishing acquired data, (iii) Management: the process
of managing and storing collected data, and (iv) Analysis: the process of extracting
information from monitoring data.

7.3 The MOSAIC Framework

In order to address the previously defined requirements, we present MOSAIC, a framework
for non-intrusive monitoring of stream processing applications. The overall architecture
of our approach is depicted in Figure 7.1 and consists of the following components: (i) a
Stream Processing Environment, (ii) MOSAIC Base, and (iii) MOSAIC, a cloud-based
middleware framework. In the following, we discuss these components in more detail, and
present the overall approach of weaving, deploying, and monitoring stream processing
applications.

89

Cloud

Stream Processing Engine

MOSAIC Base

Profiler

Publisher

Core

AspectsStreaming
Application Engine

Repository

MOSAIC

Measurement
Repository

Analyzer

Weaver

Application
Repository

Scheduler

Application Manager

User API

Aspect
Repository

Messaging Infrastructure

MQ 1 MQ 2 MQ n• • •

Aspect Manager

Measurement Handler

Figure 7.1: MOSAIC – Overview

7.3.1 Stream Processing Environments

Usually stream processing applications consist of various processing steps, such as val-
idation, transformation, aggregation, and analysis [49]. Such applications are used to
process data in order to extract or create information. Since stream processing applica-
tions have to deal with an ever-growing amount of data, the actual processing work is
then distributed across multiple worker resources. In order to manage this distributed
processing more efficiently, stream processing applications are deployed and executed on
top of stream processing engines that provide seamless provisioning of worker nodes.

To allow our framework to monitor stream processing applications that are executed
on top of stream processing engines, we focus on frameworks deployed on the Java Virtual
Machine (JVM), such as Apache Spark [4] and Apache Storm [6, 123]. We facilitate aspect-
oriented programming (AOP) to weave components of our framework into the actual
stream processing application in order to add the necessary monitoring functionality
without requiring changes to the underlying application.

Next, to represent a stream processing application and associate respective monitoring
data, we introduce a domain model that consists of the following elements. The central
element is a Node. A node is a representation of a worker performing a specific task in a
distributed stream processing application. In order to identify the node, it has a nodeId.
In addition, a nodePurpose attribute describes what the node is actually doing. This
approach allows grouping nodes according to their functionality, but also supports dis-
tinguishing single nodes. For example, consider an aggregation operation that is intense
in computation, and the application requires multiple instances for this specific opera-
tion. In such cases, several nodes that share a common purpose are executed, but have
different identifiers. Monitoring information that is associated with nodes is commonly

90

referred to as Measurement, where we distinguish between RuntimePerformance
and JvmProfile. RuntimePerformance represents runtime measurements and allows
monitoring the runtime of one or several operation steps. Furthermore, since an operation
can consist of multiple steps, we introduced a sequence attribute that connects these
records. The JvmProfile is used to monitor resource statistics of the underlying JVM.

7.3.2 MOSAIC Base

In order to allow for detailed and application-specific monitoring, we split our framework
in two parts. One part, the actual monitoring and analysis framework (MOSAIC) is
deployed in the cloud. The other part (MOSAIC Base) is depicted on the left-hand side
in Figure 7.1 and contains the application-specific components that need to be integrated
into the application in order to acquire the required monitoring information.

Core

The core component is the centerpiece of the framework. It contains the domain model,
the basic runtime performance measurement functionality, and an abstraction for trans-
ferring as well as storing acquired measurement information. Additionally, the component
provides out-of-the-box integrations for several stream processing engines. The core com-
ponent also offers extension APIs to allow for easy integration of additional stream
processing engines.

Aspects

In order to acquire measurement data, we use aspects respectively advised code that
is woven into the target application, as provided by the AspectJ [9] AOP framework.
The basic approach of obtaining measurement data consist of the following three steps:
First, save the start-timestamp before the monitored code block. Second, save the end-
timestamp after the monitored code block is finished. Finally, publish the data. By
following the aspect oriented programming principle this can be done using advices of
type Around (an entire method is wrapped around a pointcut), or Before and After
(two advised methods are invoked) advices. We implemented two different abstract aspects
for measuring runtime performance. Additionally, to connect runtime measurements of
processing steps (i.e., to establish a sequence of measurements), we need a correlation
identifier for a sequence, which must be passed on from one process step to the next. Since
we cannot assume that data that is used within an application provides such a sequence
identifier, we add and pass on sequence identifiers within an application. This approach
comprises a static crosscutting advice to add a sequence identifier to data objects, and
two dynamic crosscutting aspects that create and pass on sequences.

Profiler

The profiler component contains all classes for monitoring the JVM resources. In
addition, the component provides functionality required for profiling JVM resources for

91

a particular code block in order to create execution profiles.

Publisher

The publisher groups different built-in mechanisms for publishing and storing moni-
toring information. Currently, we provide functionality to log and persist measurement
information for files, JDBC, JMX, and log4j. Data is then distributed via the Java Message
Service (JMS).

Since the integration must be as flexible as possible, aspects that acquire perfor-
mance measurements are woven into the target application. These woven aspects use
functionality provided by the core component and publish the measurement data using
the publisher component. Once an aspect is woven into the target application, the advised
code interacts with the provided functionality of MOSAIC Base when executed.

7.3.3 MOSAIC

The enabling framework for monitoring and analyzing stream processing applications
is depicted on the right-hand side in Figure 7.1. MOSAIC is a cloud-based framework
and the overall design follows the micro service architecture [87]. This approach enables
developing a scalable and evolvable framework. In addition, it allows the flexible manage-
ment and scaling of components, which is important for MOSAIC when handling stream
processing applications deployed at large scale. In the following, we will introduce the
main components of MOSAIC.

Messaging Infrastructure

For handling the multitude of monitoring information,MOSAIC uses a distributed messag-
ing fabric that minimizes unnecessary network traffic compared to a centralized message
bus. Additionally, it allows components of the system to freely choose the most suitable
(e.g., closest) connection point. For transmitting and consuming data, MOSAIC uses a
publish/subscribe mechanism, where producing components publish data in the messag-
ing infrastructure to a specific routing key, which represents the application’s unique id.
Consuming components of MOSAIC, which are mostly analyzer components, consume
data by subscribing to the according routing key. This approach provides a flexible and
easily extendable mechanism to handle monitoring information.

Repositories

In order to manage registered stream processing applications, developed aspects for
acquiring measurement data, and monitoring data, MOSAIC provides several repositories.

• Application repository. To allow our framework to monitor stream processing
applications, operators of such applications need to register them via the provided
User API. During the registration process operators upload the application as a
jar package, add the required runtime configuration, and finally state the intended

92

execution environment (i.e., stream processing engine). Next, based on the stated
execution environment, operators can define which monitoring information they
are interested in and state the required granularity. For example, operators can
define if they are just interested in runtime performance of the application, or
also additional JVM-specific profiles. All this application-specific information is
managed and stored in the application repository.

• Aspect repository. The framework provides abstract aspects that can be used
by defining concrete pointcuts. These abstract aspects can be extended to inte-
grate arbitrary execution environments that are used for running stream processing
applications. In addition to abstract aspects, MOSAIC also provides built-in inte-
grations for Apache Spark Streaming [4] and Apache Storm [6]. Any additional or
new aspects developed and registered by an operator are stored and managed in
the aspect repository.

• Engine repository. In order to allow our framework to deploy stream processing
applications on their intended stream processing engine, we need engine-specific
drivers. As for aspects, we define an abstract driver that can be extended to integrate
additional, currently not supported, execution environments. The built-in drivers
and additional drivers are stored and managed in the engine repository.

• Measurement repository. Since our framework does not only allow monitoring
of stream processing applications, but also analyzing gathered measurement data,
MOSAIC provides a measurement repository for persisting gathered monitoring
information.

Application Manager

The application manager is responsible for handling registered stream processing applica-
tions and associated information in the application repository. Furthermore, during the
application registration process, the manager takes care of verifying that the provided
information and application package are valid, and if a suitable engine-driver is avail-
able. If an engine-driver is available, this driver is then associated with the application
and will be used for subsequent deployment. If no suitable engine-driver is present, the
operator will be notified and is then required to provide a driver via the user API. Fur-
thermore, to keep track of deployed applications and associated monitoring information,
the application manager handles the state of applications.

Aspect Manager

Since we want to create and acquire a broad variety of measurement data, MOSAIC needs
to provide suitable aspects. To handle these aspects efficiently the aspect manager is used.
As already described, MOSAIC provides built-in aspects and allows operators to add
their custom-developed aspects by extending the abstract aspects. In addition to aspects,
the manager is also responsible for handling and creating configuration files that define

93

pointcuts for concrete aspects. Based on this configuration the Weaver component then
weaves the aspect code at the defined places in the application to provide the expected
monitoring information.

Weaver

To provide a flexible and extensible weaving component that allows using different aspect-
oriented programming frameworks, we define a weaver interface and provide a concrete
implementation that relies on AspectJ [9]. Based on AspectJ, we decided to use load-
time weaving by facilitating the Java agent provided by AspectJ. This approach allows
us to include the Java agent as an argument during application startup and add a
configuration file to the classpath. The Java agent is then responsible for weaving the
aspects at application load-time. This weaving option itself causes comparatively little
overhead [118], since an advice, once weaved, behaves like a usual method call. However,
this weaving approach increases the time needed for starting the application, which is
acceptable since we consider long running stream processing applications.

Scheduler

The scheduler component is responsible for deploying the stream processing applica-
tion, the required functionality for weaving, and MOSAIC Base on the actual execution
environment. In order to deploy an application and start the monitoring process, the
scheduler contacts the application manager and receives the application package and the
corresponding information, stating the intended execution environment and required mon-
itoring information. Based on this information, the aspect manager is contacted, which
provides the tailored MOSAIC Base containing the required aspects and configurations.
Next, the weaver provides the specific functionality that is needed for weaving MOSAIC
Base in the application. Finally, the correct engine driver is loaded and the complete pack-
age is deployed on the stream processing environment, where the application is started.
During startup the weaving process is triggered, which integrates the monitoring-specific
code into the application. Once the application is successfully deployed, the scheduler
notifies the application manager that the application is running.

Measurement Handler

To handle published monitoring information, the measurement handler is used. Based on
the currently registered and running applications, the handler starts application-specific
data handlers that consume the published data and store them in the measurement
repository. This approach allows for flexible and efficient management of measurements.

Analyzer

In addition to collecting application-specific performance measurements, we also want to
analyze this data to obtain actionable insights. Therefore, we provide an abstract analyzer
and corresponding implementations that, based on our domain model, allows analyzing

94

metrics like runtime per processing step, overall runtime of a sequence of processing steps,
and the latency between processing steps.

7.3.4 Weaving and Monitoring Approach

Since we cannot show a complete list of provided monitoring capabilities of our framework
due to space constraints, we will focus on one specific example and explain how the overall
process, from scheduling an application to receiving monitoring data, works.

For this example, we want to measure the runtime of a processing step in an Apache
Storm stream processing application. Listing 7.1 shows a stub for measuring the runtime
performance, where an around advice is used. An abstract pointcut, which has to be
defined when using this abstract aspect is used for advising the monitoring code. The
advice continues the execution at the given join point and measures invocation time.
@Aspect
public abstract class AbstractRuntimePerformanceAspect {

@Pointcut
public abstract void scope();

@Around("scope() && this(jpo)")
public Object around(ProceedingJoinPoint pjp, Object jpo) throws

Throwable {
...

}
}

Listing 7.1: Abstract Runtime Performance Aspect

To use this abstract aspect we now specify that we want to measure the runtime of
a processing step (a bolt) in our Apache Storm application. According to this definition,
MOSAIC creates a configuration file that defines the pointcut for the aspect, as shown
in Listing 7.2. The concrete-aspect element defines an aspect and a new name for the
aspect. Furthermore, the extends attribute defines the abstract aspect. The expected
pointcuts of the abstract aspect are set using the pointcut element.
<aspectj>
<aspects>
<concrete-aspect name="BoltRuntimePerformanceAspect" extends="

AbstractRuntimePerformanceAspect">
<pointcut name="scope" expression="execution(* backtype.storm.topology.

IRichBolt.execute(..))" />
</concrete-aspect>

</aspects>
</aspectj>

Listing 7.2: Configuration (aop.xml) Example

After defining what and how we want to monitor an application, the framework
has to deploy and execute the application on the intended execution environment. As
discussed above, the scheduler component is responsible for deploying the application

95

and the additional tailored MOSAIC Base components, as well as the needed weaving
functionality, on the execution environment. Next, the scheduler starts the application on
the target environment, which triggers the load-time weaving process using the weaving
functionality provided by our framework. Once MOSAIC Base is weaved into the target
application, the execution is initiated and the application starts processing data. While
processing incoming data, the monitored processing step of our target application will
be invoked. Since we weaved our framework into the application, we can monitor the
processing step as depicted in Figure 7.2.

Caller Runtime
Aspect

Target Publisher

call

save start-timestamp

call target

publish measurement

save end-timestamp

Figure 7.2: Monitoring of a Processing Step with a Runtime Aspect

As illustrated in Figure 7.2 before the actual processing step (target) of our application
is called, the runtime aspect is invoked, which saves the start-timestamp and then executes
the actual processing step. When the processing step is finished, the runtime aspect saves
the stop-timestamp, and publishes the measurement using the publisher provided by
MOSAIC Base. The measurement is then consumed on the cloud-based framework,
stored in a repository, and can then be further analyzed.

7.4 Evaluation
To evaluate our approach we chose a representative scenario and implemented it on top
of two stream processing engines. Next, we created a test setup in the cloud using several
VM instances for hosting our framework, as well as the stream processing engines.

In the remainder of this section we give an overview of the chosen scenario and the
developed applications, discuss the concrete evaluation setup, present different evaluation
scenarios, and analyze the gathered results.

7.4.1 Scenario

To illustrate the feasibility of the MOSAIC approach, we will use a modified version of
the well-known Traveling salesman problem (TSP) [106] as a scenario application. A

96

TSP graph G is a complete weighted undirected graph specified by a pair (N, d), where
N is a set of nodes and d is a function that translates the distance between two nodes in
a numerical value. d satisfies two conditions: (1.) Symmetry: d(i, j) = d(j, i), ∀i, j ∈ N .
(2.) d(i, j) >= 0,∀i, j ∈ N . A path of the TSP graph G is a set of edges that describes a
path containing each node exactly once (i.e., a Hamiltonian graph). The path distance
is the sum of distances of all edges. The solution for our modified traveling salesman
problem is a path with the minimal possible path distance.

7.4.2 Sample Application

Based on the described TSP scenario we implemented a stream processing application for
both, Apache Spark and Apache Storm. In order to make the gathered monitoring results
comparable, the implementations are designed to share the same basic architecture.

Distance
CalculationDistance

Calculation

input
Node

Extraction
Path

Creation

nodes

Distance
Calculation

paths
Summary

distance

Data
Generation

Figure 7.3: Sample application – Overview

The overall architecture of the sample application is split into five processing steps
as shown in Figure 7.3. In the first step the input data for the application is created.
Processable input data for our scenario is a random string containing vertices in a
specified format (i.e., x- and y-coordinates in a two-dimensional space), where before and
after each vertex there can be random characters. For the purpose of this scenario, we
assume that the coordinate data is embedded in a text document and coordinates must
be extracted from the input data in a separate step. The result of this extraction step is
a list of Node objects with an id to identify the node, as well as x and y coordinates. In
the path creation step, all paths are created. This step also allows splitting paths into
subsets to subsequently pass them on to multiple workers for parallel distance calculation.
In the last step, the minimal distance of the received set of paths is calculated. Finally,
the summary step is responsible for summarizing the partial results of the distance step,
which represents the minimal distance of all paths.

7.4.3 Apache Spark Streaming Implementation

Following the aforementioned application architecture, we implemented the described
scenario based on Apache Spark Streaming. First, we implemented a stream Receiver

97

Input
from time 0 to 1

Input
from time 1 to 2

Input
from time 2 to 3

Nodes
from time 0 to 1

Nodes
from time 1 to 2

Nodes
from time 2 to 3

Paths
from time 0 to 1

Paths
from time 1 to 2

Paths
from time 2 to 3

map map map

flatMapflatMap flatMap

Distances
from time 0 to 1

Distances
from time 1 to 2

Distances
from time 2 to 3

map map map

foreach
foreach

foreach

Result
Summary

Receiver

Extraction function

Path function

Distance function

Summary function

RDD @ time 1 RDD @ time 2 RDD @ time 3

(a) Spark

Spout

Extraction
Bolt

Input

Nodes

Path
Bolt

Distance
Bolt

Distance
Bolt

Distance
Bolt

Summary
Bolt

Paths

Distance

Paths

Distance

(b) Storm

Figure 7.4: Sample application – Implementation

that creates data for the application to consume. For all other steps we implemented
Functions, which are used by map or flat map transformations and one output operation.
Figure 7.4a shows an overview of our Apache Spark Streaming application. The Receiver
creates data, which is stored in Spark RDD’s over time. We decided to use a time window
so that a RDD is created in a defined interval, containing all data records stored in this
time interval. The second step, extraction, is done via a map function, where lists of
nodes are extracted from the input data in a RDD. Paths are created by using a flat
map transformation. Using an identifier, each path list can be associated to its source
node list. The path creation step is followed by a map transformation, which calculates
distances for each path list and determines the minimal distance. The summary function
determines the absolute minimum distance for an input string by aggregating all received
minimum distances with the same identifier.

7.4.4 Apache Storm Implementation

As mentioned above, we also implemented the described scenario according to the ar-
chitecture description using Apache Storm as depicted in Figure 7.4b. For each step
described above, we implemented a Storm-based component. The first step, data cre-
ation, is implemented as a Spout that creates and emits data to the topology. All other
steps are implemented as Bolts, linked together using Storm’s shuffle grouping method.
Path bolts are different to other bolts since they might emit multiple tuples, where each
tuple contains a set of paths. Path lists can be associated with their source, and thus
with each other, by using an identifier.

98

7.4.5 Evaluation Scenarios

In order to gather sufficient monitoring information from our sample application, we
defined two scenarios. In the first scenario we executed 25 test runs with a break of 1
second between each run. In the second run, we changed the break to 10 milliseconds. For
each run we generated a random input string with a size of approximately 17MB. With
these two scenarios we simulate different load patterns for the application to highlight
notable differences.

7.4.6 Setup

To create analyzable data, we executed both described implementations based on the
defined scenarios. Since the main focus of our investigation is on the engineering per-
spective of how performance can be monitored, and not a performance analysis itself, we
used the following setup in our private OpenStack [92] cloud.

MOSAIC is deployed on one instance using the m1.medium flavor (3750MB RAM,
2 VCPUs and 40GB disk space). For implementing our messaging infrastructure we
use a RabbitMQ [103] cluster consisting of 2 VM nodes using Ubuntu 14.04 and the
m1.small flavor (1920MB Ram, 1 VCPUs and 40GB disk space). Next, for hosting the
Apache Spark Streaming and Apache Storm engine, we created two separate VM nodes,
each using the m2.flavor (5760MB RAM, 3 VCPUs and 40GB disk space). The physical
machines hosting the VMs are connected with regular 1000BASE-T ethernet links.

7.4.7 Results

In this section, we analyze the measurement data gathered from the test runs. By com-
paring the results of both implementations, we illustrate the benefit of our framework.
The common data model for monitoring different stream processing applications, imple-
mented using different frameworks, allows for a direct comparison of monitored processing
steps. Figure 7.5 shows an overview of runtime measurements for each processing step of
our application. The plotted durations (end time − start time) are aggregated by node
purpose (i.e., processing step) and node identifier. The node identifier allows to associate
a record with the particular run or implementation (10 ms or 1 second break, and Spark
or Storm implementation). The different sub-figures show the different processing steps.
In the following, we discuss notable results of the comparison between the Spark and
Storm application.

In Figure 7.5a we can see the runtime of the first processing step of our application.
By looking at the figure we notice that measuring the invocation time of the store method
of a Spark Receiver, does not reflect the time consumed for actually creating, reading or
receiving the data. Only the time used for transferring the data to Spark is measured.
This explains the large gap when comparing Spark and Storm results of the first step
(Creation). Figure 7.5b, Figure 7.5c and Figure 7.5d show the gathered measurement
data for the extraction, duration, and distance processing steps. We see that the Spark
implementation performs better regarding runtime measurements at these processing

99

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

������

����������� ��������� ����������� ���������

�
�
��
���
�

�
��
�
�

��������

(a) Creation

��

����

�����

�����

�����

�����

�����

����������� ��������� ����������� ���������

�
�
��
���
�

�
��
�
�

����������

(b) Extraction

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

����������� ��������� ����������� ���������

�
�
��
���
�

�
��
�
�

����

(c) Path

��

����

�����

�����

�����

�����

�����

����������� ��������� ����������� ���������

�
�
��
���
�

�
��
�
�

��������

(d) Distance

��

������

������

������

������

������

������

����������� ��������� ����������� ���������

�
�
��
���
�

�
��
�
�

�������

(e) Summary

Figure 7.5: Evaluation Results – Duration per process step

steps, compared to the Storm implementation. Figure 7.5e shows the runtime of the
last processing step, namely summary. When comparing the results, we notice a large
difference between Spark and Storm. The explanation for this gap is as follows: Spark
immediately starts the invocation of output operations for each time slot, even when no
data was received within the period of a time slot. However, when no data is received,
Spark blocks the output operation’s function invocation and waits for a considerable
amount of time. This behavior distorts the results for the last process step, since for
the first few time slots no data has been passed to the output operation as the path
calculations have not been finished. These records have a considerable impact on the

100

��

�����

������

������

������

������

������

������

������

���������������������� ������������������ ����������������

�
�
�
��
�
�

�
�
�
��
�
�
�
�
��
�
�

�����������
���������

�����������
���������

Figure 7.6: Evaluation Results – Latency between process steps

aggregated data.
Considering these results, it might appear that Spark performs significantly better.

However, simply looking at runtimes of single process steps does not include the time
that has been consumed by the framework or for transferring data from one processing
step to another. Using the injected correlation identifiers, runtime measurement records
of different process steps can be connected to each other and the time between the end
time of a step and start time of a following step can be determined. Figure 7.6 depicts
the latency between the processing steps.

We notice that Spark exhibits significantly higher inter-step latencies. However, these
differences can be explained by the looking at the different processing models used by
Spark and Storm. First, Spark creates micro batches over time, which in combination
with a window operation means that after the store method of the Receiver is invoked, it
can take some time until Spark passes the created data record to the next processing step.
Second, since Spark combines data records in RDDs according to the window operation,
the number of records that are transferred from the receiver to the first mapping function
(processing step) can be considerable in size. This especially applies to the scenario with
a data creation delay of only 10 milliseconds. In comparison, Storm emits a tuple as soon
as it arrives at its topology. Finally, Spark and Storm employ different task scheduling
models. Both engines have a fixed number of task executors. However, Spark reserves task
executors for Receivers, which means that a Receiver is running continuously, whereas
functions are scheduled and executed when a task executor becomes available. In Storm,
Spouts are treated equally to Bolts, which means that their executions are also paused
when there are no task executors available. For Spark this means that the extraction step
is only executed when a task executor is available, thus processing steps may be paused.
In contrast, a Receiver is running all the time, which adds an additional delay between

101

�����������

���������

�����������

���������

�� ������ ������ ������ ������ ������� ������� �������

�������������������

Figure 7.7: Evaluation Results – Absolute total duration

these two processing steps. In the processing model of Storm, where Spouts are scheduled
and paused as well, the longest running processing step is the bottleneck, which is the
path step in our application. After an extraction task is executed, it might take some
time until a task executor becomes available for running the path step of the preceded
extraction result, as the task executors might be busy with running other queued path
tasks. When all task executors are busy with executing path tasks, no more tuples are
emitted by Spouts, thus there is no increased latency between the Spout and the Bolt
used for extraction.

To also discuss the total runtime of our application, Figure 7.7 shows the time between
the absolute minimum start time that has been recorded for the creation processing step
and the absolute maximum end time of the summary processing step. We notice that the
Spark implementation performed better for the test run with the 10 millisecond delay
between data creation, whereas the Storm implementation was faster for the test run
with the 1 second delay between data creation.

Based on the gathered results, we showed that our approach enables acquiring perfor-
mance measurements that reflect the differences between the discretized stream processing
model of Spark and the continuous operation processing model of Storm. Whereas the
advantages and disadvantages of these processing models are not the subject of our ap-
proach, the analysis of the gathered results proves the applicability and purpose of our
framework.

7.5 Summary
In general, the runtime performance of applications is a crucial aspect, since applications
that can not fulfill their performance requirements do not provide their intended pur-
pose. Especially in the era of big data with the ever-growing amounts of data, this is
particularly demanding for stream processing applications. In order to allow this type of
applications to deal with the immense load, they must be scaled to multiple machines,
as single machines can not provide the necessary processing power. Scaling applications
appropriately requires actionable performance measurements that need to be acquired by
monitoring the application. Monitoring stream processing applications, however, is a chal-
lenging task, due to their distributed nature. In addition, stream processing applications
often do not provide built-in monitoring functionality that allows gathering and analyz-
ing their runtime performance. Furthermore, traditional runtime environments such as

102

stream processing engines do not allow fine-grained monitoring of deployed applications,
but are only capable of providing engine-specific runtime data, which is not sufficient for
analyzing the performance of an application appropriately. This calls for a structured
approach that allows non-intrusive monitoring of stream processing applications in oder
to acquire application-specific runtime performance data.

In this chapter, we introduced MOSAIC a cloud-based framework that provides a
flexible approach for adding functionality for acquiring and publishing of performance
measurements, at runtime to stream processing applications. The framework allows
integrating different stream processing engines for deploying and executing applications,
a generic domain model for storing and publishing measurements, and a mechanism for
gathering and analyzing these measurements. To evaluate our approach, we developed a
representative stream processing application, which we used for testing and monitoring
its performance by using Apache Spark Streaming respectively Apache Storm as the
underlying stream processing engines. Finally, we discussed the gathered results and
showed that our approach provides actionable insights on the performance behavior of
an application.

103

CHAPTER 8
Analyzing large-scale IoT

Deployments

In this chapter, we present a generic, scalable, and fault-tolerant data processing approach
based on the cloud that allows operators to perform online and offline analyses on gathered
data to better understand and optimize the behavior of the available smart city infras-
tructure. Our approach is designed for easy integration of new data sources, provides
an extensible API to perform custom analysis tasks, and a DSL to define adaptation
rules based on analysis results. We demonstrate the feasibility of the proposed approach
using a scenario application for autonomous intersection management in smart city en-
vironments. Our framework is able to autonomously optimize application deployment
topologies by distributing processing load over available infrastructure resources when
necessary based on both, online analysis of the current state of the environment, as well
as patterns learned from historical data.

8.1 Overview

Smart city applications are large-scale distributed systems that react to and manipulate
their physical environment using an underlying IoT infrastructure. The growing number
of connected devices in current IoT infrastructures poses challenges not only for smart
city applications that need to process and react to data produced by these devices, but
especially for operators of the underlying smart city infrastructure who must ensure that
deployed applications can optimally fulfill their requirements at all times. The inherently
dynamic environment in which smart city applications are executed, creates a number of
challenges. Applications must be able to quickly react to changes in business requirements
and regulations, efficiently manage unreliable and expensive network links, and aim of
maintaining optimal QoS in the face of infrastructure outages. While IoT infrastructures
provide large amounts of performance and health data about the execution environment

105

of smart city applications, this data is currently not effectively used to improve application
execution. Moreover, application management policies for smart city applications that
incorporate infrastructure data must be replicated for each new application. We argue that
IoT application engineering and management can be significantly simplified by providing
a dedicated component for processing, analyzing, and reacting to IoT infrastructure data.

In this chapter, we introduce Ahab, a distributed, cloud-based stream processing
framework that offers a unified way for operators to better understand and optimize
the managed infrastructure in reaction to data from the underlying infrastructure re-
sources, i.e., connected IoT devices, runtime edge infrastructure, as well as the overall
application execution environment. The resulting management policies can be reused
for managing various infrastructure components, and the gathered data can be used to
guide infrastructure evolution.

The remainder of this chapter is structured as follows: In Section 8.2 we motivate our
work using a real-world scenario and outline specific requirements. Section 8.3 introduces
Ahab, an approach to address the aforementioned requirements, along with a detailed
evaluation in Section 8.4. We conclude the chapter in Section 8.5 with a summary.

8.2 Requirements

The success of the smart city paradigm and the advent of the IoT has led to significant
convergence of traditional infrastructure and software systems. Todays cities are evolving
into complex cyber-physical systems of systems integrating billions of connected and
highly distributed devices. These devices are deployed in all vital areas of a city, from
its infrastructure to the citizens, forming a complex network of sensors as well as compu-
tational power. Two core aspects in the evolution of smart cities are transportation and
traffic systems, most notably, the advent of self-driving cars and the evolution of the city’s
infrastructure towards a cyber-physical adaptive system. Traffic systems already start to
react to specific demands, depending on the time of day, weather conditions, and seasonal
changes. Traffic lights as well as speed limits adapt to traffic conditions, road blocks, or
accidents. However, this is only the first step in a natural evolution towards high density
autonomous systems. Future cities will rely on adaptive roads that change according
to their environment, as well as high volume autonomous car networks combined with
multimodal public transport systems that efficiently transport citizens and goods in and
between cities.

In order to enable these systems, it is crucial to provide sustainable computational
capabilities. These systems not only need to react in an on-demand manner, they also
must be able to adapt their processing capabilities accordingly in a fast and highly efficient
manner. Given their complexity, paired with the inherent high availability requirements,
it is not sufficient to rely only on the cloud for computational capacity. To ensure they
work under all circumstances, it is necessary to utilize the computational network of the
IoT infrastructure itself. This has a number of advantages ranging from economical and
ecological benefits to the consideration of utilizing localities like saving bandwidth and
the ability to sustain operations in disaster situations that could affect network uplinks.

106

For demonstration purposes, we consider the case of a multimodal traffic management
system that incorporates autonomous cars as well as means of public transport. The
system itself needs to react depending on daily commuter patterns, weather conditions,
and accidents. It is responsible for coordinating autonomous cars, traffic lights, and one-
way streets, as well as to adapt public traffic interval times accordingly. We specifically
take a look at one of the most demanding elements of such a system, the intersection
control. In order to enable high volume autonomous car traffic and to utilize the benefits
that come with the ability of cars communicating with each other, the system needs to
be able to coordinate hundreds of cars per second, per intersection. This enables the high
density traffic flow that is one of the major benefits of self driving cars in the smart city
domain. To enable this element, it is vital to utilize the available edge infrastructure for
processing to handle the highly varying demand that comes along with it.

8.3 The Ahab Framework

AHAB

Streaming Layer (Lambda Architecture)

Batch Layer

Serving LayerSpeed Layer

HDFS

Service Layer

Policy Repository

Action Repository

Action Executor

Policy Enforcer
Component Repository

Component Handler

Scheduler

Streaming Manager

User API

Stream Repository

M
essaging Infrastructure

M
Q

 1
M

Q
 2

M
Q

 3
M

Q
 n

• • •

Figure 8.1: Ahab – Overview

To address the requirements discussed above, we present Ahab, a distributed, cloud-
based stream processing framework allowing operators to manage and adapt IoT infras-
tructure components and running applications based on information extracted from data
streams published by smart city infrastructure resources. The overall architecture of
our approach is depicted in Figure 8.1 and consists of the following components: (i) the

107

User API, (ii) Repositories, (iii) a Messaging Infrastructure, and (iv) Ahab, the stream
processing framework. In the following, we discuss these components in more detail.

8.3.1 User API

Since our approach should be able to handle different data streams published from
various resources, Ahab provides a User API allowing operators managing smart city
infrastructures, to define which resources of the infrastructure provide data and how
this data can be processed. The API allows operators to register IoT components and
respective management policies, which allows Ahab to adapt registered components based
on information extracted by processing and analyzing incoming data streams. To provide
an extensible and easy way to describe system components in our approach, we integrate
and extend MONINA [53], a language for specifying monitoring and adaptation policies.
Listing 8.1 illustrates a simplified example of a typical IoT infrastructure definition.

Listing 8.1: Sample IoT Infrastructure Definition
stream Response {
processing_time_ms : Integer}

action Scale {
amount : Long}

component Application {
name : String
endpoint {
at "/application"
stream Response
action Scale}}

stream AverageResponse {
processing_time_ms : Integer}

stream ProcessedResponse {
from Application
stream Response as r
create AverageResponse(
avg(r.processing_time_ms))

window 10 seconds}

policy ScaleUp {
from AverageResponse as a
when a.processing_time_ms > 2000
execute Application

.Scale(5)}

In Ahab we introduce the stream concept to refer to both, incoming data streams
provided by infrastructure components, as well as processing streams created by Ahab.
To avoid limiting the structure of incoming data streams, our approach allows registering
custom processing streams, which take care of transformation and further processing.

108

Next, a component defines infrastructure resources that either just produce data streams
(e.g., connected edge devices) or need to react on information extracted from streams.
To allow components to react on extracted information, components can define action
attributes. Actions, together with policy directives, which define adaptation criteria
that need to be met, allow Ahab to autonomously manage and adapt system components.

8.3.2 Repositories

To store registered infrastructure components, used streams, management policies, and
actions, Ahab uses several repositories.

Component Repository Every component that represents a resource in the IoT in-
frastructure (e.g., connected IoT devices) and provides data that can be used to
analyze the overall behavior of the system, gets first registered via the User API and
is stored in the Component Repository. Based on this information Ahab can
correlate incoming data streams with registered components and further process
them accordingly. In addition to components that produce data, operators can also
register components (e.g., IoT applications) that need to be managed and adapted
by Ahab in order to react to incoming or processed data streams.

Stream Repository To keep track of the various incoming data and processing streams
used by Ahab, our approach uses a Stream Repository. According to the in-
formation stored in the repository, operators can easily add additional streams or
management policies that facilitate and further analyze or process data produced
from underlying streams.

Policy Repository Since Ahab not only processes and analyzes data streams, but
also adapts registered components based on policies, operators can register these
policies in the Policy Repository. This approach allows Ahab to keep track
of all registered policies and furthermore allows operators to create generic policies
that are applicable for more than one component.

Action Repository In order to allow Ahab to manage and adapt registered components,
operators need to define and register adaptation actions, which are then stored in
the Action Repository. Once Ahab detects that a certain policy is violated
or can not be met anymore, it tries to find and execute corresponding adaptation
actions.

8.3.3 Messaging Infrastructure

For handling the multitude of data streams, Ahab provides a distributed messaging fabric.
This approach minimizes unnecessary network traffic, compared to a centralized message
bus, and allows components of the system to freely choose the most suitable (e.g., closest)
connection point. For transmitting and consuming data, Ahab uses a publish/subscribe
mechanism, where producing components publish data in the messaging infrastructure to

109

a specific routing key. This routing key contains the name of the component and the type
of data stream it is publishing. For Ahab we distinguish different types of data streams:
incoming data streams, such as access logs or metrics from infrastructure components,
and processing data streams, that process and analyze other data streams to extract more
actionable information. Consuming components of Ahab, which are mostly processing
streams and service layer components, consume data by subscribing to the appropriate
routing key. For example, processing streams that are only interested in logs published
by a specific component define both the specific component name and the type of stream
they are interested in, as routing key. On the other hand, more generic streams that can
be used for several components only specify the type of data stream as routing key. This
approach provides a flexible mechanism that can be easily extended and allows operators
of Ahab to choose the suitable data granularity.

8.3.4 Ahab Architecture

The enabling stream processing approach is a cloud-based framework depicted in the
center in Figure 8.1. Ahab is separated in two layers. On the bottom, the Streaming
Layer handles and processes data streams, and is implemented as a Lambda Archi-
tecture1. On top, the Service Layer is handling the underlying streaming layer and
takes care of analyzing, managing, and adapting registered components. In the following,
we discuss these two layers in more detail, present the main components of Ahab, and
describe how they interact with each other.

Streaming Layer

To handle massive quantities of real-time data and also provide batch processing of, e.g.,
historical data, the streaming layer of Ahab is implemented as a Lambda Architecture.
In general, the Lambda Architecture is a generic, scalable, and robust data processing
system, specifically designed to serve massive workloads and a wide range of use cases. To
balance latency, fault-tolerance, and throughput, the Lambda Architecture combines both
batch processing and stream processing capabilities. Lambda Architectures use batch
processing to provide accurate and comprehensive views of batch data, while concurrently
running stream processing produces views on real-time data.

The streaming layer of Ahab contains the following sub-layers, as proposed by the
Lambda Architecture: a batch layer, a speed layer and a serving layer. First,
all data that enters Ahab via the messaging system is dispatched to both the batch and
speed layer for further processing. The batch layer stores the data in HDFS2, grouping
data originating from the same source. The batch layer then precomputes views by using
all available data in HDFS. These views are subsequently used by the serving layer.
The serving layer indexes the views produced by the batch layer in order to provide
ad-hoc querying. To compensate for the high latency of updates to the serving layer, the
speed layer only deals with recent data. The speed layer provides online processing of

1http://lambda-architecture.net
2https://hadoop.apache.org

110

http://lambda-architecture.net
https://hadoop.apache.org

data streams, which means that results are available almost immediately after data is
received by Ahab. While these results might not be as accurate or complete as views
generated by the batch layer, they can be updated as soon as the results of the batch
layer for the same data are available. By combining batch and real-time views in the
serving layer, Ahab can serve massive quantities of incoming data and also cover a
broad area of use cases. This approach allows for optimizing components either based on
real-time information (e.g., to handle critical situations), or based on batches of historical
information, or using a combination of both.

As underlying stream processing engine we employ Apache Spark3 respectively Apache
Spark Streaming running in a Hadoop cluster. Spark provides a unified processing engine
and programming model that natively supports processing both stream and batch work-
loads. Spark discretizes streaming data into micro-batches [142], packages them into small
tasks, and assigns them to resources (workers) for processing. In order to deal with large
workloads, Spark provides an optimized load balancing and resource usage mechanism,
which allows utilizing workers of the cluster more efficiently by dynamically assigning
tasks to workers based on locality of data and available resources. In addition, by using
small discretized tasks that can run on any resource without affecting correctness, Spark
provides fast failure discovery.

Service Layer

On top of the streaming layer, the Service Layer manages the underlying streaming
layer and registered components based on actionable information produced by streams,
policies, and adaptation actions. The design of the service layer follows the microservice
architecture approach [87], which enables building a scalable, flexible, and evolvable
framework. Especially the flexible management and scaling of services is important for
Ahab in order to enable efficient and fast adaptation of components. In the following we
introduce the main components of the service layer.

Component Handler To process incoming data streams produced by infrastructure
components or to optimize managed infrastructure components with Ahab, operators have
to register them using the User API, by providing the following information: (i) name of
the component, (ii) an endpoint that defines where the component is reachable, (iii) data
streams that get published, and (iv) actions that can be executed to adapt the component.
This information is then transformed by the Component Handler using the MONINA
language and stored in the component repository.

Streaming Manager Since Ahab is not only handling incoming data streams pro-
duced by various infrastructure resources (i.e., components), but also allows operators
defining custom streams that process and analyze other data streams managed by Ahab,
the Streaming Manager is responsible for efficiently managing this large number of
streams.

3http://spark.apache.org

111

http://spark.apache.org

When new components are registered using the User API, the manager generates
a new key for each provided stream in the component description. This key is then
registered in the stream repository and can be used by other streams to consume this
stream via the messaging infrastructure. To register custom streams, Ahab provides
two mechanisms for operators. First, simple streams can be defined using the MONINA
language and registered via the User API. This definition is then translated by the
streaming manager into an actual streaming application that implements the behavior of
the stream. Second, Ahab provides a streaming library that allows operators to develop
custom streaming applications that implement more complex streams. The developed
streaming application is then registered using the User API.

Next, the streaming manager analyzes the streaming application, extracts which
streams are produced by the respective application, generates corresponding keys and
registers them in the stream repository. Finally, the manager invokes the scheduler to
submit the new streaming application to the streaming layer.

Scheduler Since custom streams need to be executed in Ahab’s streaming layer, the
Scheduler is responsible for submitting custom processing streams represented as
streaming applications to this layer. When invoked, the scheduler first analyzes which
streams are consumed and calculates the needed processing power (e.g., number of cores)
for executing this application. Based on the used streams the scheduler decides whether
the application should be executed in either the batch or speed layer of the streaming layer.
Next, the application is packaged with the required streaming library and additional
execution parameters, and finally submitted to the streaming layer where it is executed
in the underlying streaming engine.

Policy Enforcer To manage registered components, Ahab uses a policy based ap-
proach, where operators can define management policies using the MONINA language
and register them via the User API. Furthermore, operators can register specific adapta-
tion actions that should be executed when a policy violation is detected. These policies
are then stored in the policy repository and forwarded to the Policy Enforcer. For
each policy registered in the repository, the policy enforcer creates a policy stream that
specifically implements the defined policy. This policy stream is then executed using the
scheduler and triggers a notification once it detects that the policy can no longer be met.

Action Executor In order to handle notifications triggered by the policy streams,
the Action Executor is used. The action executor continuously listens for incoming
notifications. When it receives a notification, it analyzes which policies are violated and
checks the repositories to find suitable adaptation actions for each affected component.
Then, the list of found actions is executed to adapt the component and therefore guarantee
that the management policy is met again.

112

8.4 Evaluation

To evaluate our approach we implemented a smart city demo application based on the
scenario identified in Section 8.2. Next, we created a test setup in the cloud using CoreOS4

to virtualize edge devices of our IoT infrastructure as Docker5 containers.
In the remainder of this section we give an overview of the developed smart city demo

application, discuss the concrete evaluation setup, present different evaluation scenarios,
and analyze the gathered results.

8.4.1 Smart City Demo Application

In order to evaluate our approach we developed a demo application that implements
the concept of Autonomous Intersection Management6 (AIM) [43], which presents an
essential element in enabling autonomous cars in a smart city environment. To fully
utilize the autonomous capabilities of self driving cars to allow the high volume traffic
in our presented scenario it is essential to enable intelligent resource management.

One area where the demand for such an intelligent mechanism is especially demand-
ing, are road intersections. Currently, cities use traffic lights and dozens of signs to assist
human drivers to safely pass road intersections. However, with the upcoming advent of
autonomous cars the AIM project shows that it is vital to adapt modern-day intersec-
tion management in future smart cities allowing autonomous vehicles to interact with
intelligent traffic control systems to enable more efficient and effective traffic manage-
ment. Considering the huge numbers of cars in our scenario, we also need a way that
allows smart city operators to scale such intelligent control systems by using any kind
of available processing power of a smart city infrastructure (e.g., cloud resources or edge
infrastructure).

To demonstrate this aspect, we developed a simple traffic control application that
handles incoming requests sent from autonomous cars. These incoming requests get
processed by the application to determine if a car’s intended path is safe to use or not.
To deal with the load generated by the autonomous cars, the application can offload the
computation to available resources, which allows scaling across infrastructure boundaries.
Furthermore, to analyze the application’s performance, the application publishes metrics
such as request load and response time.

8.4.2 Setup

For the evaluation of our framework, we created an IoT testbed in our private OpenStack7

cloud. We reuse a Docker image from our recent work [129] to virtualize and mimic a
physical edge device in our cloud. To run several of these virtualized devices, we use a
CoreOS cluster of 5 virtual machines, where each VM is based on CoreOS 607.0.0 and

4https://coreos.com
5https://www.docker.com
6http://www.cs.utexas.edu/~aim/
7https://www.openstack.org

113

https://coreos.com
https://www.docker.com
http://www.cs.utexas.edu/~aim/
https://www.openstack.org

uses the m1.medium flavor (3750MB RAM, 2 VCPUs and 40GB disk space). To simulate
a medium scale IoT infrastructure we use 100 virtual edge devices evenly distributed
among the CoreOS cluster.

As our messaging infrastructure we use a RabbitMQ8 cluster consisting of 3 VM nodes
using Ubuntu 14.04 and the m1.small flavor (1920MB Ram, 1 VCPUs and 40GB disk
space). Since the streaming layer of Ahab is based on Spark Streaming and Hadoop, we
use a Hadoop cluster consisting of one master node (Ubuntu 14.04 VM and m1.medium
flavor) and 8 worker nodes (Ubuntu 14.04 VM and m1.small flavor). The service layer is
hosted on an additional VM using Ubuntu 14.04 and the m1.medium flavor.

Finally, the smart city demo application is deployed on a separate VM using Ubuntu
14.04 and the m1.small flavor.

8.4.3 Scenario 1

In the first experiment we use Ahab to elastically scale the smart city demo application
across the available IoT infrastructure by analyzing the stream of metrics published by
the application. More specifically, in this scenario Ahab calculates, for each request sent to
the application the response time and the number of concurrent requests per second. Next,
Ahab analyzes logs published by the IoT infrastructure to detect how many devices are
currently used by the application and how many are still available (i.e., idle). In addition
to these processing streams, we define a stream that detects changes in the response
time of the application by using a sliding window of 4 seconds that gets updated every
2 seconds. In this window the stream calculates the average of the windowed response
times and triggers a notification whenever the average changes. Finally, we define a policy
that defines the allowed threshold for the average response time increase and an action
for scaling up the application by providing additional idle infrastructure devices that can
be used. Furthermore, we also define a stream that detects when the current number of
requests drops or infrastructure devices are not used anymore. Based on this stream, we
define a policy for scaling down the application by releasing infrastructure devices.

Figure 8.2 illustrates the evaluation results for the first scenario. The x-axis shows
the temporal course of the evaluation in seconds. In the ’requests per second’ section we
see that we started the evaluation by sending 10 concurrent requests per second to the
application and increase the load stepwise every 30 seconds to see if Ahab can scale up
the application. Finally, at 120 seconds we reduce the load to 10 requests per second to
see if Ahab is also able to scale down the application. In the ’response time’ section we see
the response time for each incoming request. The ’devices’ section illustrates the number
of used edge devices by the demo application. The ’logs’ section represents the processed
incoming data stream of logs and metrics. Finally, the ’actions’ section illustrates when
Ahab detects that a policy was violated and triggers a respective action to compensate
the violation. We executed this experiment 10 times, where each run produced almost
identical results.

8http://www.rabbitmq.com

114

http://www.rabbitmq.com

��

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������������

��������

���

���

���� �����

���

���

���
��������

���
���
���
���

�������������������

�����

�����

����������������������������

Figure 8.2: Evaluation Results – Scenario 1

For the first interval of requests, we see that the response time of the application is
almost constant. At 30 seconds, we doubled the requests per second and see that the
response time rises, which indicates that the application is overloaded. At 33 seconds,
Ahab detects that the response time increase is too high, initiates a scale up action,
allowing the application to use 5 additional idle edge devices for handling the load.
Since at this point a lot of requests got queued up by the application, Ahab issues one
action per second until 44 seconds, where finally the application can handle the load by
using in total 60 devices. After the response time reaches a normal level again and the
application is only using a fraction of the devices to handle the requests, Ahab issues
another action for scaling down the application and releasing devices. We see that the
following 2 increases in requests per second at 60 and 90 seconds were also detected and
analogously handled by the framework. Furthermore, for increasing requests and number
of used infrastructure devices the incoming stream of logs and metrics that needs to be
processed and analyzed by Ahab also increases. Finally, at 120 seconds, we see that the
load drops from 40 to 10 requests per second, which is also detected by Ahab, leading
to 2 actions for scaling down the application again. In general we see that Ahab is able
to elastically scale the application by only using information extracted from published
real-time data. Furthermore, considering the amount of data that has to be processed,
Ahab is performing well and provides good results.

115

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������������

��������

���

���

���� �����

���

���

���
��������

���
���
���
���

�������������������

�����

�����

����������������������������

Figure 8.3: Evaluation Results – Scenario 2

8.4.4 Scenario 2

In the second experiment, we once more use Ahab to elastically scale the smart city demo
application, but in addition to analyzing and processing real-time data, as done in the
first experiment, we now also consider historical data. For that reason we extend the first
experiment to not only store incoming data to HDFS, but also save detected changes
in the response time and respective actions. We furthermore added a batch processing
stream that analyzes how Ahab compensated detected changes in the response time of
the demo application in the past by using the historical information stored in HDFS. By
also considering extracted information from historical data Ahab should be able to scale
the demo application more efficiently when handling policy violations. We also repeated
this experiment 10 times and each test run produced almost identical results.

Figure 8.3 illustrates the evaluation results for the second scenario. For the first
request increase at 30 seconds, we see the same result as in the first scenario. Ahab
scales the application stepwise, using 5 devices per step, until the application is able
to handle the load and the response time reaches a normal level. This is done since at
this time there is no historical data present that can be used by Ahab. At 44 seconds,
Ahab detects that not all assigned devices are used by the application and issues another
action to release idle devices. At 60 seconds we see the next request increase and once
more the response time of the application rises. However, to compensate this increase,
Ahab now uses the data collected from the previous compensation process and scales up
the application by using 60 additional idle devices at once. By doing so, we see that the

116

response time increase is compensated faster and that the overall compensation process
takes only 5 seconds, compared to the initial one with more than 10 seconds. For the
next request increase from 30 to 40 at 90 seconds, we see that Ahab once more uses
the historical data to scale up the application. In general we can conclude that by using
information from both real-time and historical data, Ahab is able to react faster and more
efficiently on changes, which leads to improved performance and less policy violations.

8.5 Summary
Todays smart cities produce an ever growing amount of data. These data streams contain
various kinds of information such as monitoring events from underlying infrastructure,
metrics published by used toolsets, as well as logs produced by executing smart city
applications. This vital information about the smart city environment can be used to
adapt and optimize different layers of the infrastructure in order to allow for more efficient
execution and management of smart city applications. Therefore, efficient capturing,
processing, storage, and analysis of this information is of upmost importance in the
smart city domain, but is not sufficiently addressed by current approaches.

In this chapter, we introduced Ahab, a cloud-based, generic, scalable, and fault-tolerant
big data analytics framework that allows operators to perform online and offline analyses
on the gathered data. Based on this extracted actionable information operators are able
to better understand and optimize the behavior of the managed smart city infrastructure.
Ahab is designed to easily integrate new data streams and provides extensible APIs to
perform tailored analysis tasks. To allow for the flexible definition of adaptation rules,
the framework furthermore provides a DSL based on the MONINA language. In order
to demonstrate the feasibility of the proposed approach we implemented an example
application for autonomous intersection management in smart city environments and
showed that our framework is able to autonomously optimize application deployment
topologies by distributing processing load over available IoT infrastructure resources
when necessary. Our approach allows using both, online analysis of the current state of
the environment, as well as patterns learned from historical data, in order to manage
and adapt application deployments more efficiently.

117

CHAPTER 9
Related Work

In this chapter, we discuss the most important related research work in the context of this
thesis. This includes work from various areas such as provisioning, deploying, monitoring,
and analyzing IoT applications as well as their supporting infrastructure.

9.1 Related Work on Provisioning IoT Deployments

Since currently IoT applications are receiving a lot of attention, we notice that the scale
of these applications can vary from embedded services to enterprise applications. In order
to address different ways of designing, developing, deploying and managing applications
not only in the cloud, but also in the underlying IoT infrastructure, [94] presents initial
guiding principles. In addition, [121] presents challenges for building a city-scale IoT
framework, where among others the important challenge of fine-grained provisioning
and management of resources is discussed. To tackle some of the aforementioned chal-
lenges, [13] defines an abstract IoT reference architecture for standardizing the Internet
of Things. In addition, [114] addresses general problems of managing resource constrained
devices, which are often used for building IoT solutions, by adopting existing network
management protocols. Based on general challenges and reference architectures, plat-
forms specifically targeted for deploying and provisioning of IoT applications emerged.
INOX [25] is a robust and adaptable Platform for IoT that provides enhanced applica-
tion deployment capabilities by creating a resource overlay to virtualize the underlying
IoT infrastructure. An additional abstraction layer on top of the IoT infrastructure is
frequently used in the literature (e.g., [67, 83]), which allows keeping the underlying
infrastructure untouched when deploying an IoT solution. In contrast, in this thesis we
consider IoT devices as first-class execution environments, which provides more control
and better resource utilization. The Smart-M3 platform [60] aims to create a M3 space
by deploying agents on IoT devices that interact based on a space-based communication
model. Although the authors mention the provisioning of IoT devices, they solely focus

119

on the actual application design. [23] introduces over the air provisioning of IoT devices
using Self Certified ECDH authentication technology. Although this approach shares the
same general idea, the authors explicitly focus on one specific device and do not provide
a general and scalable approach. [96] presents a solution for automatic configuration
of IoT devices based on interpretable configurations. Compared to our approach, the
authors assume pre-installed application components on IoT devices and only focus on
provisioning application-specific configurations.

Configuration management solutions represent another important area of interest,
which in general address a similar problem. The most prominent representatives being
Chef [93] and Puppet [101]. However, current tools come with the following limitations
that make them unsuitable for the IoT domain. First, they are inherently pull based
approaches with clients running on the respective machines, making push based hot fixes
(e.g. important security updates) impossible. Second, dependency resolution is usually
handed off to a distribution package manager, which is not suitable for the strongly
resource-constrained environments we are dealing with.

Finally, since our approach provides an optimization for provisioning edge devices
in the domain of building management, we also have to consider relevant work in this
research topic. Among others, [99] presents an approach that achieves energy related opti-
mizations for buildings by running simulations in the cloud. In addition, [100] proposes a
service-oriented platform that allows performing (near) real-time energy optimizations for
buildings. While these approaches specifically focus on energy optimizations in buildings
at the application level, our approach aims at optimizing deployment topologies on the
infrastructure level.

9.2 Related Work on Deploying and Optimizing IoT
Applications

In the literature the overall terminology of IoT is well-defined [28, 73]. However, the
characterization of IoT applications is not that clear. First, IoT applications can be
defined as applications that hide the underlying IoT infrastructure by introducing an
abstraction layer [42, 61, 89, 97] and on top of that layer execute business logic in
the cloud [69]. Second, there are distributed applications that consist of an enterprise
application for managing underlying devices, and simple application parts that reside in
components that are deployed in the edge infrastructure and allow for sensing as well as
reacting to their environment [26, 143]. Both approaches have in common that devices,
which are deployed in the IoT infrastructure, are defined as external dependencies. Hence,
these devices are not considered as an integral part when designing and developing an
application. In order to address this issue, recent approaches explicitly respect IoT devices
as part of the application that require efficient management in order to provide scalable
as well as flexible IoT applications [58, 85, 120, 138]. However, none of the approaches
discussed so far considers provisioning and deploying parts of the application on resource-
constrained devices that provide limited execution environments [114], which would help
facilitating this untapped processing power for building robust and adaptable applications.

120

For the actual deployment of applications, there exists only a limited amount of prior
work (e.g., [20, 66, 76, 102, 104]) in the literature that deal with the location-aware
placement of cloud application components. In contrast to our approach, these works do
not support placing application components on constrained edge infrastructures in order
to allow for improving the deployment topology of an application.

Additionally, since our approach also allows for optimizing an application deploy-
ment topology, we also have to consider relevant work in this research topic. There is a
significant body of work on optimization algorithms for adapting deployments of cloud
applications. Among others (e.g., [64, 71, 140]), Emeakaroha et al. [37] present a schedul-
ing heuristic for cloud applications that considers several SLA objectives. The approach
provides a mechanism for load balancing the execution of an application across available
cloud resources, as well as a feature for automatically leasing additional cloud resources
on demand. Frey et al. [38] introduce CDOXplorer, a simulation-based genetic algorithm
for optimizing the deployment architecture and corresponding runtime configurations of
cloud applications. By applying techniques of the search-based software engineering field,
CDOXplorer analyzes the fitness of a simulated set of possible application configurations,
which allows for optimizing the overall application. Wada et al. [134] propose an evolu-
tionary deployment optimization for cloud applications. By introducing a multi objective
genetic algorithm that provides a set of optimal deployment configurations, the authors
are able to optimize the application deployment to satisfy SLAs under conflicting quality
of service objectives. In contrast to our work, none of the approaches presented so far,
considers application topologies that are deployed on edge devices, and therefore can be
seen as supplemental approaches to our notion of IoT deployments.

Next to algorithms, several approaches emerged in the literature that are specifically
targeted at adapting application deployments in the cloud. For example, Menasce et
al. [79] present Sassy, a framework that enables applications to be self-adaptive and
self-optimizing. Based on a self-architecting approach, Sassy provides a near-optimal ap-
plication deployment by considering both quality of service and functional requirements.
Kritz [62] introduces AppScale, a cloud platform that allows deploying and scaling appli-
cations over diverse cloud infrastructures. By offering a set of APIs, AppScale provides
operators of cloud applications simplified development, easy deployment, and transparent
optimization mechanisms. CloudScale [65] is a middleware for building applications that
are deployed on and running in the cloud. By using a transparent approach, CloudScale
enables the development of cloud applications like regular programs without the need for
explicitly dealing with the provisioning of cloud resources. In order to scale applications,
CloudScale provides a declarative deployment model that enables operators to define
requirements and corresponding policies. Compared to our approach, all these platforms
have in common that they transparently adapt the application topology by optimizing
the underlying cloud deployment. However, by only focussing on one specific type of
infrastructure (i.e., the cloud), these platforms do not provide a generic approach that can
also be used for optimizing application deployments on edge infrastructures as proposed
in this thesis.

Since in this thesis we also focus on deploying traditional heterogeneous IoT appli-

121

cations with TOSCA, in the following we will present related work in this context. The
research and application of TOSCA is still in its infancy. The early works are gener-
ally focused on exploring the possibilities of applying TOSCA for various management
tasks, thus providing feedbacks to the standardization efforts and gaining experiences for
industrial adoption. Wettinger et al. [135] present several concepts that integrate both
model-driven cloud management and configuration management. The goal of the overall
approach is to combine the advantages of these service management paradigms based
on TOSCA. Binz et al. [15] use TOSCA to describe application topologies in a portable
and manageable way. Based on this common TOSCA description the authors present an
approach that merges two application topologies into one, to save resources by sharing
similar components, but preserve the functionality of both applications. Breitenbucher et
al. [18] propose an approach that enables the management of composite applications and
their deployment on a higher level of abstraction. Furthermore the authors show how
high and low level management tasks can be implemented separately and fully automated
applied to the respective applications, by facilitating the features of TOSCA. The work
proposed in this thesis is well in line with these early academic works on applying TOSCA
to various scenarios. We present the first effort of extending the application scope of
TOSCA to an even more challenging area—IoT applications.

In this thesis we used Niagara and Sedona for demonstrating our TOSCA-based de-
ployment approach. However, there are also other IoT frameworks that aim at facilitating
device integration, protocol normalization and IoT application development. As these
frameworks approach IoT infrastructures with different focuses, they are incompatible
with each other and more of such frameworks are expected to emerge in the future. IoT-
SyS1 [57] is a gateway concept that integrates various sensor and actuator systems, which
can be found in current home and building automation systems. The integration middle-
ware provides a stack of communication protocols for embedded devices based on various
standards to support interoperability that gets directly deployed on 6LoWPAN devices.
openHAB2 presents an integration platform that operates on a higher level of abstraction.
The architecture is based on an event bus in combination with a publish-subscribe pat-
tern, realized on OSGi. To integrate any kind of device of an IoT infrastructure, abstract
items are defined that represent these devices. In addition, bindings are used to bind
items to concrete hardware, protocols or interfaces. This concept allows the platform to
be vendor-neutral and hardware/protocol-agnostic. Since in IoT Systems most devices
use their own proprietary communication stack and interfaces, it is challenging to offer
the gathered data in a standardized way. Dawson-Haggerty et al. [29] propose sMAP that
tries to overcome this challenge by presenting physical information via RESTful interfaces
using a simple JSON schema. This allows consumers to retrieve data, without the need
to access the underlying infrastructure and dealing with proprietary formats. Based on
sMap, Dawson-Haggerty et al. [30] present BOSS, a distributed system that provides
a collection of crucial, common and reusable services that enable the development of
portable and robust applications for heterogeneous physical environment.

1https://code.google.com/p/iotsys/
2http://code.google.com/p/openhab/

122

https://code.google.com/p/iotsys/
http://code.google.com/p/openhab/

All introduced frameworks require considerable efforts to understand their applica-
tion management process, and tedious manual configurations are a norm. Our work is
complementary to the aforementioned frameworks. To be best of our knowledge, this
thesis presents the first attempt to address the IoT application deployment problem by
using a domain-independent standard to explicitly specify the component topologies and
management operations.

9.3 Related Work on Monitoring IoT Applications

With the advent of big data with ever growing data volumes, it is important that ap-
plications that deal with this data perform well in order to deliver the intended benefit.
Therefore, monitoring of applications is crucial as it enables organizations to analyze and
assess the performance of their applications. Ganglia [75] is a monitoring framework for
distributed systems. It centrally collects certain metrics, such as CPU usage, memory
as well as process information of nodes in a distributed system and allows visualizing
collected data. Ganglia is based on a hierarchical design and relies on a multicast-based
protocol. In contrast to our approach, Ganglia is strictly bound to a defined list of met-
rics, which for example does not allow monitoring runtime performance of single process
steps of an application. Imamagic et al. [52] present Nagios, an open source solution
for monitoring network services in order to detect failures. A service in Nagios can be
represented as a host, a network or a service metric (e.g., process runtime). Nagios is built
as a distributed system consisting of a server that collects data from sensors by using
a plugin. Compared to our approach that allows collecting and analyzing performance
measurements, Nagios focuses on states, which means that any performance measurement
acquired, must be reduced to a state by defining thresholds for metrics. Additionally,
Nagios does not provide any mechanism for monitoring applications that do not measure
any performance metrics by default. Di Nitto et al. [32] propose MODAClouds a platform
for monitoring that automatically improves quality of service attributes of cloud-based
services. The overall approach consists of a monitoring platform, a self-adaption platform,
and an execution platform. The monitoring platform gathers and analyzes data, collected
by data collectors. Compared to our approach, data collectors do not create measurement
data, but collect data that has already been created by some other component or appli-
cation of the system. Moldovan et al. [81] introduce MELA, an approach for monitoring
and analyzing elastic services deployed in the cloud. Based on monitored metrics, the
authors focus on determining relationships among performance, cost, and resource usage
of a service. In order to do that, the authors propose elasticity relationships of elastic
services, which are used for applying analyses techniques. However their approach is also
capable of collecting and analyzing monitoring data of services respectively applications,
the authors rely on data that is either emitted by the service or the execution envi-
ronment. In contrast, our approach allows collecting and analyzing measurements from
applications that do not provide any built-in monitoring capabilities.

Leitner et al. [64] propose an approach for monitoring high-level performance metrics
of cloud applications based on complex event processing. The approach is based on a multi-

123

step event correlation approach, which in combination with a hierarchy of predefined
events, allows specifying and monitoring application performance metrics. Although
the authors provide a flexible and extensible monitoring approach, they solely focus on
measurement data created by applications or infrastructure components. Thus, their
approach does not allow to monitor applications that do not provide this feature. Yuen et
al. [141] present a scalable network for monitoring distributed applications. The network
consists of proxies that collect performance data from applications and then report this
data to distributed monitors in order to aggregate the data. To reduce the delay caused
by the monitoring approach, the authors introduce a monitoring algorithm called SMon,
which continuously adapts the network in real-time. However, this work shares similarities
with our approach, it focuses on the actual collection of performance data and does not
provide a mechanism to acquire and analyze the gathered results. Frischbier et al. [39]
discuss ASIA, an approach for monitoring distributed event-based enterprise systems.
ASIA provides a mechanism for effectively monitoring the state of a distributed system
by dynamically integrating functionality for monitoring into components of the system
at runtime, which is based on aspect-oriented programming. Even though this work
is similar to our approach, the authors do not provide a flexible and extensible model
for defining measurement data. Funika et al. [40] introduce a system for monitoring
performance of distributed applications. By using semantic information about monitored
components allows automated guidance in order to fine-tune measurements. This can
be used for identifying possible performance flaws faster and enables reacting on certain
events more efficiently. In contrast to our approach, this work only considers applications
that provide built-in monitoring functionality and additionally does not allow distributing
and collection measurement data. Li et al. [72] present Sparkbench, a platform specifically
built for evaluating Spark-based stream processing applications. Although Sparkbench
shares similarities with our approach, it is targeted for Spark and therefore not applicable
for other stream processing platforms.

Next to systems that are specifically built for acquiring monitoring information, most
stream processing engines already provide built-in monitoring functionalities. Apache
Storm [6] provides special bolts to collect and publish metrics [7]. In essence the pre-
defined metrics are categorized into system metrics (e.g., memory usage) and topology
metrics (e.g., topology statistics such as tuples emitted per minute). For adding custom
metrics Storm provides an API. However, compared to our approach, the functionality for
acquiring custom metrics would require changes in the application code. Apache Spark [4]
provides performance data of system components via Metrics [5]. Although Spark provides
mechanisms for publishing measured data to various mediums, the monitoring capabilities
are limited to engine-specific components of Spark.

9.4 Related Work on Analyzing IoT Deployments

With the advent of the smart city paradigm and its enablers, IoT [11] and the Cloud of
Things (CoT) [33], modern cities produce an ever growing amount of data that needs to
be handled. To allow cities and governments to facilitate these large data sets, commonly

124

referred to as big data [16, 77], effective management, processing, and analysis is of
upmost importance. Recently, big data has received a lot of attention not just from cities
and governments, but also from academia and industry. In general, when dealing with
big data we can identify the following key challenges [10, 22] relevant for our approach.
First, the management of big data, which comprises handling and storing big amounts
of data efficiently and effectively. For storing data, Chang et al. propose Bigtable [21],
a distributed storage system, which allows for managing structured data. Bigtable is
specifically tailored for handling and storing petabytes of data that are distributed across
huge clusters of servers. Based on a simple data model that provides clients dynamic
control over data layout and format, Bigtable provides a flexible and high-performance
solution for managing big data. In addition to Bigtable, there are also various other
approaches available for storing big data (e.g., [63] and [31]). Next to storing, also the
overall management of data is important. The cloud computing paradigm [3] emerged as
a potential candidate that can provide the necessary resources to deal with the immense
load needed for handling big data. Sakr et al. [107] and Ranjan et al. [105] present basic
goals and challenges for deploying data-intensive applications in the cloud. In addition, Ji
et al. [55] provide a comprehensive overview of commonly used approaches for processing
big data in the cloud. In addition to general challenges and issues, Xhafa et al. [137]
propose an approach for processing big data streams in real time by facilitating the
Yahoo!S4 (the simple scalable streaming system). The approach facilitates S4’s actor
model in order to allow for distributed computing. To demonstrate the feasibility, the
authors evaluated their approach by using real time data streams from a global flight
monitoring system. Based on the evaluation the authors were able to show that their
approach provides reasonably fast results. Compared to our approach, the authors solely
concentrate on processing real time data and do not store data for later batch processing to
extract additional information. In contrast to classical stream processing systems [1, 136]
that use a fixed amount of processing nodes, Heinze et al. [44] present an elastically
scalable data stream processing system based on FUGU [45]. By using a model that
analyzes and estimates latency spikes generated by scaling the system up and down,
the authors propose an elastic latency-aware algorithm for the placement of stream
processing operators to minimize SLA violations. Based on an evaluation the authors
show that their approach can significantly decrease latency violations by postponing
scaling decisions and allows the system to adapt its scaling strategy based on user input.
Although this approach shares similarities with our work, our approach adapts managed
infrastructure components based on knowledge extracted from processed data streams.
Satzger et al. [108] propose ESC, a stream computing platform. In order to adapt to
varying computational demands, ESC facilitates the cloud to dynamically attach and
release resources. Furthermore, ESC provides a simple programming model based on
DAGs that hides underlying aspects such as load distribution from the user. In contrast
to our approach, the need for storing data for historical purposes is not addressed in this
work.

In addition to processing, analyzing big data is a vital aspect. Hummer et al. [48]
present a scalable platform that allows active event-based aggregation of data streams.

125

The approach provides an active query model and a language to correlate data streams.
To handle the immense workload, the platform is designed for distributed query execution
and can be deployed in the cloud. In order to provide more accurate system analytics,
Chen et al. [24] present a query execution model that can be applied on both static
relational data and dynamic streaming data. Based on this execution model the authors
propose a system that combines stream processing and database capabilities. Although
this approach also considers both real time and historical data, it does not provide a
complete and general solution that can be used to adapt infrastructure components. In
order to combine processing and storing of big data in the context of IoT, Villari et al. [126]
propose AllJoyn Lambda. The authors use AllJoyn, a communication platform for IoT
devices, and integrate it with a Lambda Architecture. With this approach the authors
provide a scalable solution for processing and storing big data, and furthermore allow real
time analytics. While this approach also uses a lambda architecture for managing both
real time and batch data, the authors solely focus on processing and storing of data, but
do not provide a generic user interface that allows operators of smart city infrastructures
to facilitate extracted information.

126

CHAPTER 10
Conclusions

In this chapter, we summarize the main results of this thesis. In Section 10.1 we discuss
the core outcomes of the conducted work and how the state of the art in research was
advanced as part of this work. Then, the research questions posited in Section 1.2 are
revisited and critically analyzed in Section 10.2. Finally, in Sections 10.3 and 10.4 we
present open topics in related research areas for future research and discuss ongoing work
that builds on the contributions presented in this work.

10.1 Summary of Contributions

With the emergence of IoT, stakeholders in the smart city domain started to deploy IoT
devices that provide capabilities for sensing and manipulating their environment. On
top of deployed IoT devices and available smart city infrastructure, IoT applications
emerged as powerful tools for stakeholders to provide innovative smart city services for
citizens. However, IoT applications have to manage large amounts of data provided by the
rapidly growing number of IoT devices in order to fulfill their requirements. Thus, such
applications need the ability to fully utilize the complete range of available infrastructure
resources in a smart city. Therefore, in this thesis we presented novel approaches that
enable efficient operation and management of IoT applications in a smart city ecosystem.
By integrating the proposed approaches into a comprehensive middleware toolkit, the
contributions of this thesis represent the first steps towards a Smart City Operating
System (SCOS) that will serve as a central element in future smart city application
ecosystems. SCOS is designed to resemble a modern computer operating system, providing
unified abstractions for underlying resources and management tasks, but is specifically
tailored to the city scale. This approach enables building IoT applications by only focusing
on specific demand, while completely hiding the complexities and problems of operating
applications. Figure 10.1 provides an overview of SCOS and highlights its building blocks
that can be directly mapped to contributions of this thesis. In the following we will

127

summarize the contributions of this thesis and discuss how they build the foundation of
SCOS.

Smart City Operating System

Data

La
ye

r

App
lic

ati
on

La
ye

r

Inf
ras

tru
ctu

re

La
ye

r

Cross-Cutting
Concerns

Design &
Development Runtime Environment

S
ecurity &

C
om

pliance

Processing & Analysis

Infrastructure
Management

Storage & Access

Operations
Management

Tenant
M

anagem
ent

Lifecycle Management

 Configuration
Management

Figure 10.1: Smart City Operating System – Thesis Contributions

In this thesis, we first introduced a methodology that makes IoT devices first class cit-
izens in the design, development, and operation of IoT applications. This allows building
more resilient and performant IoT applications by fully leveraging the available capabil-
ities of these resources. Since managing and configuring the underlying infrastructure
resources is a vital part of the Infrastructure Layer of SCOS, we presented an elastic
provisioning approach that allows for addressing the intrinsic heterogeneity of currently
available IoT devices by respecting the significant differences in resource capabilities
(e.g., available storage and processing resources), as well as deployed and deployable
software components. In addition, the presented approach is specifically tailored to the
resource-constrained nature of IoT devices in order to enable installing as well as updat-
ing software and application capabilities on these devices. Furthermore, to deal with the
massive number of connected IoT devices in the smart city, the presented approach is de-
signed to be elastic and scalable in order to deal with these large-scale deployments. Next,
the Application Layer of SCOS should provide methodologies and tools to support the
efficient design, development, and operation of IoT applications. To address this aspect,
we introduced a declarative, constrained-based model that describes IoT applications as a
set of clearly separated components to enable the independent deployment of application
components across infrastructure boundaries. Based on this model, we derived a deploy-
ment approach to provision elastic IoT application deployments, whose topology can
change over time. By carefully deciding when to deploy certain application components
on IoT resources or cloud infrastructure, the approach allows to effectively manage the in-
herent cost-benefit trade-off of using edge infrastructure, leveraging cheap communication
at the infrastructure edge while minimizing expensive (and possibly slow or unreliable)

128

communication to the cloud. Furthermore, an essential part of application operation in
the application layer of SCOS is monitoring running IoT applications, which especially
in smart cities is challenging since new types of IoT applications emerge frequently that
are able to address new and previously untouched areas. Therefore, we introduced a
non-intrusive monitoring approach that supports in-depth analysis of data-intensive IoT
applications and their inherent distributed structure. The presented monitoring approach
allows for detailed examination and comparison of application runtime characteristics,
independent of the underlying execution environment. Finally, to provide means for
processing and analyzing data in the Data Layer of SCOS, we introduced an approach
that supports the efficient management of IoT applications by providing a dedicated
component for processing, analyzing, and reacting to available infrastructure data. The
presented approach allows using the large amounts of performance and health data about
the execution environment of IoT applications, which are provided by the underlying
infrastructures, to analyze and optimize the overall application execution.

We extensively evaluated the results of our investigations in the context of multiple
scenarios and showed that the contributions of this thesis enable the efficient delivery of
IoT applications in smart city ecosystems. Furthermore, we showed that enabling IoT
applications to fully utilize the full range of available smart city infrastructure resources
allows for the creation and operation of more robust, resilient, and performant applications
that are able to address the increasingly complex challenges of today’s and future smart
cities.

10.2 Research Questions Revisited
In Section 1.2 we introduced the research questions that guided the work in this thesis.
In this section, we revisit these questions and summarize how they have been addressed
within the context of this thesis.

Research Question I:
How can resource-constrained edge devices be seamlessly incorporated in the

provisioning process of IoT applications in smart city ecosystems?

We have addressed this question with the contributions in Chapter 4. We intro-
duced LEONORE, an approach to elastically provision application packages on resource-
constrained, heterogeneous edge devices in large-scale IoT deployments. LEONORE
supports push-based as well as pull-based deployments, and enables the integration of
various IoT infrastructure and topology capabilities. In order to reduce produced network
traffic between cloud and edge infrastructure and improve the overall scalability of our
approach, we introduced the concept of LEONORE local nodes to allow for efficient
distributed deployment in these constrained environments.

129

Research Question II:
How can IoT applications and respective topologies be optimally deployed while

specifically considering available infrastructure resources in smart city ecosystems?

We have addressed this question with the contributions in Chapters 5 and 6. First,
we introduced DIANE, an approach that allows for dynamic generation of deployment
topologies for IoT applications that are specifically optimized to the currently available
computational infrastructure. By facilitating a declarative, constraint-based model of the
intended application deployment, our approach enables flexible provisioning of application
topologies on both, edge devices deployed in the IoT infrastructure and cloud resources.
Furthermore, to allow applications to autonomously react to environmental changes such
as changing request patterns, we extended DIANE to provide an optimization approach
for evolving application deployment topologies. Second, since in the smart city domain we
also have to deal with heterogenous IoT applications that follow traditional application
design paradigms, we presented an approach that facilitates TOSCA to formally describe
both the components and deployment topology of such applications, as well as the required
deployment process on the physical devices.

Research Question III:
How can running IoT applications and utilized infrastructure resources be

generically analyzed in order to optimize the overall IoT application deployment
topology?

We have addressed this question with the contributions in Chapters 7 and 8. First,
we introduced MOSAIC, an approach to add functionality for acquiring and publishing
of performance measurements to data-intensive IoT applications, with a specific focus on
stream processing applications. Our approach supports integrating different underlying
execution environments for deploying and executing applications, a generic domain model
for storing and publishing measurements, and a mechanism for gathering and analyzing
these measurements. Second, to analyze the plethora of available performance data from
IoT applications and the used infrastructure, we introduced Ahab, a big data analytics
approach that supports performing online and offline analyses. The extracted actionable
information enables operators to better understand and optimize the behavior of managed
infrastructure. The presented approach is designed to easily integrate new data streams,
provides extensible APIs to perform tailored analysis tasks, and provides a DSL based
on the MONINA language that allows defining flexible adaptation rules for evolving IoT
deployment topologies.

130

10.3 Future Work

In this thesis we presented different aspects for enabling efficient operation and manage-
ment of IoT applications in smart city environments. In the following, we outline some
remaining challenges and possibilities for future research.

• With respect to the provisioning approach presented in Chapter 4, we see the ne-
cessity to improve our IoT device representation to better utilize the underlying
device-specific capabilities. Additionally, we want to introduce update priorities, in
order to allow for clear distinctions between ordinary and important (e.g., security
patches) updates, since delays in these important updates can expose the infras-
tructure to severe security risks. Next, to allow our provisioning approach to scale
across privately managed infrastructure boundaries, we aim to address security
aspects such as authentication and authorization, as these were out of scope for
this thesis.

• Based on the introduced orthogonal IoT application deployment approaches in
Chapter 5 and 6, we plan to further adapt our methodologies to allow for more
detailed descriptions of application topologies and enable local coordination of
topology changes among edge resources.

• To see possible limitations and investigate how the monitoring approach discussed
in Chapter 7 can be further improved, we plan to integrate additional execution
environments (e.g., [108]). We further plan to incorporate more sophisticated sta-
tistical methods and visualization techniques to provide deeper insights and help
drawing better conclusions. Furthermore, based on the analysis of performance
measurements, resource planning and stochastic models can be derived to evaluate
application behavior under uncertain load. Since many organizations use monitoring
tools (e.g., Ganglia [75], Nagios [52], and Splunk [119]) for monitoring applications
and IT systems, we plan to provide appropriate interfaces to support these tools
and ease integration with our approach. As the performance of IoT applications
also depends on the network performance, we see the necessity to also consider
measuring network performance. This network-specific measurement data would
allow for deeper analysis in general and support root-cause analysis in the case of
performance issues.

• Finally, to address additional challenges in the smart city domain in the context of
the introduced analysis and optimization approach in Chapter 8, we will investigate
whether unsupervised machine learning techniques are suitable for autonomous
improvements of IoT application deployments. Additionally, we plan to extend our
approach to address privacy and security requirements (e.g., [74, 98]) when dealing
with big data.

131

10.4 Ongoing Work
In Section 10.1 we presented the contributions of this thesis and discussed how they
build the foundations of SCOS. However, since the scope of SCOS exceeds the frame of
this thesis, in this section we outline our ongoing work towards establishing SCOS as a
central element in future smart city application ecosystems.

10.4.1 Towards a Smart City Operating System

In the following, we present for each layer of SCOS the missing building blocks that we
did not tackle in this thesis and discuss their functionality. Figure 10.2 shows an overview
of SCOS and highlights the elements that we will introduce in the following.

Smart City Operating System

Data

La
ye

r

App
lic

ati
on

La
ye

r

Inf
ras

tru
ctu

re

La
ye

r

Cross-Cutting
Concerns

Design &
Development Runtime Environment

S
ecurity &

C
om

pliance

Processing & Analysis

Infrastructure
Management

Storage & Access

Operations
Management

Tenant
M

anagem
ent

Lifecycle Management

Configuration
Management

Figure 10.2: Smart City Operating System – Ongoing Work

Infrastructure Layer

The Infrastructure Layer manages the underlying infrastructure resources, configures
and provisions them, and constantly monitors these resources. In this thesis we already
introduced approaches for managing and configuring the underlying infrastructure re-
sources, but did not address the fact that in order to efficiently manage these resources,
also mechanisms are required that allow for monitoring and analyzing them. Thus, in
the following we introduce this missing building block and discuss its features.

Operations Management Based on the Infrastructure Management and Configura-
tion Management, SCOS needs a mechanism that enables monitoring and analyzing the
performance of the underlying infrastructure resources. Therefore, Operations Manage-
ment supports the constant monitoring and collection of information from connected

132

resources, by using available monitoring capabilities of the respective infrastructure (e.g.,
cloud monitoring APIs1, commonly applied monitoring tools like Ganglia [75]), or by
provisioning software capabilities that allow gathering performance measurements (e.g.,
tailored profilers for edge devices [131]). In addition to monitoring, operations manage-
ment also provides mechanisms to manage gathered logs, events, and faults. Based on
collected information from the underlying infrastructure resources, operations manage-
ment is able to conduct performance analyses that can be used for optimizing resource
utilization or evolve the overall infrastructure deployment. Furthermore, fine-grained anal-
ysis information can be used by other subsystems of SCOS to adapt application topologies
in order to react to defined requirements like SLAs. Finally, operations management pro-
vides APIs that allow operators of SCOS to define custom adaptation routines (e.g.,
scaling algorithms) to guarantee a defined availability for infrastructure resources or deal
with network outages [53].

Data Layer

The Data Layer is responsible for on the one hand storing and providing access for data
that is residing in our ecosystem, and on the other hand processing and analyzing data
that can be further used by other layers of SCOS in order to generate valuable insights.
In this thesis we already introduced an approach for processing and analyzing available
infrastructure data. However, we did not provide mechanisms for storing and accessing
data in SCOS. In the following we will introduce and discuss this missing building block.

Storage & Access Since in modern smart cities running applications, infrastructure
resources, and citizens produce an ever growing amount of data, which is commonly
referred to as big data [16], the data layer provides the Storage & Access subsystem for
managing and handling data. It allows stakeholders of SCOS to store and consume large
sets of diverse data by providing generic and extendable APIs. For efficiently managing
data in SCOS, the subsystem allows considering the plethora of available data formats,
the intrinsic diversity of data, and also enables respecting potentially noisy data [120]
that is produced by the underlying infrastructure with its millions of managed resources.
Additionally, the subsystem supports the ability for handling both, static data that
is not frequently accessed or processed, as well as dynamic data that is constantly and
relentlessly changing. To address the challenges that emerge from handling these different
types of data, the storage & access subsystem provides a flexible approach that supports
various storage facilities like traditional relational databases, document-oriented, and
complex unstructured data stores. Providing data storages in a Data as a Service (DaaS)
fashion enables the seamless integration of data facilities into SCOS, eases the integration
of new data storages, and also allows for easy and uniform data access as well as storage
functionality for components inside and applications on top of SCOS. Furthermore, the
storage & access subsystem provides mechanisms for merging and combining different
types of data, which can be used as foundation for analysis and planning operations in

1e.g., https://cloud.google.com/monitoring/api/

133

https://cloud.google.com/monitoring/api/

upper layers. Finally, since the ownership of data is an important concern in SCOS, the
storage & access subsystem incorporates novel concepts that protect data, but also allow
open data exchange where different levels of data owners can share data, by integrating
the principle of a Hub of all Things2. Following this approach enables the clear concept
of ownership and allows addressing emerging data compliance and security requirements.

Application Layer

The Application Layer provides a comprehensive set of methodologies and tools for
efficient design, development, distribution, and operation of applications. Since in this
thesis we already provided the building blocks for design and development, as well as
lifecycle management, we will concentrate in the following on the missing building block
that provides a transparent runtime environment for applications.

Runtime Environment To allow for seamless execution of applications, the SCOS
Runtime Environment provides a configurable and adaptive execution environment for
cloud-based applications that is independent of the underlying physical infrastructure.
The execution environment incorporates a pluggable, unifying infrastructure abstrac-
tion [110] to transparently support and manage multiple application deployment mecha-
nisms, such as container-based deployments (e.g., Docker3) and virtual machine-based
deployments that are provisioned using predominant cloud offerings (e.g., OpenStack4

or Amazon EC25). The runtime environment furthermore provides a service mobility
mechanism [111] that allows for seamless migration of application components between
data centers and stakeholder premises. By moving processing logic closer to data sources
and/or data sinks, network overhead and associated costs can be reduced. Additionally,
component migration allows for the execution of applications that could otherwise not
be executed due to compliance constraints.

Cross-Cutting Concerns

An important layer of SCOS that we considered out of scope of this thesis, comprises
the cross-cutting concerns. Components or applications of SCOS require common func-
tionality (e.g., authentication) that span across several layers. Since such functionality
is affecting the overall system, it is centralized in one place in order to avoid updating
components throughout the system in case a certain behavior (e.g., logging) has to be
changed.

Tenant Management Applications in a smart city ecosystem operate under complex
compliance and security regulations. Furthermore, since these applications have to operate
at large scale, are maintained by varying stakeholders, and provided in different possible

2http://hubofallthings.com/
3https://docker.com
4https://openstack.org
5https://aws.amazon.com/ec2

134

http://hubofallthings.com/
https://docker.com
https://openstack.org
https://aws.amazon.com/ec2

facets, a plethora of constraints need to be efficiently managed. Therefore, the Tenant
Management subsystem supports the magnitude of participating stakeholders and allows
them to specify their own security and compliance guidelines. Next, in order to allow
large-scale interactions of stakeholders in a smart city environment, tenant management
supports a flexible interaction approach that allows expressing specific constraints that
need to be respected. For example, considering an interaction among stakeholders in
this context, constraints that are valid for two stakeholder having direct interaction can
become invalid if another stakeholder joins the interaction, which is triggered by the
complex data regulations in such environments. Another important aspect of tenant
management is enabling the clean separation and isolation of any type of data, but
especially for sensitive data. Thus, tenant management enables each stakeholder of SCOS
to clearly define the following constraints regarding its data. First, tenants specify which
data they provide and in which quality. Second, tenants can decide which data can be
shared or consumed. Third, tenants can describe with whom they want to share data,
or who is specifically allowed to consume provided data. Finally, tenants can specify
which data and from whom they want to consume data. Based on this specification, the
tenant management subsystem derives a constraint matrix that clearly regulates data
exchange in SCOS, which avoids undesirable data transfer by respecting various forms of
interactions (e.g., direct or transitive). Nevertheless, this approach still empowers novel
mechanisms that allow data processing in highly constrained interaction scenarios by
using capability migration [111]. In addition to data concerns, tenant management also
manages a consolidated view on resources that are consumed by and available to tenants
of SCOS. Based on the underlying transparent infrastructure layer, tenant management
not only uniformly provides cloud resources like virtual machines, but also offers other
forms of infrastructure resources such as IoT devices. This enables tenants and their
respective applications to lease and release resources following a consistent, but flexible
and extensible model.

Security & Compliance Stakeholders in smart city environments implicitly expect
and demand services to be secure, as well as to preserve their privacy. Thus, SCOS
provides a Security & Compliance subsystem that allows addressing both, basic and
complex security aspects. First, since data in SCOS is constantly flowing among different
components or applications, which can reside inside or on top of SCOS, the security &
compliance subsystem provides mechanisms to protect data in transit by using strong
encryption mechanisms. In addition, components of SCOS that are dealing with sensitive
data are also provided with approaches for securely storing this data. Second, since SCOS
must be able to deal with a broad variety of stakeholders and users, the security & com-
pliance subsystem provides capabilities that facilitate strong authentication mechanisms
(e.g., biometric and multi-factor authentication) that can be used by components of SCOS
to clearly specify who can access a specific service. Third, next to authentication, SCOS
also provides authorization capabilities that allow enforcing permissions before accessing
applications or manipulating data. Fourth, in order to allow operators to manage SCOS
more efficiently, the security & compliance subsystem provides auditing and logging func-

135

tionality on component level. Fifth, in order to keep the overall stack of components in
SCOS secure, the security & compliance subsystem provides configuration management
for automatically delivering software and security updates for different layers of SCOS.
Sixth, since applications in the smart city domain need the ability to adapt to users, they
come with various configuration alternatives that depend on the user’s preferences. Thus,
it is important for SCOS to allow applications to collect user-specific data in order to
characterize a specific user. However, this form of characterization, which comprises both
behavior and preferences, represents a possible threat for users. Therefore, the security &
compliance subsystem provides mechanisms that explicitly assure and preserve the user’s
privacy. In addition to these common security capabilities, the security & compliance
subsystem also deals with security requirements that emerge from the underlying infras-
tructure layer. Given the large number of resources that are available, SCOS provides
security management that is able to deal with the intrinsic scalability requirements. Next,
since especially IoT resources embody a vital aspect not only in enterprise systems, but
also in consumer solutions, the security & compliance subsystem enables flexible secu-
rity models. Based on these models, SCOS can adapt to and respect emerging complex
security requirements from the various domains it is operating in.

10.4.2 Summary

With the rapid adoption of the smart city paradigm in cities around the globe and its
respective success, more and more capabilities of modern cities are provided as appli-
cations. This fact, in combination with the plethora of supported ecosystems, diversity
of stakeholders operating in this smart city ecosystem, and the magnitude of potential
users, generates various challenges that need to be respected in order to build and provide
truly future-proof smart city applications. Therefore, based on the contributions of this
thesis, we presented our ongoing work towards a Smart City Operating System (SCOS).
By resembling a modern computer operating system that is specifically tailored to the
scale of modern cities, SCOS represents a key element for supporting ongoing smart
city application engineering as well as the foundation for enabling the future Internet of
Cities.

136

Bibliography

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B Zdonik. The Design of
the Borealis Stream Processing Engine. In Cidr, volume 5, pages 277–289, 2005.

[2] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud comput-
ing: new wine or just new bottles? Proceedings of the VLDB Endowment, 3(1-2):
1647–1648, September 2010. ISSN 2150-8097. doi:10.14778/1920841.1921063.

[3] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud
computing. In Proceedings of the 14th International Conference on Extend-
ing Database Technology - EDBT/ICDT ’11, pages 530–533. ACM, March 2011.
ISBN 9781450305280. doi:10.1145/1951365.1951432.

[4] Apache Spark. http://spark.apache.org.

[5] Apache Spark Monitoring. http://spark.apache.org/docs/latest/monitoring.html.

[6] Apache Storm. http://storm.apache.org/.

[7] Apache Storm Metrics. https://storm.apache.org/documentation/Metrics.html.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A View of Cloud Computing. Communications of the ACM, 53(4):50–58,
April 2010. ISSN 0001-0782. doi:10.1145/1721654.1721672.

[9] AspectJ. https://eclipse.org/aspectj/.

[10] Marcos D. Assunção, Rodrigo N. Calheiros, Silvia Bianchi, Marco A.S. Netto,
and Rajkumar Buyya. Big Data Computing and Clouds : Trends and Future
Directions. Journal of Parallel and Distributed Computing, 79:1–44, August 2014.
ISSN 07437315. doi:10.1016/j.jpdc.2014.08.003.

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
survey. Computer Networks, 54(15):2787–2805, 2010. doi:10.1016/j.comnet.2010.
05.010.

137

http://www.worldcat.org/issn/2150-8097
http://dx.doi.org/10.14778/1920841.1921063
http://en.wikipedia.org/wiki/Special:BookSources/9781450305280
http://dx.doi.org/10.1145/1951365.1951432
http://spark.apache.org
http://spark.apache.org/docs/latest/monitoring.html
http://storm.apache.org/
https://storm.apache.org/documentation/Metrics.html
http://www.worldcat.org/issn/0001-0782
http://dx.doi.org/10.1145/1721654.1721672
https://eclipse.org/aspectj/
http://www.worldcat.org/issn/07437315
http://dx.doi.org/10.1016/j.jpdc.2014.08.003
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

[12] Michael Batty, Kay W Axhausen, Fosca Giannotti, Alexei Pozdnoukhov, Armando
Bazzani, Monica Wachowicz, Georgios Ouzounis, and Yuval Portugali. Smart cities
of the future. The European Physical Journal Special Topics, 214(1):481–518, 2012.

[13] Martin Bauer, Mathieu Boussard, Nicola Bui, Jourik De Loof, Carsten Magerkurth,
Stefan Meissner, Andreas Nettsträter, Julinda Stefa, Matthias Thoma, and
JoachimW Walewski. IoT Reference Architecture. In Enabling Things to Talk,
pages 163–211–211. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-40403-0.
doi:10.1007/978-3-642-40403-0_8.

[14] Tobias Binz, Gerd Breiter, Frank Leyman, and Thomas Spatzier. Portable Cloud
Services Using TOSCA. IEEE Internet Computing, 16(3):80–85,March 2012. doi:10.
1109/MIC.2012.43.

[15] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, Frank Leymann, and Andreas Weiß.
Improve Resource-Sharing through Functionality-Preserving Merge of Cloud Ap-
plication Topologies. In Proceedings of the 3rd International Conference on Cloud
Computing and Service Science, CLOSER 2013, pages 96–103, Aachen, Germany,
2013. SciTePress. ISBN 978-989-8565-52-5. doi:10.5220/0004378000960103.

[16] Christian Bizer, Peter Boncz, Michael L. Brodie, and Orri Erling. The meaningful
use of big data. ACM SIGMOD Record, 40(4):56–60, January 2012. ISSN 01635808.
doi:10.1145/2094114.2094129.

[17] Robert Bohn, John Messina, Fang Liu, Jin Tong, and Jian Mao. NIST cloud
computing reference architecture. In Proceedings of the 2011 IEEE World Congress
on Services, SERVICES ’11, pages 594–596, Washington, DC, USA, 2011. IEEE
Computer Society. doi:10.1109/SERVICES.2011.105.

[18] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, and Frank Leymann. Pattern-based
Runtime Management of Composite Cloud Applications. In Proceedings of the
3rd International Conference on Cloud Computing and Service Science, CLOSER
2013, pages 475–482, Aachen, Germany, 2013. SciTePress. ISBN 978-989-8565-52-5.
doi:10.5220/0004376104750482.

[19] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599—616, 2009. doi:10.1016/j.future.2008.12.001.

[20] Rajkumar Buyya, Rodrigo N Calheiros, and Xiaorong Li. Autonomic Cloud com-
puting: Open challenges and architectural elements. In Proceedings of the 3rd
International Conference on Emerging Applications of Information Technology,
EAIT’12, pages 3–10, 2012. doi:10.1109/EAIT.2012.6407847.

[21] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

138

http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-40403-0
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1109/MIC.2012.43
http://dx.doi.org/10.1109/MIC.2012.43
http://en.wikipedia.org/wiki/Special:BookSources/978-989-8565-52-5
http://dx.doi.org/10.5220/0004378000960103
http://www.worldcat.org/issn/01635808
http://dx.doi.org/10.1145/2094114.2094129
http://dx.doi.org/10.1109/SERVICES.2011.105
http://en.wikipedia.org/wiki/Special:BookSources/978-989-8565-52-5
http://dx.doi.org/10.5220/0004376104750482
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/EAIT.2012.6407847

Distributed Storage System for Structured Data. ACM Transactions on Computer
Systems, 26(2):4:1–4:26, June 2008. ISSN 07342071. doi:10.1145/1365815.1365816.

[22] Surajit Chaudhuri. What next? A Half-Dozen Data Management Research Goals
for Big Data and the Cloud. In Proceedings of the 31st symposium on Principles of
Database Systems, PODS 2012, pages 1–4, New York, New York, USA, 2012. ACM.
ISBN 9781450312486. doi:10.1145/2213556.2213558.

[23] Deji Chen, Mark Nixon, Thomas Lin, Song Han, Xiuming Zhu, Aloysius Mok, Roger
Xu, Julia Deng, and An Liu. Over the air provisioning of industrial wireless devices
using elliptic curve cryptography. In Proceedings of the International Conference
on Computer Science and Automation Engineering, CSAE’11, pages 594–600, 2011.
doi:10.1109/CSAE.2011.5952541.

[24] Qiming Chen and Meichun Hsu. Cut-and-Rewind: Extending Query Engine
for Continuous Stream Analytics. In Transactions on Large-Scale Data- and
Knowledge-Centered Systems XXI, volume 9260 of LNCS, pages 94–114. Springer,
2015. doi:10.1007/978-3-662-47804-2_5.

[25] Stuart Clayman and Alex Galis. INOX: A Managed Service Platform for Inter-
connected Smart Objects. In Proceedings of the Workshop on Internet of Things
and Service Platforms, IoTSP 2011, pages 2:1–2:8, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-1043-7. doi:10.1145/2079353.2079355.

[26] Walter Colitti, Kris Steenhaut, Niccolo De Caro, Bogdan Buta, and Virgil Do-
brota. REST Enabled Wireless Sensor Networks for Seamless Integration with
Web Applications. In Proceedings of the 8th IEEE International Conference
on Mobile Adhoc and Sensor Systems, MASS 2011, pages 867–872, Oct 2011.
doi:10.1109/MASS.2011.102.

[27] Jonathan Cook, Darrell Smith, and Alan Meier. Coordinating Fault Detection,
Alarm Management, and Energy Efficiency in a Large Corporate Campus. In
Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings, pages
83–93, 2012.

[28] Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey.
IEEE Transactions on Industrial Informatics, 10(4):2233–2243, 2014. doi:10.1109/
TII.2014.2300753.

[29] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz, and David
Culler. sMAP: a simple measurement and actuation profile for physical information.
In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems,
SenSys 2010, page 197, New York, New York, USA, November 2010. ACM Press.
ISBN 9781450303446. doi:10.1145/1869983.1870003.

[30] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar, Gabe
Fierro, Nikita Kitaev, and David Culler. BOSS: building operating system services.

139

http://www.worldcat.org/issn/07342071
http://dx.doi.org/10.1145/1365815.1365816
http://en.wikipedia.org/wiki/Special:BookSources/9781450312486
http://dx.doi.org/10.1145/2213556.2213558
http://dx.doi.org/10.1109/CSAE.2011.5952541
http://dx.doi.org/10.1007/978-3-662-47804-2_5
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-1043-7
http://dx.doi.org/10.1145/2079353.2079355
http://dx.doi.org/10.1109/MASS.2011.102
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/TII.2014.2300753
http://en.wikipedia.org/wiki/Special:BookSources/9781450303446
http://dx.doi.org/10.1145/1869983.1870003

In Proceedings of the 10th USENIX conference on Networked Systems Design and
Implementation, pages 443–458. USENIX Association, April 2013.

[31] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. ACM
SIGOPS Operating Systems Review, 41(6):205, October 2007. ISSN 01635980.
doi:10.1145/1323293.1294281.

[32] Elisabetta Di Nitto, Marcos Aurelio Almeida da Silva, Danilo Ardagna, Giuliano
Casale, Ciprian Dorin Craciun, Nicolas Ferry, Victor Muntes, and Arnor Solberg.
Supporting the Development and Operation of Multi-cloud Applications: The
MODAClouds Approach. In Proceedings of the 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2013, pages
417–423. IEEE, 2013. ISBN 978-1-4799-3036-4. doi:10.1109/SYNASC.2013.61.

[33] Salvatore Distefano,Giovanni Merlino, and Antonio Puliafito. Enabling the Cloud of
Things. In 2012 Sixth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, pages 858–863. IEEE, July 2012. ISBN 978-1-
4673-1328-5. doi:10.1109/IMIS.2012.61.

[34] Dropwizard Metrics. http://metrics.dropwizard.io/.

[35] Schahram Dustdar, Yike Guo, Rui Han, Benjamin Satzger, and Hong-Linh Truong.
Programming Directives for Elastic Computing. IEEE Internet Computing, 16(6):
72–77, 2012. doi:10.1109/MIC.2012.99.

[36] Schahram Dustdar, Fei Li, Hong-Linh Truong, Sanjin Sehic, Stefan Nastic, Soheil
Qanbari, Michael Vögler, and Markus Claeßens. Green software services: From
requirements to business models. In Proceedings of the 2nd International Workshop
on Green and Sustainable Software, GREENS 2013, pages 1–7, May 2013. doi:10.
1109/GREENS.2013.6606415.

[37] Vincent C Emeakaroha, Ivona Brandic, Michael Maurer, and Ivan Breskovic. SLA-
Aware Application Deployment and Resource Allocation in Clouds. In Proceedings
of the 35th Annual IEEE Computer Software and Applications Conference Work-
shops, COMPSACW’11, pages 298–303. IEEE, 2011. ISBN 978-1-4577-0980-7.
doi:10.1109/COMPSACW.2011.97.

[38] Soren Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based genetic opti-
mization for deployment and reconfiguration of software in the cloud. In Proceedings
of the 35th International Conference on Software Engineering, ICSE’13, pages 512–
521, 2013. ISBN 9781467330763. doi:10.1109/ICSE.2013.6606597.

[39] Sebastian Frischbier, Erman Turan, Michael Gesmann, Allesandro Margara, David
Eyers, Patrick Eugster, Peter Pietzuch, and Alejandro Buchmann. Effective runtime
monitoring of distributed event-based enterprise systems with ASIA. In Proceedings

140

http://www.worldcat.org/issn/01635980
http://dx.doi.org/10.1145/1323293.1294281
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4799-3036-4
http://dx.doi.org/10.1109/SYNASC.2013.61
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1328-5
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-1328-5
http://dx.doi.org/10.1109/IMIS.2012.61
http://metrics.dropwizard.io/
http://dx.doi.org/10.1109/MIC.2012.99
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4577-0980-7
http://dx.doi.org/10.1109/COMPSACW.2011.97
http://en.wikipedia.org/wiki/Special:BookSources/9781467330763
http://dx.doi.org/10.1109/ICSE.2013.6606597

of the 7th IEEE International Conference on Service-Oriented Computing and
Applications, SOCA 2014, pages 41–48. IEEE, 2014. ISBN 978-1-4799-6833-6.
doi:10.1109/SOCA.2014.25.

[40] Wlodzimierz Funika, Piotr Godowski, Piotr Pegiel, and Dariusz Król. Semantic-
Oriented Performance Monitoring of Distributed Applications. Computing and
Informatics, 31(2):427–446, 2012.

[41] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and Dom-
nic Savio. Interacting with the SOA-Based Internet of Things: Discovery, Query,
Selection, and On-Demand Provisioning of Web Services. IEEE Transactions on
Services Computing, 3(3):223–235, July 2010. doi:10.1109/TSC.2010.3.

[42] Dominique Guinard, Iulia Ion, and Simon Mayer. In Search of an Internet of Things
Service Architecture: REST or WS-*? A Developers Perspective. In Proceedings of
the 8th International ICST Conference on Mobile and Ubiquitous Systems: Com-
puting, Networking, and Services, MobiQuitous 2011, volume 104 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 326–337. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
30972-4. doi:10.1007/978-3-642-30973-1_32.

[43] Matthew Hausknecht, Tsz-Chiu Au, and Peter Stone. Autonomous Intersection
Management: Multi-intersection optimization. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 4581–4586. IEEE,
September 2011. ISBN 978-1-61284-456-5. doi:10.1109/IROS.2011.6094668.

[44] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer.
Latency-aware elastic scaling for distributed data stream processing systems. In
Proceedings of the 8th ACM International Conference on Distributed Event-Based
Systems, DEBS 2014, pages 13–22, New York, New York, USA, May 2014. ACM.
ISBN 9781450327374. doi:10.1145/2611286.2611294.

[45] Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. Auto-
scaling techniques for elastic data stream processing. In Proceedings of the 30th
IEEE International Conference on Data Engineering Workshops, ICDEW 2014,
pages 296–302. IEEE, 2014. doi:10.1109/ICDEW.2014.6818344.

[46] Robert G Hollands. Will the real smart city please stand up? Intelligent, progressive
or entrepreneurial? City, 12(3):303–320, 2008.

[47] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional,
1st edition, 2010.

[48] Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and
Schahram Dustdar. Distributed continuous queries over Web service event streams.
In Proceedings of the 2011 7th International Conference on Next Generation Web

141

http://en.wikipedia.org/wiki/Special:BookSources/978-1-4799-6833-6
http://dx.doi.org/10.1109/SOCA.2014.25
http://dx.doi.org/10.1109/TSC.2010.3
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-30972-4
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-30972-4
http://dx.doi.org/10.1007/978-3-642-30973-1_32
http://en.wikipedia.org/wiki/Special:BookSources/978-1-61284-456-5
http://dx.doi.org/10.1109/IROS.2011.6094668
http://en.wikipedia.org/wiki/Special:BookSources/9781450327374
http://dx.doi.org/10.1145/2611286.2611294
http://dx.doi.org/10.1109/ICDEW.2014.6818344

Services Practices, NWeSP 2011, pages 176–181. IEEE, 2011. ISBN 9781457711268.
doi:10.1109/NWeSP.2011.6088173.

[49] Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. Elastic stream pro-
cessing in the cloud. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 3(5):333–345, 2013. ISSN 1942-4795. doi:10.1002/widm.1100.

[50] Michael Hüttermann. DevOps for Developers. Apress, 2012. ISBN 978-1430245698.
doi:10.1007/978-1-4302-4570-4.

[51] IETF. Constrained Application Protocol (CoAP), 2015. http://tools.ietf.org/html/
draft-ietf-core-coap-08.

[52] Emir Imamagic and Dobrisa Dobrenic. Grid Infrastructure Monitoring System
based on Nagios. In Proceedings of the 2007 Workshop on Grid monitoring, pages
23–28. ACM, 2007. ISBN 9781595937162. doi:10.1145/1272680.1272685.

[53] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and
Schahram Dustdar. Generic Event-Based Monitoring and Adaptation Methodology
for Heterogeneous Distributed Systems. Software: Practice and Experience, 44(7):
805–822, July 2014. doi:10.1002/spe.2254.

[54] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and
Schahram Dustdar. MADCAT - A Methodology for Architecture and Deploy-
ment of Cloud Application Topologies. In Proceedings of the 8th International
Symposium on Service-Oriented System Engineering, pages 13–22. IEEE, 2014.
doi:10.1109/SOSE.2014.9.

[55] Changqing Ji, Yu Li, Wenming Qiu, Uchechukwu Awada, and Keqiu Li. Big Data
Processing in Cloud Computing Environments. In Proceedings of the 12th Interna-
tional Symposium on Pervasive Systems, Algorithms and Networks, ISPAN 2012,
pages 17–23. IEEE, 2012. ISBN 978-1-4673-5064-8. doi:10.1109/I-SPAN.2012.9.

[56] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. Autonomous resource provi-
sioning for multi-service web applications. In Proceedings of the 19th International
Conference on World Wide Web, WWW’10, pages 471–480, New York, NY, USA,
2010. ACM. doi:10.1145/1772690.1772739.

[57] Markus Jung, Jurgen Weidinger, Wolfgang Kastner, and Alex Olivieri. Building Au-
tomation and Smart Cities: An Integration Approach Based on a Service-Oriented
Architecture. In Proceedings of the 27th International Conference on Advanced In-
formation Networking and Applications Workshops, pages 1361–1367. IEEE, March
2013.

[58] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. Fu-
ture internet: The internet of things architecture, possible applications and key
challenges. In Proceedings of the 10th International Conference on Frontiers

142

http://en.wikipedia.org/wiki/Special:BookSources/9781457711268
http://dx.doi.org/10.1109/NWeSP.2011.6088173
http://www.worldcat.org/issn/1942-4795
http://dx.doi.org/10.1002/widm.1100
http://en.wikipedia.org/wiki/Special:BookSources/978-1430245698
http://dx.doi.org/10.1007/978-1-4302-4570-4
http://tools.ietf.org/html/draft-ietf-core-coap-08
http://tools.ietf.org/html/draft-ietf-core-coap-08
http://en.wikipedia.org/wiki/Special:BookSources/9781595937162
http://dx.doi.org/10.1145/1272680.1272685
http://dx.doi.org/10.1002/spe.2254
http://dx.doi.org/10.1109/SOSE.2014.9
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-5064-8
http://dx.doi.org/10.1109/I-SPAN.2012.9
http://dx.doi.org/10.1145/1772690.1772739

of Information Technology, FIT’12, pages 257–260, 2012. ISBN 9780769549279.
doi:10.1109/FIT.2012.53.

[59] Rob Kitchin. The real-time city? Big data and smart urbanism. GeoJournal, 79
(1):1–14, 2014. doi:10.1007/s10708-013-9516-8.

[60] Dmitry G Korzun, Sergey I Balandin, and Andrei V Gurtov. Deployment of Smart
Spaces in Internet of Things: Overview of the Design Challenges. In Lecture Notes
in Computer Science, pages 48–59–59. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-40316-3. doi:10.1007/978-3-642-40316-3_5.

[61] Matthias Kovatsch. Firm firmware and apps for the Internet of Things. In Proceed-
ings of the 2nd Workshop on Software Engineering for Sensor Network Applications,
SESENA ’11, pages 61–62, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0583-9. acmid:1988064.

[62] Chandra Krintz. The AppScale Cloud Platform: Enabling Portable, Scalable Web
Application Deployment. IEEE Internet Computing, 17(2):72–75, 2013. doi:10.
1109/MIC.2013.38.

[63] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured
Storage System. ACM SIGOPS Operating Systems Review, 44(2):35, April 2010.
ISSN 01635980. doi:10.1145/1773912.1773922.

[64] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and
Schahram Dustdar. Cost-Efficient and Application SLA-Aware Client Side Request
Scheduling in an Infrastructure-as-a-Service Cloud. In Proceedings of the 5th
International Conference on Cloud Computing, CLOUD’12, pages 213–220. IEEE,
2012. ISBN 978-1-4673-2892-0. doi:10.1109/CLOUD.2012.21.

[65] Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and
Schahram Dustdar. CloudScale - a Novel Middleware for Building Transparently
Scaling Cloud Applications. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC’12, pages 434–440. ACM, 2012. ISBN 9781450308571.
doi:10.1145/2245276.2245360.

[66] Fei Li, Schahram Dustdar, Jakob Bardram, Martin Serrano, Manfred Hauswirth,
Vasilios Andrikopoulos, and Frank Leymann. Eupaas - elastic ubiquitous platform
as a service for large-scale ubiquitous applications. In Proceedings of the 3rd
International Conference on Cloud Computing and Services Science, CLOSER’13,
pages 309–314. SciTePress, 2013.

[67] Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Efficient and
Scalable IoT Service Delivery on Cloud. In Proceedings of the 6th International
Conference on Cloud Computing, CLOUD’13, pages 740–747, 2013. doi:10.1109/
CLOUD.2013.64.

143

http://en.wikipedia.org/wiki/Special:BookSources/9780769549279
http://dx.doi.org/10.1109/FIT.2012.53
http://dx.doi.org/10.1007/s10708-013-9516-8
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-40316-3
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-40316-3
http://dx.doi.org/10.1007/978-3-642-40316-3_5
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-0583-9
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-0583-9
http://doi.acm.org/10.1145/1988064
http://dx.doi.org/10.1109/MIC.2013.38
http://dx.doi.org/10.1109/MIC.2013.38
http://www.worldcat.org/issn/01635980
http://dx.doi.org/10.1145/1773912.1773922
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4673-2892-0
http://dx.doi.org/10.1109/CLOUD.2012.21
http://en.wikipedia.org/wiki/Special:BookSources/9781450308571
http://dx.doi.org/10.1145/2245276.2245360
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/CLOUD.2013.64

[68] Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Towards Auto-
mated IoT Application Deployment by a Cloud-Based Approach. In Proceedings of
the 6th International Conference on Service-Oriented Computing and Applications,
SOCA’13, pages 61–68, 2013. doi:10.1109/SOCA.2013.12.

[69] Fei Li, Michael Vögler, Sanjn Sehic, Soheil Qanbari, Stefan Nastic, Hong-Linh
Truong, and Schahram Dustdar. Web-Scale Service Delivery for Smart Cities.
IEEE Internet Computing, 17(4):78–83, 2013. doi:10.1109/MIC.2013.79.

[70] Fei Li, Soheil Qanbari, Michael Vögler, and Schahram Dustdar. Green in Software
Engineering, chapter Constructing Green Software Services: From Service Models
to Cloud-Based Architecture, pages 83–104. Springer International Publishing,
2015. doi:10.1007/978-3-319-08581-4_4.

[71] Jim Zw Li, Murray Woodside, John Chinneck, and Marin Litoiu. CloudOpt: Multi-
goal Optimization of Application Deployments Across a Cloud. In Proceedings of
the 7th International Conference on Network and Services Management, CNSM
’11, pages 162–170, Laxenburg, Austria, Austria, 2011. International Federation for
Information Processing. ISBN 978-3-901882-44-9. acmid:2147697.

[72] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. SparkBench: A
Comprehensive Benchmarking Suite for in Memory Data Analytic Platform Spark.
In Proceedings of the 12th ACM International Conference on Computing Frontiers,
CF ’15, pages 53:1–53:8, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3358-0.
doi:10.1145/2742854.2747283.

[73] Shancang Li, Li Da Xu, and Shanshan Zhao. The internet of things: a survey. Infor-
mation Systems Frontiers, pages 1–17, April 2014. doi:10.1007/s10796-014-9492-7.

[74] Chang Liu, Rajiv Ranjan, Xuyun Zhang, Chi Yang, and Jinjun Chen. A Big
Picture of Integrity Verification of Big Data in Cloud Computing. In Handbook on
Data Centers, pages 631–645. Springer New York, 2015. ISBN 978-1-4939-2091-4.
doi:10.1007/978-1-4939-2092-1_21.

[75] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004. ISSN 01678191. doi:10.1016/j.parco.2004.04.001.

[76] Philip Mayer, José Velasco, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani,
Francesco Tiezzi, Rosario Pugliese, Jaroslav Keznikl, and Tomáš Bureš. The Auto-
nomic Cloud. In Software Engineering for Collective Autonomic Systems, pages 495–
512. Springer, 2015. ISBN 978-3-319-16310-9. doi:10.1007/978-3-319-16310-9_16.

[77] Viktor Mayer-Schönberger and Kenneth Cukier. Big Data: A Revolution that
Will Transform how We Live, Work, and Think. Houghton Mifflin Harcourt, 2013.
ISBN 0544002695.

144

http://dx.doi.org/10.1109/SOCA.2013.12
http://dx.doi.org/10.1109/MIC.2013.79
http://dx.doi.org/10.1007/978-3-319-08581-4_4
http://en.wikipedia.org/wiki/Special:BookSources/978-3-901882-44-9
http://doi.acm.org/10.1145/2147697
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-3358-0
http://dx.doi.org/10.1145/2742854.2747283
http://dx.doi.org/10.1007/s10796-014-9492-7
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4939-2091-4
http://dx.doi.org/10.1007/978-1-4939-2092-1_21
http://www.worldcat.org/issn/01678191
http://dx.doi.org/10.1016/j.parco.2004.04.001
http://en.wikipedia.org/wiki/Special:BookSources/978-3-319-16310-9
http://dx.doi.org/10.1007/978-3-319-16310-9_16
http://en.wikipedia.org/wiki/Special:BookSources/0544002695

[78] Peter Mell and Timothy Grance. The NIST definition of cloud computing. NIST
Special Publication, 800-145, 2011.

[79] Daniel a. Menascé, Hassan Gomaa, Sam Malek, and João P. Sousa. Sassy: A
framework for self-architecting service-oriented systems. IEEE Software, 28(6):
78–85, 2011. ISSN 07407459. doi:10.1109/MS.2011.22.

[80] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
Internet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, September 2012. doi:10.1016/j.adhoc.2012.02.016.

[81] Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar.
MELA: Monitoring and Analyzing Elasticity of Cloud Services. In Proceedings
of the 5th International Conference on Cloud Computing Technology and Science,
CloudCom’13, pages 80–87, 2013. ISBN 978-0-7695-5095-4. doi:10.1109/CloudCom.
2013.18.

[82] Ian Molyneaux. The Art of Application Performance Testing: Help for Program-
mers and Quality Assurance. O’Reilly Media, Inc., feb 2009. ISBN 0596520662,
9780596520663.

[83] Sean Murphy, Abdelhamid Nafaa, and Jacek Serafinski. Advanced service delivery
to the Connected Car. In Proceedings of the 9th International Conference on
Wireless and Mobile Computing, Networking and Communications, pages 147–153,
2013. doi:10.1109/WiMOB.2013.6673354.

[84] Taewoo Nam and Theresa A. Pardo. Conceptualizing smart city with dimensions
of technology, people, and institutions. In Proceedings of the 12th Annual Interna-
tional Digital Government Research Conference: Digital Government Innovation
in Challenging Times, dg.o ’11, pages 282–291, New York, NY, USA, 2011. ACM.
doi:10.1145/2037556.2037602.

[85] Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram
Dustdar. PatRICIA – A Novel Programming Model for IoT Applications on Cloud
Platforms. In Proceedings of the 6th International Conference on Service-Oriented
Computing and Applications, pages 53–60, 2013. doi:10.1109/SOCA.2013.48.

[86] Stefan Nastic,Michael Vögler, Christian Inzinger, Hong-Linh Truong, and Schahram
Dustdar. rtGovOps: A Runtime Framework for Governance in Large-Scale Software-
Defined IoT Cloud Systems. In Proceedings of the 3rd International Conference on
Mobile Cloud Computing, Services, and Engineering, MobileCloud’15, pages 24–33,
March 2015. doi:10.1109/MobileCloud.2015.38.

[87] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.
ISBN 1491950315.

[88] NewRelic RPM. http://www.newrelic.com.

145

http://www.worldcat.org/issn/07407459
http://dx.doi.org/10.1109/MS.2011.22
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7695-5095-4
http://dx.doi.org/10.1109/CloudCom.2013.18
http://dx.doi.org/10.1109/CloudCom.2013.18
http://en.wikipedia.org/wiki/Special:BookSources/0596520662, 9780596520663
http://en.wikipedia.org/wiki/Special:BookSources/0596520662, 9780596520663
http://dx.doi.org/10.1109/WiMOB.2013.6673354
http://dx.doi.org/10.1145/2037556.2037602
http://dx.doi.org/10.1109/SOCA.2013.48
http://dx.doi.org/10.1109/MobileCloud.2015.38
http://en.wikipedia.org/wiki/Special:BookSources/1491950315
http://www.newrelic.com

[89] Huansheng Ning and Ziou Wang. Future Internet of Things Architecture: Like
Mankind Neural System or Social Organization Framework? IEEE Communications
Letters, 15(4):461–463, 2011. ISSN 1089-7798. doi:10.1109/LCOMM.2011.022411.
110120.

[90] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA),
2015. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca.

[91] OASIS. Open Building Information Exchange (oBIX), 2015. https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=obix.

[92] OpenStack. http://www.openstack.org.

[93] OpsCode, Inc. Chef, 2014. http://opscode.com/chef. [Online; accessed January 17,
2014].

[94] Edewede Oriwoh, Paul Sant, and Gregory Epiphaniou. Guidelines for Internet of
Things Deployment Approaches – The Thing Commandments. Procedia Computer
Science, 21:122–131, 2013. doi:10.1016/j.procs.2013.09.018.

[95] Georgios Z Papadopoulos, Julien Beaudaux, Antoine Gallais, Thomas Noel, and
Guillaume Schreiner. Adding value to WSN simulation using the IoT-LAB experi-
mental platform. In Proceedings of the 9th International Conference on Wireless
and Mobile Computing, Networking and Communications, WiMob’13, pages 485–
490. IEEE, 2013. doi:10.1109/WiMOB.2013.6673403.

[96] Apostolos Papageorgiou, Manuel Zahn, and Ernö Kovacs. Auto-configuration
System and Algorithms for Big Data-Enabled Internet-of-Things Platforms. In
Proceedings of the International Congress on Big Data, pages 490–497, 2014.
doi:10.1109/BigData.Congress.2014.78.

[97] Pankesh Patel, Animesh Pathak, Thiago Teixeira, and Valérie Issarny. Towards
application development for the internet of things. In Proceedings of the 8th Mid-
dleware Doctoral Symposium, MDS ’11, pages 5:1–5:6, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-1072-7. doi:10.1145/2093190.2093195.

[98] Charith Perera, R Ranjan, Lizhe Wang, S U Khan, and Albert Y Zomaya. Big
Data Privacy in the Internet of Things Era. IT Professional, 17(3):32–39, 2015.
ISSN 1520-9202. doi:10.1109/MITP.2015.34.

[99] Ioan Petri, Haijiang Li, Yacine Rezgui, Yang Chunfeng, Baris Yuce, and Bejay
Jayan. A modular optimisation model for reducing energy consumption in large
scale building facilities. Renewable and Sustainable Energy Reviews, 38:990–1002,
2014. ISSN 13640321. doi:10.1016/j.rser.2014.07.044. http://linkinghub.elsevier.com/
retrieve/pii/S1364032114004961.

146

http://www.worldcat.org/issn/1089-7798
http://dx.doi.org/10.1109/LCOMM.2011.022411.110120
http://dx.doi.org/10.1109/LCOMM.2011.022411.110120
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=obix
http://www.openstack.org
http://opscode.com/chef
http://dx.doi.org/10.1016/j.procs.2013.09.018
http://dx.doi.org/10.1109/WiMOB.2013.6673403
http://dx.doi.org/10.1109/BigData.Congress.2014.78
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-1072-7
http://dx.doi.org/10.1145/2093190.2093195
http://www.worldcat.org/issn/1520-9202
http://dx.doi.org/10.1109/MITP.2015.34
http://www.worldcat.org/issn/13640321
http://dx.doi.org/10.1016/j.rser.2014.07.044
http://linkinghub.elsevier.com/retrieve/pii/S1364032114004961
http://linkinghub.elsevier.com/retrieve/pii/S1364032114004961

[100] Ioan Petri, Yacine Rezgui, Tom Beach, Haijiang Li, Marco Arnesano, and
Gian Marco Revel. A semantic service-oriented platform for energy efficient build-
ings. Clean Technologies and Environmental Policy, 17(3):721–734, 2015. ISSN 1618-
954X. doi:10.1007/s10098-014-0828-2.

[101] PuppetLabs, Inc. Puppet, 2014. http://puppetlabs.org/. [Online; accessed January
17, 2014].

[102] Hangwei Qian and Michael Rabinovich. Application Placement and Demand Dis-
tribution in a Global Elastic Cloud: A Unified Approach. In Proc. Int. Conf.
Autonomic Computing, ICAC’13, pages 1–12. USENIX Assoc., 2013.

[103] RabbitMQ. http://www.rabbitmq.com.

[104] Sasa Radovanovic, Norbert Nemet, Mica Cetkovic, Milan Z Bjelica, and Nikola
Teslic. Cloud-based framework for QoS monitoring and provisioning in consumer
devices. In Proceedings of the Third International Conference on Consumer Elec-
tronics, ICCE-Berlin’13, pages 1–3, 2013. doi:10.1109/ICCE-Berlin.2013.6697979.

[105] Rajiv Ranjan, Lizhe Wang, Albert Zomaya, D Georgakopoulos, X Sun, and G Wang.
Recent advances in autonomic provisioning of big data applications on clouds.
IEEE Transactions on Cloud Computing, 3(2):101–104, 2015. ISSN 2168-7161.
doi:10.1109/TCC.2015.2437231.

[106] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis II. An Analysis of
Several Heuristics for the Traveling Salesman Problem. SIAM Journal on Comput-
ing, 6(3):563–581, 1977. doi:10.1137/0206041.

[107] Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. A Survey
of Large Scale Data Management Approaches in Cloud Environments. IEEE
Communications Surveys & Tutorials, 13(3):311–336, 2011. ISSN 1553-877X. doi:10.
1109/SURV.2011.032211.00087.

[108] Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar.
Esc: Towards an elastic stream computing platform for the cloud. In Proceedings of
the 4th International Conference on Cloud Computing, CLOUD’11, pages 348–355.
IEEE, 2011. doi:10.1109/CLOUD.2011.27.

[109] Johannes M Schleicher, Michael Vögler, Christian Inzinger, and Schahram Dustdar.
Towards the internet of cities: A research roadmap for next-generation smart cities.
In Proceedings of the ACM First International Workshop on Understanding the
City with Urban Informatics, UCUI’15, pages 3–6. ACM, 2015. doi:10.1145/2811271.
2811274.

[110] Johannes M Schleicher, Michael Vögler, Christian Inzinger, and Schahram Dust-
dar. Smart Fabric – An Infrastructure-Agnostic Artifact Topology Deployment
Framework. In Proceedings of the 4th International Conference on Mobile Services,
MS’15, pages 320–327. IEEE, 2015. doi:10.1109/MobServ.2015.52.

147

http://www.worldcat.org/issn/1618-954X
http://www.worldcat.org/issn/1618-954X
http://dx.doi.org/10.1007/s10098-014-0828-2
http://puppetlabs.org/
http://www.rabbitmq.com
http://dx.doi.org/10.1109/ICCE-Berlin.2013.6697979
http://www.worldcat.org/issn/2168-7161
http://dx.doi.org/10.1109/TCC.2015.2437231
http://dx.doi.org/10.1137/0206041
http://www.worldcat.org/issn/1553-877X
http://dx.doi.org/10.1109/SURV.2011.032211.00087
http://dx.doi.org/10.1109/SURV.2011.032211.00087
http://dx.doi.org/10.1109/CLOUD.2011.27
http://dx.doi.org/10.1145/2811271.2811274
http://dx.doi.org/10.1145/2811271.2811274
http://dx.doi.org/10.1109/MobServ.2015.52

[111] Johannes M Schleicher, Michael Vögler, Christian Inzinger, Waldemar Hummer,
and Schahram Dustdar. Nomads - Enabling Distributed Analytical Service Environ-
ments for the Smart City Domain. In Proceedings of the International Conference
on Web Services, ICWS’15, pages 679–685, June 2015. doi:10.1109/ICWS.2015.95.

[112] Johannes M Schleicher, Michael Vögler, Schahram Dustdar, and Christian Inzinger.
Enabling a Smart City Application Ecosystem: Requirements and Architectural
Aspects. IEEE Internet Computing, 20(2):58–65, Mar 2016. doi:10.1109/MIC.2016.
39.

[113] Johannes M. Schleicher, Michael Vögler, Christian Inzinger, Sara Fritz, Manuel
Ziegler, Thomas Kaufmann, Dominik Bothe, Julia Forster, and Schahram Dustdar.
A Holistic, Interdisciplinary Decision Support System for Sustainable Smart City
Design. In Proceedings of the International Conference on Smart Cities, page to
appear, 2016.

[114] Anuj Sehgal, Vladislav Perelman, Siarhei Kuryla, and Jurgen Schonwalder. Manage-
ment of resource constrained devices in the internet of things. IEE Communications
Magazine, 50(12):144–149, 2012. doi:10.1109/MCOM.2012.6384464.

[115] Sanjin Sehic, Stefan Nastic, Michael Vögler, Fei Li, and Schahram Dustdar. Entity-
adaptation: A programming model for development of context-aware applications.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
pages 436–443, New York, NY, USA, 2014. ACM. doi:10.1145/2554850.2555015.

[116] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless embedded Internet,
volume 43. John Wiley & Sons, 2011.

[117] Ganesh Shrestha and Jürgen Jasperneite. Performance Evaluation of Cellular Com-
munication Systems for M2M Communication in Smart Grid Applications. In Com-
munications in Computer and Information Science, pages 352–359–359. Springer
Berlin Heidelberg, 2012. ISBN 978-3-642-31217-5. doi:10.1007/978-3-642-31217-5_
37.

[118] Michel Soares, Marcelo Maia, and Rodrigo Silva. Performance Evaluation of Aspect-
Oriented Programming Weavers. In Proceedings of the International Conference
on Enterprise Information Systems, pages 187–203. Springer, 2015. ISBN 978-3-
319-22348-3. doi:10.1007/978-3-319-22348-3_11.

[119] Splunk. http://www.splunk.com.

[120] John A Stankovic. Research Directions for the Internet of Things. IEEE Internet
of Things Journal, 1(1):3–9, 2014. ISSN 2327-4662. doi:10.1109/JIOT.2014.2312291.

[121] Evangelos Theodoridis, Georgios Mylonas, and Ioannis Chatzigiannakis. Developing
an IoT Smart City framework. In Proceedings of the 4th International Conference
on Information, Intelligence, Systems and Applications, pages 1–6, 2013. doi:10.
1109/IISA.2013.6623710.

148

http://dx.doi.org/10.1109/ICWS.2015.95
http://dx.doi.org/10.1109/MIC.2016.39
http://dx.doi.org/10.1109/MIC.2016.39
http://dx.doi.org/10.1109/MCOM.2012.6384464
http://dx.doi.org/10.1145/2554850.2555015
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-31217-5
http://dx.doi.org/10.1007/978-3-642-31217-5_37
http://dx.doi.org/10.1007/978-3-642-31217-5_37
http://en.wikipedia.org/wiki/Special:BookSources/978-3-319-22348-3
http://en.wikipedia.org/wiki/Special:BookSources/978-3-319-22348-3
http://dx.doi.org/10.1007/978-3-319-22348-3_11
http://www.splunk.com
http://www.worldcat.org/issn/2327-4662
http://dx.doi.org/10.1109/JIOT.2014.2312291
http://dx.doi.org/10.1109/IISA.2013.6623710
http://dx.doi.org/10.1109/IISA.2013.6623710

[122] ThereCorporation. ThereGate. http://therecorporation.com.

[123] Ankit Toshniwal, Jake Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy,
Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev
Kulkarni, Jason Jackson, Krishna Gade, and Maosong Fu. Storm@twitter. In
Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD’14, pages 147–156. ACM, 2014. ISBN 9781450323765.
doi:10.1145/2588555.2595641.

[124] Tridium. JACE Controller, 2015jo. http://www.tridiumeurope.com/22-jace.html.

[125] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and Tim-
othy Wood. Agile dynamic provisioning of multi-tier internet applications. ACM
Transactions on Autonomous and Adaptive Systems, 3(1):1:1–1:39, March 2008.
doi:10.1145/1342171.1342172.

[126] Massimo Villari, Antonio Celesti, Maria Fazio, and Antonio Puliafito. AllJoyn
Lambda: An architecture for the management of smart environments in IoT. In
Proceedings of the International Conference on Smart Computing Workshops, pages
9–14, November 2014. ISBN 9781479964475. doi:10.1109/SMARTCOMP-W.2014.
7046676.

[127] Michael Vögler, Fei Li, Markus Claeßens, Johannes M Schleicher, Sanjin Sehic,
Stefan Nastic, and Schahram Dustdar. Colt collaborative delivery of lightweight
iot applications. In Internet of Things. User-Centric IoT, volume 150 of Lecture
Notes of the Institute for Computer Sciences, pages 265–272. Springer International
Publishing, 2015. doi:10.1007/978-3-319-19656-5_38.

[128] Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dust-
dar. DIANE – Dynamic IoT Application Deployment. In Proceedings of the
4th International Conference on Mobile Services, MS’15, pages 298–305, 2015.
doi:10.1109/MobServ.2015.49.

[129] Michael Vögler, Johannes M Schleicher, Christian Inzinger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. LEONORE – Large-Scale Provisioning of Resource-
Constrained IoT Deployments. In Proceedings of the 9th Symposium on Service-
Oriented System Engineering, SOSE’15, pages 78–87. IEEE, 2015. doi:10.1109/
SOSE.2015.23.

[130] Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar.
Ahab: A Cloud-based Distributed Big Data Analytics Framework for the Internet
of Things. Software: Practice and Experience, page to appear, 2016.

[131] Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dustdar.
A Scalable Framework for Provisioning Large-scale IoT Deployments. ACM Trans-
actions on Internet Technology, 16(2):11:1–11:20, March 2016. doi:10.1145/2850416.

149

http://therecorporation.com
http://en.wikipedia.org/wiki/Special:BookSources/9781450323765
http://dx.doi.org/10.1145/2588555.2595641
http://www.tridiumeurope.com/22-jace.html
http://dx.doi.org/10.1145/1342171.1342172
http://en.wikipedia.org/wiki/Special:BookSources/9781479964475
http://dx.doi.org/10.1109/SMARTCOMP-W.2014.7046676
http://dx.doi.org/10.1109/SMARTCOMP-W.2014.7046676
http://dx.doi.org/10.1007/978-3-319-19656-5_38
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1145/2850416

[132] Michael Vögler, Johannes M Schleicher, Christian Inzinger, Schahram Dustdar,
and Rajiv Ranjan. Migrating Smart City Applications to the Cloud. IEEE Cloud
Computing, page to appear, Mar-Apr. 2016.

[133] Michael Vögler, Johannes M Schleicher, Christian Inzinger, Bernhard Nickel, and
Schahram Dustdar. Non-Intrusive Monitoring of Stream Processing Applications.
In Proceedings of the 10th International Symposium on Service-Oriented System
Engineering, SOSE’16, pages 190–199. IEEE, 2016. doi:10.1109/SOSE.2016.11.

[134] Hiroshi Wada, Junichi Suzuki, Yuji Yamano, and Katsuya Oba. Evolutionary
deployment optimization for service-oriented clouds. Software: Practice and Expe-
rience, 41(5):469–493, 2011. ISSN 1097-024X. doi:10.1002/spe.1032.

[135] Johannes Wettinger, Michael Behrendt, Tobias Binz, Uwe Breitenbücher, Gerd
Breiter, Frank Leymann, Simon Moser, Isabell Schwertle, and Thomas Spatzier.
Integrating Configuration Management with Model-Driven Cloud Management
Based on TOSCA. In Proceedings of the 3rd International Conference on Cloud
Computing and Service Science, CLOSER 2013, pages 437 – 446, Aachen, Germany,
2013. SciTePress.

[136] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event
processing over streams. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, volume 10 of SIGMOD’06, pages 407–418. ACM,
2006. ISBN 1595934340. doi:10.1145/1142473.1142520.

[137] Fatos Xhafa, Victor Naranjo, and Santi Caballe. Processing and Analytics of Big
Data Streams with Yahoo!S4. In Proceedings of the 29th International Conference
on Advanced Information Networking and Applications, AINA’15, pages 263–270.
IEEE, 2015. ISBN 978-1-4799-7905-9. doi:10.1109/AINA.2015.194.

[138] Stephen S Yau and Arun Balaji Buduru. Intelligent Planning for Developing
Mobile IoT Applications Using Cloud Systems. In Proceedings of the International
Conference on Mobile Services, MS’14, pages 55–62, 2014. ISBN 9781479950607.
doi:10.1109/MobServ.2014.17.

[139] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of
cloud computing. In Proceedings of the Grid Computing Environments Workshop,
GCE ’08, pages 1–10, Washington, DC, USA, 2008. IEEE Computer Society. doi:10.
1109/GCE.2008.4738443.

[140] Wei Yuan, Hailong Sun, Xu Wang, and Xudong Liu. Towards Efficient Deployment
of Cloud Applications through Dynamic Reverse Proxy Optimization. In Proceed-
ings of the 10th International Conference on High Performance Computing and
Communications & International Conference on Embedded and Ubiquitous Com-
puting, pages 651–658. IEEE, 2013. ISBN 978-0-7695-5088-6. doi:10.1109/HPCC.
and.EUC.2013.97.

150

http://dx.doi.org/10.1109/SOSE.2016.11
http://www.worldcat.org/issn/1097-024X
http://dx.doi.org/10.1002/spe.1032
http://en.wikipedia.org/wiki/Special:BookSources/1595934340
http://dx.doi.org/10.1145/1142473.1142520
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4799-7905-9
http://dx.doi.org/10.1109/AINA.2015.194
http://en.wikipedia.org/wiki/Special:BookSources/9781479950607
http://dx.doi.org/10.1109/MobServ.2014.17
http://dx.doi.org/10.1109/GCE.2008.4738443
http://dx.doi.org/10.1109/GCE.2008.4738443
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7695-5088-6
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.97
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.97

[141] C. H Philip Yuen and S. H Gary Chan. Scalable real-time monitoring for distributed
applications. IEEE Transactions on Parallel and Distributed Systems, 23(12):2330–
2337, 2012. ISSN 10459219. doi:10.1109/TPDS.2012.60.

[142] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized Streams: Fault-tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, number 1 in SOSP’13, pages 423–438. ACM, 2013. ISBN 978-1-4503-2388-8.
doi:10.1145/2517349.2522737.

[143] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. IOT Gateway:
BridgingWireless Sensor Networks into Internet of Things. In Proceedings of the
IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing,
pages 347–352, 2010. doi:10.1109/EUC.2010.58.

151

http://www.worldcat.org/issn/10459219
http://dx.doi.org/10.1109/TPDS.2012.60
http://en.wikipedia.org/wiki/Special:BookSources/978-1-4503-2388-8
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1109/EUC.2010.58

APPENDIX A
Curriculum Vitae

Michael Vögler
Macholdastraße 24/4/79
1100 Wien, Austria

Born February 4, 1986
Email voegler@dsg.tuwien.ac.at
Web http://dsg.tuwien.ac.at/staff/mvoegler

Work Experience

University Assistant at the Distributed Systems Group 02/2013 – present
TU Wien
http://dsg.tuwien.ac.at/

Project Assistant at the Distributed Systems Group 10/2011 – 01/2013
TU Wien
http://dsg.tuwien.ac.at/

Software Engineer 08/2010 – 09/2010
Andritz Hydro GmbH
http://www.andritz.com/hydro

Teaching Assistant at the Distributed Systems Group 2009 – 2011
TU Wien
http://dsg.tuwien.ac.at/

Software Engineer 08/2009 – 09/2009
Andritz Hydro GmbH
http://www.andritz.com/hydro

153

mailto:voegler@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at/staff/mvoegler
http://dsg.tuwien.ac.at/
http://dsg.tuwien.ac.at/
http://www.andritz.com/hydro
http://dsg.tuwien.ac.at/
http://www.andritz.com/hydro

Internship 11/2007 – 05/2008
SAP Austria Global Support Center
http://www.sap.at

Education

Ph.D. in Computer Science at the Distributed Systems Group, 2013 – 2016
TU Wien

Dipl.-Ing. (M.Sc.) in Software Engineering & Internet Computing, 2009 – 2011
TU Wien

B.Sc. in Software & Information Engineering, 2006 – 2009
TU Wien

Teaching

Bachelor Level Courses

• Distributed Systems Lab (184.167 - UE 2.0)

Master Level Courses

• Distributed Systems Technologies (184.260 - VU 4.0)

• Software Architectures (184.159 - VU 2.0)

• Distributed Systems Engineering (184.153 - VU 2.0)

• Project in Software Engineering & Internet Computing (184.715 - PR 6.0)

Co-Supervised Master’s Theses

• Gregor Schauer: Predicting Scalability of Standalone Applications in Cloud Envi-
ronments

• Bernhard Nickel: Enhanced Performance Testing and Monitoring of JVM-based
Distributed Data-Processing Applications

• Jakob Korherr: RESTful web applications with reactive, partial server-side process-
ing in Java EE

• Markus Claeßens: Automated Application Deployment in heterogeneous IoT Envi-
ronments by OpenTOSCA

154

http://www.sap.at

Publications

Journal Papers

• Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar.
Ahab: A Cloud-based Distributed Big Data Analytics Framework for the Internet
of Things. Software: Practice and Experience, page to appear, 2016

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Schahram Dustdar,
and Rajiv Ranjan. Migrating Smart City Applications to the Cloud. IEEE Cloud
Computing, page to appear, Mar-Apr. 2016

• Johannes M Schleicher, Michael Vögler, Schahram Dustdar, and Christian Inzinger.
Enabling a Smart City Application Ecosystem: Requirements and Architectural
Aspects. IEEE Internet Computing, 20(2):58–65, Mar 2016. doi:10.1109/MIC.2016.
39

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dustdar.
A Scalable Framework for Provisioning Large-scale IoT Deployments. ACM Trans-
actions on Internet Technology, 16(2):11:1–11:20, March 2016. doi:10.1145/2850416

• Fei Li, Michael Vögler, Sanjn Sehic, Soheil Qanbari, Stefan Nastic, Hong-Linh
Truong, and Schahram Dustdar. Web-Scale Service Delivery for Smart Cities.
IEEE Internet Computing, 17(4):78–83, 2013. doi:10.1109/MIC.2013.79

Conference/Workshop Proceedings

2016

• Johannes M. Schleicher, Michael Vögler, Christian Inzinger, Sara Fritz, Manuel
Ziegler, Thomas Kaufmann, Dominik Bothe, Julia Forster, and Schahram Dustdar.
A Holistic, Interdisciplinary Decision Support System for Sustainable Smart City
Design. In Proceedings of the International Conference on Smart Cities, page to
appear, 2016

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Bernhard Nickel, and
Schahram Dustdar. Non-Intrusive Monitoring of Stream Processing Applications.
In Proceedings of the 10th International Symposium on Service-Oriented System
Engineering, SOSE’16, pages 190–199. IEEE, 2016. doi:10.1109/SOSE.2016.11

2015

• Johannes M Schleicher, Michael Vögler, Christian Inzinger, and Schahram Dustdar.
Towards the internet of cities: A research roadmap for next-generation smart cities.
In Proceedings of the ACM First International Workshop on Understanding the
City with Urban Informatics, UCUI’15, pages 3–6. ACM, 2015. doi:10.1145/2811271.
2811274

155

http://dx.doi.org/10.1109/MIC.2016.39
http://dx.doi.org/10.1109/MIC.2016.39
http://dx.doi.org/10.1145/2850416
http://dx.doi.org/10.1109/MIC.2013.79
http://dx.doi.org/10.1109/SOSE.2016.11
http://dx.doi.org/10.1145/2811271.2811274
http://dx.doi.org/10.1145/2811271.2811274

• Johannes M Schleicher, Michael Vögler, Christian Inzinger, and Schahram Dust-
dar. Smart Fabric – An Infrastructure-Agnostic Artifact Topology Deployment
Framework. In Proceedings of the 4th International Conference on Mobile Services,
MS’15, pages 320–327. IEEE, 2015. doi:10.1109/MobServ.2015.52

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dust-
dar. DIANE – Dynamic IoT Application Deployment. In Proceedings of the 4th
International Conference on Mobile Services, MS’15, pages 298–305, 2015. doi:10.
1109/MobServ.2015.49

• Johannes M Schleicher, Michael Vögler, Christian Inzinger, Waldemar Hummer,
and Schahram Dustdar. Nomads - Enabling Distributed Analytical Service Environ-
ments for the Smart City Domain. In Proceedings of the International Conference
on Web Services, ICWS’15, pages 679–685, June 2015. doi:10.1109/ICWS.2015.95

• Michael Vögler, Johannes M Schleicher, Christian Inzinger, Stefan Nastic, Sanjin
Sehic, and Schahram Dustdar. LEONORE – Large-Scale Provisioning of Resource-
Constrained IoT Deployments. In Proceedings of the 9th Symposium on Service-
Oriented System Engineering, SOSE’15, pages 78–87. IEEE, 2015. doi:10.1109/
SOSE.2015.23

• Stefan Nastic,Michael Vögler, Christian Inzinger, Hong-Linh Truong, and Schahram
Dustdar. rtGovOps: A Runtime Framework for Governance in Large-Scale Software-
Defined IoT Cloud Systems. In Proceedings of the 3rd International Conference on
Mobile Cloud Computing, Services, and Engineering, MobileCloud’15, pages 24–33,
March 2015. doi:10.1109/MobileCloud.2015.38

• Michael Vögler, Fei Li, Markus Claeßens, Johannes M Schleicher, Sanjin Sehic,
Stefan Nastic, and Schahram Dustdar. Colt collaborative delivery of lightweight
iot applications. In Internet of Things. User-Centric IoT, volume 150 of Lecture
Notes of the Institute for Computer Sciences, pages 265–272. Springer International
Publishing, 2015. doi:10.1007/978-3-319-19656-5_38

2014

• Christian Inzinger, Stefan Nastic, Sanjin Sehic,Michael Vögler, Fei Li, and Schahram
Dustdar. MADCAT - A Methodology for Architecture and Deployment of Cloud
Application Topologies. In Proceedings of the 8th International Symposium on
Service-Oriented System Engineering, pages 13–22. IEEE, 2014. doi:10.1109/SOSE.
2014.9

• Sanjin Sehic, Stefan Nastic, Michael Vögler, Fei Li, and Schahram Dustdar. Entity-
adaptation: A programming model for development of context-aware applications.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
’14, pages 436–443, New York, NY, USA, 2014. ACM. doi:10.1145/2554850.2555015

156

http://dx.doi.org/10.1109/MobServ.2015.52
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1109/ICWS.2015.95
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/MobileCloud.2015.38
http://dx.doi.org/10.1007/978-3-319-19656-5_38
http://dx.doi.org/10.1109/SOSE.2014.9
http://dx.doi.org/10.1109/SOSE.2014.9
http://dx.doi.org/10.1145/2554850.2555015

2013

• Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram
Dustdar. PatRICIA – A Novel Programming Model for IoT Applications on Cloud
Platforms. In Proceedings of the 6th International Conference on Service-Oriented
Computing and Applications, pages 53–60, 2013. doi:10.1109/SOCA.2013.48

• Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Efficient and
Scalable IoT Service Delivery on Cloud. In Proceedings of the 6th International
Conference on Cloud Computing, CLOUD’13, pages 740–747, 2013. doi:10.1109/
CLOUD.2013.64

• Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. Towards Auto-
mated IoT Application Deployment by a Cloud-Based Approach. In Proceedings of
the 6th International Conference on Service-Oriented Computing and Applications,
SOCA’13, pages 61–68, 2013. doi:10.1109/SOCA.2013.12

• Schahram Dustdar, Fei Li, Hong-Linh Truong, Sanjin Sehic, Stefan Nastic, Soheil
Qanbari, Michael Vögler, and Markus Claeßens. Green software services: From
requirements to business models. In Proceedings of the 2nd International Workshop
on Green and Sustainable Software, GREENS 2013, pages 1–7, May 2013. doi:10.
1109/GREENS.2013.6606415

Book Chapters

• Fei Li, Soheil Qanbari, Michael Vögler, and Schahram Dustdar. Green in Software
Engineering, chapter Constructing Green Software Services: From Service Models
to Cloud-Based Architecture, pages 83–104. Springer International Publishing,
2015. doi:10.1007/978-3-319-08581-4_4

http://dsg.tuwien.ac.at/staff/mvoegler

157

http://dx.doi.org/10.1109/SOCA.2013.48
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/SOCA.2013.12
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://dx.doi.org/10.1109/GREENS.2013.6606415
http://dx.doi.org/10.1007/978-3-319-08581-4_4
http://dsg.tuwien.ac.at/staff/mvoegler

	Acknowledgements
	Danksagung
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Listings
	List of Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Organization of this Thesis

	Background
	Smart City
	Cloud Computing
	Internet of Things
	Server Provisioning and Deployment Automation

	Motivating Scenario
	Building Management System
	Identified Requirements

	Provisioning large-scale IoT Deployments
	Overview
	Requirements
	The LEONORE Framework
	LEONORE Optimization
	Evaluation
	Summary

	Deploying elastic IoT Applications
	Overview
	Requirements
	The DIANE Framework
	DIANE Optimization
	Evaluation
	Summary

	Deploying IoT Applications with TOSCA
	Overview
	Modeling traditional IoT Applications
	Deploying IoT Application Artifacts
	Discussion
	Summary

	Monitoring IoT Applications
	Overview
	Requirements
	The MOSAIC Framework
	Evaluation
	Summary

	Analyzing large-scale IoT Deployments
	Overview
	Requirements
	The Ahab Framework
	Evaluation
	Summary

	Related Work
	Related Work on Provisioning IoT Deployments
	Related Work on Deploying and Optimizing IoT Applications
	Related Work on Monitoring IoT Applications
	Related Work on Analyzing IoT Deployments

	Conclusions
	Summary of Contributions
	Research Questions Revisited
	Future Work
	Ongoing Work

	Bibliography
	Curriculum Vitae

