
A Distributed Compute Fabric for
Edge Intelligence

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Thomas Rausch, BSc
Matrikelnummer 00726439

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

Weisong Shi Ming Zhao

Wien, 5. Mai 2021
Thomas Rausch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

A Distributed Compute Fabric for
Edge Intelligence

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Thomas Rausch, BSc
Registration Number 00726439

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

Weisong Shi Ming Zhao

Vienna, 5th May, 2021
Thomas Rausch

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Rausch, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Mai 2021
Thomas Rausch

v

Acknowledgements

This thesis is the culmination of over fours years of research, tinkering, personal growth,
and wonderful collaborations. I have lots of things to be grateful for, have been im-
mensely privileged to be where I am today, and I owe thanks to numerous people whose
involvements in this thesis I want to acknowledge. First I want to thank my supervisor
Schahram Dustdar, who gave me the opportunity to pursue my PhD in his group. He
has given me the two things I needed most to grow as a researcher and person: the
freedom to pursue my own path, and the trust that this path will lead to great outcomes.
I owe thanks to Waldemar Hummer, whose advice has helped me get through the many
stages of the PhD. Waldemar has been a teacher, mentor, colleague, and friend, and I’m
extremely grateful to him. His tenacity lead to an internship at IBM Research, where
we, together with Vinod Muthusamy, developed key ideas of this thesis. I also want to
thank Mahadev Satyanarayanan from Carnegie Mellon University, and Padmanabhan
Pillai from Intel Labs, who made possible my research stay at Satya’s edge computing
lab at CMU. I owe thanks to my two thesis reviewers Ming Zhao and Weisong Shi, who
I’ve also enjoyed stimulating conversations with at Edge Computing conferences. I also
want to thank Wolfgang Kastner and Uwe Zdun for agreeing to be in my proficiency
evaluation committe, giving me valuable feedback in the earlier stages of my research.
I’ve had many colleagues at the Distributed Systems Group who have helped me directly
or indirectly with my thesis. Renate, Christine, and Margret have been immensely helpful
with administrative issues, and I’m very grateful for their patience. Alexander Knoll, who
has become my friend, was always eager to help with acquiring hardware for testbeds,
build compute clusters, and provide cute videos of cats. Moreover, I wish to thank all
my students who have contributed to the research presented in this thesis, and who
helped me grow as a teacher: Andreas Bruckner, Manuel Geier, Cynthia Marcelino, Jacob
Palecek, Philipp Raith, Alexander Rashed, David Schneiderbauer, and Silvio Vasiljevic.
Finally, I’m immensely grateful for Katharina Krösl, who has been a fixed point in the
tumultuous past decade of my life. Her never ending patience, tolerance, and helpful
character have significantly contributed to my life and my career. Through the many
fruitful discussions, we have found exciting topics at the intersection of our research, that
have opened up new avenues I hope to continue to pursue together.

The research presented in this thesis was funded by TU Wien research funds, as
well as the Austrian Federal Ministry of Science through the Austrian infrastructure

program (HRSM 2016) as part of the CPS/IoT Ecosystem project.

vii

Kurzfassung

Edge Intelligence ist ein post-Cloud Computing Paradigma, und die Konsequenz des
letzten Jahrzehnts an Entwicklungen in den Bereichen der Künstlicher Intelligenz (KI),
Internet der Dinge (IoT), und Human Augmentation. An der Schnittstelle dieser Do-
mänen entstehen Anwendungsszenarien mit herausfordernden Anforderungen, etwa den
Echtzeitzugriff auf Sensordaten aus der Umgebung, KI-Modell-Inferenz mit geringer La-
tenz, oder den sicheren Zugriff auf Daten aus privaten Edge Netzwerken um KI-Modelle
zu trainieren. Diese Anforderungen stehen in klarem Widerspruch zum zentralisierten
Cloud Computing Paradigma, und haben weitreichende Auswirkungen auf das Design
der unterstützenden Computersysteme. Edge Intelligence erfordert neuartige Systeme die
explizit für die Charakteristika von KI Anwendungen und Edge Computing Umgebungen
entwickelt sind. Diese Systeme verweben mit den entsprechenden Abstraktionen, Cloud
und Edge Ressourcen zu einem neuartigen Rechnerverbund, dem “Distributed Compute
Fabric”. Die Ziele der vorliegenden Arbeit sind die Untersuchung der mit diesen neuen
Systemen verbundenen Herausforderungen, und die Entwicklung und Evaluierung von
Prototypen um die Anwendbarkeit zu demonstrieren.

Um das Konzept der intelligenten Edge Netzwerke, oder “Edge Intelligence”, zu untermau-
ern, analysieren wir zuerst aktuelle Trends in Human Augmentation, Edge Computing
und KI. Wir erarbeiten Szenarien in denen dezentrale IT-Ressourcen einen Rechnerver-
bund bilden, der für die verteilte Ausführung von Anwendungen dienlich sein kann. Das
Analogon zum Cloud Server Computer ist der “multi-purpose Edge Computer Cluster”,
welches die Infrastruktureinheit für Edge Intelligence bildet. Anhand von Experimenten
mit einem Prototypen den wir entwickelt haben, verdeutlichen wir die Herausforderungen
an Orchestrierungsmechanismen in solchen Systemen. Wir entwickeln neue Evaluierungs-
methodologien für Edge Computing. Insbesondere entwickeln wir anhand einer Analyse
neuartiger Edge Systeme ein Framework um synthetische aber plausible Cluster und
Infrastruktur-Konfigurationen zu generieren, die als Input für einen Simulator verwendet
werden. Um verteilte Infrastruktureinheiten zu einem Verbund zu verweben, entwickeln
wir zwei orthogonale Systeme: eine elastisch skalierende Message-Oriented Middleware,
und eine Serverless Edge Computing Plattform. Von einem zentralen Deployment in
der Cloud, diffundieren Nachrichten-Broker nach Bedarf und Ressourcenverfügbarkeit in
Edge Netzwerke. Das System optimiert kontinuierlich Kommunikationslatenzen in dem es
die Distanz zwischen Clients und Broker überwacht und das Netzwerk entsprechend neu
konfiguriert. Unsere Serverless Plattform erweitert existierende Systeme mit einem neuar-

ix

tigen Scheduler, der Zielkonflikte zwischen Datentransfer und Codemobilität zur Laufzeit
auflöst, und spezielle Anforderungen von AI Anwendungen analysiert und entsprechend
zu spezialisierten IT-Ressourcen, wie etwa GPUs, zordnet. Weiters präsentieren wir eine
Methode für das automatische Feineinstellen von Scheduler-Parameter, um Betriebsziele
der Infrastruktur zu optimieren.

Abstract

Edge intelligence is a post-cloud computing paradigm, and a consequence of the past
decade of developments in Artificial Intelligence (AI), Internet of Things (IoT), and
human augmentation. At the intersection of these domains, new applications have
emerged that require real-time access to sensor data from the environment, low-latency
AI model inferencing, or access to data isolated in edge networks for training AI models,
all while operating in highly dynamic and heterogeneous computing environments. These
requirements have profound implications on the scale and design of supporting computing
platforms that are clearly at odds with the centralized nature of cloud computing. Instead,
edge intelligence necessitates a new operational layer that is designed for the character-
istics of AI and edge computing systems. This layer weaves both cloud and federated
edge resources together using appropriate platform abstractions to form a distributed
compute fabric. The main goals of this thesis are to examine the associated challenges,
and to provide evidence for the efficacy of the idea. To further develop the concept of
Edge Intelligence, we first discuss emerging technology trends at the intersection of edge
computing and AI. We then examine scenarios where distributed computing resources can
be federated and served as a utility, and argue that multi-purpose edge computer clusters
will be a fundamental infrastructural component. Through experiments on prototypes
we have built, we highlight the challenges faced by operational mechanisms such as load
balancers in these environments. We extend the body of evaluation methods for edge
computing, which is, compared to cloud computing research, still underdeveloped. Most
notably, we present a toolkit to generate synthetic infrastructure configurations and net-
work topologies that are grounded in our examination of existing edge systems, and serve
as input for a trace-driven simulator we have built. To create the distributed computing
fabric, we develop two orthogonal systems: an elastic message-oriented middleware, and
a serverless edge computing platform. From a static centralized deployment in the cloud,
we bootstrap a network of brokers that diffuse to the edge based on resource availability,
and the number of clients and their proximity to edge resources. The system continuously
optimizes communication latencies by monitoring client–broker proximity, and recon-
figuring connections as necessary. Our serverless platform builds on existing container
orchestration systems. The core is a custom scheduler that can make tradeoffs between
data and computation movement, and is aware of workload heterogeneity and device
capabilities such as GPUs. Furthermore, we demonstrate a method to automatically
fine-tune scheduler parameters and optimize high-level operational goals.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

Publications 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem statement . 4
1.3 Contributions . 9

2 Edge Intelligence 13
2.1 The convergence of humans, things, and AI 13
2.2 Operationalizing edge intelligence . 17
2.3 A distributed compute fabric for edge intelligence 25
2.4 The role of serverless computing . 30
2.5 Summary . 32

3 Edge infrastructure architectures 33
3.1 The computing continuum . 33
3.2 Portable energy-aware edge clusters 38
3.3 Edge infrastructure scenarios . 52
3.4 Summary . 55

4 Edge system analysis and evaluation methods 57
4.1 Profiling edge computer systems . 58
4.2 Synthesizing plausible edge infrastructure configurations 63
4.3 Trace-driven simulation framework . 70
4.4 Related Work . 79
4.5 Summary . 80

5 Elastic message-oriented middleware for edge computing 83

xiii

5.1 Motivation . 84
5.2 System architecture . 88
5.3 Broker network orchestration . 91
5.4 Proximity awareness . 94
5.5 Elastic diffusion . 96
5.6 Evaluation . 100
5.7 Related work . 108
5.8 Summary . 110

6 A serverless platform for edge computing 113
6.1 Introduction . 114
6.2 Background & application scenarios 116
6.3 Design and implementation . 122
6.4 Automatic tuning of scheduling parameters 131
6.5 Evaluation . 133
6.6 Related work . 141
6.7 Summary . 143

7 Conclusion 147
7.1 Summary . 147
7.2 Research questions . 148
7.3 Future work . 152

Bibliography 157

Curriculum Vitae 181

Publications

The research presented in this thesis is partly based on the following peer-reviewed
publications and tech reports:

• Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized container
scheduling for data-intensive serverless edge computing. Future Generation Com-
puter Systems, 114:259–271, 2021

• Thomas Rausch, Clemens Lachner, Pantelis A. Frangoudis, Philipp Raith, and
Schahram Dustdar. Synthesizing plausible infrastructure configurations for evaluat-
ing edge computing systems. In 3rd USENIX Workshop on Hot Topics in Edge
Computing, HotEdge’20, 2020

• Thomas Rausch, Waldermar Hummer, and Vinod Muthusamy. An experimentation
and analytics framework for large-scale AI operations platforms. In 2020 USENIX
Conference on Operational Machine Learning, OpML’20, 2020

• Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube, and Kaoutar
El Maghraoui. Modelops: Cloud-based lifecycle management for reliable and trusted
AI. In 2019 IEEE International Conference on Cloud Engineering, IC2E’19, Jun
2019

• Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar. Towards a serverless platform for edge AI. In 2nd USENIX
Workshop on Hot Topics in Edge Computing, HotEdge’19, 2019

• Thomas Rausch and Schahram Dustdar. Edge intelligence: The convergence
of humans, things, and AI. In 2019 IEEE International Conference on Cloud
Engineering, IC2E’19, Jun 2019

• Thomas Rausch, Stefan Nastic, and Schahram Dustdar. EMMA: Distributed
QoS-aware MQTT middleware for edge computing applications. In 2018 IEEE
International Conference on Cloud Engineering, IC2E’18, pages 191–197. IEEE,
2018

• Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. Osmotic message-oriented
middleware for the internet of things. IEEE Cloud Computing, 5(2):17–25, 2018

1

CONTENTS

• Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dustdar. A
system for operating energy-aware cloudlets. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, SEC’19, pages 307–309, 2019

• Thomas Rausch, Cosmin Avasalcai, and Schahram Dustdar. Portable energy-aware
cluster-based edge computers. In 2018 IEEE/ACM Symposium on Edge Computing,
SEC’18, pages 260–272, 2018

• S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska,
B. Jakimovski, S. Ristov, and R. Prodan. A serverless real-time data analytics
platform for edge computing. IEEE Internet Computing, 21(4):64–71, 2017

Furthermore, selected topics were investigated together with students, reported in the
following Master’s theses under my supervision:

• Andreas Bruckner. Self-adaptive distributed MQTT middleware for edge computing
applications. Master’s thesis, TU Wien, 2021

• Cynthia Marcelino. Locality-aware data management for serverless edge computing.
Master’s thesis, TU Wien, 2021

• Philipp Raith. Container scheduling on heterogeneous clusters using machine
learning-based workload characterization. Master’s thesis, TU Wien, 2021

• Alexander Rashed. Optimized container scheduling for serverless edge computing.
Master’s thesis, TU Wien, 2020

• David Schneiderbauer. Predictive analytics for smart homes using serverless edge
computing. Master’s thesis, TU Wien, 2019

• Manuel Geier. Enabling mobility and message delivery guarantees in distributed
MQTT networks. Master’s thesis, TU Wien, 2019

2

CHAPTER 1
Introduction

1.1 Motivation
The development of artificial intelligence (AI) has taken spectacular leaps over
the past decade. Even in problem areas long thought to be unattainable without hu-
man reasoning and intuition, AI has achieved superhuman capabilities, as impressively
demonstrated by Jeopardy winning IBM Watson [FBCC+10] or Google DeepMind’s Al-
phaGo [SHM+16] and AlphaZero [SHS+18]. The increase in data availability, computing
power, and specialized AI hardware, as well as the advancement of machine learning (ML)
techniques, has moved us into the fast-lane towards a society that is shaped by AI in all its
aspects. Although researchers and thinkers seem divided into AI optimists and pessimists,
one thing seems clear. The optimal strategy for us humans, for whatever future awaits
us with the development of AI, is that we continue to foster a close partnership with
AI. This partnership seems particularly important as the number of Internet connected
sensors, devices, and autonomous agents that can sense and manipulate our physical
surroundings continues to grow. Cisco reports that the number of networked devices per
person will grow from 2.4 in 2018, to 3.6 by 2023, resulting in 28 billion Internet connected
devices [Cis21]. Moreover, they estimated that by 2021, 850 ZB of data will be generated
by all people, machines, and things [Cis19]. With the appropriate human–computer
interfaces, and a cyber-physical fabric that permeates our environment, together with
the unprecedented amount of computing power and digitally persisted knowledge, there
is an opportunity for human cognition to further evolve beyond its current limitations.

Edge computing [GLME+15, SD16, Sat17] will play a fundamental role in this devel-
opment. The premise of edge computing is that the centralized model of cloud computing
is impractical to support emerging Internet of Things (IoT), smart city, and mobile
computing applications. First, there physical and architectural limitations to what cloud-
based solutions can deliver in terms of latency and bandwidth [SBCD09, Sat17]. For
example, in [RHS+21] we showed that, even in simple cases such as detecting objects in

3

1. Introduction

a video feed using deep neural networks, compared to edge computing solutions, current
cloud-based solutions incur between 400 and 800 milliseconds of additional latency which
is impractical for real-time applications. In [RRD21] we showed that, moving data for
training ML models from the edge to the cloud causes serious network scalability issues,
and decreases throughput by an order of magnitude. Second, there are legitimate concerns
about privacy and trust [SD16], particularly as we become more interconnected with,
and dependent on, personalized AI. Moreover, as we move towards artificial general intel-
ligence (AGI), previously isolated AI programs will become increasingly interconnected
and begin to collaboratively solve increasingly complex tasks [MG18]. While we can
bootstrap the development of these systems using cloud-based solutions, a decentralized
model where programs make use of geographically dispersed edge computing resources is
likely to follow. Computational intelligence and data will gradually be pushed from the
centralized data centers closer to the edge of the network.

Edge intelligence is the fusion of edge computing and artificial intelligence [ZCL+19,
ZWL+19, RD19]. It is the ability of edge computing systems to: support AI-based appli-
cations, provide efficient access to data and computation at the edge to train and serve ML
models, and use AI to optimize their own operation at runtime. In this new paradigm that
sits at the intersection of human augmentation, IoT, AI, and edge computing, new families
of applications emerge that require real-time, location-based data about environments at
different levels of fidelity; and appropriate computing resources to both process and store
data close to where they are generated. We hypothesize that such applications will be
supported by a computing model much like modern enterprise applications are supported
by cloud computing systems today, where a platform provider takes care of efficiently op-
erating applications on the underlying utility computing infrastructure. Researchers have
put forward several candidates for this infrastructure [PDT18], such as geo-distributed
cloudlets [SBCD09], single-board computer (SBC) clusters [EPR+17, BJP+20], or even
clusters of mobile devices [HAHZ15]. Although there is currently no consensus on what
the dominant infrastructure architecture will be, any one of them will be characterized
by extreme heterogeneity in terms of computing capabilities, and the physical proximity
to data producers and consumers. This has profound implications on the scale and
design of supporting computing platforms, and necessitates a new operational layer
that is expressly designed for the characteristics of edge intelligence. This layer weaves
both cloud and federated edge resources together, and provides appropriate platform
abstractions, to form a distributed compute fabric.

1.2 Problem statement
A distributed compute fabric for edge intelligence is an edge computing system
that (1) federates geographically dispersed and computationally diverse computing
infrastructure to form a single transparent computing substrate, (2) provides a computing
platform tailored to edge AI workloads, which abstracts the increased complexity of
this infrastructure by elevating concepts from edge computing and AI into the system’s
operational mechanisms (such as data access, scheduling, or autoscaling), and (3) provides

4

1.2. Problem statement

a sensing and communication middleware to enable real-time data exchange and IoT
integration. The main goal of this thesis is to examine the challenges of building,
operating, and evaluating such a distributed compute fabric for edge intelligence, and to
provide evidence for the efficacy of the idea. Moreover, we want to examine to which
extent existing systems abstractions from cloud computing can be re-used or extended to
solve the associated challenges.

1.2.1 Research questions

The research presented in this thesis is driven by three overarching research questions:

RQ1. Which are appropriate infrastructure architectures that enable a
distributed compute fabric for edge intelligence?

Cloud computing architecture, and the computing infrastructure used for cloud comput-
ing, is extremely well understood. Server computers and high-performance networking
appliances are consolidated into massive data centers, abstracted by hardware virtualiza-
tion using Hypervisors, and then managed and made accessible as a utility by virtual
infrastructure management software [EPM13]. Edge resources are much more diverse
and provide a variety of computational platforms, such as GPUs or AI accelerators, to
support the equally diverse range of use cases [SGL19]. At the present time, there is
no consensus on what edge computing infrastructure is precisely. The following three
examples illustrate the disparity:

1. In Mobile Edge Computing (MEC) scenarios, telecommunication companies operate
small data centers in logical proximity to LTE/5G base stations, thereby allowing
providers to deliver cloud services directly at the last mile [MB17].

2. In a smart city scenario, a network of sensing nodes with limited compute capabilities
(such as an Array of Things [CBSG17] or similar product), may be complemented
by an equally distributed, but lower density network of cloudlets [SBCD09], which
are small-scale compute clusters with diverse computing capabilities.

3. Many envision a more generic, but strictly three-tiered architecture where: tier one
is the cloud acting as a centralized coordinator and configurator, tier two is the
Fog [SSBL16] (a metaphor for a cloud closer to the ground) that provides limited
compute and storage closer to tier one, and tier one is made up of IoT sensors and
actuators, or edge devices such as mobile phones [SGL19].

We hypothesize that, to enable edge intelligence systems at scale, there will not be a one-
size-fits-all model. Instead, geographically dispersed and heterogeneous edge computers
will be federated with cloud resources to form a multi-purpose computing substrate.
Novel middleware platforms and operational mechanisms will weave edge and cloud
infrastructure to a single distributed compute fabric. However, it is currently unclear

5

1. Introduction

whether (a) a utility computing model like cloud computing works for edge computing
applications, and (b) which infrastructure architecture would be the best candidate for
implementing such a model to support a wide range of use cases.

RQ2. Which aspects of edge intelligence systems should be abstracted as
first-class citizens into platforms that manage such systems?

The characteristics of edge intelligence systems significantly increase the complexity of
mechanisms required to manage these systems, when compared to cloud computing.
Consider key operational mechanisms such as virtualization, auto scaling, and load
balancing. These concepts are so fundamental to the cloud computing model that most
cloud platforms provide them as native platform functions. This is possible because cloud
computing provides concepts such as virtual machine specifications, SLAs, data center
regions, etc., as platform abstractions. These abstractions in turn allow platform operators
to develop complex operational mechanisms, such as auto scaling, VM consolidation, or
energy-aware machine provisioning, that work transparently to the platform user.

In edge computing, concepts such as device proximity, data locality, or energy consumption
play a critical role in the effectiveness of these mechanisms, and may therefore have
a similar level of significance. Elevating them to first-class citizens may allow us to
develop reusable operational mechanisms that work for variety of edge applications, rather
than something ad-hoc tailored to a specific application. Examples derived from the
presented scenarios include: elastically expanding a broker network to the edge [RND18],
data-locality-aware resource allocation [RRD21], or energy-aware load balancing [RAD18].

RQ3. What are appropriate methods for developing and evaluating edge
computing systems to allow more generalizable conclusions?

In cloud computing, data sets like Google’s Borg cluster traces [RTG+12] are used
extensively by researchers to evaluate cloud operations mechanisms, because they provide
real cluster configurations (e.g., density and type of compute hardware), and real workload
traces (e.g., VM scheduling requests). Moreover, systems like CloudLab [RET14] allow
free and dynamic provisioning of compute resources to build cloud computing testbeds.

Evaluating edge computing systems is much more difficult due to the lack of established
benchmarks, reference architectures, trace data sets, or even real-world applications.
We attribute this to RQ1, and the subsequent lack of available test beds. Conse-
quently, edge computing systems researchers often have to rely on simulators such as
iFogSim [GVDGB17], or EdgeCloudSim [SOE17], or emulation techniques such as Emu-
Fog [MGG+17]. The benchmarks executing with these tools are then often tuned to the
specific approach, because there are no available trace data or cluster configurations from
real edge computing systems. This lack of trace and profiling data of real edge computing
hardware is problematic for edge computing research that relies on simulators. Overall,
we observe that there are serious gaps in available methodologies to develop and validate
operational mechanisms for edge computing systems.

6

1.2. Problem statement

1.2.2 Challenges and open problems

There are many open challenges to realize the type of system we have described. In this
section, we outline the key challenges which we aim to address with our contributions.

Edge intelligence requirements

Edge intelligence is a nascent field of research, and the community is still building
consensus on the fundamentals. Around 2019, several papers appeared that discussed
applications, and different but orthogonal aspects of edge intelligence. For example,
Zhou et al. [ZCL+19] focused on deep learning and other ML algorithms tailored to edge
computing, as well as fundamental architectures for ML training and inferencing at the
edge. Zhang et al. [ZWL+19] presented the design of OpenEI, a framework for enabling
edge intelligence applications. It introduces a layer for selecting and accessing models
over REST APIs, as well as an abstraction layer over ML frameworks. So while there
has been some conceptual groundwork, concrete requirements for platforms that manage
edge AI workflows, as well as the supporting infrastructure for edge intelligence, are still
underdeveloped and require further investigation.

Building a distributed compute fabric

Infrastructure for edge intelligence As we described in RQ1, there is currently
no consensus on what the supporting computing infrastructure for edge intelligence
will look like exactly. Several proposals have been put forth that are either tailored to
specific use cases like wearable augmented reality (AR) [HCH+14] or smart city monitor-
ing [CBSG17]; or simply propose smaller, but more geo-distributed data centers [MB17].
This disparity makes it very difficult to develop generalizable operational mechanisms,
such as autoscaling, load balancing, or scheduling, for edge systems. Since developing
such mechanisms is one of the major goals of this thesis, a better understanding of the
underlying infrastructure and its runtime behavior, as well as architecture models for
edge intelligence is necessary.

Sensing and communication middleware Components across the entire edge in-
telligence stack, from IoT sensors, actuators, edge computing resources, to running appli-
cations, require low-latency event-driven communication [HKM+17, PDT18]. Currently,
device communication in IoT and smart city environments is facilitated by cloud-based
message-oriented middleware (MOM) based on the publish-subscribe model [Bar15, Sta19].
Using cloud-based MOM requires routing messages through the public Internet, which in-
curs significant latencies [KKY+10], inter-network traffic, and causes privacy issues. Edge
intelligence instead necessitates the use of edge resources for message brokering, while
also allowing centralized configuration and management. It is particularly challenging to
maintain low latencies in edge environments where both clients and edge resources are
mobile, and regularly leave and enter the network [RDR18, RND18]. Two key objectives
are therefore: (1) elastically expanding and retracting brokers from the cloud to the edge,

7

1. Introduction

and (2) re-configuring client–broker connections at runtime to maintain low response
times. For (1), a promising approach can be novel biology-inspired computing paradigms
such as Osmotic Computing [VFD+16], where services diffuse to the edge or back to the
cloud in order to meet some operational goal. It is different from cloud-based autoscaling
in MOM that does not consider proximity of clients and brokers [GSGKK15]. For (2),
existing IoT message brokers have configuration approaches that can bridge edge brokers
but are typically static [Sca14, Gar16]. Systems such as PADRES [JCL+10] implement
overlay network techniques, but it is unclear how well these work in dynamic edge
environments under client and broker mobility.

A computing platform for edge intelligence Another key component of our dis-
tributed compute fabric is an application runtime environment that is tailored to edge
AI workloads. The complexity and scalability of cloud computing applications has lead
to sophisticated new system abstractions that we can borrow from, which simplify ap-
plication deployment and operation. In the serverless model for example, application
developers define application code as cloud functions, and the events that trigger their
execution [JSSS+19]. Developers do not have to know anything about the underlying
infrastructure. The serverless platform is responsible for resource allocation (scheduling),
autoscaling, discovery, and executing function code [HFG+18]. Analogous to the idea of
cloud functions, we hypothesize that edge functions can serve both AI model training
and inferencing, while enabling complete transparency of edge infrastructure. This
is particularly challenging given the geo-distributed and heterogeneous nature of the
infrastructure [SGL19]. Two key challenges are: (1) providing the correct abstractions
for developing and running edge AI functions on heterogeneous infrastructure, and (2)
resource allocation strategies that can make tradeoffs between data and computation
movement and generalize to different infrastructure scenarios. For (1), research has shown
that serverless can be a good abstraction for serving AI models [IMS18], but has also
revealed several limitations for data-centric computing [HFG+18] in general. Existing
platforms cannot reason over the dataflow of functions, or the type of workload they are
executing and for what computing platform it is optimized for. For (2), there is a wealth of
research on cluster scheduling [SKAEMW13] or service placement [ASDL19] algorithms,
but it is unclear how well these work in serverless edge computing environments. As we
described in RQ1, edge infrastructure may be very different depending on the use case,
so schedulers must generalize across different infrastructure scenarios.

Evaluating edge computing systems

A key challenge in building the type of edge computing systems that we described,
are robust evaluations that allow generalizable conclusions. As we described in RQ3,
given the lack of real-world edge infrastructure, edge computing researchers often rely
on simulators [GVDGB17, SOE17], or emulation techniques [MGG+17]. However, the
benchmarks executed with these tools have several issues. First, the lack of trace datasets
for edge systems requires the simulators to make certain assumptions when simulating
workload execution on edge infrastructure. We have found tentative evidence that these

8

1.3. Contributions

assumptions, for example for energy models [CRB+11], may have limited applicability
for edge computing infrastructure [RAD18]. Second, simulating or emulating a system
requires a description of the system under test, i.e., the nodes in a cluster, their hardware
specifications, and the network topology that connects them. Most tools provide ways to
either create topologies manually [GVDGB17], which typically results in small topologies
with few nodes, or are created randomly based on graph properties such as degree
distributions [MLMB01, MM08], which may not produce representative topologies.

1.3 Contributions

This thesis has five main contributions that address the presented open challenges.
We now explain the relationship between the respective thesis chapters in which the
contributions are presented, and the previously published material. The following figure
shows an overview of how the contributions are connected across the different systems.

Distributed Compute Fabric

Contribution 1

Edge
intelligence

requirements

Computing substrateComputing substrate

PlatformPlatform
Scheduler Autoscaler Load bal.

Parameters

Analysis frameworkAnalysis framework

SimulationSimulation

ProfilingProfiling

Infrastructure
synthesis

Infrastructure
synthesis

Ether
Cluster middleware

h

CMW CMW

Sensors & Clients

Sensing and communication middlewareSensing and communication middleware

DataData

Function
repository

C4

C4

C2C5

C5

C3.3

C3

C3.1

C3.2

C1

C1

optimize

PlatformPlatform

C2

User
Code

λ

...

Prep Train

Serve

Data

C1

AI Workflow

λ

C5

package

Meta
data

API server
deploy Parameter

optimizer

C5

Contribution 2

Edge
infrastructure
architectures

Contribution 3

Edge system
analysis and

eval. methods

Contribution 4

Elastic MOM
for

edge computing

Contribution 5

A serverless
platform for

edge computing

C2 C3 C4 C5

9

1. Introduction

C1. Edge intelligence: applications and requirements analysis

This contribution builds on [RD19], where we examined technological trends at the inter-
section of human augmentation, Internet of Things (IoT), smart cities, and AI systems;
and discussed how these trends are leading us to a new paradigm of Edge Intelligence
systems. In the paper, we develop a theory about the key elements to technologically
realize edge intelligence systems. In Chapter 2 we present a revised version of the argu-
ment, which lays out the foundations for the problem statement presented in Section 1.2.
The parts focusing on AI workflows, edge AI applications, and their operationalization,
were previously published in [HMR+19, RHM+19, RHM20b]. We thereby contribute to
the existing body of knowledge on Edge Intelligence [ZWL+19, ZCL+19] by focusing
in particular on general computer systems support for edge intelligence, and deriving
requirements for the underlying edge infrastructure.

C2. Edge infrastructure architectures

In Chapter 3 we present a comprehensive discussion of different candidates for edge
infrastructure, that is a synthesis of the research presented in [RD19, RRD21, RLF+20].
To better understand the emerging edge infrastructure architectures, we have built several
testbeds that comprise a selection of edge computers from the computing continuum. We
identified a concrete gap in this continuum, which we addressed in [RAD18]. We presented
a prototype for a portable cluster-based edge computer, and performed several experiments
that highlight the challenges that systems using such computers face. In [RLF+20], we
examined different distribution models of edge infrastructure, and gathered concrete
numbers on existing or emerging deployments. The contribution is a significant step
towards a better understanding of edge computing infrastructure, and the challenges in
enabling the system abstractions we have become accustomed to from cloud computing.

C3. Edge system analysis and evaluation methods

Over the course of the research presented in this thesis, we have developed various
evaluation methodologies tailored to edge computing systems. In Chapter 4 we present
the synthesis of the results as a separate contribution in three parts.

C3.1. Profiling edge computers The cluster-based edge computer we presented
in [RAD18] was the first system for which we created comprehensive profiling experiments.
In subsequent research [RRPD19] we systematized the process and the tooling into an
experimentation and analytics framework called Galileo, that allows researchers to
(a) describe and perform reproducible profiling experiments, (b) gather and store system
monitoring data in a common data model, and (c) enable ad-hoc and statistical data
analysis. We have published Galileo as open source software [Rau20b], and used it to
gather profiling data of a broad range of edge devices and workloads, that we have
published as open data sets [RR20]. Furthermore, we have used profiling data to drive
trace-driven simulations in [RRD21, Ras20, Rai21].

10

1.3. Contributions

C3.2. Generating plausible edge system topologies Edge system simulators or
emulators require as input a description of the infrastructure and the network topology
under test. In [RLF+20] we presented Ether, a tool that generates such synthetic
infrastructure configurations and network topologies, that are based on references scenarios
derived from real-world edge computing systems. The scenarios are parameterizable to
vary characteristics such as cluster size, geographic dispersion, device heterogeneity, and
network topology. We demonstrate how our tool can generate synthetic infrastructure
configurations for the reference scenarios, and how these configurations can be used to
evaluate different aspects of edge computing systems. We have since used the tool in the
evaluations of [RRD21, Rai21, Bru21, Pal21].

C3.3. Trace-driven simulation framework Some problems of existing simulation
models for edge computing were uncovered in [RAD18], and by [Rai21]. Key ideas of
trace-driven simulation for AI systems were initially developed in the context of [RHM20b]
and then extended for edge computing in the evaluation of [RRD21]. We developed
a standalone simulation framework for edge computing [RRR20] that extends existing
simulation models with, (i) a high-level flow-based network simulation, (ii) improved
modeling of edge system energy consumption, and (iii) improved modeling of resource
contention and workload interference. For our work, the simulator serves two purposes:
first, it allows us to perform scalability and sensitivity analyses, and second, by gathering
system traces at runtime, we can use the simulator to run optimization algorithms that
tune parameters of the system’s orchestration mechanisms.

C4. Elastic message-oriented middleware for edge computing

In Chapter 5 we present our contribution to the sensing and communication middleware
layer of a distributed compute fabric. In [RDR18] we presented a system design for a mes-
saging middleware based on the principles of osmotic computing. The system bootstraps
a broker network from the cloud that dynamically diffuses additional brokers to the edge
as necessary. In the thesis we extend the ideas of the paper by introducing concrete
mathematical models for the diffusion process. In [RND18] we presented a prototype of
this system that implements algorithms to orchestrate a broker–client network based on
proximity and network QoS. We showed that our system can significantly reduce end-to-
end latencies even in the face of high client mobility and dynamic resource availability.
The initial prototype revealed several limitations, which were later investigated in [Gei19],
and [Bru21]. First, subscriber mobility would lead to message loss, which we addressed
by introducing a transactional re-configuration mechanism. Second, our network QoS
monitoring protocol puts significant stress on the network, which we addressed by extend-
ing the Vivaldi virtual network coordinate system. The two principles we developed that
apply to edge computing systems in general are (i) proximity as first-class-citizen in
the orchestration model, and techniques to monitor proximity efficiently, and (ii) elastic
diffusion, i.e., the idea of auto-scaling based on proximity, rather than classic system
metrics such as resource utilization.

11

1. Introduction

C5. A serverless platform for edge computing

In Chapter 6 we present our contribution to the design and implementation of key
mechanisms to realize a computing platform for edge intelligence. The platform builds
on the principle of serverless computing, but tailored to edge AI workloads and the
operational challenges of edge infrastructure. In [NRS+17] we introduced the concept of a
serverless edge computing platform, and its principal components. To investigate existing
platforms and compare cloud and edge-based solutions, in [Sch19] we developed a smart
home data analytics application using the serverless model, which was implemented in
both a cloud-based, and an edge-based platform. The evaluation revealed the importance
of co-designing data and computation management, i.e., making the tradeoff between
moving function code to the edge, or moving data to the cloud. We presented the design
and fundamentals of a serverless edge computing platform in [RHM+19], where we focused
specifically on supporting data-intensive applications, such as running AI workflows. We
introduced a high-level programming model that elevates concepts from AI workflows
as first class citizens. We then developed a prototype of this platform in [RRD21], the
core of which is a custom function scheduler that makes tradeoffs between code and
data movement, and considers the heterogeneity of workloads and compute resources.
Moreover, we developed a method to automatically fine-tune scheduler parameters to
different edge infrastructure scenarios. The evaluation revealed several limitations, which
are the subject of subsequent research in [Rai21, Pal21, Mar21].

12

CHAPTER 2
Edge Intelligence

This chapter outlines our vision of Edge Intelligence based on current development trends
and their associated challenges for building the supporting computer systems. To solve the
challenges we identify, we propose a distribute computing fabric for edge intelligence, that
federates geographically dispersed and heterogeneous edge computing resources, provides
a sensing and communication layer, and employs advanced operational mechanisms to
deploy and manage applications on this federated infrastructure. The presented analysis
and the challenges we elicit are the foundation for the remainder of this thesis.

We begin by analyzing the current development trends of human augmentation in
Section 2.1 and edge AI in Section 2.2. We proceed to give a detailed discussion of
the critical system components for a distributed compute fabric we have identified, in
Section 2.3: sensing and communication middleware, a computing substrate,
and intelligent operational mechanisms. In Section 2.4, we examine the numerous
existing computing models and how they apply to such a system. The summary in
Section 2.5 concludes the chapter.

2.1 The convergence of humans, things, and AI
Edge AI and Human Augmentation are currently considered to be two of the major
emerging technology trends [Pan18], which we attribute to three key technological
developments. First, the increasing number of Internet connected sensors and smart things
embedded in our surroundings, i.e., the Internet of Things (IoT), and wearable smart
devices [Cis21], generate a wealth of opportunities to create many types of applications
that can enhance our everyday experience and quality of life. Second, the increase in data
availability [Cis19], consolidated computing power, as well as the advancement of machine
learning (ML) techniques have fostered the development of AI supported applications
that continue to transform virtually every aspect of our daily life. Third, the growing
friction between cloud-based AI solutions, and the need of many applications to analyze

13

2. Edge Intelligence

Internet

Hands

Text
Images

Internet
Video

VR/AR

Speech, Camera
Smartphone sensors

Internet
Video

VR/AR

Speech, Camera
Smartphone sensors

City
Sensors,
Cloudlets

Internet
Neural Link

GW

Crowd
City

Sensors,
Cloudlets

Current transitionStep 1 Step 2 Step 3 Step 4

Figure 2.1: The currently observable evolution of the cyber-human

high volume and high velocity data streams in near real-time [SSX+15, NRS+17], has
pushed hardware developers to create miniaturized AI accelerators that promise to bring
AI to the extreme edge. In this section we discuss these developments in more detail.

2.1.1 The cyber-human evolution

We take a step back and discuss the evolutionary steps of the cyber-human, as illustrated in
Figure 2.1. The Internet allows us to store and access information at immense scales, and
smartphones have become our main gateway to this world. For many, the smartphone is
already an extension of their self, representing the first step in the cyber-human evolution.
Typing in a search term into your smartphone and parsing the information it displays
takes us a long time compared to the bandwidth available to a superhuman AI. Similarly,
we control our smart things via manual gateways, such as the apps on our phone, at a very
low bandwidth. With the development of increasingly sophisticated smart devices such
as mixed reality smart glasses, combined with augmented reality (AR) and AI techniques,
step two has nudged humans and things closer together [HCH+14]. AI applications
help us, or our cars, to recognize objects and overlay our field of vision with contextual
information. As edge devices become more intelligent, and more and more sensor data
in our surroundings can be aggregated, processed and served via edge resource at high
bandwidth, step three will fully realize a transparently immersive experience. However,
for the seamless augmentation of human cognition, the bandwidth requirements will be
even higher. Imagine a world in which we perceive and interact with the cyber-physical
surroundings via neural-interface connected gateways and AI assisted control mechanisms.
The requirements of step four in the cyber-human evolution are fundamentally challenging
our way of building systems.

An important aspect to highlight in this evolution is the trend towards artificial general
intelligence (AGI), i.e., the development of AI that can solve intellectual tasks that a
human being can [PG07]. From a system’s perspective, it is likely that AGI will not
be achieved by a single method, but rather a context-sensitive ensemble of different
task-specific AI agents that permeate our environment via an underlying computing
substrate [HJO+10]. Some projects that work towards AGI are based on the idea of
an interconnected and self-governing network of AI solution agents that can cooperate
to solve increasingly more complex problems as the network grows [MG18]. In such a
system, edge computing will play a fundamental enabling role. Compared to the cloud,

14

2.1. The convergence of humans, things, and AI

the edge can provide trust, application-specific hardware in close proximity to data and
users, and thereby handle the immense bandwidth and low-latency requirements.

2.1.2 How Edge Intelligence can increase the fidelity of our
perception of reality

Augmenting human cognition with computation is an idea that dates back decades and has
been explored by science-fiction writers and researchers alike. In 2004, Satyanarayanan
described a wearable cognitive assistance use case that he said at the time was “clearly
science fiction” [Sat04], but was made a reality almost ten years later [HCH+14]. This
development is the transition between step two and three in our cyber-human evolution
timeline. Today, products such as Google Lens1 attempt to bring these systems to the
masses by integrating cloud-based visual analytics AI systems with personal edge devices.
Going a step further, consider a high-fidelity personalized visual discovery assistant. You
use your smartphone to visually discover things that your assistant knows are important
to you. By pointing your camera along a shopping street, the application recognizes
streets, buildings and objects, and displays an AR overlay with retailers that have offers
that you may be interested in, restaurants that have food you like, or points of interest
you may want to visit, combined with real-time information such as the number of guests
currently in a restaurant or shop. With current state-of-the art technology, we would
realize such applications via a direct link between the camera app and the cloud.

There are however use cases where momentary information is important, such as high-
speed manufacturing lines, or virtual assistants of fast-paced interactions, like navigating
through a smart city, where cloud-based analytics become infeasible. There are numerous
other wearable cognitive assistance applications that require such momentary informa-
tion [Sat17]. These scenarios focus mostly on analyzing the video stream of a camera, and
annotating it with contextual information. Future applications will move beyond isolated
sensing, but synthesize data from many sources that cannot be streamed into the cloud.
Consider an urban cognitive assistance application that guides you through a public
space shared with other people and autonomous agents such as self-driving cars and
mobile robots. Suppose each agent broadcasts its sensor data (gyroscope, accelerometer,
location, etc.). Edge resources aggregate sensor data sources in proximity to create a
hyper-reality overlay to give you a personalized experience and guiding you through the
space. Figure 2.2 illustrates this. As fidelity of this overlay depends on available proxi-
mate resources and capabilities [LH18], an approach is needed for a seamless edge/cloud
AI system that can transparently trade off accuracy and computation, where accuracy
increases with computational power. Suppose these applications could be served by a
continuum of edge resources and the cloud. If models are served via edge resources,
fidelity of recognition can be much higher, because models can be trained for specific
domains and then deployed in proximity of where they are required. Data can then be
streamed instead of chunked (e.g., like Google Lens sends individual images to the cloud),
which can further increase fidelity and responsiveness of an AR system.

1https://lens.google.com/

15

https://lens.google.com/

2. Edge Intelligence

(a) A system for urban cognitive assistance, where augmented reality wearables (4) connect
via local gateways (3) to proximate sensors and compute resources (2), managed by an edge
computing platform (1).

(b) Silhouette of an approaching car behind a wall that is displayed on the user’s wearable device.

Figure 2.2: Example of augmenting human cognition with edge intelligence, which we
described in [RHS+21].

Step four in the cyber-human evolution will confront researchers with a multitude of
challenges over the next decade. Engineering and managing a system to allow the
pervasive and seamless integration of all these applications at scale into our everyday lives
requires a new way of thinking about infrastructure and processes, beyond our current
understanding in pervasive computing, in particular as AI agents become more involved
and applications co-evolve with ML models. Deep neural networks can be pre-trained on
massive datasets in the cloud, localized data can be used to refine models the edge using
transfer learning, and applications can then be deployed on edge resources optimized for
inferencing. We discuss this in depth in Section 2.2.2.

16

2.2. Operationalizing edge intelligence

2.1.3 The AI-enhanced smart city

Smart cities provide a number of exciting opportunities for edge computing [DNŠ17]. In
fact, we believe that edge intelligence will be the key to fully connect the cyber-physical
city with its cyber-human inhabitants. Smart public spaces understand situations by
interpreting activity. Many dispersed cameras can be used to create data analytics models
(like crowd behavior [ZWT12], flooding or fire spreading models, or ecosystem/plant
monitoring [Bec18]). An AI could use weather data together with camera streams to
determine road driving conditions, and put that information in context with historical
data to assess the immediate risk of accidents. Autonomous vehicles can in turn use this
information to adapt their driving behavior. In the case of accidents, a smart city system
would react by immediately informing authorities, dispatching first responders, and
re-routing traffic. Air quality sensors distributed throughout the city can be used to track
development and spread of air pollution. A number of similar use cases with different
sensory and analytics requirements could be conceived. What these use cases illustrate
is the common need for real-time, location-based data about urban environments and
activity at different levels of fidelity. Moreover, appropriate edge resources are necessary
to both process and store data close to where they are generated [SVDI16]. Sending data
to the cloud to do inferencing on ML models deployed as web services is not feasible in
many cases, in particular as the required perception fidelity increases. Researchers and
practitioners will therefore be challenged to reconcile smart-city scale sensing capabilities
and compute infrastructure with scalable deployment of AI applications to the edge.

2.2 Operationalizing edge intelligence

We have discussed several applications that emerge from the convergence of humans,
things, and AI, and have shown that AI services play a significant role in edge intelli-
gence. Delivering AI services involves complicated workflows where data scientists and
software engineers collaborate to create and deploy ML models underlying the applica-
tion [HMR+19, HDB17, BBC+17]. Data is curated and explored, feature engineering and
training is performed to create ML models, which are subsequently deployed, monitored,
and updated during their lifetime. As edge intelligence transitions from individual and
isolated prototypes into interconnected production-grade deployments, the ad-hoc way of
building and deploying ML models and AI applications will become impractical. Instead,
edge AI operations platforms will fully automate the end-to-end process and provide
a closed feedback loop between runtime metrics of deployed models and the workflows
that create them [HMR+19]. Such platforms are already a reality for cloud-based AI
workflows as we will show. In the case of edge AI, however, the process becomes much
more involved. Heterogeneous computing resources, data locality, scalability issues, etc.,
have to be considered when automating workflows. In this section, we first summarize
existing knowledge on AI operationalization. We will then analyze different operational-
ization requirements for edge intelligence, identify key mechanisms that can facilitate
these scenarios, and then discuss various architectural possibilities and arising challenges.

17

2. Edge Intelligence

2.2.1 AI lifecycle management: operations for AI

The idea of operationalizing AI has become pervasive throughout both industry and
research [Gar17]. Software engineering researchers and practitioners have, over the past
decades, developed a variety of DevOps methods for managing the software lifecycle.
Continuous integration (CI) and delivery (CD) have become de-facto standards in modern
software development processes. Advanced methods such as A/B testing, or continuous
experimentation are also employed more and more. Only recently have such lifecycle
management techniques and tools for AI applications appeared.

AI pipelines are workflows, i.e., graph-structured compositions of tasks, that create or
operate on machine learning models [HMR+19]. Similar to a CI pipeline that is triggered
when new code changes arrives and then automatically compiles, tests, lints, and deploys
software artifacts; an AI pipeline defines a sequence of steps to manage the AI application
lifecycle, from data preprocessing, to model training, to custom steps such as model
compression or robustness checking. Transfer learning techniques allows creating base
models from aggregated data, which are then refined using personal or domain-specific
data, creating a hierarchical workflow. Some examples of such workflows are shown in
Figure 2.3.

Preprocess Train Evaluate Deploy

Preprocess Train Harden Compress

Bias
Detection Evaluate Deploy

Preprocess Train Evaluate

Domain-specific models

Base
Model

Figure 2.3: AI pipelines with different levels of complexity

Operationalized AI pipelines integrate the entire lifecycle of an AI model, from training, to
deployment, to runtime monitoring [SVK+17, BBC+17, HMR+19]. To manage risks and
prevent models from becoming stale, pipelines are triggered automatically by monitoring
runtime performance indicators of deployed models. Retraining triggers can be as simple
as a weekly schedule, or a combination of rules, such as detecting concept drift [GŽB+14]
and monitoring the amount of data available for training. Figure 2.4 illustrates this.

Several systems for cloud-based AI lifecycle management have emerged. Uber’s Michelan-
gelo [HDB17], IBM Watson Machine Learning [IBM18], ModelOps [HMR+19], Tensor-
Flow Extended [BBC+17], or ModelHub [MLDD17], all provide tools and platforms
to define and automate AI pipelines, share data and models, and monitor runtime
performance of models, by leveraging cloud services and infrastructure.

We can see that most efforts for AI lifecycle management are focused on both training

18

2.2. Operationalizing edge intelligence

Preprocess Train Evaluate Deploye

Performance
ModelRuntime

Monitoring

Data

Figure 2.4: Operationalized AI pipeline with a rule-based trigger e that monitors available
data and runtime performance metrics to form an automated retraining loop

and deployment in the cloud, and largely neglect edge computing system characteristics.
In particular, it is unclear how platforms should handle training data that cannot leave
the edge, how to reconcile hybrid edge/cloud infrastructure for executing pipelines, how
to scale deployment of a large number of ML models to the edge, and how to achieve
scalable runtime monitoring of live models.

2.2.2 Edge AI

AI services that leverage edge computing resources and data source will play a fundamental
role in enabling the applications we discussed in Section 2.1. To better understand the
specific challenges that confront edge AI systems, we examine specific use cases is more
detail. The presented examples are adapted from real-world use cases that currently
use cloud-based AI platforms to deliver the applications. We introduce plausible new
requirements to each use case that blend characteristics from AI operationalization
and edge computing, to highlight the challenges of developing and operating edge AI
applications. Selected applications are used in Chapter 5 and Chapter 6 as evaluation
scenarios.

Personal assistants Cognitive mobile personal assistants continuously monitor health
data via bio sensors, and can predict and raise alerts for critical situation like critically
low blood sugar levels [Cor17]. Key concerns in this use case are prediction accuracy,
inferencing latency, and data privacy, which can be improved by integrating patients’
edge devices into the workflow. To optimize accuracy, the training process is split up
into two phases: First, the service provider trains a base model on a representative,
anonymized [AP08] sample of the entire population. This is a resource intensive and
long-running process that is performed in a cloud environment. Second, in order to
account for patient-specific patterns in the data, the individual models need to be adjusted
and fine-tuned for each (type of) patient. However, these patient-specific data should
be kept private and there should be no way to associate the data points directly with a
patient’s identity. The base model is transmitted to the edge device and refined using
transfer learning techniques and data collected at runtime at the edge. This refined model

19

2. Edge Intelligence

is then served on the patient’s device, thereby enabling low-latency and privacy-aware
inferencing.

Field technicians Field service technicians often travel to on-site locations, including
engineers maintaining power facilities, mechanics fixing industrial equipment, and techni-
cians for an ISP. Mobile devices augmented with AI capabilities help to identify faulty
parts, recommend diagnosis paths, or log and validate the technician’s actions [Cor18].
Key concerns in this use case are reliability, inferencing latency, bandwidth, and trust.
Due to limited network connectivity, AI models need to run on the these edge devices,
such as visual recognition models to classify photos taken in the field. Device equipped
with AI accelerators could be used for video stream analytics where momentary informa-
tion is relevant, for example in high-speed manufacturing lines. Being able to predict and
preload AI models on devices with limited memory can be useful when managing fleets
of devices. Context-aware policies can help facilitate a trusted AI workflow. For example,
security constraints related to device ownership and registration may require that data
gathered in the field only be transferred when connected to the corporate network.

Predictive analytics for smart homes Through the IoT, smart homes become cyber-
physical systems, where IoT devices can sense and act on the environment. Combined
with AI techniques, actuators can be powered by AI models trained on the gathered
sensor data. One such use case we presented in [Sch19] uses an AI pipeline to improve
the power efficiency of household water heating system connected to a photovoltaic
system (PVS). Sensors attached to the water heating system record the water usage and
water temperature, occupancy sensors record the number of people in the house, and a
weather station records data. The historic data are stored in a local data store. A model
is trained to predict future water consumption behavior, and to optimize the power usage
costs by using the PVS to heat water when it is most appropriate. Local edge devices are
used for the entire end-to-end life cycle, i.e., to store and process data, train the model,
as well as running the predictor.

Smart urban spaces Smart public spaces understand situations by interpreting activ-
ity. For example, consider a smart city application that recognize problematic situations
such as traffic accidents or crowd behavior [ZWT12]. Any type of decision-making will be
highly locality specific, yet abstract patterns may be similar across locations. Dispersed
edge and IoT devices produce data can provide locality-specific insights, such as cameras
or sensor nodes dispersed through the city. Public cloud-based ML facilities, that are
cost-efficient and can be provisioned on-demand, can be used to train a base model, that
is then refined using transfer learning at on-premises cloudlets that have access to data
from local sensors and devices. These cloudlets can use distributed learning to avoid
aggregating all data in proximity, and then serve models for low-latency inferencing.

Augmented urban reality Suppose a scenario in which edge resources serve ML
models to support an application for detailed visual discovery of points of interest in

20

2.2. Operationalizing edge intelligence

a city via AR. An AR overlay (either via a smartphone or HMD) provides contextual
information about objects or things that are in the camera stream. We have outlined other
such use cases for augmented urban reality in [RHS+21]. Ideally, a resource hosts ML
models (e.g., for object recognition), for the points of interest in its proximity. Locality
and context awareness play a key role in making this work. The resource understands
that, in its proximity there exist, for example, an art museum, a botanical garden, or
a shopping mall, which each have their own ML models for the given domain. Edge
resources can also be used to train models. This is particularly relevant for scenarios
where the data to train or refine domain-specific models is proprietary or privacy-sensitive,
and may not leave the edge network. These scenarios demonstrate the complexity of
edge AI workflow management.

Edge AI workflows

Systems like IBM AI OpenScale2 make use of cloud-based technologies to enable end-to-
end AI operationalization in the cloud. Cluster computing systems such as Apache Spark,
and clustered deep learning infrastructure operate on data persisted in cloud-based object
storages [BBD+17], and models are deployed as web services on a cloud-based hosting
platform from which they can be easily monitored. Companies are driving efforts to
integrate edge resources into this process [MS18]. Google Cloud IoT Edge3, Microsoft
Azure IoT Edge4, or Amazon AWS Greengrass5 leverage edge resources to serve ML
models, but data preprocessing, model training, and message brokering is still mainly
performed by the cloud. To fully realize end-to-end edge intelligence workflows we need
to make full use of edge resources not only for serving models, but for all steps within
the AI lifecycle. With this in mind, we identify five different AI lifecycle workflows, from
training to serving.

Table 2.1 lists data and model characteristics for the basic workflows, specific ML
mechanisms that are the key enablers, and some example use cases. Which workflow will
apply to a given problem depends on many considerations: What are we training models
for? How large are the models? How often are models re-trained? How much data is
involved? How long does it take, and is it important that training is fast? Some simple
curve fitting models for on-the-fly optimization can be executed in a matter of seconds,
whereas training image classifiers may take several hours or even days. How fast does
inferencing have to be? Can we tolerate latencies from sending data to the cloud? Is the
data used for training or inferencing sensitive?

Cloud to Cloud This is the status quo as supported by cloud-based AI platforms such
as Microsoft Azure ML, Google Cloud prediction API, or IBM AI OpenScale. Models

2https://www.ibm.com/cloud/ai-openscale
3https://cloud.google.com/iot-edge/
4https://azure.microsoft.com/en-us/services/iot-edge/
5https://aws.amazon.com/greengrass/

21

https://www.ibm.com/cloud/ai-openscale
https://cloud.google.com/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://aws.amazon.com/greengrass/

2. Edge Intelligence

Table
2.1:

O
verview

ofA
I
operations

w
orkflow

s

D
ata

characteristics
M
odelcharacteristics

E
nabling

technologies
E
xam

ple
use

cases

C
2C

-Training
data

is
centralized

-M
assive

data
sets

-M
odels

are
large

-
H
uge

num
ber

ofinferencing
requests

need
to

be
load

bal-
anced

-
Scalable

learning
infrastruc-

ture
[B
B
D

+17]
-D

ata
w
arehousing

-Im
age

search
-R

ecom
m
ender

system
s

C
2E

-Training
data

is
centralized

-Inferencing
data

m
ay

be
sen-

sitive

-Inferencing
m
ay

need
to

hap-
pen

in
near-realtim

e
-
Large

num
ber

of
m
odel

de-
ploym

ents
-
M
odels

run
on

specialized
hardw

are

-M
odelcom

pression
[H

M
D
15]

-
Latency/accuracy

trade-
off

[H
ZC

+17a]
-

D
istributed

inferenc-
ing

[D
C
M

+12]
-Transfer

learning
[P
Y

+10]

-Surveillance
system

s
-Selfdriving

cars
-Fieldw

ork
assistants

E
2C

-Training
data

is
distributed

-
Training

data
m
ay

be
sensi-

tive

-M
odels

can
be

centralized
-
H
uge

num
ber

ofinferencing
requests

need
to

be
load

bal-
anced

-
D
ecentralized/feder-

ated
learning

[M
M
R
yA

16,
H
R
M

+18]

-Volunteer
com

puting
-N

ovelsm
art

city
use

cases

E
2E

-Training
data

is
distributed

-Training
and

inferencing
data

m
ay

be
sensitive

-
Inferencing

m
ay

need
to

be
near-realtim

e
-

D
ecentralized/federated

learning
-D

istributed
inferencing

-
Industrial

IoT
(e.g.,

predictive
m
aintenance)

-Privacy-aw
are

personalassistants
-N

ovelIoT
use

cases

22

2.2. Operationalizing edge intelligence

are trained in centralized training clusters using data aggregated in cloud-based storage
silos. Models are then served on cloud resources (e.g., as web services in VMs).

Cloud to Edge This workflow integrates edge resources as deployment targets. It is
useful for use cases where training models requires a lot of computational power, and
there are massive amounts of data involved (e.g., training classifiers on ImageNet), but
inferencing must be fast (e.g, real-time object detection), or inferencing data may not
leave the edge (e.g., patient data). Google, Microsoft, Amazon and others are driving
effort with their enterprise-grade edge AI platforms, which are still largely in alpha or
beta stages of development.

Edge to Cloud This workflow makes use of edge resources to train data, and serves
models in the cloud. The workflow may be useful for application where training data
is massively distributed (such as in mobile computing scenarios [MMRyA16]), training
data may not travel to the cloud, or training needs to be performed close to data sources.
Yet, serving models requires either massive scalability, or decentralized inferencing is
impractical.

Edge to Edge In this workflow, both training and serving happens in the edge. For
reasons similar to the previous two workflows. Industry 4.0 use cases illustrate this,
where sensitive data may not leave the companies premises, and inferencing needs to
happen in near real-time at the edge.

Complex Hierarchical Models It is likely that future scenarios will call for a creative
mix of the above mentioned workflows. Some use cases may require base models to
be trained on aggregate data in the cloud, then deployed and fine-tuned with data at
the edge (e.g., demand forecasting for a retail chain where a model is built on data
across all locations, and fine-tuned for specific stores; or personalized diabetes assistants,
where anonymized data across patient groups are used to train a base model, that is
then refined using the individual patient’s data). There are experimental systems that
use federated learning to train model fragments on-device, aggregate the anonymized
models in the cloud, and then fine tune on personalized data, such as Google’s smart
mobile keyboard app [HRM+18]. Localization and context play a big role here, and a
hierarchical edge/cloud architectures can help facilitate this as we will show.

The role of edge computing

It is clear why edge computing is an appealing model for these advanced AI applications.
A hierarchical hybrid cloud and edge computing architecture, as shown in Figure 2.5, can
help facilitate complex edge AI operations scenarios for the applications we presented.
Anonymized data can be aggregated in the cloud to create common base models. Base
models are deployed to edge resources, where context-specific and unfiltered data can
be used to refine the models in a privacy-preserving manner. Specialized hardware

23

2. Edge Intelligence

resources deployed at the edge (see Section 3.3), combined with their proximity to clients,
can enable highly efficient low-latency access to AI services or sensor data from the
environment.

Data centers

IoT

Edge
Resources

Anonymized data
Base model deployment

Base model
training

ML Model

Model
refinement

Unfiltered data

Figure 2.5: Edge AI scenario that leverages hierarchical edge and cloud infrastructure

As promising as edge computing is, there are numerous challenges in realizing such
an end-to-end architecture. Deploying and managing AI workflow tasks to the edge
in a generalized way may be difficult (compared to, for example, packaging the ML
model as a web service and deploying it to a managed Platform-as-a-Service (PaaS)
offering), as edge resources are very heterogeneous and cannot yet be used in a classic
utility computing manner. How do we allow a “write once run anywhere” approach for
heterogeneous resources and workloads? Some training and inferencing tasks may benefit
from AI accelerators or GPU, requiring specific computing platforms and precise resource
provisioning strategies. Moreover, we may not know up front whether an edge computer
has sufficient resources to perform the task. Should the task run on a Raspberry Pi or
other SBC that is very close to the data, or rather a more powerful server computer in
the cloud which requires moving the data? How will data be stored and accessed from
edge resources to make it available in a safe and privacy-aware way for training and
inferencing? How can applications communicate efficiently in this highly dynamic and
distributed computing environment? We take a closer look at some of these questions,
and discuss possible solutions and open challenges.

Our proposal is a distribute computing fabric for edge intelligence, that federates dis-

24

2.3. A distributed compute fabric for edge intelligence

persed and heterogeneous edge computing resources, and employs advanced operational
mechanisms to deploy and manage applications on this federate infrastructure. We now
present the key elements of this system in more detail.

2.3 A distributed compute fabric for edge intelligence

We identify the following three key components to implement the system we envision:
sensing and communication middleware, a computing substrate, and intelli-
gent operational mechanisms, which are the driver for the remaining thesis. We
discuss in more detail each component and the associated challenges.

2.3.1 Sensing and communication middleware

Implementing use cases such as smart public spaces on smart-city scale requires many
different sensing capabilities [DNŠ17]. Having individual companies develop and deploy
specific sensors for specific use cases seems inefficient in the long term. Instead, city
planners will have a high stake in providing application developers with a sensing
infrastructure to make use of smart city data. It seems much more likely that an initial
set of smart city and IoT use cases will bootstrap a general set of requirements for
sensor capabilities, which will then trigger a deployment at increasingly larger scale.
Similar to a smartphone that has a wide array of sensors installed giving developers lots
of opportunities to create novel and creative applications. Not all applications use all
sensors, in fact, some usage behavior may not require specific sensors at all. They are
there nonetheless, because they provide potential utility for future apps. It is reasonable
to assume that a similar model will work well for smart-city scale edge intelligence. Once
a family of edge intelligence application emerges, and we understand the broader range
of requirements, companies can start building arrays of sensors to support applications
with sensing capabilities, hardware and potential utility. In fact, there already projects,
such as the Array of Things6, that can work as substrate for providing Sensors Data as a
Service (SDaaS) [ZIH+13].

We foresee several challenges for edge computing in this model. Given the large number
and dynamic and mobile nature of both publishers and subscribers of sensor data [MJ10],
and the stringent QoS requirements of edge intelligence use cases, we will be forced to
rethink centralized messaging services such as Amazon AWS IoT or Microsoft Azure
IoT Hub [RND18]. Novel messaging systems, such as osmotic message-oriented middle-
ware [RDR18], can help facilitate transparent access to this geographically dispersed
network of sensors and actuators, even under highly dynamic node behavior. In fact,
in a survey on wide-scale publish–subscribe middleware, Bellavista et al. [BCR14] note
this is a necessity: “there will be a growing number of application scenarios where the
availability of middleware supporting large-scale PUB/SUB event distribution with QoS
will be fundamental”. Furthermore, it is unlikely that sensing infrastructure will be

6https://arrayofthings.github.io/

25

https://arrayofthings.github.io/

2. Edge Intelligence

General Purpose Computing

HPC

Embedded AI

Cluster Middleware

Train

Compress

Process

Validate

Deploy

execute

Figure 2.6: Capability-aware execution of an AI pipeline on a multi-purpose edge computer

static and managed by a single central authority. Consider the integration of cognitive
assistance devices with self-driving cars and smart traffic systems [RHS+21]. Applications
require access to public sensor data, such as statically deployed arrays of sensors; dynamic
sensor data from cars; as well as personal sensor data, such as location and movement
of pedestrians. How can these different static and dynamic data sources be reconciled
to let AI applications make full use of them? We present our solution to the problem
in Chapter 5. Moreover, while AI inferencing mostly works on real-time data in an
event-based way, the majority of training techniques require batch access to labeled data.
Storing and providing scalable access to these highly dispersed data is a fundamental
challenge for edge intelligence, which we later show in Chapter 6.

2.3.2 Computing substrate

In contrast to cloud data centers, where the predominant infrastructure unit is the server
computer that consolidates large amounts of CPU, RAM, and disk space, edge resources
will be much more diverse and provide a variety of computational platforms to support
the equally diverse range of use cases [SGL19, PDT18]. Chapter 3 is dedicated to examine
this in greater detail. General purpose computing will be complemented by specialized
high-performance computing (HPC) and AI optimized hardware, federated to create
a powerful, high-density multi-purpose compute units. Together with cloud resources,
hierarchies of connected clustered edge computers will form the backbone infrastructure.

Multi-purpose edge computers

At smart city scale, it is impossible to manually map software services to the respective
platforms. To make efficient use of these platforms, hardware needs to be grouped into
cohesive units of multi-purpose edge computers. An existing example is the Array of

26

2.3. A distributed compute fabric for edge intelligence

Things (AoT) project, where nodes are deployed throughout the city, and comprise several
SBCs with varying compute capabilities. When executing workloads, a scheduling system
needs to understand the capabilities of the underlying resource, as well as the effects
of scheduling specific workloads to specific platforms on the operational efficiency. For
example, as illustrated in Figure 2.6 scheduling an ML model inferencing task will be both
faster and more energy efficient on an embedded AI hardware than on a general-purpose
computing platform. In mobile scenarios that require portability and reliability, energy
efficiency is an additional constraint to consider [RAD18]. Ideally, a cluster middleware
learns at runtime how to optimally provision resources for given workloads, learning
the tradeoffs between energy efficiency, latency, and accuracy. These self-learning and
self-adaptive clusters will form the infrastructural unit of the edge computing fabric. We
discuss this in more detail in Section 3.1.

Edge system topologies

Compute resources that are placed in edge networks and pooled together to form a
diverse and distributed compute fabric, can form various higher-level topologies. We
discuss existing and emerging edge system topologies in greater depth in Section 3.3.
The discussion shows the large variety of network topologies that can exist in edge
systems, compared to data centers. Federating dispersed Internet-connected networks
entails a large variance in bandwidth between nodes, which further complicates resource
management and workload scheduling. It is important that generalizable middleware
can deal with these networks, without having to make assumptions about the underlying
topologies.

Virtualization

Applications rarely live in isolation, and a utility-based edge computing fabric has to
deal with challenges that come with multitenancy, which is not as straightforward at
the edge as it is in the cloud [LWB16]. Powerful server computers in data centers allow
us to easily host multiple VMs as the unit of isolation. Although researchers have
argued that Cloudlets will simply be VM hosts at the network edge [SBCD09], we cannot
necessarily assume that all edge resources can provide this level of virtualization. VMs
require a lot of resources and not all edge computers are powerful enough to provide
fully-fledged VM-based virtualization. Because this introduces a break in the edge/cloud
continuum, there are legitimate doubts whether VMs will work as the predominant
form of isolation for edge computing. Moreover, it is important that developers can
trust the “write once run anywhere” principle. Container-based deployment strategies
have been recognized as a more viable solution, as they provide lightweight resource
virtualization and isolation [Mor17]. More recently, Unikernels have been gaining traction
as an alternative way of developing applications as completely isolated machine images
that can run directly on top of a bare-metal hypervisor [MMR+13]. However, such
Unikernels rely on library operating systems, and are not yet as well understood as
containers. Regardless of which technology will dominate, it is clear that multitenancy

27

2. Edge Intelligence

in resource-constrained environments (compared to a cloud data center) is challenging,
as the efficient use of resources becomes more difficult.

2.3.3 Intelligent operational mechanisms

As we have shown, edge computing introduces new challenges for operations researchers.
There is evidence that methods from cloud operations research, for example for energy
efficiency, may only have limited applicability for edge computers, some of which we
demonstrate in Chapter 3. Also, it is clear that maintaining a network of highly dispersed
multi-purpose edge computer clusters introduces additional management and coordination
complexity. We discuss some of the most pressing operations issues for edge intelligence.
In this thesis, we focus on

Proximity & mobility awareness

In edge intelligence scenarios, both software agents and hardware resources can be
dynamic and mobile. Allowing for mobility requires a good understanding of proximity,
s.t., communication latencies between nodes can be optimized, and privacy policies
can be enforced. Mobility can be particularly challenging for messaging systems that
provide message delivery guarantees [MJ10, RND18]. Proximity awareness is therefore a
fundamental enabling mechanism of mobility in edge computing [RDR18]. In networks,
proximity can be distinguished into logical and physical proximity, and both play an
important role in edge computing. For example, physical proximity matters when low-
range network techniques such as BLE are involved, and logical proximity matters when
minimizing round-trip time. Classic techniques as used by Content Delivery Networks
(CDN), such as using anycast DNS and latency monitoring, are challenged in highly
dynamic environments. Also, simple monitoring techniques, e.g., via network latency,
can produce undesirable strain on the network and become difficult to manage, as we will
demonstrate in Chapter 5. Besides network latency or logical distance, the application’s
response time should also be factored into proximity. For example, a message broker
in close proximity with a that exhibits high response time because of congested queues
can behave as if it were much farther a way. We believe that new methods synthesized
from, for example, advanced techniques of interest management, as well as runtime
application monitoring, will be necessary for enabling proximity and mobility awareness
for edge intelligence at scale. Other network metrics to determine proximity should also
be considered. For example, as we show in Chapter 6, a useful measure of proximity is
the available bandwidth between data producers and consumers, to determine data and
computation movement tradeoffs.

Intelligent workload scheduling

The highly heterogeneous nature and geographic dispersion of edge resources poses
significant challenges for workload scheduling. Multitenancy in combination with a
limited number of constrained resources further exacerbates the problem. In agent-based

28

2.3. A distributed compute fabric for edge intelligence

scenarios, intelligent eviction or suspend/resume strategies that respect the requirements
of AI agents will be necessary, and call for sophisticated management mechanisms.
Furthermore, latency and energy-aware scheduling techniques become more difficult in
hierarchical architectures, where the underlying platform’s operational optimizations must
be treated as a black box (see Section 3.2). Effectively scheduling workloads to the edge
will require many hard and soft constraints. Performance evaluations of state-of-the-art
workload scheduling approaches (such as the Kubernetes container scheduler), exhibit
clear scalability limitations when confronted with a large number of constraints [Den16].
Moreover, it is challenging to generalize scheduling parameters given the variety of
existing edge infrastructure scenarios (see Section 3.3 and Section 6.4).

AI applications introduce additional challenges for scheduling, and we argue that some
aspects of these applications should be considered as first-class citizens, s.t., platforms can
reason about the application internals. As we discussed in Section 2.3.2, the capabilities
of edge computers are much richer and diverse than those of server computers in classical
cloud computing. However, edge resources are also more constrained, both in terms of
computing power and storage capacity. From an operations’ perspective, delivering AI at
the edge has to include additional goals and constraints, in particular because proximity
to data producers and consumers plays such a critical role in edge computing, both to
maintain privacy and trust, enable low-latency data processing, and reduce inter-network
traffic. These challenges are similar to those of large-scale IoT-cloud deployments, for
which different provisioning systems have been developed [VSI+15, NTD16]. However,
these provisioning frameworks do not consider the co-evolution and dependency of AI
applications and the underlying ML models. In particular, they assume a classic compile-
test-deploy workflow of software, whereas an AI operations pipeline is highly customizable
and its steps have different computational needs

If we take into consideration that the distributed compute fabric will be used for both
training and serving AI models, we can summarize the operational requirements of
workload schedulers as follows: (1) trade off data and computation movement: decide
at runtime whether to move the data stored in edge networks to the cloud, or deploy
application code to the edge, (2) consider proximity to data stores: deploy workflow tasks
in a way that minimizes inter-network traffic and latency, (3) make efficient use of edge
resources: GPUs or AI accelerators should be used if workloads can benefit from them
(4) consider resource contention: edge resources may be much more constrained than
data center servers, and the performance impact of scheduling multiple workloads to a
resource may significantly impair application performance.

Proximity-based autoscaling and load-balancing

Two fundamental operational mechanisms of elastic systems are autoscaling, and sub-
sequent load-balancing between replicas. In cloud computing, traditional autoscaling
strategies are reactive scaling based on black-box system metrics, such as reaching CPU
utilization thresholds [LBMAL14]. The performance of elastic applications in centralized
datacenters is less sensitive to replica placement. Whereas in edge computing, where

29

2. Edge Intelligence

resources and clients may be dispersed in edge networks, autoscaling mechanisms should
instead take into account where application requests are coming from, and autoscale
based on demand, and place replicas close to that demand. Subsequently, requests should
be routed to the application replicas in proximity. Classic round-robin load-balancing
techniques may therefore be insufficient.

2.3.4 Privacy and trust

If personal data spaces turn out to be the dominant form of achieving privacy-aware data
distribution, new methods for accessing data for training and inferencing purposes are
needed. As people continue to gather personal information into their own space, they will
be required to give third parties selective access to their data via complex access rules,
or provide only anonymized views on their data via privacy-aware routing techniques.
Privacy rules should be enacted in a context-aware way [LRD19a]. Only when people own
their own data, the medium they are stored on, and can manage strict access controls,
will they be in full control of their personal and sensitive data. As of today, we still
put our trust in cloud providers to handle our data, even highly sensitive data such as
health related records. Particularly problematic are the increasing number of surveillance
cameras throughout public spaces. Although they provide exciting opportunities for
visual analytics, situational awareness, or other AI applications, they are fundamentally
a privacy concern. Researchers will be challenged to devise methods that reconcile
data availability for AI agents, and guarantee data safety and the data owner’s privacy.
Security is another important factor. Consider a system where autonomous AI agents
roam through the fabric to complete specific tasks [LRD21]. It is absolutely crucial that
AI agents are safe from outside tampering and isolated from interference. We recognize
that privacy and security mechanisms are a prime concern in edge intelligence systems,
however they are out of scope of this thesis.

2.4 The role of serverless computing

Cloud computing models have evolved over the past decade to higher and higher levels of
abstraction. In the original Infrastructure-as-a-Service (IaaS) model, users have access to
virtualized server hardware through VMs, but need to maintain the leased VMs [EPM13].
In Platform-as-a-Service (PaaS) models, users only provide platform-specific application
code, and the platform provider takes care of deploying and managing the application on
their infrastructure. While PaaS provides more convenience for developers, the platforms
are as such very narrow in their applicability. A more general-purpose way of computing
without managing infrastructure is serverless computing [JSSS+19]. Compared to PaaS,
serverless computing is not an integrated environment for a specific platform (like hosting
web applications developed in a particular web framework), but rather a more general
way of deploying and managing arbitrary code in the cloud. A major enabler for serverless
computing is operating-system-level virtualization technology, where the deployment unit
is a lightweight container (an isolated user space instance sharing the same operating

30

2.4. The role of serverless computing

system with other containers) rather than VMs. There are various manifestations of
serverless computing. In a Function-as-a-Service (FaaS) offering, users upload their
code as functions, and defines rules for triggering the function execution. The serverless
platform takes the role of the dispatcher, and executes functions in response to events.
Another manifestation of serverless computing is Container-as-a-Service (CaaS), that can
be seen as a PaaS for containerized application deployments. Kubernetes is a popular
container orchestration system, that is essentially a CaaS platform. There are many
benefits to serverless computing. First, it provides complete infrastructure transparency.
Application developers and operators do not know about the underlying infrastructure,
while still benefiting from the scalability that autoscaling and load-balancing mechanisms
provide. Second, the billing unit can be very fine-grained, allowing cloud providers to
bill individual function invocations [Eiv17]. Third, platform provides can manage their
infrastructure more efficiently, because containers. A drawback to hardware virtualization
is the weaker isolation properties of containers.

A distributed compute fabric has the properties of PaaS offering. We want users to
deploy and configure their code centrally, which has many administrative advantages, but
code execution should be decentralized. At the same time, the infrastructure should be
transparent to the user, and platform providers should take care of scaling the application.
In [Sch19], we analyzed the characteristics of edge AI applications, and compared them
in different programming models. These are summarized in Table 2.2.

Table 2.2: Characteristics of programming models for edge AI applications

Characteristic Serverless cloud Serverless edge Local monolith

Internet usage high: all data transmitted low: code download none
Responsiveness low: WAN latency high: LAN latency high: no network
Runtime costs high: traffic and execution low if using on-premises resources medium: powerful server required
Deployment by cloud provider mostly platform provider self-managed
Code mobility transparent execution in the cloud transparent execution across cloud and edge no mobility
Data privacy low: data in the cloud high: sensitive data stored in network high: all data stored locally

Based on the discussion, we argue that serverless edge computing is the appropriate com-
puting model. Edge computing introduces new challenges for serverless computing, which
has lead to increased research interest in serverless edge computing [GND17, RHM+19,
BM19, ATC+21]. There is an obvious tension between infrastructure transparency, which
gives users the illusion of a serverless system, and the distributed and heterogeneous
nature of the computing substrate. We discuss serverless computing and its role for
edge intelligence in more detail in Chapter 6. Because edge intelligence emphasizes AI
applications, we also argue that the computing model should elevate concepts from AI
workflows we discussed in Section 2.2.2, as first-class citizens. In Section 6.3.2 we present
a programming model that allows flexible general-purpose code execution, but simplifies
the development of AI workflow functions.

31

2. Edge Intelligence

2.5 Summary
Edge intelligence is a post-cloud-computing paradigm, in which AI applications leverage
computational resources and data at the edge of the network, to push intelligence from
the cloud closer to devices and end users. Its emergence can be attributed to the
increasing interconnectedness of humans and Internet connected things, the latency and
bandwidth requirements of IoT applications, the increased availability of data produced
by edge devices, and the fast-paced development of edge AI methods and hardware. Edge
computing is one of the key enablers of this new paradigm.

We outlined the role of the intelligent edge in the cyber-human evolution, and the
ability of edge computing to enable the seamless augmentation of human cognition.
We presented challenges that will confront edge AI systems for several years to come.
Specifically, we have shown how edge computing exacerbates the complexity inherent
to AI applications and ML workflows, and that new methods are necessary to leverage
hierarchical edge/cloud architectures for the AI lifecycle. To enable the intelligent edge,
we propose a distributed compute fabric, that comprises (1) a computing substrate that
federates dispersed and heterogeneous resources from across the computing continuum,
(2) sensing and communication middleware that self-adapts to dynamic edge computing
environments, and (3) intelligent operational mechanisms that manage the complexity of
operating applications on distributed edge infrastructure. The remainder of the thesis is
dedicated to these three systems aspects, and how to evaluate them.

32

CHAPTER 3
Edge infrastructure architectures

The computing infrastructure for cloud computing is well established. Powerful server com-
puters are consolidated into massive data centers interconnected with high-performance
networking appliances. Cloud computing models, such as IaaS or PaaS, work well on
top of these systems because they can build on assumptions about the capabilities of
infrastructure and the network topology. Implementing generalizable models for edge
computing is much more difficult, given the broad spectrum of available computing
hardware for the equally broad range of edge computing use cases. A distributed compute
fabric for edge intelligence will federate highly specialized hardware platforms, such as
high-density small-form factor computers and embedded AI hardware, into cohesive
multi-purpose edge computers. Together with cloud resources, hierarchies of connected
clustered edge computers create a computing continuum. In this chapter, we solidify this
vague idea with concrete technology proposals. The insights are particularly important
for the design of the systems presented in Chapter 5 and Chapter 6.

We begin in Section 3.1 by examining the computing continuum, and present a critical
discussion of existing computing platforms for edge computing. Through this examination,
we identify a gap in existing state-of-the-art for supporting forward-deployed application
scenarios, which we address with a system design and prototype for a portable high-
density edge computer cluster, presented in Section 3.3. In Section 3.3 we study emerging
application scenarios that leverage edge infrastructure in the entire compute continuum,
with the goal to better understand the characteristics of edge infrastructure topologies,
and elicit requirements for a distributed compute fabric.

3.1 The computing continuum
To better understand the challenges associated with developing edge computing platforms,
in this section, we examine existing computing hardware, and the edge computing scenarios
they are used in.

33

3. Edge infrastructure architectures

3.1.1 Computing platforms

Edge data centers that use server computers and are placed at the edge of the network
are considered candidate infrastructure for many edge computing scenarios. In an early
definition by Satyanarayanan et al. [SBCD09], a cloudlet is “a trusted, resource-rich
computer or cluster of computers that is well-connected to the Internet and is available
for use by nearby mobile devices.” Since then, many other definitions have been put
forth [LES+14, CRB+11, VSDTD12], but the consensus is that cloudlets aim to bring
services otherwise hosted in the cloud closer to the edge of the network to improve Quality
of Service for end users. Because these cloudlets use the same underlying infrastructure
as data centers, namely racks and server computers, many tools and techniques from
cloud computing are directly applicable. For example, cloudlets can serve as hosts for
VM virtualization commonly used for IaaS platforms. However, because they are smaller
than classic data centers, and may only contain a few computers, they can be much
more easily deployed on companies’ premises, or in public buildings throughout a city,
forming essentially a type of CDN for computation. To serve backends for emerging
wearable AR applications, which typically involve running AI workloads on video feeds
at high framerate, cloudlets may also be equipped with specialized resources such as
GPUs [SXP+13]. Edge data centers are also a key idea of mobile edge computing (MEC),
where mobile operators place servers at base stations of cellular networks [BWFS14].
This allows operators to provide highly-responsive cloud services for mobile users based
on their proximity to base stations, or optimize the battery lifetime of mobile devices by
offloading compute tasks to these cloudlets.

Small form factor (SFF) computers such as Intel’s Next Unit of Computing (NUC)
platform with built-in CPUs, are used for edge computing scenarios due to their size,
low energy footprint, and good performance. In terms of computing performance, they
are comparable to a desktop PC, but can be significantly smaller. They are popular
for compact desktop workstations, but are extremely versatile and have consequently
found uses in many other areas. For example, the Ubuntu Orange Box is a portable
compute cluster consisting of ten NUCs with Intel i5-3428U CPUs [VN], that can be
used in a variety of offloading scenarios [CDOK17]. Their size also makes them viable for
the use on drones. For example, NUCs have been used to enable UAV-based aerial cells
that serve as data relays between mobile users and a backhaul network [BPB+19], or for
performing computer vision tasks for autonomous landing of UAVs [CPSC16]. We later
present our own SFF edge computer based on compact high-density server hardware, in
Section 3.2.

Single Board Computers (SBCs) such as ARM-based Raspberry Pis are often
associated with edge computing, as they can, e.g., function as edge gateways in IoT
scenarios to read sensor data, perform data pre-processing or message relaying. Because
they are very compact, cheap, and extremely energy efficient, they are applied in many
applications, ranging from IIoT, smart city, to smart home scenarios. For example,
in [CWC+18], SBCs serve as communication hub and data pre-processing gateway in

34

3.1. The computing continuum

an IoT-based manufacturing scenario. In the Array of Things project [CBSG17], which
we describe in Section 3.3, sensor nodes deployed throughout a city are equipped with
two SBCs, one serving as sensor processing device, the other as communication gateway.
SBCs are attractive for this use case, as sensor nodes have to be compact enough to be
mounted on traffic lights or lamp poles. Road Side Units (RSUs) that creat the vehicular
network infrastructure (see Section 3.3), have similar characteristics and requirements.
Another example is a smart home data-analytics application that we built, where an
SBC is used to aggregate data from IoT sensors, trains a prediction model, and then
serves the model for inferencing [Sch19]. Clusters of commodity SBCs have found a
variety of applications [JBP+18]. A clear tradeoff with SBC is computing performance.
Experiments we performed have shown that typical commodity SBCs perform roughly an
order of magnitude worse than, e.g., a typical Intel CPU of an SFF computer. Increasingly
they are being used as a platform for hardware AI accelerators such as Google’s Edge
TPU [Cas19], that can significantly increase the performance for application-specific
workloads.

Mobile devices are much more difficult to pin down than the categories described
so far. In pervasive computing, mobile devices often include smartphones, wearables
AR devices, smart watches, or health monitoring devices [SGL19]. These are considered
client devices, i.e., a user’s gateway to pervasive computing. Mobile devices are mostly
the source of offloading tasks to nearby edge resources [MB17], but have also been
considered as a cluster resource to perform distributed computing [HAHZ15]. More
recently, personal mobile devices have been used as part of federated learning workflows,
for example to train Google’s predictive keyboard app Gboard [HRM+18]. User devices
perform training of partial models using their private keyboard logs, and send the trained
models back to the cloud. This is similar to the hierarchical workflow we described in
Section 2.2.2. Drones, small robots, and vehicle on-board compute elements could also be
considered as part of the mobile device spectrum. In [SGL19] and related works, these
devices are collectively referred to as the “Mobile and IoT device tier”, in the context of
a three-tiered device-edge-cloud hierarchy.

Modular AI capabilities AI workloads benefit significantly from specialized hardware.
GPU clusters dominate the cloud-based ML landscape, and while the same type of GPUs
could be used for edge data centers, they are impractical for many edge resources due
to their size and power requirements. A popular example is the NVIDIA Tesla K80
that has a TDP of 300W. Instead, a new family of AI accelerators have emerged that
promise to fully enable AI for resource constrained edge devices. The NVIDIA Jetson
platform [NVI] provides small GPU computing devices with CUDA support, which can be
attached to, for example, SBCs. These devices enable the acceleration of AI applications
at the edge that require computer vision or deep learning workloads. Google has devised
the Edge TPU1, an application-specific integrated circuit (ASIC) that can enable, for
example, high-fidelity, real-time vision applications running on an SBC. A number of other

1https://cloud.google.com/edge-tpu/

35

3. Edge infrastructure architectures

prominent examples include Microsoft BrainWave, which uses field-programmable gate
arrays (FPGAs) [Bur17]; Intel Neural Compute Stick [Int18]; or Baidu Kunlun [Duc18].
However, as the variety of AI accelerators increases, so does the heterogeneity of the edge
fabric, thereby introducing additional complexity for platform abstractions. Moreover,
because ASICs are as such designed for specific algorithms, hardware vendors also control
what algorithms and platforms we can use, and potential vendor lock-ins pose a significant
threat to the democratization of AI. While we see pluggable AI capabilities for edge
computers as the way forward in enabling a rich edge intelligence fabric, it is clear that
this requires the continued fostering of open standards and robust platform abstractions.

3.1.2 Edge computer clusters

A goal of our approach is to create a seemingly uniform computing substrate, that is,
in fact, made up of heterogeneous edge computers. We consider edge computers as
the counterpart to server computers, expressly designed for the use in edge computing
environments. We now discuss various aspects of clustering these edge computers, and
how they form cohesive computing units.

Cluster-based edge resources Clustered edge resources of all shapes and sizes have
been discussed and evaluated [PDT18]. These proposals range from Sun’s Modular
Datacenters that come in shipping containers2; over Canonical’s (discontinued) Orange
Box [VN], a cluster of Intel NUCs; to a cluster of single-board computers (SBC), such
as Raspberry Pis, federated to form a micro datacenter [EPR+17]. However, none of
these come with an integrated power-management runtime, or other mechanisms for
native energy-awareness. Although cloudlets are seen in general as either single-node or
cluster-based systems, most existing evaluations of cloudlets in research consider only
a single node, typically a commodity desktop PC [SBCD09, LES+14]. We argue that
this size of hardware (i.e., commodity computers) is useful for many use cases, as it is a
compromise between the two previously presented extremes. However, we also argue that
single-node systems are challenged to provide reliable services in the face of varying and
unpredictable request arrival rates. A cluster of high-density compute nodes, for example
Mini-ITX motherboards with server CPUs, can provide a great deal of computational
power, while still being compact and portable.

General-purpose edge computers Most definitions consider a cloudlet to be static
infrastructure, well-connected to the Internet, deployed statically at a specific location.
Recently, researchers have shown that such cloudlets may be impractical for use cases that
require on-premises decision-making for military field personnel in resource-constrained
tactical environments [LES+14]. To bridge this gap, they propose tactical cloudlets, i.e.,
portable cloudlets deployed on, e.g., vehicles that support computation offload in such
resource-constrained environments. We argue that there are many more use cases to
be considered that require portable cloudlets, or, more generally, general-purpose edge

2https://docs.oracle.com/cd/E19115-01/mod.dc.s20/

36

https://docs.oracle.com/cd/E19115-01/mod.dc.s20/

3.1. The computing continuum

computers. We consider edge computers a specialized type of server computer, that is
designed for the use in edge environments. For example, portable compute clusters could
be deployed on emergency vehicles to allow complex decision-making and task-planning
analytics applications in emergency response scenarios [LMFJ+04]. Other field-based
work, such as archaeological dig sites, field experiments in geology, oceanography, etc.,
could all benefit from edge computing, but require portable and reliable edge computers.
Companies are even exploring space-to-cloud analytics for remote regions using satellites3.

General Purpose Computing

HPC

Embedded AI

Cluster Middleware

Execution
Agent Mapping

Policy π

Monitor

Metrics
(Power, Util., RTT)

Reward

Node
State

Figure 3.1: Multi-purpose edge computer with self-adaptive middleware that learns how
to efficiently schedule workloads

Energy-aware portable edge computer clusters Infrastructure required for such
scenarios faces numerous challenges. In particular, these edge computers work in energy-
constrained environments, and may therefore have to be partially powered by secondary
energy sources such as batteries. As we have discussed, single-node systems are challenged
to enable scalability and reliability required for dealing with unpredictable workloads at
the Edge. While statically scaling out the infrastructure would provide better service
reliability, it also significantly increases energy consumption, thereby diminishing porta-
bility. However, by integrating power-management approaches for server clusters, such
as vary-on/vary-off (VOVO) algorithms [EKR03], cluster-based edge computers could
become the ideal architecture to address these challenges. However, these and other
energy-efficiency mechanisms have been developed largely in the context of large-scale
data-center infrastructure [MSS12, KKH+09, BB10], and typically depend on a model

3https://spire.com/

37

https://spire.com/

3. Edge infrastructure architectures

of energy consumption based on proxy metrics such as CPU utilization [WXZL11]. As
we discuss in Section 3.2.4, our data indicates that these models are inaccurate for
edge computers with modern, high-density, general-purpose hardware. With future
developments and the integration of specialized hardware into these edge computers,
such as GPUs or single board AI modules [Fra16], simple models will become infeasible
for novel energy-efficiency mechanisms that control these heterogeneous infrastructures.
Suppose, for example, a mechanism that optimizes energy consumption based on machine
learning techniques such as reinforcement learning (which is also being explored in related
cloud-operations research [WXZL11, FLP14]). A learning algorithm will continuously
attempt different load balancing configurations given different workload types to minimize
energy consumption. To facilitate such mechanisms in a real-world deployment, given
the complexity of energy consumption of novel architectures, edge computers have to
be natively energy-aware, i.e., they need access to energy consumption data in real-time
to accurately determine the impact of different workloads on the energy consumption
characteristics, learn from past observations, and continuously adapts to changes in the
environment that may have an impact on energy consumption. Furthermore, control
mechanisms need to be able to control the power state of nodes, i.e, turn them on and
off.

3.2 Portable energy-aware edge clusters
A significant number of edge application scenarios can be characterized by the dynamic
and resource-constrained environment in which supporting edge computers have to
operate. For example, mobile applications are used by emergency response teams for on-
premises decision making [LMFJ+04], or by military field personnel for image or speech
recognition [LES+14]. Handheld devices stream data and offload compute-intensive tasks
to nearby edge computers. Designing and operating edge computing infrastructure for
and in these environments is challenging, as edge computers have to be portable to fit
on, e.g., an emergency vehicle or a drone; deal with unpredictable client load; provide
sufficient performance to host, e.g., data analytics or machine learning applications; and,
at the same time, be energy-efficient to be powered by secondary power supplies such as
batteries.

In this section, we present a design, prototype, and evaluation of a portable energy-aware,
cluster-based edge computer that aims to address these challenges. It is portable because
it is compact, and consumes energy at a scale that could be served by medium-sized
batteries. It is energy-aware because it provides a power-management runtime to access
energy consumption data in real-time, and control the power state of its nodes. Finally,
it is cluster-based because it comprises multiple physical nodes to provide reliable and
scalable computing. Furthermore, we present an experimental analysis of the energy and
resource-consumption characteristics of our prototype in the context of a data analytics
application. The results show the feasibility of our prototype for the presented scenarios,
but also reveal the intricacies of power-management approaches already built into modern
CPUs. We show that different load balancing policies and cluster configurations have a

38

3.2. Portable energy-aware edge clusters

significant impact on energy consumption and system responsiveness. Our insights lay
the groundwork for future research on energy-consumption optimization approaches for
cluster-based edge computers.

3.2.1 System architecture

We propose an architecture for a general-purpose energy-aware, cluster-based edge
computer. Later we present a reference implementation. In our architecture, a cluster-
based edge computer is a closed system of n physical general-purpose compute nodes,
and a power-management runtime that enables energy-awareness. We focus explicitly
on enabling energy-awareness as opposed to general deployment and management of
applications, as solutions already exist for these aspects [LES+14, SBCD09]. Figure 3.2
shows a simplified view of our proposed architecture.

node0

node1

noden

Request
Router

Edge Computer

Client Balancing
Policy

...

Power
Monitor

Node
Controller

Balancing
Policy

Resource
Monitor

Client App

Runtime
component

Physical
host

Third-party
component

Call

Broadcast

Physical
interaction

Legend

Power
source

policy
updates

power on/off

probe
wattage

Service

Figure 3.2: Architecture for an energy-aware cluster-based edge computer

Nodes host third-party services that are deployed via, e.g., container-based virtualization.
The power-management runtime comprises components to monitor and control the
nodes, and to provide energy-aware optimization mechanisms for task scheduling or load
balancing. These runtime components are hosted on a separate auxiliary device that

39

3. Edge infrastructure architectures

is part of the edge computer, but independent of power-management mechanisms and
much smaller in scale than the compute nodes to minimize the impact on the overall
power consumption (in our prototype we use two SBC, see Section 3.2.3). Between each
node’s power source, a power sensor is placed that allows the power monitor component
to probe the current wattage of each node. A client device hosts the client side of the
runtime: a request router that forwards requests to an actual physical node hosting the
service, as well as third-party client application.

Power-management runtime

The power-management runtime comprises the following core components:

Node controller the node controller decides at runtime, based on values received from
the power monitor and resource monitor, to modify the power state of nodes, i.e., powering
them on or off. The node controller relies on an optimization strategy implementation
that aims to minimize energy consumption while maintaining responsiveness of the
system. When the controller changes the power state of a node, it informs other runtime
components about these changes.

Power monitor the power monitor probes the nodes’ power sensors, and provides an
API for other runtime components to access node energy consumption data in real-time.

Resource monitor the resource monitor tracks the resource utilization of nodes, and
also provides an API to access the data in real-time. Specifically, it provides data on the
CPU frequency (which may be dynamically adjusted by the underlying hardware), CPU
utilization, memory usage, or I/O bandwidth of nodes.

Balancing policy the balancing policy aims to optimize energy consumption and
resource utilization by distributing request load across physical hosts. It uses the power
and resource monitoring data to intelligently balance service requests among physical
hosts. Because request dispatching actually happens on the client, the runtime broadcasts
changes in the balancing policy to the client-side balancer. For example, when the node
controller changes the power state of a node, the balancing strategy is informed and
adapts accordingly (e.g., by removing a turned off node from the pool), and then forwards
the information to the client.

Client

The client hosts the third-party client application and the client-side components of
our power-management runtime. A client device could be an edge device such as a
smartphone or an SBC.

40

3.2. Portable energy-aware edge clusters

Request router In traditional cloud-based clusters, load balancing is typically done in
the cloud via, e.g., L7 switches or reverse proxies hosted on powerful machines that forward
requests to the actual services depending on some strategy [GB14]. We cannot rely on
data-center scale routing hardware in a small portable edge cluster, and dedicating a node
of the cluster to serve as reverse proxy would require this node to be online continuously,
and therefore significantly increase the overall energy consumption. Furthermore, for
high-performance applications, a load balancer that has the same computational resources
as the nodes it manages would quickly create a bottleneck. Instead, in our architecture,
we offload request dispatching to the client. The request router on the client device is
a proxy for an actual service request and is responsible for dispatching a request from
the client app to a node that hosts the service. The runtime broadcasts changes in the
balancing policy to the client-side request router. This includes the network addresses or
specific service endpoints of currently active nodes. The requests are routed based on
the current active balancing policy dictated by the edge computer, e.g., the percentage
of requests that should be routed to a specific node or service endpoint. This way, the
energy cost of load balancing is decentralized among clients. A drawback of this approach
is the increased management complexity of balancing policies.

Balancing policy The request router relies on a balancing policy defined by the
power-management runtime. For each request, the request router queries the balancing
policy for a node to send the service call to. A balancing strategy could simply be a
round-robin or weighted distribution among all currently powered nodes. Implementing
and evaluating more complex strategies is out of scope of this paper, but part of our
future work.

3.2.2 Symmetry: a reference implementation

We describe Symmetry – an end-to-end implementation of the system architecture we
presented, that addresses the described issues. Symmetry takes the role of the cluster
controller, and is designed to run on SBCs like a Raspberry Pi. It features service
management on top of Docker, runtime monitoring of black-box metrics, power draw,
and application latency, client-side load balancing, and dynamic cluster reconfiguration
mechanisms. We provide load balancing and cluster reconfiguration policies such as
round-robin or reactive autoscaling, but also give developers tools and APIs to build
their own. Figure 3.3 shows all the components in an example deployment on our
hardware prototype presented in Section 3.2.3 The figure also shows how Galileo clients
(see Section 4.1), used for distributed load testing experiments, integrate with Symmetry.

Systems that solve similar problems in data-center scale clusters [GHBRK12] are not
applicable to the domain of portable energy-aware cloudlets for reasons we have outlined
in a previous publication [RAD18]. First, the operational scale impedes the use of
components typical in cloud architectures, such as dedicated L4 or L7 load balancers.
Second, the models used for energy management in data centers often build on assumptions
that do not hold for smaller scale hardware that already has very effective built-in energy

41

3. Edge infrastructure architectures

Telemetry
Daemon

Storage
and

Eventbus

Client

Galileo
Controller

routing:services {s1, s2, … }
routing:hosts:s1 [h1, h2]
routing:weights:s1 [0.8, 0.2]

Cluster
Daemon

REST API

Service
Manager

Policy

Dashboard

Symmetry (controller)

Cluster nodes

Power monitoring

Routing table

Galileo worker

App
Client

App App...

Service
Request

Router

rtbl

Figure 3.3: The Symmetry system components and their interactions

management. Third, resource management systems for cloud clusters, such as OpenStack
or Kubernetes, are often very resource intensive in and of themselves and require powerful
servers to operate.

Symmetry comprises a set of lightweight Python components that together make up
the system control software. Cluster nodes are server computers that host services,
and require no software other than Docker and an SSH server. The system is designed
to manage compute clusters with around 2–20 nodes, such as a cluster prototype we
have presented, or an Ubuntu Orange Box, and manage stateless services such as image
recognition models, database query serving, or similar applications.

Command line interface and REST API

Operators interact with Symmetry via a CLI to deploy services to the cluster or activate
specific load-balancing policies. REST APIs provide ways to control the cluster state
and request routing, and enable the modular development of additional operational logic.
A runtime dashboard provides insights into the current cluster utilization, power draw,
and application performance.

Symmetry core

The core platform component of Symmetry is a Redis instance running on the cluster
controller. All layers of Symmetry are integrated via this Redis instance, which facilitates
both data storage (such as service metadata) as well as inter-process communication

42

3.2. Portable energy-aware edge clusters

using the eventbus architecture of PyMQ4. Due to its lightweight design and highly
optimized I/O functionality, Redis performs extremely well in this scenario.

Service management

Applications are hosted on cluster nodes as HTTP services in Docker containers. Sym-
metry starts on each cluster node an NGINX instance to internally route requests to the
correct container and to monitor application performance. Services are described via
YAML files that specify necessary metadata. The CLI command symmetry deploy
my-service.yml then deploys the service to each node, starts the necessary containers,
registers the service endpoints, and updates the node’s NGINX config accordingly.

Telemetry daemon

The telemetry daemon aggregates runtime metrics from various sources and publishes
them as time series data into a pub/sub topic that encodes the node and the metric, for
example, telemetry:node1:cpu. It implements pull-style monitoring by connecting
to the cluster nodes via SSH and executing commands for measuring CPU utilization,
CPU core frequency, or parsing the NGINX logs. For power data it connects to an
Arduino that provides access to readings from integrated current sensors. If a node shuts
down, it informs other components via the eventbus.

Cluster daemon

The cluster daemon enacts the load balancing and cluster reconfiguration policy. One
policy that Symmetry provides out-of-the-box is Reactive Autoscaling, which activates
or suspends a node if a system metric exceeds a given threshold for a specified amount
of time. For example, our default implementation activates an additional node if the
average CPU utilization is above 85% for more than 10 seconds, and suspends it if drops
below 25%.

Client-side request routing

Making clusters appear as a single system is typically achieved via dedicated L4 or
L7 load balancers, through which all service requests are routed. Instead, we take a
client-side request routing approach that uses simple weighted-random load balancing,
where weights are updated dynamically by the load balancing policy in a way that meets
some operational goal. A routing table specifies for each service how much of the workload
should be directed to a given node. Updates to the routing table are propagated to the
clients via Redis pub/sub. This way, request routing is decentralized, but simplified such
that the client components necessary to call services are kept simple.

4https://github.com/thrau/pymq

43

https://github.com/thrau/pymq

3. Edge infrastructure architectures

Figure 3.4: Energy-aware cluster-based edge computer prototype

3.2.3 Hardware prototype

Based on our architecture, we have developed a prototype for an energy-aware portable
cluster-based edge computer. The prototype comprises four compute nodes, networking
and power infrastructure, a power and resource monitoring system, and a small cluster
of client devices. Figure 3.4 shows our prototype infrastructure. It shows (1) the cluster
compute nodes, (2) the monitoring infrastructure (with the Raspberry in the bottom
left corner in a white case, and the Arduino in the bottom right), and (3) Raspberry Pis
that serve as clients. Next, we describe each component in more detail.

Compute nodes

The overall design goal of our prototype is to enable high-density computing, i.e., to
have good compromise between compactness that enables portability, and performance
to host typical cloud-based services. We use Mini-ITX form-factor hardware, with server
capabilities in mind, to build a high-density cluster. Each node is a mid-priced but
powerful server computer made up of the following components:

44

3.2. Portable energy-aware edge clusters

• Motherboard: ASUS P10S-I Mini-ITX5

• CPU: Intel Xeon E3-1230 (4 cores, 8 threads)6

• RAM: 2x16GB Kingston HyperX Fury DDR4

• SSD: Intel SSD 600p 128GB M.2.7

• Power supplies: picoPSU-90 12V

Overall, each node takes up roughly 17x17x10cm of space.

To host applications, the compute nodes run a common server operating system, namely
CentOS 78, with a standard configuration. Furthermore, the nodes run Docker CE9 as
application deployment platform. We later present energy consumption data to show
that this hardware configuration could be powered by commodity battery packs.

Power-management runtime

There are many ways to implement the power-management runtime described in Sec-
tion 3.2.1. Specifically, there are a variety of ways to monitor energy consumption.
Although we do not require real-time access to the energy consumption data for the
evaluation of this prototype, we wanted a portable and cost-efficient solution to show
the feasibility of our design, in particular because the power-management runtime is
an integral part of the system and should therefore be portable and small scale. We
deploy the power-management runtime on a Raspberry Pi Model 3 B running Raspbian
9. To monitor energy consumption, we developed a compact and cost-efficient monitoring
infrastructure using an Arduino Uno, and four ACS71210 Hall-effect-based linear current
senors. We later revised the prototype to use digital current sensors which are less
prone to noise. Specifically we use modified Adafruit INA219 11 DC current sensors.
It is important to note that we measure between the picoPSU power supply and the
AC adapter, because we intentionally do not want to include the power dissipation of
the adapter (which we found in experiments to vary greatly between 10–25%). This
is also the reason why we do not use consumer-grade power meters that typically sit
between the power socket and the AC adapter. Reading the sensors is done via the
analog or digital inputs and a simple Arduino program. The Raspberry provides the
Power Monitor, Resource Monitor, and Node Controller component. The Power Monitor

5https://www.asus.com/Commercial-Servers-Workstations/P10S-I/
6https://ark.intel.com/products/52271/Intel-Xeon-Processor-E3-1230-8M-Cache-3_20-GHz
7https://www.intel.com/content/www/us/en/products/memory-storage/

solid-state-drives/consumer-ssds/600p-series/600p-128gb-m-2-80mm-3d1.html
8https://www.centos.org/
9https://www.docker.com/

10https://www.allegromicro.com/en/Products/Current-Sensor-ICs/
Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspxx

11https://www.adafruit.com/product/904

45

https://www.asus.com/Commercial-Servers-Workstations/P10S-I/
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/600p-series/600p-128gb-m-2-80mm-3d1.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/600p-series/600p-128gb-m-2-80mm-3d1.html
https://www.centos.org/
https://www.docker.com/
https://www.allegromicro.com/en/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspxx
https://www.allegromicro.com/en/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspxx
https://www.adafruit.com/product/904

3. Edge infrastructure architectures

accesses the power readings via the Arduino at a specified sample interval, and calculates
from the raw readings the effective power in Watts. The Resource Monitor uses standard
Linux facilities to read resource utilization data from the nodes such as /proc/stat or
/proc/cpuinfo which gives details about the current frequency and idle state of CPU
cores. We later extracted the monitoring tooling into the Galileo experimentation and
analytics framework (see Section 4.1.

3.2.4 Performance characteristics

To further drive the design of control mechanisms for edge computer clusters, we first want
to understand their performance and energy consumption characteristics. To that end, we
run several experiments to gather data on the general energy consumption characteristics
of the cluster, as well as concrete performance data when running a data analytics
application in different cluster configurations. We use the power-management runtime
prototype to collect data on the current energy consumption and resource utilization of
each node, and to test different balancing policies during real-world application workloads.

Profiling experiments

We examine the system’s energy consumption and responsiveness under varying client
load and different load balancing policies. The main goal is to examine whether the
overall system’s energy consumption can be improved with specific load balancing policies
given otherwise identical experiment parameters. Furthermore, we are interested in the
tradeoff between energy consumption and system responsiveness.

Application scenario For the evaluation, we consider a typical video analytics appli-
cation [SSX+15] in a forward deployed scenario [LES+14]. For our application we use
the Apache MXNet deep learning library [CLL+15] with pre-trained models to perform
image recognition tasks. We use Docker to deploy instances of an MXnet Model Server12,
which exposes an MXnet classifier as a web service via an NGINX13 web server. We
then use a simple Python HTTP client application that we developed to send images
to the exposed endpoint and await classification results. The clients receive from the
power-management runtime the network addresses of endpoints and a weighted load
balancing policy. We use the pre-trained SqueezeNet [IHM+16] model, a small-footprint
model that has been used in other evaluations of image recognition applications [IMS18].
The workload is representative of many of the use cases we described in Section 2.2.

Emulating clients To generate workload, we set up a small Raspberry Pi cluster
where each node hosts a client application and a tool for generating load. We describe
this in more detail in Section 4.1. The client cluster is connected via a separate switch to
the LAN of the cluster, and is powered by a separate power source. The Raspberry Pis
are Model 3 B Rev 1.2 running Raspbain 9.

12https://github.com/awslabs/mxnet-model-server
13https://www.nginx.com/

46

https://github.com/awslabs/mxnet-model-server
https://www.nginx.com/

3.2. Portable energy-aware edge clusters

Table 3.1: load balancing policies for experiments

Exp. n1 n2 n3 n4

1 100% - - -
2 90% 10% - -
3 80% 20% - -
4 70% 30% - -
5 60% 40% - -
6 50% 50% - -
7 33% 33% 33% -
8 25% 25% 25% 25%

Experiment setup We stress nodes by sending image classification requests from our
Raspberry Pi clients. A client is a simple Python application that spawns several worker
processes that send a randomly selected image (pre-loaded into memory) to a node and
wait for a response. To make sure the work required for each request is the same, we
pre-load five similar images, each with dimensions around 300x220 pixels, and a file size
of around 150kB. In exploratory experiments we found that with these parameters, four
Raspberry Pis each running eight worker processes to send requests can easily saturate a
node’s request capacity without slowing down the clients. For each request, we measure
the round-trip time (RTT) in milliseconds with which we quantify the responsiveness of
the system. To control the request rate we use a load generator that generates a pyramid
arrival pattern, starting from 1 request per second (r/sec), to a peak of 300 r/sec, and
down to 1 again. The load is adjusted every 20 seconds, and the experiment runs for 20
minutes.

In total, we run eight experiments with which we examine the system’s performance and
energy consumption under different weighted random load balancing policies. The first
experiment sends all requests to n1. The second experiment balances load between two
nodes n1, n2 in a ratio of n1

n2
= .9

.1 , the third n1
n2

= .8
.2 , and so forth, until .5.5 (round-robin

scheduling). In the last two experiments we perform round-robin scheduling with three
and four nodes respectively. Table 3.1 summarizes this. The columns indicate the
percentage of requests that are routed to the respective node, or whether the node is
kept offline.

Experiment results

We calculate for each experiment the total energy required for each node, and report
the CPU utilization, CPU frequency (dynamically adjusted by the CPU), and statistics
on the RTT. Table 3.2 shows the results. We performed the workload experiments six
times with similar results. Instead of aggregating the results, which would hide nuances
of the experiment runs, we report a representative sample. Column 1 shows the index
of the experiment. Column 2 shows the energy consumed in Wh over the entire course
of the experiment for each node and in total. To get a more representative result, we

47

3. Edge infrastructure architectures

list for offline nodes a value that corresponds to the average offline energy consumption
over that period of time across all nodes. Column 3 shows the CPU utilization of each
online node over time during the experiment. Column 4 shows the corresponding CPU
frequency, where the value is the sum over all cores in MHz (8 cores with hyper-threading,
where each core has a maximum frequency of 3700 MHz). Column 5 shows the request
RTT in milliseconds (mean, 90th percentile, and 99th percentile) over time during the
experiment. Note the y-axis scale changes from experiment 5.

Energy consumption Although experiment 1 shows the lowest energy consumption,
it should be noted that a single node was not able to handle the peak load of 300 r/sec,
but instead was capped at 250 r/sec, which should be taken into consideration when
interpreting the results. Looking at the sustained peak of CPU utilization and RTT
after minute 8 shows that the node was busy working a congested request queue, and
was able to pick up with the reduced request rate at minute 13. Experiment 2 exhibits
similar but less extreme characteristics. In terms of energy consumption, overall we can
see that there are only slight variations between the different load balancing policies
in experiments 2 through 6. We also observe that adding a new node in experiment 7
does not increase the energy consumption significantly. Looking at the data, we can see
that the CPU load is balanced across nodes, which has a cumulative effect on the energy
consumption reduction of individual nodes, and this reduction is higher than the cost of
adding a node. However, there are diminishing returns: at some point the energy cost of
powering on additional nodes will be larger than the benefits of balancing load further,
as made evident by experiment 8 (4 nodes round-robin scheduling), where the energy
consumption is significantly increased compared to the other experiments.

Responsiveness Overall we can see that, unsurprisingly, the RTT and system respon-
siveness is generally improved when balancing load between nodes. However, our results
reveal interesting insights on the effect of dynamic frequency adjustment on the overall
system responsiveness. For example, the first minutes of experiment 6–8 show that, when
load is balanced in a way that nodes become underutilized, the reduced CPU frequency
will lead to a worse responsiveness, despite more nodes being used than in experiment 6.
Figure 3.5 shows this behavior more generally.

Power consumption vs CPU utilization Assumptions often made when building
simulation models for energy-efficiency algorithms in cloud computing are: a) that CPU
utilization maps directly to energy consumption [WXZL11, BB12], b) that there is a
linear relationship between CPU utilization and energy consumption [KKH+09, MSS12,
PDCB15], and c) a low peak-to-idle energy consumption ratio [EKR03, WXZL11, BB12].
These assumptions may be valid for data-center scale servers [KKH+09], but our results
indicate that these assumptions will lead to inaccurate results when applied to edge
computers. Figure 3.6 shows a scatter plot of the CPU utilization and energy consumption
measurements of experiment 3 and node 1. First, we observe that the relationship is
more complicated. Until a CPU utilization of 12%, the energy consumption only rises

48

3.2. Portable energy-aware edge clusters

(a) Power draw against workload (b) Mean application RTT against workload

(c) The effect of CPU frequency scaling on application responsiveness

Figure 3.5: Results showing the tradeoff between responsiveness and energy consumption

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20

40

60

80

100

120

140

160

HP ProLiant G5 HP ProLiant G4

CPU utilization (%)

Po
w

e
r

co
n
su

m
p

ti
o
n
 (

W
)

0 10 20 30 40 50 60 70 80 90 100
CPU utilization (%)

0

10

20

30

40

50

60

70

80

P
o
w

e
r

co
n
su

m
p
ti

o
n
 (

W
)

28.2 * log(x) - 58.0

Figure 3.6: Relation between CPU utilization and energy consumption according
to [CRB+11] (right), compared to our results of running an image classification ser-
vice on our high-density edge computing cluster (left)

49

3. Edge infrastructure architectures

Table 3.2: Results overview of load experiments in different cluster configurations

Energy (Wh) CPU Utilization (%) CPU Frequency
∑

MHz RTT (ms)

1

n1 15.063
n2 0.644
n3 0.644
n4 0.644∑

16.995

2

n1 14.071
n2 4.039
n3 0.644
n4 0.644∑

19.398

3

n1 12.775
n2 5.084
n3 0.644
n4 0.644∑

19.147

4

n1 11.491
n2 6.534
n3 0.644
n4 0.644∑

19.313

5

n1 10.165
n2 7.922
n3 0.644
n4 0.644∑

19.375

6

n1 8.797
n2 9.326
n3 0.644
n4 0.644∑

19.411

7

n1 6.477
n2 6.924
n3 5.345
n4 0.644∑

19.391

8

n1 5.423
n2 5.856
n3 4.454
n4 5.794∑

21.527

50

3.2. Portable energy-aware edge clusters

very slightly. The relation then exhibits logarithmic growth. Second, we observe that for
some regions of utilization, the energy consumption variance is very high. For example,
around a utilization of 16%, the energy consumption varies between 9W and 30W, and at
90% it only varies between 63W and 70W. Third, we observe that the peak-to-idle energy
consumption ratio (at around 70W

10W = 7) is much higher in our prototype compared to
what is assumed for data-center scale hardware (e.g., 1.36 or 1.45 [BB12]).

3.2.5 Discussion of results

An active node in our cluster draws power at a rate between 10–80W, depending on the
resource utilization. Even when shut down, a node draws power at a rate of 0.5–2W.
This large margin in energy consumption between idle and fully utilized nodes is due to
the power management mechanisms of modern CPUs, in particular voltage and dynamic
frequency adjustment. What this means for, e.g., simulation environments, is that using
CPU utilization as a proxy for energy consumption will lead to inaccurate results. It is
crucial to account for adjusted CPU frequencies based on the current utilization. Even
then, estimates of energy consumption based on performance indicators alone may not be
accurate. Because energy consumption is a complex process dependent on many different
factors that are difficult to accurately measure in their entirety, different type of workloads
may yield very different energy consumption patterns [GOM18], which makes it necessary
for power-management mechanisms to have real-time access to energy consumption
data. Further investigation is needed to understand these factors, and how for example,
integrating specialized hardware affects the overall energy consumption behavior. Overall,
our results show that our prototype requires energy at a scale that can be managed with
commodity portable energy supplies. For example, to get a rough idea, a typical 20 Ah
lead-acid battery at 12V corresponds to 240 Wh. In our 20-minute experiment the cluster
processed around 190 000 requests, and consumed roughly 20 Wh, with a power draw of
about 80W if we consider the additional infrastructure energy consumption (switch and
router, which averages at 4.1W). Even if we account for Peukert’s law and the resulting
diminished effective capacity, a single battery of this type could power the system for
over an hour in the experiment conditions. This indicates that the general scale of the
cluster is feasible for the application scenarios we presented.

Cloud operations research has traditionally assumed high peak-to-idle energy consumption
ratios of compute nodes [EKR03, WXZL11, BB12] Our initial intuition was therefore that
the idle energy consumption of nodes would be so high, that the optimal configuration
would be to fully utilize each node until the application responsiveness drops below a
specific threshold (e.g., a maximum RTT value). Our data show the opposite, which we
largely attribute to the power-management mechanisms of high-density compute hard-
ware, i.e., dynamic frequency adjustment, and the relationship between CPU frequency
and energy consumption. When load is balanced among cores, the CPU utilization is low,
and therefore the frequency is scaled down. There is a delicate tradeoff between CPU
frequency, energy consumption, and responsiveness, which greatly increases complexity for
energy-aware load balancing or scheduling techniques, and is likely to have different char-

51

3. Edge infrastructure architectures

acteristics for different types of applications and workloads. Energy-efficiency systems for
clusters need to understand the behavior of the underlying hardware’s power-management
algorithms, and cooperate with these lower-level mechanisms to provide optimal balancing
of workloads. These are particularly important observations for future work on building
clusters of hardware that already makes use of energy efficiency techniques (such as
dynamic frequency scaling), but further investigation is needed to fully understand this
relationship with respect to different workload types and node configurations.

3.3 Edge infrastructure scenarios

In edge computing, there is not a single well established infrastructure model [PDT18].
The infrastructure for cloud computing is the data center, where servers are organized into
racks, and interconnected using high-performance networking, such as fiber optic 100GbE.
Whereas in edge computing, the infrastructure used for computation, data storage, and
networking, will depend greatly on the use case and the deployment environment [SGL19].
This complicates the development of generalizable computing models and platforms
that work to hide the underlying computing infrastructure from the application. In this
section, we outline several edge computing scenarios, and examine their infrastructure
and network topology. The goal is to identify commonalities, and to better understand
the challenges of building a computing substrate we described in Section 2.3.

3.3.1 Urban sensing

Urban sensing is a smart city concept, to provide citizens and governmental parties
with environmental and contextual urban data. More and more cities [SSS+17, CZVZ14,
Nun05] deploy IoT nodes with cameras and sensing capabilities into urban areas to
enable a variety of applications. Data can be used for urban monitoring applications; to
create data analytics models such as crowd behavior, flooding models, or accident risk
prediction [Bec18]; or to enhance human cognition (see Section 2.1). An example is the
Array of Things (AoT), a networked urban sensing project initiated in Chicago, which
aims to provide access to real-time data on urban environments [CBSG17]. Each node is
equipped with two Single Board Computer (SBC) devices, sensors, and a camera. Nodes
are deployed throughout Chicago’s 77 neighborhood areas, e.g., mounted on lamp poles or
mobile base stations, and networked with, e.g., cellular networks, Wi-Fi, or wired uplinks.
The initial deployment consisted of 40 nodes, and has been increased as of Spring 2019 to
about 200 nodes. One use case we described in Section 2.2.2 shows how edge computing
resources can be used to offload compute-intensive tasks such as analyzing video feeds. It
is reasonable to assume that future version of smart city sensor nodes may also contain
embedded AI hardware (see Section 3.1), effectively turning nodes into multi-purpose
edge computers we described in Section 2.3.2. With the appropriate middleware, many
such nodes could then be used as a cluster. Locality plays an important role in resource
management techniques for such a cluster, as the density of nodes per district, and their

52

3.3. Edge infrastructure scenarios

utilization, depends on the city’s structure and urban dynamics. We examine the density
of deployments in more detail in Section 4.2.

3.3.2 Industry 4.0

Edge computing is considered a key component of realizing Industry 4.0 concepts such as
smart manufacturing or the Industrial IoT (IIoT) [CWC+18]. Consider an international
manufacturing company that manages several factories. To facilitate IT/OT convergence,
factory floors are equipped with edge computing hardware, IIoT gateways, SBCs as sensor
aggregators for soft real-time analytics and preprocessing, embedded AI hardware for low-
latency video processing (e.g. for high-speed manufacturing lines), and small form-factor
computers as on-site workstations. These are plausible extensions to the prototypes
presented in [CWC+18], and the general trend towards using embedded AI hardware
for using sensor and video analytics in predictive maintenance scenarios [YMLL17].
On-premises edge data centers (or cloudlets) with varying resource capabilities provide
additional IT infrastructure for various compute loads and services. These can be
potentially provider-managed, i.e., an on-premises cloudlet that is billed in a pay-as-you-
go fashion. Premises are interconnected through the public internet, backed by public
cloud services. The infrastructure forms a federated edge-cloud environment that includes
resources from across the computing continuum.

3.3.3 Telco-operated mobile edge clouds

Multi-access Edge Computing (MEC) allows third parties to deploy applications on
a Mobile Network Operator’s (MNO) edge DCs. MEC standardization efforts driven
by ETSI include a MEC reference architecture [ETS19]. However, MEC topologies
highly depend on the operator’s dimensioning decisions, and different candidate locations
for edge DCs exist. Installing compute infrastructure directly at base stations would
offer significant latency benefits, but may be hindered by space limitations, especially
in urban areas. Another option is to deploy edge DCs at the MNO’s central offices
(CO) [PAA+16], which aggregate traffic from base stations over high-capacity and low-
latency links. This performs well in terms of latency and has advantages from a DC “real
estate” perspective. A third scenario is to push MEC to core network DCs, co-locating it
with the Packet Gateway (P-GW). This is technically the simplest option for legacy 4G
networks [HAW17], at the cost of increased latency and reduced traffic offloading gains.
Data of real-world MEC deployments is often proprietary and therefore hard to obtain.
However, plausible figures per operator include 2-3 core DCs, hundreds of COs, and tens
of thousands of base stations country-wide [Tel19]. Current literature corroborates these
numbers. For example, Basta et al. [BBH+17] assumed 3 and 4 P-GWs (and thus core
DC locations) for Germany and the US, respectively, and Peterson et al. [PAA+16] report
that, as of 2016, AT&T was operating 4700 COs. Base station approximate locations
and densities can be obtained from crowdsourced LTE coverage maps [opec, opeb, Aus].
For example, in Section 4.2 we show that, as of 2020, there were around 1747 mobile base
stations in Vienna, Austria, and the per-district deployment density followed a log-normal

53

3. Edge infrastructure architectures

distribution. The resources available in edge DCs will also vary. For example, in the
techno-economic analysis of [5G-19, Section 2.3.3.2], a small edge DC was assumed to
have a capacity of 576 CPUs, 1512GB RAM, ∼40TB storage, and ∼1000 Gbps network
capacity, adding a 5ms latency.

3.3.4 Vehicular networks

Services for connected vehicles, including safety, infotainment, and advanced driving
assistance, are key drivers for the automotive industry, and can particularly benefit
from edge computing. A typical architecture for vehicle-to-everything (V2X) services
includes roadside units (RSU) communicating with vehicles’ onboard units using wire-
less technology, and connected with an optical or wireless (e.g., cellular) backhaul to
aggregation points, centralized DCs and the Internet. RSUs are similar to the urban
sensing nodes we described in the Urban Sensing scenario, and are candidates for co-
location with edge computing hosts for low-latency vehicular services. RSU deployment
follows service requirements (coverage, message dissemination latency, reliability). The
InterCor project [intb] recommends [DPVW+17] that an RSU should be present at every
highway entrance and at least every 6 km. The 5G Automotive Association (5GAA)
estimates [5GA19] that the inter-RSU distance will range from 300m to 1 km, depending
on the road type. Due to physical constraints (e.g., an RSU may be mounted at a traffic
light in urban environments), the capacity of an edge host deployed at an RSU may
be limited, down to that of an SBC or small form-factor node. However, in the Smart
Highway testbed (Antwerp, Belgium) [MBLN+19], some RSUs (less than 1 km apart)
are equipped with server-class edge compute nodes, connected to the cloud via fiber optic
links.

3.3.5 Edge cloud federation

It is common for multi-national companies to implement a hybrid cloud strategy for their
IT infrastructure [Wei16], where on-premises IT resources are federated with public cloud
providers across several cloud regions. An example are CDNs to provide low latency
access to web resources at the edge. Public data sets from production cloud systems, such
as the Google Borg cluster traces [VPK+15], provide insights about cluster configurations
in public clouds. The median size of a cluster at the time was reported to be around
10 000 nodes, and clusters were reported to be heterogeneous in terms of RAM, CPU,
and networking, but have no specialized compute capabilities. Bandwidth within a data
center and cross-region vary greatly depending on the provider, but results of a recent
benchmark on cross-region traffic of AWS [Cut18] suggest 10 GBit/s within a region,
and 1 GBit/s cross-region. On-premises clouds are connected via public internet, where
bandwidth can range from 100 MBit/s to 10 GBit/s depending on the service provider.
Latencies between Internet backbone regions are fairly static and could be drawn from
public data sets. Making generalizable statements about companies’ IT resources is
difficult, but we can assume that they will range from small on-premises commodity

54

3.4. Summary

servers connected through the public internet, to multiple racks that connected directly
to an exchange through fiber optics.

3.4 Summary
In this chapter we examined the spectrum of computing platforms used throughout
different edge computing scenarios. We complemented the state-of-the-art with an
architecture and prototype for a portable energy-aware edge cluster, with which we
revealed several challenges related to applying models from cloud computing to high-
density edge computers. We also showed different scenarios in which dispersed edge
computing resources could be pooled together to a computing substrate.

The edge computing scenarios we examined highlight the tension between infrastructure
abstractions and resource management precision. Successful cloud computing models, such
as serverless computing, are effective at hiding the underlying computing infrastructure
from the application developer or operator. It seems this conflicts with edge computing,
where services may have to be placed on very specific devices, for example ones connected
to a specific sensor or actuator. Moreover, as the variety of AI accelerators increases,
so does the heterogeneity of the edge fabric, thereby introducing additional complexity
for platform abstractions. The examination revealed some concrete challenges for edge
computing platforms. It is particularly important that developers can trust the “write
once, deploy anywhere” philosophy. A programming model, such as a Function as a
Service (FaaS) style model, needs to hide the heterogeneity of the underlying edge
resources, but at the same time provide methods to make placement constraints explicit.
Not only is this crucial for efficient development of AI applications, it is also a critical
requirement for transparent resource provisioning, and to enable a seamless continuum of
edge resources, where coordination middleware can transparently make tradeoffs between
application performance, resource utilization, and associated costs. These are critical
insight which drove the research presented in Chapter 6.

When building middleware, computing platforms, and operational mechanisms, re-
searchers and developers can often make assumptions about the systems they operate in.
In cloud computing, many operational mechanisms build on the assumption that servers
have similar computing power, and that they operate in the same network with similar
bandwidth. On a highly heterogeneous and geographically dispersed computing substrate,
such assumptions may be invalid. Building generalizable operational mechanisms, such as
load balancing, scheduling, or autoscaling, is much more difficult, and their performance
is subject to many more variables related to the underlying infrastructure. Fine-tuning
these operational algorithms to the specific scenario is a key challenge. By studying
the hardware platforms, and the infrastructure scenarios we presented in this chapter,
we were able to extract commonalities and build a high-level framework for evaluating
middleware, computing platforms, and operational mechanisms, that have to operate on
top of a dispersed computing substrate. This framework is the topic of the next chapter.

55

CHAPTER 4
Edge system analysis and

evaluation methods

It is challenging to evaluate edge computing systems, such as compute platforms [RHM+19],
communication middleware [RND18], or resource allocation methods [SNSD17], in a way
that allows generalizable conclusions. We attribute this to the inherent complexity and
heterogeneity of such systems, and a scarcity of available reference architectures for edge
infrastructure, standardized benchmarks, and data on real-world deployments. Evaluating
cloud computing systems in simulated environments has become comparatively straight
forward due to the large body of architectural models, benchmarks [HBS+15], and trace
data sets from production-grade cloud platform deployments [VPK+15], which facilitate
well grounded systems evaluations. In contrast, edge computing researchers currently rely
on either highly application-specific testbeds [HCH+14, MKN+17], or abstract system
models such as P2P or hierarchical three-tiered topologies [SNSD17, XLD+19, TLG16].
Moreover, the lack of data on real-world edge computing deployments forces developers
of simulation tools to resort to overly simplistic simulation models.

In this chapter we present our three contributions to the body of evaluation methodologies
for edge computing systems. First, in Section 4.1 we present Galileo, a system that
streamlines profiling and benchmarking of real-world workloads and hardware, and
provides tools for collecting and analyzing system data. Second, in Section 4.2 we present
Ether, a toolkit for generating plausible edge computing infrastructure configurations
and topologies, based on our insights from Section 3.3. Third, in Section 4.3 we present
a trace-driven simulation framework for distributed container-based systems, that is
integrated with both Galileo for building its underlying stochastic simulation model, as
well as Ether to generate random edge system topologies. We then discuss related work
in Section 4.4. Finally, Section 4.5 concludes the chapter, where we also outline how the
presented methods can support the development of operational strategies for distributed
systems in general.

57

4. Edge system analysis and evaluation methods

4.1 Profiling edge computer systems
We first present Galileo – an experimentation and analytics framework for empirical
performance analysis of distributed systems. The main purpose of Galileo is to simplify
the development, execution, and analysis of distributed system profiling experiments. We
have used Galileo to (a) create trace data sets for our trace-driven simulation framework
(Section 4.3), (b) perform experiments that compare the impact of different load-balancing
strategies on energy consumption (Section 3.2.4), (c) analyse resource usage of different
workloads for ML-based workload characterization ([Rai21]). We then present a set of
edge computer devices and workloads we have profiled so far.

4.1.1 Galileo – An experimentation and analytics framework

Galileo’s main components are a database for collecting and storing profiling experiment
data, a distributed load testing runtime, an interactive shell to interact with the load
testing environment, an experiment editor UI, a dashboard for ad-hoc analysis, and data
science notebooks for statistical analysis of experiment results. Figure 4.1 illustrates the
component interactions. We describe each component in more detail.

Client

Galileo
Controller

Galileo worker

App
Client

Router
rtbl

Experiment
DB

Experiment
DB

Monitor App

service call

System under test

>_>_

shell

script

editor

Galileo
API

Galileo
API

Eventbus

traces & telemetry

dashboard

notebooks

queries

App
Repo

Figure 4.1: The Galileo system components and their interactions

Experiment DB

Galileo stores all recorded experiment data and associated metadata in a simple schema.
System monitoring data collected from the system under test are stored as time series,
where each record holds the hostname, the metric type (e.g., CPU frequency), the
optional subsystem (e.g., a particular disk or network device), and the value. Similarly,
we store application-level monitoring data from Galileo workers issuing service requests

58

4.1. Profiling edge computer systems

with additional data about each request, such as the client that created the request, the
server response, and so on. Metadata about the experiment or the experiment procedure
can be stored as events, which are simply timestamp-name-value triples. We found that
the schema works well for both populating existing data visualization dashboards, for
example Grafana shown in Figure 4.3, as well as facilitating statistical analyses, for
example to create the simulation models described in Section 4.3.1.

Galileo workers and clients

The workforce of Galileo are physical machines that host the Galileo worker runtime.
Within the runtime, a Galileo worker manages clients that generate parameterized
requests to a particular service. Clients can be created and destroyed dynamically at
runtime, and are scheduled to available Galileo workers automatically. Clients are simply
factories of service requests. By default, clients send empty HTTP GET requests to
the URL in the respective routing table entry. The requests can be parameterized to
either use a different HTTP verb or pass specific request parameters. Custom clients can
be deployed into the Galileo app repository, which can implement arbitrary workloads
beyond HTTP, as long as they are implemented in Python. Galileo workers fetch the
necessary client code on demand from the repository. This allows workload generators to
package resources that can serve as request payload, for example, images or other data
assets. For example, for the experiments in Section 3.2.4, the client contained several
images of varying sizes that randomly selected as payload for the request to the image
classifier service.

Interactive shell

Most load testing tools provide static declarative configurations for creating experiments.
Instead, we provide an interactive shell that allows users to interact with the load
testing environment at runtime, increment on existing experiments, and then replay the
experiment through shell scripts. Through shell commands, the user can interactively
scale up/down the number of emulated clients, change the load pattern in which clients
are generating requests, or modify how requests are routed to the system under test.
Moreover, the scripts enable the development of reusable and parameterizable benchmarks,
as well as higher-level tools, such as the experiment editor shown in Figure 4.2.

Listing 4.1 demonstrates how the interactive shell can be used to create a repeatable
experiment. In this example, we want to examine how a load balancer performs when host
resources are used by other tenants the load balancer does not know about. We first set
the routing table records where requests to a particular service should be routed to by the
clients. The system provides a weighted round-robin routing scheme, so that, in this case,
we can direct more load to host2. Then, we create clients that will send HTTP requests
to the services. The variables ‘clients‘ and ‘noise‘ now allow interacting with all clients
at once. The ‘request‘ method tells the clients to start generating requests in the given
manner, either given a specific interarrival distribution (in this example an exponential
distribution with λ = 40), or a limited number of requests as fast as possible. The shell is

59

4. Edge system analysis and evaluation methods

notified once all requests have been fulfilled by the clients, allowing flow control structures
like ‘wait‘. Because the shell builds on the Python REPL interpreter, users can make use
of all Python language features to develop complex experiment definitions.
rtbl.set(’load_balancer’, [’http://gateway.local’], [1])
rtbl.set(’noisy_neighbor’, [’http://host1.local:8081’, ’http://host2.

local:8081’], [1, 5])

clients = galileo.spawn(’load_balancer’, n=10, parameters={...})
noise = galileo.spawn(’noisy_neighbor’, n=5)

noise.request(ia=expovariate(l=40))
clients.request(n=1000).wait()

noise_clients.close()
clients.close()

Listing 4.1: Example code that demonstrates the Galileo shell

Experiment editor

A user can interact with the experiment platform either via the shell we just described, or
the experiment editor shown in Figure 4.2. Through the editor, users can create custom
workload configurations to describe complex request arrival profiles, and configure the
system under test.

Analytics dashboard

Finally, the analytics dashboard allows ad-hoc exploration of experiment results. It
visualizes system metrics for each node, aggregated energy consumption, and client trace
data such as round-trip time and request queuing delay. Figure 4.3 shows the analytics
UI running experiments on the cluster presented in Figure 3.4.

4.1.2 Profiling and benchmarking workloads

We have collected several workloads representative for edge intelligence applications,
packaged as serverless functions. Table 4.1 lists the various functions, a short description,
the programming language the function is using, the dispatching mechanism, and the
platform the function can use. We provide a brief explanation of the workloads.

The workloads emphasize AI and data processing, but also include block device and
network I/O stressors for testing various systems aspects. This is particularly important
for the simulation presented in Section 4.3 and the workload characterization we develop
in [Rai21]. The first three functions represent an entire AI workflow (see Section 2.2.1),
from preprocessing to serving. ResNet [HZRS16] is a popular convolutional neural
network (CNN) architecture that can be used for a variety of computer vision tasks, such
as image classification or depth estimation. MobileNet [HZC+17b] is a CNN specifically

60

4.1. Profiling edge computer systems

Figure 4.2: Galileo experiment editor Figure 4.3: Galileo analytics dashboard

designed for mobile devices, and runs on the popular ML platform TensorFlow Lite1,
and the TPU platform. The Speech-to-text function also uses a TensorFlow CNN to
perform speech detection on a CPU or GPU. For pure GPU workload, we use basic
matrix multiplication with TensorFlow that performs the operations on the GPU. For
CPU-based workloads we have a simple function that calculates Pi to a specific amount
of digits, as well as a CPU-bound AI function. Specifically, we use the SMT solver
CVC4 [BCD+11] to check the satisfiability of SMT formulas. For benchmarking block
device usage, we use Linux’ flexible I/O tester (FIO)2 to generate random read/write
workload. For network usage we simply use Linux’ curl data transfer tool to download
data from an HTTP or FTP server 3.

Table 4.1: Serverless functions used for profiling experiments

Function Description Language Dispatching Platform

resnet50-preprocessing Scale & resize images Python 3 Queue CPU
resnet50-training Fine-tuning of ResNet50 Python 3 Queue CPU, GPU
resnet50-inference Object classification with ResNet50 Python 3 Queue CPU, GPU
mobilenet-inference Object classification with MobileNet Python 3 Queue CPU, TPU
speech-inference Speech-to-text transcription Python 3 Queue CPU, GPU
tf-gpu Matrix multiplication Python 3 Fork GPU
python-pi Pi calculation Python 3 Fork CPU
smt Satisfiability Modulo Theories (SMT) solver C Fork CPU
fio Stress block I/O with random read/writes Bash Fork CPU
curl Stress network I/O by downloading files Bash Fork CPU

Workloads are packaged as serverless functions (see Section 2.4 and Section 6.2), which
can have different dispatching mechanism. The dispatchers are responsible for triggering

1https://www.tensorflow.org/lite
2https://linux.die.net/man/1/fio
3https://linux.die.net/man/1/curl

61

https://www.tensorflow.org/lite
https://linux.die.net/man/1/fio
https://linux.die.net/man/1/curl

4. Edge system analysis and evaluation methods

the function execution based on incoming events. Some dispatchers spawn a single
runtime instance for the function, and use queue-based scheduling for invocation. In
other words, events that trigger function executions are stored in a queue, and the
dispatcher a FIFO ordering to invoke the function. This is useful for functions where the
runtime instance uses a lot of resources, or takes a long time to start. This is the case,
for example, for AI-based workloads that have to load complex deep neural networks into
the VRAM or onto a TPU. Fork-based dispatchers simply fork a new process for each
function execution. The distinction is relevant for modelling the impact of performance
degradation. Queue-based dispatchers suffer less from resource contention, as invocations
are processed sequentially. Whereas fork-based dispatchers are not subject to queueing
delay, but may cause significant resource contention. We explore this behavior in more
detail in [Rai21].

4.1.3 Edge cluster testbeds

We have built several testbeds using different edge devices from the computing continuum
we described in Section 3.1. The specific devices we used are listed in Table 4.2. We
emphasized SFF computers, SBCs, and embedded AI hardware, while omitting data
center computers and mobile devices. Data center hardware is fairly well understood
in cloud computing research, and mobile devices have been studied extensively by the
ubiquitous computing community.

Table 4.2: Edge testbed devices

Device Arch CPU RAM Accelerator Storage

Small form factor (SFF)

Xeon x86 4 x Xeon E-2224 @ 3.44 GHz 8 GB N/A HDD
Xeon +GPU x86 4 x Xeon E-2224 @ 3.44 GHz 8 GB Turing GPU - 6 GB HDD
Intel NUC x86 4 x Intel i5 @ 2.2 GHz 16 GB N/A NVME

Single board computer (SBC)

RPi 3 arm32 4 x Cortex-A53 @ 1.4 GHz 1 GB N/A SD Card
RPi 4 arm32 4 x Cortex-A72 @ 1.5 GHz 1 GB N/A SD Card
RockPi aarch64 2 x Cortex-A72, 4 x Cortex-A53 2 GB N/A SD Card

Embedded AI

Coral DevBoard aarch64 4 x Cortex-A53 1 GB Google Edge TPU eMMC
NVIDIA TX2 aarch64 4 x Cortex-A57 @ 2 Ghz 8 GB 256-core Pascal GPU eMMC
NVIDIA Nano aarch64 4 x Cortex-A57 @ 1.43 GHz 4 GB 128-core Maxwell GPU SD Card

NVIDIA Xavier NX aarch64 6 x Nvidia Carmel @ 1.9 GHz 8 GB 384-core Volta GPU
48 tensor cores SD Card

Figure 4.4 shows four cohesive testbeds we have built using the devices. Testbeds have
in their network one or two SBC clusters that act as Galileo clients. Each testbed is
managed by an instance of Symmetry (see Section 3.2.2) and uses Galileo to perform
profiling experiments. The testbeds have been used to evaluate several research prototypes

62

4.2. Synthesizing plausible edge infrastructure configurations

developed throughout the thesis, as well as gathering profiling data as input for our trace
driven simulation framework (see Section 4.3).

Jetson TPU

Xeon GPU

NUC i7

Figure 4.4: Four different testbeds we have built. Top-left: Cluster of Xeon SFF computers
(used in Section 3.2.1) Top-right: Heterogeneous compute cluster (used in Section 6.5).
Bottom-left: Cluster of commodity SBCs. Bottom-right: Edge AI compute cluster with
power monitoring (used in [Rai21]).

4.2 Synthesizing plausible edge infrastructure
configurations

This section presents a framework for synthesizing infrastructure configurations for evalu-
ating edge computing systems under different conditions. Evaluating cloud computing
systems in simulated environments has become fairly straight forward due to the large
body of reference architectures, benchmarks, and trace data sets from production-grade
cloud platform deployments. There are a number of tools to simulate or emulate edge
systems [MK20], and while they typically provide ways of modeling infrastructure and
network topologies, they lack reusable building blocks common to edge scenarios. Con-
sequently, most edge computing systems evaluations to this date rely on either highly
application-specific testbeds, or abstract scenarios and abstract infrastructure config-

63

4. Edge system analysis and evaluation methods

urations. From the scenarios we analyzed in Section 3.3 we elicit common concepts
for our framework. The scenarios serve as input to synthesize plausible infrastructure
configurations, that are parameterizable in cluster density, device heterogeneity, and
network topology. We demonstrate how our tool can generate synthetic infrastructure
configurations for the reference scenarios, and how these configurations can be used to
evaluate aspects of edge computing systems.

4.2.1 Overview

We propose a framework for synthesizing plausible edge infrastructure configurations from
reference scenarios, for evaluating edge computing systems under different conditions
and parameters. This is particularly important to evaluate the mechanisms we present
in Chapter 5 and Chapter 6. We examine the commonalities of emerging application
scenarios that leverage edge infrastructure in the entire compute continuum, to elevate
common concepts into our framework domain. The result is a set of primitives and
building blocks for generating edge infrastructure configurations and topologies. Based on
data we have gathered for the scenarios, we identify a parameter space for these building
blocks, to give researchers the ability to vary different aspects of the generated topology,
such that the cluster topologies remain plausible extensions of the original scenarios
grounded in empirical data. We demonstrate the applicability of our open source tool,
Ether [Rau20a], by synthesizing configurations for selected scenarios, and showing how
the synthetic configurations can be used as input for a simulator to evaluate systems
aspects such as dataflow in a serverless edge platform [RHM+19].

Our goal is to make it easy to generate infrastructure configurations and network topologies
that can be used as input for simulations for evaluating edge computing systems. Ether,
the tool we have developed, provides out-of-the box parameterized versions of the scenarios
we have defined. It also provides low-level primitives to create high-level building blocks
that can be synthesized to generate custom cluster configurations. Figure 4.5 shows an
example of how framework components form a topology for the IIoT scenario.

4.2.2 Conceptual model

The conceptual model of our system is simple, aims to be useful for network or systems
simulations, and integrates well with other tools. It comprises the following components.

Node: A node is a compute or storage device, and represents an instance of one of
the devices listed in Section 3.1. It is characterized by its architecture, generic system
capacities (RAM, CPU, storage), and capabilities (presence of GPUs, or other hardware
accelerators).

Link: A link is anything that facilitates connections between nodes in the network,
and can represent network components such as a network card attached to a node, a
Wi-Fi access point, or a mobile network base station where bandwidth is allocated across
connected nodes. A link has an associated data rate capacity used as parameter for
network simulators.

64

4.2. Synthesizing plausible edge infrastructure configurations

Figure 4.5: Example of how concepts, primitives, and cell archetypes create a topology
for the IIoT scenario

Topology: A topology organizes nodes and links as vertices into a graph structure. Edges
between nodes and links represent connections, and can hold network-QoS attributes such
as latency or jitter. To connect cells across regions, our tool provides a static backhaul
graph built from publicly available data on Internet latencies [inta].

Cell: A cell is a composition of nodes, links or other cells, i.e., an annotated community
within the topology. It can represent an edge network that has an up- and a downlink
connecting the cell to a backhaul. Cells can be composed of other cells, and connected
through links (e.g., switches or routers).

4.2.3 Building blocks

Most network topology generators provide basic network infrastructure as components.
A core contribution of our tool are parameterized cell archetypes as high-level building
blocks, that are drawn from our reference scenarios. For example, a cell could be: a RSU
node, with two SBCs for sensing and communication, a small mobile base station, and an
external connection; or several cloudlets with an average of n nodes connected through a
backhaul.

Primitives

Our framework provides the following primitives to compose more complex cells and
topologies.

Host: The simplest cell is a network host, i.e., a node connected to a network via a
link (e.g, the host’s network card). We provide the devices outlined in Section 3.1 as
primitives, which can be composed together to form more complex cells. The node’s

65

4. Edge system analysis and evaluation methods

compute capacities and capabilities are configurable or can be synthesized based on
statistical distributions.

LAN cell: A LAN cell is a common and simple way of connecting hosts via Point-to-
Point connections. The synthesizer creates a new helper node that connects all nodes of
the cell, analogous to a switch. It also creates up/down links to connect the cells to the
Internet or other cells.

Shared link cell: A shared link cell connects specified hosts to a common shared link,
whose bandwidth is shared across hosts. This can be used to model a WLAN, a mobile
network base station, or VMs sharing the VM-host’s network.

Geo-spatial cell: This cell puts nodes and cells into a geo-spatial context, which is
useful when evaluating geographically distributed edge systems. For example, RSUs may
be uniformly distributed along a road at a fixed distance, whereas USNs and mobile base
stations are distributed according to a log-normal distribution across city districts (see
Figure 4.6). These parameters are relevant for, e.g., capacity planning.

Backhaul connection: Edge networks are typically connected to the Internet through
a backhaul network. Common variants are: (i) direct fiber uplink to an internet exchange
with symmetric up/down bandwidth. (ii) business ISP with asymmetric up/down
bandwidth in the order of 10–200 MBit/s up, and 100–1000 MBit/s down; (iii) mobile
network uplink (e.g., via LTE modem).

Cell archetypes

The primitives of our tool allow custom composition of complex cells. Out-of-the-box,
our tool provides pre-made parametric cells that are drawn from the scenarios:

Cloudlets: A basic building block for modelling small edge data centers, composed
of several racks that can vary in density. Each rack is itself a cell composed of several
servers that connect to a switch and may have hardware accelerators such as GPUs.
While these may be data-center concepts in terms of terminology, we can use the same
concept to build portable multi-purpose cluster-based cloudlets [RAD18], or systems like
the Ubuntu Orange Box [VN].

IoT compute cells: Allows generating small IoT compute boxes, such as urban sensing
nodes (USNs) like the AoT or Huawei PoleStar; or RSUs. This building block is similar
to a small cloudlet, but much more heterogeneous. Typically, they have an IoT gateway
connecting sensors or cameras to a processing device with potentially some hardware
accelerators, maybe a small storage device, and a communication node connecting the
box to a backhaul.

Parameterized cell synthesis

Cells can either be defined statically, or synthesized dynamically from parameters to
create randomized cells. Parameterized synthesis is what allows us to generate graphs

66

4.2. Synthesizing plausible edge infrastructure configurations

0 2 4 6 8 10 12 14
Number of AoT nodes

0.0

0.2

De
ns

ity

lognorm(= 0.82, = 0.70)

0 25 50 75 100 125 150 175
Number of mobile base stations

0.00

0.01

De
ns

ity

(= 0.47, = 4.29)

Figure 4.6: Example how geographic cell density functions can be modelled as log-normal
distributions. Density of Array of Things nodes per neighborhood in Chicago [CBSG17]
(top), Density of mobile base stations per district in Vienna, Austria [Aus] (bottom)

that are similar across scenarios, but different enough to test different possible variations
of a system. Such parameters include:

Size: The size n specifies the number of nodes or cells in the final cell’s topology. In
other words the cell is made up of n other cells that are created by a specified procedure.

Density: If a cell is composed of other synthesized cells, we can provide a density
function from which n is sampled for each new cell being created. For example, Figure 4.6
shows parameters for the density of cells in the Chicago city AoT deployment and mobile
base stations in Vienna.

Entropy: borrows from information entropy to describe the heterogeneity of cells, i.e.,
the number and density of different compute device types, and how much nodes differ in
compute capacity. A low entropy value means that the cell is fairly homogeneous (e.g., 0
for a server rack with one type of server), whereas high entropy describes heterogeneous
cells. This parameter is useful for evaluating, e.g., resource allocation mechanisms under
different levels of cluster heterogeneity.

Data distribution: Many edge computing systems evaluations deal with data aspects
such as distributed storage, caching, etc. An important parameter for these evaluations
is the distribution of data across storage nodes, and cells. Like cell density, we can define
distribution functions to randomly vary the availability of storage nodes across edge
networks.

67

4. Edge system analysis and evaluation methods

Connecting cells to the internet

Many systems evaluate network latencies incurring from cross-regional Internet traffic.
Compared to application and use-case specific networks, the core Internet has a fairly
static layout, with well-studied link latencies [inta], which we can leverage. Our tool
provides a static fixture of the core Internet, to which application-specific topologies
can be linked. Figure 4.7 illustrates the concept. For example, in our IIoT scenario, we
could link the premises’ up- and downlinks to the respective Internet region in which the
premises are located. That way, user-generated topologies receive coarse-grained latency
values out-of-the-box.

Internet Backbone Graph (static)

Application Graph (generated)

SYD

FRA
US East

352 ms

90 ms

206 ms

Figure 4.7: Mapping generated topologies to the higher-level Internet topology fixture.
Latencies from wondernetwork.com

4.2.4 Demonstration

We demonstrate how our tool Ether can generate topologies for the reference scenarios
from Section 3.3, and how topologies can be used to analyze system behavior such as
network flows. We report on two selected scenarios.

Generating configurations

Our tool provides a pre-made parameterized version of Scenario 1 (urban sensing), but
we give an example of how a topology can be generated for it using our tool. We extend
the scenario and model it as follows. Each AoT node is an IoT Compute Cell with two
SBCs, and connected to a mobile base station in the neighborhood (i.e., they form a
shared link cell). For the number of AoT nodes in each of the 77 neighborhoods we use
the geographic cell density from Figure 4.6. We assume that each neighborhood has a
compute box attached to the mobile base station with an Intel NUC as storage node,
and two embedded GPU devices per AoT node camera for, e.g., video processing tasks.
The cells are connected via mobile network to the Internet (in terms of Internet topology,

68

4.2. Synthesizing plausible edge infrastructure configurations

as explained in Section 4.2.3, we connect them to the Chicago Internet Exchange).
Furthermore, the city provides a fiber connected cloudlet with two racks and five servers
per rack. The Python code to generate this topology is given in Listing 4.2. We make
use of Python lambdas for parameterized synthesis, and API methods to materialize cells
into a topology.

aot_node = IoTComputeBox(nodes=[nodes.rpi3, nodes.rpi3])
neighborhood = lambda size: SharedLinkCell(

nodes=[
[aot_node] * size,
IoTComputeBox([nodes.nuc]+([nodes.tx2] * size*2))

],
shared_bandwidth=800, # selected arbitrarily
backhaul=MobileConnection(’US East’))

city = GeoCell(
77, nodes=[neighborhood], density=lognorm(0.82, 2.))

cloudlet = Cloudlet(
5, 2, backhaul=FiberToExchange(’US East’))

topology = Topology()
topology.add(city)
topology.add(cloudlet)

Listing 4.2: Example code to implement the urban sensing scenario using ether

Using topologies in simulations

As part of the research presented in [RHM+19], we have built a tool to simulate serverless
and containerized platforms [RRR20], which we use to evaluate different placement
strategies in different infrastructure scenarios. We use Ether to generate several topologies
as input for our simulation. The simulator implements a high-level network model on top
of topologies based around flows, which represent data transfers between nodes through
several links. We implemented a simple shortest-path routing through the topology and
fair allocation of link bandwidth across flows.

The following example is an instance of Scenario 2 (Industrial IoT) based on a prototype
presented in [CWC+18]. We assume ten factory locations, each having 4 SBCs as IoT
gateways, and a compute box with 1 Intel NUC and 1 Jetson TX2 board; as well as an
on-prem cloudlet with 5 servers, as represented in Figure 4.5. The SBCs are connected
via a shared 300 MBit/s Wi-Fi link to an AP that has a 10 GBit/s link to the edge
resources, and a 1 GBit/s link to the on-premises cloud. Premises are connected via
250/500 MBit/s Internet up/downlinks.

Figure 4.8 shows the data traffic of a particular placement in the above configuration.
(1) Shows the up/downlink connecting the factory premises to the backhaul. (2) Shows
the shared link cell that contains the four SBC devices connected to a shared Wi-Fi link.

69

4. Edge system analysis and evaluation methods

Figure 4.8: Visualization of a generated IIoT scenario topology and simulation data from
our simulator, using a topographic attribute map [PSK+20]. The elevation field shows
link capacity utilization caused by data transfer between serverless functions described
in Chapter 6.

The elevation field shows that the 300 MBit/s bandwidth is exhausted. (3) Shows the
cloudlet which, given the 10 GBit/s internal LAN, has the lowest utilization.

4.3 Trace-driven simulation framework

Part of our system is a discrete event simulator built with SimPy [Mat08] to simulate
the basic behavior of distributed container-based runtime environments. It serves two
purposes: (1) it allows experiments in different large-scale scenarios that would not
produce meaningful results on our small-scale testbeds, and (2) it can be used to
calculate goal functions for optimizing parameters of operational strategies, a technique
we demonstrate in Section 6.4. The code is open source [RRR20].

The simulator features: a trace-driven execution simulation model that relies on profiling
data rather than abstract system models, a high-level network simulation using the
network model of Ether presented in Section 4.2, concepts from container-based execution
environments as first-class citizens, and different workload profiles to generate random
workload. The default version also comes with orchestration components that are
implemented based on state-of-the-art serverless platforms, such as scheduling, autoscaling,
and load balancing, which can be extended or replaced.

70

4.3. Trace-driven simulation framework

4.3.1 Simulation model

Network simulation

We use the network model of Ether presented in Section 4.2, which is more high-
level than packet-level simulators such as ns-3 [HLR+08] or OPNET [Cha99]. These
simulators model very precisely the low-level interaction between network protocols
and networking hardware, which is not our goal. Instead, we trade off accuracy for
simulation performance. Our network simulation builds on the network model presented in
Section 4.2.2. Simulating data transfer involves opening a flow through several connected
network links, i.e., a route. A flow can be thought of as a stream of data between two
compute nodes that uses the bandwidth of links. Each link has a certain amount of
bandwidth, and we implement fair allocation of bandwidth across flows.

When a data transfer between node n1 and n2 is simulated, a route is computed with a
shortest path algorithm. The route contains all links along that path between n1 and n2.
All existing flows that use links along the route are interrupted, and their bandwidth is
re-allocated according to the fair bandwidth allocation scheme. A flow will only allocate
as much bandwidth on links as the lowest bandwidth a link across the route (in other
words, the bottleneck) can provide. For calculating the data transfer duration of the flow,
we use a simple model:

round trip time ∗ 1.5 +
(bytes to transfer

goodput

)
(4.1)

In other words, the time to establish the TCP connection (which is bound by the link
latency, and multiplied by 1.5 to reflect the TCP handshake), plus the ideal time to
transfer the given amount of bytes. The round trip time is calculated by summing up
the latency values of all connections between links along the route (see Section 4.2). The
goodput data rate, i.e., the application-level throughput of a communication, is estimated
from the allocatable bandwidth across the route in bytes per second, multiplied by a
magic number of 0.97 that roughly captures the TCP protocol overhead. The function
maxAllocatablePerF low is described in Algorithm 4.1.

goodput(flow) = 0.97 ∗ min
link∈route

(maxAllocatablePerF low(link)) (4.2)

We plan to add features for degradation functions to simulate the degrading TCP behavior
with many flows [Mor97], as well as goodput reduction through packet loss.

Code execution simulation

The core simulator models the basic behavior of container-based serverless systems, such
as Docker Swarm or Kubernetes (see Section 6.2.4). Code is packaged into container
images, i.e., uniquely identified deployment units, and executed on cluster nodes by
instantiating a container with the respective image. Running a container involves pulling

71

4. Edge system analysis and evaluation methods

Algorithm 4.1: Calculate the max allocatable bandwidth per flow on a link
Result: Allocatable bandwidth per flow on a link

1 Function maxAllocatablePerFlow:
Input : link

2 flows ← flows that use this link
3 fairPerFlow ← link bandwidth

count(flows)
4 reserved ← flows whose currently allocated bandwidth < fairPerFlow
5 allocatable ← link bandwidth -

∑
f∈reserved(bandwidth allocated for f)

6 numCompetingFlows ← count(flows) - count(reserved)
7 if numCompetingFlows > 0 then
8 allocatablePerFlow = allocatable / numCompetingFlows
9 else

10 allocatablePerFlow = allocatable
11 end
12 return max(fairPerFlow, allocatablePerFlow)

the container image if it is not available on the node, starting up the container, and
then running the code inside the container. Our simulator implements the basic system
components of container orchestrators, such as an API gateway, scheduler, autoscaler, and
load balancer. However, they can be replaced to test custom operational mechanisms. The
default implementation uses the components from Skippy that we describe in Chapter 6.

The code execution model is centered around services or functions that live inside
containers and can be invoked once they are started. To simulate code execution
on a node, a FunctionSimulator class must be implemented, that abstracts the
basic lifecycle of a function with the following methods. Each method produces SimPy
simulation events, such as simulating network traffic, or requesting a node resources.

• deploy: deploys the code on the node (e.g., by pulling the container)

• startup: starts the container

• setup: starts the code inside the container

• invoke: process a request to the running container

• teardown: cleans up and stops the running container

For simulating deploy, we synthesize our network simulation and profiling data. That
is, pulling a container image is simulated using the network simulation, and the container
startup time is estimated from profiling data. For pulling the container image, we first
populate a virtual container registry with container image data, i.e, image names, CPU
architectures, and their compressed image sizes. We run a network flow between the node

72

4.3. Trace-driven simulation framework

pulling the image and the docker registry (which was previously placed in the network
topology), and simulate the network download as described earlier. The simulation keeps
track of the node’s state, for example if the container image has been pulled before, in
which case we can skip the operation. This mimics the basic behavior of the Docker
pull command. A perfect simulation of a Docker pull command would also consider the
layers of an image (Docker images use a layered file system), the availability of layers on
a host, and the time it takes to decompress layers. This is out of scope of our current
implementation. A limitation that should be highlighted is that, because the simulation
model reflects the container deployment model, our simulator currently only supports
simulating platforms that deploy function code via containers. Some platforms, such
as OpenWhisk, deploy function code through platform-layer mechanisms, which would
require additional simulation code.

The remaining methods, i.e., startup, setup, invoke, and teardown, have to be
implemented for a specific function, or can be implemented in a generic way to simply
sample from traces associated with executing the respective function on the node being
simulated. Our base implementation uses a repository of traces for workloads that we
have profiled on the devices in our testbeds (see Section 4.1). When simulating the
execution of a function on a node, we look up function traces for that particular node in
our repository, and sample from a statistical distribution that represents the execution
duration. During simulation time, each node has an associated state that can holds any
runtime information associated with the node. For simulating resource contention and
workload interference, for example, we store all currently running functions and their
starting times in the node state. We can then modify the sampled execution duration
with workload interference factor we describe next.

4.3.2 Performance modelling

A goal of the simulator is to determine the Function Execution Time (FET) of a function
on a node to know how long the node is busy executing that function. Many system
simulators, such as CloudSim [CRB+11], use a simple model that calculates the execution
time from the number of instructions of the function, and the processor’s instruction rate
in instructions per second (IPS) [MK20]. There are several issues with this approach.
First, the speed of a given CPU depends on many factors. Depending on the computer
architecture, not every instruction takes an equal amount of time to execute, meaning
that the IPS is not static for the CPU, but depends on the instruction mix, i.e., the task
being executed. Moreover, IPS is a function that depends on the CPU’s clock speed,
which, as we have shown in Section 3.2.4, can be highly dynamic in edge computing
hardware. Other factors include cache sizes, or I/O access density. Second, it is difficult
to determine the number of instructions of a task, or the real IPS for a CPU. The effort
of determining these data is equivalent to running a full set of profiling experiments,
meaning there is no benefit over a trace-driven model.

Instead, we model execution times as random variables whose distributions we determine
from traces, and then scale during runtime given certain system parameters to account for,

73

4. Edge system analysis and evaluation methods

0.40 0.41 0.42 0.43 0.44
FET (seconds)

0

20

40

60

80
Pr

ob
ab

ilit
y

de
ns

ity
median = 0.41
lognorm(= 4.16, = 0.61)

(a) Distribution with single request n = 100

1 2 4 6 8 10 12 14 16
concurrent requests

0.0

0.5

1.0

1.5

FE
T

(s
ec

on
ds

)

median
0.068x + 0.247

(b) Degradation with increasing requests

Figure 4.9: Example function execution times (FET) of running an AI function

e.g, degrading performance or workload interference. We describe the effect of resource
contention on the FET as degradation functions, whose output can be used to adjust the
FET values from the ideal case, to reflect the current system conditions. We first describe
the simple single tenant case where only one type of function exists in the system, and
proceed to the general multitenant case.

Single-tenant scenario

Modelling FET and the degradation function for a single service is relatively straight
forward. Figure 4.9 shows data from a profiling experiment, where a function that
solves Satisfiability Modulo Theories (SMT) formulas, was executed on a node from
our edge cluster (see Section 3.2.3). Figure 4.9a shows the density histogram and the
fitted log-normal distributions parameters from the ideal case, i.e., where no other tasks
are running on the system concurrently. Figure 4.9b shows how the execution duration
degrades because of resource contention, and a linear regression estimation of the medians.
In Section 3.2.4, specifically Figure 3.5a, we demonstrated that linear models work well
when the input parameters are based on the number of concurrent requests.

Based on these observations, a reasonable simulation model for the FET could be defined
as follows. We fit a linear function to estimate the median FET based on the number
of concurrent request, and, during simulation time, add some log-normal distributed
noise. So, we define the FET of function f as a function t̂f of r, where r is the number of
concurrent requests of function f . In a multi-node system we would define t̂f,n for each
node n in the system that f can be executed on. We omit this for brevity. For the AI
function example from Figure 4.9, the parameters could be defined as

t̂f (r) = 0.068 · r + 0.247 +X (4.3)

where X ∼ Lognormal(−4.16, 0.61) and adjusted for the current median location. This
yields a reasonable simulation model for the FET of function f that is based on traces
from profiling experiments. In previously published research, we have found that this

74

4.3. Trace-driven simulation framework

approach yields good results [RHM20b]. The degradation function gives particularly
accurate results, since it is fine-tuned to one specific workload. However, this model only
works for single-tenant scenarios.

Multitenancy scenario

Much more common are multitenancy scenarios, where multiple functions f1, f2, . . . , fn
execute on the same node and share its resources. Here, it is particularly important to
model the performance degradation through workload interference, i.e., modelling how
concurrent executions of f1 affect the FET of f2. Although the features of container
platforms, such as Docker that uses the Linux kernel feature cgroups, are supposed to
isolate containers from the effect of co-located containers (also known as noisy neighbors),
we, and others [JGJ+18, KGL+20], found that there can still be significant degredation
through interference, especially for CPU and IO resources.

Building on the single tenant case, we could define t̂ for every function f as a multi-
dimensional function, whose parameters are the number of concurrent calls of all existing
functions

FETf1 : t̂f1(rf1 , rf2 , . . . , rfn) (4.4)

where rfi
are the number of the concurrent requests to function fi. This is clearly

infeasible when the number of existing functions in the system increases, as the number
of possible input parameter combinations explodes, and it would no longer be practical
to run the necessary profiling experiments for creating trace data.

Resource modelling and workload characterization

It is clear that we need more generic input parameters that do not depend on profiling
the full combinatorial space. For the use in the simulation, it is important that the input
parameters of the function (1) are expressive enough to capture the behavior, (2) can be
determined from trace data, and (3) can be computed at simulation time. Simulators
like CloudSim use system level metrics, such as the MIPS of a processor, to determine
execution times. This would be equivalent to using the current CPU utilization as input
parameter for t̂f .

However, the effect of resource contention on performance degradation depends on the
type of resource being shared, and the type of workload being executed. For example,
parallel I/O tasks may experience a heavier slowdown than parallel CPU tasks. Figure 4.10
shows data from our profiling experiments that demonstrate this. Each figure shows
the FET for one function, given workload interference of particular resources. The
x-axis represents how much of either CPU or Network I/O is used by other background
processes. Figure 4.10a shows the execution time of the AI function we described earlier.
Figure 4.10b shows the FET of a function that downloads 20 MB of data (e.g., for a
data preprocessing step in an ML pipeline). The first function is drastically affected
by CPU resource contention, whereas the second function is not at all. These results

75

4. Edge system analysis and evaluation methods

0 20 40 60 80 100
% resource interference

0.0

0.2

0.4

0.6
FE

T
(s

ec
on

ds
)

Network I/O interference
CPU interference

(a) AI function (CPU bound)

0 20 40 60 80 100
% resource interference

0.0

0.2

0.4

0.6

FE
T

(s
ec

on
ds

)

Network I/O interference
CPU interference

(b) Data fetching function (network bound)

Figure 4.10: Degrading Function execution times (FET) of different functions and
workload interference

are not surprising, but demonstrate the problems of modelling FET as a function of
one-dimensional parameters such as CPU utilization alone.

Instead, we consider the utilization of five resources, namely:

• ucpu the CPU utilization,

• uio the block I/O in bytes/sec,

• unet the network I/O in bytes/sec,

• ugpu the GPU utilization (if any), and

• uram the RAM usage.

For the approach to be feasible, we also need to: (1) characterize functions in terms of
their resource usage, (2) describe t̂f as a function of these parameters, (3) compute the
resource utilization values of a node at simulation time.

Details of the approach are described in [Rai21], here we provide only a brief summary. For
(1) we perform several profiling experiments using combinations the workloads described
in Section 4.1 with an increasing number of concurrent requests. We record for each
function the resource usage and the FET. Then, we compute a workload characterization
vector u for each function that describes the mean resource utilization over the entire
function execution duration. For (2) we, build a regression model for each node that
predicts a resource degradation factor based on values of u. The factor is applied to the
FET in the best case, where 0 means no degradation, and 1 means a doubling of the
FET. The regression model takes converts the vectors u for all concurrently running
functions, and converts them into an input vector that contains for each resource u the
sum, mean, median, and standard deviation. We train the regressor using the profiling

76

4.3. Trace-driven simulation framework

data we gathered for (1). For (3), we simply keep track of all concurrently executing
function on a node, and use the determined resource utilization vectors u for computing
the regressor input in the same way.

4.3.3 Energy consumption modelling

CloudSim, and all its derivatives [MK20] such as iFogSim, use a simple power model as a
function of a scalar utilization value P̂ (u), where u is the CPU utilization between 0 and
1. Each node type n in the system has its own power model. We omit this for brevity.
By default, CloudSim provides a linear, square, cubic, and square root based function.
The power draw is scaled between a fixed Pmax and Pidle, i.e., the maximum power draw,
and the power draw of the system in idle mode. For example, the linear power model is
described simply as:

P̂ (u) = Pidle + u · (Pmax − Pidle) (4.5)

However, as we have shown in Section 3.2.4, such models are too simple to correctly
explain the energy consumption behavior of edge clusters. Instead, we model P as a
function of the resources described earlier.

P̂ (ucpu, uio, unet, ugpu) (4.6)

The function P̂ is learned via multiple regression for each node, using data from our
profiling experiments. We found that random forest regressors produce very good results.
The utilization values during simulation time are computed as explained earlier.

To demonstrate the difference in power models, we test four models against each other.
Figure 4.11 shows the result two of the models, in experiments we performed where
we mixed several workloads of different intensity. The figure on the left shows results
from a Xeon CPU node from our cluster described in Section 3.2.3. The figure on the
right shows results from a Raspberry Pi 4. In both cases, we run a with semi-random
combination of functions that use different resources over a few minutes. The figures
show the actually measured power draw during the experiment, and the power draw
estimated by the linear CPU-based model and the random forest regressor.

We also fitted a quadratic model using CPU utilization (like CloudSim provides), and
a model using multiple linear regression on the same parameters the random forest
(RF) model receives. We used the models to estimate the power draw over the entire
experiment and calculated the root mean squared error (RMSE) values for each one. The
error values are shown in Figure 4.12. The values do not generalize, and are specific to the
experiments. The difference between models may vary for other workload compositions.

4.3.4 Synthetic workload generators

We present our approach to generate synthetic workload at simulation time. Synthetic
workload generators in cloud computing often use static arrival rates or rely on traces
from real systems [KRM06]. Since real-world trace data on edge computing systems

77

4. Edge system analysis and evaluation methods

02' 04' 06' 08' 10' 12'

20

40

60
P

(W
at

t)
Linear model (ucpu)

actual
simulation

02' 04' 06' 08' 10' 12'
Experiment time

20

40

60

P
(W

at
t)

Random forest regressor (ucpu, uio, unet, ugpu)

actual
simulation

(a) Experiment on a Xeon node

36' 37' 38' 39' 40'

2.5

3.0

3.5

P
(W

at
t)

Linear model (ucpu)
actual
simulation

36' 37' 38' 39' 40'
Experiment time

2.5

3.0

3.5

P
(W

at
t)

Random forest regressor (ucpu, uio, unet, ugpu)
actual
simulation

(b) Experiment on a Raspberry Pi 4

Figure 4.11: Predicted and actual power draw over time during experiments comparing
linear and random forest regression power models.

0 1 2 3 4 5 6 7 8
RMSE

RF

mult. regr.

quadratic

linear

(a) Experiment on Xeon node

0.0 0.1 0.2 0.3 0.4
RMSE

RF

mult. regr.

quadratic

linear

(b) Experiment on Raspberry Pi 4

Figure 4.12: Error metrics of different power models during the experiments

is scarce or non-existent, we rely on random workload generators. In our simulator,
workload generators are defined by composing definitions of an arrival process and a
workload pattern. The arrival process is described by the distribution of interarrivals,
i.e., ∆t between requests. For example, Internet traffic has been found to follow Poisson
arrival processes [Fel00], where interarrivals are described by an exponential distribution.
The workload pattern describes how the request rate changes over time t. This is useful
to model systems where, for example, the number of users changes given depending
on the time of day or weekday. Figure 4.13 illustrates the concept and shows several
examples on how different arrival processes and workload patterns can be composed.

The first row shows how to achieve a randomized sinusoidal request pattern, for example
for the use case described in Section 5.1.1 or the evaluation in Section 3.2.4. For the
interarrival distribution we use an exponential distribution. The probability density
function (PDF) of an exponential distribution is λe−λx, where 1

λ is the mean. The
workload pattern over follows a sine wave, and the value for sin(t) is used as λ to scale the
interarrival distribution. At simulation time we therefore sample from the distribution

78

4.4. Related Work

Figure 4.13: Workload generator patterns

sin(t)e− sin(t)x to receive the wait time until the next request. The orange line shows a
moving average of the requests per second, which should roughly match the workload
pattern. The second row shows how a constant interarrival distribution can be used to
model exactly the workload pattern, and how a constant workload profile can be used
to model a static workload pattern with randomized interarrivals. The last row shows
Gaussian random walks (GRW), where each value represents a random sample from a
Normal distribution, that is then used as value for µ in the next random sample. The
request profile can be parameterized with a σ value that affects the fluctuation over time.

So far we have used these workload generators for evaluations in [RRD21, Ras20, Rai21].
A detailed evaluation of the workload generators is out of scope of this thesis.

4.4 Related Work

In cloud computing research, existing benchmarks [HBS+15], and trace data sets from
production-grade cloud platform deployments [VPK+15], facilitate well grounded systems
evaluations. Some simulators, such as CloudSim [CRB+11], use profiling data from data-
center server computers. Evaluating edge computing systems is much more challenging,
given there are no standardized benchmarks, or even a consensus on the type of infras-
tructure that edge computing systems will use. Only recently have researchers begun to
profile edge devices for use-case specific workloads, such as image classification [MPD19],
or video analytics [WFC+19]. With our system Galileo, these profiling experiments can
be streamlined and developed in a reproducible way. Moreover, our datasets on profiling
data of our edge clusters significantly extend the existing body of data.

There are a number of tools to simulate edge systems [PVCM20, MK20]. To evaluate

79

4. Edge system analysis and evaluation methods

the types of middleware that we are developing in this thesis, we found that these tools
lack three things: fine-grained modelling of execution times for heterogeneous workloads
and devices, automatic generation of system infrastructure configurations and network
topologies. We have already shown issues of existing tools with respect to performance
modelling in Section 4.3.1.

For defining topologies, existing edge computing simulators offer in general two ways: They
either let users import topologies that were created up-front using random generators like
BRITE [MGG+17, MLMB01]; or provide APIs for constructing topologies programmati-
cally [GVDGB17], through configuration files [SOE17], or graph formats [FCFMO+19].
Our framework can be used to generate plausible infrastructure configurations grounded
in existing scenarios as input for these tools.

Existing approaches to generate randomized network topologies rely on abstract models
such as random geometric graphs [Wax88, ER59], or hierarchical structures and power-
law degree distributions [MLMB01]. Network research has been investigating Internet
topologies for decades. There are several approaches to procedural topology generation,
such as [MLMB01, TGJ+02, CDZ97]. These approaches aim to be generic, and focus
on Internet-scale topologies. There is no distinction of host device types, capabilities,
or reusable building blocks (such as edge data centers [SBCD09], or portable edge
computers [RAD18]). Our approach is different in that it provides high-level concepts
from existing edge infrastructure and hybrid edge cloud scenarios.

4.5 Summary
Evaluating edge computing systems, such as compute platforms or resource allocation al-
gorithms, in a generalized way is challenging. Although existing tools facilitate simulation
or emulation of such systems, we have found that (1) there is a lack of real-world testbeds
and profiling data for edge computing systems, (2) simulators make very simplistic system
model assumptions which can result in inaccurate results, and (3) it is difficult to describe
an underlying edge infrastructure and vary its parameters. In this chapter, we first
presented Galileo, an experimentation and analytics environment to streamline systems
experiments, that can generate input data for trace-driven simulation framework that we
built. Our simulation framework builds on empirical data rather than simplified system
models, allowing more flexibility in the types of systems being simulated. In the previous
chapter in Section 3.3 presented edge infrastructure scenarios that encompass many
edge system characteristics. We abstracted these characteristics into a framework and
a tool, and showed how it can generate different infrastructure configurations for these
scenarios, and how the building blocks we provide can help edge systems researchers
evaluate systems under different scenarios and conditions.

Together, we believe that these tools can facilitate a closed development loop for opera-
tional strategies in general (see Figure 4.14). Operational strategies, such as schedulers,
autoscalers, or load balancers, control the real system, which reports monitoring and trace
data into a common data format. The traces are used as input for a simulator, that can

80

4.5. Summary

Simulator

Modeled System

Experiment
Database

Machine
Learning

Experiment
Parameters

System
Model

Exploratory
Analysis

Operational
Strategies

Simulation
Parameters

Real System

Operational
Strategies

Empirical
Data

(Traces)

Applications

Compute
Clusters

emulates

emulate

Predictive
Models

revise

revise

control

creates

System
Services

Figure 4.14: Closed development loop

examine operational strategies in given different system parameters. Once an experiment
is executed by the simulator, operators can drill into the results using the exploratory
analysis dashboard of Galileo. The statistical analysis tool analyzes the results of the
experiment database and is used to create predictive models, which themselves feed into
the operational strategies, to close the feedback loop into the real system. Moreover,
with the tight integration between the trace-driven simulator and the real system, one
can use the simulator to tune operational strategies at runtime, we demonstrate this in
Chapter 6.

81

CHAPTER 5
Elastic message-oriented

middleware for edge computing

In Chapter 2 we argued that sensing and communication middleware is a crucial compo-
nent of edge intelligence systems. Efficient device-to-device communication, publishing
and accessing sensor data, and integrating loosely-coupled software components, are
all important aspects of edge intelligence that can be solved with message-oriented
middleware (MOM). Current industry solutions involve cloud-based MOM based on
the publish–subscribe (pub/sub) model, where data centers host massive transparently
scaling brokers that can serve billions of messages per second [Bar15]. The physical
distance between clients and brokers, however, is a serious limitation for many IoT and
smart city applications that we have also outlined in Chapter 2. Rather than routing all
messages to the cloud, brokers could instead be deployed on edge resources to reduce end-
to-end latencies between devices in close proximity. However, the geographic dispersion
of edge resources, and their unpredictable availability make it challenging to provision
and manage them in a centralized manner. Client mobility further complicates matters,
especially with respect to message delivery and QoS guarantees.

This chapter presents EMMA, an elastic message-oriented middleware for edge computing
applications, that addresses these challenges. First, in Section 5.1, we motivate the need
for edge-enabled MOM in more detail, and elicit design goals. We then present our
overall system architecture in Section 5.2. The fundamental mechanisms underlying our
system are (1) the orchestration of the broker–client network (Section 5.3), (2) proximity
awareness (Section 5.4), and (3) elastic diffusion, i.e., scaling the broker network to the
edge dynamically at runtime (Section 5.5). In an empirical evaluation using a real-world
testbed, we show that EMMA can significantly reduce end-to-end latencies caused by
message routing, even in the face of changing network topologies and client mobility. In
Section 5.7 we discuss the rich body of related work on message-oriented middleware.
Finally, in Section 5.8, we conclude the chapter with a summary.

83

5. Elastic message-oriented middleware for edge computing

5.1 Motivation

Message-oriented middleware has undergone several architectural paradigm shifts over
the past decades. The scalability issues of using centralized servers for application-
layer message dissemination were discussed intensely during the peer-to-peer era, and
many solutions based on completely decentralized peer-to-peer architectures were devel-
oped [EFGK03]. But the forces of monopolization and the widespread adoption of cloud
computing have caused many commercial solutions to return to a centralized approach,
where scalability is largely achieved by consolidating resources into massive data centers.
Amazon’s AWS IoT [Bar15], or Microsoft’s Azure IoT Hub [Sta19], for example, are
massive transparently scaling centralized pub/sub systems that can handle billions of
messages per second, even in the face of varying load, with a pay-as-you-go cost model.
However, despite advances in cloud computing and clustering techniques [GSGKK15],
IoT and edge computing scenarios have introduced new challenges, in particular for cen-
tralized systems [HKM+17]. IoT applications with ultra-low latency, network resilience,
or stringent data privacy requirements cannot be implemented by cloud-based solutions
alone, but demand decentralization [SSX+15]. Instead of routing all messages to the
cloud, brokers can be deployed on geographically dispersed edge resources to reduce
end-to-end latencies between devices in close proximity, and enable network resilience
and privacy constraints, illustrated in Figure 5.1. Yet, system engineers have grown
accustomed to the convenience and benefits of centralized deployment and management.

Data centers

Internet

Mobile
edge

Extreme
edge

IoT

Cloudlets

Message broker

Cloud-based MOM

Edge enabled MOM

Figure 5.1: Device-to-device communication can be significantly improved when edge
resources are used for brokering messages in multi-tier network topologies

84

5.1. Motivation

Osmotic computing has been proposed as a new computing paradigm to address this
dilemma [VFD+16]. It borrows from the biological principles of osmosis, where solvent
molecules seamlessly diffuse into regions of higher solute concentration. Although osmotic
computing was originally conceived for the dynamic management of microservices across
federated edge/cloud infrastructure, it has enjoyed success in other problem areas such as
stream processing for IoT [NND+17] or deep learning [MJS+17]. We argue that osmotic
computing principles can be applied to seamlessly integrate cloud-based MOM into edge
computing. Osmotic computing can abstract how we think about elasticity of MOM
towards the edge, i.e., dynamically moving or provisioning message brokers from the
cloud the edge based on current demands. In particular, we propose an architecture
based on two diffusion models: broker and client diffusion. From a static centralized
deployment in the cloud, we bootstrap a network of brokers that diffuse into the edge
based on resource availability, and the number of clients and their proximity to edge
resources. Clients in proximity diffuse to the edge depending on broker proximity and the
potential to optimize QoS between the clients. We take a closer look at an application
scenario to elicit concrete requirements for MOM based on osmotic computing principles.

5.1.1 Application scenario

We already summarized several application scenarios in Chapter 2 that drive the devel-
opment of edge computing solutions. Modern IoT scenarios highlight particularly the
need for MOM that leverages resources at the edge. To drill down into the requirements,
let us consider the following scenario from the mobile health (mHealth) domain, adapted
from Lorincz et al. [LMFJ+04] and Rizzo et al. [RRF+20]. In a major disaster situation,
effective coordination and prompt reaction of emergency teams is paramount to save
people’s lives. To support on-premises decision-making, first responders attach wearable
biosensors to patients, which continuously publish medical signs. Emergency technicians
carry mobile devices with software to visualize patient data, trigger alerts, and coordinate
team efforts. Cloud-based IoT platforms may be impractical or unreliable in this case,
as such health-critical mobile systems must be resilient towards network partitions, and
require near-real time data processing and message exchange. Instead, resources in
proximity, such as portable edge computers we presented in Section 3.2, deployed in
emergency vehicles must be used to provide necessary services. From there, data can be
processed, forwarded to hospitals for further analytics and acute patient and handed off
to the cloud for long-term storage. MOM plays a critical role in this type of scenario. It
has to facilitate low-latency communication between devices in proximity, e.g., to provide
immediate alerts to changing medical conditions, while still being able to disseminate
messages to locations on different levels of geographic dispersion. However, the mobility
and unpredictability of both clients and resources that could act as brokers require a
completely dynamic operational mechanism. In cloud-based MOM, operational configu-
ration, such as broker addresses or publish/subscribe topics, are typically best defined
at deployment time. In contrast, edge-based MOM needs to react to spontaneously
emerging network structures and device congregations, such as in our disaster scenario.
This also means that clients need to be able to quickly locate the closest broker, and QoS

85

5. Elastic message-oriented middleware for edge computing

optimizations need to consider that proximity between clients and brokers may change
during runtime, leading to dynamic routing as end and edge devices change location.

5.1.2 Design goals

As we have illustrated, the IoT and edge computing architectures provide a great deal of
challenges when building messaging middleware. Although the Message Queue Telemetry
Transport (MQTT) protocol has proliferated as a standard pub/sub platform for IoT
applications [AFGM+15, LCC+15, HKM+17], state-of-the-art MOM solutions based on
MQTT fall short of addressing these issues. The dispersion of edge resources adds to the
overall complexity of system management mechanisms [Sat17]. Based on our motivating
scenarios, and analyses of edge computing characteristics in Chapter 3, we have identified
several key design goals that drive the design of our architecture and control mechanisms.

Stringent latency requirements

Optimizing end-to-end latencies for clients is one of the key goals of our middleware.
Most of the latency in messaging middleware is caused by packet routing, lost packet
retransmission processing, and physical propagation delays of network links. Routing
messages to the cloud and then disseminating them from there is wasteful, especially if
device-to-device communication happens in close proximity. For these situations, brokers
deployed at the edge can provide ultra-low latency communication. At the same time,
subscribers may be located at geographically dispersed locations, e.g., a data analytics
services in the cloud, meaning that messages must be forwarded to the cloud if necessary.

Mobile brokers and endpoints

Mobility is a fundamental element of IoT [AFGM+15, LCC+15] and edge computing
and should be considered as such by osmotic middleware by design. In our scenario, not
only clients, but also brokers can be mobile, consequently the network topology is highly
dynamic and subject to high churn. Clients as well as edge resources are mobile and
may unexpectedly leave or enter the system. Proximity between nodes may change any
time during runtime, and the system should be equipped with mechanisms to maintain
optimized QoS, even in the face of client or broker mobility. Providing message delivery
guarantees in the face of mobility is another prominent challenge.

Horizontal scaling

Resources at the edge are a key component in enabling the previous two goals. However,
because these resources are highly dynamic, we cannot predict or rely on their availability.
We therefore also cannot provide static operational configurations. Instead, a central
configured deployment should be able to organically diffuse into edge regions where and
when necessary. A key mechanism required to facilitate this is proximity detection.

86

5.1. Motivation

Monitoring and management

Looking at the previous goals, it becomes clear that proximity is a fundamental concept in
IoT and edge computing, and needs to become a first-class-citizen not only in messaging
middleware, but edge computing algorithms and systems in general. This would appear
to imply that location of brokers and endpoints must be determined in real-time and
their physical relationship to each other must be deduced in terms of the local topology.
As we will see, proximity can instead be determined by calculating effective network
latency. Additionally, routing of messages between elements must balance reliability
and performance considerations. Moreover, scalability of proximity monitoring is a key
challenge to avoid excessive strain on the network and resource constrained devices.

IoT heterogeneity

A plethora of messaging protocols and client hardware for the IoT exists that may be
difficult to replace or update [AFGM+15]. Existing infrastructure should seamlessly
integrate with a distributed messaging middleware. Furthermore, middleware control
mechanisms need to be completely transparent to end devices.

Message delivery agreements

When it comes to message delivery guarantees, there are always tradeoffs between the level
of consistency and the end-to-end latency a system can provide, between transmission
reliability and bandwidth utilization, and between transmission delay and processing
requirements. We recognize that even a single application can have several types of
consistency demands. Take for example an analytics tool in our mHealth application.
For some subscribers, it may be critical to receive every single data point in the correct
order and without duplicates. For others, duplicate data, or even losing some messages,
may not be a problem, but the requirement is ultra-low latency delivery. The MQTT
protocol addresses this in part via its “quality of service” concept, which defines the type
of delivery guarantee a broker provides: at least once, at most once, and exactly once
delivery.

In a single-broker system, implementing these types of guarantees is relatively straight
forward, as MQTT shows. However, in our distributed broker system, the type of
consistency that the system must provide significantly affects how brokers and clients
have to be coordinated during diffusion. For example, when a subscriber to a specific
topic is migrated from one broker to another, messages received by the target broker
during the reconnection process may not reach the migrating client, as we demonstrate
in Section 5.6. This may be problematic for some applications, but a coordination
mechanism that provides this type of consistency guarantees can be costly in terms of
resource consumption and latency penalties.

87

5. Elastic message-oriented middleware for edge computing

5.2 System architecture
Several engineering challenges arise when implementing the message-oriented middleware
design we have put forth.

• The ad-hoc distribution of brokers to resource constrained devices requires dynamic
and efficient management of distributed subscription tables.

• Clients should be unaware of the dynamic broker network and should be transpar-
ently connected to brokers via gateways.

• To determine proximity, the network QoS between nodes needs to be monitored
and reported efficiently.

• If proximity between clients and brokers changes, e.g., because a broker leaves or
enters the network, client–broker connections have to be reconfigured.

• When brokers provide similar QoS to a set of clients, load needs to be distributed
among these brokers.

In this section, we present the architecture of EMMA, a distributed QoS-aware MQTT
middleware for edge computing that tackles these challenges, built using design principles
from osmotic computing. EMMA consists of five core components: brokers, gateways, the
controller, the monitoring plane, and the control plane, illustrated in Figure 5.2. MQTT
clients connect to gateways which act as reverse proxies for dynamically connecting
clients to brokers. Brokers implement the MQTT server protocol and message forwarding
to other brokers. The controller acts as a registry, monitoring hub (via the monitoring
plane) and system orchestrator (via the control plane). We explain each component in
more detail.

5.2.1 Messaging protocol

EMMA is built around MQTT, a pub/sub protocol that has gained newly found attention
in the advent of IoT [AFGM+15, HKM+17]. Due to its lightweight design and minimal
network overhead, MQTT is especially well suited for low-bandwidth and low-power
environments [AFGM+15]. Many other pub/sub solutions in research rely on their
own protocols and models [STM15, BCR14, TS17]. We designed EMMA to act as a
transparently distributed MQTT broker, enabling existing IoT software that uses MQTT
to be seamlessly used.

5.2.2 Broker network

Brokers implement the pub/sub protocol, and facilitate message dissemination to clients
and within the broker network. Because brokers are treated as ephemeral, i.e., they can be
spawned or destroyed at any time, their control mechanisms have to be entirely dynamic.

88

5.2. System architecture

Figure 5.2: The architectural components of EMMA. The osmotic controller orchestrates
a network of brokers and gateways via a monitoring and control plane. The gateways
transparently connect clients to the system.

This particularly concerns addressing and message routing. To that end, bridging tables
are synchronized between brokers via the controller. Bridging tables specify which brokers
have at least one subscriber to a specific topic. However, maintaining a global view of the
network topology at each broker would be impractical. Instead, the cloud maintains a
global view, whereas brokers only maintain a local view of the topology and routing tables
necessary to operate within their contextual boundary. Brokers also monitor and provide
access to key performance indicators, such as resource consumption, message throughput,
average routing delay, etc., to provide coordination and load balancing algorithms with
necessary data.

5.2.3 Gateway network

Gateways are an integral part of the coordination fabric and provide clients transparent
access to the broker network. They serve two main purposes: (1) to seamlessly inte-
grate existing IoT clients into the network, and (2) to enable mobility of clients and
brokers. Gateways act as reverse proxies intercept protocol control packets from clients
to understand their context (e.g., connection information, Message Delivery Agreements
(MDAs) and topic subscriptions) and allow the transparent reconnection of clients to
other brokers when adapting to varying network QoS or topology changes. They serve as
points in the network to estimate proximity between clients and brokers. Gateways can
be deployed on different physical nodes than the clients themselves, and can also handle

89

5. Elastic message-oriented middleware for edge computing

multiple client connections. Gateways also do simple data processing such as filtering or
protocol translation via protocol adapters. Because they are lightweight, gateways can
typically be easily hosted by resource-constrained IoT devices. A similar concept was
proposed by Luzuriaga et al. [LCC+15], where intermediary buffers decouple message
producers and MQTT publisher clients.

5.2.4 Osmotic controller

The controller maintains a full view of the network topology and is responsible for
bootstrapping and orchestrating the system. New brokers and gateways register with
the controller when they enter the network, and begin continuously reporting data via
the monitoring plane. The controller acts as a registry and discovery service for edge
resources that can host additional brokers. Brokers are not dependent on the controller
to process and forward messages because they maintain a local view of the network
topology and routing tables. However, the osmotic controller is required to (1) diffuse
clients, i.e., enacting QoS optimization decisions by instructing gateways to connect to
other brokers, and (2) diffusing brokers, i.e., autoscaling brokers to edge resources.

The controller maintains the state of the network as a graph data structure. A network
monitor component uses data from the monitoring protocol to maintain a graph data
structure that reflects the state of the network.Formally, the network N = (B,C,E) is
a bipartite graph containing broker nodes B, client nodes C, and connections between
clients and brokers as edges E (which we call a link). In this context, a client c represents
a gateway.

The reconfiguration engine of the controller detects proximity between gateways and
brokers based on network latency, and instructs gateways to reconnect to different brokers
to optimize QoS. Furthermore, it balances load between brokers that provide similar QoS
to clients. The controller also maintains a reduced subscription table, i.e., stores whether
at least one client is subscribed to a specific topic at a specific broker.

5.2.5 Monitoring plane

Determining the network topology and monitoring its QoS is a key element for edge-
enabled message-oriented middleware. It is particularly important for determining
proximity between clients and brokers, as proximity is calculated from network metrics
such as latency, routing hops, or physical measurements such as signal strength. Both
gateways and brokers need to be able to measure and report on their surrounding network
state. We discuss proximity detection, and QoS and demand monitoring in more detail
in Section 5.4.

5.2.6 Control plane

A main function of the osmotic controller is to provision brokers to edge resources,
and coordinate client diffusion. To that end, the controller issues control commands

90

5.3. Broker network orchestration

via the control plane to brokers and gateways. Brokers and gateways provide control
endpoints that accept coordination commands, such as an instruction to reconnect to a
different broker. We discuss provisioning and network reconfiguration in more detail in
section 5.5.3.

5.3 Broker network orchestration

The reconfiguration engine of the controller detects proximity between gateways and
brokers based on network latency and instructs gateways to reconnect to different brokers
to optimize QoS. It also maintains a reduced subscription table, i.e., stores whether
at least one client is subscribed to a specific topic at a specific broker. Internally, the
controller uses an event bus architecture that allows it to react to system events such
as a brokers or gateways entering the network. A reconfiguration engine is scheduled to
run at a fixed interval which examines and reconfigures the network to optimize QoS for
clients, and balance load between brokers.

5.3.1 Dynamic topic bridging

Because we assume dynamic availability of brokers and mobility of clients, we cannot rely
on static bridging configurations, e.g., like Mosquitto does [Gar16]. We therefore extend
the standard MQTT protocol with dynamic topic bridging. When a client publishes a
message into a given topic, brokers first broadcast the message to all connected subscribers
according to the MQTT protocol, and then forward the message to other brokers that
have at least one subscriber to the respective topic. Brokers inform the controller about
changes of their local subscription tables when necessary (e.g., if a client subscribes to a
new topic), and the controller propagates relevant changes to the other brokers.

When a client publishes a message into a given topic, brokers first broadcast the message
to all subscribers according to the MQTT protocol, and then forward the message to
other brokers. Because we generally do not know where, when, and into which topic
messages will be published, brokers are required to know about all topic subscriptions of
other brokers.

Figure 5.3 illustrates a bridging scenario and the corresponding bridging table maintained
by the controller.

Bridging tables are a form of high-level or application-specific routing table that facilitate
the topic bridging approach. To maintain bridging tables at the controller, we use the
Redis1 key-value database. Brokers inform the controller about changes of their local
subscribers only when necessary. Figure 5.4 shows the end-to-end subscription operation,
beginning with the client issuing an MQTT SUBSCRIBE packet. The gateway stores the
control packet and forwards it immediately to the broker. Stored control packets are
used to replay subscription requests during a reconnect to a broker. The broker updates

1https://redis.io

91

https://redis.io

5. Elastic message-oriented middleware for edge computing

source topic broker
b1 t1 b2

b2 t1 b1

b2 t2 b1

b1 b2t2

t1sub(t1)

sub(t2)

sub(t1)

topic bridges

Figure 5.3: Bridging tables

its subscription tables, and, if this is a new subscription, informs the controller that the
broker now has at least one subscriber to this topic. In a subsequent step, the controller
updates its bridging tables and propagates the changes to all other brokers. We use
Redis’ keyspace notification feature to propagate bridging tables to a broker only when
they are relevant to the respective broker. Brokers maintain a locally cached view of the
bridging tables to facilitate high throughput access.

al t

 [subscribers(t) == 1]

:controller:broker:gateway:client

update
bridging
tables

store
packet

SUBACK(t)
SUBACK(t)

onSubscribe(t)

update
subscriptions

SUBSCRIBE(t)

SUBSCRIBE(t)

Figure 5.4: Interaction between EMMA components during an MQTT subscribe operation

92

5.3. Broker network orchestration

Table 5.1: Packets of the migration protocol

Name Description Bytes

RECONNREQ Request a gateway to reconnect to a broker 47
RECONNACK Gateway acknowledges the reconnect 47

5.3.2 Orchestrating client connections

As described earlier, a gateway’s main purpose is to hide EMMA from the actual clients,
and facilitate the transparent connection to brokers in proximity. Instead of connecting to
a broker directly, MQTT client traffic is tunneled through a local gateway. When a client
sends an MQTT CONNECT packet to a gateway, the gateway initially queries the controller
for a broker to connect to. The gateway stores all MQTT control packets sent by the client
related to establishing a broker connection and subscriptions (CONNECT, SUBSCRIBE,
UNSUBSCRIBE). The controller may decide at runtime to migrate the connected clients
to a different broker using a migration protocol To that end, we implemented a simple
migration protocol (see Table 5.1), which was in subsequent research extend to perform
migrations in a transactional way [Gei19]. The controller sends a RECONNREQ packet to
the gateway via the monitoring protocol containing the host and port of the target broker.
The gateway asynchronously opens a connection to the new broker, disconnects from
the old broker once the new connection is established, informs the controller by sending
a RECONNACK packet, and then places the stored control packets into the send-buffer
dequeue. To avoid packet loss during reconnection of clients to new brokers, a gateway
maintains, for each client–broker tunnel, two buffers that buffer incoming messages
from the client and broker respectively. Any messages sent from the client during a
reconnection process are buffered into a dequeue. Once the connection to a new broker is
established, the recorded MQTT control packets are placed into the head of the dequeue,
the old connection is closed, and the buffer, which includes the control packets, is flushed.
Figure 5.5 shows sequence diagrams of the connection and reconnection procedure.

:brokerA

:controller:gateway:client

CONNACK
CONNACK

lookup

 result(brokerA)

store
packet

CONNECT

CONNECT

:b1::b2::gateway::controller

SUBSCRIBE
...

CONNECT

 DISCONNECT

replay
control
packets

TCP connect

TCP open

update
network

 RECONACK(b2)

RECONREQ(b2)

Figure 5.5: Connection (left) and reconnection (right) procedures

93

5. Elastic message-oriented middleware for edge computing

5.4 Proximity awareness

Proximity is a fundamental concept in edge computing systems. To build proximity aware
systems, we need (1) a good quantification of the proximity between brokers and resources,
(2) a scalable way to continuously monitor this proximity, and (3) a way to monitor
demand of clients. In other distributed systems, such as Content Distribution Networks
(CDN), closeness between nodes is often defined and determined by geospatial location,
routing hops, or round-trip times (RTT). For (1), we argue that, because the main goal
is to optimize end-to-end latency between clients, using the effective network latency
is the best way of determining proximity between clients and resources. In Chapter 7
we discuss other manifestations of proximity. Additionally, for determining proximity
between clients and brokers, brokers can add their average message buffering delay to
the effective network latency to calculate a more precise RTT value. After all, a “close”
broker on a congested resource can behave as if it were physically much farther away.
However, in contrast to CDN, where proximity is determined on a per-request basis via
DNS probing, osmotic MOM needs to continuously monitor the effective network latency
between all nodes, which introduces serious scalability challenges. Simple monitoring
solutions can cause high network overhead that becomes difficult to manage, as we
demonstrate in detail in Section 5.6.3. For (2), a scalable solution would be a synthesis of
predictive network location approaches[DCKM04, WSS05] with concepts such as interest
management, where the frequency of monitoring is concentrated to relevant regions. For
(3), a combination of throughput monitored from brokers and gateways can be used to
estimate demand for a specific region, topic or content type.

5.4.1 Network QoS monitoring protocol

To reason about the network and possible latency optimizations at runtime, network
QoS needs to be continuously monitored and analyzed. To that end, we implement
a basic distributed network monitoring protocol. In this thesis, we develop a simple
implementation to create a baseline. Using virtual network coordinate systems and
interest management is explored in [Bru21]. We implement an asynchronous pull-
type monitoring, where the controller issues a request and initializes a measurement
process. For sending and receiving protocol packets, each component exposes a UDP
port addressable by the controller. Messages of the protocol are encoded in a lightweight
binary format, summarized in table Table 5.2.

Table 5.2: Packets of the monitoring protocol

Name Description Bytes

QOSREQ Network QoS measurement request 13
QOSRESP Network QoS measurement response 9
PINGREQ Ping request 5
PINGRESP Ping response 5

94

5.4. Proximity awareness

The general process of the protocol is illustrated in the sequence diagram of Figure 5.6,
and described as follows. The controller sends a QOSREQ packet containing an ID, and
the measurement target (a broker) to a gateway. The gateway then sends 10 PINGREQ
packets to the broker in an interval of 250 ms. Each PINGREQ packet contains an ID,
which is returned by the broker in a PINGRESP packet. The gateway records the sent and
received timestamps for each packet and sends back the average latency as a QOSRESP
packet to the controller.

measure

loop

 ...

:broker::gateway::controller

update network

calc

QOSRESP

PINGRESP

PINGREQ

QOSREQ

Figure 5.6: Protocol interaction of network QoS monitoring

5.4.2 Latency groups

When brokers provide similar QoS to clients, it is important to (1) avoid migrating clients
due to slight variability of latency, and (2) balance load between those brokers. To that
end, we stratify brokers into latency groups, based on the premise that connecting to any
of the brokers in a group is acceptable in terms of QoS. Figure 5.7 illustrates the concept.
Latency groups are defined as millisecond-intervals I on a log-scale. By default, we set I
= {[0, 2), [2, 5), [5, 10), [10, 20), [20, 50), [50, 100), [100, 200), [200, 500), [500, 1000), [1000,)}.
That means, for example, if a broker b provides a client c a latency of 4, it would fall
into the interval I2 = [2, 5) and therefore into group 2. For balancing load in a group we
implemented a simple strategy based on the amount of clients connected to a broker.

95

5. Elastic message-oriented middleware for edge computing

0-2 ms

2-5
5-10

PINGREQ
PINGRESP

Broker Gateway

Figure 5.7: Brokers are placed into latency groups illustrated as concentric circles around
gateways

5.5 Elastic diffusion
As we have established, cloud-based message brokering cannot satisfy the stringent QoS
requirements of IoT applications. This particularly concerns device-to-device commu-
nication in close proximity. Instead, brokers at the edge should facilitate low-latency
communication for devices in close proximity, and forward messages to the cloud for
further dissemination. This already works well for simple configurations and static
infrastructure [Gar16]. However, as our motivational scenario illustrated, edge computing
applications require a dynamic system that can adapt to changing network QoS and
topology, while still allowing centralized configuration and management. During runtime,
when clients at the edge require low-latency communication, the broker network needs
to be expanded by provisioning brokers to edge resources dynamically. The routing
topology needs to be updated, and clients in close proximity need to be migrated to the
new broker. When client communication stops, these brokers can be discarded, and the
network may shrink again. We call this process elastic diffusion. In this section, we first
describe the key principles, and then proceed to explain individual mechanisms necessary
to achieve elastic diffusion.

5.5.1 Principle

Elastic diffusion is inspired from the physical process of diffusion (from the Latin
word diffundere, meaning “to spread out”), and the cloud computing concept of elastic
autoscaling. Figure 5.8 illustrates the concept. Starting from a single configuration in
the cloud, i.e., an osmotic controller and a root broker, the system grows and shrinks the
broker network during runtime to adapt to changing network topology, client mobility

96

5.5. Elastic diffusion

and demand, and resource availability. Brokers diffuse to edge resources when there
is potential to optimize client QoS. Similarly, clients diffuse to edge brokers to reduce
end-to-end latencies, and to balance load between brokers. A key mechanism to facilitate
this is a concept we call osmotic pressure.

Figure 5.8: Osmotic pressure facilitates controlled diffusion of brokers and clients to the
edge. Clients exert osmotic pressure on local resources depending on their proximity and
demand. The osmotic controller aims to balance osmotic pressure throughout the system.

Osmotic pressure

To facilitate elastic diffusion, we first need an aggregated quantification of proximity
and demand. To that end, we define a metric inspired by a core concept of osmosis and
diffusion: osmotic pressure. Similar to the biological process, in our system, osmotic
pressure causes brokers to diffuse onto edge resources. Clients in close proximity to edge
resources cause a “pulling” effect on those resources. When the pressure exceeds or drops
below a given threshold θ, the system deploys or removes brokers from these resources.
Similarly, brokers deployed on edge resource cause a “pulling” effect on clients in close

97

5. Elastic message-oriented middleware for edge computing

proximity, which causes a reconfiguration of client-broker connections to optimize QoS
for those clients. For edge resources, we calculate osmotic pressure based on the number
of clients and their proximity to the resources. Osmotic pressure is high when many
clients exist in close proximity to a resource. The exerted pressure can increase with the
message throughput of these clients, i.e., if local demand is high.

Broker diffusion

Like in osmosis, where solute molecules exert osmotic pressure, clients in close proximity
of edge resources exert osmotic pressure on these resources, causing an imbalance in the
network. To balance the osmotic pressure, the osmotic controller reacts by deploying a
broker to the resource. We assume that edge resources provide some form of container-
based virtualization, e.g., Docker, which allows the controller to deploy new brokers as
containers. The new broker is integrated into the network and the controller reconfigures
the routing overlay, i.e., dynamically creates topic bridges to forward messages to the
cloud or other brokers if necessary. When the osmotic pressure drops, e.g., because clients
move to other locations or leave the network, brokers may be discarded by the system.

Client diffusion

Clients’ connections are migrated into edge regions based on their proximity to brokers
deployed at the edge. If brokers are deployed at the edge due to osmotic pressure, clients
will diffuse there. Because osmotic pressure is calculated using both proximity and broker
performance indicators, we get a twofold effect: clients will experience better end-to-end
latencies as link usage is minimized, and load is balanced between brokers that provide
similar QoS to those clients. When brokers are discarded because of low osmotic pressure,
or because of a broker outage, clients diffuse back to a broker closer to the cloud.

5.5.2 Calculating pressure

Osmotic pressure gives us a way to abstract scaling procedures. However, the effectiveness
of these procedures is contingent on a meaningful calculation of osmotic pressure p. We
present two concrete proposals. One proposal is based solely on the number of clients and
their proximity, the other additionally takes into account the distance to other brokers.
Distance is considered a proxy for QoS. Considering additional metrics such as message
throughput to gauge local demand is left as future work.

Local distance-based calculation

We calculate the pressure pn for each node n (resources or brokers) based on the number
of clients and their distance to the node. The pressure is inversely proportional to the
distance, in other words: many clients in close proximity cause a high pressure. d(a, b)
denotes distance between two nodes network nodes.

98

5.5. Elastic diffusion

pn =
∑
c∈C

1
d(c, n) (5.1)

We relate the local pressure pn to global values by defining p̂n = pn

proot
Where proot is

the pressure of the root broker. That way, the pressure value for n is normalized to the
number of clients and their overall dispersion in the system.

Global difference-based calculation

The previous calculation does not consider the current network configuration. We find
it useful to adjust the pressure of a node depending on the current connection states
of other clients. In other words, the pressure on workers should be high, if clients in
proximity to the worker are connected to brokers that are far away, but should be low if
clients are connected to brokers that are closer than the worker. To that end, we need
to distinguish pressure p for resources (worker nodes n ∈ N) that can host brokers, and
active brokers b ∈ B.

For resources, the pressure is calculated as follows, where bc denotes the broker the client
is currently connected to:

pn = log
(

1 +
∑
c∈C

max(0, d(c, bc)− d(c, n))
)

(5.2)

Intuitively, the sum calculates the overall reduction in distance for clients if a broker
were to spawn on node n, and is therefore a heuristic for the potential QoS improvement.
Hence, the pressure for workers is used for making scale-out decisions. If the client
is already connected to a broker that is closer than the node, the difference would be
negative, so we ignore it. The logarithm is applied to reflect the logarithmic scale of
the latency groups we defined in Section 5.4.2. We add 1 to guard against log(0) cases.
Figure 5.9 illustrates an example. The notation is the same as in Figure 5.8.

10

10
10 20

10

10

pn=0 50

50
10

20

10

10

pn=log(1+80)

Figure 5.9: Example of how pressure changes based on the distance of clients to other
brokers. Values above lines indicate distances (or QoS) between nodes.

For brokers, the calculation is similar.

pb = log

1 +
∑
c∈Cb

max(0, d(c,nextBroker(c))− d(c, bc))

 (5.3)

99

5. Elastic message-oriented middleware for edge computing

However, because the value is used for scale-down decisions, we use for the difference
calculation the function nextBroker(c), which refers to the broker the client would be
connected to if the current broker bc is removed. Intuitively, the value is a heuristic for
the potential QoS degradation if the broker is removed. Since we are using a greedy
heuristic for our client–broker connection management (see Section 5.5.3), where clients
are always connected to the closest broker, nextBroker(c) would return the second closest
broker. Additionally, we only consider the clients that are connected to the broker, i.e.,
Cb = {c ∈ C|cb = b}.

5.5.3 Network reconfiguration and QoS optimization

The network is reconfigured by first examining the current QoS of the network, selecting
potential broker candidates for each client in a way that will optimize QoS for those
clients, and then migrating clients to their designated brokers. The reconfiguration engine
of the controller is scheduled to run at a fixed interval of 15 seconds. Figure 5.10 shows
the state of a network before and after a reconfiguration. Values of links indicate the
proximity (latency in milliseconds). Arrows indicate message flow. Clients c1 and c2
are migrated from broker b1 to b2. A topic bridge between the two brokers is created
automatically through the subsequent reconnection and subscription procedures described
earlier.

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

b1b2

100

100

pub

sub

sub
105

5
100

c3

c1

c2

Figure 5.10: Network before and after reconfiguration

The basic algorithm for reconfiguring the network is outlined in Algorithm 5.1. The
network N = (B,C,E) is a bipartite graph of brokers B and clients C as described in
Section 5.2.4. To avoid migrations when no significant load balancing would occur, we
introduce the migration threshold θ, which defines the minimum percentage of connections
that have to change within a group of candidate brokers in order to trigger a reconnect.
By default, we set θ = 0.1.

5.6 Evaluation

To show the efficacy of our approach, we implement a prototype of the EMMA system
and evaluate it in a real-world testbed. We run an experimental scenario that emulates
the scenarios described in Section 5.1 to show that the system can (1) deal with clients
and brokers unexpectedly entering and leaving the network, (2) dynamically bridge topics

100

5.6. Evaluation

Algorithm 5.1: Broker–client network reconfiguration
Input: A network N = (B,C,E), a migration threshold θ

1 foreach c ∈ C do
2 bc ← currentBroker(c)
3 B′c ← brokersInLowestLatencyGroup(N , c)
4 if bc = b′c then
5 continue
6 end
7 if bc ∈ B′c then
8 δ = θ ·

∑
b∈B′

c
connCnt(b) if connCnt(b′c) +δ ≥ connCnt(bc) then

9 continue
10 end
11 end
12 migrate(c, b′c)
13 end

only when required, (3) reconfigure connections to optimize latency for clients in close
proximity, and (4) balance load between brokers that provide similar QoS to clients.

The evaluation of different osmotic pressure models presented in Section 5.5.2, is out of
scope of this thesis, but further explored in [Bru21].

5.6.1 Experiment setup

We now present the details of our evaluation environment, the experimental scenario,
and deployment details.

Testbed

Our evaluation environment consists of multiple Amazon EC2 virtual machines that span
three different AWS data centers. This creates a realistic testbed for testing the system
under geographic dispersion and the incurring network latencies. We use eu-central
(Frankfurt) for our controller, an initial broker, and a single client. Regions eu-west
(Ireland), and us-east (Ohio), host multiple gateways and clients, and we reserve VMs
for brokers to be spawned during runtime. Figure 5.11 illustrates the setup and shows
latencies between regions. Latencies within regions are in the sub-millisecond range.

We use the following EC2 instances types for the components. The controller runs on a
t2.large (2 vCPUs, 4 GiB RAM) instance. For broker nodes, we use t2.medium instances
(2 vCPUs, 2 GiB RAM). Gateways and clients share t2.micro instances (1 vCPUs, 1 GiB
RAM).

101

5. Elastic message-oriented middleware for edge computing

us-east eu-west

eu-central

BrokerGateway BrokerGateway

Controller

... ...

Gateway

Broker

98 ms 27 ms

85 ms

Figure 5.11: Evaluation environment for the EMMA system in AWS EC2

Scenario

The experimental scenario emulates the real-world edge computing scenarios presented
in Section 5.1. In this particular experiment, we spawn client groups across two regions.
Each client group consists of 10 VMs, each hosting a gateway, 1 subscriber and 7 publishers
that exchange messages in a topic named like the region they are deployed in, namely
eu-west and us-east. To show that the system can dynamically create topic bridges when
necessary, a publisher and subscriber pair is deployed in each region that communicate
in the topic global. A single subscriber to this topic is also deployed in eu-east where the
initial broker and controller reside. To demonstrate the orchestration mechanisms, we
trigger the following events manually at runtime:

1. Clients appear that communicate in topic global (one publisher and subscriber in
both us-east and eu-west. One subscriber in eu-central)

2. Client group appears in the us-east region

3. Broker spawns in eu-west (1)

4. Client group appears in the eu-west region

5. Broker spawns in us-east

6. Broker spawns in eu-west (2)

7. Subscriber to topic global in eu-central disappears

8. Broker shuts down in us-east

102

5.6. Evaluation

Clients & load generation

For the purpose of generating load and recording message statistics, we developed a
general purpose framework for benchmarking publish–subscribe systems which is also
open source2. It provides an interactive shell that allows to spawn different types of
MQTT clients and control message publishing frequency. For this particular experiment
we used the XenQTT3 client library. Messages generated by the application contain a
payload in the JSON format that has a total of 118 bytes (including JSON overhead).
An example is shown in Listing 5.1. They contain a UUID, a timestamp the message
was sent, and a dummy payload with 14 bytes as placeholder for a sensor reading.

{
"id": "3e14463d-7dae-4b0a-8438-316bc262514f",
"timestamp": "2017-08-30T16:37:18.606Z",
"payload": "14 extra bytes"

}

Listing 5.1: Example sensor message payload sent by a client

We configure each publisher to generate messages at a fixed rate of 10 messages per
second. To avoid noise resulting from interfering IO operations, we store message data
in-memory and save the data to disk once the client connection has been terminated and
the benchmarking runtime exits.

5.6.2 Experiment Results

The following figures show the main results from our experiment. Figure 5.12 shows the
message throughput of the brokers during their lifetime. The circles and dotted lines
indicate the events described previously. The x-axis indicates the time (in minutes) of
the experiment, each labeled tick is 60 seconds apart. Figure 5.13 and Figure 5.14 show
the average end-to-end latency of messages in the respective topics, aggregated every
second over all subscribers of that topic.

Throughput & load balancing

Figure 5.12 shows how the rebalancing mechanism and the dynamic bridging approaches
behave. At event 4, when the client group appears in eu-west, the output rate shows that
it takes two rebalancing iterations to fully balance connections between the two active
brokers. Because messages are bridged between the two brokers, the input rate does not
change. However, as the output rate makes apparent, the balancing can significantly
reduce the strain of multicast on a single broker. The input rate of the eu-central broker
after event 7 shows that, once there are no subscriptions to a topic at a specific broker,
the subscription tables are propagated and messages are no longer bridged to that broker.

2https://git.dsg.tuwien.ac.at/emma/pubsub-benchmark
3https://github.com/TwoGuysFromKabul/xenqtt

103

https://git.dsg.tuwien.ac.at/emma/pubsub-benchmark
https://github.com/TwoGuysFromKabul/xenqtt

5. Elastic message-oriented middleware for edge computing

At event 8, when the broker in us-east shuts down, clients previously connected to that
broker are immediately migrated to other available brokers. All three currently running
brokers are in the same latency group for the clients deployed in the us-east region. As
the output throughput graph shows, load is balanced between the three brokers.

Topic latencies

Figure 5.13 shows how rebalancing and migrations affect the end-to-end latencies between
clients. In particular, the graphs reveal the cost of migrating clients. At event 3, when a
new broker spawns and migration of clients begins, the message latencies spike. This is
the result of a combination of the gateway buffering mechanism during reconnect, and
the Java warm-up phase of newly spawned brokers. However, as the graph shows, the
latency stabilizes a few seconds after the migration is complete, and the load is shared
between the brokers eu-central and eu-west 1. The second rebalancing iteration has a
less drastic effect.

At event 4, the graph for the eu-west topic shows that clients in the region immediately
connect to the broker closest to them. Consequently, the load balancing engine moves
some of the clients connected from us-east back to the eu-central broker. In this case, it
took two balancing iterations to fully balance the connections.

At event 5, when the broker in us-east is spawned, all clients in the region migrate to
that broker. This includes the publisher and subscriber in that region communicating
via the global topic, which is why the average latency also drops dramatically. A major
source of latency in this topic is the round-trip time between the us-east region and the
brokers in eu regions. Once clients within the region communicate via a local broker,
only messages that have to be forwarded are sent over the us–eu link. At event 8, when
the broker in us-east shuts down, latencies spike due to reconnection buffering, and then
stabilize at their previous levels.

Figure 5.14 shows the time window between event 5 and 8, where both client groups have
a broker in their respective region. As the graphs show, the latencies average at around
3–5 ms. The variance in the eu-west topic shows how load balancing affects latencies
for devices in close proximity. These results also indicate that messages are bridged
efficiently, meaning that the system can provide low end-to-end latencies for clients in
close proximity, and forward messages to other brokers that provide similar QoS with
minimal overhead.

Global message dissemination

In each region, one subscriber to the global topic is deployed. Figure 5.15 shows the average
end-to-end latency for each subscriber in the respective region during the experiment. As
the us-east graph shows, messages sent from the us-east region have, at first, the highest
round trip time, causing the high fluctuation in that region. At the later stages after
event 5, where a broker is present in each region, message latencies average at roughly the
average link latencies between clients and their local brokers. Looking at the subscriber

104

5.6. Evaluation

71

2

3 4 5 6 8

Figure 5.12: Broker message throughput

Figure 5.13: Aggregated topic latencies

105

5. Elastic message-oriented middleware for edge computing

Figure 5.14: Latencies during intra-region communication

Figure 5.15: Average latency for global topic subscribers

in eu-central, we also observe that, even when topics are bridged from other regions, the
latencies do not significantly change. This shows that the overhead of bridging messages
to geographically dispersed locations is minimal even under broker load.

Message loss

The gateway buffering approach avoids message loss for publishers during a reconnection
procedure. However, messages published while subscribers are migrated may not be
delivered to these subscribers. Figure 5.16 shows the total amount of undelivered messages
in both client groups at given points in time during the experiment. The boxes show the
distribution of undelivered messages across the 10 subscribers of the respective group.
Boxes are drawn in points in time where the amount of undelivered messages changed.

106

5.6. Evaluation

Figure 5.16: Message loss for clients in the respective regions

Each client group consists of 70 publishers that publish at a frequency of 10 msg/s,
totaling at 700 msg/s. In the us-east topic, a total of 177,269 messages were published.
As the last box for the topic shows, subscribers experienced a total message loss of about
765 messages, i.e., 0.43% per subscriber. For the global topic, message loss was minimal.

Providing consistency guarantees for mobile subscribers necessitates a transactional
migration. To that end, in [Gei19], we introduced a consensus protocol for EMMA, that
consists of additional control packets, a migration sequence, and state synchronization
procedures. While this removes message loss, the transactional migration adds latency. A
handoff requires eight synchronous control messages and is therefore sensitive to network
latencies. The duration of the state synchronization depends on the number of messages
the subscriber is behind. With an average of 30ms round trip time between the client
and the involved brokers, the migration procedure may take between 500ms and 3000ms.

5.6.3 QoS monitoring network usage

QoS monitoring comes at the cost of using the network’s bandwidth. We present a sample
calculation that shows that the use grows linearly with the amount of brokers and clients
in the network.

Measuring the QoS between two nodes involves sending a total of 22 UDP packets. A
UDP packet in IPv4 Ethernet has 48 bytes of overhead. Hence, the UDP overhead for
each measurement totals at 1058 bytes. The request/response packets sent between
gateway and controller are 13 byte and 9 byte respectively. Then, 10 ping messages are
sent to the broker, and, ideally, 10 response messages are returned, totaling 100 bytes.
Including the UDP overhead, this means a total of 1180 bytes per measurement. Our
prototype implements a fixed rate approach, where QoS is measured every 15 seconds.
In a network of 100 brokers, this would mean roughly 7.9 kB/s network usage for a
gateway. Figure 5.17 shows the usage over the entire network depending on the number
of gateways (log scale) and brokers in the network, assuming a measurement interval of
15 seconds.

107

5. Elastic message-oriented middleware for edge computing

Figure 5.17: Overall network usage in kB/s by QoS monitoring

There is a lot of potential to optimize these values. Currently, every gateway requests
QoS for every broker in a fixed interval. It may not be necessary to do so. For example,
the frequency of QoS measurements could adapted to the initial amount of measured
latency, such that brokers in close proximity are updated more frequently than others.
Another approach would be to use virtual network coordinates, like Vivaldi [DCKM04].

To that end, in [Bru21], we adapted the EMMA monitoring protocol to use Vivaldi
coordinates. Vivaldi uses the Euclidean distance model, and computes synthetic multi-
dimensional coordinates to predict inter-host latencies. Each measurement (in our case,
ping packets) reduces the error of the estimated coordinate, meaning that the prediction
error may be significant when there are few measurements. We no longer need to the
fully-connected network graph to estimate distances between nodes in the network. In
our initial implementation, a client pings five random brokers to get initial coordinates,
and then pings the closest five to increase the accuracy of the ones in lower latency groups
(which are more sensitive to errors). This way, the network strain scales linearly with the
number of clients in the system. In preliminary experiments, using the same scenario
that we described in Section 5.6.1, we were able to reduce the network strain by 34%,
while maintaining effectively the same latency distribution. More research is necessary to
fully understand the effect of prediction errors on performance in different scenarios.

5.7 Related work

Messaging middleware, and pub/sub systems in particular, have enjoyed immense research
interest over the past decades [EFGK03, HKM+17]. Systems like Hermes [PB02] or
PADRES [JCL+10] have led to an entire body of research dedicated to optimizing

108

5.7. Related work

and enabling robust message dissemination in complex peer-to-peer overlay networks.
The advent of cloud computing and the IoT has changed the landscape of real-world
messaging solutions dramatically. Over the past few years, many commercial cloud-based
messaging solutions have emerged that target IoT platforms. Amazon’s AWS IoT [Bar15],
Microsoft’s Azure IoT Hub [Sta19], or Google Pub/Sub [KG15], all aim at providing
transparently scaling IoT device integration via pub/sub messaging. Although these
solutions can deal with massive amounts of devices and messages, they cannot satisfy the
stringent QoS requirements imposed by many IoT scenarios, as they completely disregard
proximity and edge resources. In particular, research has shown that current protocols
and solutions can not adequately deal with the scalability and QoS requirements of
modern IoT scenarios [HKM+17].

Scalability of pub/sub middleware under fluctuating load has primarily been addressed
in cloud-based solutions. Centralized systems such as Dynamoth [GSGKK15] achieve
scalability by providing load balancing in a broker cluster, and elasticity mechanisms
for adding and removing broker nodes on demand. The evaluation shows that response
times can be stabilized even under varying load. These cloud-based systems do not
consider proximity of clients or latency incurring from link usage. Load balancing for
edge computing is a fairly unexplored topic, and has only recently gained attention in
the edge computing community [SYY+17]. EMMA’s network re-configuration approach
includes a connection-based load-balancing approach, implicitly trading off broker load
and network latency.

QoS awareness in pub/sub overlay networks has been addressed in different works spanning
the past two decades [CAR05, CS05, KKY+10, OR11, BCR14]. Specifically, these
approaches focus on techniques for managing complex overlay networks using contextual
QoS information [OR11], and efficient message routing within these networks [CAR05].
Contributions include optimal path selection for message routing based on QoS criteria
and supporting mobility by providing efficient on-line re-configuration of overlays [BCR14].
Our approach does not require complex routing or overlay network management, as
we apply a simple direct delivery model [GSKK17], which we discuss later. Generally,
research on overlay network tends to focus on formal system models, and ignore system
details such as interaction between components during re-configuration, or concrete
proposals for QoS monitoring.

Some open-source solutions, such as JoramMQ [Sca14], Mosquitto4 and HiveMQ5, have
shown tentative efforts to provide basic mechanisms for enabling real-world edge comput-
ing applications. For example, JoramMQ [Sca14] can model a hierarchical broker tree to
allow low-latency communication in pre-defined subsystems. Mosquitto and HiveMQ can
be configured, at deployment time, to bridge topics, i.e., forward messages of a specific
topic, to a centralized broker [Gar16]. However, these mechanisms are all static in nature
and do not address mobility or changing resource availability. EMMA introduces a
dynamic orchestration mechanisms that can deal with high-churn network configurations.

4https://mosquitto.org
5http://www.hivemq.com

109

https://mosquitto.org
http://www.hivemq.com

5. Elastic message-oriented middleware for edge computing

Few efforts have been made to engineer complete solutions for QoS aware pub/sub systems
that address the challenges of IoT and edge computing. An et al. [AKGH17] present
PubSubCoord, a cloud-based coordination system for a distributed broker network. The
overlay layer is strictly structured into edge brokers and routing brokers, coordinated via
a layer of ZooKeeper nodes. In a non-peer-reviewed work, Abdelwahab and Hamdaoui
present FogMQ [AH16] which supports migration of broker clones at runtime to the edge,
thereby enabling low-latency data analytics. MultiPub [GSKK17] manages a broker
cluster that spans multiple cloud regions, and optimizes latency for clients based on their
proximity to a region, by moving topics to those regions. Our message dissemination
strategy is similar to MultiPub’s direct delivery model. However, regions and brokers
on regions are configured statically, only topic migration and client–broker connections
are dynamic. EMMA goes one step further in that it considers brokers on arbitrary
edge resources and dynamically re-configures client–broker connections at runtime. The
presented solutions are also unspecific about monitoring strategies to facilitate proximity
detection.

5.8 Summary
Efficient device-to-device communication plays a fundamental role in edge intelligence
systems. In this chapter, we presented EMMA, an elastic, QoS-aware MQTT middleware
that is designed for geo-distributed environments. We have shown how principles of os-
motic computing can be applied to message-oriented middleware, to provide a distributed
network of brokers that elastically diffuse to edge resources on demand. Gateways
allow existing MQTT client infrastructure to transparently connect to the system. We
demonstrated that EMMA can provide low-latency communication for devices in close
proximity, while allowing message dissemination to geographically dispersed locations at
minimal overhead costs. Unlike cloud-based IoT platforms that completely neglect the
proximity of devices, EMMA makes proximity a first-class citizen, both for deploying new
brokers, as well as optimizing responsiveness for clients. To that end, we implemented
a proximity monitoring protocol, that continuously updates a global view of the net-
work. In subsequent research [Bru21], we showed how using virtual network coordinate
systems can reduce monitoring overhead significantly. Our proximity-aware network
reconfiguration mechanism enables client mobility, dynamic broker provisioning, and
broker load balancing. Our system can serve as stand-alone messaging middleware to
facilitate device-to-device communication in IoT environments, and can also complement
complex edge computing applications that rely on message brokers, such as distributed
real-time data analytics applications.

The idea of elastic diffusion, i.e., using proximity to jointly drive autoscaling and load
balancing decisions, translate to other edge computing systems, especially serverless
systems that we will discuss in the next chapter. In these systems, requests to serverless
functions are typically routed on application layer through a centralized API gateway or
load balancer. That may not be an issue if the round trip time of the request is bound
by computing time rather than by network latency from the client to the API gateway.

110

5.8. Summary

When workloads are network bound, however, centralized API gateways cause the same
problems as centralized message brokers in edge scenarios. The idea of elastic diffusion
could be applied to serverless function and API gateways to address this issue. API
gateways have to be distributed in the same way that we distribute gateways in EMMA.
Serverless functions then have to be scaled, not only based on resource usage, but also
on the proximity to clients invoking the functions. We are exploring and evaluating this
in ongoing research [Pal21].

111

CHAPTER 6
A serverless platform for edge

computing

Serverless computing has emerged as powerful system abstraction that frees application
developers and operators from the operational complexities of computing infrastructure.
Developers provide their application code, and serverless platform operators take care
of provisioning resources, running and scaling the application, and orchestrating the
system. The characteristics of edge computing infrastructure we described in Chapter 3
dramatically increase the complexity of such system abstractions and operational mecha-
nisms, as we can no longer rely on the assumptions that a centralized data center allows.
Moreover, there is a tension between the requirement of serverless computing to abstract
the underlying infrastructure, and the requirement of many edge computing services to
run on very specific devices due to data locality or device capabilities.

In this chapter, we present our approach to resolve this tension. Together with the
middleware we presented in Chapter 5, our serverless edge computing platform represents
the second fundamental component for a seamless distributed computing fabric for edge
intelligence. We begin in Section 6.1 with an introduction to serverless edge computing
and outline our approach. In Section 6.2, we highlight the challenges of serverless
edge computing with a discussion of application scenarios, and data from preliminary
experiments. In Section 6.3 we present the design and implementation of our platform.
We extend existing serverless computing platforms to run on a computing substrate
described in section 2.3.2. It provides a high-level programming model for developing
data-intensive serverless functions. We introduce a new container scheduling system that
makes heuristic tradeoffs tailored to these environments. To deal with the diversity of
edge computing scenarios, in Section 6.4 we present a method to automatically fine-tune
scheduler parameters to achieve high-level operational goals. Section 6.5 presents our
experimental evaluation using the methodologies from Chapter 4. Finally, we present
related work in Section 6.6, and conclude the chapter in Section 6.7.

113

6. A serverless platform for edge computing

6.1 Introduction
Serverless edge computing has emerged as a compelling model for dealing with many of
the challenges associated with edge infrastructure [ATC+21, GND17, NRS+17, RHM+19,
BMHP19, YHZ+17]. It expands on the idea of serverless computing, which first drew
widespread attention when Amazon introduced in 2015 its Lambda service [JSSS+19].
It allowed users to develop their applications as composable cloud functions, deploy
them through a Function-as-a-Service (FaaS) offering, and leave operational tasks such
as provisioning or scaling to the provider. Serverless computing is also a candidate for
enabling edge AI workflows discussed in Section 2.2. Analogous to the idea of serverless
cloud functions, we imagine that edge functions can significantly simplify the development
and operation of certain edge computing applications. In [Sch19] we presented a case
study demonstrating the benefits of serverless edge computing for smart home analytics
applications. Results showed that application responsiveness can be improved by up to
85%, and runtime execution costs can be reduced to almost 0.

Many serverless platforms have emerged that allow different computational models, yet
their support for data-intensive distributed computing [HFG+18], and edge computing
environments [ATC+21] is still limited. Specifically, this manifests as follows. First,
they do not consider the proximity and bandwidth between nodes [HFG+18], which is
particularly problematic for edge infrastructure where the distance between compute
nodes, data storage, and a function code repository (e.g., a container registry), incur
significant latencies and inter-network traffic [SBCD09]. Second, fetching and storing data
is typically part of the function code and left to application developers (e.g., manually
accessing storage service APIs), which makes it hard for the platform to reason about
data locality and data movement tradeoffs [RHM+19, SLF+20]. Third, they provide
limited or no support for specialized compute platforms or hardware accelerators such as
GPUs [HFG+18, IMS18], leaving potential edge resources that provide such capabilities
underutilized.

This chapter presents our efforts in addressing these three issues, which we believe are
the most immediate limiting factors in enabling the distributed compute fabric idea
we outlined in Section 2.3. We present a platform for serverless edge computing that
introduces a high-level programming model, and Skippy, a container scheduling system
that facilitates the efficient placement of serverless edge functions on distributed and
heterogeneous infrastructure. Our system interfaces with existing serverless execution
runtimes, like the container orchestration system Kubernetes, that were not designed for
edge computing scenarios, and makes them sensitive to the characteristics of edge systems.
The programming model introduces concepts that allow the platform to reason about
the dataflow of functions. Skippy is an online scheduler, modeled after the Kubernetes
scheduler, which implements a greedy multi-criteria decision making (MCDM) algorithm.
We introduce two additional components that are commonly missing in state-of-the-art
container schedulers: a static bandwidth graph of the network holding the theoretical (or
estimated) bandwidth between nodes, and a data index that maps data item identifiers
to the storage nodes that hold the data. These two extra components facilitate our

114

6.1. Introduction

additional scheduling constraints that favor nodes based on (1) proximity to data storage
nodes, (2) proximity to the container registry, (3) available compute capabilities (e.g., for
favoring nodes that have hardware accelerators), and (4) edge/cloud locality (e.g., to favor
nodes at the edge). We have found that these constraints are a critical to make an effective
tradeoff between data and computation movement in edge systems. Furthermore, we
recognize that tuning scheduler parameters for effective function placement is challenging,
as it requires extensive operational data and expert knowledge about the production
system. Instead, we propose a method that leverages the tight integration of the scheduler
with a simulation framework, in combination with existing multi-objective optimization
algorithms, to optimize high-level operational goals such as function execution time,
network usage, edge resource utilization, or cloud execution cost.

We implement a prototype that targets the container orchestration system Kubernetes,
and deploy it on an edge testbed we have built. Complementary, we evaluate our system
with trace-driven simulations in different infrastructure scenarios, using traces generated
from running representative workloads on our testbed. We show how the scheduler and
optimization technique work in tandem to enable serverless platforms to be used in a wide
range of edge computing scenarios. Our results show that (a) our scheduler significantly
improves the quality of task placement compared to the state-of-the-art scheduler of
Kubernetes, and (b) our method for fine-tuning scheduling parameters helps significantly
in meeting operational goals.

The specific contributions can be summarized as follows:

• a design for a serverless platform that treats concepts from edge AI workflows as
first-class citizens, both in the programming model and in the runtime platform,
and

• Skippy: a container scheduling system that enables existing serverless frameworks
to support edge functions, and make better use of edge resources. Our scheduler
introduces components and constraints that target the characteristics of edge
systems.

• A method to tune the weights attached to low-level constraints used by the scheduler,
by optimizing high-level operational goals defined by cluster operators. To compute
the optimization we use the serverless system simulator presented in Section 4.3.

• We demonstrate Skippy’s performance in various scenarios using data from our
testbed and running trace-driven simulations. We use Ether, the system presented
in Section 4.2, to synthesize edge topologies for different scenarios.

• Open data set of traces from extensive profiling of our edge testbed, and synthetic
traces from our simulations of different infrastructure scenarios [RR20].

115

6. A serverless platform for edge computing

6.2 Background & application scenarios
This section outlines the domain for which we have developed our system. Based on the
discussion in Chapter 2, we drill down into different application and infrastructure scenar-
ios to motivate serverless edge computing and highlight systems challenges. Furthermore,
we provide background on the operational underpinnings of serverless platforms using as
examples Kubernetes and OpenFaaS.

6.2.1 Data-intensive serverless edge computing

Typical characteristics and requirements associated with data-intensive edge computing
applications can be summarized as follows:

• heterogeneous workloads: the application is composed of multiple functions that
have different computational requirements (e.g., GPU acceleration)

• locality sensitive: some parts of the application are locality sensitive, e.g., should
not be executed in the cloud because consumers are located at the edge

• latency sensitive: some parts of the application are required to provide service
quality at low latency

• high bandwidth requirements: some parts of the application may exchange large
amounts of data

Research has shown that edge AI applications that deal with video or image data
typically have all of these requirements [RD19, WFG+19, CHW+17, VGGK18]. Smart
city scenarios are also an illustrative example. Data from sensor arrays and cameras
distributed throughout the city can be used to create analytics models such as traffic
risk assessment, crowd behavior, flooding or fire spreading models, or ecosystem/plant
monitoring [RD19]. They could also serve as sensory input for cognitive assistance
applications [RD19, WFG+19], Moreover, edge resources can be used for mobile AI
workload offloading. Serverless computing may be a good model for implementing such
applications at scale on a distributed computing substrate we discussed in Chapter 3.

We implemented a prototypical edge computing application that has the characteristics
and requirements described above. Specifically, we found the most generalizable applica-
tion to be a machine learning (ML) workflow with multiple steps, where each step has
different computing requirements, and needs to make efficient use of a diverse set of edge
resources. Similar to the smart home data analytics pipeline we presented in [Sch19], we
consider a typical ML pipeline with three steps [HMR+19]: (1) data preprocessing,
(2) model training (that can be accelerated by GPUs), and (3) model serving. In
our concrete example we use the MNIST dataset to train an image classifier because of
the dataset’s availability allowing reproducibility. We implement each step as a serverless
function.

116

6.2. Background & application scenarios

Serverless functions

In the serverless function abstraction, the programming model concepts are functions,
events, and triggers. The serverless platform executes functions in response to events.
The events that lead to a function execution are defined by a trigger. Functions are
simply event handlers in the classic event-driven programming sense. For example, in
case of model training, the event would be triggered by the previous ML workflow step,
i.e., the data preprocessing. An example of a serverless function written in Python that
implements an ML training step is shown in Listing 6.1. In OpenFaaS, the platform
packages function code and its dependencies into a container image, pushes it to a registry,
from where the code is pulled by a compute node after scheduling.
import boto3
import numpy
... import ML libraries such as tensorflow or mxnet

def handle(req):
s3 = boto3.client(’s3’)
with open(tmpfile, ’wb’) as f:

s3.download_fileobj(’bucket’, req[’train_data’], f)

data = numpy.load(f)
model = train_model(data, req[’train_params’])

s3.upload_fileobj(serialize(model), ’bucket’, request[’
serialized_model’]’])

Listing 6.1: Example of a data-intensive serverless function.

This function implements ML model training, and involves: connecting to a storage
server (S3 in this case), downloading the training data from the file object encoded in the
request (which was previously generated by the data preprocessing step), converting the
data into some appropriate format for running a training algorithm, and then uploading
the serialized model. As every data-intensive function has a similar format, i.e., fetching,
processing, and then storing data, we developed a higher-level abstraction for these
functions, which we will present in Section 6.3.2. Specifically, we elevate fetching and
storing data as platform features, which allows the platform to reason over the dataflow
of the function, e.g., which specific data is pulled (encoded by a URN for example) to
locate the closest data store that holds the data. We use this feature in the scheduler (see
Section 6.3.5) for determining the tradeoff between data and computation movement.

Data and computation movement

Figure 6.1 shows a comparison between the size of container images for each function of
our application, and the total amount of data each function has to transfer during its
execution. It also shows a back-of-the-envelope calculation on how much time cloud or
edge resources spends on transferring either container images or data for each function

117

6. A serverless platform for edge computing

step. We consider a typical scenario, where an edge network has a 1 GBit/s internal
bandwidth, 25 MBit/s uplink and 100 MBit/s downlink. Data is located at the edge,
and the container registry is located in the cloud, which also has an internal bandwidth
of 1 GBit/s. We can see that the difference in uplink and downlink bandwidth play a
significant role in trading off data and computation movement.

Preprocessing Training Serving
0

200

400

600

800

Si
ze

 in
 M

B 533 550 589

231 221

1

Container image vs function data size

Container Data

Preprocessing Training Serving
0

10

20

30

40

50

Du
ra

tio
n

(s
) ed

ge
clo

ud
ed

ge
clo

ud
ed

ge
clo

ud

Transfer time (cloud vs edge)

Figure 6.1: Comparison of container image sizes and total data transferred by functions.
The right figure shows the time spent on either container image or data transfer in either
cloud or edge networks.

Preprocessing Training Serving
0

200

400

600

800

Si
ze

 in
 M

B

1 10 58

231 221

1

Container image vs function data size

Container Data

Preprocessing Training Serving
0

10

20

30

40

50

Du
ra

tio
n

(s
) ed

ge
clo

ud
ed

ge
clo

ud
ed

ge
clo

ud

Transfer time (cloud vs edge)

Figure 6.2: The same calculation as Figure 6.1 when subtracting shared layers between
images and only considering unique image size.

The popular container platform Docker uses a layered file system, meaning that layers
can be shared between container images. Because most containers build on similar base
images, the unique image size when considering shared layers if often much smaller.
For distributing container images this means that, if the base image has already been
downloaded by some container, downloading a different container image that uses the
same base image will also be much faster. When inspecting the images of our specific
application, we found that almost 90% is shared across images. Figure 6.2 shows the
same calculation as above, illustrating that, now, most of a function’s latency comes
from pulling data. These calculations show the importance of data and computation
movement tradeoffs that serverless edge computing platforms have to make at runtime,
in order to optimize function execution performance.

118

6.2. Background & application scenarios

6.2.2 Edge computing infrastructure

Another important performance aspect is the type of hardware a particular function is
executed on, and the impact on function execution time. In Section 3.1 we discussed
the computing continuum, the various candidate computing architectures for edge in-
frastructure, and use cases for each one. Based on this discussion, we consider the
following computers and architectures to test our platform: (1) Small-scale data cen-
ters that use VM-based infrastructure and are placed at the edge of the network, often
termed cloudlets [SBCD09]. (2) Small form-factor computers, such as Intel’s Next
Unit of Computing (NUC) platform with built-in CPUs are used in, e.g., Cannonical’s
Ubuntu Orange Box [VN]. (3) Single Board Computers (SBCs) such as ARM-based
Raspberry Pis used as IoT gateways or micro clusters [JBP+18]. (4) Embedded AI
hardware, such as NVIDIA’s Jetson TX2 that provide GPU acceleration and CUDA
support [NVI].

We have profiled our ML workflow steps as OpenFaaS functions on these different devices.
Table 6.1 lists the hardware specifications of the device instances we used. Figure 6.3
shows the results of 156 warm function executions. The Raspberry Pis were not able to
run the model training step as they ran out of memory. The results show the impact
of extreme device heterogeneity in an edge computing substrate. Also, we can see that
the model training step benefits greatly from GPU acceleration, performing better on a
Jetson TX2 compared to an Intel NUC despite the NUC’s powerful i5 processor.

Device Arch CPU RAM

VM x86 4 x Core 2 @ 3 GHz 8 GB
SBC arm32 4 x Cortex-A53 @ 1.4 GHz 1 GB
NUC x86 4 x i5 @ 2.2 GHz 16 GB
TX2 aarch64 2 x Cortex-A57 @ 2 GHz 8 GB

256-core Pascal GPU

Table 6.1: Device type specifications.

6.2.3 Cluster infrastructure scenarios

In Section 3.3 we presented several scenarios where edge computing resources are federated
to form a distributed computing substrate. To demonstrate that our system can deal with
these scenarios, we use the Edge Topology Synthesizer framework presented in Section 4.2
to synthesize plausible cluster configurations. We briefly summarize the specific scenarios
and respective cluster configurations that we consider. Table 6.2 lists the cluster hardware
composition.

S1: Urban Sensing In the urban sensing scenario, cities deploy sensor arrays and
cameras to enable smart city applications that require access to real-time data of urban
environments [CBSG17]. For this scenario, we assume a total of 200 sensor nodes,

119

6. A serverless platform for edge computing

Clou
d V

M

Int
el

NUC

Rasp
be

rry
 Pi

Jet
son

 TX
2

0

20

40

60
Data preprocessing (s)

Clou
d V

M

Int
el

NUC

Jet
son

 TX
2

0

50

100

150

Model training (s)

Clou
d V

M

Int
el

NUC

Rasp
be

rry
 Pi

Jet
son

 TX
2

0

5

10

Model serving (s)

Figure 6.3: Average execution time and standard deviation of ML workflow functions in
seconds on different device types illustrating both workload and device heterogeneity.

where each node is equipped with two SBCs (for data processing and communication).
Furthermore, we assume that throughout the city, there are installations of cloudlets
that comprise an Intel NUC, and two embedded GPU devices per sensor node camera
for video processing tasks. To meet peak demands, 30 VMs hosted at a regional cloud
provider are added as fallback resources into to the cluster. In terms of network topology,
we assume that each municipal district forms an edge network. Each edge network has an
internal LAN bandwidth of 1GBit/s and connected with 100/25 MBit/s down/uplink to
the internet. Cloud nodes have an internal bandwidth of 10GBit/s, and a direct 1GBit/s
uplink to the internet. These data are plausible extensions of the urban sensing scenario
presented in Section 3.3, specifically the Array of Things (AoT) [CBSG17] project that
operates a deployment of about 200 sensor nodes in Chicago. Each AoT node is connected
via a mobile LTE network to the Internet.

S2: Industry 4.0 For this scenario, we assume an Industrial IoT (IIoT) [CWC+18]
use cases, where several factories at different locations are equipped with edge computing
hardware, and each location has an on-premises but provider-managed cloud (e.g., a
managed Microsoft Azure deployment, where on-premises cloud resource use is billed).
We assume ten factory locations, each having 4 SBCs as IoT gateways, 1 Intel NUC, 1
Jetson TX2 board, and 4 VMs on the on-premises cloud. The numbers are plausible
extensions to the prototypes presented in [CWC+18], and the general trend towards
using embedded AI hardware for analyzing real-time sensor and video data in IIoT
scenarios [YMLL17]. Each edge and on-premises cloud has a data store. The SBCs are
connected via 300 MBit/s Wi-Fi link to an AP that has a 10 GBit/s link to the edge
resources, and a 1 GBit/s link to the on-premises cloud. Premises are connected via a
business ISP with 500/250 MBit/s down/uplink.

S3: Cloud federation To compare our system in non-edge computing scenarios, we
also consider a cloud computing configuration where there are no edge devices and less

120

6.2. Background & application scenarios

heterogeneity than in edge scenarios [VPK+15]. We model a cloud federation scenario
across three cloud regions, where each region has, on average, 150 VMs. All regions
contain several nodes with data stores. Region 1 has slightly more VMs and more storage
nodes than the others. The bandwidth is 10 GBit/s within a region, and 1 GBit/s
cross-region, as reported in Section 3.3.

Scenario Category nodes % of compute device types
VMs SBC NUC TX2

Our Testbed 7 14 57 14 14
S1: Urban Sensing edge 1 170 3 39 19 39
S2: Industry 4.0 hybrid 110 40 40 10 10
S3: Cloud regions cloud 450 100 0 0 0

Table 6.2: Cluster configurations of different scenarios.

6.2.4 Technical background: Kubernetes & OpenFaaS

Our system is designed to extend existing platforms that enable serverless computing
and FaaS deployments, such as Kubernetes and OpenFaaS. Because our prototype was
developed for these two systems, we present technical background on the interplay
between the two. The core mechanisms, however, are found in similar systems.

Kubernetes & container scheduling

Kubernetes is a container orchestration system used for automating application de-
ployment and management in distributed environments. It is a popular runtime for
serverless computing, micro-service-based application deployments, and, increasingly,
FaaS platforms [MSV18]. Using Kubernetes, FaaS platforms can package function code
into lightweight container images, and can then make use of all the features of the Ku-
bernetes platform, such as scheduling, autoscaling, or request routing. The Kubernetes
scheduler is one of the critical components of the platform. The task of the scheduler
is to assign a pod (the atomic unit of deployment in Kubernetes) to a cluster node. A
pod can consist of one or more containers, shared storage volumes, network configura-
tion, and metadata through which the pod can, for example, communicate its resource
requirements. The Kubernetes scheduler is an online scheduler, meaning it receives pods
over time and generally has no knowledge of future arrivals. It is therefore different from
many SPP solutions that schedule several services at once [SNS+17]. Similar to many
resource schedulers of real-world systems, it employs a greedy MCDM procedure, which
we formalize in Section 6.4. Hard and soft constraints are implemented as follows. First,
the available cluster nodes are filtered by predicate functions. These functions evaluate
to true or false, and represent hard constraints that eliminate nodes incapable of hosting
a pod, e.g., because they are unable to provide the resources requested by a pod. Second,
the remaining set of feasible nodes are ranked by priority functions that represent soft

121

6. A serverless platform for edge computing

constraints to favor nodes based on their suitability for hosting the pod. Calculating the
score for a pod–node tuple involves invoking each active priority function, normalizing
the values of each function to a range between 0 and 10, and building a weighted sum.
The highest scoring node is then selected for placement. Kubernetes provides a variety of
predicate and priority functions that can be configured in the scheduler. However, as we
describe in more detail in Section 6.3.5, the default priority functions do not perform well
in edge scenarios. In particular, they do not consider the critical tradeoff between data
and computation movement which we have highlighted earlier. In the remainder of this
paper, we use the terminology of Kubernetes (i.e., pod, node, priority function), to refer
more generally to a unit of deployment, cluster resource, and soft constraint, respectively.

OpenFaaS

OpenFaaS is a serverless framework that uses Kubernetes as both execution runtime and
deployment platform. Function code is packaged into Docker containers, and a small
watchdog is added to the container that executes the function based on HTTP calls
triggered by events or through invocations of the OpenFaaS API gateway. OpenFaaS can
run on top of Kubernetes using the runtime driver faas-netes, which deploys functions as
Kubernetes pods, and then delegates scheduling decisions to the Kubernetes scheduler.
With OpenFaaS, the Kubernetes scheduler is triggered in two situations: an initial
manual deployment of new functions, or automated function replica creation through
autoscaling. If an OpenFaaS user runs the faas-cli deploy command to deploy
function code, the code is packaged into a Kubernetes pod, and the pod is placed in
the scheduling queue. Subsequent requests to the function triggered by events or HTTP
endpoint calls are forwarded to Kubernetes, which takes care of load balancing requests
among running replicas. This is the case if the function’s autoscaling policy is set to
at least one replica, and is useful to avoid cold starts for functions that are invoked
frequently. A cold start refers to a function invocations where the container image has to
be downloaded and the container is started for the first time, which incurs significant
latency. For short-lived functions that are not invoked frequently, and would otherwise
block a node’s resources despite being idle, OpenFaaS allows a scale-to-zero policy, which
removes such idle functions from nodes after a short time. This is useful for functions
such as the data pre-processing or training step in our ML pipeline. In this case, a request
to a function immediately triggers a replica creation and therefore scheduling.

6.3 Design and implementation

This section explains how our system works in tandem with existing serverless systems
to enable serverless edge computing. We first discuss overall design goals, then present
our high-level programming model, followed by a detailed explanation of the individual
system components.

122

6.3. Design and implementation

6.3.1 Design goals

In Section 2.3.3 we described the design goals for edge intelligence systems in general.
Derived from these higher-level goals, and the presented scenarios, we discuss the design
goals for a serverless edge computing platform, with a particular focus on edge AI
applications.

Hiding operational complexity: Orchestrating application execution on edge re-
sources is more involved than in cloud-based platforms as there are no well-defined APIs
and, e.g., homogeneous dedicated learning clusters to submit training jobs to. Mapping
complex workloads, such as AI workflows, to a multi-purpose edge-compute resources
needs to make full use of hardware capabilities to execute efficiently (see Figure 2.6). A
programming model and APIs for edge AI applications needs to hide this operational
complexity from the developer. In particular, programmers should not have to worry
about the distribution of data, and the heterogeneous capabilities of edge resources. The
stickiness of tasks and resources should be easily configurable, and a scheduler needs to
infer scheduling constraints and goals from application and device contexts.

Context-awareness: Being aware of the context of an edge device is essential for
enabling transparent infrastructure for edge AI applications. From a service provider’s
perspective that manages fleets of edge devices and provides models across several
domains, context-awareness can help manage operational complexity, by deploying
models on demand to devices based on their context. Context-aware policies can also
be used to specify retraining triggers, such as thresholds of new training data, or device
battery and charging conditions.

Artifacts as first-class citizens: Locally trained models and data available on the
edge exacerbates the issues around model and data management. To facilitate this
abstraction, our edge AI serverless platform treats models and data as first class citizens.
This allows the platform to make decisions on where data can reside or be transferred,
based on application contexts and device constraints, and enables the scheduler to satisfy
data–function locality objectives.

Fine-grained policy control: Developers should be able to express the context in
which functions are allowed to execute or data is transferred. However, this requires that
the programming model and API are intuitive for developers, but expressive enough to
guide the execution platform in its decision on how to schedule functions or replicate
data.

6.3.2 Programming model

We introduce AI workflow specific extensions to functions, by elevating concepts of
the AI workflow to first-class citizens in the model to provide common abstractions
that make developing edge AI workflow functions easier. Specifically, we add (a) the
notion of artifacts: data artifacts such as training data sets, and model artifacts, i.e.,
machine learning models, (b) selectors: that allows fuzzy querying of artifact metadata

123

6. A serverless platform for edge computing

to allows dynamic injection of data artifacts into functions, (c) policies: fine-grained
control mechanisms for function scheduling. For workflow composition, we rely on systems
like ModelOps [HMR+19] or OpenWhisk composer [opea], which offer different ways to
compose AI workflows. Our examples are based on Python and the capabilities of the
MXNet ML library [mxn], but the concepts could be applied to most languages.

Data & models: Current serverless platforms generally only allow JSON documents
to be passed between functions. When dealing with large artifacts or streaming data,
which is common in AI workflows, developers are required to manually read and write
from cloud storage services. In particular, it is common for functions to consume or
produce data or model artifacts. Our approach provides ways to annotate such functions,
and provides a data API that hides platform data management tasks from the developer.
Additional metadata from the annotations allow the platform to transparently handle
data transfer and storage and respect data locality policies.

Model selectors: We allow the injection of models into functions based on selectors.
This allows developers to define the requirements of a functions without specifying
the exact model instance to use. For example, as shown in Listing 6.2 a selector can
specify the type of model (regressor, or classifier), the type of data it was trained on,
the type of data it processes, or model performance metrics such as the accuracy or
robustness scores [WZC+18]. The model metadata collected by the AI lifecycle engine
ModelOps [HMR+19] facilitates this.
@consumes.model(selector={’type’: ’image_classifier’,

’data_tags’: [’machine_x’], ’accuracy’: ’>=0.88’}}})
def inference(model, request):

data = # ... data prep tasks
return model.estimate(data)

Listing 6.2: Artifact injection via model selector

Policies: Policies allow developers to define additional function execution conditions.
The deadline policy is a function execution service-level objective (SLO), which is useful
for, e.g., inferencing functions that have low-latency requirements. The runtime can also
factor in latency incurred by data transfer. A fn policy defines properties that a node
should or must have for a function to be scheduled to that node. The data policy is
similar to a role, and defines constraints on data transfer. The strict keyword makes the
policy a hard constraint. For example, the function may only be executed when the data
is accessible from within the given network.
@policy.deadline(’2s’)
@policy.fn(node = ’user_device’, capability = ’gpu’)
@policy.data(network=[’company_network’], strict=True)

Listing 6.3: Different policy annotation

124

6.3. Design and implementation

Example functions

We demonstrate how this high-level API can be used to simplify the development of
functions with two examples.

Listing 6.4 shows the example function from Listing 6.1 re-written with our API.

from skippy.data import DataArtifact, ModelArtifact, consumes,
produces, policy

... import ML libraries such as tensorflow or mxnet

can have multiple data annotations
@consumes.data(urn = ’my_bucket:train_data’)
@produces.model(urn = ’my_bucket:model’)
@policy.fn(capability = ’gpu’)
def handle(req, data: DataArtifact) -> ModelArtifact:

arr = data.to_ndarray()
model = train_model(arr, req[’train_params’])
return model

Listing 6.4: Example of training function with metadata annotations.

A common scenario in the use cases we described are user or device-specific models
refined from a base model using device-local data. Listing 6.5 shows how such a function
can be defined using our programming model. To satisfy the constraints, the scheduler
runs this function only a user’s device (given by the usr variable), and when data is
available within the specified network.

@consumes.model(selector={’urn’: ’model:base’})
@consumes.data(batch = 100, selector=...)
@produces.model(type=’regressor’, urn=’model:user:{usr}’)
@policy.fn(node = ’local’)
@policy.data(network = ’local’, strict=True)
def refine(model: ModelArtifact, data: DataArtifact):

ndarr = data.to_ndarray() # data artifact API
transfer learning code
return refined_model

Listing 6.5: Example function with several constraints

6.3.3 System overview

We briefly outline the main components of Skippy, and the integration with Kubernetes
and OpenFaaS. Figure 6.4 shows the specific integration with Kubernetes.

• metadata schema: Skippy makes heavy use of container and node labels, which
are supported by many container platforms, to communicate information about
functions and compute nodes to the scheduler. Skippy uses various mechanisms

125

6. A serverless platform for edge computing

Figure 6.4: Overview of Skippy’s components and their interaction in a deployment with
Kubernetes.

to automate labeling, such as the skippy-daemon or annotation parsing which
we describe in more detail later. All metadata labels of Skippy have the prefix
*.skippy.io.as described in [RHM+19]

• skippy daemon: a daemon that runs on all cluster nodes alongside the primary
node agent (e.g, kubelet in the case of Kubernetes). It scans a node’s hardware
capabilities, such as the availability of a GPU, and then labels the node with
the corresponding metadata. It can do this periodically to react to pluggable
capabilities, such as USB attached accelerators.

• skippy scheduler: the Skippy scheduler is an online scheduler that is sensitive
to the characteristics of edge systems. It requires access to the cluster state and a
programmatic way of binding containers to nodes. In the case of Kubernetes, the
kube-apiserver provides these features via REST APIs.

• data index: Functions can access data via storage pods that host MinIO instances
(an S3 compatible storage server), distributed across the cluster. Skippy currently
does not automatically manage these storage nodes. Replication and data distribu-
tion is left to other system components. However, Skippy dynamically discovers

126

6.3. Design and implementation

storage nodes, keeps an index of the file tree, and is sensitive to the proximity
between compute and storage nodes by using the bandwidth graph.

• bandwidth graph: We extended the ideas from Chapter 5, where we created
a graph of the network based on the latency between nodes. The bandwidth
graph is an in-memory representation of the network topology and the available
bandwidth between nodes. Currently, we use static information about the network,
and information we collect through the skippy daemon (e.g., available bandwidth of
network devices). We are working on a system that updates the bandwidth graph
at runtime by monitoring the network utilization of nodes [Mar21].

6.3.4 Node and function metadata collection

Resource schedulers depend on certain information about the cluster state and the
workload requirements to make good placement decisions. Skippy makes heavy use
of metadata about functions and compute nodes in the cluster to communicate this
information to the scheduler. A goal of or system is to reduce the amount of manual
configuration a human has to do, and rather automate the process. We use the Skippy
daemon to collect node metadata, and our high-level programming API to collect function
metadata. The node metadata are stored and accessed via the cluster orchestration
system. In the case of Kubernetes, this is stored in etcd, a distributed key-value store. If
the orchestrator does not provide a storage system, Skippy can also store the metadata
in memory.

Node metadata: Skippy daemon

The Skippy daemon is deployed as a container on all cluster nodes. It automatically
probes a node’s capabilities and maintains its Skippy-specific labels. Currently, the
daemon probes if a node provides an NVIDIA GPU, the availability and version of a
CUDA installation, and if the node is running a MinIO storage pod. The daemon code
allows straight-forward addition of custom capability probes. When nodes are added to
the cluster at runtime, the Skippy daemon labels the node with an appropriate locality
label (edge/cloud). The system overhead of running the daemon is minimal given a fairly
simple Python implementation. It requires roughly 120 MB of disk space and 25–40
MB of RAM depending on the CPU architecture, making it feasible even for resource
constrained devices.

Function metadata: annotation parsing

Serverless frameworks typically provide their own packaging and deployment tooling. In
OpenFaaS, the faas-cli command builds the container image from the function code,
and the manually configured metadata. We provide a wrapper for these tools that parses
the function annotations and translate them into labels for the scheduler. Listing 6.6
shows the resulting labels of analyzing the function from Listing 6.4. These are then
used as input for the priority functions described in Section 6.3.5.

127

6. A serverless platform for edge computing

{
’data.skippy.io/recv’: [’my_bucket:train_data’],
’data.skippy.io/send’: [’my_bucket:model’],
’capability.skippy.io/gpu’: ’’

}

Listing 6.6: Example function labels resulting from metadata parsing.

6.3.5 Skippy scheduler

The Skippy scheduler enables serverless platforms to schedule edge functions more
efficiently. Its design is based on the Kubernetes scheduler, which is a queue-based
monolithic scheduler that implements a greedy MCDM heuristic (see Section 6.2.4).

Edge-friendly priority functions

We introduce four priority functions that target requirements of edge computing appli-
cations and characteristics of edge systems, which complement common cloud-centric
scheduling constraints found in, e.g., Kubernetes [Kub19]. The additional functions are
motivated by the following observations: First, in many data-intensive edge computing
applications, data is stored at edge locations. Yet, container clusters typically rely on
centralized cloud-based repositories such as Dockerhub for managing container images.
When scheduling pods that operate on data, there is therefore an inherent tradeoff
between sending computation to the edge or sending data to the cloud, as we have
highlighted in Section 6.2 and Figure 6.1. The two priority functions LatencyAwareImage-
LocalityPriority and DataLocalityPriority help the scheduler make this tradeoff at runtime.
Second, the increasing diversity of specialized compute platforms for edge computing
hardware provide new opportunities for accelerating the equally diverse workloads. The
CapabilityPriority matches tasks and nodes based on their requirements and advertised
capabilities, respectively. Third, it is often the case that functions should prioritize
execution at the edge for a variety of reasons. The LocalityTypePriority enables the
system to respect these placement preferences.

We explain each function in more detail and provide algorithmic descriptions. Note that
the Kubernetes scheduler expected normalized values from priority functions, which are
the result of mapping the range of scores to an integer range [0..10]. We omit the code
for this step.

LatencyAwareImageLocalityPriority Favors nodes where the necessary container
image can be deployed more quickly. We use knowledge about the network topology to
estimate how long it will take in an ideal case to download the image. Algorithm 6.1 shows
pseudocode for the function. Because the bandwidth graph is static and does not consider
actual available bandwidth during runtime, the calculation is only an approximation.
Making a plausible estimate of actual network download speed would be too complicated

128

6.3. Design and implementation

for a priority function, which has minimal runtime knowledge and needs to execute
quickly. However, together with the implementation of the DataLocalityPriority, the
function allows us to make a heuristic tradeoff between fetching the container image, or
fetching data from a data store.

Algorithm 6.1: Scheduler priority function: LatencyAwareImageLocalityPrior-
ity
Result: Estimation of how long it will take to download a pod’s images

1 Function score:
Input : pod
Input : node
Input : bandwidthGraph

2 size ← 0;
3 for container in pod’s list of containers do
4 if container’s image is not present on node then
5 size +←− size of the container’s image;
6 end
7 end
8 bandwidth ← bandwidthGraph[registry][node];
9 time ← size

bandwidth ;
10 return time;

DataLocalityPriority Estimates how much data the function will transfer, and favors
nodes where the data transfer happens more quickly. From the labels extracted by our
function annotation parser (see Section 6.3.4), we know the data items a function operates
on. We query the data index to get all storage nodes that hold the specific data item.
The data item size can be queried through the MinIO S3 API, which the data index
keeps in a local cache. We then make the same network transfer time estimations as in
LatencyAwareImageLocalityPriority using our bandwidth graph. Algorithm 6.2 shows
pseudocode for the function.

CapabilityPriority Checks the computing platform requirements of a function, and
favors nodes that have those capabilities (e.g., a GPU for an ML training function). The
implementation uses node and function metadata gathered by the Skippy daemon and
function annotation parsing. Algorithm 6.3 shows pseudocode for the function.

LocalityTypePriority Favors nodes in a certain locality, e.g., nodes located in edge
networks or in the cloud. Through the programming model we have described, developers
can specify a high-level placement prioritization, e.g., for preferring nodes in a certain
network context. It checks the presence of the same values of locality.skippy.io/type in
pod and node labels. We omit the code for this function as it can be implemented by a

129

6. A serverless platform for edge computing

Algorithm 6.2: Scheduler priority function: DataLocalityPriority
Result: Estimate how long it takes for a node to transfer the required runtime

data
1 Function score:

Input : pod
Input : node
Input : storageIndex, bandwidthGraph

2 time ← 0;
3 for urn in values of ’data.skippy.io/recv’ do
4 storages ← storageIndex[urn];
5 bandwidth ← mins∈storages(bandwidthGraph[s][node]);
6 size ← of data item urn;
7 time +←− size

bandwidth ;
8 end
9 for urn in values of ’data.skippy.io/send’ do

10 ... analogous to ’recv’
11 end
12 return time;

Algorithm 6.3: Scheduler priority function: CapabilityPriority
Result: Scores how many of a pod’s requested capabilities are provided by a

node
1 Function score:

Input : pod
Input : node

2 nodeCapabilities ← get all of node’s labels starting with capability.skippy.io;
3 podCapabilities ← get all of pod’s labels starting with capability.skippy.io;
4 score ← 0;
5 for podCapability in podCapabilities do
6 if nodeCapabilities contains podCapability ∧ values are equal then
7 score +←− 1
8 end
9 end

10 return score;

simple label check. This function makes an assumptions about the existence of a static
system hierarchy, which the main premise of fog computing [GLME+15, ASDL19], where
infrastructure is separated into distinct cloud and edge regions. However, as we will show
in Section 6.5, our scheduling parameter optimization automatically ignores this function
in scenarios where such a hierarchy does not emerge, for example in the cloud federation
scenario.

130

6.4. Automatic tuning of scheduling parameters

6.3.6 Integration with OpenFaaS

To enable the deployment of applications as serverless functions, our prototype makes
use of OpenFaaS. It provides a framework for defining function deployments, an API
gateway through which all function requests are routed, and several runtime components
to manage monitoring, alerting, and autoscaling. We modified faas-netes (see Section 6.2)
to label pods resulting from OpenFaaS function deployments, to indicate that these pods
should be scheduled by Skippy instead of the default Kubernetes scheduler. Otherwise
Skippy integrates with OpenFaaS only via Kubernetes, in that Skippy schedules the pods
created by faas-netes.

6.4 Automatic tuning of scheduling parameters

Some operational goals, such as minimizing overall function execution time or uplink
usage, depend on too many (and possibly at runtime unknowable) factors that they could
be calculated efficiently in priority functions. Schedulers that employ MCDM, such as
the Kubernetes scheduler, often allow users to assign weights to each constraint to tune
the scheduler towards certain behavior. This fine-tuning to meet specific operational
goals can be difficult. Many factors need to be considered, such as the cluster topology,
node heterogeneity, or workload characteristics. This leaves operators to either rely on
their intuition, or use trial-and-error in production systems, to find weights that achieve
the desired behavior.

We propose an approach to automatically find weights of priority functions that result in
good placements that meet certain high-level operational goals. We consider a placement
to be good if it: (1) leads to low function execution time during runtime, (2) uses
edge resource efficiently, (3) reduces traffic leaving or entering a network, and (4)
reduces costs associated with executing functions in the cloud. To that end, we use
multi-objective optimization techniques, and use the simulator we have developed (see
Section 4.3) to evaluate the goodness of optimization solutions. We first formalize some
key aspects.

6.4.1 Problem formulation

Let S be the set of priority functions S ∈ S : P × N → R where P is the domain of
pods and N is the domain of nodes (and all metadata attached to them). The function
schedule : P → N maps a pod p to a node n by evaluating the scoring function score
for each node, and selecting the highest scoring node. The scoring function is essentially
a weighted sum model over all priority functions and feasible nodes. Formally, this can
be expressed as

schedule(p) = arg max
n∈N

score(p, n) :
|S|∑
i=0

wi · Si(p, n). (6.1)

131

6. A serverless platform for edge computing

The default Kubernetes scheduler sets every wi = 1. Our goal is to find values for
w = (w1 w2 · · · w|S|) that optimize towards the previously defined objectives.

We have explained the technical details of the simulator in Section 4.3, but formally a
simulation run sim(T,W,w) takes as input (1) the cluster topology T , (2) a workload
profile W , (3) the vector of priority function weights w, and simulates the function
execution based on the profiling data we have gathered. The cluster topology T is
formally a graph T = (V,E), V = N ∪ L, where N is the set of cluster nodes, L is the
set of links that have an associated bandwidth (e.g., several nodes can be connected to a
common Wi-Fi link), and E are weighted edges that indicate the latency between nodes
and links. A workload profile W assigns each function (in our case, the ML workflow
functions), an inter-arrival distribution, from which we sample at simulation time to
generate workload. Our four goal functions fi(sim(T,W,w)) are calculated from the
simulation traces as follows:

f1: average function execution time over all functions

f2: up/downlink usage, i.e., the number of bytes transferred between networks through
up/downlinks

f3: edge resource utilization, i.e., the percentage of allocated resources on edge devices
compared to cloud servers

f4: cloud usage costs given a pricing model that includes traffic and execution time in
the cloud

We now want to find w s.t. f1, f2, f4 are minimized, and f3 is maximized.

6.4.2 Implementation

We implement the optimization using our simulator and the Python Platypus [Had17]
framework for multi-objective optimization. Platypus implements the well-known NSGA-
II genetic algorithm [DPAM02], which has been found to be one of the best performing
algorithms in the framework [BT19].

To find an optimized value of w, we execute the Platypus framework’s NSGA-II imple-
mentation with 10 000 generations. Each generation executes a single simulation run
sim(T,W,w) with a predefined W and T , and the current evolution of w. A run creates
function deployments according toW until the cluster is fully utilized, using our scheduler
for placement decisions. We store execution traces into Pandas data frames, and then
calculate the goal functions fi from the traces. The result is a set of 100 solutions that
are at the Pareto frontier of the solution space. As input for the scheduler, we select
from that set a single solution w that is balanced across all goals.

132

6.5. Evaluation

Figure 6.5: Our edge cloud testbed comprising a Raspberry Pi cluster, an NVIDIA Jetson
TX2 board, and two Intel NUCs, one acting as edge storage node by hosting a MinIO
pod. A VM hosted on our on-premises cloudlet is also part of the cluster.

6.5 Evaluation

This section presents our experiment setup, results, and a discussion of limitations. We
first present the testbed we have built that we used to test our prototype implementation,
and generate traces for the simulator. The scenarios we have defined in Section 6.2,
and the traces generated from our testbed, are then used as input for our serverless
simulator. We investigate how the scheduling decisions and parameter optimization
impact application and system performance. We discuss the scheduler’s performance in
terms of scheduling throughput and latency, and, finally, discuss the current limitation of
our system.

6.5.1 Edge system testbed & profiling

The testbed we have built comprises several edge computing devices listed in Section 6.2.2.
Figure 6.5 shows the current setup. The nodes marked with a Kubernetes logo are part
of the Kubernetes cluster used as runtime for OpenFaaS. The OpenFaaS gateway and
Kubernetes master are hosted on a VM in our on-premises cloudlet.

133

6. A serverless platform for edge computing

For profiling, we follow the methodology described in Section 4.1. We run the application
we have described in Section 6.2 on the testbed using our system prototype. That is, we
implement each task as an OpenFaaS function, and execute each task on each device in
both cold and warm state using different bandwidth and latency configurations. The
functions are implemented in Python and use the Apache MXNet machine learning
framework. We measure various system and application metrics, such as the system
resource utilization, task execution time, the bandwidth requirements, e.g., when the
container image that holds the function has to be downloaded, as well as the traffic
produced by function invocations.

6.5.2 Experiment setup

We perform the experiments with parameters drawn from the infrastructure scenarios
described in Section 6.2.3, and compare three scheduler implementations: the default
Kubernetes scheduler as baseline, Skippy with weights set to 1, and Skippy with optimized
weights. The simulator directly calls the Skippy scheduler code for scheduling functions,
with the only difference that it does not call the Kubernetes API for requesting the cluster
state and performing node bindings. The experiment process is as follows. We generate
random application deployments, in our case ML workflow pipelines that comprise three
ML functions, inject them into the scheduler queue, generate random requests given
some workload profile, and then run the simulation for a certain number of invocations.
Specifically, we deploy a new pipeline every few minutes and start generating requests to
those functions a few seconds afterwards. After a specified number of function instances
have been deployed, we generate another several thousand requests, until a request limit
for that scenario has been reached. For example, in Scenario 2, each experiment ends after
30 000 invocations. Having the same amount of deployments and function invocations
allows for a fair comparison of overall network traffic.

For simulating code movement we make an assumption based on observations of our
images we described in Section 6.2: around 90% of an image’s size comes from layers
that are shared with other images. Meaning that, if any one of the images has already
been pulled before, only 10% of another image’s unique data has to be pulled. For our
evaluation this means that we are not biasing the simulation towards the estimation
that the Skippy scheduler makes through the LatencyAwareImageLocalityPriority. Our
simulator also implements the basic autoscaling behavior of OpenFaaS. In particular, it
includes OpenFaaS’ faas-idler component that enacts the scale-to-zero policy: when a
function is idle for 5 minutes or more, the respective function replica is stopped and the
underlying Kubernetes pod removed. A subsequent call to the function incurs a cold
start.

For synthesizing pipelines and requests we make the following assumptions. Each pipeline
has three steps, where each step as an individual container image. However, as we have
discussed in Section 6.2, we consider the commonalities across images. We synthesize
both pipeline instances (i.e., functions deployed in Kubernetes pods) as well as container
images, and assume a Pareto distribution of images. That is, not every function has

134

6.5. Evaluation

Figure 6.6: Drill-down into time series data from simulated experiment runs. The first
row shows the average data rate of traffic going over up/downlinks. The second row
shows the average function execution time (FET) over time (10 min rolling window).
The third row shows the maximum function execution time (FET) over time (10 min
rolling window).

a unique image. Instead we assume a Pareto-distributed relation of container images
to pod instances, i.e., 80 percent of pods use the same 20 percent of images. For the
workload profile W , we assume a typical [Fel00] Poisson arrival process where inter-
arrivals are described by an exponential distribution. We set distribution parameters
s.t. model serving requests of an individual pipeline are triggered at 40 requests per
second, and data-preprocessing requests happen every few minutes allowing the faas-idler
to occasionally shut down a replica. For synthesizing data items (e.g., training data as
input for training functions), we assume that data items are distributed uniformly across
data stores and workflows.

Experiment runs that compare different scenarios and schedulers use the same random
seed for distribution sampling to guarantee comparability between scenario runs.

6.5.3 Experiment results

This section presents the results of our experiments. The results show (1) how func-
tion placement affects system performance, (2) how function placement affects system
scalability, and (3) which priority functions have the highest impact on optimization
goals.

Runtime performance of placements

Figure 6.6 shows key performance indicators from simulation runs in each scenario for
the schedulers: the default Kubernetes scheduler, the Skippy scheduler, and Skippy using
optimized priority function weights. The first row shows the average data rate going

135

6. A serverless platform for edge computing

Figure 6.7: Edge resources utilization and execution cost of placements in three scenarios.
Bars show the average across ten runs, error bars show one σ.

over up and downlinks. Ideally, a placement keeps traffic within networks, resulting
in a low up/downlink usage. As the deployments are injected in the first phase of the
simulation, the data rate grows, but is overall significantly higher with the Kubernetes
scheduler. The Cloud Regions scenario (S3) highlights the problem when there are many
nodes within a network, and few up/downlinks between them. The second and third row
show the function execution duration over time. In the Urban Sensing scenario (S1), the
Kubernetes scheduler’s placements run into queuing issues early on. Function time keeps
increasing because the network cannot keep up transferring data necessary by the function
executions. In the Industrial IoT scenario (S2), while there are no queuing issues, the
Kubernetes scheduler’s placements lead to overall higher function execution times. There
is no significant difference in the Cloud Regions scenario, because the devices within
the cluster (cloud VMs) are fairly homogeneous in terms of task execution performance.
Overall, the second row shows the interplay between using resources effectively, and
trading-off data movement costs.

Figure 6.7 shows the aggregated results from several runs with different random seeds for
the other two performance goals we have defined: edge resource utilization and execution
cost. For calculating the cost we use the pricing model of AWS Lambda [Ama20]. For
S1 we observe the effect of a low amount of cloud resources: almost no cloud execution
cost and generally high edge resource utilization. Skippy and the optimization perform
slightly better. In S2, where data is also placed in on-premises managed cloud instances,
we observe that optimized Skippy can make a useful tradeoff between cost and edge
utilization by preferring cloud resource in favor of moving data. S3 has no edge resources,
but we can see that the Kubernetes scheduler’s decision to place functions across regions
leads to a high cost incurred by data movement. It also illustrates that most of the costs
in our scenario comes from data movement (specifically data egress), rather than compute
time, corroborating the results of a study about the unintuitive nature of serverless
pricing models [Eiv17].

136

6.5. Evaluation

0.0 0.5 1.0 1.5 2.0
0

50

100

150

Up
/D

ow
nl

in
k

Tr
af

fic
 (G

B) Urban Sensing

0.0 0.5 1.0 1.5 2.0
0

1000

2000

3000
Industrial IoT

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000
Cloud Regions

0.0 0.5 1.0 1.5 2.0

1

2

3

Da
ta

 th
ro

ug
hp

ut
 (M

B/
s)

0.0 0.5 1.0 1.5 2.0
Deployment/Node Ratio

2

3

4

0.0 0.5 1.0 1.5 2.0
0.4

0.6

0.8

Kubernetes Skippy Skippy+Opt

Figure 6.8: Scalability analysis of placements with increasing number of deployments
in each scenario. The first row shows the raw inter-network traffic in GB. The second
row shows the data throughput of functions, i.e., the overall network traffic per compute
second.

Impact of placements on system scalability

We investigate how function placements affect runtime scalability properties of the system,
which is one of the major challenges of edge intelligence, as described in Section 2.3.3.
In ad-hoc experiments we found that network bottlenecks were the biggest challenge
for guaranteeing low function execution times and high throughput. In our scenarios in
particular, we were not able to saturate cluster resources before running into extreme
network congestion (flows receiving less than 0.1 MBit/s link bandwidth). The most
important metric of scalability in our scenarios is therefore network throughput, and
whether the placement can maintain high data throughput in the face of an increasing
amount of active deployments. To examine this, we run experiments that inject an
increasingly larger number of deployments per node. As mentioned earlier, a deployment
in our scenario is an instance of one ML pipeline with its three functions. We start at a
ratio of 0.1 deployments per node up to 2 deployments per node. Figure 6.8 shows the
results of experiment runs without the scale-to-zero policy.

Two things in particular are noteworthy. First, in S2, while the optimized Skippy has a
lower data throughput than Skippy, as we have seen in Figure 6.7, it does this to trade
off execution cost while maintaining similar function execution times (see Figure 6.6).
Second, in some situations, the Kubernetes scheduler produced infeasible placements even
with very few deployments. In particular in S3, the inter-region bandwidth was quickly

137

6. A serverless platform for edge computing

Figure 6.9: A synthetic Industrial IoT scenario topology, augmented with a
TAM [PSK+20] that shows the overall link traffic in log-bytes. Blue areas have al-
most no traffic, red areas have high traffic. The left side shows a placement made by
Kubernetes, the right side shows a placement made by the optimized Skippy scheduler.

saturated and leading to infeasible placements. We consider a placement infeasible if
it, during the course of a simulation, leads to bottlenecks in the network that degrade
the bandwidth allocated to a flow to less than 0.1 MBit/s. Another finding was that, if
the OpenFaaS scale-to-zero policy was used, the default scheduler produced no feasible
placements in the first scenario. Functions would be rescheduled such that the network
was quickly congested with inter-network traffic.

We further demonstrate how Skippy achieves more scalable placements for edge scenarios.
Figure 6.9 shows a topology from S2, the IIoT scenario, and traffic data from a single
simulation run. The center of the topology is the Internet node, and the branches are
individual factory premises (see Section 6.2), connected by up and downlinks. The
topographic attribute map (TAM) immediately reveals how Skippy manages to isolate
data transfer of functions and storage nodes within edge networks, leading to much less
traffic over Internet links.

138

6.5. Evaluation

Figure 6.10: Optimized priority function weights in each scenario.

Optimized priority function weights

Figure 6.10 shows the values of w assigned by the optimization as described in Section 6.4.2,
i.e., the optimized weight of each priority function in the different evaluation scenarios.
In S1, the capability priority is less relevant, as there is a high percentage of GPU nodes
available, which are not saturated. Locality plays a much bigger role in avoiding using
the scarce cloud resources. In S2, because there are few GPU nodes, and data is also
distributed to on-premises cloud, the data locality and capability priorities are favored.
In S3, the results confirm the intuition that resource balance, locality, and capabilities
do not have much weight for scheduling in relatively homogeneous environments.

6.5.4 Scheduling latency and throughput

The main source of latency in greedy online MCDM schedulers comes from iterating over
nodes and computing priority functions. Because Skippy requires a significant number of
priority functions compared to the default Kubernetes scheduler, we think it is worth
discussing the resulting impact on scheduling latency and throughput. Let N be the set of
all nodes in the cluster, N c be the set of feasible nodes for scheduling container c, and S be
the set of priority functions. Scheduling requires the evaluation of every priority function
S ∈ S for every feasible node n ∈ N c. The algorithmic complexity of scheduling one
container c therefore depends on the complexity of the individual priority functions. If we
neglect this, i.e., assume that invoking any S is O(1), the complexity of the scoring step is
O(|N c| · |S|), where N c = N in the worst case. Because |N | can reach several thousands
in a production cluster, the Kubernetes scheduler employs a sampling heuristic to reduce
|N c|. The percentage of nodes that are sampled, progressively decreases with the number
of nodes in the cluster. Once the cluster reaches |N | ≥ 6500, the scheduler only considers
5% of available nodes for scoring. This heuristic works under the assumption that the
cluster and the network are relatively homogeneous, and that aggressive sampling will
not significantly impair placement quality. However, in the case of edge infrastructure,
where these assumptions may not hold, this heuristic would introduce extreme variance
in the placement quality, which is why we disable it and have to consider all nodes in the

139

6. A serverless platform for edge computing

0 5000 10000 15000
number of nodes

0

100

200

300

400

fu
nc

tio
ns

/s
ec

on
d

0 5000 10000 15000
number of nodes

0

100

200

300

400 Constraints
1
5
10
15

Figure 6.11: Scheduler throughput in functions/second with sampling heuristic (left),
and without (right).

cluster. This leads to a general degradation in scheduling throughput. We measured the
throughput given different cluster sizes and number of priority functions. Our results in
Figure 6.11 roughly match those of a recent Kubernetes performance evaluation [Den16].
The default Kubernetes scheduler only uses two priority functions and the sampling
heuristic, which allows it to process around 170 pods per second in a cluster of 10 000
nodes. Whereas Skippy uses by default five priority functions and scores all nodes, which,
at 10 000 nodes, yields a throughput of around 15 pods per second. While in our scenarios
this is not an issue because scheduling latency is only a small fraction of the overall
round-trip time, it does negatively affect scheduling throughput.

6.5.5 Challenges & limitations

Beyond scheduling performance, our system has several limitations that need to be
discussed. We also identify several open challenges for serverless edge platforms.

Our system currently makes no particular considerations of the dynamic nature of edge
systems. Reconciling deployment and runtime aspects of serverless edge computing
applications is especially challenging. Generally, we can distinguish function deployment,
function scaling, and function requests to already running functions. Finding good
placements for long-living functions is challenging, especially when they are network
bound. For functions such as those serving static content or simple image classification
tasks, the request RTT perceived by clients will be dominated by link latency between the
client and the node hosting the function. Therefore, to make better placement decision
for such functions, the system would require knowledge about the location of clients with
respect to nodes in the cluster [HKW+18]. In this case, an autoscaling strategy could,
for example, spin up replicas that favor nodes in close proximity to clients. This falls into
the category of dynamic service migration problems [UWH+15], and is a challenge that
confronts edge computing systems in general. The centralized API gateway architecture
of OpenFaaS, Kubernetes, and similar systems, presents a serious obstacle in solving
this issue, as generally all traffic goes through a type of ingress to allow dynamic request
routing and load balancing. A strategy could be to replicate API gateways across the

140

6.6. Related work

network and using a localization mechanism to resolve an API gateway in proximity. This
may not be fine-grained enough for scenarios such as the urban sensing infrastructure
where the resolution would have to be on city neighborhood level. However, using the
principles of elastic diffusion presented in Chapter 5, as we discussed in Section 5.8, could
be a promising approach.

Another issues of using state-of-the-art serverless platforms for edge infrastructure is the
rudimentary way they model node resources and function requirements [HFG+18]. For
example, in Kubernetes, a node has three capacities: CPU, memory and the maximum
number of pods that can be scheduled onto the node. Modeling capabilities of edge
resources is challenging, as their availability may not be known at design time, and whether
they are shareable at runtime. This is particularly important for scarce, (potentially)
non-shareable and discrete resources such as GPUs, where containers that use the resource
may completely block other containers from execution, while not requiring them often.
We therefore see resource modeling as an important aspect of future edge computing
platforms.

Using container-based systems can have several drawbacks with respect to isolation and
multitenancy. It is currently unclear how our system would behave in a multitenant
scenario, where cluster resources are shared between multiple runtimes. Further research
is necessary to investigate the effect of, e.g., workload interference.

Our system currently makes the assumption that function code is distributed in con-
tainer images. Some FaaS platforms, such as OpenWhisk, have platform-level facilities
for distributing function code, that may not benefit from the computation movement
estimation made by the LatencyAwareImageLocalityPriority. Although we could conceive
a more higher-level abstraction for a code movement soft-constraint, it would require
additional facilities to allow the scheduler to query the runtime for function metadata
(like its code size), and whether a function’s code has been deployed at a particular node.

6.6 Related work
Serverless computing in the form of cloud functions is seen by many in both industry
and academia as a computational paradigm shift [JSSS+19, aws, ACR+18, OYZ+18].
Only recently has the serverless model, and in particular the FaaS abstraction, been
investigated for edge computing. Gilkson et al. [GND17] proposed the term Deviceless
Edge Computing, to emphasize how serverless edge computing helps to hide the underlying
compute fabric, which consists of edge devices rather than servers. The characteristics of
edge infrastructure exacerbate the challenges of serverless computing [ATC+21], such as
platform architecture [NRS+17, RHM+19], runtime overhead [HR19], cold starts [BKB20],
or scheduling [RHM+19]. In a recent effort, Baresi and Mendonça [BM19] proposed a
serverless edge computing platform based on OpenWhisk. They focus on the complete
system architecture design and the implementation of load balancer that considers
distributed infrastructure. In industry, AWS IoT Greengrass [aws] enables on-premises
execution of AWS Lambda functions, Amazon’s serverless computing platform. However,

141

6. A serverless platform for edge computing

the configuration of AWS IoT Greengrass devices is highly static, since the functions
running on a device are defined using a local configuration file. We analyzed the issues
surrounding AWS Greengrass for serverless edge AI applications in [Sch19]. In an effort
to extend existing serverless runtimes to enable serverless edge computing, Xiong et
al. [XSXH18] implemented a set of extensions to Kubernetes called KubeEdge. Its most
important component, the EdgeCore node agent, manages networking, synchronizes
state, and potentially masks network failures. Our approach is complementary, in that
Skippy provides an edge-enabled scheduling system for making better function placement
decisions on edge infrastructure.

Serverless computing is also actively being used and researched in the AI and ML systems
problem space. Ishakian et al. [IMS18] discuss the advantages and open challenges of
serving ML models using serverless functions. AWS IoT Greengrass currently allows
machine learning inference on edge devices, using models trained in the cloud. Our
approach is similar in terms of architecture, but different in that it considers AI workflow
concepts as first-class citizens in the programming model and underlying runtime, which
affects the overall design. Moreover, we go beyond only serving models, and consider all
steps in end-to-end AI pipelines. Carriera et al. [CFT+18] implement ML workflows in
serverless platforms, and outline an approach that includes an API to develop serverless
ML functions, stateful-client resource manager, a worker runtime, and distributed data
store. Our approach extends this idea to include management of edge resources.

There is a strong relation between serverless function scheduling and the service placement
problem (SPP). Many variants of the SPP for different edge computing system models
and operational goals exist [SNS+17, YPI+18, SCY18, HKW+18, ASDL19]. Typically,
the problem is formulated as an optimization problem, and an algorithm is implemented
to solve an instance of the problem heuristically by leveraging assumptions within
the system model. Gog et al. [GSG+16] map the service placement problem to a
graphic data structure and model it as a min-cost max-flow (MCMF) problem. Hu
et al. [HZdLZ18] pursue a similar approach by modeling the service placement as a
min-cost flow problem (MCFP) which allows encoding multi-resource requirements and
affinities to other containers. Their scheduler considers the costs for offloading tasks
from the edge nodes to rented cloud resources. Aryal and Altmann [AA18] map the
service placement problem to a multi-objective optimization problem (MOP) and propose
a genetic algorithm to make placement decisions. Bermbach et al. [BMHP19] propose
a distributed auction-based approach for a serverless platform in which application
developers bid on resources. Generally, scheduling algorithms described in academic
literature often assume very detailed information about the system state and service
requirements, whereas in production systems, both may not be available. For example, the
presented and other approaches [THLL17, XE16], assume that constraints considered by
the schedulers are defined a priori, which allows strong assumptions when implementing
heuristics. Moreover, they assume that services are known at scheduling time, and a
placement is calculated for all services at once. This is not the case for online schedulers,
which are the norm for serverless systems, where new services can arrive at any time.

142

6.7. Summary

Many online container schedulers, such as the ones from Docker Swarm, Kubernetes, or
Apache Mesos, implement a greedy MCDM procedure. A key phase in this procedure is
scoring, i.e., calculating the score of a feasible node by invoking a set of priority functions,
building a weighted sum of priority scores, and selecting the highest scoring node for
scheduling. The Kubernetes scheduler implements this procedure in a very general and
flexible way [MSV18], which is why we build on its model, as it generalizes to many other
container schedulers. It allows to dynamically plug in and configure different hard- and
soft-constraints, theoretically even at runtime. It is unclear whether and how existing
SPP approaches could be implemented in this framework. Our work is an effort to
examine how ideas from service placement in edge computing, such as using latency and
proximity awareness for placement decision, can translate to, or be implemented in, these
types of schedulers.

Another related field is workload offloading, where mobile device workloads are offloaded
to cloud or proximate edge or resources. The goal of schedulers in mobile offloading is to
determine whether to offload a task or not. The main concern is to minimize execution
time and energy consumption of the mobile device [Kha15], and they are often geared
towards a specific application. However, the underlying constraints and priorities can be
similar to what Skippy does, i.e., determining a tradeoff between data and computation
movement, and considering the capabilities of resources to accelerate specific workloads.
For example, Eom et al. [EJF+13] model scheduling as a binary decision problem: either
offload a workload or run it locally, and investigate the performance of binary classifiers
given a simple model. The model considers the ratio between the local execution duration,
and the potential data transfer when offloading. Skippy is overall much more general-
purpose, and has a flexible way of defining both low-level constraints, as well as high-level
operational goals. While there may be some ideas that apply to serverless scheduling, a
complete investigation of mobile offloading strategies is out of scope.

6.7 Summary
Serverless computing is a powerful system abstraction that helps platform providers hide
operational complexity of the underlying infrastructure from application operators. This
makes it attractive for edge computing systems, where, as we have demonstrated in
Chapter 3, the operational complexity is particularly high. Analogously to serverless cloud
functions, we believe that edge functions are a promising approach to manage applications
that run on a distributed edge computing substrate. We have demonstrated several
limitations of existing serverless platforms when they are used in such scenarios, leading
to poor function placement on heterogeneous geo-distributed infrastructure that has
limited up/downlink connections between edge networks. Our evaluation has also revealed
specific limitations of Kubernetes and OpenFaaS for edge scenarios. First, the sampling
heuristic of the default Kubernetes scheduler can produce poor or infeasible placement
results when the network topology includes geographic distribution and link bottlenecks.
Because many different pods may be scheduled to just a few nodes, the nodes become
busy pulling new container images, which can consequently lead to network congestion

143

6. A serverless platform for edge computing

detrimental to system performance. OpenFaaS’ scale-to-zero policy exacerbates the
issue as pods that are scaled to zero are often restarted on different nodes. Second,
the prevalent centralized API gateway architecture is problematic when considering
network-bound functions, where most of the round-trip time comes from network link
latency, as is the case with, e.g., serving low-latency ML models.

We proposed a serverless platform that elevates concepts from the AI workflow to
first-class citizens, and provides a more approachable way to develop and operate edge
AI functions. This has the added benefit, that the platform can now reason over the
dataflow of functions. The goals of the deviceless function scheduling approach is
to consider both edge and cloud resources for function execution, and place functions
according to contextual policies. To that end, we presented Skippy, a container scheduling
system that enables existing container orchestrators, such as Kubernetes, to support
serverless edge functions. Skippy runs alongside Kubernetes and OpenFaaS to make
better function placement decision in edge computing scenarios. Specifically, it respects
device capabilities (such as added AI accelerators), and data locality, and can thereby
hide complex operational data and model management tasks from the developer. We
introduced scheduling constraints that leverage additional knowledge of node capabilities,
the application’s dataflow, and the network topology. Overall our experiments show
that (1) Skippy enables locality-sensitive function placement, resulting in higher data
throughput and less traffic going over up/downlinks, (2) in scenarios where there is a
fairly even distribution of cloud and edge resources, the optimization helps significantly in
trading off execution cost and overall application latency, and (3) the improved placement
quality comes at the cost of scheduler performance. We have shown that the most critical
aspect of function placement in data-intensive serverless edge computing is the tradeoff
between data and computation movement. However, making this tradeoff in a generalized
way is challenging due to the wide range of edge infrastructure scenarios. By introducing
higher-level operational goals, we can fine-tune the underlying scheduler parameters to
consider infrastructure-specific aspects.

Adding soft constraints to improve placement quality comes at the cost of scheduling
throughput. In fact, in large cluster configurations of 10 000 nodes and five soft constraints,
the scheduling throughput drops by an order of magnitude. We showed how this is due
to a general scalability limitation of state-of-the-art greedy online MCDM serverless
scheduling approaches, and their monolithic queue-based design. We doubt that this
design will work for more complex scenarios, where many tenants consolidate edge
devices to form huge cluster configurations, requiring many soft constraints. Exploring
alternative architectures may therefore be a promising direction. Omega [SKAEMW13],
a disaggregated shared-state scheduler, has been designed to cope with Google’s real-life
production workload. Firmament[GSG+16] promises to accomplish sub-second latencies
for placing more than ten thousand machines by using multiple min-cost max-flow
(MCMF) optimizations. Combining these models could be a promising approach for
operating edge cloud systems in general.

There are several open issues to fully realize the idea of edge functions on a distributed

144

6.7. Summary

compute fabric. For example, the centralized API gateway architecture employed by most
state-of-the-art serverless platforms may be impractical for edge computing, particularly
with dispersed clients that consume network-bound functions. A possible solution may
be using principles of osmotic computing as we discussed in the summary of Chapter 5.
Moreover, the dynamic nature of edge systems requires the continuous re-evaluation of
placement decisions, necessitating context-aware autoscaling and workload migration
strategies. Finally, the automatic characterization of workloads and mapping to their
preferred node capabilities could significantly improve function placement, which we
explore in subsequent research [Rai21].

145

CHAPTER 7
Conclusion

This chapter concludes the thesis. First, in Section 7.1 we give a brief summary of
the covered topics and the presented contributions. Then, in Section 7.2 we revisit the
research questions posited in the introduction. Finally, in Section 7.3 we give a brief
outlook on future research directions and open issues.

7.1 Summary
Edge intelligence is a collection of infrastructure architectures, computing paradigms,
and operational mechanisms, that deal with the challenges arising from the increasing
interconnectedness of humans, Internet connected things, and AI. In this paradigm, new
applications have emerged that create new and unique challenges for distributed systems.
In particular, they necessitate new distributed systems architectures, and operational
mechanisms tailored to deal with the complexity of AI systems, geographic dispersion of
compute resources, resource and workload heterogeneity, extreme bandwidth and latency
requirements, and stringent privacy constraints. The prevalent cloud-based model with
its centralized infrastructure architecture is clearly at odds with these requirements.

In this thesis, we made the case for a distributed computing fabric. First, in Chapter 2
we explained the key principles. The fabric is composed of edge and cloud computing
resources, federated to form a diverse and computing substrate. In Chapter 3 we discussed
and analyzed different infrastructure models for such a substrate.

Together with three orthogonal systems and their operational mechanisms, we enable
a serverless computing model that abstracts this complex distributed infrastructure
architecture. (1) In Chapter 3, we presented a prototype for a portable energy-aware edge
computer cluster, that could be powered by a car battery or similar power source, making
it useful for forward-deployed scenarios. The resulting system efficiently serves stateless
services such as image recognition services, while automatically trading off application

147

7. Conclusion

latency and energy consumption. (2) In Chapter 5 we presented a prototype for a
distributed MQTT middleware, that continuously monitors proximity between clients
and brokers, can deal with dynamic network topologies, and drastically reduce application
latency by leveraging proximate edge resources for message brokering. Complementary,
we outlined a system design based on osmotic computing principles. We developed
a generalizable mechanism for proximity-based autoscaling that dynamically migrates
brokers and clients to the edge. (3) In Chapter 6, we presented a serverless code
execution platform tailored to edge intelligence applications. The key contributions are a
programming model for serverless edge functions, a custom scheduler, and a method to
automatically fine-tune scheduler parameters to the specific infrastructure configuration.
The scheduler makes tradeoffs between data and computation movement, and intelligently
maps workloads to their appropriate edge resource based on their characteristics. In a
series of experiments, we showed how our system is able to maintain a serverless illusion,
even in the face of extreme resource heterogeneity and geo-distributed networks.

In Chapter 4, we presented three contributions to improve the evaluation of edge com-
puting systems. First, we presented an experimentation and analytics framework for
distributed systems, which we use to create profiling pipelines of the edge cluster testbeds
we built. Second, the profiling data is fed into a trace-driven simulation framework that
can then be used for scalability analyses, or capacity planning. Third, we presented
a model and tool for generating synthetic edge infrastructure configurations that are
grounded in the scenarios we analyzed in Chapter 3. We also made the case how these
three systems together can be used in a closed loop for developing operational mechanisms
for distributed systems in general.

7.2 Research questions
In Section 1.2.1 we posited three core research question that have driven the research
presented in this thesis. Their purpose was to (1) examine the current state of edge
computing infrastructure architectures, (2) understand the operational mechanisms
necessary to manage applications on these systems, and (3) investigate and develop
evaluation and development methodologies for these operational mechanisms. We now
discuss the research questions and contextualize the contributions of this thesis.

RQ1. Which are appropriate infrastructure architectures that enable a
distributed compute fabric for edge intelligence?

From the analysis in Chapter 3 of existing and emerging edge computing infrastructure
architectures, we can make the following observations. First, edge computers will
not live in isolation. Much like data center servers live together in racks as cohesive
infrastructure units, multiple edge computers will form high-density compute clusters.
Unlike data center servers, these clusters will be much smaller and more diverse in terms
of hardware platforms. General-purpose computing platforms will be complemented by
GPUs, modular AI accelerators, FPGAs, or ASICs. We therefore argued that multi-

148

7.2. Research questions

purpose edge computers are the cohesive infrastructure unit analog to server racks,
which will come in various shapes and sizes. For portable or forward-deployed scenarios,
in Section 3.2 we have introduced a concrete proposal for an energy-aware cluster-based
edge computer, that takes energy into account as first-class citizen in their operational
mechanisms.

In the past, efforts to centralize or decentralize computing systems have oscillated
into both extremes, ranging from pure peer-to-peer networks, to consolidation of IT
resource into massive cloud data centers. While edge computing has ushered in a new
wave of decentralization, we observe a certain convergence to hybrid and cooperative
systems. Multi-purpose edge computers that are geographically dispersed will be federated
together with centralized cloud resources, and form a geographically dispersed computing
substrate. Mechanisms for cluster federation and decentralized resource management will
become more relevant as the dispersion of edge computing resources progresses. System
abstractions for cloud computing have become very effective at hiding the underlying
computing hardware, as demonstrated by the serverless computing model. We see
container-based virtualization as the way forward in these systems, as opposed to VM-
based hardware virtualization, since the lightweight nature of containers allows us to
include a much wider range of devices into the computing substrate. Maintaining this
serverless illusion in edge computing systems will be extremely valuable, but significantly
more challenging, as we have shown in Chapter 6.

RQ2. Which aspects of edge intelligence systems should be abstracted
as first-class citizens into platforms that manage such systems?

From our analysis of edge intelligence applications and their requirements in Chapter 2
and Chapter 3, we can make the general observation that all edge computing systems have
at least three goals: (1) optimize application responsiveness, (2) balance system resource
usage, and (3) minimize dependence on cloud resources (for reasons such as fault tolerance,
privacy constraints, cost, or to reduce Internet traffic). Moreover, when juxtaposed with
cloud computing systems, the discerning characteristics of edge computing systems are:
(a) decentralization of computing resources and data, (b) clients and computing resources
may be mobile, (c) resulting physical and logical distance between clients and resources,
and (d) heterogeneity of computing resources to enable a wide range of use cases. To
reconcile edge computing goals and system characteristics, we identify the following
three critical concepts that should be considered as first-class citizens in operational
mechanisms.

Proximity

Proximity plays a fundamental role in the operational mechanisms of edge computing
systems, as we demonstrated in both Chapter 5 and Chapter 6. Its impact on system
design is so profound, in fact, that we dedicate to it a longer discussion.

149

7. Conclusion

Two issues arise when using proximity in the way we presented: its definition, and its
measurement. Proximity can be defined in different ways. Classic spatial or geographic
proximity as it is used in CDNs or cloud availability regions, plays a lesser role for the
systems we are interested in. Instead, we describe proximity as a function of network
latency or available bandwidth. This turns out to be useful because these values can
change due to resource contention, which has the same potential consequence on system
performance as physical distance. In a messaging middleware for example, a spatially
close broker that is slow to respond behaves as if it were farther away. Moreover, we have
shown the challenges of measuring proximity in a scalable way. Opportunistic monitoring
techniques and abstraction via virtual network coordinate systems help significantly in
reducing the network strain caused by continuous monitoring, but also tend to reduce
the precision of distance estimations.

We have shown how considering proximity as a first-class citizen in operational mech-
anisms can help significantly in meeting certain operational goals in edge computing
systems. From the prototypes we have built, we can formulate the following generalizable
mechanisms.

Proximity-based autoscaling. In cloud computing, autoscaling decisions are typically
made independently of placement decisions. This is firstly because it is easier to implement,
and secondly because, in cloud computing, it generally does not matter where service
replicas are placed since they will all live in the same data center. As an example, the
default configuration of the Kubernetes scheduler uses soft constraints that favor nodes
that already have the necessary container image to run the service, and prefer nodes
with more free resources in order to balance load throughout the system. Proximity
between nodes is not considered to have a particular significance. However, in edge
computing systems, where clusters of clients may spontaneously appear and disappear,
and proximity to compute resources matters significantly for application performance, the
two decisions should be made in tandem. It is not only important when to autoscale, but
also where to autsocale. The results presented in Chapter 5 demonstrate the importance
of elasticity towards the edge using proximity-based autoscaling and placement. Although
our prototype was developed specifically in the context of messaging middleware, the
ideas translate to other systems as well. For example, similar principles can be applied to
the problem of API gateways in microservice-based architectures, or serverless function
scaling. Replication of functions also necessitates request routing and load balancing.
The classic round-robin load balancing mechanisms treat each backend server equally.
When proximity between clients and servers matter, however, servers are not equally
performant from the client’s point of view. This is especially the case for network-bound
workloads, such as low-latency ML inferencing, or message brokering. We showed how
grouping servers into proximity groups can help balance the goals of load distribution
and latency minimization.

Data and computation movement tradeoffs. We motivated the work in Chapter 6
with experiments highlighting the challenges of treating geographically distributed com-
puting and storage resources as a single federated computing substrate. The resulting

150

7.2. Research questions

variance in the up/downlink bandwidth between networks necessitates the explicit consid-
eration of distance between compute and storage nodes. This becomes especially apparent
when scheduling data-intensive functions, such as ML model training jobs, that operate
on data stored in unstructured storage systems (like distributed S3 instances). In these
scenarios, there is a tradeoff to be made between moving the data to the cloud, or moving
the computation to the edge, where moving computation means pulling a container or
VM image from the cloud. Here, a definition of proximity based on network bandwidth
is useful to re-use mechanisms we built that leverage proximity as an abstraction in their
algorithms.

Energy

As long as we rely on burning fossil fuels for generating electrical energy, there will be
a case for energy-aware solutions. More practically, however, energy-awareness plays
a critical role in forward-deployed or mobile computing scenarios, to improve battery
lifetime and therefore the overall utility of the system. In Section 3.2, we presented a
prototype for a portable cluster-based edge computer, that could be powered for several
hours with a car battery. We showed how the tradeoff between performance and energy
consumption at this system scale are much more pronounced than in data centers. Also,
we showed some unintuitive system behavior when using modern high-density CPU
platforms, that are already extremely energy efficient, in a cluster that applies another
layer of energy optimization. As part of our simulation model presented in Section 4.3, we
described an ML-based energy modelling technique, that can help operational mechanisms
make decisions based on estimated energy use of individual nodes and the entire system
as a whole. These models could become a first-class citizen of resource managers or
load balancers. Much like laptops or mobile phones have a power-saving mode, we
conceive that cluster-based edge computers have such a mode that gives more weight to
energy-conserving mechanisms.

Device and workload heterogeneity

A characteristic often ascribed to edge systems is heterogeneity, the meaning of which
remains somewhat vague. In our model for synthesizing infrastructure configurations
(see Section 4.2), we presented a mathematical description of heterogeneity, that allows
us to use it as a quantifiable system property. The model focuses on system resources
such as CPU cores, available memory, and additional capabilities like GPUs or AI
accelerators. We showed how sensitive some operational mechanisms are to this type of
system heterogeneity. For example, in the motivation of Chapter 6, we demonstrated
the impact of correctly mapping device capabilities to workload characteristics. System
performance depends greatly on precise placement decisions, like placing functions that
perform ML model training on edge nodes with GPUs or AI accelerators. The problem
is that VMs or containers are black-boxes, and we generally don’t have a way of knowing
a-priori whether they can benefit from certain accelerators. Moreover, as we demonstrated
in Section 4.3, without explicit modelling, it is hard to reason about the effect of resource

151

7. Conclusion

contention on system performance. We proposed a black-box model that characterizes
workloads based on their resource usage. By measuring performance metrics and resource
usage on certain devices, we can, during system runtime, determine which cluster nodes
are best suited for which workloads.

RQ3. What are appropriate methods for developing and evaluating
edge computing systems to allow more generalizable conclusions?

Through our work on synthesizing edge infrastructure configurations in Section 4.2, we
have shown how drastically different edge computing infrastructure can be, depending
on their use case. As we just discussed in the previous paragraph on heterogeneity,
operational mechanisms can be very sensitive to these differences. Because we can no
longer build on the assumptions of a centralized and homogeneous datacenter, building
generalizable operational mechanisms is much more challenging. Instead, we need to be
able to rapidly vary the parameters of infrastructure like resource heterogeneity or network
topologies. It is challenging to do this using real testbeds, which is why simulation and
emulation will continue to play an important role in edge computing systems.

As we have shown in Section 4.3, many existing simulation or emulation tools make
simplified assumptions that lead to inaccurate results. It is unclear to which degree
that affects the validity of results presented in systems research that make use of the
simulators. We argue that using stochastic trace-driven simulation, as compared to
prevalent analytical or queue-based models, should be the preferred way of doing systems
evaluations.

A streamlined way of profiling edge computing systems is therefore a critical part of the
evaluation methodology. With our profiling system, we made a step forward to a more
systematic approach for benchmarking and profiling. However, the biggest issue is still
the scarcity of reference benchmarks for edge computing. We hope that, as the number
of applications and requirements for edge computing systems increases, standardized
benchmarks will emerge that allow us to better compare operational mechanisms.

7.3 Future work

It is possible that no consensus on edge computing infrastructure architectures will be
achieved, and rather there will be a variety of co-existing models used for different use
cases. In this scenario, developing generalizable operational mechanisms is challenging.
Schedulers, autoscalers, and load-balancers, need to have fine-grained parameters that
can be tuned to the infrastructure. The improvement of methods for self-adaptive
systems will be particularly important, to reduce the manual, and potentially error prone,
configuration a human has to do. A benefit of having simulators that are grounded in
real profiling data, is that we can use them to make probabilistic predictions about the
system behavior given different runtime situations. With a tight loop between profiling
and simulation, we see an opportunity to use simulation not only for evaluating systems,

152

7.3. Future work

but also as a core tool in operational mechanisms. For example, we showed in Section 6.4,
how simulation can be used to optimize scheduler parameters used for the system being
simulated. We conceive that, in the future, these simulators will be updated at runtime
using monitoring data, and then used by schedulers, autoscalers, or load balancers, to
play through various scenarios. The success of this approach is however contingent on
accurate and performant simulations.

In Chapter 6 we juxtaposed serverless function scheduling with the Service Placement
Problem (SPP), where generally multiple services are scheduled at once. We argued that
these approaches are not useful for the systems we are interested in, because in these
systems, workloads (such as serverless functions), are generally not known upfront and
can arrive at any point during runtime. What could be done, however, is leveraging
existing SPP solutions to determine the optimal placement of the already scheduled
functions, and then determining a set of operations to converge from the current state
to the optimal state. Coming up with ways to calculate the cost–benefit tradeoff of
migrating serverless functions in this way, could be promising research.

The systems presented in this thesis mostly rely on centralized control mechanisms that
govern the system. This can be problematic. As we showed in Chapter 6, a centralized
monolithic scheduler struggles with large clusters and many scheduling constraints. A
divide-and-conquer strategy may solve the scalability issues, but it is unclear whether
the added complexity of decentralized control mechanisms would outweigh their benefits.

Finally, for the full end-to-end realization of smart city scale edge intelligence, there
are still many non-functional issues that warrant further investigation. In particular
concerning ownership and stake of edge computing infrastructure. With respect to
stake, we observe that there are three categories of edge intelligence use cases: public
(such as smart public spaces), private (personal health assistants (personal), predictive
maintenance (corporate)), and intersecting (such as autonomous vehicles). It is unclear
who will own the future fabric for edge intelligence, whether utility-based offerings for edge
computing will take over as is the case in cloud computing, whether telecommunications
will keep up with the development of mobile edge computing, what role governments
and the public will play, and how the answers to these questions will impact engineering
practices and system architectures.

153

155

Bibliography

[5G-19] 5G-TRANSFORMER project. 5G-TRANSFORMER final system design
and techno-economic analysis. Public Deliverable D1.4, November 2019.

[5GA19] 5GAA. C-ITS vehicle to infrastructure services: How C-V2X technology
completely changes the cost equation for road operators. White paper,
5G Automotive Association, January 2019.

[AA18] R. G. Aryal and J. Altmann. Dynamic application deployment in federa-
tions of clouds and edge resources using a multiobjective optimization AI
algorithm. In 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC), pages 147–154, April 2018.

[ACR+18] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: To-
wards high-performance serverless computing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 923–935, 2018.

[AFGM+15] A Al-Fuqaha, M Guizani, M Mohammadi, M Aledhari, and M Ayyash.
Internet of things: A survey on enabling technologies, protocols, and
applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376,
2015.

[AH16] Sherif Abdelwahab and Bechir Hamdaoui. FogMQ: A message broker
system for enabling distributed, internet-scale IoT applications over het-
erogeneous cloud platforms. CoRR, abs/1610.0, 2016.

[AKGH17] Kyoungho An, Shweta Khare, Aniruddha Gokhale, and Akram Hakiri.
An autonomous and dynamic coordination and discovery service for wide-
area peer-to-peer publish/subscribe: Experience paper. In Proceedings of
the 11th ACM International Conference on Distributed and Event-based
Systems, DEBS ’17, pages 239–248, New York, NY, USA, 2017. ACM.

[Ama20] Amazon. AWS lambda pricing. AWS. Online. Accessed 2020-02-19.
https://aws.amazon.com/lambda/pricing/, 2020.

157

https://aws.amazon.com/lambda/pricing/

[AP08] Charu C Aggarwal and S Yu Philip. A general survey of privacy-preserving
data mining models and algorithms. In Privacy-preserving data mining,
pages 11–52. Springer, 2008.

[ASDL19] Farah AIT SALAHT, Frédéric Desprez, and Adrien Lebre. An overview
of service placement problem in fog and edge computing. Research Report
RR-9295, Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France,
October 2019.

[ATC+21] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman
Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh
Gill, Raj Gaire, and Schahram Dustdar. Serverless edge computing:
Vision and challenges. In 19th Australasian Symposium on Parallel and
Distributed Computing, AusPDC’21, 2021.

[Aus] Austrian Federal Ministry for Climate Action, Environment, Energy,
Mobility, Innovation and Technology. Senderkataster Austria. https:
//www.senderkataster.at/.

[aws] AWS IoT greengrass. https://aws.amazon.com/greengrass/.

[Bar15] Jeff Barr. AWS IoT – cloud services for connected de-
vices. AWS Blog. Online. Posted 2015-01-08. Accessed
2017-09-18. https://aws.amazon.com/blogs/aws/
aws-iot-cloud-services-for-connected-devices/, 2015.

[BB10] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource man-
agement in virtualized cloud data centers. In 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages
826–831. IEEE, 2010.

[BB12] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Concur-
rency and Computation: Practice and Experience, 24(13):1397–1420, sep
2012.

[BBC+17] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu
Foo, Zakaria Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent
Koc, and Others. TFX: A TensorFlow-based production-scale machine
learning platform. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1387–1395.
ACM, 2017.

[BBD+17] B Bhattacharjee, S Boag, C Doshi, P Dube, B Herta, V Ishakian, K R
Jayaram, R Khalaf, A Krishna, Y B Li, V Muthusamy, R Puri, Y Ren,
F Rosenberg, S R Seelam, Y Wang, J M Zhang, and L Zhang. IBM deep

158

https://www.senderkataster.at/
https://www.senderkataster.at/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/
https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/

learning service. IBM Journal of Research and Development, 61(4/5):10:1–
10:11, 2017.

[BBH+17] Arsany Basta, Andreas Blenk, Klaus Hoffmann, Hans Jochen Morper,
Marco Hoffmann, and Wolfgang Kellerer. Towards a cost optimal design
for a 5G mobile core network based on SDN and NFV. IEEE Trans.
Network and Service Management, 14(4):1061–1075, 2017.

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In International Conference on Computer Aided Verification, pages 171–
177. Springer, 2011.

[BCR14] P Bellavista, A Corradi, and A Reale. Quality of service in wide scale
publish–subscribe systems. IEEE Communications Surveys Tutorials,
16(3):1591–1616, 2014.

[Bec18] Pete Beckman. Artificial intelligence at the edge: How machine learning
at the edge is creating a computing continuum. Talk. https://www.
youtube.com/watch?v=N_k8Uh8Bl0E, 2018. Research Computing
Centre.

[BJP+20] Philip J. Basford, Steven J. Johnston, Colin S. Perkins, Tony Garnock-
Jones, Fung Po Tso, Dimitrios Pezaros, Robert D. Mullins, Eiko Yoneki,
Jeremy Singer, and Simon J. Cox. Performance analysis of single board
computer clusters. Future Generation Computer Systems, 102:278–291,
2020.

[BKB20] David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz. Using
application knowledge to reduce cold starts in FaaS services. In Proceedings
of the 35th ACM Symposium on Applied Computing (SAC 2020). ACM,
2020.

[BM19] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless
platform for edge computing. In 2019 IEEE International Conference on
Fog Computing, ICFC’19, pages 1–10. IEEE, 2019.

[BMHP19] David Bermbach, Setareh Maghsudi, Jonathan Hasenburg, and Tobias
Pfandzelter. Towards auction-based function placement in serverless fog
platforms. arXiv preprint arXiv:1912.06096, 2019.

[BPB+19] Lorenzo Bertizzolo, Michele Polese, Leonardo Bonati, Abhimanyu Gosain,
Michele Zorzi, and Tommaso Melodia. mmBAC: Location-aided mmwave
backhaul management for UAV-based aerial cells. In Proceedings of the
3rd ACM Workshop on Millimeter-wave Networks and Sensing Systems,
pages 7–12, 2019.

159

https://www.youtube.com/watch?v=N_k8Uh8Bl0E
https://www.youtube.com/watch?v=N_k8Uh8Bl0E

[Bru21] Andreas Bruckner. Self-adaptive distributed MQTT middleware for edge
computing applications. Master’s thesis, TU Wien, 2021.

[BT19] Dimo Brockhoff and Tea Tušar. Benchmarking algorithms from the
platypus framework on the biobjective bbob-biobj testbed. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
pages 1905–1911, 2019.

[Bur17] Doug Burger. Microsoft unveils project Brainwave for real-time AI.
Microsoft Research, Microsoft, 22, 2017.

[BWFS14] Michael Till Beck, Martin Werner, Sebastian Feld, and S Schimper. Mobile
edge computing: A taxonomy. In AFIN 2014 : The Sixth International
Conference on Advances in Future Internet. Citeseer, 2014.

[CAR05] N Carvalho, F Araujo, and L Rodrigues. Scalable QoS-based event routing
in publish-subscribe systems. In Fourth IEEE International Symposium
on Network Computing and Applications, pages 101–108, jul 2005.

[Cas19] Stephen Cass. Taking AI to the edge: Google’s TPU now comes in a
maker-friendly package. IEEE Spectrum, 56(5):16–17, 2019.

[CBSG17] Charles E Catlett, Peter H Beckman, Rajesh Sankaran, and Kate Kusiak
Galvin. Array Of Things: A scientific research instrument in the public
way: Platform design and early lessons learned. In Proceedings of the
2nd International Workshop on Science of Smart City Operations and
Platforms Engineering, pages 26–33. ACM, 2017.

[CDOK17] Vittorio Cozzolino, Aaron Yi Ding, Jorg Ott, and Dirk Kutscher. Enabling
fine-grained edge offloading for IoT. In Proceedings of the SIGCOMM
Posters and Demos, pages 124–126. 2017.

[CDZ97] Kenneth L Calvert, Matthew B Doar, and Ellen W Zegura. Modeling
internet topology. IEEE Communications Magazine, 35(6):160–163, 1997.

[CFT+18] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. A case for serverless machine learning. Workshop on Systems
for ML and Open Source Software at NeurIPS 2018, 2018.

[Cha99] Xinjie Chang. Network simulations with OPNET. In WSC’99. 1999
Winter Simulation Conference Proceedings. ’Simulation - A Bridge to the
Future’ (Cat. No. 99CH37038), volume 1, pages 307–314. IEEE, 1999.

[CHW+17] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guan-
hang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta
Klatzky, and et al. An empirical study of latency in an emerging class
of edge computing applications for wearable cognitive assistance. In

160

Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
SEC ’17, 2017.

[Cis19] Cisco public. Redefine connectivity by building a network
to support the Internet of Things. White Paper. https:
//www.cisco.com/c/en/us/solutions/service-provider/
a-network-to-support-iot.html, 2019.

[Cis21] Cisco public. Cisco annual internet report (2018–2023). White Paper.
https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/
white-paper-c11-741490.html, Apr 2021.

[CLL+15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A
flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

[Cor17] IBM Corporation. Medtronic builds a cognitive mobile personal assistant
app to assist with daily diabetes management, 2017. IBM Case Studies.

[Cor18] IBM Corporation. An AI-powered assistant for your field technician.
Technical report, 2018.

[CPSC16] Xudong Chen, Swee King Phang, Mo Shan, and Ben M Chen. System
integration of a vision-guided UAV for autonomous landing on mov-
ing platform. In 12th IEEE International Conference on Control and
Automation (ICCA), pages 761–766. IEEE, 2016.

[CRB+11] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and experience, 41(1):23–50, 2011.

[CS05] Yuan Chen and Karsten Schwan. Opportunistic overlays: Efficient con-
tent delivery in mobile ad hoc networks. In Middleware 2005: ACM/I-
FIP/USENIX 6th International Middleware Conference, Grenoble, France,
November 28 - December 2, 2005. Proceedings, pages 354–374. Springer
Berlin Heidelberg, 2005.

[Cut18] Bruce Cutler. Examining cross-region communication speeds
in AWS. Medium. Online. Posted 208-05-30. Accessed
2020-02-15. https://medium.com/slalom-technology/
examining-cross-region-communication-speeds-in-aws-9a0bee31984f,
2018.

161

https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html
https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html
https://www.cisco.com/c/en/us/solutions/service-provider/a-network-to-support-iot.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f
https://medium.com/slalom-technology/examining-cross-region-communication-speeds-in-aws-9a0bee31984f

[CWC+18] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and
Qin Zhang. Edge computing in IoT-based manufacturing. IEEE Com-
munications Magazine, 56(9):103–109, 2018.

[CZVZ14] Angelo Cenedese, Andrea Zanella, Lorenzo Vangelista, and Michele Zorzi.
Padova smart city: An urban internet of things experimentation. In
Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014, pages 1–6. IEEE, 2014.

[DCKM04] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A
decentralized network coordinate system. ACM SIGCOMM Computer
Communication Review, 34(4):15–26, 2004.

[DCM+12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc'aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
Quoc V. Le, and Andrew Y. Ng. Large scale distributed deep networks.
In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1223–1231.
Curran Associates, Inc., 2012.

[Den16] Hongchao Deng. Improving Kubernetes scheduler per-
formance. CoreOS Blog. Online. Posted 2016-02-
22. Accessed 2019-03-14. https://coreos.com/blog/
improving-kubernetes-scheduler-performance.html, 2016.

[DNŠ17] Schahram Dustdar, Stefan Nastić, and Ognjen Šćekić. Smart Cities: The
Internet of Things, People and Systems. Springer, 2017.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[DPVW+17] Yvonne Dierikx-Platschorre, Jaap Vreeswijk, Anton Wijbenga, Patrick
Hofman, and Ruben van Ardenne. Guideline placement C-ITS roadside
units. In Proc. 12th ITS European Congress, 2017.

[Duc18] Chris Duckett. Baidu creates Kunlun silicon for AI. ZDNet. On-
line. https://www.zdnet.com/article/baidu-creates-kunlun-silicon-for-ai/,
2018.

[EFGK03] Patrick Th. Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, jun 2003.

[Eiv17] Adam Eivy. Be wary of the economics of serverless cloud computing.
IEEE Cloud Computing, 4(2):6–12, 2017.

162

https://coreos.com/blog/improving-kubernetes-scheduler-performance.html
https://coreos.com/blog/improving-kubernetes-scheduler-performance.html

[EJF+13] H. Eom, P. S. Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer.
Machine learning-based runtime scheduler for mobile offloading framework.
In 2013 IEEE/ACM 6th International Conference on Utility and Cloud
Computing, UCC’13, pages 17–25, 2013.

[EKR03] E N (Mootaz) Elnozahy, Michael Kistler, and Ramakrishnan Rajamony.
Energy-efficient server clusters. In Babak Falsafi and T N Vijaykumar, ed-
itors, Power-Aware Computer Systems, pages 179–197, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[EPM13] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud computing:
Concepts, technology & architecture, 2013.

[EPR+17] Yehia Elkhatib, Barry Porter, Heverson B Ribeiro, Mohamed Faten Zhani,
Junaid Qadir, and Etienne Riviere. On using micro-clouds to deliver the
fog. IEEE Internet Computing, 21(2):8–15, mar 2017.

[ER59] Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes
Mathematicae Debrecen, 6(290-297):18, 1959.

[ETS19] ETSI GS MEC 003. Multi-Access Edge Computing (MEC); Framework
and Reference Architecture, January 2019. V2.1.1.

[FBCC+10] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric
Nyberg, John Prager, et al. Building Watson: An overview of the DeepQA
project. AI magazine, 31(3):59–79, 2010.

[FCFMO+19] Damián Fernández-Cerero, Alejandro Fernández-Montes, F Javier Ortega,
Agnieszka Jakóbik, and Adrian Widlak. Sphere: Simulator of edge
infrastructures for the optimization of performance and resources energy
consumption. Simulation Modelling Practice and Theory, page 101966,
2019.

[Fel00] Anja Feldmann. Characteristics of TCP connection arrivals. Self-Similar
Network Traffic and Performance Evaluation, pages 367–399, 2000.

[FLP14] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. Energy-efficient
virtual machines consolidation in cloud data centers using reinforcement
learning. In 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pages 500–507. IEEE, feb
2014.

[Fra16] Dustin Franklin. Nvidia® Jetson TX1 supercomputer-on-module drives
next wave of autonomous machines. Parallel Forall. NVIDIA Corporation,
12, 2016.

163

[Gar16] Michael Garcia. How to bridge mosquitto MQTT broker to AWS IoT.
The Internet of Things on AWS – Official Blog, 2016.

[Gar17] Gartner. Integrate DevOps and artificial intelligence to accel-
erate IT solution delivery and business value. Online. Ac-
cessed 2018-09-05. https://www.gartner.com/doc/3787770/
integrate-devops-artificial-intelligence-accelerate,
2017.

[GB14] Nikolay Grozev and Rajkumar Buyya. Multi-cloud provisioning and load
distribution for three-tier applications. TAAS, 9:13:1–13:21, 2014.

[Gei19] Manuel Geier. Enabling mobility and message delivery guarantees in
distributed MQTT networks. Master’s thesis, TU Wien, 2019.

[GHBRK12] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A
Kozuch. Autoscale: Dynamic, robust capacity management for multi-tier
data centers. ACM Transactions on Computer Systems (TOCS), 30(4):14,
2012.

[GKK+19] Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski,
Schahram Dustdar, Ognjen Scekic, Thomas Rausch, Stefan Nastic, Sasko
Ristov, and Thomas Fahringer. A deviceless edge computing approach
for streaming IoT applications. IEEE Internet Computing, 23(1):37–45,
2019.

[GLME+15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber,
and Etienne Riviere. Edge-centric computing: Vision and challenges.
SIGCOMM Comput. Commun. Rev., 45(5):37–42, September 2015.

[GND17] Alex Glikson, Stefan Nastic, and Schahram Dustdar. Deviceless edge
computing: Extending serverless computing to the edge of the network.
In Proceedings of the 10th ACM International Systems and Storage Con-
ference, SYSTOR ’17, 2017.

[GOM18] David Guyon, Anne-Cécile Orgerie, and Christine Morin. An experimental
analysis of paas users parameters on applications energy consumption. In
IC2E 2018-IEEE International Conference on Cloud Engineering, pages
1–7, 2018.

[GSG+16] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson,
and Steven Hand. Firmament: Fast, centralized cluster scheduling at
scale. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 99–115, Savannah, GA, 2016. USENIX
Association.

164

https://www.gartner.com/doc/3787770/integrate-devops-artificial-intelligence-accelerate
https://www.gartner.com/doc/3787770/integrate-devops-artificial-intelligence-accelerate

[GSGKK15] J Gascon-Samson, F P Garcia, B Kemme, and J Kienzle. Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud. In 2015 IEEE 35th International Conference on Distributed
Computing Systems, pages 486–496, jun 2015.

[GSKK17] Julien Gascon-Samson, Jörg Kienzle, and Bettina Kemme. Multipub:
Latency and cost-aware global-scale cloud publish/subscribe. In 37th
International Conference on Distributed Computing Systems, ICDCS’17,
pages 2075–2082. IEEE, 2017.

[GVDGB17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. iFogSim: A toolkit for modeling and simulation of resource
management techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296, 2017.

[GŽB+14] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. A survey on concept drift adaptation. ACM
Computing Surveys, 46(4):1–37, 2014.

[Had17] D Hadka. Platypus: A free and open source python library for multi-
objective optimization. Open source project. https://github.com/
Project-Platypus/Platypus, 2017.

[HAHZ15] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura.
Femto clouds: Leveraging mobile devices to provide cloud service at
the edge. In Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on, pages 9–16. IEEE, 2015.

[HAW17] Ilija Hadžić, Yoshihisa Abe, and Hans C Woithe. Edge computing in
the ePC: A reality check. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, SEC ’17, pages 1–10, 2017.

[HBS+15] Kai Hwang, Xiaoying Bai, Yue Shi, Muyang Li, Wen-Guang Chen, and
Yongwei Wu. Cloud performance modeling with benchmark evaluation of
elastic scaling strategies. IEEE Transactions on parallel and distributed
systems, 27(1):130–143, 2015.

[HCH+14] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive assis-
tance. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’14, pages 68–81.
ACM, 2014.

[HDB17] Jeremy Hermann and Mike Del Balso. Meet michelangelo: Uber’s machine
learning platform, 2017.

165

https://github.com/Project-Platypus/Platypus
https://github.com/Project-Platypus/Platypus

[HFG+18] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Server-
less computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651, 2018.

[HJO+10] Ali R Hurson, Evens Jean, Machigar Ongtang, Xing Gao, Yu Jiao, and
Thomas E Potok. Recent advances in mobile agentoriented applications.
Mobile Intelligence: Mobile Computing and Computational Intelligence,
pages 106–139, 2010.

[HKM+17] Daniel Happ, Niels Karowski, Thomas Menzel, Vlado Handziski, and
Adam Wolisz. Meeting IoT platform requirements with open pub/sub
solutions. Annals of Telecommunications, 72(1-2):41–52, feb 2017.

[HKW+18] Ting He, Hana Khamfroush, Shiqiang Wang, Tom La Porta, and Sebastian
Stein. It’s hard to share: Joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources. In 2018 IEEE 38th
International Conference on Distributed Computing Systems, ICDCS’18,
pages 365–375. IEEE, 2018.

[HLR+08] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and
Joseph Kopena. Network simulations with the ns-3 simulator. SIGCOMM
demonstration, 14(14):527, 2008.

[HMD15] Song Han, Huizi Mao, and William J. Dally. Deep compression: Com-
pressing deep neural network with pruning, trained quantization and
huffman coding. CoRR, abs/1510.00149, 2015.

[HMR+19] Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube,
and Kaoutar El Maghraoui. Modelops: Cloud-based lifecycle management
for reliable and trusted AI. In 2019 IEEE International Conference on
Cloud Engineering, IC2E’19, Jun 2019.

[HR19] Adam Hall and Umakishore Ramachandran. An execution model for
serverless functions at the edge. In Proceedings of the International
Conference on Internet of Things Design and Implementation, IoTDI’19,
pages 225–236. Association for Computing Machinery, 2019.

[HRM+18] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

[HZC+17a] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

166

[HZC+17b] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[HZdLZ18] Yang Hu, Huan Zhou, Cees de Laat, and Zhiming Zhao. ECSched:
Efficient container scheduling on heterogeneous clusters. In European
Conference on Parallel Processing, pages 365–377. Springer, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[IBM18] IBM Corporation. IBM Watson machine learning. On-
line. https://developer.ibm.com/clouddataservices/docs/
ibm-watson-machine-learning/, 2018.

[IBW+19] Haris Isakovic, Vanja Bisanovic, Bernhard Wally, Thomas Rausch, Denise
Ratasich, Schahram Dustdar, Gerti Kappel, and Radu Grosu. Sensyml:
Simulation environment for large-scale IoT applications. In IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society,
volume 1, pages 3024–3030. IEEE, 2019.

[IHM+16] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[IMS18] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serving
deep learning models in a serverless platform. In 2018 IEEE International
Conference on Cloud Engineering, IC2E ’18, pages 257–262, 2018.

[inta] AWS inter-region latency monitoring. https://www.cloudping.co/.

[intb] InterCor: Interoperable corridors deploying cooperative intelligent trans-
port systems, connecting europe facility (CEF) programme (2014-2020).
https://intercor-project.eu/.

[Int18] Intel. Intel unveils the Intel Neural Compute Stick 2 at
Intel AI devcon Beijing for building smarter AI edge de-
vices. Online. https://newsroom.intel.com/news/
intel-unveils-intel-neural-compute-stick-2/, 2018.

[IRH+18] Haris Isakovic, Denise Ratasich, Christian Hirsch, Michael Platzer, Bern-
hard Wally, Thomas Rausch, Dejan Nickovic, Willibald Krenn, Gerti
Kappel, Schahram Dustdar, et al. CPS/IoT Ecosystem: A platform for
research and education. In Cyber Physical Systems. Model-Based Design,
pages 206–213. Springer, 2018.

167

https://developer.ibm.com/clouddataservices/docs/ibm-watson-machine-learning/
https://developer.ibm.com/clouddataservices/docs/ibm-watson-machine-learning/
https://www.cloudping.co/
https://intercor-project.eu/
https://newsroom.intel.com/news/intel-unveils-intel-neural-compute-stick-2/
https://newsroom.intel.com/news/intel-unveils-intel-neural-compute-stick-2/

[JBP+18] Steven J Johnston, Philip J Basford, Colin S Perkins, Herry Herry,
Fung Po Tso, Dimitrios Pezaros, Robert D Mullins, Eiko Yoneki, Simon J
Cox, and Jeremy Singer. Commodity single board computer clusters and
their applications. Future Generation Computer Systems, 89:201–212,
2018.

[JCL+10] Hans-Arno Jacobsen, Alex Cheung, Guoli Li, Balasubramaneyam Maniy-
maran, Vinod Muthusamy, and Reza Sherafat Kazemzadeh. The PADRES
publish/subscribe system. In Principles and Applications of Distributed
Event-Based Systems, pages 164–205. IGI Global, 2010.

[JGJ+18] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Rajkumar
Buyya, Zheng Li, and Rajiv Ranjan. A holistic evaluation of docker
containers for interfering microservices. In 2018 IEEE International
Conference on Services Computing (SCC), pages 33–40. IEEE, 2018.

[JSSS+19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud programming simplified: A
berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[KG15] S. P. T. Krishnan and Jose L. Ugia Gonzalez. Google Cloud Pub/Sub,
pages 277–292. Apress, Berkeley, CA, 2015.

[KGL+20] Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim,
Jooyoung Hwang, and Myoungsoo Jung. DC-store: Eliminating noisy
neighbor containers using deterministic i/o performance and resource
isolation. In 18th USENIX Conference on File and Storage Technologies,
FAST’20, pages 183–191, 2020.

[Kha15] Minhaj Ahmad Khan. A survey of computation offloading strategies
for performance improvement of applications running on mobile devices.
Journal of Network and Computer Applications, 56:28 – 40, 2015.

[KKH+09] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy,
and Guofei Jiang. Power and performance management of virtualized
computing environments via lookahead control. Cluster Computing,
12(1):1–15, mar 2009.

[KKY+10] Minkyong Kim, Kyriakos Karenos, Fan Ye, Johnathan Reason, Hui Lei,
and Konstantin Shagin. Efficacy of techniques for responsiveness in a wide-
area publish/subscribe system. In Proceedings of the 11th International
Middleware Conference Industrial Track, Middleware Industrial Track
’10, pages 40–45. ACM, 2010.

168

[KRM06] Diwakar Krishnamurthy, Jerome A Rolia, and Shikharesh Majumdar. A
synthetic workload generation technique for stress testing session-based
systems. IEEE Transactions on Software Engineering, 32(11):868, 2006.

[Kub19] Kubernetes Community. Kubernetes scheduler, 2019. Kubernetes Doc-
umentation. Accessed 2019-01-04. https://kubernetes.io/docs/
concepts/scheduling/kube-scheduler/.

[LBMAL14] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review
of auto-scaling techniques for elastic applications in cloud environments.
Journal of grid computing, 12(4):559–592, 2014.

[LCC+15] J E Luzuriaga, J C Cano, C Calafate, P Manzoni, M Perez, and P Boronat.
Handling mobility in IoT applications using the MQTT protocol. In 2015
Internet Technologies and Applications (ITA), pages 245–250, Sep 2015.

[LES+14] Grace Lewis, Sebastian Echeverria, Soumya Simanta, Ben Bradshaw, and
James Root. Tactical cloudlets: Moving cloud computing to the edge.
In 2014 IEEE Military Communications Conference, pages 1440–1446.
IEEE, oct 2014.

[LH18] Qiang Liu and Tao Han. Dare: Dynamic adaptive mobile augmented
reality with edge computing. In 2018 IEEE 26th International Conference
on Network Protocols (ICNP), pages 1–11. IEEE, 2018.

[LMFJ+04] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton. Sensor networks
for emergency response: challenges and opportunities. IEEE Pervasive
Computing, 3(4):16–23, Oct 2004.

[LRD19a] Clemens Lachner, Thomas Rausch, and Schahram Dustdar. Context-
aware enforcement of privacy policies in edge computing. In 2019 IEEE
International Congress on Big Data (BigDataCongress), pages 1–6. IEEE,
2019.

[LRD19b] Clemens Lachner, Thomas Rausch, and Schahram Dustdar. ORIOT: A
source location privacy system for resource constrained IoT devices. In
2019 IEEE Global Communications Conference (GLOBECOM), pages
1–6. IEEE, 2019.

[LRD21] Clemens Lachner, Thomas Rausch, and Schahram Dustdar. A privacy
preserving system for ai-assisted video analytics. In 2021 IEEE 5th
International Conference on Fog and Edge Computing (ICFEC), 2021.

[LWB16] P. Liu, D. Willis, and S. Banerjee. ParaDrop: Enabling lightweight multi-
tenancy at the network’s extreme edge. In 2016 IEEE/ACM Symposium
on Edge Computing (SEC), pages 1–13, 2016.

169

https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling/kube-scheduler/

[Mar21] Cynthia Marcelino. Locality-aware data management for serverless edge
computing. Master’s thesis, TU Wien, 2021.

[Mat08] Norm Matloff. Introduction to discrete-event simulation and the simpy
language. Davis, CA. Dept of Computer Science. University of California
at Davis. Retrieved on August, 2(2009):1–33, 2008.

[MB17] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on
architecture and computation offloading. IEEE Communications Surveys
& Tutorials, 19(3):1628–1656, 2017.

[MBLN+19] Johann Marquez-Barja, Bart Lannoo, Dries Naudts, Bart Braem, Carlos
Donato, Vasilis Maglogiannis, Siegfried Mercelis, Rafael Berkvens, Peter
Hellinckx, Maarten Weyn, Ingrid Moerman, and Steven Latre. Smart
highway: ITS-G5 and C-V2X based testbed for vehicular communications
in real environments enhanced by edge/cloud technologies. In Proc. 28th
European Conference on Networks and Communications (EuCNC), 2019.

[MG18] Gabriel Axel Montes and Ben Goertzel. Distributed, decentralized, and
democratized artificial intelligence. Technological Forecasting and Social
Change, 2018.

[MGG+17] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umak-
ishore Ramachandran. EmuFog: Extensible and scalable emulation of
large-scale fog computing infrastructures. In 2017 IEEE Fog World
Congress, FWC’17, pages 1–6. IEEE, 2017.

[MJ10] Vinod Muthusamy and Hans-Arno Jacobsen. Mobility in publish/sub-
scribe systems. Mobile Intelligence, pages 62–86, 2010.

[MJS+17] Ahsan Morshed, Prem Prakash Jayaraman, Timos Sellis, Dimitrios Geor-
gakopoulos, Massimo Villari, and Rajiv Ranjan. Deep osmosis: Holistic
distributed deep learning in osmotic computing. IEEE Cloud Computing,
4(6):22–32, 2017.

[MK20] Andras Markus and Attila Kertesz. A survey and taxonomy of simulation
environments modelling fog computing. Simulation Modelling Practice
and Theory, 101:102042, 2020.

[MKN+17] Simone Mangiante, Guenter Klas, Amit Navon, Zhuang GuanHua, Ju Ran,
and Marco Dias Silva. VR is on the edge: How to deliver 360 videos in
mobile networks. In Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, pages 30–35, 2017.

[MLDD17] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. ModelHub:
Deep learning lifecycle management. In 2017 IEEE 33rd International
Conference on Data Engineering, ICDE’17, pages 1393–1394. IEEE, 2017.

170

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
BRITE: An approach to universal topology generation. In MASCOTS
2001, Proceedings Ninth International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, pages
346–353. IEEE, 2001.

[MM08] Bratislav Milic and Miroslaw Malek. NPART - Node Placement Algo-
rithm for Realistic Topologies in Wireless Multihop Network Simulation.
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II, Institut für Informatik, 2008.

[MMR+13] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and
Jon Crowcroft. Unikernels: Library operating systems for the cloud.
SIGPLAN Not., 48(4):461–472, 2013.

[MMRyA16] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera
y Arcas. Federated learning of deep networks using model averaging.
CoRR, abs/1602.05629, 2016.

[Mor97] Robert Morris. TCP behavior with many flows. In Proceedings 1997
International Conference on Network Protocols, pages 205–211. IEEE,
1997.

[Mor17] R. Morabito. Virtualization on internet of things edge devices with
container technologies: A performance evaluation. IEEE Access, 5:8835–
8850, 2017.

[MPD19] Salma Abdel Magid, Francesco Petrini, and Behnam Dezfouli. Image clas-
sification on IoT edge devices: profiling and modeling. Cluster Computing,
pages 1–19, 2019.

[MS18] Ryan Maguire and Rob Schmit. Hybrid machine learning: From the
cloud to the edge. Talk. https://www.youtube.com/watch?v=
M-29naAVmI4, 2018. CloudNext ’18.

[MSS12] V. Mathew, R. K. Sitaraman, and P. Shenoy. Energy-aware load balancing
in content delivery networks. In 2012 Proceedings IEEE INFOCOM, pages
954–962, March 2012.

[MSV18] Janakiram MSV. How Kubernetes is transforming into a
universal scheduler. The New Stack. Online. Posted 2018-
09-07. Accessed 2019-03-14. https://thenewstack.io/
how-kubernetes-is-transforming-into-a-universal-scheduler,
2018.

171

https://www.youtube.com/watch?v=M-29naAVmI4
https://www.youtube.com/watch?v=M-29naAVmI4
https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler
https://thenewstack.io/how-kubernetes-is-transforming-into-a-universal-scheduler

[mxn] MXNet: a scalable deep learning framework. Open source project. https:
//mxnet.apache.org/.

[NND+17] Matteo Nardelli, Stefan Nastic, Schahram Dustdar, Massimo Villari, and
Rajiv Ranjan. Osmotic flow: Osmotic computing+ IoT workflow. IEEE
Cloud Computing, 4(2):68–75, 2017.

[NRS+17] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan. A serverless
real-time data analytics platform for edge computing. IEEE Internet
Computing, 21(4):64–71, 2017.

[NTD16] S. Nastic, H. Truong, and S. Dustdar. A middleware infrastructure for
utility-based provisioning of IoT cloud systems. In 2016 IEEE/ACM
Symposium on Edge Computing (SEC), volume 00, pages 28–40, 2016.

[Nun05] Flávio Nunes. Aveiro, portugal: Making a digital city. Journal of Urban
Technology, 12(1):49–70, 2005.

[NVI] NVIDIA. NVIDIA Jetson - the AI platform for autonomous machines.
Online. https://developer.nvidia.com/embedded/develop/
hardware.

[opea] Apache OpenWhisk Composer. Open source project. https://github.
com/apache/incubator-openwhisk-composer.

[opeb] OpenCellid. https://opencellid.org.

[opec] OpenSignal coverage maps. https://www.opensignal.com/
networks.

[OR11] Melih Onus and Andréa W Richa. Minimum maximum-degree publish–
subscribe overlay network design. IEEE/ACM Transactions on Network-
ing, 19(5):1331–1343, 2011.

[OYZ+18] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid
task provisioning with serverless-optimized containers. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 57–70, Boston,
MA, July 2018. USENIX Association.

[PAA+16] Larry L. Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy C.
Bavier, Saurav Das, Jonathan Hart, Guru Palukar, and William Snow.
Central office re-architected as a data center. IEEE Communications
Magazine, 54(10):96–101, 2016.

[Pal21] Jacob Palecek. Improving serverless edge computing for network bound
workloads. Master’s thesis, TU Wien, 2021.

172

https://mxnet.apache.org/
https://mxnet.apache.org/
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware
https://github.com/apache/incubator-openwhisk-composer
https://github.com/apache/incubator-openwhisk-composer
https://opencellid.org
https://www.opensignal.com/networks
https://www.opensignal.com/networks

[Pan18] Kasey Panetta. 5 trends emerge in the Gartner hype cycle for emerging
technologies, 2018. 2018.

[PB02] Peter R Pietzuch and Jean M Bacon. Hermes: A distributed event-
based middleware architecture. In Proceedings of the 22nd International
Conference on Distributed Computing Systems Workshops, pages 611–618.
IEEE, 2002.

[PDCB15] Sareh Fotuhi Piraghaj, Amir Vahid Dastjerdi, Rodrigo N. Calheiros,
and Rajkumar Buyya. A framework and algorithm for energy efficient
container consolidation in cloud data centers. Proceedings - 2015 IEEE
International Conference on Data Science and Data Intensive Systems;
8th IEEE International Conference Cyber, Physical and Social Com-
puting; 11th IEEE International Conference on Green Computing and
Communications and 8th IEEE Inte, pages 368–375, 2015.

[PDT18] G. Premsankar, M. Di Francesco, and T. Taleb. Edge computing for
the internet of things: A case study. IEEE Internet of Things Journal,
5(2):1275–1284, 2018.

[PG07] Cassio Pennachin and Ben Goertzel. Contemporary Approaches to Artifi-
cial General Intelligence, pages 1–30. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[PSK+20] Reinhold Preiner, Johanna Schmidt, Katharina Krösl, Tobias Schreck, and
Gabriel Mistelbauer. Augmenting node-link diagrams with topographic
attribute maps. In Computer Graphics Forum, volume 39, pages 369–381.
Wiley Online Library, 2020.

[PVCM20] David Perez Abreu, Karima Velasquez, Marilia Curado, and Edmundo
Monteiro. A comparative analysis of simulators for the cloud to fog
continuum. Simulation Modelling Practice and Theory, 101:102029, 2020.
Modeling and Simulation of Fog Computing.

[PY+10] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[RAD18] Thomas Rausch, Cosmin Avasalcai, and Schahram Dustdar. Portable
energy-aware cluster-based edge computers. In 2018 IEEE/ACM Sympo-
sium on Edge Computing, SEC’18, pages 260–272, 2018.

[Rai21] Philipp Raith. Container scheduling on heterogeneous clusters using
machine learning-based workload characterization. Master’s thesis, TU
Wien, 2021.

[Ras20] Alexander Rashed. Optimized container scheduling for serverless edge
computing. Master’s thesis, TU Wien, 2020.

173

[Rau17] Thomas Rausch. Message-oriented middleware for edge computing ap-
plications. In Proceedings of the 18th Doctoral Symposium of the 18th
International Middleware Conference, pages 3–4, 2017.

[Rau20a] Thomas Rausch. Ether: edge topology synthesizer. Source code repository.
https://github.com/edgerun/ether, 2020.

[Rau20b] Thomas Rausch. Galileo: a framework for distributed load testing ex-
periments. Source code repository. https://github.com/edgerun/
galileo, 2020.

[RD19] Thomas Rausch and Schahram Dustdar. Edge intelligence: The conver-
gence of humans, things, and AI. In 2019 IEEE International Conference
on Cloud Engineering, IC2E’19, Jun 2019.

[RDR18] Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. Osmotic message-
oriented middleware for the internet of things. IEEE Cloud Computing,
5(2):17–25, 2018.

[RET14] Robert Ricci, Eric Eide, and CloudLab Team. Introducing CloudLab:
Scientific infrastructure for advancing cloud architectures and applications.
; login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[RHLS17] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte.
An empirical analysis of build failures in the continuous integration
workflows of java-based open-source software. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), pages
345–355. IEEE, 2017.

[RHM+19] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander
Rashed, and Schahram Dustdar. Towards a serverless platform for edge AI.
In 2nd USENIX Workshop on Hot Topics in Edge Computing, HotEdge’19,
2019.

[RHM20a] Thomas Rausch, Waldemar Hummer, and Vinod Muthusamy. PipeSim:
Trace-driven simulation of large-scale AI operations platforms. arXiv
preprint arXiv:2006.12587, 2020.

[RHM20b] Thomas Rausch, Waldermar Hummer, and Vinod Muthusamy. An experi-
mentation and analytics framework for large-scale AI operations platforms.
In 2020 USENIX Conference on Operational Machine Learning, OpML’20,
2020.

[RHS+21] Thomas Rausch, Waldemar Hummer, Christian Stippel, Silvio Vasiljevic,
Carmine Elvezio, Schahram Dustdar, and Katharina Krösl. Towards a
platform for smart city-scale cognitive assistance applications. In 2021
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW), 2021.

174

https://github.com/edgerun/ether
https://github.com/edgerun/galileo
https://github.com/edgerun/galileo

[RLF+20] Thomas Rausch, Clemens Lachner, Pantelis A. Frangoudis, Philipp Raith,
and Schahram Dustdar. Synthesizing plausible infrastructure configura-
tions for evaluating edge computing systems. In 3rd USENIX Workshop
on Hot Topics in Edge Computing, HotEdge’20, 2020.

[RND18] Thomas Rausch, Stefan Nastic, and Schahram Dustdar. EMMA: Dis-
tributed QoS-aware MQTT middleware for edge computing applications.
In 2018 IEEE International Conference on Cloud Engineering, IC2E’18,
pages 191–197. IEEE, 2018.

[RR20] Alexander Rashed and Thomas Rausch. Execution traces of an MNIST
workflow on a serverless edge testbed, 2020.

[RRD21] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized
container scheduling for data-intensive serverless edge computing. Future
Generation Computer Systems, 114:259–271, 2021.

[RRF+20] Gianluca Rizzo, Sasko Ristov, Thomas Fahringer, Marjan Gusev, Matija
Dzanko, Ivana Bilic, Christian Esposito, and Torsten Braun. Emer-
gency networks for post-disaster scenarios. Guide to Disaster-Resilient
Communication Networks, pages 271–298, 2020.

[RRPD19] Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram
Dustdar. A system for operating energy-aware cloudlets. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, SEC’19, pages
307–309, 2019.

[RRR20] Thomas Rausch, Philipp Raith, and Alexander Rashed. faas-sim: a
framework for trace-driven simulation of serverless function-as-a-service
platforms. Source code repository. https://github.com/edgerun/
faas-sim, 2020.

[RTG+12] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, page 7. ACM, 2012.

[Sat04] M. Satyanarayanan. From the editor in chief: Augmenting cognition.
IEEE Pervasive Computing, 3(2):4–5, 2004.

[Sat17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(June):30–39, Jan 2017.

[SBCD09] M Satyanarayanan, P Bahl, R Caceres, and N Davies. The case for
VM-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

175

https://github.com/edgerun/faas-sim
https://github.com/edgerun/faas-sim

[Sca14] ScalAgent. JoramMQ, a distributed MQTT broker for the internet of
things, 2014.

[Sch19] David Schneiderbauer. Predictive analytics for smart homes using server-
less edge computing. Master’s thesis, TU Wien, 2019.

[SCY18] Yuvraj Sahni, Jiannong Cao, and Lei Yang. Data-aware task allocation
for achieving low latency in collaborative edge computing. IEEE Internet
of Things Journal, 6(2):3512–3524, 2018.

[SD16] W. Shi and S. Dustdar. The promise of edge computing. Computer,
49(5):78–81, May 2016.

[SGL19] Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. The computing
landscape of the 21st century. In Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, pages 45–50,
2019.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, et al. A general reinforcement learning al-
gorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[SKAEMW13] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. Omega: flexible, scalable schedulers for large compute clusters.
In SIGOPS European Conference on Computer Systems (EuroSys), pages
351–364, Prague, Czech Republic, 2013.

[SLF+20] Vikram Sreekanti, Chenggang Wu Xiayue Charles Lin, Jose M Faleiro,
Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful functions-as-a-service. arXiv preprint arXiv:2001.04592,
2020.

[SNS+17] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. Optimized IoT service placement in the fog. Service
Oriented Computing and Applications, 11(4):427–443, 2017.

[SNSD17] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar.
Towards QoS-aware fog service placement. In 2017 IEEE 1st international
conference on Fog and Edge Computing, ICFEC’17, pages 89–96. IEEE,
2017.

176

[SOE17] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. EdgeCloudSim: An
environment for performance evaluation of edge computing systems. In
2017 Second International Conference on Fog and Mobile Edge Computing,
FMEC’17, pages 39–44. IEEE, 2017.

[SSBL16] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner.
Resource provisioning for IoT services in the fog. In Service-Oriented
Computing and Applications (SOCA), 2016 IEEE 9th International Con-
ference on, pages 32–39. IEEE, 2016.

[SSS+17] Pablo Sotres, Juan Ramón Santana, Luis Sánchez, Jorge Lanza, and Luis
Muñoz. Practical lessons from the deployment and management of a
smart city internet-of-things infrastructure: The smartsantander testbed
case. IEEE Access, 5:14309–14322, 2017.

[SSX+15] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai,
Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics
in the internet of things. IEEE Pervasive Computing, 14(2):24–31, 2015.

[Sta19] Robert Stackowiak. Azure IoT Hub, pages 73–85. Apress, Berkeley, CA,
2019.

[STM15] G Siegemund, V Turau, and K Maâmra. A self-stabilizing publish/sub-
scribe middleware for wireless sensor networks. In 2015 International
Conference and Workshops on Networked Systems (NetSys), pages 1–8,
Mar 2015.

[SVDI16] J. M. Schleicher, M. Vögler, S. Dustdar, and C. Inzinger. Enabling a
smart city application ecosystem: Requirements and architectural aspects.
IEEE Internet Computing, 20(2):58–65, 2016.

[SVK+17] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J
Franklin, and Benjamin Recht. KeystoneML: Optimizing pipelines for
large-scale advanced analytics. In Data Engineering (ICDE), 2017 IEEE
33rd International Conference on, pages 535–546. IEEE, 2017.

[SXP+13] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
and Mahadev Satyanarayanan. Scalable crowd-sourcing of video from
mobile devices. In Proceeding of the 11th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’13, page 139–152,
New York, NY, USA, 2013. Association for Computing Machinery.

[SYY+17] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue. An approach to QoS-
based task distribution in edge computing networks for IoT applications.
In 2017 IEEE International Conference on Edge Computing (EDGE),
pages 32–39, June 2017.

177

[Tel19] Telefonica. Telefonica open access and edge computing. White paper,
February 2019.

[TGJ+02] Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott
Shenker, and Walter Willinger. Network topology generators: Degree-
based vs. structural. ACM SIGCOMM Computer Communication Review,
32(4):147–159, 2002.

[THLL17] Haisheng Tan, Zhenhua Han, Xiang-Yang Li, and Francis CM Lau. Online
job dispatching and scheduling in edge-clouds. In IEEE INFOCOM 2017-
IEEE Conference on Computer Communications, pages 1–9. IEEE, 2017.

[TLG16] Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture
for mobile computing. In IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9. IEEE,
2016.

[TS17] V. Turau and G. Siegemund. Scalable routing for topic-based publish/-
subscribe systems under fluctuations. In 2017 IEEE 37th International
Conference on Distributed Computing Systems, ICDCS’17, pages 1608–
1617, June 2017.

[UWH+15] Rahul Urgaonkar, Shiqiang Wang, Ting He, Murtaza Zafer, Kevin Chan,
and Kin K Leung. Dynamic service migration and workload scheduling
in edge-clouds. Performance Evaluation, 91:205–228, 2015.

[VFD+16] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv
Ranjan. Osmotic computing: A new paradigm for edge/cloud integration.
IEEE Cloud Computing, 3(6):76–83, 2016.

[VGGK18] Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas
Katrinis. Shadow puppets: Cloud-level accurate AI inference at the speed
and economy of edge. In USENIX Workshop on Hot Topics in Edge
Computing, HotEdge’18, 2018.

[VN] Steven J. Vaughan-Nichols. Canonical’s cloud-in-a-box: The ubuntu
orange box. ZDNet. Online. https://zdnet.com/article/
canonicals-cloud-in-a-box-the-ubuntu-orange-box.

[VPK+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. Large-scale cluster management at Google
with borg. In Proceedings of the Tenth European Conference on Computer
Systems, page 18. ACM, 2015.

[VSDTD12] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
Cloudlets: Bringing the cloud to the mobile user. In Proceedings of
the third ACM workshop on Mobile cloud computing and services, pages
29–36. ACM, 2012.

178

https://zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box
https://zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box

[VSI+15] M. Vögler, J. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and S. Dust-
dar. LEONORE – large-scale provisioning of resource-constrained IoT
deployments. In 2015 IEEE Symposium on Service-Oriented System
Engineering, pages 78–87, 2015.

[Wax88] B. M. Waxman. Routing of multipoint connections. IEEE Journal on
Selected Areas in Communications, 6(9):1617–1622, Dec 1988.

[Wei16] Joe Weinman. Hybrid cloud economics. IEEE Cloud Computing, 3(1):18–
22, 2016.

[WFC+19] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa Anna George, Mihir Bala,
Padmanabhan Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan.
Edge-based live video analytics for drones. IEEE Internet Computing,
23(4):27–34, 2019.

[WFG+19] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padmanab-
han Pillai, and Mahadev Satyanarayanan. Towards scalable edge-native
applications. In Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, pages 152–165. ACM, 2019.

[WSS05] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: A
lightweight network location service without virtual coordinates. ACM
SIGCOMM Computer Communication Review, 35(4):85–96, 2005.

[WXZL11] Jun Wu, Xin Xu, Pengcheng Zhang, and Chunming Liu. A novel multi-
agent reinforcement learning approach for job scheduling in grid comput-
ing. Future Generation Computer Systems, 27(5):430 – 439, 2011.

[WZC+18] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng
Gao, Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness of
neural networks: An extreme value theory approach. arXiv e-prints, page
arXiv:1801.10578, 2018.

[XE16] Xuan-Qui Pham and Eui-Nam Huh. Towards task scheduling in a cloud-
fog computing system. In 2016 18th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 1–4, Oct 2016.

[XLD+19] Xiaolong Xu, Daoming Li, Zhonghui Dai, Shancang Li, and Xuening
Chen. A heuristic offloading method for deep learning edge services in
5G networks. IEEE Access, 7:67734–67744, 2019.

[XSXH18] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Extend cloud to edge
with KubeEdge. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 373–377. IEEE, 2018.

179

[YHZ+17] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, pages 1–13, 2017.

[YMLL17] Jihong Yan, Yue Meng, Lei Lu, and Lin Li. Industrial big data in an
industry 4.0 environment: Challenges, schemes, and applications for
predictive maintenance. IEEE Access, 5:23484–23491, 2017.

[YPI+18] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Inwoong Kim, Xi Wang,
Hakki C Cankaya, Qiong Zhang, Weisheng Xie, and Jason P Jue. QoS-
aware dynamic fog service provisioning. arXiv preprint arXiv:1802.00800,
2018.

[ZCL+19] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[ZIH+13] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao, S. Kumar,
D. Pfeffer, B. Aljedia, Y. Ren, M. Griss, S. Rosenberg, J. Cao, and
A. Rowe. Sensor data as a service – a federated platform for mobile data-
centric service development and sharing. In 2013 IEEE International
Conference on Services Computing, pages 446–453, 2013.

[ZWL+19] Xingzhou Zhang, Yifan Wang, Sidi Lu, Liangkai Liu, Weisong Shi, et al.
OpenEI: An open framework for edge intelligence. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pages 1840–1851. IEEE, 2019.

[ZWT12] B. Zhou, X. Wang, and X. Tang. Understanding collective crowd behaviors:
Learning a mixture model of dynamic pedestrian-agents. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2871–
2878, 2012.

180

Curriculum Vitae

Thomas Rausch
thomas@thrau.at
https://thrau.at
Born 27.10.1986 in Vienna, Austria.
CV date: 15.02.2021

Education
Ph.D., Computer Science, TU Wien, ongoing
Supervised by Schahram Dustdar at the Distributed Systems Group.
Topical focus: Distributed systems, systems for AI, edge computing, Internet of Things.
Thesis title: “A Distributed Compute Fabric for Edge Intelligence”.

M.Sc., Software Engineering & Internet Computing, TU Wien, 2016
Module focus: programming languages, software engineering, information systems, and
distributed systems and networking.
Thesis title: “Build Failure Prediction in Continuous Integration Workflows”.
Graduated with distinction and a GPA of 1.1 (1 best, 5 worst).

B.Sc., Software & Information Engineering, TU Wien, 2014
Thesis title: “Efficient Querying of Versioned Tool Data in Data Integration Environ-
ments”

Secondary, Höhere Graphische Bundes-Lehr- und Versuchsanstalt, 2006
Specialization: Print and media technology.
Working with a diverse range of print, multimedia, and web technologies
In 2015, following professional experience, awarded the title Ingenieur (Ing.)

Experience
Founder & Technical Lead, Cognitive XR
Nov 2020 - ongoing
Vienna, Austria

Academic spin-off at the intersection of edge computing, augmented reality, and AI,
building an any-scale platform for wearable cognitive augmentation applications.

181

https://thrau.at

University Assistant, TU Wien
Oct 2016 - May 2021 (4 yrs 7 mos)
Vienna, Austria

University Assistant at the Distributed Systems Group of the Institute for Information
Systems Engineering.
Research on distributed systems, edge computing, AI systems, message-oriented middle-
ware, container scheduling techniques. Cloud/Edge systems engineering in the CPS/IoT
ecosystem project. Teaching the courses Distributed Systems, Distributed Systems Tech-
nologies and Distributed Systems Engineering. Member of the Scientific Staff Council.

Visiting Researcher, Carnegie Mellon University
Jul 2019 – Sep 2019 (3 mos)
Pittsburgh, PA, USA

Working on edge computing systems with Professor Mahadev Satyanarayanan and his
lab. Demo at SEC’19.

Graduate Research Intern, IBM Research
Jun 2018 – Sep 2018 (4 mos)
New York, NY, USA

Graduate research intern working on IBM’s next-generation AI platform, with a focus on
automating AI application operations workflows. Resulted in a publication at USENIX
OpML’20.

Software Engineer, Christian Doppler Laboratory “Software Engineering In-
tegration for Flexible Automation Systems”
Jun 2013 – Jun 2016 (3 yrs 1 mo)
Vienna, Austria

Design and implementation of a data integration platform for systems engineering tools.

Teaching Assistant, TU Wien
Apr 2013 – Mar 2016 (3 yrs)
Vienna, Austria

Teaching Assistant for the courses: Advanced Internet Computing, Software Testing,
Software Engineering & Project Management. Semestral Git introduction lecture.

Full-Stack Web Developer, Freelance
Oct 2010 – Mar 2015 (4 yrs 6 mos)
Vienna, Austria

Lead developer on a large multi-website CMS and content sharing platform.

182

Teaching

Courses at TU Wien

• 184.167 Distributed Systems UE, 3.0 ECTS

• 184.153 Distributed Systems Engineering VU, 3.0 ECTS

• 184.260 Distributed Systems Technologies VU, 6.0 ECTS

• 184.715 Project in Software Engineering & Internet Computing PR, 12.0 ECTS

• 194.058 Project in Computer Science 1 PR, 6.0 ECTS

• 194.059 Project in Computer Science 2 PR, 6.0 ECTS

• 184.194 Seminar in Distributed Systems SE, 3.0 ECTS

Supervised theses

I’ve served as assistant supervisor on the following theses:

• Jacob Palecek. Improving Serverless Edge Computing for Network Bound Work-
loads. Master’s Thesis, in progress (Winner of a 2020 Netidee grant).

• Cynthia Marcelino. Locality-Aware Data Management for Serverless Edge Com-
puting. Master’s Thesis, in progress.

• Andreas Bruckner. Self-adaptive Distributed MQTT Middleware for Edge Com-
puting Applications. Master’s Thesis, in progress.

• Dominik Schubert. Proactive Autoscaling for a Coding Assignment Submission
System. Bachelor’s Thesis, in progress.

• Daniel Rohr. Automated Error Cause Detection for Programming Assignments
Using Machine Learning. Bachelor’s Thesis, in progress.

• Philipp Raith. Container Scheduling on Heterogeneous Clusters using Machine
Learning-based Workload Characterization. Master’s Thesis, TU Wien, 2021
(Winner of a 2020 Netidee grant).

• Silvio Vasiljevic. Energy-Efficient Load-Balancing in Portable Edge Clusters. Bach-
elor’s Thesis, TU Wien, 2020.

• Alexander Rashed. Optimized Container Scheduling for Serverless Edge Computing.
Master’s Thesis, TU Wien, 2020.

• Valentin Bauer. Hangar: Decentralized Storage and Provisioning of System Envi-
ronments. Bachelor’s Thesis, TU Wien, 2019.

183

• Ammar Voloder. Using In-Memory Key-Value Stores as a Transport Mechanism
for RPC. Bachelor’s Thesis, TU Wien, 2019.

• David Schneiderbauer. Predictive Analytics for Smart Homes using Serverless Edge
Computing. Master’s Thesis, TU Wien, 2019.

• Jacob Palecek. A Monitoring Infrastructure for Energy-Aware Cluster-Based Mobile
Cloudlets, Bachelor’s Thesis, TU Wien, 2019.

• Manuel Geier. Enabling Mobility and Message Delivery Guarantees in Distributed
MQTT Networks. Master’s Thesis, TU Wien, 2019.

• Philipp Raith. Performance Evaluation of Java IO Models. Bachelor’s Thesis, TU
Wien, 2018.

Awards and honors

• Finalist at the 2020 TU Wien Best Teaching Awards in the category “Best Teacher
of the Faculty of Informatics”.

• SEC’19 best demo award for “A system for operating energy-aware cloudlets”.

• Middleware’17 travel grant recipient.

Academic activities

Technical program committees

• 9th IEEE International Conference on Cloud Engineering (IC2E’21)

• 2nd IEEE International Conference on Joint Cloud Computing (JCC’21)

• 41st IEEE International Conference on Distributed Computing Systems (ICDCS’21)

Conference organization committees

• 6th ACM/IEEE Symposium on Edge Computing (SEC’21): Publicity Co-Chair

• 9th IEEE International Conference on Cloud Engineering (IC2E’21): Poster Chair

• 5th ACM/IEEE Symposium on Edge Computing (SEC’20): Publicity Co-Chair

184

Reviewer

I have been an official reviewer for:

• Springer Artificial Intelligence Review
• IEEE Transactions on Cloud Computing
• IEEE Computer
• Springer Computing
• Future Generation Computer Systems
• Spring Journal of Grid Computing
• Informatik-Spektrum
• IEEE Internet Computing
• ACM Transactions on Internet Technology
• IEEE Transactions on Network and Service Management
• IEEE Transactions on Services Computing
• IEEE Transactions on Vehicular Technology

I have also served as sub-reviewer for:

• IEEE International Conference on Distributed Computing Systems (ICDCS)
• International Conference on Software Engineering (ICSE)
• International World Wide Web Conference (TheWebConf)
• IEEE Software
• ACM Computing Surveys
• IEEE International Conference on Cloud Computing (CLOUD)
• USENIX Workshop on Hot Topics in Edge Computing (HotEdge)
• IEEE International Conference on Cloud Engineering (IC2E)
• IEEE International Conference on Service-Oriented System Engineering (SOSE)
• IEEE International Conference on Big Data Service and Applications (BigDataSer-

vice)
• IEEE International Conference on Cloud Computing Technology and Science

(CloudCom)
• IEEE Global Communications Conference (GLOBECOM)
• IEEE International Conference on Fog Computing (ICFC)

185

Publications

Journal articles

• Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized container
scheduling for data-intensive serverless edge computing. Future Generation Com-
puter Systems, 114:259–271, 2021

• Marjan Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Schahram
Dustdar, Ognjen Scekic, Thomas Rausch, Stefan Nastic, Sasko Ristov, and Thomas
Fahringer. A deviceless edge computing approach for streaming IoT applications.
IEEE Internet Computing, 23(1):37–45, 2019

• Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. Osmotic message-oriented
middleware for the internet of things. IEEE Cloud Computing, 5(2):17–25, 2018

• S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska,
B. Jakimovski, S. Ristov, and R. Prodan. A serverless real-time data analytics
platform for edge computing. IEEE Internet Computing, 21(4):64–71, 2017

Conference and workshop papers

• Thomas Rausch, Waldemar Hummer, Christian Stippel, Silvio Vasiljevic, Carmine
Elvezio, Schahram Dustdar, and Katharina Krösl. Towards a platform for smart
city-scale cognitive assistance applications. In 2021 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW), 2021

• Thomas Rausch, Clemens Lachner, Pantelis A. Frangoudis, Philipp Raith, and
Schahram Dustdar. Synthesizing plausible infrastructure configurations for evaluat-
ing edge computing systems. In 3rd USENIX Workshop on Hot Topics in Edge
Computing, HotEdge’20, 2020

• Thomas Rausch, Waldermar Hummer, and Vinod Muthusamy. An experimentation
and analytics framework for large-scale AI operations platforms. In 2020 USENIX
Conference on Operational Machine Learning, OpML’20, 2020

• Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dustdar. A
system for operating energy-aware cloudlets. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, SEC’19, pages 307–309, 2019

• Haris Isakovic, Vanja Bisanovic, Bernhard Wally, Thomas Rausch, Denise Ratasich,
Schahram Dustdar, Gerti Kappel, and Radu Grosu. Sensyml: Simulation environ-
ment for large-scale IoT applications. In IECON 2019-45th Annual Conference of
the IEEE Industrial Electronics Society, volume 1, pages 3024–3030. IEEE, 2019

• Clemens Lachner, Thomas Rausch, and Schahram Dustdar. ORIOT: A source
location privacy system for resource constrained IoT devices. In 2019 IEEE Global
Communications Conference (GLOBECOM), pages 1–6. IEEE, 2019

186

• Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube, and Kaoutar
El Maghraoui. Modelops: Cloud-based lifecycle management for reliable and trusted
AI. In 2019 IEEE International Conference on Cloud Engineering, IC2E’19, Jun
2019

• Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar. Towards a serverless platform for edge AI. In 2nd USENIX
Workshop on Hot Topics in Edge Computing, HotEdge’19, 2019

• Thomas Rausch and Schahram Dustdar. Edge intelligence: The convergence
of humans, things, and AI. In 2019 IEEE International Conference on Cloud
Engineering, IC2E’19, Jun 2019

• Clemens Lachner, Thomas Rausch, and Schahram Dustdar. Context-aware enforce-
ment of privacy policies in edge computing. In 2019 IEEE International Congress
on Big Data (BigDataCongress), pages 1–6. IEEE, 2019

• Thomas Rausch, Stefan Nastic, and Schahram Dustdar. EMMA: Distributed
QoS-aware MQTT middleware for edge computing applications. In 2018 IEEE
International Conference on Cloud Engineering, IC2E’18, pages 191–197. IEEE,
2018

• Thomas Rausch, Cosmin Avasalcai, and Schahram Dustdar. Portable energy-aware
cluster-based edge computers. In 2018 IEEE/ACM Symposium on Edge Computing,
SEC’18, pages 260–272, 2018

• Haris Isakovic, Denise Ratasich, Christian Hirsch, Michael Platzer, Bernhard Wally,
Thomas Rausch, Dejan Nickovic, Willibald Krenn, Gerti Kappel, Schahram Dustdar,
et al. CPS/IoT Ecosystem: A platform for research and education. In Cyber Physical
Systems. Model-Based Design, pages 206–213. Springer, 2018

• Thomas Rausch. Message-oriented middleware for edge computing applications. In
Proceedings of the 18th Doctoral Symposium of the 18th International Middleware
Conference, pages 3–4, 2017

• Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An
empirical analysis of build failures in the continuous integration workflows of java-
based open-source software. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), pages 345–355. IEEE, 2017

Tech reports

• Thomas Rausch, Waldemar Hummer, and Vinod Muthusamy. PipeSim: Trace-driven
simulation of large-scale AI operations platforms. arXiv preprint arXiv:2006.12587,
2020

187

	Kurzfassung
	Abstract
	Contents
	Publications
	Introduction
	Motivation
	Problem statement
	Contributions

	Edge Intelligence
	The convergence of humans, things, and AI
	Operationalizing edge intelligence
	A distributed compute fabric for edge intelligence
	The role of serverless computing
	Summary

	Edge infrastructure architectures
	The computing continuum
	Portable energy-aware edge clusters
	Edge infrastructure scenarios
	Summary

	Edge system analysis and evaluation methods
	Profiling edge computer systems
	Synthesizing plausible edge infrastructure configurations
	Trace-driven simulation framework
	Related Work
	Summary

	Elastic message-oriented middleware for edge computing
	Motivation
	System architecture
	Broker network orchestration
	Proximity awareness
	Elastic diffusion
	Evaluation
	Related work
	Summary

	A serverless platform for edge computing
	Introduction
	Background & application scenarios
	Design and implementation
	Automatic tuning of scheduling parameters
	Evaluation
	Related work
	Summary

	Conclusion
	Summary
	Research questions
	Future work

	Bibliography
	Curriculum Vitae

