
Ensuring Service Level Objective
Adherence in the Edge-Cloud

Continuum

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Thomas Werner Pusztai
Matrikelnummer 00727214

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Schahram Dustdar
Zweitbetreuung: Asst. Prof. Dr. Stefan Nastic

Diese Dissertation haben begutachtet:

Christian Becker Vladimir Estivill-Castro

Wien, 6. Juni 2025
Thomas Werner Pusztai

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Ensuring Service Level Objective
Adherence in the Edge-Cloud

Continuum

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Thomas Werner Pusztai
Registration Number 00727214

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar
Second advisor: Asst. Prof. Dr. Stefan Nastic

The dissertation has been reviewed by:

Christian Becker Vladimir Estivill-Castro

Vienna, June 6, 2025
Thomas Werner Pusztai

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Werner Pusztai

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 6. Juni 2025
Thomas Werner Pusztai

v

Acknowledgements

I would like to thank my advisors, Prof. Schahram Dustdar and Asst. Prof. Stefan Nastic,
for giving me the opportunity to pursue a PhD and for supporting me all the way until
its conclusion with discussions, feedback, and encouragement. I would also like to thank
Cynthia Marcelino, Andrea Morichetta, Phillip Raith, Victor Casamyor Pujol, and all
my colleagues for their friendship and support.

A very special thank you goes to my parents for always supporting me.

Finally, I would like to acknowledge the projects that have funded my PhD journey, i.e.,
Polaris, funded by Futurewei’s Cloud Lab, RAINBOW (EU Horizon2020 grant agreement
No 871403), RapidREC, funded by the Austrian Research Promotion Agency (FFG
Project No. 903884), and LEOTrek, funded by NetIdee.

vii

Kurzfassung

Das Edge-Cloud Continuum ist im letzten Jahrzehnt auf großes Interesse gestoßen. Die
Möglichkeit Rechenleistung mit niedriger Latenz dort zu nutzen, wo Daten von Benutzern
generiert werden und komplexe Berechnungen in die Cloud auszulagern, ermöglicht eine
Vielzahl an Anwendungen, wie z.B. intelligente Fahrzeuge, Augmented Reality oder Zu-
sammenarbeit von Menschen und Robotern in Fabriken. Um die ordnungsemäße Funktion
solcher Anwendungen sicherzustellen ist es notwendig entsprechende Qualitätscharakte-
ristika, d.h. Service Level Objectives (SLOs), zu definieren und umzusetzen.

In dieser Disseration erforschen wir die Definition und Umsetzung von SLOs im Edge-
Cloud Continuum. Zuerst führen wir Abstraktionen ein, welche die Definition und Konfi-
guration von komplexen, Workload-spezifischen SLOs in typsicherer Weise ermöglichen.
Darauf aufbauend präsentieren wir eine Middleware zur Entwicklung von Orchestrator-
unabhängigen SLO Controllern, die SLOs beobachten und umsetzen. Stark typisierte
Metric Querying Abstraktionen ermöglichen das Abfragen und die Aggregierung von
Workload Metriken und deren Wiederverwendung als Composed Metrics. Als nächstes
behandeln wir SLO-aware Scheduling von langlebigen Microservices im Edge-Cloud
Continuum. Wir zeigen einen Scheduler für die SLO-aware Platzierung von asynchronen
Anwendungen, die mittels eines Message Brokers kommunizieren. Danach präsentie-
ren wir einen erweiterbaren Scheduler für die SLO-aware Platzierung von synchronen
Anwendungen mit komplexen Kommunikationsabhängigkeiten, welche wir mit einem
Service Graph modellieren um sie auf die aktuelle Netzwerktopologie zu mappen. Da das
Edge-Cloud Continuum mehrere Cluster mit zehntausenden Nodes umfassen kann, zeigen
wir einen verteilten Scheduler, der mit der Clustergröße skaliert und Schedulingkonflik-
te, die bei verteilten Schedulern normalerweise auftreten, niedrig hält. Zur Einhaltung
von End-to-End Response Time SLOs in Serverless Workflows präsentieren wir einen
Ressourcen Optimizer für Serverless Workflows, der die Größen der Function Inputs
und deren Auswirkungen auf die Performance berücksichtigt. Basierend auf Function
Performanceprofilen und den aktuellen Inputs wählt der Optimizer Ressourcenprofile aus,
welche die Respose Time SLO des Workflows erfüllen und die Kosten minimieren. Schließ-
lich erweitern wir das Edge-Cloud Continuum mit Low Earth Orbit Satelliten zu einem
Edge-Cloud-Space 3D Continuum, das Rechenleistung für Anwendungen überall auf der
Erde und für Erdbeobachtungssatelliten zur Verfügung stellen kann. Wir präsentieren
eine Architektur und einen Scheduler um Serverless Workflows nahtlos im 3D Continuum
auszuführen und dabei die End-to-End Response Time SLOs einzuhalten.

ix

Abstract

The Edge-Cloud Continuum has received enormous interest from academia and industry
over the last decade. The possibility to leverage low-latency computing power in proximity
to where data are generated by users and to offload complex computations to Cloud
datacenters has enabled a large variety of applications, such as smart vehicles, augmented
reality, or human-robot collaboration in factories. To ensure proper functioning of
these applications it is imperative that proper quality characteristics, i.e., Service Level
Objectives (SLOs), are defined and enforced.

In this thesis we explore the definition and enforcement of SLOs in the Edge-Cloud
Continuum. First, we propose a set of abstractions that enable the definition and
configuration of complex workload-specific SLOs in a type-safe manner. Based on these
abstractions we present a middleware for the creation of orchestrator-independent SLO
controllers that monitor and enforce the aforementioned SLOs. Strongly typed metrics
querying abstractions enable the retrieval and aggregation of workload metrics and the
reuse of these aggregations in the form of composed metrics. Next, we discuss SLO-aware
scheduling of long-lived microservices in the Edge-Cloud Continuum. We present a
scheduler that is specifically designed for the SLO-aware placement of asynchronous
applications that communicate through a message broker. Subsequently, we present an
extensible scheduler that performs SLO-aware placement of synchronous applications with
complex communication dependencies, which we model in a service graph abstraction
for mapping onto the current network topology. Since the Edge-Cloud Continuum may
encompass multiple clusters with tens of thousands of compute nodes, we also introduce
a distributed scheduler, which is designed to scale to these cluster sizes, while keeping
scheduling conflicts, which typically occur in distributed schedulers, low. To enable
the adherence to end-to-end response time SLOs in serverless workflows we present
a resource optimizer for serverless workflows, which is aware of function input sizes
and their effects on the performance of the functions. Based on function performance
profiles and the current inputs, the optimizer assigns resource profiles that meet the
end-to-end response time SLO of the workflow, while minimizing costs. Finally, we extend
the Edge-Cloud Continuum with low earth orbit satellites to an Edge-Cloud-Space 3D
Continuum, which can deliver computational capacity to applications anywhere on Earth
and to Earth Observation satellites in space. We present an architecture and a scheduler
for seamlessly executing serverless workflows across this 3D Continuum while fulfilling
end-to-end response time SLOs.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Scientific Contributions . 5

2 SLO Script:
A Novel Language for Implementing Complex Cloud-Native Elasticity-
Driven SLOs 11
2.1 Introduction . 11
2.2 Motivation . 12
2.3 SLO Script Language Design & Main Abstractions 16
2.4 Runtime Mechanisms . 23
2.5 Evaluation & Implementation . 26
2.6 Summary . 29

3 A Novel Middleware for Efficiently Implementing Complex Cloud-
Native SLOs 31
3.1 Introduction . 31
3.2 Motivation . 32
3.3 Framework Overview . 34
3.4 Mechanisms . 37
3.5 Implementation . 42
3.6 Evaluation . 45
3.7 Summary . 50

4 Pogonip:
Scheduling Asynchronous Applications on the Edge 51
4.1 Introduction . 51

xiii

4.2 System Model and Problem Definition 53
4.3 Optimization Problem Formulation . 54
4.4 The Pogonip Heuristic . 58
4.5 Prototype . 60
4.6 Experimental Results . 63
4.7 Summary . 70

5 Polaris Scheduler: SLO- and Topology-aware Microservices Schedul-
ing at the Edge 73
5.1 Introduction . 73
5.2 Motivation . 74
5.3 Approach Overview and Scheduling Pipeline 76
5.4 Polaris Scheduler Plugins . 79
5.5 Evaluation . 84
5.6 Summary . 91

6 Vela:
A 3-Phase Distributed Scheduler for the Edge-Cloud Continuum 93
6.1 Introduction . 93
6.2 Vela 3-Phase Scheduling Workflow . 97
6.3 Vela’s Main Scheduling Mechanisms 100
6.4 Evaluation & Implementation . 105
6.5 Summary . 113

7 ChunkFunc:
Dynamic SLO-aware Configuration of Serverless Functions 115
7.1 Introduction . 115
7.2 ChunkFunc System Model & Optimization Problem 119
7.3 ChunkFunc Framework Overview & Profiler 122
7.4 ChunkFunc Workflow Optimizer . 126
7.5 Implementation & Experiments Design 128
7.6 Experimental Results . 131
7.7 Summary . 139

8 HyperDrive: Scheduling Serverless Functions in the Edge-Cloud-
Space 3D Continuum 141
8.1 Introduction . 141
8.2 Motivation . 144
8.3 Architecture Overview of a Serverless Platform for the 3D Continuum 148
8.4 HyperDrive SLO-Aware Scheduler for 3D Continuum 152
8.5 Implementation & Experiments Design 157
8.6 Experimental Results . 159
8.7 Summary . 162

9 Related Work 163
9.1 Complex SLO Definition and Enforcement 163
9.2 SLO-aware Scheduling of Microservices in the Edge-Cloud continuum 165
9.3 Distributed Scheduling . 168
9.4 Resource Configuration Optimization for Serverless Functions 170
9.5 Scheduling in the 3D Continuum . 175

10 Conclusion 179
10.1 Summary . 179
10.2 Revisiting the Research Questions . 181
10.3 Limitations & Future Work . 183

Overview of Generative AI Tools Used 187

List of Publications 189

List of Figures 192

List of Tables 195

List of Algorithms 197

Acronyms 199

Bibliography 201

CHAPTER 1
Introduction

1.1 Motivation
Over the past years Cloud computing and Edge computing have fused into the Edge-
Cloud continuum, which connects the nodes in Cloud and Edge networks, as well as
the nodes between them, into a large, seamless continuum [153]. Sensors are attached
or connected to Edge devices and, typically, produce large amounts of data. End user
devices, such as smartphones, smart glasses, or cars are also in many cases located at the
Edge. Communication latency between a compute node and the users decreases closer
to the Edge, but at the same time, computing power decreases as well, because these
devices have limited capacity and are often battery-powered. Conversely, as nodes get
closer to the Cloud end of the continuum, their computing capacity increases, but so
does the latency to the user [207]. A distributed application can seamlessly execute its
services on those nodes of the continuum that are most suitable for the particular task
or even migrate services between nodes when the need arises.

The combination of having nodes with low latency to sensor data and end users and
other nodes with high computing power for complex analytics enables many use cases in
the Edge-Cloud continuum that would not be possible with traditional Cloud or Edge
computing only. For example, smart vehicles used in autonomous driving generate lots of
data every minute, data that need to be processed immediately to prevent accidents [140].
Sending all this information to the Cloud and waiting for a response may take too long to
keep drivers safe and might even congest the network. Thus, the sensor data needs to be
processed as close as possible to the network Edge to ensure low-latency responses. Cloud
data centers receive aggregate sensor information and position data of the vehicles, so that
they can predict traffic intensity, an operation that requires more computing power than
Edge devices can offer. Another example are augmented reality (AR) applications [218],
such as tourist guide applications. When users look through their smart glasses to get
information about places in a city, the objects in their field of view need to be classified

1

1. Introduction

within milliseconds to retrieve adequate information about them. This must be done on
Edge nodes in proximity to the users. These nodes can also store a part of the incoming
images and send them to Cloud nodes that periodically retrain the Machine Learning
(ML) model used for classification.

Many Edge-Cloud continuum applications adopt a microservices architecture, i.e., they
consist of multiple services, with each service focusing on a distinct and cohesive set of
tasks. Each microservice can be scaled independently from the others, i.e., additional
instances can be started or stopped. A distinctive feature of microservices is that they are
designed to be long-running, handle multiple requests at once, and remain running while
waiting for new requests. This means that microservices consume resources even when
idle, but it also allows them to respond immediately, without waiting for an instance to
start up first.

After having been popular in the Cloud for some years, applications in the Edge-Cloud
continuum have recently increasingly adopted a serverless architecture [32]. In serverless
computing an application consists of one or more workflows that are made up of short-
running serverless functions (less than a second up to a few minutes), with each function
being responsible for a single task. Each serverless function is triggered by an event, e.g.,
a REST request or a file upload, and handles a single request at a time (some serverless
platforms allow multiple requests per function, called intra-function parallelism, but it
is debatable if this goes against serverless principles). Scaling is handled automatically
by the platform, which creates new function instances to handle all incoming events.
Idle function instances are stopped to free resources. While this saves costs for bursty
workloads [136], it comes with the disadvantage of potentially having to start a new
instance when a request arrives – this adds an additional delay to the request, called the
cold-start delay [249, 141].

Regardless of the use case and architecture, an application should always meet the quality
standards expected by its users. These quality standards are typically specified as Service
Level Agreements (SLAs) [122], which, in turn, consist of one or more Service Level
Objectives (SLOs). An SLO defines a limit or an acceptable range for an objectively
measurable or computable metric, e.g., the maximum response time of a service. SLOs
can be based on directly observable, simple metrics, such as response time or CPU usage,
or they can be based on complex metrics that combine multiple simple metrics, such as
the cost efficiency of a service [164].

How SLOs can be enforced differs depending on an application’s architecture. If an SLO
is violated or close to being violated, the microservices architecture allows for various
actions to bring the SLO back to the desired state. We call such an action or a sequence
of such actions an elasticity strategy. For microservices an elasticity strategy can, e.g.,
start or stop instances of the microservice (horizontal scaling), add or remove resources
to/from existing instances (vertical scaling), and/or adjust configuration parameters.
Most elasticity strategies can affect already running instances of a microservice. Complex
elasticity strategies may also affect multiple microservices in an application.

2

1.2. Problem Statement

In serverless computing the range of actions is more limited. Horizontal scaling is
performed automatically by the underlying serverless orchestrator, as new requests arrive
and since a serverless function typically executes only for a short time, changing its
configuration at runtime makes no sense. Hence the configuration of serverless functions
(resources and possibly application-specific settings) must be adjusted prior to creating
new instances, based on monitoring information from previous executions or dedicated
profiling runs.

Proper selection of the compute node that a task will execute on, referred to as placement
or scheduling, plays a vital role for both, microservices and serverless functions. In the
Cloud, where all nodes are relatively homogeneous and interconnected with a high speed
network, the main scheduling challenges are high scheduling throughput and high node
utilization. The Edge-Cloud continuum with its heterogeneous, partially battery-powered,
nodes and highly diverse network connections makes scheduling much more challenging.
Picking an appropriate node for a task involves ensuring that its hardware fulfills the
requirements, that its network connection provides necessary speed and stability, and
that it is close enough to the required data sources. Hence the choice of node greatly
affects whether the application will be able to fulfill its SLOs or not.

1.2 Problem Statement
The enforcement of SLOs is central to ensuring that an application fulfills its quality
requirements. Depending on the architecture of the application there are different ways
to enforce the SLOs. Long-running microservices allow adaptation and scaling at runtime,
but handling of complex SLOs that are based on compound metrics that are not directly
observable on the system is challenging. Short-running serverless functions need to be
adapted before a new instance is launched based on monitoring data from previous
executions or from dedicated profiling runs. The former method may take a long time to
adapt and the latter often suffers from the problem of finding a typical workload that is
suitable for profiling. Both architectures benefit significantly from proper node selection
during scheduling. However, the heterogeneous nodes and unstable network conditions of
the Edge-Cloud continuum pose significant challenges. Additionally, the rapid growth of
Edge clusters requires distributed scheduling approaches, because the clusters grow too
large for being handled by a single scheduler.

1.2.1 Research Questions

We formulate the following research questions, which we will investigate in this work:

RQ1. How can complex Cloud-native SLOs be effectively monitored and enforced for
long-running workloads in containerized infrastructures at application runtime?

Long-running microservices provide ideal conditions for monitoring SLO-related metrics
and enforcing SLOs. This is because their long-lived nature allows extensive series of
metrics to be collected and corrective actions to be taken at runtime if an SLO is violated.

3

1. Introduction

Despite these favorable preconditions, challenges arise once SLOs go beyond simple
resource usage or timing thresholds, such as average CPU usage or response time, which
are used in most systems [45, 240, 191]. This is because complex SLOs are typically
based on complex metrics, which are not directly observable on the system, like the
cost efficiency of an application or the quality of its output [164]. Such complex metrics
that are formed by aggregating or even forecasting a set of other metrics are difficult
to incorporate in existing SLO frameworks, because they lack abstractions to do so or
require the usage of a third-party provider for such metrics. Hence there is a need for
exploring abstractions and mechanisms to obtain complex metrics and to enable their
use in complex SLOs.

Once complex SLOs are available, they must be enforced. The most common scaling
mechanism, or as we call it, elasticity strategy, is horizontal scaling [191]; vertical scaling
is another easy to use option. Other options are rarely found in production systems and
also in research, the two aforementioned approaches are the most common. However, the
Edge-Cloud continuum offers elasticity not just in the resource dimension, but in three
dimensions, i.e., resources, quality, and cost [58]. This entails that more more complex
elasticity strategies that leverage the flexibility of these dimensions are possible. For
example, a traffic prediction service could scale out (resource dimension) and incur more
costs (cost dimension) during rush hour or it could adapt its precision settings (quality
dimension) to keep costs low or it could perform a combination of horizontal scaling
and precision adaptation. As for complex metrics, the lack of suitable abstractions and
flexible frameworks, impedes the development of complex elasticity strategies. Thus,
abstractions and frameworks are needed that cover the entire width of SLO development
and elasticity.

RQ2. How can network Quality of Service (QoS) SLOs be leveraged to improve the
scheduling of long-running workloads in the Edge-Cloud continuum and how can a
scheduler scale with the growing infrastructure size?

The placement of a workload on Cloud nodes normally does not need to consider network
QoS SLOs, because Cloud nodes within the same data center are interconnected with
a high speed network. If multiple data centers are involved, the network already starts
playing a role, because the latency to nodes in other data centers will be much higher
than the latency to nodes in the same data center. When deploying an application in
the Edge-Cloud continuum, the network becomes one of the most important factors for
scheduling [24]. The farther nodes are located away from a backbone network, i.e., the
closer they are to the Edge, the more diverse network speeds, latencies, and reliability
become. While an Edge server may have a permanent high speed fiber optic Internet
connection, a drone may have a fast 5G connection at some point and a slow, high latency
connection at another point, depending on its current location. But some applications
rely on a low latency between two or more of their components, such as augmented
reality [218] or industrial Internet of Things (IoT) [247, 15]. Thus, to avoid reducing the
user experience, the current network topology must be considered when scheduling the
components of an application in the Edge-Cloud continuum.

4

1.3. Scientific Contributions

Another scheduling challenge brought forth by the Edge-Cloud continuum is the handling
of tens of thousands of nodes. The simplest scheduler architecture is the monolithic
architecture, which is simple to design, but is limited in terms of the number of nodes
and/or workloads it can handle, e.g., vanilla Kubernetes1 is limited to a cluster size of
5,000 nodes [236]. However, scalability is an important feature of a scheduler [28]. To
ensure it with an Edge-Cloud continuum with tens of thousands of nodes, a distributed
scheduling approach must be used, where multiple scheduler instances operate in con-
junction or completely independent of each other. Distributed architectures come with
their own challenges [209], e.g, ensuring that the same resources are not assigned twice
by different schedulers (scheduling conflicts) without reducing scheduling throughput
too much by locking. In essence, ensuring that a scheduler system scales with the node
infrastructure is a tradeoff between flexibility, speed, and avoidance of scheduling conflicts.

RQ3. How can end-to-end response time SLOs of a workflow be used to optimize resources
and placement of short-running serverless functions in the Edge-Cloud continuum?

Serverless computing, where each request is handled by a dedicated, short-lived function
instance, gives developers the freedom to concentrate on the business logic of their
applications, because scaling and infrastructure management decisions are taken auto-
matically by the platform. Ideally, serverless computing results in lower costs for bursty
workloads compared to long-lived microservices [136]. However, in order to obtain this
cost advantage, the resources of each function must be tuned such that they incur as
little costs as possible, while fulfilling the response time SLOs. Given the large amount
of available resource profiles and the complexity of real-life serverless workflows, finding
the optimal resource configuration is challenging and requires appropriate optimization
algorithms [134, 132].

When executing serverless workflows in the Edge-Cloud continuum on heterogeneous
nodes with different network connectivity characteristics, the placement of the function
instances becomes another challenging problem. A scheduler for serverless workflows for
the Edge-Cloud continuum must consider the network QoS properties when selecting
execution nodes for functions, such that the transfer time for input and output data does
not endanger the fulfillment of the response time SLO [24, 166, 85].

1.3 Scientific Contributions

To address the aforementioned research questions we present a reliable, SLO-aware
orchestrator for the Edge-Cloud continuum. An overview of its architecture is shown in
Figure 1.1. The architecture is divided into multiple layers: The Edge-Cloud Continuum
layer at the bottom represents all nodes in the computing continuum, i.e., cloud servers
in datacenters, routers and access points in the network, cloudlet servers at strategic
places, and all edge devices, such as smart cars, smart traffic lights, and drones. The
Deployments layer at the top consists of long-running microservices and short-running

1https://kubernetes.io

5

https://kubernetes.io

1. Introduction

 Deployments

 Resource Management

 Scheduling

 Edge-Cloud Continuum

 Orchestration

Access Points
& Cloudlets Edge DevicesCloud Datacenters

Polaris Middleware
SLO Enforcement

Pogonip
Async Apps Scheduler

Polaris Scheduler
SLO-aware Edge Scheduler

Vela
Distributed Scheduler

SLO Script
SLO Definition

ChunkFunc
Resource Optimization

HyperDrive
3D Scheduler

MonitoringResource
Manager

Workflow
Manager

Deployment
Manager

Figure 1.1: SLO-aware Orchestrator for the Edge-Cloud Continuum.

serverless functions, which are deployed in the continuum. The three layers in between
make up the orchestrator. Grayed out components are not part of the contributions of
this dissertation, because they can be provided by existing production-ready software.
The Orchestration layer is responsible for managing workload deployments using the
Deployment Manager, executing serverless workflows using the Workflow Manager, and
enforcing SLOs. The Scheduling layer hosts multiple schedulers, which are specialized on
specific types of workloads. The Resource Management layer is responsible for tracking
the available and used resources on the compute nodes using the Resource Manager,
optimizing resource configurations for serverless functions, and observing the performance
of workloads using the Monitoring service.

In this dissertation we present on the following scientific contributions that address our
research questions:

C1. Complex SLO Definition and Enforcement

With SLO Script, which we proposed in [184], we present high-level abstractions for
the definition, monitoring, and enforcement of complex Cloud-native SLOs. SLO Script
introduces the concept of a StronglyTypedSLO, which adds type safety to the SLO
definition and configuration workflow. This ensures that an SLO can only be configured

6

1.3. Scientific Contributions

for a compatible workload and that the selected scaling mechanism, which we call elasticity
strategy, is designed to work with the type of workload. A strongly typed metrics API
boosts productivity when designing queries for metrics, which serve as the basis for SLO
monitoring. Our orchestrator-independent object model enables the use of SLO script
and its implementation on multiple orchestration platforms. SLO Script is discussed in
Chapter 2.

To enable efficient development of controller services to enforce SLOs we introduced
the Polaris Middleware in [183]. Its orchestrator-independent SLO controller concept
facilitates the development of controllers that monitor and enforce SLOs defined using
SLO Script. A provider-independent SLO metrics collection and processing mechanism
extends the strongly typed metrics API from SLO Script with abstractions to define
composed metrics types and instruments to provide these composed metrics in reusable
manner through exchangeable controller services. We present Polaris Middleware in
detail in Chapter 3.

C2. Long-running Microservices Scheduling in the Edge-Cloud Continuum

We treat scheduling in the Edge-Cloud continuum in with two complimentary sub-
contributions: i) SLO-aware microservice scheduling for Cloud and Edge and ii) scheduling
microservices at large scale across multiple clusters.

C2.1. SLO-aware Microservice Scheduling for Cloud and Edge

When scheduling long-running microservices in the Edge-Cloud continuum, it is im-
perative to place them on compute nodes that meet both the resource and network
QoS requirements of the application, especially if the application consists of multiple
interconnected microservices. Our Pogonip Scheduler, which we published in [188], fo-
cuses on solving this problem for asynchronous microservice-based applications, i.e., for
applications consisting of multiple microservices that communicate through a message
broker. We discuss the Pogonip Scheduler in Chapter 4. Polaris Scheduler, introduced
in [186], builds on the techniques of Pogonip and provides network SLO-aware scheduling
for microservices of synchronous applications. It defines application service graphs that
capture the dependencies between the microservices of an application and their network
SLOs and the network topology graph, which models the network topology of the cluster
with all its nodes and current network QoS properties. To perform the placement of
microservices Polaris Scheduler provides an extensible, plugin-based scheduling frame-
work, which can be adapted for additional SLOs in the future and plugins to ensure
network SLO-aware scheduling in an Edge-Cloud cluster. Polaris Scheduler is presented
in Chapter 5.

C2.2. Scheduling Microservices at Large Scale Across Multiple Clusters

Scheduling workloads across multiple clusters with tens of thousands of nodes in total
requires a distributed scheduling approach, like the one we presented with Vela Scheduler

7

1. Introduction

in [187]. This orchestrator-independent scheduler can be distributed globally with its
3-phase scheduling workflow, consisting of a sampling phase, a decision phase, and a
commit phase. The sampling phase uses a novel two-level, informed sampling technique,
called 2-Smart Sampling, which samples from multiple globally distributed clusters. It
leverages the requirements of a workload to produce samples of nodes that are very
likely to be suitable for the workload. After the decision phase chooses a target node,
the MultiBind mechanism attempts to commit the workload to that node, falling back
to the second or third most suitable node if the resources on the previous node have
been claimed already by another scheduler. Using this approach reduces the number of
scheduling conflicts by a factor of 10. We discuss Vela Scheduler in Chapter 6.

C3. Optimizations for Serverless Functions to Fulfill End-to-End Response
Time SLOs

Fulfilling the end-to-end response time SLO of a serverless workflow in the Edge-Cloud
continuum requires optimizing the resource allocations of every function and their
placement on the right compute nodes.

C3.1. Input- and SLO-aware Resource Optimization for Serverless Workflows

ChunkFunc, which we presented in [185], is an automatic resource configuration optimizer
for serverless workflows, which, contrary to most state-of-the-art approaches, leverages
information on the input size of a function to tune its resource configurations to meet
the end-to-end response time SLO of the workflow while minimizing cost. ChunkFunc
profiles a function with multiple typical inputs to build a performance profiles. To
this end it relies on a novel auto-tuned Bayesian Optimization approach to reduce the
number of profiling runs and infer the not explicitly profiled resource configurations using
the Gaussian Process used in the Bayesian Optimization. The ChunkFunc Workflow
Optimizer uses these performance profiles to dynamically adapt the resource profiles for
the functions, based on their inputs, during the execution of the workflow. Experiments
have shown an increase of SLO-adherence by a factor up to 2.78 and a cost reduction up
to 61% compared to the state-of-the-art. We present ChunkFunc in Chapter 7.

C3.2. SLO-aware Scheduling of Serverless Workflows in the 3D Continuum

The HyperDrive Scheduler, introduced in [182], schedules the functions of serverless
workflows on the nodes with appropriate network QoS characteristics to ensure timely
transfer of data between the functions, such that the entire workflow adheres to its
end-to-end response time SLO. As a first step towards future work, HyperDrive extends
the Edge-Cloud continuum with low earth orbit (LEO) satellites to form a 3D continuum/
HyperDrive introduces the vision of an architecture of a serverless platform for the
3D continuum, which allows functions to be seamlessly executed across Cloud, Edge,
and space. The HyperDrive scheduling model considers besides compute resources and
network bandwidth and latency also the LEO-specific properties of satellite temperature

8

1.3. Scientific Contributions

and the ability to recuperate the energy needed for the function via the satellite’s solar
panels. The HyperDrive heuristic scheduling algorithms realize the scheduling model
using a multi-criteria decision making approach and show a 71% lower end-to-end network
latency than the best baseline scheduler in our experiments. HyperDrive is discussed in
Chapter 8.

After presenting all our contributions in detail, we elaborate on related work in Chapter 9
and conclude this thesis with a summary and an outlook to future work in Chapter 10.

9

CHAPTER 2
SLO Script:

A Novel Language for
Implementing Complex

Cloud-Native Elasticity-Driven
SLOs

This chapter introduces SLO Script, a set of abstractions and language constructs to
define and configure complex workload-specific Service Level Objectives and elasticity
strategies. Additionally, SLO Script provides a typed metrics API for efficient query-
ing and aggregation of metrics and an orchestrator-independent object model to foster
extensibility.

2.1 Introduction

In the previous chapter we have introduced the concept of SLOs to define the measurable
bounds within which an application has to operate and elasticity strategies as a sequence
of actions to be taken upon violation of these bounds to return the application to a state
where the SLOs are fulfilled. The vast majority of today’s cloud providers offer only
support for SLOs that are based on directly observable metrics, such as CPU usage or
response time. This means that customers who require a high-level SLO need to manually
map it to directly measurable low-level metrics, such as CPU or memory [164].

This chapter is based on the paper T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X.
Ding, D. Vij, and Y. Xiong, “SLO Script: A Novel Language for Implementing Complex Cloud-Native
Elasticity-Driven SLOs,” in 2021 IEEE International Conference on Web Services (ICWS).

11

2. SLO Script

However, from a business perspective, it is important to be able to map business goals to
measurable Key Performance Indicators (KPIs), which, again, must be translated into
SLOs. With a low-level average CPU usage SLO this is not easily possible. A high-level
SLO that combines multiple elasticity dimensions, e.g., by combining resource usage with
the total cost of the system, is better suited for this purpose.

In this chapter we continue our work envisioned in [164], which we refer to as Polaris
SLO Cloud (Polaris) project, and present SLO Script1, a language and accompanying
framework, which permits service providers to define complex SLOs on their services and
service consumers to configure and apply them to their workloads. Our main contributions
with SLO Script include:

1. Novel abstractions (StronglyTypedSLO) with type safety features that ensure com-
patibility between workloads, SLOs, and elasticity strategies.

2. Language constructs: ServiceLevelObjectives, ElastcityStrategies, and SloMappings
enable decoupling of SLOs from elasticity strategies, to promote reuse and increase
the number of possible SLO/elasticity strategy combinations. Details are provided
in Sections 2.3.1 and 2.3.2.

3. Strongly typed metrics API that boosts productivity when writing queries, presented
in Section 2.3.3.

4. Orchestrator-independent object model that promotes extensibility, as detailed in
Section 2.3.4.

The remainder of this chapter is structured as follows: Section 2.2 introduces a motivating
use case to explain why SLO Script is needed and lists the research challenges and
requirements for our language, Section 2.3 portrays the design and main abstractions
of SLO Script, Section 2.4 describes the runtime mechanisms, Section 2.5 evaluates our
SLO Script on the motivating use case on a Kubernetes implementation, and Section 2.6
summarizes our work on SLO Script.

2.2 Motivation

In the open source2 Polaris project [164], we aim to make SLOs as the first class entities
and bring multi-dimensional elasticity capabilities to the cloud computing environment.
Polaris itself is part of Linux Foundation’s Centaurus project3, a novel open-source
platform targeted towards building unified and highly scalable public or private distributed
cloud infrastructure and edge systems.

12

2.2. Motivation

Cloud Infrastructure
Service Provider

Elas�c
Search

Gen�cs Mesh
CMS

Provides

SLOMetrics

Service Consumer

Deploys Workload

Cost Efficiency
SLO Mapping

Creates

Applies & Configures

Services

Figure 2.1: Gentics Mesh CMS cloud scenario overview.

2.2.1 Motivating Use Case

To motivate our approach, we present a real-world cloud use case, featuring a cloud
service provider that wants to offer a Content Management System (CMS) in the form
of Software-as-a-Service to its customers. Gentics Mesh4 is an open source headless
CMS, i.e., a CMS that is primarily used through its REST API, incorporated into a web
application as a content source. The service provider offers customers the CMS-as-a-
service for deployment on the cloud infrastructure. Service consumers are customers,
who integrate the CMS-as-a-service into their applications. Figure 2.1 shows an overview
of the use case. The deployment consists of two major components: the CMS itself
and an ElasticSearch5 database. Both need to be managed transparently for the service
consumers. Each service exposes one or more metrics, e.g., CPU usage, response time, or
complex metrics like cost efficiency. The service provider defines a set of SLOs that are
supported by the service.

The more requests a service should be able to handle per second, the more resources
it needs, and thus, the more expensive it becomes. Different service consumers have
different needs with regards to requests per second and are willing to pay different prices
for these guarantees. However, for most of them it is difficult, if not impossible, to
specify a low-level, resource-bound SLO that delivers the best performance within their
budget. This is mainly due to a lack of detailed technical understanding of the services
and because a resource-bound SLO only captures a single elasticity dimension. Instead,
the service consumers would prefer simply specifying a high-level cost efficiency of the
microservices. The cost efficiency is usually defined as the number of requests per second
served faster than N milliseconds divided by the total cost of the microservice [133].
To achieve this with our approach, the service consumer only needs to perform a set
of simple tasks. The service consumer deploys Gentics Mesh-as-a-service – we refer to
this deployment as a workload. To apply the cost efficiency SLO to the workload, the

1SLO Script is referred to as “SLO Elasticity Policy Language” in [164].
2https://polaris-slo-cloud.github.io
3https://www.centauruscloud.io
4https://getmesh.io
5https://www.elastic.co/elasticsearch/

13

https://polaris-slo-cloud.github.io
https://www.centauruscloud.io
https://getmesh.io
https://www.elastic.co/elasticsearch/

2. SLO Script

service consumer creates an SLO mapping, which associates an SLO offered by the service
provider with a workload of the service consumer. After creating the SLO mapping,
the service consumer is finished, since the cloud will be responsible for automatically
performing elasticity actions to ensure that the SLO is fulfilled.

Therefore, by allowing service consumers to specify a high-level SLO such as cost
efficiency [101], our approach enables service consumers to specify a value that can be
easily communicated to the non-technical, management layers of their companies, which
is important for approving the budget and checking conformance with the business goals.
The complex task of mapping this cost efficiency to low-level resources and performing
complicated elasticity actions to achieve the SLO is left to the service provider, who knows
the infrastructure and the requirements of the offered services. Using SLO Script, the
service provider is able to efficiently use the know-how about the services to implement
these complex SLOs.

2.2.2 Research Challenges

SLO Script addresses the following research challenges:

RC-1 Enable complex elasticity strategies: The majority of systems provide only simple
elasticity strategies, with horizontal scaling being the most common [191]. For
example, Kubernetes6, which has the most production-level services among commonly
used container orchestration systems [112], usually ships with the Horizontal Pod
Autoscaler (HPA) [168]. However, some cloud providers have shown little or no
further increase in application performance beyond certain instance counts [113].
Thus, a complex elasticity strategy, which, e.g., combines horizontal and vertical
scaling, may achieve better results.

RC-2 Enable high-level SLOs, based on complex metrics: The majority of metrics used
nowadays is directly measurable at the system or application level, such as CPU
and memory utilization, or response time [45, 240, 191]. For example, HPA uses the
average CPU utilization of all pods of a workload. We define a composed metric as a
metric that can be obtained by aggregating and composing other metrics. In HPA
they can be supplied through a custom metrics API or an external metrics API7. Both
entail the registration of a custom API server, called an adapter API server, to which
the Kubernetes API can proxy requests, thus, leading to additional development and
maintenance effort. The custom metrics API [230] and the external metrics API [233]
allow exposing arbitrary metrics (e.g., from the monitoring solution Prometheus8)
as Kubernetes resources. However, apart from summing all values if an external
metric matches multiple time series [231], the computation or aggregation of these

6https://kubernetes.io
7https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/#support-for-metrics-apis
8https://prometheus.io

14

https://kubernetes.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://prometheus.io

2.2. Motivation

metrics must be implemented by the adapter API server. HPA allows specifying
multiple metrics for scaling, but it calculates a desired replica count for each of
them separately and then scales to the highest value [232]. Yet, a high-level SLO is
valuable, as shown in our motivating use case.

RC-3 Decoupling of SLOs from elasticity strategies: If systems provide only a single
elasticity strategy, e.g., horizontal scaling in HPA, it usually means that the SLO
is tied to that strategy, making the system rigid and inflexible. A tight coupling
between SLO evaluation and elasticity strategy in the same controller, would require
re-implementing every needed SLO in every elasticity controller, leading to duplicate
code and difficult maintenance. Furthermore, a specific SLO may not yet have been
implemented on a certain elasticity controller, albeit being needed by a consumer.

RC-4 Unified API for multiple metrics sources: Each major time series database has its
own query language, e.g., Prometheus has PromQL, InfluxDB9 has Flux, and Google
Cloud has MQL10. Thus, an implementation in a particular language ties the SLO to
a certain DB, because there is no common query language for time series databases,
like SQL is for relational databases.

RC-5 Cloud vendor independence: Common autoscaling solutions are tied to a specific
orchestrator or cloud provider. All major cloud vendors have their own specific
configuration of autoscaling, e.g, AWS [7], Azure [150], and Google Cloud [88] all
have their own, non-portable way of configuring an autoscaler – fostering vendor
lock-in. HPA, although not being tied to a particular cloud provider, is still specific
to Kubernetes.

2.2.3 Language Requirements Overview

SLO Script is at the heart of the Polaris project and will ultimately support the definition
and implementation of metrics, SLOs, and elasticity strategies, each of which may be
generic or specifically tailored to a particular service.

An SLO evaluates metrics to determine whether the system conforms to the expectations
defined by the service consumer. When the SLO is violated (reactive triggering) or when
it is likely to be violated in the near future (proactive triggering), it may trigger an
elasticity strategy. These can range from a simple horizontal scaling strategy, over more
complex strategies that combine horizontal and vertical scaling, to application-specific
elasticity strategies that combine scaling with adaptations of the service’s configuration.

The goal is a language that presents a significant usability improvement over raw configu-
rations that rely on YAML or JSON. To this end, the language must support higher-level
abstractions than raw configuration files and provide type safety, which reduces errors
and boosts productivity.

9https://www.influxdata.com
10https://cloud.google.com/monitoring/mql/reference

15

https://www.influxdata.com
https://cloud.google.com/monitoring/mql/reference

2. SLO Script

The requirements derived from our motivating use case and the core objectives of SLO
Script are as follows:

1. Allow service consumers to configure and map an SLO to a workload.

2. Allow service consumers to choose any compatible elasticity strategy when config-
uring an SLO (loose coupling).

3. Allow SLOs to instantiate, configure, and trigger the elasticity strategy chosen by
the service consumer.

4. Support the definition of composed metrics.

5. Support the definition of elasticity strategies.

6. Ensure compatibility between SLOs and elasticity strategies at the time of writing
(i.e., type safety).

7. The SLO Script core has to be orchestrator-independent.

8. Plug into specific orchestrators using adapter libraries.

9. Service providers should be able to focus on the business logic of their metrics,
SLOs, and elasticity strategies.

10. Present a DB-independent API for querying metrics.

11. Support packaging metrics, SLOs, and elasticity strategies into plugins.

SLO Script supports the use of any metrics source using adapters and elasticity strategies
developed in any language, as long as their input data types match the output data types
of the SLOs. This allows reusing an elasticity strategy written in a different language,
e.g., because an orchestrator-specific API client may only be available in that language.

The next section will explain the design of the SLO Script language and how it achieves
orchestrator-independence.

2.3 SLO Script Language Design & Main Abstractions
In this section we describe how SLO Script provides the main contributions announced
in the introduction section: 1) high-level StronglyTypedSLO abstractions with type
safety features, 2) constructs to enable decoupling of SLOs from elasticity strategies,
3) a strongly typed metrics API, and 4) an orchestrator-independent object model that
promotes extensibility. The first two contributions are treated incrementally by the
subsections 2.3.1 and 2.3.2, the third contribution is presented in subsection 2.3.3, and
the fourth contribution is discussed in subsection 2.3.4.

16

2.3. SLO Script Language Design & Main Abstractions

ServiceLevelObjective

SloMapping

SloMetric

ElasticityStrategy

ComposedSloMetric

MetricCompositionOperator

UnaryOperator NAryOperator

PolarisPlugin

SloConfiguration ElasticityStrategyConfigurationSloOutput

SloTarget

lowerLevelMetrics

0..*

1..*

involvedMetrics

0..*

1..*

1

0..*

0..*

input
1

1

0..*

target1

0..*1

1

1

0..*

10..*

operator

0..*

1

config 11

<<use>>
input

output

Figure 2.2: SLO Script meta-model (partial view).

2.3.1 SLO Script Overview & Language Meta-Model

SLO Script consists of high-level, domain-specific abstractions and restrictions, which
constitute a language abstraction. It does not provide its own textual syntax, but uses
TypeScript as its base. Using a publicly available and well-supported language, increases
the chances for SLO Script to be accepted by developers and reduces maintenance effort,
because language and compiler maintenance is handled by the TypeScript authors. The
requirements in the previous section result in the meta-model for SLO Script, depicted
as a UML class diagram, in Figure 2.2.

1) ServiceLevelObjective is one of the central constructs of the SLO Script language.
An example instance is the CostEfficiencySlo, which implements the cost efficiency
scenario described in Section 2.2.1. An instance of the ServiceLevelObjective con-
struct defines and implements the business logic of an SLO and is configured by the
service consumer using an SloConfiguration. The ServiceLevelObjective uses
instances of SloMetric to determine the current state of the system and compare it to
the parameters specified by the service consumer in the SloConfiguration. The metrics
are obtained using our strongly typed metrics API, which abstracts a monitoring system,
such as Prometheus. The metrics may be low-level metrics, directly observable on the
system or higher-level metrics (instances of ComposedSloMetric) or a combination of
both. Every evaluation of the ServiceLevelObjective produces an SloOutput, which
describes how much the SLO is currently fulfilled and is used as a part of the input to
an ElasticityStrategy. Both, ServiceLevelObjective and ElasticityStrategy,
define the type of SloOutput they produce or require respectively, which is one of the
types needed for determining compatibility among them.

2) The ElasticityStrategy construct represents the implementation of an elasticity

17

2. SLO Script

strategy. It executes a sequence of elasticity actions to ensure that a workload fulfills
an SLO. Elasticity actions may include, e.g., provisioning or deprovisioning of resources,
changing the types of resources used, or adapting the configuration of a service. The input
to an ElasticityStrategy is a corresponding ElasticityStrategyConfiguration,
consisting of the SloOutput produced by the ServiceLevelObjective and static
configuration provided by the consumer.

There is no direct connection between a ServiceLevelObjective and an Elasticity-

Strategy, which clearly shows that these two constructs are decoupled from each other.
A connection between them can only be established through additional constructs, i.e.,
SloOutput or SloMapping.

3) The SloMapping construct is used by the service consumer to establish the rela-
tionship between a ServiceLevelObjective, an ElasticityStrategy, and an Slo-

Target, i.e., the workload to which the SLO applies. The SloMapping contains the
SloConfiguration, which are the SLO-specific bounds that the consumer can define, the
SloTarget, i.e., the workload to which the SLO is applied, and any static configuration
for the chosen ElasticityStrategy.

2.3.2 StronglyTypedSLO

When defining a ServiceLevelObjective using SLO Script’s StronglyTypedSLO mech-
anism, the service provider must first create an SloConfiguration data type that will
be used by the service consumer to configure the ServiceLevelObjective and an
SloOutput data type to describe its output. While each ServiceLevelObjective will
likely have its own SloConfiguration type, it is recommended to reuse an SloOutput

data type for multiple ServiceLevelObjectives to allow for loose coupling between
ServiceLevelObjectives and ElasticityStrategies.

To create the actual SLO, a service provider must instantiate the ServiceLevel-

Objective meta-model construct, represented by the ServiceLevelObjective Type-
Script interface. It takes three generic parameters to enable type safety: C denotes the
type of SloConfiguration object that will carry the parameters from an SloMapping,
O is the type of SloOutput, which will be fed to the elasticity strategy, and T is used to
define the type of target workload the SLO supports. An ElasticityStrategy uses
the same mechanism to define the type of SloOutput that it expects as input.

Figure 2.3 illustrates how the type safety feature of SLO Script works. There are two
sets of types: those determined by the ServiceLevelObjective and those determined
by the ElasticityStrategy. The ServiceLevelObjective defines that it needs a
certain type of SloConfiguration (indicated by the yellow color) as configuration input.
The SloConfiguration defines the type of SloTarget (orange), which may be used to
scope the SLO to specific types of workloads. The ElasticityStrategy defines its type
of ElasticityStrategyConfiguration (purple), which, in turn, specifies the type of
SloOutput (blue) that is required by the ElasticityStrategy.

18

2.3. SLO Script Language Design & Main Abstractions

SloOutput

SloTarget

ServiceLevel
Objec�ve

config output
Elas�cityStrategy

Configura�on

sloOutput

Slo
Configura�on

target

Types determined by ServiceLevelObjec�ve Types determined by Elas�cityStrategy

Elas�city
Strategy

input

Figure 2.3: Type safety provided by StronglyTypedSLO.

Thus, the bridge between these two sets is the SloOutput type. Once the service consumer
has chosen a particular ServiceLevelObjective type, the possible SloTarget types are
fixed because of the SloConfiguration. Since the ServiceLevelObjective defines an
SloOutput type, the set of compatible elasticity strategies is composed of exactly those
ElasticityStrategies that have defined an ElasticityStrategyConfiguration

with the same SloOutput type as input.

Type checking is especially useful in enterprise scenarios, where hundreds of SLOs need
to be managed. Using YAML or JSON files for this purpose provides no way of verifying
that the used SLOs, workloads, and elasticity strategies are compatible, while SLO Script
provides this feature. Furthermore, using a type safe language yields significant time
savings when a set of SLOs and their mappings need to be refactored.

The SLO Script runtime invokes the SLO instance at configurable intervals to check if
the SLO is currently fulfilled or if the elasticity strategy needs to take corrective actions.
It may simply check if the metrics currently match the requirements of the SLO or it
can use predictions and machine learning to determine if the SLO is likely to be violated
in the near future and thus take proactive actions through the elasticity strategy. The
result of this operation is an instance of the defined SloOutput type, which is returned
asynchronously.

2.3.3 Strongly Typed Metrics API

The strongly typed metrics API provides two types of abstractions: i) raw metrics queries
for querying time series databases independent of the query language they use natively
and ii) composed metrics for creating higher-level metrics from aggregated and composed
lower-level metrics obtained through raw metrics queries. Since our API is based on
objects, rather than on a textual language, it also comes with type safety features. When
using PromQL or Flux directly, developers often need to write queries as plain strings in
their application code, thereby breaking the type safety of that code. Figure 2.4 shows
a class diagram with a simplified view of our strongly typed metrics API, whose raw
metrics query abstractions were inspired by PromQL, with some influences from Flux,
and MQL.

19

2. SLO Script

+metricName : string

+labels : Map<string, string>

+samples : Sample<V>[]

<<Interface>>

TimeSeries

+samples : Sample<V>[1]

<<Interface>>

TimeSeriesInstant

+filterOnValue(predicate : ValueFilter) : TimeSeriesQuery

+execute() : Promise<QueryResult<T>>

+toObservable() : Observable<QueryResult<T>>

<<Interface>>

TimeSeriesQuery

+filterOnLabel(predicate : LabelFilter) : LabelFilterableQuery<T>

<<Interface>>

LabelFilterableQuery

+avg() : TimeInstantQuery<V>

+sum() : TimeInstantQuery<V>

<<Interface>>

TimeRangeQuery

+abs() : TimeInstantQuery<V>

+sort() : TimeInstantQuery<V>

<<Interface>>

TimeInstantQuery

<<Interface>>

LabelFilterableTimeRangeQuery
<<Interface>>

LabelFilterableTimeInstantQuery

+metricTypeName : string

ComposedMetricType +getCurrentValue() : Sample<V>

+getValueStream() : Observable<Sample<V>>

<<Interface>>

ComposedMetricSource

V : ValueType V : ValueType

T : TimeSeriesType

T : TimeSeriesType

V : ValueType

T = TimeSeries<V>
V : ValueType

T = TimeSeriesInstant<V>

V : ValueType

T = TimeSeries<V>
V : ValueType

T = TimeSeriesInstant<V>

T : ValueType

P : ComposedMetricParams

V : ValueType

Figure 2.4: Strongly Typed Metrics API (simplified view).

For raw metrics queries, the central model type is TimeSeries, which describes a sequence
of sampled values for a metric. In addition to the metricName, a TimeSeries has a
map of labels that can be used to further describe its samples, e.g., a metric named
http_requests_per_sec could have a label service, which identifies the particular
service from which this metric was observed.

The base interface for querying time series is TimeSeriesQuery. Like a relational DB
query results in a set of one or more rows, a time series DB query results in a set of one or
more time series, each with a distinct metric name and labels combination. A query for
http_requests_per_sec could result in two distinct TimeSeries, one with the label
service = ’gentics_mesh’ and one with the label service = ’elasticsearch’.
This is why the execution of a TimeSeriesQuery results in a QueryResult, which can
contain multiple TimeSeries instances.

A time series DB not only allows retrieving a time series with particular properties, but
also allows applying functions to the data, such as various types of aggregations or sorting.
Certain functions, such as aggregations, require time series with multiple samples as

20

2.3. SLO Script Language Design & Main Abstractions

input, while other functions, e.g., sorting, only work on time series with a single sample.
For example, one may first query all time series for http_requests_per_sec, then
compute the sum for each single time series, and finally sort the results to see which
service gets the most requests. Prometheus will return an error when trying to sort time
series with multiple samples, but it requires a developer to try to execute the query first.

The TimeSeriesInstant model type represents time series that are limited to a single
sample. To support both time series types, the TimeSeriesQuery interface is extended
by multiple subinterfaces: TimeRangeQuery for queries that result in a set of Time-
Series and TimeInstantQuery for queries that result in a set of TimeSeriesInstants.
Each of these interfaces exposes only methods for DB functions that are applicable to
the respective time series type. A function may also change the time series type, e.g.,
sum() is applied to a TimeSeries, but it returns a TimeSeriesInstant.

LabelFilterableQuery is another subinterface of TimeSeriesQuery that allows apply-
ing filters on the labels. Since our metrics query API needs to produce valid DB-specific
queries, label filtering is a capability of a query that is lost after applying the first DB
function, e.g., sum(), due to the structure of PromQL queries.

A composed metric is designated by a ComposedMetricType. It defines the name of the
composed metric, the data type used for its values, and which parameters are needed
to obtain it (e.g., the name of the target workload). The metric values are supplied
by a ComposedMetricSource, which may use raw metrics queries internally to obtain
and aggregate multiple lower-level metrics, which are composed to form the higher-level
composed metric.

For each ComposedMetricType there may be multiple ComposedMetricSources. This
allows decoupling the type of a composed metric from the implementation that computes
it and enables multiple implementations, which can be tailored to various types of
workloads, such as REST APIs or databases, while delivering the same type of composed
metric.

2.3.4 SLO Script Object Model

The SLO Script object model, a subset of which is shown in Figure 2.5, is an instantiation
of the language’s meta-model in the framework. This abstract object model allows SLO
Script to achieve orchestrator independence and promotes extensibility.

Every object that is submitted to the orchestrator must be of type ApiObject or
a subclass of it. It contains an objectKind attribute that describes its type. The
ObjectKind.group attribute denotes the API group of the type, which can be seen as a
package in UML. The version attribute identifies the version of the API group and kind

conveys the name of the type. ApiObject also has a metadata attribute, which contains
additional information about the object, including the name of the instance. The spec

attribute contains the actual “payload” content of the object. ObjectReference extends
ObjectKind with a name attribute to be able to reference existing object instances in the

21

2. SLO Script

+group : string

+version : string

+kind : string

ObjectKind

+name : string

ObjectReference

ElasticityStrategyKind

+sloOutputParams : O

+staticConfig : any

ElasticityStrategySpec

SloTarget

+spec : T

+metadata : ApiObjectMetadata

ApiObject

+sloConfig : C

+staticElasticityStrategyConfig : Map<string, any>

<<Interface>>

SloMappingSpec

SloMappingBase

O : SloOutputType

T : SloTargetType O : SloOutputType

T : SloTargetType

T : SpecType

C : SloConfigType

O : OutputType

T : SloTargetType

targetRef 1

targetRef

1

elasticityStrategy

spec1

1

objectKind

1

Figure 2.5: Core SLO Script Object Model Types (partial view).

orchestrator This is needed to refer to the target workload of an SLO in an SloTarget,
which derives from ObjectReference.

ApiObject is the root extension point for objects that need to be stored in the orchestrator.
For example, to instantiate the SloMapping construct from the meta-model, a TypeScript
class needs to be created that inherits from SloMappingBase, which derives from Api-

Object. It contains the type information for the spec and sets up the correct Object-
Kind for this SloMapping. The SloConfiguration construct can be represented by an
arbitrary TypeScript interface or class, but needs to be wrapped in a class implementing
SloMappingSpec, which will store the configuration. A concrete example will be shown
in Section 2.5. The SloMapping represents a custom resource type that needs to be
registered with the orchestrator. As part of future work, we will create a build system
capable of automatically generating definitions for these resources.

To identify an ElasticityStrategy when configuring an SloMapping, the Object-

Kind subclass ElasticityStrategyKind is used. For each ElasticityStrategy,
an ElasticityStrategyKind subclass has to be created and parameterized with the
SloOutput and SloTarget types expected by the ElasticityStrategy. This in
conjunction with the SloOutput type configured on a ServiceLevelObjective and its
corresponding SloMapping, enables the type checking discussed in the previous sections.

The SloOutput meta-model construct is instantiated by creating an arbitrary Type-
Script class. To allow compatibility between as many SLOs and elasticity strategies as
possible, generic SloOutput data types, which are supported by multiple ServiceLevel-
Objectives and ElasticityStrategies are recommended. The SloCompliance class
provided by the core object model conforms to this requirement. It expresses the current
state of the SLO as a percentage of conformance. A value of 100% indicates that the SLO
is precisely met. A higher value indicates that the SLO is violated and that additional
resources, e.g., scaling out, are needed, whereas a value below 100% indicates that the
SLO is being outperformed, i.e., a reduction of resources, e.g., scaling in, should be

22

2.4. Runtime Mechanisms

considered.

Every orchestrator has its own set of abstractions – thus, an independent framework
must provide a mechanism for transforming objects between its own structure and the
native structure of each supported orchestrator. To this end, SLO Script provides a
transformation service that allows each orchestrator-specific connector library to register
transformers for those object types that require transformation, while directly copying
those objects that do not require any transformation. The transformation is not limited
to the type of the root object, instead the appropriate transformer is applied to every
nested object recursively.

The transformation service does not serialize to the data format required by the or-
chestrator (e.g., JSON or YAML). It transforms the instances of the orchestrator-
independent SLO Script classes into plain JavaScript objects, which can be serialized by
the orchestrator-specific connector library. The deserialization of objects received from
the orchestrator is also left to the connector library. It needs to supply plain JavaScript
objects to the transformation service, which transforms the objects and creates instances
of SLO Script classes.

The SLO Script object model is heavily influenced by that of Kubernetes, but the two
are not equal. For example, in Kubernetes there is no objectKind property on an object
returned from the API. Instead, a Kubernetes API object contains an apiVersion and
a kind property, with the former being a combination of the SLO Script group and
version attributes of ObjectKind and the latter being equal to ObjectKind.kind.

To transform an SLO Script ObjectKind into its corresponding Kubernetes version, the
SLO Script Kubernetes connector library registers a transformer for ObjectKind, which
returns a plain JavaScript object with the group and version attributes combined
into a single apiVersion attribute and a copy of the kind attribute. This alone is not
enough because Kubernetes objects do not contain an ObjectKind property. Thus, the
Polaris Kubernetes connector library also registers a transformer for the ApiObject class,
which uses the transformation service to first transform the ObjectKind object and then
embeds the contents of the result into a new object, which is going to become the final
transformed ApiObject. The objects stored in the metadata and spec attributes are
also first transformed and then stored in the result object. The transformation process
will be explained in detail in Section 3.4.1.

The next Section will explore the runtime facilities, which are responsible for executing
the defined SLOs.

2.4 Runtime Mechanisms

Technically, the cluster component used for handling an SLO is a controller for the
custom resource type defined by the SloMapping of that SLO. The controller watches
the custom resource type instances in its deployment scope, creates and destroys SLO

23

2. SLO Script

SloMapping Controller

Watch supported SloMappings

Receive raw SloMapping

Transform to Polaris

object

Remove SLO from

control loop
Instantiate and configure SLO

Add to control loop or replace

<<structured>>

for each SLO

Evaluate SLO

Orchestrator SloMapping

Polaris SloMapping Instance

SLO instance

SLO Output

Wrap in ElasticityStrategy

Submit to orchestrator

Orchestrator-specific

ElasticityStrategy

Transform to orchestrator object

Control Loop Interval

[SloMapping added] [SloMapping removed]

Figure 2.6: SloMappingController workflow and SLOs lifecycle.

class instances accordingly, and evaluates them at a defined interval. Figure 2.6 shows a
UML activity diagram with the workflows within the controller.

To handle SLOs, the SLO Script runtime provides a control loop interface and a default
implementation that maintains the set of active SLOs and evaluates them at a configurable
interval. To add an SLO to the control loop, an SloMapping, which is received from the
orchestrator, is needed, along with a key to uniquely identify that SLO. The key can be
generated from the metadata of the SloMapping object. The SloMapping is used by
the control loop to identify which SLO class to instantiate and to subsequently configure
that instance, before adding it to its internal set.

The runtime aims to handle as many managerial tasks as possible to allow service
providers to focus on their business logic. In the control loop in Figure 2.6 only the
actions highlighted in blue need to be implemented by the service provider.

The control loop is designed to work on all orchestrators. It needs to be configured
with an SloEvaluator, which handles the execution of the SLO and the subsequent
submission of its output to the orchestrator. Its evaluateSlo(key, slo) method, gets

24

2.4. Runtime Mechanisms

the SLO object’s key and the object itself as parameters and has to asynchronously notify
its caller when the SLO evaluation is finished and the results have been submitted to
the orchestrator. The runtime provides an abstract class to handle the evaluation of
the SLO, as well as the wrapping of its result into the configured ElasticityStrategy

object. It provides hooks for the orchestrator specific connector to execute code before
and after the evaluation to apply the SLO’s results to the orchestrator. The default
implementation of the control loop gracefully handles errors during SLO evaluation, to
ensure that a faulty implementation of one SLO does not prevent other SLOs in the same
controller from being evaluated. Apart from an SloEvaluator, the SLO control loop
must be configured with an Observable to define the evaluation interval – it must emit
whenever the control loop should execute an iteration. This may be used to not only
trigger a loop iteration at regular intervals, but can include other triggers as well, e.g., a
“force evaluation now” event.

To be able to operate, the SLO control loop has to be integrated into a controller
for the respective SloMapping(s). This controller part depends heavily on the target
orchestrator and should be implemented in the corresponding SLO Script orchestrator
connector library. We currently provide a connector library for Kubernetes, which relies
on kubernetes-client11, the officially supported JavaScript client library for Kubernetes.
Our controller implementation uses the watch12 functionality of the Kubernetes API
to be efficiently notified whenever a resource of an observed type is added, removed, or
changed, such that the SLO control loop can be adjusted. For the strongly typed metrics
API we currently provide a connector for PromQL.

The controller uses the transformation service to convert between orchestrator-independent
and orchestrator specific objects. To this end, the transformation service wraps the
open-source library class-transformer13, which provides most of the facilities needed for
transformation. The registration of transformers for specific classes uses custom SLO
Script mechanisms. Unlike class-transformer, it allows registering a transformer not just
for a single property, but globally for all instances of a class and optionally its subclasses,
and use that transformer on all transformable properties of that type.

Similar to class-transformer, SLO Script utilizes a TypeScript decorator to designate the
type of a class property for transformation. This is necessary because the information
about the types of class properties is not available at runtime, so it needs to be attached
to the constructor function object as custom ECMAScript metadata. The need for
metadata that is available at runtime is also the reason why most SLO Script framework
types are classes instead of TypeScript interfaces – interfaces do not exist at runtime and
thus, cannot be used for carrying metadata. SLO Script’s @PolarisType decorator sets
this type metadata for a property of a class and registers a helper with class-transformer,

11https://github.com/kubernetes-client/javascript
12https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-

detection-of-changes
13https://github.com/typestack/class-transformer

25

https://github.com/kubernetes-client/javascript
https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes
https://kubernetes.io/docs/reference/using-api/api-concepts/#efficient-detection-of-changes
https://github.com/typestack/class-transformer

2. SLO Script

responsible for looking up the registered SLO Script transformer for that type or using
the default transformer.

Registering a transformer is also possible for specific ObjectKind configurations. This
is used, e.g., to automatically instantiate the correct class when an object of kind
slo.polaris-slo-cloud.github.io/v1/CostEfficiencySloMapping needs to be
transformed.

To facilitate adoption of SLO Script, our project includes a Command-Line Interface
(CLI) tool that can be used to generate skeletons for SloMapping classes and SLO
controllers, as well as build and deploy them. More information about the CLI can be
found in a demo video online14.

Further details on the runtime will be presented in the next chapter. The next Section
will examine the realization of our motivating use case to evaluate SLO Script.

2.5 Evaluation & Implementation

We have implemented the core library of SLO Script, its CLI, as well as the controllers and
connectors for Kubernetes and Prometheus using TypeScript and Go. The motivating
use case is realized using the CLI and these libraries. More details and the source code
can be found in our code repositories15.

To evaluate SLO Script we use an approach based on the guidelines defined in [155].
We use the real-world cost efficiency use case from Section 2.2.1 to illustrate that SLO
Script fulfills its requirements by improving code reusability, flexibility, ease of use, and
expressiveness and reducing susceptibility to errors and thus, increases productivity.

The goal of the cost efficiency SLO is to trigger an elasticity strategy whenever the
current cost efficiency deviates too far from the defined target value. Since SLO Script
allows the use of an arbitrary elasticity strategy, as long its input parameter type matches
the SLO’s output, we will use the term increase resources to refer to any sequence of
elasticity actions that enlarge the resources allocated to a service, e.g., scaling up or
scaling out, and decrease resources to any sequence of elasticity actions that reduce the
resources allocated to a service, such as scaling down or scaling in.

Contrary to a simple CPU utilization SLO, it is not possible to derive whether an increase
or a decrease in resources is needed by examining only the current and target values of
the cost efficiency. For example, a low cost efficiency is ambiguous – it may indicate that
either

• the system cannot handle the current high demand in time and that an increase in
resources is needed or

14https://www.youtube.com/watch?v=3_z2koGTExw
15https://polaris-slo-cloud.github.io

26

https://www.youtube.com/watch?v=3_z2koGTExw
https://polaris-slo-cloud.github.io

2.5. Evaluation & Implementation

• all requests are handled in time, but too many resources are provisioned compared
to the few incoming requests, such that a decrease in resources is needed.

An expressive language is needed to distinguish these two cases. In SLO Script, we define
the type CostEfficiencySloConfig as shown in Listing 2.1. To handle the ambiguity
problem we just described, we add an additional parameter to this configuration type:
the minimum percentile of requests that should be handled within the time threshold. If
the number of requests per second faster than the threshold is below that percentile, the
service does not have enough resources to handle the load, whereas if it is above that
percentile, the service has too many resources.

export interface CostEfficiencySloConfig {
responseTimeThresholdMs: number;
targetCostEfficiency: number;
minRequestsPercentile?: number; }

Listing 2.1: Cost efficiency SLO configuration.

Listing 2.2 shows the SloMappingSpec and SloMapping classes. The spec class defines
in the generic parameters for its superclass that the configuration type for this SLO
will be CostEfficiencySloConfig, the output type will be SloCompliance, and the
target workload must be of type RestServiceTarget. This short definition ensures
that i) the SLO can only be applied to workloads of the correct type, i.e., workloads
that expose the required metrics, and that ii) only an elasticity strategy that supports
the SLO’s output data can be used, because each ElasticityStrategyKind needs
to specify the compatible input types in an analogous way. This greatly reduces the
possibility for deploy-time or runtime errors, because SLO Script enforces that only
compatible workloads and elasticity strategies are used.

export class CostEfficiencySloMappingSpec extends
SloMappingSpecBase<CostEfficiencySloConfig, SloCompliance,
RestServiceTarget> { }

export class CostEfficiencySloMapping extends
SloMappingBase<CostEfficiencySloMappingSpec> {

constructor(initData?:
SloMappingInitData<CostEfficiencySloMapping>){

super(initData);
this.objectKind = new ObjectKind({

group: ’slo.polaris-slo-cloud.github.io’,
version: ’v1’,
kind: ’CostEfficiencySloMapping’ });

initSelf(this, initData);
}
@PolarisType(() => CostEfficiencySloMappingSpec)
spec: CostEfficiencySloMappingSpec; }

Listing 2.2: Cost efficiency SLO mapping.

27

2. SLO Script

The constructor of the CostEfficiencySloMapping class initializes the objectKind

property to ensure that the correct API group and kind are configured and uses the
@PolarisType decorator to set the appropriate class for the transformation of the
spec property. At the moment, the Kubernetes Custom Resource Definition (CRD) for
registering the SLO mapping type with the orchestrator must either be written manually
or be generated from an equivalent data structure written in Go – this will be addressed
in a future version of the CLI, which will support automatic generation of CRDs.

The CostEfficiencySlo class implements the actual SLO. It uses the MetricsSource

to retrieve the metrics for the target workload and uses them in conjunction with the
configuration to compute an SloCompliance that indicates if the resources need to be
increased or reduced.

To apply the SLO to a workload, service consumers need to instantiate the SloMapping

as shown in Listing 2.3. Any TypeScript compatible IDE can provide code completion
for the required properties, which greatly benefits the ease of use, and give immediate
feedback if the chosen target workload or elasticity strategy are not compatible with the
SLO, thus, revealing errors at the time of writing, which would have been discovered
only at deploy-time or even at runtime, if plain JSON or YAML had been used for
configuration.

export default new CostEfficiencySloMapping({
metadata: new ApiObjectMetadata({ name:

’data-service-cost-efficiency’ }),
spec: new CostEfficiencySloMappingSpec({

targetRef: new RestServiceTarget({
group: ’apps’,
version: ’v1’,
kind: ’Deployment’,
name: ’data-service’ }),

elasticityStrategy:
new HorizontalElasticityStrategyKind(),

sloConfig: {
responseTimeThresholdMs: 400,
targetCostEfficiency: 1000,
minRequestsPercentile: 90 } }) });

Listing 2.3: Applying the cost efficiency SLO to a workload.

Since TypeScript is a superset of JavaScript, a developer can circumvent the type
checking of SLO Script by writing plain JavaScript. The type safety can also be evaded
by applying plain JSON or YAML configuration to the orchestrator. However, this is
not an issue, because our aim is not to lock someone into a type safety system that
cannot be circumvented in any way. The goal is to provide a language, consisting of
domain-specific abstractions and restrictions, which, if used, increase productivity and
provide type safety.

From the architectural perspective, the biggest benefit of SLO Script is the decoupling

28

2.6. Summary

Table 2.1: Lines of Code (excl. comments and blanks).

Component Lines of Code Generated % of Total
SLO Mapping Type 53 50 2%
SLO Controller 224 99 8%
Runtime 2616 − 90%
Total 2893 149 100%

of SLOs from elasticity strategies, which increases code reusability and flexibility. The
clear separation of SLO implementations from elasticity strategy implementations allows
them to be reused in multiple combinations as long as their output/input types match.
The input/output types can be seen like interfaces in object-oriented programming. If
an elasticity strategy implements the interface required by the SLO, the two may be
used in conjunction. This brings the flexibility of object-oriented programming to the
management of SLOs in the cloud.

The SLO Script runtime eases the development of SLOs, because it lets service providers
focus on their data types and business logic. The runtime’s SLO control loop handles
the integration with the orchestrator, as well as the management of the active SLOs.
Out of the steps in the control loop, depicted in Figure 2.6, only the “Evaluate SLO”
step needed to be implemented for our cost efficiency use case. This is evident from
Table 2.1, which shows the line counts of the various components of our cost efficiency
implementation. The SLO Script runtime makes up 90% of the total code. The Cost-

EfficiencySloMapping class and its supporting types add up to 53 lines, however, 50
of these were generated by the CLI. The SLO controller and all its metrics queries take
up 224 lines, 99 of which were generated.

The orchestrator independent object model of SLO Script eases the porting of SLOs
and their mappings to other orchestration platforms, promoting flexibility, limiting the
possibility for vendor lock-in for consumers, and fostering open source collaboration
on SLOs for multiple platforms. Many SLOs may be implemented in a completely
orchestrator-independent manner as well, allowing the creation of “standard SLO libraries”
for instant reuse on other platforms.

2.6 Summary

This chapter has presented SLO Script, a language and accompanying framework for
defining and implementing Service Level Objectives, based on TypeScript and being part
of the open source Polaris project. We have motivated why SLO Script is needed using a
real-world use case of a headless CMS that is used through its REST API and that should
scale based on a high-level cost efficiency SLO. The major requirements for the design of
SLO Script are allowing the definition and configuration of complex SLOs and elasticity
strategies, as well as the definition of composed high-level metrics, decoupling of SLOs
and elasticity strategies, type safety of all abstractions, and orchestrator independence.

29

2. SLO Script

We showed the language’s meta-model and then described SLO Script’s design and how
it fulfills our main contributions of

1. high-level StronglyTypedSLO abstractions with type safety features,

2. decoupling of SLOs from elasticity strategies,

3. a strongly typed metrics API, and

4. an orchestrator-independent object model that promotes extensibility.

Next, we explained how SLO Script’s runtime mechanisms and the SLO control loop
work. For evaluating our language and framework, we illustrated how to implement and
configure the cost efficiency SLO for the motivating use case and highlighted the benefits
of using SLO Script and its CLI for this purpose.

30

CHAPTER 3
A Novel Middleware for Efficiently

Implementing Complex
Cloud-Native SLOs

Polaris Middleware builds on the abstractions introduced in the previous chapter by SLO
Script and adds mechanisms for implementing orchestrator-independent SLO controllers,
which are decoupled from the elasticity strategies they can trigger. The middleware’s
provider-independent SLO metrics collection and processing mechanism enables efficient
querying of time-series metrics and aggregating them into reusable higher-level metrics,
while the Polaris CLI tool allows for fast bootstrapping and creation of Polaris-based
projects.

3.1 Introduction

In the previous chapter we introduced SLO Script’s type-safe and orchestrator-independent
abstractions for SLOs, metrics, and elasticity strategies. To efficiently adjust the elasticity
of a deployed cloud application, which we refer to as a workload, based on its SLOs, a
Monitor Analyze Plan Execute (MAPE) loop [142] can be implemented: i) the monitoring
of system and workload metrics can be handled by tools, such as Prometheus1, ii) the
analysis of the metrics to evaluate whether the defined goals are met, is the task of an
SLO, iii) the planning of actions to correct a violated SLO needs to be done by the

This chapter is based on the paper T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X.
Ding, D. Vij, and Y. Xiong, “A Novel Middleware for Efficiently Implementing Complex Cloud-Native
SLOs,” in 2021 IEEE 14th International Conference on Cloud Computing (CLOUD), 2021.

1https://prometheus.io

31

https://prometheus.io

3. Polaris Middleware

elasticity strategy, and iv) the execution of the planned actions is carried out by the
cloud orchestrator, e.g., Kubernetes2.

In this chapter, we focus on the realization of SLOs, i.e., the analysis step of the control
loop. In the analysis step, an SLO must obtain one or more metrics from the monitoring
step and pass its evaluation result on to the planning step, i.e., an elasticity strategy
– this is not trivial. A common approach is to implement the SLO as a control loop
itself. The variety of monitoring solutions and databases (DBs) makes obtaining metrics
difficult without tying the implementation to a particular vendor. Once the metrics
have been obtained, they may need to be aggregated to gain deeper insights. When the
current status of the SLO has been determined, the outcome needs to be conveyed to an
elasticity strategy; ideally multiple elasticity strategies should be supported.

To facilitate the implementation of complex SLOs, we present the Polaris Middleware.
Its implementation is published as open source, as part of the Polaris project3. Our main
contributions with the Polaris middleware include:

1. An orchestrator-independent SLO controller periodically evaluates SLOs and trig-
gers elasticity strategies, while ensuring that SLOs and elasticity strategies remain
decoupled to increase the number of possible SLO/elasticity strategy combinations.

2. A provider-independent SLO metrics collection and processing mechanism allows
querying raw time series metrics, as well as, composing multiple metrics into
reusable higher-level metrics.

3. A CLI Tool creates and manages projects that rely on the Polaris middleware.

Additionally, we provide platform connectors for Kubernetes, which has been found to
have the most capabilities for production-level services among commonly used container
orchestrators [112], and Prometheus, which is a popular choice for a time series DB.

The remainder of this chapter is structured as follows: Section 3.2 provides further
motivation for our work using a real-world use case, Section 3.3 presents a high-level
overview of the Polaris middleware, Section 3.4 describes the central mechanisms, and
Section 3.5 their implementation. In Section 3.6 we evaluate the Polaris middleware by
implementing the real-world use case and in Section 3.7 we summarize this chapter.

3.2 Motivation

To motivate the need for the Polaris middleware, we revisit the illustrative scenario from
the previous chapter.

2https://kubernetes.io
3https://polaris-slo-cloud.github.io

32

https://kubernetes.io
https://polaris-slo-cloud.github.io

3.2. Motivation

3.2.1 Illustrative Scenario

In Section 2.2.1 we presented the use case of a headless CMS that is deployed as Software-
as-a-Service (SaaS) and which should fulfill a high-level cost efficiency SLO.

Cost efficiency is a high-level metric that is often defined as the number of requests per
second served faster than N milliseconds divided by the total cost of the workload [101,
133]. This high-level metric is not directly observable on the workload. Instead, it needs
to be calculated by combining multiple low-level metrics. Doing this without tying the
implementation to a specific time series DB is difficult, because each major time series DB
has its own query language, e.g., Prometheus uses PromQL, InfluxDB4 uses Flux, and
Google Cloud Platform uses MQL5. To alleviate this problem, the Polaris middleware
offers a DB-independent service for querying raw metrics. Once a high-level metric, e.g.,
the total cost of a workload, has been computed, it would be beneficial to reuse it in
multiple SLOs, thus, we also provide a service for obtaining such high-level, composed
metrics.

Before reading and evaluating metrics, an SLO needs to be configured by the customer
and executed periodically to perform its evaluation. Once the SLO detects a violation, it
has to be able to trigger an elasticity strategy to bring the workload back into a state,
where the SLO is respected. Horizontal scaling is the most commonly used elasticity
strategy today [191]. Nevertheless a customer should be able to choose from different
elasticity strategies to trigger upon an SLO violation – yet, most SLOs today are tightly
coupled with one specific elasticity strategy, e.g., the average CPU usage SLO in the
Kubernetes HPA [168]. To support the aforementioned flexibility, the runtime’s SLO
control mechanism, which should be generic enough to be shared among all SLOs, must
provide these features.

3.2.2 Research Challenges

RC-1 Decoupling of SLOs from elasticity strategies: Many SLOs are tightly coupled
with the elasticity strategy they trigger. For example, HPA in Kubernetes provides
an average CPU usage SLO, which can trigger only horizontal scaling. This rigid
coupling reduces the flexibility of a system – re-implementing every useful elasticity
strategy for every SLO controller is infeasible. Thus, a decoupling of SLOs from
elasticity strategies is needed.

RC-2 Enable realization of high-level SLOs, based on complex metrics: Most metrics that
guide cloud elasticity today are directly measurable at the system or application
level [45, 240, 191]. While HPA supports custom metrics using the custom and
external metrics APIs6, both approaches require developers to write a custom API

4https://www.influxdata.com
5https://cloud.google.com/monitoring/mql/reference
6https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/#support-for-metrics-apis

33

https://www.influxdata.com
https://cloud.google.com/monitoring/mql/reference
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis

3. Polaris Middleware

server, to which the Kubernetes API can proxy requests, thus, increasing development
and maintenance effort. The external metrics API supports the specification of custom
queries, but this feature must also be implemented by the custom API server. An
SLO middleware must provide mechanisms for combining multiple low-level metrics
into high-level metrics that are reusable in multiple SLOs.

RC-3 Cloud platform and datastore independence: The configuration of autoscaling
solutions is commonly specific to a cloud vendor or orchestrator. Likewise, there
is a distinct query language for each major time series DB. Portable SLOs require
mechanisms to make them independent of particular vendors.

Our first contribution, the orchestrator-independent SLO controller, addresses all three
research challenges, while our second contribution, the provider-independent SLO metrics
collection and processing mechanism, focuses on RC-2 and RC-3. Our third contribution,
the CLI Tool, is a supporting mechanism for leveraging the other two.

3.3 Framework Overview
In this Section we provide a high-level overview of the Polaris middleware’s architecture
and the Polaris CLI.

3.3.1 Architecture

The architecture of the Polaris middleware is divided into two major layers, as illustrated
in Figure 3.1. The Core Runtime layer contains orchestrator-independent abstractions
and algorithms. The Connectors layer below it, contains orchestrator and DB-specific
implementations of interfaces from the core runtime to allow connecting it to a specific
orchestrator or time series DB, which are located underneath this layer. SLO Controllers
are built on top of the core runtime, shielding them from orchestrator- and DB-specific
APIs. We subsequently describe each of the runtime components in Figure 3.1 briefly:

The Core Model contains abstractions for defining and implementing SLOs. The most im-
portant ones are ServiceLevelObjective, SloTarget, SloMapping, and Elasticity-

Strategy. ServiceLevelObjective defines the interface that the SLO implementation
needs to realize to plug into the control loop provided by the runtime. SloTarget is an
abstraction used identify the target workload that the SLO should be applied to. An
SLO is configured through an SloMapping, which associates a particular SLO type with
a target workload and an elasticity strategy, thus, establishing a loose coupling between
them. SLO mappings are deployed to the orchestrator as custom resources. Each SLO
mapping type entails the definition of a custom resource type in the orchestrator. The
addition of a new SLO mapping resource instance, activates the respective SLO controller,
which subsequently enforces the SLO. The ElasticityStrategy that is specified as
part of an SLO mapping, identifies the strategy that should be used if the target violates
the SLO, to bring it back into a state, where the SLO is adhered. Akin to an SLO

34

3.3. Framework Overview

SLO Controllers

SLO Evalua�on

Core Model

Object Watch

Transforma�on Service

Raw Metrics
Service

Composed
Metrics Service

C
o

re
 R

u
n
�

m
e

SLO Control Loop
C

o
n

n
ec

-
to

rs Kubernetes
Connector

Prometheus
Connector

...

Orchestrator, Time Series DB, ...

Figure 3.1: Polaris Runtime Architecture (the colors indicate, which connector realizes
interfaces from a particular component).

mapping type, each ElasticityStrategy type is represented by a custom resource type
in the orchestrator.

The SLO control loop is used in an SLO controller to watch the orchestrator for new or
changed SLO mappings and to periodically evaluate the SLO. It relies solely on Polaris
middleware abstractions and does not need be customized by an orchestrator connector
or an SLO controller, albeit this is possible, if desired.

The SLO Evaluation facilities are used by the SLO control loop to perform the evaluation
of the SLO and to trigger elasticity strategies on the orchestrator, if necessary. The
evaluation of the SLO is handled by the core runtime, while the mechanisms for triggering
an elasticity strategy, which are specific to each orchestrator, must be provided by the
respective orchestrator connector.

The Transformation Service allows transforming orchestrator-independent Polaris mid-
dleware objects into orchestrator-specific objects for a particular target platform and
vice-versa. The runtime provides a transformation mechanism that allows orchestrator
connectors to register a type transformer for every object type that needs to be customized
for the target orchestrator.

The Object Watch facilities allow observing a set of resource instances of a specific type in
the orchestrator for additions, changes, and removals of instances. This is used, e.g., by
the SLO control loop to monitor additions of or changes to SLO mappings. Orchestrator
connectors must implement these facilities for their respective platforms.

The Raw Metrics Service enables DB-independent access to time series data to obtain
metrics. A DB connector must transform the generic queries produced by this service

35

3. Polaris Middleware

into queries for its particular DB.

The Composed Metrics Service provides access to higher-level metrics, called composed
metrics, which allow combining multiple lower level metrics into a reusable high-level
metric. To make it accessible through the Composed Metrics Service, a composed metric
may be packaged into a library that can be included in an SLO controller or it can be
exposed as a service or stored in a shared DB, promoting loose coupling between the
metrics providers and the SLO controllers. The implementation of the sharing mechanism
may be provided by either the orchestrator or the DB connector.

The connectors create the bridge between the core runtime and the underlying orchestrator
and DBs.

The Kubernetes Connector library provides Kubernetes-specific realizations of the three
runtime facilities that are highlighted in green in Figure 3.1. Kubernetes-specific trans-
formers plug into the Transformation Service to enable the transformation of objects from
the core model to Kubernetes-specific objects. The library also implements the object
watch facilities for the Kubernetes orchestrator, which allow the SLO control loop in an
SLO controller to watch a particular SLO mapping CRD for additions of new resource
instances or changes to existing ones. The SLO evaluation realization for Kubernetes
augments the generic evaluation facility from the core runtime by allowing it to trigger
an elasticity strategy using Kubernetes CRD instances.

The Prometheus Connector implements the generic Raw Metrics Service using queries
specific to the Prometheus time-series database. It also supplies a mechanism for reading
composed metrics from Prometheus.

3.3.2 Polaris CLI

The Polaris Command-Line Interface (CLI) provides a mechanism for project creation,
building, and deployment for developers, who want to use the Polaris middleware to
create custom SLOs and controllers. Its aim is to provide a convenient user interface
to developers, as well as a starting point for integrating Polaris middleware projects in
Continuous Integration (CI) pipelines. The major commands are the following:

polaris-cli generate <componentType> <name> adds a component of the specified
type to the project. The componentType may currently be one of three types:

• mapping-type creates a new SLO mapping type that can be used by consumers
to apply and configure an SLO.

• slo-controller creates an SLO controller for an SLO mapping type and deploy-
ment configuration files.

• mapping creates a new mapping instance for an existing SLO mapping type. This
is intended to be used by consumers, who want to configure and apply a particular
SLO to their workload.

36

3.4. Mechanisms

polaris-cli (docker-)build <name> executes the build process for the specified
component to produce deployable artifacts. For an SLO mapping type, this is a library
package that can be published for use by customers. For SLO controllers, a container
image with the executable controller for deployment on the orchestrator is produced.
For an SLO mapping, the output is a configuration file, representing an instance of the
corresponding SLO type CRD.

polaris-cli deploy <name> [destination] deploys the build artifact of the speci-
fied component to the specified destination orchestrator.

The Polaris CLI provides a default implementation for all commands, but allows developers
to override these defaults in the project file, enabling, for example, the use of a different
tool for deployment of the artifacts.

3.4 Mechanisms

In this Section, we describe the two main mechanisms provided by the Polaris middleware,
i.e., the orchestrator-independent SLO controller and the provider-independent SLO
metrics collection and processing mechanism.

3.4.1 Orchestrator-Independent SLO Controller

The central mechanism in an SLO controller is the SLO control loop – it monitors and
enforces an SLO configured by a user. The overall architecture and extension points of
the SLO control loop were already introduced in Section 2.4. This section will examine
the details from the runtime perspective. As previously mentioned, the SLO control
loop is orchestrator-independent and merely requires some supporting services to be
implemented by the orchestrator connector.

The SLO control loop consists of two sub-loops, as shown in Figure 3.2. The watch loop
on the left side (highlighted in green) is concerned with observing additions, changes,
or deletions of SLO mappings in the orchestrator using the object watch facilities and
maintaining the list of SLOs managed by the control loop. The evaluation loop on
the right side (highlighted in blue) periodically evaluates each SLO and triggers the
configured elasticity strategy using the SLO evaluation facilities.

Watch Loop

The watch loop begins by observing the SLO mapping custom resource types that the SLO
controller supports. To this end, it uses the object watch facilities, which emit an event
whenever an object of the watched types (i.e., the supported SLO mappings) is added,
changed, or removed from the orchestrator. This functionality must be implemented by
the orchestrator connector. Each watch event entails receiving the raw SLO mapping
object that has been added, changed, or removed. Since this object is specific to the

37

3. Polaris Middleware

SLO Control Loop

Watch supported SloMappings

Receive raw SloMapping

Transform to Polaris
object

Remove SLO from
control loop

Instantiate and configure SLO

Add to control loop or replace

<<structured>>
for each SLO

Evaluate SLO

Orchestrator SloMapping

Polaris SloMapping Instance

SLO instance

SLO Output

Wrap in ElasticityStrategy

Submit to orchestrator

Orchestrator-specific
ElasticityStrategy

Transform to orchestrator object

Watch Loop

Evaluation Loop

Evaluation Loop Interval

[SloMapping added] [SloMapping removed]

Figure 3.2: SLO Control Loop.

underlying orchestrator, it is transformed using the Transformation Service into an
orchestrator-independent object.

The watch loop then acts according to the type of watch event. If a new SLO mapping
has been added or changed, the appropriate SLO object that is capable of evaluating
the SLO is instantiated, configured, and added to or replaced in the list of SLOs for the
evaluation loop. If an existing SLO mapping has been removed, the corresponding SLO
object is removed from the evaluation loop. Subsequently, the watch loop goes back to
waiting for the next event.

Evaluation Loop

The evaluation loop executes at an interval that is configurable by the SLO controller.
Whenever it is triggered, the evaluation loop iterates through the list of all its SLOs.
For each SLO, the current status is evaluated using the SLO evaluation facilities. The
exact evaluation process depends on the implementation of the particular SLO that is

38

3.4. Mechanisms

objectKind: {
 group: ’slo.sloc.github.io’,
 version: ’v1’,
 kind: ’CostEfficiencySloMapping’,
},
metadata: { name: ’my-slo’ },
spec: { ... }

:CostEfficiencySloMapping

apiVersion: ‘slo.sloc.github.io/v1’,
kind: ‘CostEfficiencySloMapping’,
metadata: { name: ’my-slo’ },
spec: { ... }

:KubernetesObject

Figure 3.3: Cost efficiency SLO mapping before and after transformation.

built on top of the Polaris middleware. Generally, SLO evaluation entails the retrieval
of all relevant input metrics using the Raw Metrics Service and the Composed Metrics
Service. These metrics may be further processed and combined and are subsequently
compared to the ideal values configured by the user in the SLO mapping. This results in
an SLO output that indicates if the SLO is currently fulfilled, violated, or outperformed
(i.e., fulfilled by a large margin, such that e.g., a resource reduction is possible) and any
additional information necessary to get it back into a fulfilled state, if necessary.

This output is wrapped in an elasticity strategy object of the type specified by the
SLO configuration. The elasticity strategy object is subsequently transformed to an
orchestrator-specific object using the Transformation Service and submitted to the
orchestrator, where it will trigger the respective controller for the elasticity strategy. This
submission to the orchestrator is the part of the SLO evaluation facilities that must be
implemented by the orchestrator connector – the remainder of the SLO evaluation is
orchestrator-independent.

The SLO control loop is designed to handle errors during the evaluation of an SLO
gracefully, such that a problematic SLO does not cause the entire controller to fail.

The SLO control loop relies on the Transformation Service to convert between orchestrator-
independent and orchestrator-specific objects. All objects that are received from or
submitted to the orchestrator pass through this service. Orchestrator connector libraries
can register transformers for object types, whose orchestrator-specific data structure does
not match that of the corresponding type in the Polaris middleware. The Transformation
Service is responsible for transforming the structure of objects, while serialization and
deserialization (e.g., to/from JSON) are handled by the object watch and SLO evaluation
facilities. To transform an object’s structure, the Transformation Service recursively
iterates through all attributes of an input object. If a transformer has been registered for
an attribute’s type, it is executed on the attribute’s value according to the direction of
the current transformation operation (i.e., from orchestrator-independent to orchestrator-
specific or from orchestrator-specific to orchestrator-independent). If no transformer is
registered for a particular type, the value is copied and the recursive iteration continues
on the value’s attributes. Figure 3.3 exemplifies how an SLO mapping object for a cost
efficiency SLO is transformed to a Kubernetes resource object (observe that the object-

Kind attribute of the Polaris object is transformed into two attributes, apiVersion and
kind, on the Kuberenetes object).

Another essential mechanism in an SLO controller is the decoupling of SLOs and Elasticity

39

3. Polaris Middleware

Strategies. The goal of this is two-fold: i) allow an SLO to trigger a user-configurable
elasticity strategy that is unknown at the time the SLO controller is built (i.e., the SLO
controller cannot have a hardcoded set of elasticity strategy options) and ii) allow an
elasticity strategy to be used by multiple SLOs to avoid having to reimplement the same
set of elasticity strategies for every SLO.

To achieve both goals, we have defined a common structure for elasticity strategy resources,
consisting of three parts: a reference to the target workload, the output data from the SLO
evaluation, and static configuration parameters supplied by the user. The target workload
reference and the static configuration parameters are copied from the SLO mapping
by the Polaris middleware. The configuration parameters are specific to the elasticity
strategy that the user has chosen, which does not limit the generality of the mechanism,
because they are statically specified together with the identifier of the elasticity strategy
that the user has chosen and are not modified by the SLO. Conversely, the SLO evaluation
output data are entirely produced by the SLO controller. The structure of the SLO
output determines which elasticity strategies can be combined with that SLO, i.e., if an
elasticity strategy supports the SLO’s output data type as input, the two are compatible.
The Polaris middleware only needs to copy the SLO output data to the elasticity strategy
resource.

Using a generic data structure that is supported by multiple SLOs and elasticity strategies
as an SLO’s output data type, increases the number of possible SLO/elasticity strategy
combinations. Any suitable data structure can be used for this purpose. The Polaris mid-
dleware includes the generic SloCompliance data type, which captures the compliance
to an SLO as a percentage: a compliance value of 100% indicates that the SLO is exactly
met, a higher value means that the SLO is violated and that, e.g., an increase in resources
is needed, while a lower value indicates that the SLO is being outperformed and that
resources can be reduced to save costs. To avoid too frequent scaling, SloCompliance
includes the possibility for specifying a tolerance value, within which no elasticity action
should be performed.

3.4.2 Provider-Independent SLO Metrics Collection And Processing
Mechanism

The metrics required for evaluating an SLO can be obtained through two mechanisms:
i) the Raw Metrics Service and ii) the Composed Metrics Service. The former is intended
for low-level metrics that are directly measurable on a workload, e.g., CPU usage or
network throughput, while the latter allows obtaining higher-level metrics that are
aggregations of several lower-level metrics or predictions of metrics.

Raw Metrics Service

The Raw Metrics Service enables the DB-independent construction of queries for time
series data. To this end, it allows specifying the metric name and the target workload,
for which it should be obtained, as well as the time range and filter criteria. Furthermore,

40

3.4. Mechanisms

it provides arithmetic and logical operators and aggregation functions to operate on the
metrics. Upon execution, a query is transformed into the native query language of the
used time series DB. The result of a query is an ordered sequence or a set of ordered
sequences of primarily simple (i.e., numeric or Boolean) raw or low-level metric values.

The Raw Metrics Service is designed as a fluent API [145, 79], which means that the
code resulting from its use should be natural and easy to read. Specifically this entails
chaining of method calls, supporting nested function calls, and relying on object scoping.
Listing 3.1 shows a query for the sum of the durations of all HTTP requests that were
made in the last minute, grouped by request paths.

rawMetricsService.getTimeSeriesSource()
.select(’my_workload’,

’request_duration_seconds_count’,
TimeRange.fromDuration(

Duration.fromMinutes(1)))
.filterOnLabel(LabelFilters.regex(

’http_controller’, ’my_workload.*’))
.sumByGroup(LabelGrouping.by(’path’))
.execute();

Listing 3.1: Raw Metrics Service query for total duration of all HTTP requests in the
last minute, grouped by paths.

Composed Metrics Service

The Composed Metrics Service is aimed at high-level metrics. These may be simple
values (e.g., numbers or Booleans) or complex data structures. Unlike a raw (low-level)
metric, a composed metric is not directly observable on a workload, but needs to be
calculated, e.g., by aggregating several lower level metrics. A composed metric may also
represent predictions of future values of a metric. Every composed metric has a composed
metric type definition that specifies the data structure of its values and a unique name
for identification.

The calculation of a composed metric requires an additional entity, termed a composed
metric source, to perform this calculation. Each composed metric source supplies a metric
of a specific composed metric type. A composed metric type is similar to an interface in
object-oriented programming; it specifies the type of composed metric that is delivered
and may be supplied by multiple composed metric sources.

Apart from its composed metric type, a composed metric source is also identified by
the type of target workload it supports. This enables high-level metrics, such as cost
efficiency, which need to be computed differently for various workload types. For example,
for a REST service, cost efficiency relies on the response time of the incoming HTTP
requests, a metric that is not available on a SQL database. There, the execution time of
the queries could be used instead. This entails different composed metric sources, which
can be registered to the respective workload types.

41

3. Polaris Middleware

The Composed Metrics Service supports both, i) composed metric sources integrated into
the SLO controller through libraries and ii) out-of-process composed metric sources that
execute within their own metric controller. The former option computes the composed
metric within the SLO controller and is simple to realize for developers, because it only
requires the creation of a custom library that needs to be imported in the SLO controller
and registered with the Composed Metrics Service. The latter option is more flexible
and allows for decoupling of the implementation and maintenance of the SLO controller
from that of the composed metric source.

Out-of-process composed metric sources may be implemented, e.g., as REST services or
through the use of a shared DB. The latter allows the composed metric to be calculated
once and reused by multiple SLO controllers. An out-of-process composed metric source
can be leveraged to flexibly update or change the way a certain composed metric type is
computed. For example, a TotalCost composed metric type is of interest to multiple
SLOs. It may be supplied by a metric controller with a refresh rate of five minutes, i.e.,
the total cost of a workload is updated every five minutes. This metric controller can
be replaced by a newer version, with a refresh rate of one minute, without having to
recompile and redeploy the SLO controllers that depend on this composed metric.

3.5 Implementation

In this Section, we briefly describe the implementation of the mechanisms from Section 3.4
in our core runtime and the connectors for Kubernetes and Prometheus.

The Polaris middleware and its CLI are realized in TypeScript and published as a set
of npm library packages. An SLO controller is a Node.js application that uses these
packages as dependencies to implement SLO checking and enforcement mechanisms. All
middleware and CLI code, as well as example controllers, are available as open source7.

3.5.1 Orchestrator-Independent SLO Controller

The orchestrator-independent SLO controller relies on the abstractions provided by the
core model, as well as the object watch and SLO evaluation facilities. Figure 3.4 shows
the main components involved in the SLO control loop. In case the default control loop
implementation does not suffice for a particular scenario, the runtime may be configured
to use a custom implementation of the SloControlLoop interface.

The SLO control loop manages ServiceLevelObjective objects, which are imple-
mented by the SLO controller. The ObjectKindWatcher is provided by the orchestrator
connector library to enable observation of the supported SLO mapping types. The
evaluation loop evaluates registered SLOs using the SloEvaluator provided by the
orchestrator connector. The default implementation handles the evaluation of the SLO
and the wrapping of its output in an elasticity strategy object – the connector library

7https://polaris-slo-cloud.github.io

42

https://polaris-slo-cloud.github.io

3.5. Implementation

+configure()

+evaluate()

+onDestroy()

<<Interface>>

ServiceLevelObjective

+evaluateSlo()

<<Interface>>

SloEvaluator

+evaluateSlo()

+onBeforeEvaluateSlo()

+onAfterEvaluateSlo()

SloEvaluatorBase
SloMappingBase

+startWatchers()

+stopWatchers()

<<Interface>>

WatchManager

<<Interface>>

SloControlLoop

DefaultSloControlLoop

+interval$

+sloTimeoutMs

<<Interface>>

SloControlLoopConfig <<Interface>>

WatchEventsHandler

<<Interface>>

ObjectKindWatcherhandler

loopConfig
activeWatchers *

evaluator

registeredSlos *

sloMapping

watchHandler

<<use>>

Figure 3.4: SLO Control Loop components (simplified).

must only implement the submission to the orchestrator. The Kubernetes connector for
the Polaris middleware relies on kubernetes-client8, the officially supported JavaScript
client library for Kubernetes. It is important to note that the decisions need to be made
inside the SLO- and elasticity strategy-specific code in the respective controllers. The
purpose of the Polaris middleware is to connect an SLO to any compatible elasticity
strategy and to provide reusable facilities to reduce the effort of developing these types
of controllers.

The Transformation Service is relies on the open-source library class-transformer9 for
executing the transformation process, but provides its own, more flexible, transformer
registration mechanism. We assume that all raw orchestrator resources contain a metadata
property that uniquely identifies their type. An orchestrator connector library is required
to register a transformer that converts these metadata into an ObjectKind object,
which is the Polaris abstraction used for identifying orchestrator resource types. The
Transformation Service supports associating object kinds with Polaris classes to enable
the transformation into the correct runtime objects.

The decoupling of SLOs and elasticity strategies relies on a common layout of elasticity
strategy resources and the use of the same data type for the output of an SLO and the
input of an elasticity strategy. The user selects an elasticity strategy for an SLO by
specifying its object kind in the SLO mapping that configures the SLO. After evaluating
an SLO, the Polaris middleware instantiates the elasticity strategy class associated with
this object kind and copies the SLO output data to it. An SLO Mapping requires the
user to choose exactly one elasticity strategy. An elasticity strategy is responsible for
ensuring that its sub-actions do not conflict with each other, e.g., if it combines horizontal
and vertical scaling. Unlike metrics, SLOs and elasticity strategies cannot be composed.

8https://github.com/kubernetes-client/javascript
9https://github.com/typestack/class-transformer

43

https://github.com/kubernetes-client/javascript
https://github.com/typestack/class-transformer

3. Polaris Middleware

However, it is possible to configure multiple SLOs for a single workload and, thus, also
multiple elasticity strategies (one for each SLO). Since such combinations are highly use
case specific, there is no generic conflict resolution mechanism. Instead, the user needs
to ensure that there are no conflicts, which, however, does not limit the expressiveness of
the solution.

3.5.2 Provider-Independent SLO Metrics Collection And Processing
Mechanism

Raw Metrics Service

To create a raw metrics query, the Raw Metrics Service is used to obtain a TimeSeries-

Source, which realizes a DB-independent interface for assembling time series queries for
a particular target DB. The supported sources are registered with the Polaris middleware
when the SLO controller starts. The select() method of TimeSeriesSource creates a
new query by specifying the name of the metric and the target workload. Each method
call on a query (see Listing 3.1) returns an immutable object that models the query up
to this point. The query may be executed, using the execute() method, or extended
by adding another query clause with an additional method call, which yields a new,
immutable query object. This approach allows reusing a base query object, e.g., the time
series of all HTTP request durations, for multiple queries without side effects, e.g., for the
sum of all request durations and for the average duration of a request. When execute()

is called on a query object q, the segments of the query chain, starting from the select()
query object up to query object q, are passed to a NativeQueryBuilder. This builder
needs to be provided by a DB connector library, e.g., the Prometheus connector.

Composed Metrics Service

To get a composed metric, a ComposedMetricSource is obtained from the Composed
Metrics Service using a composed metric type and the target workload. Upon startup,
the SLO controller registers all ComposedMetricSource realizations that are provided
through libraries, together with their corresponding composed metric types and supported
target workload types, in the Polaris middleware. These composed metric sources execute
their metric computation logic inside the SLO controller, e.g., by using the Raw Metrics
Service internally for retrieving and aggregating multiple raw metrics. If no Composed-

MetricSource has been registered for a particular composed metric type, the Composed
Metrics Service assumes that this is an out-of-process composed metric source, which
is realized by a connector library. The Prometheus connector provides a Composed-

MetricSource realization that relies on Prometheus as a shared DB, where standalone
composed metric controllers store their computed metrics.

44

3.6. Evaluation

CostEfficiencySlo

RestApiCostEfficiency

MetricSource

KubeCost

MetricSource

RawMetrics

Service

ComposedMetrics

Service

Prometheus

Connector

SloControlLoop

KubernetesSlo

Evaluator

Kubernetes

Watcher

Transformation

Service

Kubernetes

Transformers

HorizontalElasticity

StrategyResource

CostEfficiencyMetric

TotalCostMetric

NativeQueryBuilder

ServiceLevelObjective
SloEvaluator

ObjectKindWatcher

Transformer

SloCompliance

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 3.5: Cost Efficiency SLO Implementation (blue), Kubernetes Connector (green),
Prometheus Connector (orange).

3.6 Evaluation
We implement the motivating cost efficiency SLO use case from Section 3.2 to show the
productivity benefits of using the Polaris middleware and run experiments in our cluster
testbed to evaluate its performance.

3.6.1 Demo Application Setup

Figure 3.5 provides an overview of the components of the cost efficiency SLO implemen-
tation and their relationships – blue components are implemented for the use case, white
components are orchestrator and DB-independent parts of the Polaris middleware, and
green and orange components are part of the Kubernetes and Prometheus connectors
respectively. All code is available in the Polaris project’s repository.

Our test cluster provides an elasticity strategy for horizontal scaling, which is also part
of the Polaris project and accepts generic SloCompliance data as input.

First, we set up an SLO mapping type in an npm library to allow users to configure the
cost efficiency SLO. To this end, the Polaris CLI can create a TypeScript class Cost-

EfficiencySloMapping, which we extend with the configuration parameters. Currently,
the YAML code for registering a Kubernetes CRD must be written manually or be
generated from an equivalent data structure defined in Go – as part of future work,
we will extend the Polaris CLI to support generating CRDs from the TypeScript SLO
mapping classes.

To enable reuse of the cost efficiency metric, we implement it as a composed metric in

45

3. Polaris Middleware

a library. In our use case, cost efficiency is defined as the number of REST requests
handled faster than N milliseconds, divided by the total cost of the workload. However,
cost efficiency is not only useful for REST services, but can be applied to other types
of services as well, e.g., a weather prediction service, albeit with a different raw metric
as the numerator in the equation. To allow this, we define a generic cost efficiency
composed metric type (composed metric types are shown as interfaces in Figure 3.5)
that can be implemented by multiple composed metric sources. Thus, we enable a cost
efficiency SLO controller to support multiple workload types (e.g., REST services and
prediction services) by either registering multiple cost efficiency composed metric sources
from libraries or by relying on out-of-process composed metric services to provide the
cost efficiency metric for the various workload types. In our use case we supply a cost
efficiency implementation for REST services, but since the Composed Metrics Service
differentiates between workload types when obtaining a composed metric source, this
can be increased to an arbitrary number of implementations for various workload types.

Since total cost is an important metric in cloud computing, this part of the cost efficiency
composed metric could be reused by other composed metrics or SLOs. To this end, we
create a total cost composed metric type that may be supplied by multiple composed
metric sources. We provide an implementation that relies on KubeCost10, which we
use to export the hourly resource costs to Prometheus. In the implementation of the
KubeCostMetricSource, we use the Raw Metrics Service to obtain these costs and the
recent CPU and memory usage of the involved workload components and multiply and
sum them to obtain the total cost.

The RestApiCostEfficiencyMetricSource also relies on the Raw Metrics Service to
read the HTTP request metrics from the time series DB. It uses the Composed Metrics
Service to obtain the cost efficiency composed metric source for the current workload
to calculate the cost efficiency. The modular approach of the composed metrics allows
changing parts of the implementation (e.g., use a different cost provider) without affecting
the rest of the composed metrics. Note that even though we use Prometheus in our use
case, the implementation of both composed metrics is completely DB-independent – in
fact, a DB connector must be initialized by the SLO controller (Prometheus connector in
Figure 3.5) to provide a NativeQueryBuilder for generating queries for a specific DB.

Next, the SLO controller needs to be created. Its bootstrapping code generated by
the Polaris CLI initializes the Polaris middleware, the Kubernetes and Prometheus
connectors, registers the cost efficiency SLO and its SLO mapping type with the SLO
control loop, and starts the control loop. For the CostEfficiencySlo class, a skeleton
is generated to realize the ServiceLevelObjective interface – it must be implemented
by developers. Since the cost efficiency composed metric has been developed as a library,
we need to call its initialization function during controller startup to register the cost
efficiency metric with the Composed Metrics Service.

The SLO control loop monitors CostEfficiencySloMapping resources in the orchestra-
10https://www.kubecost.com

46

https://www.kubecost.com

3.6. Evaluation

tor through the object watch facilities. To this end, the Kubernetes connector provides
an implementation of the ObjectKindWatcher interface, which relies on the Transfor-
mation Service to transform Kubernetes resources using the transformers supplied by
the Kubernetes connector as well.

When a CostEfficiencySloMapping resource is received by the SLO control loop, the
CostEfficiencySlo class is instantiated to handle its evaluation, when periodically
triggered by the control loop through the SLO evaluation facilities. We use the Composed
Metrics Service in the CostEfficiencySlo class to obtain the composed metric source
for the cost efficiency metric. The current value of the metric is compared to the target
value configured by the user and an SLO compliance value is calculated and returned
to the SLO evaluation facilities, whose orchestrator-specific parts are realized by the
Kubernetes connector. They use the elasticity strategy object kind configured in the
SLO mapping instance to create a HorizontalElasticityStrategy resource to wrap
the SloCompliance output and submit that to the orchestrator to trigger the elasticity
strategy controller.

3.6.2 Qualitative Evaluation

Due to the use of the generic SloCompliance (depicted as an interface in Figure 3.5)
and the dynamic instantiation of the elasticity strategy resource, the cost efficiency SLO
does not need to know about the specific elasticity strategy that will be used. Similarly,
the horizontal elasticity strategy controller does not require any information on the SLO
that has created the elasticity strategy resource. The type of SLO output data is the
only link that connects an SLO to an elasticity strategy; apart from having to share the
same output/input data type, they are completely decoupled. For example, changing to
a vertical elasticity strategy, only entails the user altering the SLO mapping instance,
used to configure the SLO, to reference a vertical elasticity strategy object kind instead
of a horizontal elasticity strategy object kind.

All orchestrator-specific actions used in the SLO control loop are encapsulated in the
object watch and SLO evaluation facilities, as well as the transformers used by the
Transformation Service, which, in this use case, are implemented by the Kubernetes
connector library. Switching to a different orchestrator, e.g., OpenStack11, only entails
exchanging the Kubernetes connector library for an OpenStack connector library (i.e.,
importing a different library and changing one initialization function call), the rest of
the cost efficiency SLO controller’s implementation would remain unchanged. The same
applies to changing the type of time series DB used as the source for the raw metrics
needed to compute the cost efficiency composed metric: the Prometheus connector
library could be exchanged, e.g., for an InfluxDB connector library, without altering the
implementation of the cost efficiency composed metric source.

Table 3.1 summarizes the line counts of the involved components. The Polaris middleware
has the largest part, with 89% of the total code. The reusable total cost and the cost

11https://www.openstack.org

47

https://www.openstack.org

3. Polaris Middleware

Table 3.1: Lines of Code (excl. comments and blanks).

Component Lines of Code % of Total
Composed Metrics 209 7%
SLO Controller 119 4%
Polaris Middleware 2594 89%
Total 2922 100%

efficiency metrics together add up to 209 lines or 7% of the code. The cost efficiency
SLO controller is the smallest part with only 119 lines (4% of the total code), about half
of which can be generated by the Polaris CLI. This shows that the usage of the Polaris
middleware greatly increases productivity when developing complex SLOs, while keeping
them portable to multiple orchestrators and DBs. To better illustrate the usage of the
Polaris CLI, we have published a demo video online12.

3.6.3 Performance Evaluation

Our testbed consists of a three-node Kubernetes cluster, with one control plane node
and two worker nodes, all running MicroK8s13 v1.20 (which is based on Kubernetes
v1.20). The underlying virtual machines (VMs) are running Debian Linux 10 and have
the following configurations:

• Control plane & Worker1 : 4 vCPUs and 16 GB of RAM

• Worker2 : 8 vCPUs and 32 GB of RAM

We use a synthetic workload for the performance tests, as this is the best practice for
stress tests. To the best of our knowledge, there is no other middleware that offers the
same features as Polaris. Out of the production-ready solutions, HPA offers the greatest
similarity. However, the realization of composed metrics would require the addition of a
custom Kubernetes API server to provide these metrics, which means that it could not
compete with Polaris with respect to the lines of code. We conduct two experiments,
where we create 100 cost efficiency SLO mappings and let the SLO controller evaluate
them at an interval of 20 seconds.

SLO Controller Resource Usage

First, we show that an SLO controller built with the Polaris middleware does not consume
excessive resources, even when handling numerous SLOs. For this experiment, we deploy
the cost efficiency SLO controller to our cluster in a pod with resource limits of 1 vCPU
and 512 MiB RAM. We observe the resource usage over a period of 20 minutes using

12https://www.youtube.com/watch?v=3_z2koGTExw
13https://microk8s.io

48

https://www.youtube.com/watch?v=3_z2koGTExw
https://microk8s.io

3.6. Evaluation

0 2 000 4 000 6 000 8 000 10 000 12 000

100%

91%

88%

58%

35%

Total Execu�on Time (ms)

Prometheus.instantQuery()

RawQuery.execute()

CostE�Metric.getCurrentValue().toPromise()

CostE�Slo.evaluate()

DefaultControlLoop.executeLoopItera�on()

Figure 3.6: Average total execution times of executeControlLoopIteration() and its
children across all 300 seconds profiling sessions.

Grafana14, which fetches metrics from Prometheus. While evaluating 100 SLOs every
20 seconds, the CPU usage stays between 0.2 and 0.25 vCPUs, while the memory usage
is between 102 and 140 MiB. Thus, both, CPU and memory usage stay far below the
pod’s limits and constitute reasonable values for execution in the cloud.

Execution Performance of the Polaris Middleware

Next, we demonstrate that the Polaris middleware does not add significant overhead
to an SLO controller. To this end, we execute the cost efficiency SLO controller on
a development machine (Intel Core i7 Whiskey Lake-U with 4 CPU cores, clocked at
1.8 GHz and 16 GiB RAM) under the Visual Studio Code JavaScript debugger and
profiler, while being connected to our cluster’s control plane node through SSH. As for
the previous experiment, we use 100 cost efficiency SLO mappings to generate load. We
execute 3 profiling sessions, each with a length of 300 seconds (i.e., 5 minutes).

Figure 3.6 shows a flame chart with the total execution times of all SLO control loop
iterations and the major methods invoked by it. The numbers are the mean average
values across all profiling sessions. The sum of the execution times of all SLO control loop
iterations in a 300 second profiling session is on average 12,480 milliseconds (ms). The
SLO control loop itself and the triggering of elasticity strategies using the results from the
SLO evaluations only takes about 9% of that time, the remaining 91% are consumed by
the evaluation of the cost efficiency SLO. The SLO relies on the cost efficiency composed
metric, which takes up most of the SLO’s execution time. The composed metric sets up
one raw metrics query itself for the HTTP request metrics and delegates the creation of
the query for the costs to the total cost composed metric. The execution of both raw
metrics queries amounts to about 58% of the total SLO control loop execution time. More
than half of this (35% of the total) amounts to the query execution in the third-party

14https://grafana.com

49

https://grafana.com

3. Polaris Middleware

Prometheus client library. This analysis demonstrates that the evaluation of SLOs using
the Polaris middleware is performant and does not show any evidence of bottlenecks.

3.7 Summary
In this chapter, we presented the Polaris middleware, a flexible middleware system
for implementing complex metrics and SLOs that trigger elasticity strategies in an
orchestrator- and DB-independent manner. We have motivated the need for the Polaris
middleware using a real-world use case of REST service that needs to fulfill a high-level
cost efficiency SLO and listed its architecture requirements.

We presented the design and implementation of the mechanisms that enable our core
contributions:

1. The orchestrator-independent SLO controller provides the runtime for periodically
evaluating SLOs and triggering elasticity strategies. The control loop and mech-
anisms for triggering the elasticity strategy are completely provided by Polaris
middleware, such that developers can focus on the business logic of their SLO.

2. The provider-independent SLO metrics collection and processing mechanism allows
obtaining raw, low-level metrics from a time series DB and aggregating them into
higher-level composed metrics. These composed metrics can be reused by multiple
SLO controllers and they serve as an abstraction that can be realized by multiple
providers, which makes it possible to switch the underlying computation of a
composed metric without having to modify the SLO controller.

3. The Polaris CLI Tool allows creating and managing projects that rely on the
Polaris middleware, as well as the generation of scaffolding code for SLOs, elasticity
strategies, and controllers.

Finally, we used the realization of the motivating use case using the Polaris middleware
to evaluate the performance of our middleware and to show that it provides substantial
benefits and flexibility when implementing SLOs.

50

CHAPTER 4
Pogonip:

Scheduling Asynchronous
Applications on the Edge

Scheduling long-lived microservice-based applications in the Edge-Cloud continuum requires
the consideration of network QoS properties to ensure that the application can fulfill
its SLOs. Asynchronous applications that rely on a message broker for communication
differ greatly in their communication patterns compared to synchronous applications. The
Pogonip Scheduler is specifically designed for SLO-aware scheduling of asynchronous
microservice-based applications under heterogeneous network conditions.

4.1 Introduction

Today’s trend for designing efficient and scalable applications relies on the microservice
architectural style [160]. It decomposes an application into autonomous and decoupled
services, each with specific and independent functionalities. They are typically deployed
separately to one another, especially resorting on software containers, which enable
grouping a microservice with all its dependencies thus simplifying its deployment. Two
main communication styles between microservices exist: synchronous and asynchronous.
With synchronous communication, a microservice m1 contacts a microservice m2 directly
and maintains the connection until it receives a response. This increases coupling
and limits the application’s flexibility to change. So, this is often considered an anti-
pattern [51]. With asynchronous communication, m1 and m2 communicate through an

This chapter is based on the paper T. Pusztai, F. Rossi, and S. Dustdar, “Pogonip: Scheduling Asyn-
chronous Applications on the Edge,” in 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), 2021.

51

4. Pogonip

indirection layer, e.g., a message queue [171]. This allows decoupling the application’s
microservices, improving scalability and flexibility.

In the last years, we are witnessing the diffusion of computing resources located at the
edge of the network. Edge computing extends cloud computing by using computational
capabilities of devices at the edge of the Internet [207]. This concept suits applications
whose data are generated and consumed at the network periphery [2], but it brings new
challenges, mainly due to the heterogeneity and decentralized distribution of computing
and networking resources. In this context, the placement (or scheduling) problem is of
utmost importance; it defines the mapping between the application microservices and
the computing nodes. An improper node selection can negatively impact the application
performance and, in a pay-per-use scenario, can lead to higher execution costs.

To simplify the deployment of microservice-based applications, we resort to orchestration
tools like Kubernetes1. When a new application should be executed, Kubernetes uses a
component, i.e., the scheduler, to solve the placement problem. Although Kubernetes
is one of the most popular production-grade orchestrators [112], it has been originally
designed for cluster environments, so it is not well suited to run applications on the
edge. It does not consider that edge nodes may be connected with different link types
(e.g., WiFi, 4G, 5G) that exhibit varying quality of service characteristics, such as
latency [25]. Edge computing requires new placement strategies that explicitly take
into account the presence of heterogeneous resources and non-negligible network delays.
As surveyed in [24, 27], different solutions exist in literature. However, to the best of
our knowledge, all of them consider only the placement of synchronous applications.
Asynchronous applications exhibit peculiar features, like increased throughput, that
cannot be neglected [52]. For example, in a smart mobility scenario, where cars and
road-side devices report traffic and safety data to the analyzer microservices, a message
queue significantly reduces coupling between the participating microservices allowing a
non-blocking communication. In such applications, the queue represents a key component
that should be allocated as close as possible to all microservices, as it is the logically
centralized communication component.

In this chapter, we present Pogonip, an edge-aware scheduler for Kubernetes, designed
for asynchronous microservice-based applications. The main contributions are as follows:

1. We formulate the placement problem as an Integer Linear Programming (ILP)
optimization problem. It places microservices by considering constraints on network
latency towards the queue system on edge nodes. Moreover, if not enough edge
resources are available, it can offload microservices to third-party cloud nodes, while
keeping the additional costs low.

2. We define the Pogonip heuristic to quickly find an approximate solution for real-
world execution scenarios, because the optimization problem is NP-hard.

1https://kubernetes.io

52

https://kubernetes.io

4.2. System Model and Problem Definition

3. We implement the heuristic as a scheduler prototype for Kubernetes and release it
as open-source.

Using an asynchronous edge application and a Kubernetes cluster, we evaluate our
solutions against two state of the art placement policies and the default Kubernetes
scheduler.

The remainder of this chapter is structured as follows. We first discuss our system model
and the problem to solve (Section 4.2). Then, we formulate the optimization placement
problem (Section 4.3) and the Pogonip heuristic (Section 4.4). In Section 4.5, we describe
the heuristic integration in Kubernetes and, in Section 4.6, we present the experimental
evaluation. Section 4.7 concludes the chapter.

4.2 System Model and Problem Definition
In the following, we focus on identifying edge-aware placement solutions for asynchronous
microservice-based applications. We consider an edge-cloud environment shared by
multiple independent applications. For each application, we assume that its microservices
are highly decoupled and that they communicate through a message queue. In Table 4.1,
we summarize the used notations.

We consider a geographically distributed edge environment, where multiple edge clusters
provide computing resources on-demand. The edge resources are organized in different
edge clusters. An edge cluster can be modeled as a graph G = (N ,E), where the set of
nodes N represents the distributed computing resources and the set of links E represents
the logical connectivity between nodes. We characterize each edge node n ∈ N with
the following attributes: Cn, the available computing resources in n; Mn, the available
memory in n; Pn, the cost (on a time basis) of using n for hosting application components.
We characterize each logical link (n,m) ∈ E with the network latency dn,m between the
nodes n and m. Such a logical connectivity between computing resources results from
the underlying physical network paths and routing strategies. These attributes can be
known a-priori or can be monitored and estimated at run-time. Each edge cluster has a
control node (CN), the entry point of the cluster. When a client submits an application
to the CN, the edge cluster scheduler solves the placement problem. We denote as
A the set of all managed asynchronous applications. An application A ∈ A consists
of multiple microservices and a queue system q. We define i ∈ A as an application
component, i.e., a microservice instance or the queue system. We assume that the user
correctly sizes the queue system q, so that it can sustain the application workload without
affecting application integrity and performance. To simplify the problem formulation,
we use A′ = A\{q} when the queue system should not be considered. Each application
component i is characterized by the required CPU Ci and memory Mi. Differently from
synchronous applications, asynchronous applications usually do not aim to minimize
response time, because microservices indirectly interact with one another. In a distributed
environment, we are interested in allocating microservices close to the message queue,

53

4. Pogonip

so that they can quickly receive messages from the queue. Therefore, each application
A ∈ A exposes its requirements in terms of NDA,max, i.e., the maximum network delay
between the queue and each microservice allocated on edge resources. For allocating
the application components, the edge cluster scheduler can select nodes from the edge
or from the cloud. The key idea is to first grant edge resources and then the cloud
ones, if there are not enough computing resources on the edge. We denote as A∗ the
microservices forwarded to the cloud. In general, propagating any application component
to the cloud introduces costs and communication delays, which can be detrimental for the
application performance. For our investigation, we can reasonably assume that the cloud
offers almost infinite computing capacity. We denote as S the set of cloud nodes. We
characterize each cloud node s ∈ S with its available CPU capacity, Cs, memory capacity,
Ms, and cost, Ps. We consider cloud resources that are managed by a third party, so we
should favor the utilization of edge resources. This is the case of the queue system that,
being the application’s key communication component, should be up and running for
all the application life time. Conversely, the application microservices can be managed
more easily, as they can be restarted on a different location without compromising the
application availability (so we can temporarily place them on cloud resources). For this
reason, we assume that queue systems can be placed only on edge nodes.

Following a divide et impera approach, we divide the placement problem formulation in
two sub-problems, i.e., edge and cloud placement problem. This simplifies the placement
problem formulation, speeding up the resolution phase and allowing to more easily
integrate other objective goals. The edge placement problem takes into account the
placement on the current edge cluster. If the edge nodes do not have enough resources,
some of the application microservices are forwarded to the cloud for processing. In this
case, we should solve a second problem, i.e., the cloud placement problem. The goal of
this problem is to minimize the cost of the used cloud resources, which are rented from a
third party.

4.3 Optimization Problem Formulation
In this section, we formulate optimization problems to solve the edge and cloud placement
problems of asynchronous microservice-based applications.

4.3.1 Edge Placement

We model the application placement in the edge cluster with binary variables xA
i,n, A ∈ A,

i ∈ A, n ∈ N , where xA
i,n = 1 if the component i of the application A is placed on the

edge node n, and xA
i,n = 0, otherwise. For each A ∈ A, we use the binary variables zA

i ,
with i ∈ A, to indicate the application components to execute in the cloud: zA

i = 1 if
the application component i is forwarded to the cloud and zA

i = 0 otherwise. We denote
the application placement on edge resources with the vector x = ⟨xA

i,n⟩, with A ∈ A,
i ∈ A, and n ∈ N and the application components forwarded to the cloud with the vector
z = ⟨zA

i ⟩, with A ∈ A, i ∈ A.

54

4.3. Optimization Problem Formulation

Table 4.1: Placement Problem Notations.

Entity Notation Definition
Edge Cluster CN Control Node of the edge cluster

A Set of applications to place
N Set of nodes within the edge cluster
Cn CPU capacity of node n ∈ N
Mn Memory capacity of node n ∈ N
Pn Cost of node n ∈ N
dn,m Network latency between nodes n ∈ N and m ∈ N

Cloud A∗ Set of microservices forwarded to the cloud
S Set of cloud nodes
Cs CPU capacity of node s ∈ S
Ms Memory capacity of node s ∈ S
Ps Cost of node s ∈ S

Application A = {q} ∪A′ Set of application components, with A ∈ A
q Message queue system of application A
A′ Set of Application Microservices
Ci CPU demand of the application component i ∈ A
Mi Memory demand of the application component i ∈ A

NDA,max Maximum network latency required by A

Edge Resources Cost. For any application component placed on edge nodes, we incur
a resource cost, F (x):

F (x) =
∑︂
n∈N

Pn · fn (4.1)

where the binary variables fn denote whether n ∈ N hosts at least one component (i.e.,
a microservice instance or a message queue system). Therefore we define fn, ∀n ∈ N , as
follows: ∑︁

A∈A
∑︁

i∈A x
A
i,n + ζn

Γ ≤ fn ≤
∑︂
A∈A

∑︂
i∈A

xA
i,n + ζn (4.2)

where Γ is a large number and ζn is a constant. ζn = 1 if n already hosts at least one
application component, 0 otherwise. Note that, if Pn = 1, the edge resources cost counts
only the number of edge nodes used for running the applications.

Cost of Forwarding to Cloud. An edge cluster aims to run microservices locally,
optimizing resource utilization of edge nodes. However, to correctly deploy the application,
the CN has to enforce the allocation of all of the application microservices. To extend edge
resources, the CN can use the cloud. This results in a cost of forwarding microservices
to the cloud Z(z), which we assume to be proportional to the number of forwarded

55

4. Pogonip

microservices’ instances:

Z(z) =
∑︂
A∈A

∑︂
i∈A′

zA
i (4.3)

Application Constraints. Considering application-level requirements, the placement
policy explicitly models the network delay between nodes, and allocates the application
microservices only on nodes n and v ∈ N whose network delay dn,v is below an application-
defined critical value NDA,max. Note that microservices communicate asynchronously
through the message queue. Therefore, for each application A ∈ A, it is important that
each microservice i ∈ A′ is as close as possible to the queue system q. We define γA

i,q as
the network distance between the microservice i and the queue system of the application
A. Formally, ∀A ∈ A and ∀i ∈ A′ we have:

γA
i,q =

∑︂
(n,v)∈N×N

yA
(i,q)(n,v) · dn,v (4.4)

The yA
(i,q)(n,v) variables model the logical AND between placement variables xA

i,n and xA
q,n,

∀A ∈ A, i ∈ A\{q} and n, v ∈ N : yA
(i,q)(n,v) = xA

i,n · xA
q,v.

Similarly, for each A ∈ A, also the queue system q should be as close as possible to the
CN, being the CN the access point to the edge cluster. Therefore, we formalize the
following constraint: dCN ,n · xA

q,n ≤ NDA,max.

Edge Placement Problem Formulation. We formulate the placement problem as an
ILP model that determines the optimal mapping between the applications’ components
and the edge nodes. Our problem formulation considers an objective function that
minimizes the edge and cloud resources cost. We define the objective function G(x, z) as
the sum of the QoS metrics to be minimized:

G(x, z) = F (x) + Z(z) (4.5)

The Edge Placement problem is formulated as follows:

min
x,z

G(x, z)

subject to:∑︂
n∈N

xA
i,n + zA

i = 1, ∀A ∈ A, ∀i ∈ A (4.6)

zA
q = 0, ∀A ∈ A (4.7)∑︂

A∈A

∑︂
i∈A

Ci · xA
i,n ≤ Cn, ∀n ∈ N (4.8)∑︂

A∈A

∑︂
i∈A

Mi · xA
i,n ≤ Mn, ∀n ∈ N (4.9)

dCN ,n · xA
q,n ≤ NDA,max, ∀A ∈ A,n ∈ N (4.10)

56

4.3. Optimization Problem Formulation

γA
i,q ≤ NDA,max, ∀A ∈ A, i ∈ A′ (4.11)∑︂

v∈N

yA
(i,q)(u,v) = xA

i,u, ∀A ∈ A, i ∈ A′,u ∈ N (4.12)∑︂
u∈N

yA
(i,q)(u,v) ≤ xA

q,v, ∀A ∈ A, i ∈ A′, v ∈ N (4.13)

1
Γ

(︃ ∑︂
A∈A

∑︂
i∈A

xA
i,n + ζn

)︃
≤ fn ∀n ∈ N (4.14)∑︂

A∈A

∑︂
i∈A

xA
i,n + ζn ≥ fn ∀n ∈ N (4.15)

xA
i,n ∈ {0, 1} ∀n ∈ N ,A ∈ A, i ∈ A (4.16)
zA

i ∈ {0, 1} ∀A ∈ A, i ∈ A (4.17)
fn ∈ {0, 1} ∀n ∈ N (4.18)

where (4.6) ensures that all the application components are either assigned to edge nodes
or forwarded to the cloud, and guarantees that each of them is placed on one and only
one node. The constraint (4.7) forces the placement of the queue systems on edge nodes
only. Constraints (4.8) and (4.9) limit the placement of the application components on
an edge node n ∈ N according to its available resources, while (4.10) and (4.11) limit
the network delays among edge nodes used to run the application. Constraints (4.12)
and (4.13) model the logical AND between the placement variables. Finally, (4.14) and
(4.15) define the fn variables, ∀n ∈ N , indicating whether n is used to run any of the
application components.

4.3.2 Cloud Placement

If any microservice instance should be forwarded to the cloud, we have to solve the cloud
placement problem. For each microservice i ∈ A∗, we model the microservice i placement
on a cloud node s ∈ S with new binary variables ti,s : where ti,s = 1 if microservice i is
placed on the cloud node s and ti,s = 0 otherwise. We denote the cloud placement vector
as t = ⟨ti,s⟩, with i ∈ A∗ and s ∈ S.

Cloud Resources Cost. The cloud resources cost P (t) accounts for the active cloud
nodes for running the applications’ microservices:

P (t) =
∑︂
s∈S

δs · Ps (4.19)

where the binary variables δs denote whether s ∈ S is active and hosts at least one
microservice. We formally define δs, ∀s ∈ S as follows:∑︁

i∈A∗ ti,s + ψs

Γ ≤ δs ≤
∑︂

i∈A∗
ti,s + ψs (4.20)

where Γ is a large number and ψs is a constant such that ψs = 1 if s hosts at least a
microservice (as result of previous optimization rounds), 0 otherwise.

57

4. Pogonip

Cloud Placement Problem Formulation. We formulate the cloud placement problem
as an ILP problem which defines a mapping of the applications’ microservices on the
cloud nodes with the aim of minimizing the cost of used cloud resources. The Cloud
Placement problem is formulated as follows:

min
t
P (t) (4.21)∑︂

s∈S

ti,s = 1 ∀i ∈ A∗ (4.22)∑︂
i∈A∗

Ci · ti,s ≤ Cs ∀s ∈ S (4.23)∑︂
i∈A∗

Mi · ti,s ≤ Ms ∀s ∈ S (4.24)∑︁
i∈A∗ ti,s + ψs

Γ ≤ δs ∀s ∈ S (4.25)∑︂
i∈A∗

ti,s + ψs ≥ δs ∀s ∈ S (4.26)

ti,s ∈ {0, 1} ∀s ∈ S, ∀i ∈ A∗ (4.27)

where (4.22) ensures that all the forwarded microservices are placed on cloud nodes.
The constraints (4.23) and (4.24) limit the placement of microservices on a cloud node
s ∈ S according to its available resources. Finally, (4.25)–(4.27) are used to define the δs

variables, ∀s ∈ S.

4.4 The Pogonip Heuristic
Allocating asynchronous applications on (edge or cloud) computing resources is an NP-
hard problem; so, the ILP formulations might not scale well as the problem instance
increases in size. To overcome this issue, we propose the Pogonip greedy heuristics. First,
we present the greedy edge placement heuristic, a network-aware policy to determine the
placement of asynchronous applications in the edge cluster. Then, we describe the greedy
cloud placement heuristic that allows to reduce the number of cloud nodes used to host
the forwarded application microservices.

4.4.1 Greedy Edge Placement Heuristic

The proposed greedy edge placement heuristic solves a variant of the bin-packing problem,
while taking into account the available computing resources and the network delays
between edge nodes (see Algorithm 4.1). First, it sorts the unplaced applications by their
NDA,max requirement in ascending order, i.e., the first applications of the list have more
stringent NDA,max values (line 4). Then, it places one application at a time (line 6–8).
For each application A, the heuristic identifies N q, the set of edge nodes that can host the
queue system q and that have a network delay to the CN below NDA,max (lines 11–12). If
N q is empty, the application is discarded. Otherwise, the heuristic computes βn for each

58

4.4. The Pogonip Heuristic

Algorithm 4.1 Placement Heuristic on Edge Nodes
1: Input: A: Applications to deploy; N : Set of edge nodes;
2: Output: A∗: Microservices forwarded to cloud;
3: Output: X: Application placement;
4: A = Sort A ∈ A by NDA,max (in ascending order)
5: X = {}
6: for all A ∈ A do
7: applicationPlacement(A, N , X, A∗)
8: end for

9: function applicationPlacement(A, N , X, A∗)
10: q ← Queue system of application A
11: Nq ← Filter n ∈ N on q resource requirements
12: Nq ← Filter n ∈ Nq on dCN ,n ≤ NDA,max
13: if Nq is empty then
14: discard application A
15: return
16: end if
17: Compute βn = min(⌊Cn−Cq

Cq
⌋, ⌊Mn−Mq

Mq
⌋), ∀n ∈ Nq

18: xA
q,nq
← Allocate q on nq having maximum value of βn

▷ spread applications across nodes
19: X ← X ∪ xA

q,nq

20: for all microservice i ∈ A\{q} do
21: N i ← Filter n ∈ N on i resource requirements
22: N i ← Filter n ∈ N i on dnq ,n ≤ NDA,max
23: if N i is empty then
24: A∗ ← A∗ ∪ i
25: continue;
26: end if
27: Compute βn = min(⌊Cn−Ci

Ci
⌋, ⌊Mn−Mi

Mi
⌋), ∀n ∈ N i

28: xA
i,ni
← Allocate i on ni having minimum value of βn

▷ maximize resource utilization
29: X ← X ∪ xA

i,ni

30: end for
31: end function

n ∈ N q. The βn factor estimates the node n capacity of hosting q, approximating the
number of q instances that can be executed on n, considering the most critical resource
(line 17). The edge node having maximum value of βn is selected for the allocation of q.
This allows to spread queue systems across nodes, avoiding node congestion. Similarly,
for each microservice i, the heuristic identifies the edge nodes N i (lines 21–22). If N i is
empty, i is forwarded to the cloud. Otherwise, the heuristic greedily chooses the first
candidate node that minimizes βn (line 27). Note that this avoids spreading microservices
across the computing nodes, while preferring to minimize the number of active nodes.

4.4.2 Greedy Cloud Placement Heuristic

The cloud placement heuristic uses a greedy approach to place the microservices received
from edge control nodes (see Algorithm 4.2). For each microservice i ∈ A∗ and cloud node

59

4. Pogonip

Algorithm 4.2 Placement Heuristic on Cloud Resources
1: Input: A∗: Microservices to deploy; S: Set of cloud nodes;
2: Output: T : Application placement;
3: for all microservice i ∈ A∗ do
4: Si ← Filter s ∈ S on i resource requirements
5: Compute βs = min(⌊Cs−Ci

Ci
⌋, ⌊Ms−Mi

Mi
⌋), ∀s ∈ Si

6: ti,si ← Allocate i on si having minimum value of βs

7: T ← T ∪ ti,si

8: end for

s ∈ S, the heuristic filters cloud resources according to the resource requirements of i,
expressed in terms of CPU Ci and memory Mi demand. First, the heuristic computes βs,
which estimates the node s capacity of hosting i (line 5). The cloud node with minimum
βs value is selected to host i. This allows to reduce the number of used cloud nodes
and, as a consequence, cloud usage cost. At the end, the application placement T is
accordingly updated.

4.5 Prototype

In this section, we present the prototype implementation of our heuristic, realized as a
Kubernetes scheduler.

4.5.1 Kubernetes Scheduler

A pod is the smallest deployment unit in Kubernetes. It consists of one or more tightly
coupled containers that are co-located and scaled as an atomic entity. Each application
component (i.e., a microservice or the queue system) is deployed using a pod. Kubernetes
ensures that a given number of pods are up and running using a Replica Set. To manage
the deployment of applications, the Deployment object is built upon the Replica Set
concept, exposing a higher level abstraction, simplifying the pods’ update and providing
additional functionality (e.g., rolling updates). To manage stateful applications, whose
pods must be deployed in a particular order, have persistent IDs, and/or always be
connected to the same storage volumes (e.g., RabbitMQ, which is used in Section 4.6),
Kubernetes introduces the Stateful Set concept. Differently from Deployments, a Stateful
Set maintains a sticky identity for each managed pod, allowing its state recovery. When
a new pod is created, Kubernetes triggers the scheduler to identify a suitable hosting
node. The default Kubernetes scheduler is kube-scheduler, which is implemented using
the scheduling framework [237], an extensible architecture for Kubernetes schedulers.
It decomposes the scheduling process into two cycles: scheduling and binding. From a
high-level perspective, the scheduling cycle is a sequence of filtering and scoring stages.
First, it identifies the nodes that can run the pod by applying a set of filters. Then,
it assigns a score to all eligible nodes according to different criteria. Finally, it selects
the node with the highest score to host the pod. If multiple nodes achieve the same
score, one of them is randomly selected. The mapping between the pod and the chosen

60

4.5. Prototype

So
rt

P
re

Fi
lt

er

Fi
lt

er

Po
st

Fi
lt

er

P
re

Sc
o

re

Sc
o

re

N
o

rm
al

iz
e

Sc
o

re

R
es

er
ve

Pe
rm

it

Scheduling Cycle

P
ri

o
ri

ty
M

Q
So

rt

Se
rv

ic
eG

ra
p

h

La
te

n
cy

R
es

er
ve

N
o

d
eC

o
st

Po
d

sP
er

N
o

d
e

Figure 4.1: Scheduling cycle (adapted from [237]) and Pogonip plugins.

node is committed to the cluster by the binding cycle [237]. The kube-scheduler includes
a placement policy that spreads pods on computing resources located in the cluster.
As such, it is not well-suited for placing pods in an edge computing environment and
dealing with its heterogeneity. However, the modularity of Kubernetes allows us to
easily integrate custom placement policies. There are two main ways to customize the
placement process: (1) by changing the configuration of the default scheduler; or (2) by
implementing a custom scheduler that runs instead of the default one [200]. Changing
the configuration of the default scheduler is limited by the capabilities of kube-scheduler,
requiring a custom scheduler for more advanced customizations. A custom scheduler is any
application that observes the list of pods and assigns pods to nodes. However, relying on
the modular architecture of the scheduling framework simplifies the development of new
placement policies, splitting their logic into multiple and decoupled stages. Additionally,
the scheduling framework allows reusing some or all the plugins from kube-scheduler [235],
such as, e.g., NodeResourcesFit, which filters out nodes that do not satisfy a pod’s
resource requirements. Kubernetes schedules an application’s pods independently: a
failure to schedule/place one pod has no effect on the scheduling status of the other pods.
The scheduler will retry to place a failed pod later. When the scheduling framework’s
sequence of stages cannot be applied (e.g., as in the optimal placement formulation), an
independent custom scheduler is required.

4.5.2 Prototype Architecture and Implementation

The Pogonip scheduler implements the greedy heuristics presented in Section 4.4 lever-
aging the scheduling framework of Kubernetes v1.20.1 and most of its default plugins.
The prototype is published as open-source under the name rainbow-scheduler in the
RAINBOW2 project’s orchestration package3.

2https://rainbow-h2020.eu
3https://gitlab.com/rainbow-project1/rainbow-orchestration

61

https://rainbow-h2020.eu
https://gitlab.com/rainbow-project1/rainbow-orchestration

4. Pogonip

Pogonip needs to be able to identify the pods that contain a queue system and be
aware of the application’s maximum tolerable network delay. For this prototype, we use
Kubernetes labels to attach this information to each pod. As part of future work within
RAINBOW, a service graph abstraction will be developed that will contain this and other
relevant information about an application. Pogonip augments the default kube-scheduler
functionality by adding the plugins to the scheduling cycle shown in Figure 4.1. The
green boxes show the scheduling cycle stages that are executed for every pod. Each
stage provides an extension point, for which plugins can be registered. The Sort stage
determines the order in which the incoming pods will be handled (only one plugin can
be active in this stage). PreFilter and Filter are responsible for filtering out nodes
that cannot host the newly added pod, e.g., because they have too few resources. The
PreFilter stage is executed per pod to prepare information needed in the Filter stage,
which, conversely, is executed for every node. If the set of remaining nodes is empty,
the PostFilter plugins are executed. PreScore and Score plugins assign a score to
each eligible node. Similarly to the filter-related stages, the PreScore stage is executed
once per pod, while the Score stage is executed once per node. A NormalizeScore

extension may be registered for each Score plugin to normalize its scores as an integer
between 0 and 100, as is required by the scheduling framework. After this stage, the node
with the highest score is selected to host the pod. Reserve plugins are notified with the
outcome, allowing to update third-party data structures. Permit plugins are executed
in the last stage of the scheduling cycle, to approve, deny, or delay a pod from being
admitted to the binding cycle. In the default configuration, kube-scheduler registers
multiple plugins in the scheduling cycle, such as NodeResourcesBalancedAllocation
and NodeResourcesLeastAllocated. While the first plugin favors nodes that would
obtain a more balanced resource usage, the latter prefers nodes that have few allocated
resources. Consequently, the default scheduling strategy spreads pods: it prioritizes nodes
with the least number of pods, without considering their heterogeneity or geographic
distribution [235].

Pogonip extends kube-scheduler with custom plugins, as shown in Fig. 4.1. Building on
top of the default kube-scheduler PrioritySort plugin, PriorityMqSort prioritizes the
pods belonging to applications with more stringent NDA,max requirements and ensures
that the queue system pods are placed before the others. ServiceGraph is a PreFilter

plugin that retrieves the graph for the application that the pod is part of. The Latency

plugin is a Filter plugin that removes all nodes that do not meet the application’s
NDA,max requirement. If the pod hosts a queue system, the network latency between the
current node and the edge CN is considered. Otherwise, the plugin filters nodes limiting
the network latency to the node hosting the application queue system. For cloud nodes,
the Latency plugin is disabled. The PodsPerNode plugin ties into the PreScore and
Score extension points. First, in the PreScore stage, the plugin retrieves the pod’s
required resources. Then, in the Score stage, for each edge/cloud node n, it computes
the βn factor (see Section 4.4). For all application pods (but the queue system), we want
to select the node n with the minimum βn value. Once all βn have been computed, they
are normalized in the [0, 100] range. Furthermore, to implement the preference for edge

62

4.6. Experimental Results

nodes, the PodsPerNode returns a score of zero for all cloud nodes, if at least one eligible
edge node has been found. NodeCost is a Score plugin that assigns higher scores to
cheaper nodes. To avoid compromising the optimizations by the Pogonip Score plugins,
we disable the scheduling framework plugins NodeResourcesBalancedAllocation and
NodeResourcesLeastAllocated. Finally, Reserve runs in the Reserve stage and
updates the application placement.

To solve the optimal ILP placement formulation within Kubernetes, we develop a custom
scheduler and a Placement Resolver. The custom scheduler is deployed as a pod and
invoked by Kubernetes as soon as pods need to be allocated on the nodes. To solve the
placement problem, the custom scheduler interacts with the Placement Resolver. It is an
external service that exposes the ILP placement problem resolution as a service, through
RESTful APIs. As soon as the custom scheduler obtains the pods placement, it defines
the pod-to-node mapping using the Kubernetes abstractions.

4.5.3 Benchmark Placement Policies

In this section, we present the existing placement policies against which we evaluate our
edge-aware solutions. Together with the default kube-scheduler policy, we include two
well-known placement policies, that are often adopted in computing frameworks, namely
Greedy First-fit and Round-robin.

We implement these placement policies using the Kubernetes scheduling framework. They
both leverage the default PreFilter and Filter plugins to determine which nodes are
capable of hosting a pod. However, we replace all default PreScore and Score plugins
with a single Score plugin, which implements the corresponding placement policies.

The Greedy First-fit Heuristic. The Greedy First-fit heuristic is one of the most
popular solutions used to solve the bin packing problem. It considers the application’s pods
as elements to be (greedily) allocated in bins, representing computing nodes. Specifically,
for each pod, the Greedy First-fit policy defines the placement on the first node that
fulfills the pod’s resource requirements. Our GreedyFirstFit plugin greedily selects the
first fitting node from the iteration order provided by the scheduling framework.

Round-robin Heuristic. The Round-robin heuristic organizes the nodes in a circular
list, registering the latest node used for placement. A new pod to be allocated is assigned
to the first node with enough resources, starting from the current position on the circular
list. Akin to our Greedy First-fit implementation, we implement the Round-robin selection
with a single RoundRobin plugin for the Score stage.

4.6 Experimental Results

We define two sets of experiments aimed to show the benefits of our placement policies
when the managed application is deployed in an edge computing environment using
Kubernetes. First, in Section 4.6.2, we analyze the advantages of using edge-aware policies

63

4. Pogonip

in a heterogeneous environment. Then, in Section 4.6.3, we generalize the achieved results
and show the benefits of combining edge and cloud computing resources when multiple
applications should be executed. We compare the edge-aware policies, presented in
Section 4.3 and 4.4, against the benchmark placement policies, presented in Section 4.5.3.

4.6.1 Experiment Setup

As reference application, we use a modified version of an IoT taxi application4 written
for the Fogify fog emulator [225, 224]. It uses real-world taxi and limousine data5 to
generate its workload. We have modified this application’s microservices to communicate
asynchronously through a RabbitMQ6 queue system. A single application deployment
consists of one RabbitMQ instance and four taxi app microservices: an IoT load generator
that sends location data from the dataset once per second to two edge aggregator instances;
the latter buffer the received data for one minute and then send them to a data storage
microservice, which permanently stores the data. The resource requirements are the
defaults used by the RabbitMQ Kubernetes Operator [23] and reasonable values for the
microservices, given their purposes:

• RabbitMQ: 2 CPU cores, 2 GiB memory

• IoT load generator: 0.25 CPU cores, 0.25 GiB memory

• Edge aggregator (2x): 0.5 CPU cores, 0.5 GiB memory

• Data storage microservice: 1 CPU core, 1 GiB memory

The application requires NDA,max to be equal to 50 ms.

We set up a cluster using the kind7 tool, which allows running a Kubernetes cluster
(v1.20.1) inside Docker, with each node being a container. Since nodes would report
the CPU and memory capacity of the host VM as their available resources, we created
two extended resources, fake-cpu and fake-memory, which we can explicitly configure
for each node. The cluster runs on a VM with 22 virtual CPU cores and 62.9 GiB of
RAM. The hosting server has an Intel Xeon CPU (Cascade Lake) with a base clock
of 2.1 GHz. The cluster topology differs between the two experimental scenarios, as
shown in Figure 4.2. The vertices represent edge nodes, while links denote the network
connections between nodes; on each link, we report the network latency expressed in
ms [196]. Both scenarios consider a single edge cluster.

As placement policies, we consider the optimal ILP formulation (referred to as OPT),
the Pogonip heuristic, the Greedy First-fit heuristic, the Round-robin heuristic, and the

4https://github.com/UCY-LINC-LAB/fogify-demo
5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6https://www.rabbitmq.com
7https://kind.sigs.k8s.io

64

https://github.com/UCY-LINC-LAB/fogify-demo
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.rabbitmq.com
https://kind.sigs.k8s.io

4.6. Experimental Results

Worker1
CPU=4,

RAM=1G

Worker6
CPU=4,

RAM=2G

Worker3
CPU=4,

RAM=2G

Worker5
CPU=4

RAM=1G

Worker2
CPU=4,

RAM=1G

Worker4
CPU=4,

RAM=1G

Control-Node
CPU=4,

RAM=2G

15ms

80ms

20ms

10ms

20ms

10ms

75ms

Worker1
CPU=4,

RAM=4G

Worker6
CPU=4,

RAM=4G

Worker3
CPU=4,

RAM=4G

Worker5
CPU=4

RAM=4G Worker2
CPU=4,

RAM=4G

Worker4
CPU=4,

RAM=4G

Control-Node
CPU=4,

RAM=4G

15ms

80ms

20ms
10ms

20ms

10ms

75ms

40ms

Cloud

Figure 4.2: Cluster topologies in experiments: Scenario 1 (left), Scenario 2 (right).

default kube-scheduler. To solve the optimal ILP formulation, we use CPLEX 12.8. To
minimize the number of used edge nodes, in the OPT we set Pn = 1 for each node of
the edge cluster (see Eq. 4.1). For each scenario we execute 5 runs with every placement
policy. All source code, including the experimental scripts, is available in our public
repository.

4.6.2 Application Deployment and Network Latencies

In this experiment, we consider a single taxi application instance and only edge nodes.
To model the edge environment, we have configured the fake-cpu and fake-memory

resources to match those of the Raspberry Pi 3 Model B+ (4 CPU cores and 1 GiB of
RAM) and the Raspberry Pi 4 Model B (4 CPU cores and 2 GiB of RAM)8.

The goal of this experiment is to evaluate the latency between the microservices and the
queue system that can be achieved by the various schedulers. Figure 4.3 summarizes
the results. The different schedulers obtain very different placements for the application,
including solutions where microservices are allocated far away from the message queue.
In such a case, the application performance can be significantly reduced.

The Greedy First-fit policy does not meet the NDA,max requirement for more than half
of the microservices, with a median latency of 57.5 ms and a mean average of 56.25 ms.
For each pod, it chooses the first node that fulfills the resource requirements in the

8https://www.raspberrypi.org

65

https://www.raspberrypi.org

4. Pogonip

La
te

n
cy

 (
m

s)

0

50

100

150

200

greedy-first-fit round-robin kube-scheduler Pogonip OPT

Figure 4.3: Latency between microservices and the queue system, when a single application
is deployed using different placement policies.

list (control-node, worker1, ..., worker6). Thus, the placement is the same on
every run. Four nodes are used: the queue system is placed on the control-node and
the four application microservices as follows: one on worker1, two on worker2, and
one on worker3. Both, worker1 and worker3 have low network latency towards the
control-node, which explains Greedy First-fit’s minimum values of 15 ms. However,
since worker2 has a latency of 95 ms to the control-node, the NDA,max requirement
was clearly violated.

The Round-robin policy and kube-scheduler policy spread the application pods on 5 edge
nodes, which is the highest number of nodes with respect to the other configurations.
The Round-robin policy organizes the edge nodes into a circular list. The queue system
is placed on the control-node and the application microservices in the nodes worker1
through worker4 in the first run. This violates the NDA,max requirement, because of
the use of worker2. Subsequent runs performed even worse, because the next node in
the circular list at the start of these runs was either worker5 or worker4. Both are too
small to host the queue system, resulting in it being placed on worker6, which has the
second highest latency to all other nodes, thus, explaining the poor performance of the
Round-robin policy.

Kube-scheduler registers a mean average latency of 56 ms and a median latency of 35 ms.
Conversely to Greedy First-fit and Round-robin, kube-scheduler uses all worker nodes
across the runs (five in every run), but avoids the control-node. This may be related
to the fact that this node hosts the Kubernetes master.

Unlike the benchmark heuristics, OPT and Pogonip consider network delays while
computing the application placement. OPT always computes the best placement, ob-
taining a mean average network latency of 17.5 ms and a median of 20 ms by using the
control-node, worker3, and worker4.

With Pogonip, we register a maximum latency of 35 ms, an average of 21.5 ms, and a
median of 22.5 ms. Across all runs, Pogonip uses all nodes, except for worker2 and
worker6, registering a slight increase in the network latencies compared to the OPT

66

4.6. Experimental Results

0

1

2

3

4

5

6

7

8

greedy-�rst-�t round-robin kube-scheduler Pogonip OPT

S
u

cc
e

ss
fu

ll
y

 D
e

p
lo

y
e

d

In
st

a
n

ce
s

Figure 4.4: Successfully deployed application instances (out of 8 submitted) when different
placement policies are used. Each experiment is run 5 times.

solution. Anyway, Pogonip always meets NDA,max, outperforming all previous benchmark
policies.

4.6.3 Allocating Applications on Edge and Cloud Nodes

In this experiment, we consider an edge cluster that receives application deployment
requests and uses its control node to allocate them for execution. We submit 8 instances
of the taxi application to the edge cluster. The benchmark policies (i.e., Greedy First-fit,
Round-robin, and kube-scheduler) are not designed to distinguish between edge and
cloud nodes. Therefore, they cannot complement the edge with resources rented from the
cloud. Conversely, our policies can benefit from the cloud. We consider the computing
infrastructure depicted in Figure 4.2. All edge nodes have the resources of a Raspberry
Pi 4 Model B with a hardware configuration of 4 CPU cores and 4 GiB of RAM. We use
three types of cloud nodes, with 10 instances each, characterized as follows:

• small: 4 CPU cores, 4 GiB of RAM, cost of $2/hour;

• medium: 8 CPU cores, 8 GiB of RAM, cost of $4/hour;

• large: 16 CPU cores, 16 GiB of RAM, cost of $8/hour.

Although these cloud node costs are fictional, their ratios match those of real-world cloud
providers (e.g., [149]).

As soon as the pod placement is computed, Kubernetes enacts it. If not enough resources
are available, some pods cannot be successfully placed, meaning that they remain in
a pending state until resources are freed. Figure 4.4 shows the number of successfully
deployed applications and Figure 4.5 the distribution of network latencies between the
microservices and the queue system for the successfully deployed applications.

The Greedy First-fit policy successfully executes 5 application instances out of the 8
submitted, in each run of the experiment. Greedy First-fit results in network latencies to
the queue system comparable to those of the previous experiment. However, in this case,
the minimum latency was 0 ms; due to the more powerful nodes, some microservices are

67

4. Pogonip

La
te

n
cy

 (
m

s)

0

50

100

150

200

greedy-first-fit round-robin kube-scheduler Pogonip OPT

Figure 4.5: Latency between microservices and the queue system, when multiple applica-
tions are deployed using different placement policies.

co-located with their queue system. In spite of that, 58% of the application microservices
exceed the NDA,max constraint.

The Round-robin policy successfully executes between 4 and 6 application instances, with
5 being the median number. With a median latency of 80 ms, the NDA,max constraint
was violated by 56% of the microservices. As expected, the Round-robin placement is
pseudo random, as it depends on the number and order of edge nodes as well as the
number of pods already allocated.

Since Kubernetes does not treat the application as a whole, we observe a high variation
in the number of successfully executed applications across the runs. For example, in the
third run, Round-robin successfully executes 6 applications (even though 3 queue system
pods are placed on nodes interconnected with high latency). Instead, in the last run,
only 4 applications are successfully executed. This is due to Kubernetes, which executes
one message queue pod more than in the other runs and, because of the limited available
resources, this prevents other microservices from running. This reveals a non-deterministic
behavior of Kubernetes in prioritizing pods for execution. First, when priorities are not
explicitly assigned, pods are sorted by their creation time (see PrioritySort [235]).
Second, the different Kubernetes controllers, e.g., Deployment and StatefulSet, work in
parallel, so they concurrently manage the creation and execution of different application
pods. In our case, each queue system is a StatefulSet, whereas the other microservices
are controlled by a Deployment.

Kube-scheduler successfully executes 5 application instances in all runs. The latency
distribution between the queue system and each microservice is slightly better than the
one obtained using Round-robin. With a median latency of 35 ms, 60% of the pods
fulfilled the NDA,max constraint.

Pogonip executes between 6 and 7 instances in this experiment, because, unlike the
previous policies, it can place the application microservices in the cloud as well (only the
queue system is required to be on an edge node). With 18 to 20 pods on the edge, Pogonip
places fewer pods there than the benchmark policies. This is due to the prioritization
of the queue system pods, which have the highest resource requirements of all pods.

68

4.6. Experimental Results

Since bigger pods are placed on the edge, fewer resources are left there for the other
microservices, which are instead placed in the cloud. All application microservices are
placed on three small cloud nodes, resulting in a total cloud cost of $6/hour. This is the
lowest possible value; e.g., in the first run, all pods placed in the cloud require a total of
12 GiB of memory, which could also be met by two medium nodes or one large node,
both would result in the higher price of $8/hour.

Despite placing about half of the pods on cloud nodes, Pogonip achieves much better
latencies than the benchmark policies by avoiding the two high-latency edge nodes. With
a median latency of 40 ms, Pogonip fulfilled the NDA,max constraint for about 62% of
the pods. The other pods violated the constraint by an average of 10.3 ms, i.e., less than
a sixth of the next best benchmark policy, Round-robin.

Why does Pogonip not place all instances, despite prioritizing the queue system and using
the cloud? Their creation timestamps showed that some queue system pods are created
after some other microservice pods. We also noticed that Kubernetes starts scheduling
before all pods have been created by the StatefulSet and Deployment controllers. Since
pods are the schedulable units, Kubernetes considers a pod ready for scheduling as soon
as it has been created. Pogonip’s prioritization algorithm also has to adhere to this
limitation.

OPT executes all 8 application instances, placing 20 pods on the edge and 20 pods in the
cloud. It also results in the lowest latency distribution of all other policies, with a median
of 50 ms. Differently from the other scheduling policies, OPT waits for all 40 pods to be
created before computing the optimal placement solution for all the applications. This
results in all applications being successfully executed on both edge and cloud nodes.
OPT uses 4 small cloud nodes for running 20 application microservices, resulting in a
cost of $8/hour. It requires one more cloud node than Pogonip, because OPT executes
one more queue system on the edge where there are fewer resources available for other
microservices. The 20 pods selected for scheduling in the cloud require a total of 13.5 GiB
of memory, which could be met by four small nodes, two medium nodes, or one large
node – all for the same price of $8/hour, making the selected solution the cheapest.

These two experiments showed the importance of considering application and computing
features while determining the placement. By considering network latency, Pogonip and
OPT reduce the communication delay between the application queue and its microservices
(resulting also in limited latency variance). This can be critical to the proper functioning of
an edge application. The ability of combining edge and cloud computing allows allocating
a greater number of applications with respect to the other benchmark placement policies.
We conclude the section with some consideration on the resolution time of each placement
policy. We measure the resolution time as the time needed to compute the application
placement. Technically, we measure it as the time a pod needs to move from the Pre-

Filter stage until the Reserve stage and then sum the times for all pods in the run.
For OPT, we measure it as the time needed to compute the placement for the edge and
for the cloud. We conducted an additional experiment, with 10 application instances
deployed at once, which constitutes a 25% increase in the number of pods that need to

69

4. Pogonip

Table 4.2: Scheduler Resolution Times

Scheduler Time per Instance
(8 Total)

Time per Instance
(10 Total) Increase

Greedy First-fit 21.6 ms 30.2 ms 40%
Round-robin 26.0 ms 32.8 ms 26%
kube-scheduler 38.4 ms 43.9 ms 14%
Pogonip 131.0 ms 152.7 ms 17%
OPT 334.8 ms 576.0 ms 72%

be placed. Table 4.2 shows execution times for a single instance and the increases in
execution time between 8 and 10 instances.

Greedy First-fit and Round-robin have similar resolution times; their implementation
is rather simple and they differ only in one Score plugin. Kube-scheduler results in a
slightly longer resolution time, because it contains more Score plugins. Pogonip takes
131 ms on average for 8 instances and 152.7 ms for 10 instances. This is about 3.5 times
as long as kube-scheduler, which is likely caused by the Latency plugin, which has to
evaluate paths through the cluster graph. The execution time increases by about 17%
between 8 and 10 instances, which is below the increment in number of pods. OPT aims
to find the optimal solution of the ILP formulation; it registers the longest resolution
time, with 335 ms to place 8 instances and 576 ms to place 10 instances. In this case,
the resolution time increases by about 72%, which is almost three times the increment in
the number of pods. We observe that even though the number of applications is rather
limited, OPT requires more than half a second to find a placement solution. Of course,
we expect this time to exponentially increase as the number of applications increases as
well, thus resulting in an impractical approach when it comes to working in a dynamic
edge environment. This limitation of OPT justifies the adoption of edge-aware placement
heuristics that can compute the placement of asynchronous components more quickly.

4.7 Summary

Microservices are an architectural style for developing an application as a suite of
autonomous and decoupled services, that communicate using synchronous or asynchronous
techniques. Although the placement problem is widely explored in the context of
synchronous applications, so far, to the best of our knowledge, the problem of allocating
asynchronous applications has not been investigated.

Therefore, in this chapter, we presented an approach for solving the placement problem
for asynchronous microservice-based applications in an edge environment. First, we
formulate the problem as an ILP model. Since the problem is NP-hard, it may suffer
from scalability issues when the number of managed microservices increases. Thus, we
propose Pogonip, a novel edge-aware heuristic. It can quickly allocate asynchronous
microservices by explicitly taking into account the peculiarities of edge nodes. Moreover,

70

4.7. Summary

if microservices require more capacity than available in the edge, it can complement
the computing environment by exploiting cloud computing. Integrating these policies
in Kubernetes, we conducted an extensive evaluation using an edge application that
processes taxi location data. The experimental results showed the benefits of combining
edge and cloud resources as well as the importance of explicitly considering the edge
environment’s peculiarities while allocating applications, resulting in better adherence to
their requirements.

71

CHAPTER 5
Polaris Scheduler: SLO- and

Topology-aware Microservices
Scheduling at the Edge

Scheduling synchronous long-lived microservice-based applications in the Edge-Cloud
continuum is more challenging than the placement of asynchronous applications that
was discussed in the previous chapter. Synchronous applications may exhibit complex
dependencies among each other resulting from their communication patterns. Polaris
Scheduler captures these dependencies using a Service Graph and provides an SLO- and
network topology-aware scheduling framework for placing microservices on Cloud or Edge
nodes. The framework is designed for extensibility using plugins. Polaris Scheduler
includes plugins to enforce network SLOs at the time of scheduling and select nodes that
are likely to maintain favorable network QoS characteristics over a long time.

5.1 Introduction
One of the biggest challenges in scheduling the microservices of a large-scale Edge
application is selecting nodes that allow the application to fulfill its network SLOs. As
discussed in the previous chapter, the heterogeneity of network links within an Edge cluster
may lead to a node being unsuitable for hosting a microservice, despite having sufficient
resources, only because its network connection is unstable. To allow an application
to fulfill its SLOs, the scheduling process must not only consider the nodes’ resources,
but also the network when determining an optimal placement. Solving this problem

This chapter is based on the paper T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol,
P. Raith, S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang, “Polaris Scheduler: SLO- and Topology-aware
Microservices Scheduling at the Edge,” in 2022 IEEE/ACM 15th International Conference on Utility and
Cloud Computing (UCC), 2022.

73

5. Polaris Scheduler

for synchronous applications is more challenging than for asynchronous applications,
because the communication patterns can be much more complex if microservices can
communicate directly with each other.

In this chapter we present Polaris Scheduler1, an SLO-aware scheduler for the Edge. Our
main contributions include:

1. an SLO- and topology-aware scheduling framework,

2. a Service Graph and a Cluster Topology Graph to model application SLO- and
Edge network-topologies, and

3. a suite of scheduling plugins that leverage these abstractions and mechanisms to
enforce the network SLOs at the time of scheduling.

This chapter is structured as follows: Section 5.2 outlines a realistic Edge Computing use
case with strict network QoS requirements to motivate our work, Section 5.3 presents
an overview of Polaris Scheduler and its scheduling pipeline, and Section 5.4 describes
the components that make it SLO-aware. In Section 5.5 we evaluate our work using
experiments, based on our motivating use case and Section 5.6 summarizes the chapter.

5.2 Motivation

Polaris Scheduler is part of the Polaris SLO Cloud2 project, a SIG of the Linux Foundation
Centaurus project3, a novel open-source platform for building unified and highly scalable
public or private distributed Cloud and Edge systems. Polaris aims to make SLOs first
class entities in Cloud and Edge Computing [184, 183]. Polaris Scheduler builds upon
our vision of broad-range SLO-awareness in Edge scheduling [165], extending it with
algorithms for enforcing network QoS, as well as concrete realizations and evaluations of
previously presented concepts.

5.2.1 Illustrative Scenario

To better illustrate the need for the Polaris Scheduler, we present an Edge computing
use case for analyzing road traffic conditions to reveal congestion and for detecting
hazards on the road to alert nearby smart cars to improve traffic safety. The traffic
conditions analysis is inspired by traffic info crowdsourcing in Google Maps [49], while
the hazard detection is adapted from use case 2 of RAINBOW4 [193], a European Union
Horizon 2020 Fog Computing research project. Our use case features the five main
microservices, depicted in Figure 5.1. The Collector service receives events from nearby

1https://github.com/polaris-slo-cloud/polaris-scheduler/tree/v0.2.2
2https://polaris-slo-cloud.github.io
3https://www.centaurusinfra.io
4https://rainbow-h2020.eu

74

https://github.com/polaris-slo-cloud/polaris-scheduler/tree/v0.2.2
https://polaris-slo-cloud.github.io
https://www.centaurusinfra.io
https://rainbow-h2020.eu

5.2. Motivation

Region
Manager
(4CPUs,

8GiB)

Traffic Info
Provider
(2CPUs,

2GiB)

Collector
(1CPU,
1GiB)

Aggregator
(4CPUs,

2GiB)

Hazard
Broadcaster

(2CPUs,
2GiB)

50ms, 20Mbit 100ms, 10Mbit

50ms, 10Mbit

10ms, 1MbitPoll traffic info

Push events
Broadcast hazard

Figure 5.1: Traffic Analysis & Hazard Detection Service Graph (simplified).

cars about their movements, performs initial filtering, and detects if there is a hazard, e.g.,
an accident or an animal on the road. To ensure low latencies, the Collector is deployed
on 5G base station nodes. The filtered data are forwarded to the Aggregator service and
hazards to the Hazard Broadcaster service. The Aggregator service, which combines traffic
and hazard data from multiple Collectors and forwards them to the Region Manager
service, requires a more powerful node, e.g., a Cloudlet or an Edge gateway. The Hazard
Broadcaster service receives hazard alerts from a Collector, determines within which
vicinity vehicles need to be alerted and, subsequently, notifies them via 5G. The Region
Manager service aggregates traffic and hazard data from all Aggregator services in the
region into a unified traffic view – it needs to run in the Cloud. The unified traffic view
is periodically forwarded to the Traffic Info Provider service instances, which allow cars
to periodically pull updates to this view.

The relationships between the microservices in Figure 5.1 are annotated with network
SLOs for the respective communication links. For example, the link from the Collector
to the Aggregator requires a connection with a minimum bandwidth of 10 Mbps, to allow
streaming the filtered event data. The maximum latency of this link is 50 ms, because the
Aggregator only provides information for the unified traffic view, whereas the maximum
latency from the Collector to the Hazard Broadcaster is 10 ms to ensure that detected
hazards are broadcast in time to nearby vehicles. The maximum latency for collision
warnings, as defined by the ETSI TS 101 539-3 standard [68] is 300 ms. In a similar use
case the detection of a pedestrian using a camera was reported as taking 90-100 ms [31].
If we assume 100 ms for the detection by a smart car, another 30 ms for transmission to
the Collector, 50 ms of processing by the Collector, and 20 ms by the Hazard Broadcaster,
then the 10 ms SLO we have defined for the connection between Collector and Hazard
Broadcaster is reasonable to allow for spare time to broadcast the alert to nearby vehicles.
While the unified traffic view also contains information on hazards, these are intended
for more distant cars, which means that the latency requirements are less stringent on
this network path. The network SLOs are important for the user experience (unified

75

5. Polaris Scheduler

traffic view) and absolutely critical to the safety of nearby vehicles (Hazard Broadcaster).
Thus, a scheduler must ensure that the microservices’ placement fulfills these SLOs.

5.2.2 Research Challenges

RC-1 Capturing dependencies and enforcing SLOs among application microservices:
Most production schedulers, such as the Kubernetes default scheduler, place each
microservice of an application completely independently of the others, ignoring
their interdependencies. However, Edge applications need to be treated as a whole;
dependencies and network SLOs among microservices must be considered during
scheduling to allow the application to fulfill its purpose.

RC-2 Guaranteeing long-time compliance to network SLOs: Fulfilling an application’s
SLOs immediately after scheduling its microservices is the foundation for its suc-
cess. However, frequent SLO violations and the associated scaling or migration of
microservices may introduce unnecessary costs. Furthermore, if not addressed, this
issue may cause a microservice to repeatedly be migrated back and forth within a
set of nodes, because the QoS of their network connections keeps oscillating. Thus,
it needs to be investigated how current and historical information about network
connections can be used to infer a node’s suitability to fulfill a microservice’s SLOs.

RC-3 Capturing the Edge cluster’s topology and network QoS state: Finding solutions
to RC-1 and RC-2 requires information about the current topology and network
QoS state of the cluster. Cloud schedulers typically assume a flat network structure,
where each node is directly connected to every other node. This is often not the
case in an Edge cluster, because certain nodes may be connected to a larger network
through gateway nodes that may become a bottleneck. Furthermore, Edge clusters
can be highly volatile: nodes may leave unexpectedly because they lose connectivity
or their battery is drained or a 5G node’s bandwidth may vary with the number of
active devices in its cell. Representing the cluster’s network state and leveraging it
for scheduling is imperative for fulfilling SLOs.

5.3 Approach Overview and Scheduling Pipeline
Polaris Scheduler aims to augment the resource-based scheduling approach taken by
many Cloud and Edge schedulers today with awareness of application SLOs, especially
those related to network QoS. Specifically, our approach is to find a suitable placement
for microservices in an Edge cluster that (i) respects the resource requirements of the
workload, e.g., virtual CPU cores (vCPUs), memory, GPS, camera, and (ii) fulfills the
microservices’ network QoS requirements in terms of bandwidth, latency, latency variance
(i.e., jitter), and packet loss, thus, allowing them to meet their network-related SLOs. To
this end, we consider the interactions between the microservices of an application, i.e.,
the application’s topology. Furthermore, Polaris Scheduler allows adding extensions to
optimize the placement for additional SLOs in the future. The need to make placement

76

5.3. Approach Overview and Scheduling Pipeline

decisions based on multiple requirements makes this a multi-criteria decision making
(MCDM) problem. To enable extensibility Polaris Scheduler utilizes a plugin-based
approach, where each criterion in the MCDM problem is handled by one plugin. Polaris
Scheduler leverages the Edge cluster’s network topology modeled as a Cluster Topology
Graph and the interdependencies and SLOs of the microservices of an application modeled
as a Service Graph to determine if hosting a microservice on a particular node would
fulfill the network SLOs.

5.3.1 Scheduling Pipeline

Each microservice instance is a container, which needs to traverse the scheduling pipeline
to be assigned to a node for execution. Polaris Scheduler’s scheduling pipeline is based
on the Kubernetes scheduling framework [237], which is also used by kube-scheduler, the
default Kubernetes scheduler. The scheduling process is divided into two major parts:
the scheduling pipeline and the binding pipeline, which are further subdivided into stages.
Each stage provides an extension point for registering plugins. The scheduling pipeline
consists of a sequence of filtering and scoring stages. Filter plugins remove nodes that
are incapable of hosting a container, while score plugins assign a score to the nodes that
have survived filtering. The node with the highest cumulative score is picked to host the
container and admitted to the binding pipeline, which enacts this decision on the cluster.

The stages of the scheduling pipeline are depicted as white boxes in Figure 5.2. The
Sort stage establishes the order in which the incoming containers will proceed through
the scheduling pipeline – this stage supports only a single plugin. The PreFilter stage
is executed once per container and is intended for caching information that needs to
be computed once for the container and not for every candidate node. The Filter

stage is executed for each candidate node and is responsible for removing nodes that
are incapable of hosting the current container. PostFilter is only executed if no nodes
are left after filtering – this stage allows, e.g., preempting other containers to then retry
filtering. The PreScore and Score stages are the scoring counterparts to PreFilter

and Filter. The NormalizeScore stage can be used to normalize a plugin’s node scores
to an integer between 0 and 100, which is required by the framework. Afterwards, the
scores of all plugins are accumulated and the node with the highest score is selected. This
selection is relayed to the Reserve stage, which allows plugins to update third-party
data structures. Permit, the final stage of the scheduling pipeline, allows approving,
denying, or delaying a container’s entrance to the binding pipeline. Polaris Scheduler’s
scheduling pipeline focuses on providing Edge and SLO awareness. We assume that other
scheduling requirements, such as requested resources, are addressed by the underlying
base framework, e.g., the Kubernetes scheduling framework’s default plugins [235].

5.3.2 Cluster Topology Graph and Service Graph

Unlike in a Cloud environment with a high-speed flat network structure, an Edge cluster
node is often not “directly connected” to all other nodes, because an Edge cluster’s

77

5. Polaris Scheduler

S
o

rt

P
re

F
il

te
r

F
il

te
r

P
o

st
F

il
te

r

P
re

S
co

re

S
co

re

N
o

rm
a

li
ze

S
co

re

R
e

se
rv

e

P
e

rm
it

Scheduling Pipeline

S
e

rv
ic

e
G

ra
p

h

S
e

rv
ic

e
G

ra
p

h

A
to

m
ic

D
e

p
lo

y
m

e
n

t

N
o

d
e

C
o

st

P
o

d
sP

e
rN

o
d

e

S
e

rv
ic

e
G

ra
p

h

N
e

tw
o

rk
Q

o
S

N
e

tw
o

rk
Q

o
S

S
e

rv
ic

e
G

ra
p

h
Figure 5.2: Scheduling Pipeline (based on [237]) and Polaris Scheduler Plugins.

network structure does not resemble a complete graph. Some nodes may be connected
directly to each other, while other nodes might only be reachable through a gateway
node. Furthermore, the types of network connections and their QoS properties may vary
greatly; some connections are fast WiFi or 5G links, while others are slower, such as 3G.
To capture the network topology of a cluster and the QoS properties of the connections,
we use a Cluster Topology Graph, which is an undirected graph, where every node in the
graph represents a node in the cluster and each link between two nodes represents the
network connection between them. Each link is annotated with the QoS properties of
this connection, i.e., its bandwidth, latency, bandwidth variance, latency variance (jitter),
and the packet drop percentage. We have created a CRD to store information about
each network link as an object in Kubernetes. We assume that these network link objects
needed to build the Cluster Topology Graph are available to the scheduler and that they
reflect a recent state of the network. The specifics of how these links can be generated
and updated by monitoring solutions has no direct effect on Polaris Scheduler and is
beyond the scope of this work.

To model the topology of an application and its network QoS requirements, Polaris Sched-
uler relies on a Service Graph [192], like the one in Figure 5.1. This is a directed acyclic
graph (DAG), where each node represents a microservice of the application (all instances
of this microservice are captured by a single node). A link from node α to β indicates
that microservice α makes requests to microservice β. Each Service Graph link can be
annotated with the minimum network QoS requirements for the network connection be-
tween the two microservices. Specifically, the Polaris Scheduler supports minBandwidth,
maxBandwidthVariance, maxLatency, maxLatencyVariance, and maxPacketDropBp.
All values are optional to allow developers to only configure those constraints that are
important to their application. The Service Graph is implemented as a Kubernetes CRD,
consisting of a list of node names and a list of link objects that use these node names
and provide the previously mentioned network QoS configuration options. To denote
its position in a Service Graph, a container can reference the Service Graph and the
respective node by their names in its metadata. The scheduling framework and modeling

78

5.4. Polaris Scheduler Plugins

support of Polaris Scheduler address RC-1 and RC-3, whereas the scheduler’s plugins
focus on RC-1 and RC-2. In the subsequent sections, we describe how these contributions
are designed, implemented, and evaluated.

5.4 Polaris Scheduler Plugins

In this section we describe the main plugins of the Polaris Scheduler in detail. Figure 5.2
shows the Polaris Scheduler plugins as block arrows above the extension points of the
stages of the scheduling pipeline. A block arrow with a green background indicates that
the respective plugin provides optimizations that are based on highly dynamic data,
like the Cluster Topology Graph, while a yellow background indicates that the plugin’s
optimizations are based on mostly static data, such as the hourly cost of a node. Finally,
a turquoise background indicates that a plugin is of managerial nature and maintains
shared data structures needed by the other plugins.

5.4.1 ServiceGraph Plugin

The ServiceGraph plugin is responsible for loading and maintaining the Service Graph
to which a container is associated. It, thus, provides the foundation for almost all other
plugins. To this end, it ties into multiple extension points.

Sort Stage. In this stage the plugin ensures that the containers that belong to the same
Service Graph are scheduled in the order they are invoked upon a user request. This
is necessary, because if network QoS constraints are specified for a link in the graph,
Polaris Scheduler will ensure that a new container β, which is called by container α, is
placed sufficiently close to container α to meet the QoS requirements. To this end, the
scheduler needs to know where container α has been placed, hence the need for sorting.
When the Sort stage is first invoked for a new container, for which the Service Graph
has not been loaded yet, the ServiceGraph plugin fetches the Service Graph object
from the cluster and places it in a shared cache within Polaris Scheduler. This cache
uses reference counting to track how many containers are using a Service Graph. At
this stage no scheduling context object has been created for the container yet, so each
invocation of the Sort stage must look up the container’s Service Graph in the local
cache. The Kubernetes scheduling framework does not foresee any lengthy operations
in the Sort stage, which may at some point lead to bad performance when handling
a large number of containers. In our experiments (see Section 5.5) we did not notice
any problems. Nevertheless, we will investigate the possibility of designing a custom
scheduling pipeline as future work. This plugin stage also triggers the lookup of the
cluster nodes with already running containers of this Service Graph, because the current
container may not have been created during the initial deployment, but, e.g., as a result
of horizontal scaling. This lookup is performed asynchronously and, thus, does not affect
the performance of the Sort stage.

PreFilter Stage. At this stage the scheduling context object becomes available for the

79

5. Polaris Scheduler

Service �Service �

User

Service �

Service �

{minBandwidth: 10Mbit,

maxLatency: 100ms}

{minBandwidth: 1Mbit,

maxLatency: 10ms}
{maxPacketDropBp: 1}

Figure 5.3: Most Stringent QoS Requirements for Service γ.

container, so the plugin caches the container’s Service Graph in the respective scheduling
context.

Reserve Stage. This stage logs the placement of the container in the locally cached
Service Graph, so that it can be looked up for containers that are still queued.

PostFiler, Unreserve, & Permit Stages. These stages decrement the reference count
of the Service Graph in the shared cache and eventually release the graph object.

5.4.2 NetworkQoS Plugin

The NetworkQoS plugin filters out all cluster nodes that do not meet the network QoS
requirements defined on the incoming and outgoing Service Graph links. The plugin
supports throughput (bandwidth), latency, latency variance (jitter), and packet drop.
Enforcing the requirements of the incoming Service Graph links entails looking up the
cluster nodes of the already scheduled containers that represent the sources of these links.
For each candidate node, the NetworkQoS plugin needs to calculate the shortest path
between the source container and the candidate node. The plugin ties into four stages:
PreFilter, Filter, Score, and NormalizeScore.

PreFilter Stage. This stage is run once for each container and consists of the two
major steps described in Algorithm 5.1.

Step 1. Lines 3–9: The overall network QoS requirements for the container are computed,
based on all incoming and outgoing links of its node in the Service Graph. This entails
iterating through all these links and collecting the most stringent requirement for every
configured network QoS property, as shown in Figure 5.3. This information is needed
for the heuristic executed in step 1 of the Filter stage.

Step 2. Lines 10–19: The incoming Service Graph links are cached for the container’s
Service Graph node. For each such link, the set of cluster source nodes is computed. It

80

5.4. Polaris Scheduler Plugins

Algorithm 5.1 NetworkQoS PreFilter Stage
1: Input: GS = (VS , ES): Service Graph;

π ∈ VS : Service Graph node corresponding to current container;
2: Output: Rπ = (maxLatencyπ, ...): Overall network QoS requirements for π;

Eχ,π: Incoming Service Graph links for π;
SRC: Cluster nodes that host the source for each link in Eχ,π;
P : Shortest path trees for each n ∈ SRC;

3: Rπ ← (maxLatencyπ =∞, ...) ▷ Init Rπ to most lenient values
4: for all e ∈ ES involving π do
5: if maxLatencye < maxLatencyπ then
6: maxLatencyπ ← maxLatencye

7: end if
8: Proceed analogously for the other network QoS properties
9: end for

10: Eχ,π ← All service links coming into π
11: SRC ← {}; P ← {}
12: for all (χ, π) ∈ Eχ,π do
13: N ← All cluster nodes that host an instance of χ
14: SRC ← SRC ∪N
15: for all n ∈ N do
16: sp← Compute latency-wise shortest path tree for n
17: P ← P ∪ {sp}
18: end for
19: end for

consists of all cluster nodes that have a container, representing the source of the Service
Graph link, scheduled on them, as shown in the left part of Figure 5.4. For each cluster
node in this set, the shortest paths tree in terms of latency is computed.

Filter Stage. This stage is run once for every candidate node and consists of the two
major steps described in Algorithm 5.2:

Step 1. Lines 4–7 discard the candidate node if its selection is likely to prevent down-
stream services from being scheduled: If none of the node’s network links meets the
overall network QoS requirements computed in PreFilter step 1, discard it. This
heuristic considers the most stringent network requirements of all Service Graph links,
incoming and outgoing. Applied to the network links of the candidate node (i.e., not
to a path) it helps avoid situations like the following: In a Service Graph α → β → γ,
suppose service α has been scheduled. When scheduling service β, we find a cluster
node that fulfills the requirements for α → β, but the target node’s network connection
is too slow for β → γ. Since γ remains yet to be scheduled, we cannot check a concrete
path, but we can at least ensure that the network connection of β’s target node is potent
enough, hence the need for this heuristic.

Step 2. Lines 8–17 ensure that a path to the candidate node meets the requirements for
the current service: Iterate through all incoming Service Graph links that were cached

81

5. Polaris Scheduler

Algorithm 5.2 NetworkQoS Filter Stage
1: Input: cn: Candidate cluster node;

π: Service Graph node node corresponding to current container;
Rπ: Overall network QoS requirements for π;
Eχ,π: Incoming Service Graph links for π;
SRC: Cluster nodes that host the source for each link in Eχ,π;
P : Shortest path trees for each n ∈ SRC;

2: Output: canHost: true if cn can host π, otherwise false;
BWvar, Lvar: Max bandwidth & latency variances for shortest paths;

3: canHost← true; BWvar ← {}; Lvar ← {}
4: if cn does not meet Rπ then
5: canHost← false
6: return
7: end if

8: for all e = (χ, π) ∈ Eχ,π do
9: sp← FindShortestCompliantPath(e)

10: if sp ̸= nil then
11: BWvar ← BWvar ∪ { highest bandwidth var in sp}
12: Lvar ← Lvar ∪ { highest latency var in sp}
13: else
14: canHost← false
15: return
16: end if
17: end for

18: function FindShortestCompliantPath(e = (χ, π))
19: shortestP ath← nil
20: N ← Look up nodes that host χ in SRC
21: for all n ∈ N do
22: p← Shortest path from n to cn from P
23: if p meets QoS requirements for (χ, π) then
24: if shortestP ath = nil OR p < shortestP ath then
25: shortestP ath← p
26: end if
27: end if
28: end for
29: return shortestP ath
30: end function

82

5.4. Polaris Scheduler Plugins

in the PreFilter stage and for each link, examine the shortest path, latency-wise,
from each cluster source node found in step 2 of the PreFilter stage to the candidate
node. Pick the shortest path that meets all network QoS requirements. If none can be
found, discard the candidate node. For example, in Figure 5.4 (left side) the service
link α → γ is examined. Service α is scheduled on the cluster nodes A and C. Node E
is the current candidate node. The Cluster Topology Graph (right side of Figure 5.4)
shows the shortest path from Node A to the candidate node (orange) and the shortest
path from Node C to the candidate node (blue). The path from Node A fulfills the
network QoS requirements, so it is picked. Finally, store the highest bandwidth and
latency variance values of the picked path for the Score stage.

Score and NormalizeScore Stages. In the Score stage, the latency and bandwidth
variance values of the picked paths are used to assess the stability of the network
connections. A lower variance indicates a higher probability that network QoS will
remain stable and, thus, results in a higher score (50% bandwidth variance, 50% latency
variance). The NormalizeScore stage is used to clean up cached data.

5.4.3 Other Plugins

PodsPerNode Plugin

This plugin is inspired by one of the plugins of the Pogonip scheduler from Chapter 4. It
assigns a score to cluster nodes, based on how many replicas of the container they would
be able to host, depending on its configuration:

1. More possible replicas ⇒ higher score favors nodes with low resource utilization to
avoid congestion by placing multiple containers in the same node.

Service �Service �

Service �

Node A

Node C

Node G

Node D

Node F

Node C

Node E Node G

Node B

Node A

Service �

Service �

Figure 5.4: Incoming Service Links for Service γ (left), Shortest Network Paths to
Candidate Node from Service α (right).

83

5. Polaris Scheduler

2. More possible replicas ⇒ lower score gives preference to nodes, which may already
contain other components of the application and prefers using as many resources as
possible on a smaller set of nodes instead of scattering containers across all nodes.
This allows edge nodes, which are unused to go into a power conserving state.

NodeCost Plugin

This plugin assigns higher scores to cheaper nodes, which is often neglected by existing
schedulers.

AtomicDeployment Plugin

This Permit plugin ensures that either all containers belonging to a Service Graph exit
the scheduling pipeline successfully and enter the binding pipeline or, if at least one
container fails to get a cluster node assigned, all other containers of this Service Graph
will fail as well. This ensures that no resources are wasted on Edge nodes by containers
that belong to an incompletely scheduled application. This plugin acts only upon the
initial deployment of an application, but not on containers created due to scaling.

5.5 Evaluation

We evaluate Polaris Scheduler using the traffic analysis and hazard detection use case
illustrated in Section 5.2. We describe our experiment setup in Section 5.5.1 and present
the results in Section 5.5.2, followed by a discussion in Section 5.5.3.

5.5.1 Experiment Setup

For the experiments we specify the Service Graph shown in Figure 5.1, including the
indicated network SLOs. Each microservice is represented by a Kubernetes Deployment
object that defines the service’s resource requirements (the used container images are
irrelevant, since we benchmark the placement of the microservices and not the use case
application itself):

• Collector: 1 vCPU, 1 GiB memory, and a 5G base station

• Aggregator: 4 vCPUs, 2 GiB memory

• Hazard Broadcaster: 2 vCPUs, 2 GiB memory

• Region Manager: 4 vCPUs, 8 GiB memory

• Traffic Info Provider: 2 vCPUs, 2 GiB memory

84

5.5. Evaluation

The Edge cluster is simulated using kind5, a tool for running a Kubernetes cluster
inside Docker, and fake-kubelet6 for adding mocked nodes to this cluster. We run
a single Kubernetes (v1.22.9) kind control plane node, which hosts core Kubernetes
controllers and the schedulers. The nodes used as scheduling targets are simulated using
fake-kubelet and are visible as ordinary Kubernetes nodes; their resources and other
details are configurable via templates. A container assigned to such a node will enter the
Running state, but it will not actually be executed, which is fine, because we benchmark
the placement of the containers, not their execution. We run the experiments on a VM
with 24 virtual CPU cores and 47 GiB of RAM. The hosting server has an Intel Xeon
CPU (Cascade Lake) with a base clock of 2.1 GHz. Since the Kubernetes network proxy
on each node reduces the CPU and memory quantities available for scheduling, even on
fake-kubelet nodes, we rely on the extended resources mechanism of Kubernetes to
set up cpu and memory resources, which are available for scheduling in their entirety.

We run two experiments: (i) a Network QoS SLOs Compliance experiment for assessing
whether the container placement fulfills the network QoS SLOs of the application and
(ii) a Performance and Scalability experiment for evaluating the schedulers when placing
increasingly larger applications on growing cluster sizes. For the Network QoS SLOs
Compliance experiment we deploy a small-scale version of the application consisting
of three Collector instances and a single instance of each of the other services in a
test cluster with 12 nodes. For the Performance and Scalability experiment, we deploy
increasingly larger-scale versions of the application by multiplying the instance counts of
all microservices, except for the Region Manager, with a multiplier m = {10, 20, . . . , 70}.
We do the same with the size of the Edge cluster. For example, for m = 10, we deploy
30 Collectors, a single Region Manager (which coordinates the other services), and
10 instances of each of the other microservices on a 120 nodes cluster.

We design the cluster for the Network QoS SLOs Compliance experiment and reuse
the same topology to create m equal subclusters for the Performance and Scalability
experiment. The topology of each subcluster and the nodes’ resources are shown in
the left part of Figure 5.5. Each subcluster consists of 11 Edge nodes, three of which
have a 5G base station (indicated by the antenna icon), and a Cloud, which is modeled
as a single large node with 16 CPU cores and 32 GiB memory. The resources of the
Edge nodes resemble Raspberry Pi 3 Model B+ (4 CPU cores and 1 GiB of RAM) and
Raspberry Pi 4 Model B (4 CPU cores and 4 GiB or 8 GiB of RAM)7 devices and
are named accordingly as raspi-3b-ID, raspi-4s-ID (“Raspberry Pi 4-small”), and
raspi-4m-ID (“Raspberry Pi 4-medium”). All network links are annotated with their
latencies and bandwidths. The links between base-0 and raspi-4m-3 and between
base-0 and raspi-4s-0 are additionally marked with high bandwidth variance and
low bandwidth variance respectively, indicating that the bandwidth of the former link is
subject to great fluctuations, whereas the latter link does experience fluctuations, but

5https://kind.sigs.k8s.io
6https://github.com/wzshiming/fake-kubelet
7https://www.raspberrypi.org

85

https://kind.sigs.k8s.io
https://github.com/wzshiming/fake-kubelet
https://www.raspberrypi.org

5. Polaris Scheduler

base-0

CPU=4,

RAM=1G

base-1

CPU=4,

RAM=1G

base-2

CPU=4,

RAM=1G

raspi-4s-1

CPU=4,

RAM=2G

10ms, 2Mbit10ms, 10Mbit
5ms, 20Mbit

Low BW var

raspi-4s-0

CPU=4,

RAM=2G

raspi-4m-3

CPU=4,

RAM=4G

5ms, 50Mbit

High BW var
10ms, 10Mbit

5ms, 10Mbit

raspi-4m-2

CPU=4,

RAM=4G

10ms, 10Mbit

40ms, 20Mbit
20ms, 20Mbit

raspi-4m-0

CPU=4,

RAM=4G

80ms, 10Mbit

raspi-4m-1

CPU=4,

RAM=4G

raspi-3b-0

CPU=4,

RAM=1G

5ms, 10Mbit

5ms, 20Mbit

50ms, 10Mbit

20ms, 20Mbit

raspi-3b-1

CPU=4,

RAM=1G

10ms, 10Mbit
10ms, 10Mbit

80ms, 10Mbit 80ms, 10Mbit

Cloud

5ms, 10Mbit

Cloud

#1

#2

#3

#4

..
.

#10

Figure 5.5: Edge Cluster Topologies: Network QoS SLOs Compliance Experiment (left);
Performance and Scalability Experiment with 10 Subclusters (right).

they are much less. The bandwidth variances of the remaining links are negligible. To
form the larger-scale test cluster, we replicate the nodes and links of a single subcluster
m times and interconnect the subclusters through their Cloud nodes.

5.5.2 Experiment Results

We benchmark Polaris Scheduler against the default Kubernetes scheduler (kube-scheduler)
and two theoretic approaches, Greedy First-fit and Round-robin. For each experiment
configuration and scheduler we perform five iterations of deploying the application, record-
ing the placement and the time required to place each container, and then undeploying
the application again. The Greedy First-fit and Round-robin schedulers are implemented
using the Kubernetes scheduling framework, by reusing all default Filter plugins to
obtain the set of eligible nodes and then relying on a single Score plugin to assign
the highest score to node chosen by the respective placement strategy. All scripts and
configuration files needed to reproduce the experiments are available in our repository.
All schedulers found placements for all microservices in both experiments. The default
resource-related plugins of the Kubernetes scheduling framework ensured that only nodes
that had the required resources were selected.

Network QoS SLOs Compliance

In this experiment, executed on the small-scale cluster in the left part of Figure 5.5,
the main goal is to assess whether the placements computed by the schedulers fulfill
the network QoS SLOs of the use case application. The link from the Collector to the
Hazard Broadcaster is the most critical link, since the latter microservice broadcasts
the existence of a hazard to nearby cars. Meeting the network SLOs of this service
link (max latency of 10 ms and min bandwidth of 1 Mbps) is crucial for driver safety;

86

5.5. Evaluation

we will place special emphasis on whether this has been achieved by each placement.
Figure 5.6 summarizes the average latencies between the microservices that were achieved
by placements computed by the four schedulers across all iterations of this experiment.
We use this average, because different iterations may yield different placements (not only
for Round-robin) due to the reuse of many Kubernetes scheduling framework scoring
plugins, which influence the placement. If multiple nodes have the same aggregated top
score, a random one is picked from this set. The red line in the graph indicates the max
latency SLOs, i.e., the upper bounds, for each service link. Figure 5.7 summarizes the
average bandwidths between the microservices from the same experiment, with the red
line indicating the min bandwidth SLOs, i.e., the lower bounds. For the links between
the three Collectors and the single Hazard Broadcaster, as well as the single Aggregator,
we compute the mean average across the three network paths to obtain the value for a
single experiment iteration. If two interconnected microservices are placed on the same
node, we consider them to have zero latency and a bandwidth of 100 Gbps.

The Greedy First-fit scheduler selects the first node that matches a container’s
resource requirements. The node iteration order is determined by the alphabetical sorting
of the node names, such that it is the same across all runs. Thus, the Greedy First-fit
scheduler computed the same placement on every iteration: one Collector was placed
on each of the base nodes, while all other microservices were placed on the cloud node.
This results in a total latency of 75 ms from the Collector to the Hazard Broadcaster,
which is 7.5 times the upper SLO limit. The placement also violates the less stringent
50 ms max latency SLOs between the Collectors and the Aggregator – the lowest latency
path of this link also violates the 10 Mbps min bandwidth requirement for one Collector
instance, but this can be solved when taking an alternative network path (with even
higher latency). The network QoS SLOs between the other microservices are met, since
they all reside on the same node.

Round-robin operates on a circular list of nodes, based on the same iteration order
as Greedy First-fit, and picks the first matching node encountered from the starting
position. If a scheduling cycle ends at position n in the list, the next one will start from
position n + 1. Round-robin used the same nodes on each of the five iterations: one
Collector was placed on each of the base nodes, the Aggregator on the cloud node,
the Hazard Broadcaster on raspi-4m-0, the Region Manager on the cloud node, and
the Traffic Info Provider on raspi-4m-1. The reason for this is that the Collectors can
only be assigned to the base nodes. Thus, after the Collectors have been scheduled, the
next iteration will always point to the cloud node. The latency between the two safety
critical microservices, Collectors and Hazard Broadcaster, is 95 ms, which is 9.5 times the
SLO limit, thus, even worse than the one achieved by Greedy First-fit. Akin to Greedy
First-fit, the max latency and the min bandwidth SLOs (on the lowest latency path)
between the Collectors and Aggregator, as well as the min bandwidth SLO between the
Region Manager and the Traffic Info Provider, are also not met.

The Kubernetes default scheduler, like Greedy First-fit, placed the Collectors on
the base nodes and all other microservices on the cloud node. Thus, it also violates

87

5. Polaris Scheduler

Figure 5.6: Average Max Latencies Achieved by Schedulers and SLO Bounds.

the safety critical max latency SLO between the Collectors and the Hazard Broadcaster
(7.5 times the limit), as well as the max latency and min bandwidth SLOs between the
Collectors and the Aggregator, albeit the min bandwidth SLO can be met by taking an
alternative network path (with even higher latency).

Polaris Scheduler computed three different sets of placements. The Collectors were
always assigned to the base nodes, the Region Manager to the cloud node, and the
Traffic Info Provider to raspi-4m-0. The remaining two microservices were placed
(i) once the Aggregator to raspi-4m-2 and the Hazard Broadcaster to raspi-4s-1,
(ii) once the Aggregator to raspi-4m-2 and the Hazard Broadcaster raspi-4s-0, and
(iii) three times the Aggregator to raspi-4s-0 and the Hazard Broadcaster to raspi-

4s-1. All placements fulfilled the network SLOs. In many cases the total latencies
between the Collectors and the Hazard Broadcaster, as well as between the Collectors
and the Aggregator, remained significantly below the SLO limits. Since the specified
network SLOs are treated as hard constraints, any violation would cause the scheduling of
the particular container to fail, e.g., if no node can provide a sufficiently high bandwidth.
When the Hazard Broadcaster was placed on raspi-4s-0, two of the Collectors had
a total latency of only 5 ms (the SLO limit is 10 ms). The total latency between the
Collectors and the Aggregator was either 25 ms (Aggregator on raspi-4m-2) or 10 ms
(Aggregator on raspi-4s-0), much below the limit of 50 ms. We note that when the
Aggregator was placed on raspi-4m-2, the path with the lowest latency (25 ms) from
base-2 to raspi-4m-2 did not fulfill the bandwidth SLO of 10 Mbps from Collector
to Aggregator. However, an alternative path with a latency of 30 ms, which was also
within the max latency SLO limit of 50 ms, did meet the bandwidth requirement. Polaris
Scheduler was the only scheduler, whose placements met all network SLOs. In some cases
the other schedulers achieved better latencies and bandwidths, because they placed the
respective services on the cloud node, which lead to violations of other SLOs, including
the safety-critical max latency SLO between the Collectors and the Hazard Broadcaster,
whereas Polaris Scheduler chose tradeoffs that fulfilled all SLOs.

88

5.5. Evaluation

Figure 5.7: Average Min Bandwidth Achieved by Schedulers and SLO Bounds.

Performance and Scalability

Since a scheduler must be performant to ensure scalability, we now focus on the execution
time required to place the entire application. We deploy our application in increasingly
larger scales on clusters of increasing sizes, such as the one in the in the right part
of Figure 5.5. We measure the execution times of the scheduling pipeline from the
PreFilter stage until the Permit stage, for every container and compute the sum for
all containers in an iteration. Waiting times, as introduced by the AtomicDeployment

plugin are not included, because the aim is to reflect the computation time required for
scheduling, not queuing time. We compare Polaris Scheduler to kube-scheduler. To have
equal scoring conditions both schedulers are configured to score all nodes that passed
filtering.

Figure 5.8 shows the scheduling times of both schedulers across application and cluster
sizes. For scheduling 61 containers on 120 nodes Polaris Scheduler takes 346 ms, while
kube-scheduler requires only 114 ms. For m = 20, i.e., 121 containers on 240 nodes,
Polaris Scheduler requires 1, 574 ms, kube-scheduler needs 347 ms. This time difference
can largely be attributed to the computation of the shortest path trees in the Cluster
Topology Graph using Dijkstra’s algorithm. Fetching the Service Graph for the first
container of an application also consumes some time, but this becomes negligible as

1

10

100

1 000

10 000

100 000

c=61,

n=120

c =121,

n=240

c=181,

n=360

c=241,

n=480

c=301,

n=600

c=361,

n=720

c=421,

n=840

S
ch

e
d

u
li

n
g

 T
im

e
 (

m
s)

Number of containers (c); Number of cluster nodes (n)

kube-scheduler polaris-scheduler

Figure 5.8: Scalability Analysis.

89

5. Polaris Scheduler

the application size grows. Despite the increased scheduling time due to the graph
computations, Figure 5.8 shows that the scalability of Polaris Scheduler is comparable to
that of kube-scheduler. Computing a placement with a focus on network SLOs comes at
a cost, which is, however, acceptable for most long lived Edge applications, as we will
discuss in the next Section.

5.5.3 Discussion

Schedulers must consider tradeoffs between multiple requirements. For Polaris Scheduler
the most significant tradeoff is consciously accepting an increased scheduling time to allow
finding a placement that fulfills the network SLOs. While very short lived applications
(in the order of a few seconds) may not tolerate an increase in scheduling time with
respect to kube-scheduler, Edge applications typically have a longer lifespan, e.g., the
microservices of our use case run permanently. For an application that runs multiple
hours or days, it is irrelevant if scheduling takes 100 ms or multiple seconds, if the
placement fulfills the network SLOs. Such applications also normally do not arrive in
large quantities, such that the scheduler would become a serious bottleneck. The second
significant tradeoff in Polaris Scheduler concerns the Cluster Topology Graph. In very
large clusters with thousands of nodes on a flat network structure, the graph could
grow too big to store in memory or shortest path tree computations could take too long
to be practicable. However, Edge clusters typically consist of many small subclusters
that have a flat network structure within, but the subclusters themselves are sparsely
interconnected, which makes using a Cluster Topology Graph feasible, considering the
benefits that it yields. Nevertheless, we want to explore the use of a hypergraph as the
Cluster Topology Graph in the future to drastically reduce the number of graph links to
support large clusters with flat network structures. In such cases many nodes would pass
the Filter stage, so scoring would need to be configured to operate only on a subset
of these nodes, like in the default kube-scheduler configuration. Furthermore, we want
to develop algorithms for distributed scheduling, to disperse the computational load
required to schedule microservices on such large clusters.

In our Network QoS SLOs Compliance experiment only Polaris Scheduler fulfilled all
SLOs. It is the only scheduler that considers the entire application and its SLOs, whereas
the other schedulers ignored this information and placed each container independently of
the others. While the other schedulers outperformed Polaris Scheduler on the latency
between the Aggregator and the Region Manager, by placing both on the cloud node,
they did so by violating the max latency SLO between the Collectors and the Aggregator.
The minimum bandwidth SLOs were mostly met by the schedulers, even though a higher
latency path was sometimes required. However, in an Edge environment, the link speeds
may not be stable over time. The NetworkQoS plugin addresses the network dynamics
found in an Edge cluster. By leveraging the Cluster Topology Graph, which needs to be
maintained by an external monitoring service, it makes decisions not only based on the
most recent measurements of latency, bandwidth, and packet drop, but also based on
the variances computed from the recent bandwidth and latency history. These variances

90

5.6. Summary

allow assessing how stable the node’s connection has been over time, allowing Polaris
Scheduler to compute a placement that not only fulfills the network SLOs at the moment,
but that is likely fulfill them for a long time, thus, reducing the need for migrating a
microservice to another node.

5.6 Summary
In this chapter we presented Polaris Scheduler, a network SLO-aware scheduler for
Edge clusters. We motivated the need for SLO-aware scheduling using a realistic road
traffic analysis and hazard detection use case. Polaris Scheduler models the complex
dependencies and SLOs between the microservices of an application as a Service Graph,
while the topology and current QoS state of the cluster is captured in a Cluster Topology
Graph. Our scheduler leverages a multi-criteria decision making approach to find the
most suitable compute node for a microservice.

The multi-criteria decision making is implemented as an extensible scheduling pipeline,
where each criterion is provided by a plugin. The ServiceGraph establishes the order
among the incoming microservices, based on their dependencies and provides information
about the selected nodes for other parts of the application to the other plugins. The
NetworkQoS plugin covers bandwidth, bandwidth variance, latency, latency variance,
and packet drop. The consideration of bandwidth and latency variances allows selecting
nodes that are likely to have stable network connections in the future. The remaining
plugins optimize node resource usage, costs, and ensure that all microservices of the
application can be deployed atomically.

By deploying our use case application on multiple Edge clusters, we evaluated Polaris
Scheduler against kube-scheduler and two theoretical schedulers. We showed that the
consideration of network SLOs during scheduling lays the groundwork for an application’s
fulfillment of its SLOs in heterogeneous Edge clusters.

91

CHAPTER 6
Vela:

A 3-Phase Distributed Scheduler
for the Edge-Cloud Continuum

The federation of multiple clusters in the Edge-Cloud continuum may quickly lead to
tens of thousands of total compute nodes. Such large cluster sizes cannot be handled by
monolithic schedulers and require a distributed approach. Vela Scheduler is a distributed
scheduler that works in three phases. The first phase consists of an informed two-level
sampling mechanism that delegates the sampling of target nodes to the potential target
clusters to enable scalability. To ensure efficient sampling, these clusters leverage the
job’s requirements to return only nodes that are likely to be suitable as hosts. The second
phase decides on the top three target nodes across all sampled clusters. The third and
final phase commits the job to a target node according to the decision – to minimize
rescheduling due to scheduling conflicts, committing is retried on the second and third
best node if the previous one fails.

6.1 Introduction
Executing the microservices of an application on the right nodes of the Edge-Cloud
continuum allows the application to take advantage of the best of both worlds, i.e., the low
latency, proximity to the users, and attached IoT devices of the Edge and the powerful
compute resources of the Cloud. Placing a workload in the Edge-Cloud continuum, which
can often span tens to hundreds of thousands of nodes is challenging for a monolithic
scheduler and, thus, often calls for a distributed scheduling approach.

This chapter is based on the paper T. Pusztai, S. Nastic, P. Raith, S. Dustdar, D. Vij, and Y. Xiong,
“Vela: A 3-Phase Distributed Scheduler for the Edge-Cloud Continuum,” in 2023 IEEE International
Conference on Cloud Engineering (IC2E), 2023.

93

6. Vela Scheduler

Table 6.1: Scheduler Architectures Comparison

Type State per
Instance

State
Synchronization

Conflicts
Handling Limitations

Monolithic
e.g., [246, 237, 56] Entire cluster

Not needed,
because single
instance only

Avoided by
monolithic state

Limited
infrastructure size

Two-level
e.g., [100, 244, 208]

Statically or
dynamically
partitioned
by 1st level

Not needed,
because state
is partitioned

Avoided
by partitioning

Local optima and
potentially limited

infrastructure size if
1st level is monolithic

Shared State
e.g., [210, 22, 54, 77] Entire cluster

E.g., read-only
master state with
frequent sync or
partitioned sync

E.g.,
transactions
or optimistic
concurrency

Limited
infrastructure size,

since each scheduler
maintains entire state

Distributed
e.g., [173]

Sampled
set of nodes Sampling Optimistic

concurrency Local optima

Hybrid
e.g., [119, 53]

Depends on
combination

Depends on
combination

Depends on
combination

One part is usually
monolithic

There are multiple architectures for designing distributed schedulers, namely two-level,
shared state, distributed, and hybrid [209]. We examine their differences from the
monolithic architecture and from each other in four major aspects: i) how much of the
scheduling-related infrastructure state a single scheduler instance sees, ii) how this state is
synchronized, iii) how scheduling conflicts (i.e., two schedulers assign the same resources)
are handled, and iv) architecture limitations.

Table 6.1 summarizes the scheduler architectures. Monolithic schedulers handle the entire
infrastructure state within a single instance, which prevents conflicts, but limits scalability
w.r.t. the infrastructure size. Two-level schedulers rely on a hierarchy, where the first level
is responsible for the entire infrastructure state and statically or dynamically partitions
it among an arbitrary number of second level schedulers. This prevents conflicts and
improves scalability, but it may lead to local optima and, if the first level is monolithic,
scalability may still be limited. Shared state schedulers operate with multiple schedulers
that share access to the entire infrastructure state. Conflicts may occur, especially if
the local state is outdated and the scale of the infrastructure is limited, because each
scheduler has a copy of the entire state. Distributed schedulers rely on multiple schedulers
that have a limited view of the infrastructure state, often obtained by selecting a portion
of nodes (sampling), making this architecture highly scalable. The sampling algorithm
influences the scheduling decisions’ quality and the conflict probability. Hybrid schedulers
combine two of the other approaches, usually a monolithic scheduler for one type of jobs
and a distributed scheduler for all others.

Edge schedulers typically optimize placement for a set of Edge-specific constraints, such
as network latency or geo-location, but they often lack the scalability needed for an online
scheduler in the Edge-Cloud continuum, because they rely on computationally intensive
algorithms, such as genetic algorithms, or because they focus on a single cluster and,

94

6.1. Introduction

Edge San Francisco

Model

Training

Cloud US-West1

YOLO v5

Classi�er

Info

Service

Edge Rome

Model

Training

Cloud Europe-Central

ASP

Edge Sydney

Model

Training

Cloud Australia-East

ASP

YOLO v5

Classi�er

Info

Service

YOLO v5

Classi�er

Info

Service

Figure 6.1: Globally Distributed Machine Learning.

hence, lack a distributed architecture. Those that focus on scalability, e.g., [95, 92, 181,
190, 188, 239], are often limited to scheduling batch jobs, not microservices, and none
of them consider multiple globally distributed clusters. Their evaluations are limited to
small clusters with less than 1,000 nodes, which does not allow drawing conclusions on
global scalability.

Typically, clusters are managed by an orchestrator, e.g., Kubernetes1 or Nomad2, which
is responsible for deploying and launching jobs and providing management services. The
scheduler is often part of the orchestrator, but it may also be an external component
that only interfaces with it to make job placement decisions.

The need for globally distributed scheduling in the Edge-Cloud continuum is exacer-
bated by novel large-scale applications that often require global deployments, such as
general public AR/Metaverse [169] or geo-distributed ML. Such scenarios may also en-
compass scheduling on heterogeneous devices, like a combination of high-end servers
and single-board computers, with the latter being required, e.g., for privacy preserving
preprocessing [211].

A use case of globally distributed ML, based on the Gaia ML system [103], is shown
in Figure 6.1. An AR application for tourists classifies images to display sightseeing
information to its users. Classification jobs use the YOLOv5 CNN model to match user
videos to sights in a city. An info service provides information to display to the users.
Both jobs need to run as services in Edge clusters close to the users, because latency
is critical in AR applications [189]. Training jobs to improve the model are run daily
in a federated manner in the Cloud, relying mostly on local images from the closest
Edge clusters and synchronizing the model globally using the Approximate Synchronous
Parallel (ASP) model [103]. With global communications, latency plays a role and
demands a reduction of packet round trips between scheduler and target nodes.

We formulate the following research challenges:
1https://kubernetes.io
2https://www.nomadproject.io

95

https://kubernetes.io
https://www.nomadproject.io

6. Vela Scheduler

RC-1 How can a scheduler for the Edge-Cloud continuum handle globally distributed Cloud
and Edge clusters and scale reliably with the infrastructure? As previously mentioned,
monolithic schedulers can only handle a limited number of nodes, e.g., Kubernetes
officially supports up to 5,000 nodes [236]. But also distributed schedulers may have
limitations related to state synchronization, handling of scheduling conflicts, and
scalability. However, scalability is an important feature of a scheduler [28], especially
when dealing with very large infrastructures that span multiple, globally distributed
clusters [46].

RC-2 How can high-quality samples be collected from globally distributed clusters, while
maintaining low sampling and scheduling latency? Sampling-based schedulers are
designed to handle large clusters. They commonly either retrieve samples from
a local or shared cluster state, such as Tarcil [54], or contact nodes directly, like
Sparrow [173]. The former approach does not work for globally distributed clusters,
because maintaining a detailed state of globally distributed nodes is not feasible, nor
does the latter, because contacting many globally distributed nodes directly would
significantly increase scheduling latency, given global packet round trip times, e.g.,
165 ms as per the Verizon SLA for a Europe-USA packet round trip [245] (sum of
round trips within Europe, USA, and transatlantic). Additionally, as clusters get
more loaded, it has been reported that larger samples are needed to find suitable
nodes [54], because the samples are more likely to contain nodes that are full. Such
wasted samples increase load on the scheduler. Thus, a sampling mechanism is
needed that i) delegates work to the clusters to minimize the latency incurred by
network communication and ii) leverages job requirements to return only suitable
nodes to avoid an increase in sample size.

RC-3 How can a distributed scheduler increase job throughput by reducing the number of
scheduling conflicts? The assignment of the same set of resources to two different jobs
by two scheduler instances and the resulting conflict is an issue recognized by many
distributed schedulers [210, 22, 54, 119, 77]. Rescheduling the conflicting jobs takes
a significant amount of time and reduces the scheduler’s job throughput, because
the jobs need to traverse the entire scheduling lifecycle again. Reducing conflicts
requires careful consideration of the scheduler’s inner workings. While a job is being
committed to a node, the sampling algorithm may rely on an outdated state and
suggest a node, although it will be full after the commit has completed. Accounting
for this issue and adding mitigation measures when conflicts do arise can significantly
reduce rescheduling and, thus, increase the overall throughput of the scheduler.

In this chapter we present the open-source Vela Distributed Scheduler3, which is part
of Polaris SLO Cloud4, a SIG of the Linux Foundation Centaurus project5, a novel
open-source platform for building unified and highly scalable public or private distributed

3https://polaris-slo-cloud.github.io/vela-scheduler
4https://polaris-slo-cloud.github.io
5https://www.centaurusinfra.io

96

https://polaris-slo-cloud.github.io/vela-scheduler
https://polaris-slo-cloud.github.io
https://www.centaurusinfra.io

6.2. Vela 3-Phase Scheduling Workflow

Cloud and Edge systems. Vela continues our line of research on scheduling in the
Edge-Cloud continuum continuum [165][186]. Our main contributions include:

1. Vela Scheduler, a novel, globally distributed, orchestrator-independent scheduler
with a 3-phase scheduling workflow to enable optimized scheduling of microservices
at global scale within the Edge-Cloud continuum. The workflow is distributed
across multiple components to ensure scalability and is comprised of a sampling
phase that retrieves node samples from globally distributed clusters, a decision
phase that picks the best suitable node, and a commit phase that enforces the
scheduling decision in a conflict-aware manner.

2. 2-Smart Sampling, a two-level, informed sampling mechanism that delegates sam-
pling to globally distributed clusters and leverages job requirements to produce
samples consisting of nodes that are likely to be suitable. This reduces scheduling
latency and sample wastage. Vela’s design for globally distributed clusters delegates
sampling to agents in the clusters, which frees the scheduler from communicating
with the nodes directly. This delegation greatly reduces network traffic and latency
for the scheduler. By leveraging job requirements, the likelihood that the sample
contains suitable nodes is greatly increased, while avoiding large sample sizes, which
would augment the scheduler’s load. To the best of our knowledge, there is no other
scheduler that is designed to perform sampling on a global scale or is evaluated in
a globally distributed sampling scenario.

3. MultiBind, a scheduling decision commit phase that automatically retries committing
the job to another node if a scheduling conflict occurs, without rerunning the entire
scheduling process. This significantly reduces the number of jobs that need to
be rescheduled due to conflicts and, thus, increases the overall throughput of the
scheduler.

This chapter is structured as follows: Section 6.2 provides an overview of the architecture of
the Vela Distributed Scheduler, and Section 6.3 describes the mechanisms that realize our
contributions. Section 6.4 evaluates our scheduler on multiple interconnected Kubernetes
clusters that represent an Edge-Cloud continuum and Section 6.5 provides a short
summary of our work.

6.2 Vela 3-Phase Scheduling Workflow
The Vela Distributed Scheduler is designed to manage multiple, globally distributed
Edge and Cloud clusters. It consists of two components, the Scheduler and the Cluster
Agent. The scheduler can be deployed with an arbitrary number of instances, which
are independent of the infrastructure, i.e., clusters, they need to manage. Due to its
orchestrator-independent design, clusters may be operated by different orchestrators,
e.g., one cluster might use Kubernetes, while another cluster might use Nomad. The

97

6. Vela Scheduler

Sampling Phase

Job Sampling
Queue

Vela
Scheduler

Vela Cluster Agent A

Nodes
Cache

Sampling
Pipeline

Filtering &
Scoring
Plugins

Decision
Pipeline
Queue

Decision Phase

Filtering & Scoring
Plugins

Commit Phase

Try committing

MultiBind Mechanism

1. Node (cluster A)

2. Node (cluster B)

3. Node (cluster A)

Vela Cluster Agent A

Commit
Plugins

Commit
Pipeline

Decision
Pipeline

Sampler Pool

Nodes
Cache

Figure 6.2: Scheduling Workflow and Job Lifecycle.

exact definition of a cluster node depends on the respective orchestrator – typically, a
node will be either a VM, a bare-metal server, or a single-board computer. Every node
can host multiple jobs, as long as it has sufficient resources to accommodate them. To
become enabled for the Vela Scheduler, each cluster only needs to deploy the Cluster
Agent, typically as a controller.

The 3-phase scheduling workflow (see RC-1) is the logical centerpiece of Vela. The
workflow and the lifecycle of a job within it are shown in Figure 6.2. Each of the three
phases, i.e., sampling, decision, and commit, contains a pipeline; these pipelines are
shown in Figure 6.3. Each pipeline consists of multiple stages. The business logic within
each stage is realized through plugins, which facilitates the implementation of diverse
scheduling policies.

The 3-phase scheduling workflow starts when a user or another system component, such
as an autoscaler, submits a job to an arbitrary instance of the Vela Scheduler. The
scheduler instance sorts incoming jobs, e.g., based on priority, in its Sort stage and then
adds them to its Sampling Queue.

Once the scheduler dequeues the job, it enters the sampling phase with the 2-Smart
Sampling mechanism – the sampler pool can process multiple jobs in parallel in this phase.
2-Smart Sampling consists of two steps, the first one is executed by the Sample Nodes
plugin. It selects a random subset of all configured clusters to be used for sampling and
requests a sample from their respective Cluster Agents, passing the job’s requirements
along to ensure that only nodes that fulfill these requirements are returned.

98

6.2. Vela 3-Phase Scheduling Workflow

S
o

rt

F
il

te
r

S
co

re

R
e

se
rv

e

Vela Scheduler Lifecycle

S
a

m
p

le

N
o

d
e

s

Decision Pipeline

Vela Scheduler

Vela Cluster Agent

F
il

te
r

S
co

re

S
a

m
p

le

N
o

d
e

Sampling Pipeline

C
h

e
ck

C
o

n
fl

ic
ts

Commit Pipeline

C
o

m
m

it

Figure 6.3: 3-Phase Scheduling Workflow with Sampling, Decision, and Commit Pipelines.

Each cluster’s Cluster Agent, then, executes the second step of 2-Smart Sampling.
The agent maintains a frequently updated cache of its cluster’s nodes – the exact
implementation depends on the underlying orchestrator, e.g., Kubernetes provides a
watch mechanism that notifies the agent on nodes list changes. The agent selects a set
of nodes from this cache and executes the sampling pipeline, which employs a MCDM
approach, consisting of the Filter and the Score stages. Filter plugins remove nodes
that are not suitable for hosting a job and Score plugins assign scores from 0 to 100 to
the nodes that have survived filtering, based on how suitable they are. A higher score
indicates better suitability for the job, e.g., empty nodes may score higher than partially
loaded ones. The sampled nodes are then returned to the Vela Scheduler, which places
them, together with the job, in the decision pipeline queue. The presence of this queue
ensures that sampling, which may consume some time, can be executed on different
threads from the decision pipeline. This allows avoiding situations where all threads
might be blocked waiting for samples, while the CPU remains idle, even though it could
be used for the decision pipeline. If desired, a timeout can be configured for each sampling
request to a Cluster Agent – this can be used if a use case has stringent requirements on
scheduling latency.

When the job exits this queue, it enters the decision phase. The decision pipeline further
evaluates the sampled nodes for their suitability using another set of Filter and Score
plugins that allow enforcement of global policies. Multiple decision pipelines, each
responsible for a single job, are executed on concurrent threads. Since the Cluster Agent’s
sampling pipeline also includes scoring, each node already has a list of scores produced
by the sampling Score plugins. The scores computed by the scheduler’s Score plugins are
added to this list. After all eligible nodes are scored, the decision pipeline accumulates
the scores and picks the top m nodes with the highest score, with m being determined
by the configuration of the MultiBind mechanism. The Reserve stage can be used by
plugins to update internal data structures. At the end of the decision pipeline, the

99

6. Vela Scheduler

scheduler advances the top m nodes to the commit phase. The decision pipeline requires
no synchronization with other pipeline- or scheduler instances, because the only point of
synchronization is located in the subsequent commit phase and is handled by the Cluster
Agent.

In the commit phase the MultiBind mechanism instructs the Cluster Agent, responsible
for the cluster of the first of the m selected nodes, to commit the scheduling decision to
the node. Since scheduling decisions can be made simultaneously by multiple scheduler
instances, scheduling conflicts may occur, i.e., two jobs may be assigned to the same node
by different scheduler instances, but the node only has enough remaining capacity to host
one of them. To handle such conflicts we rely on an optimistic concurrency approach
within the Cluster Agent, which checks for each job, if the resources are still available. In
case of a conflict, the first job to arrive is committed to the node, the second job is rejected.
To this end, the commit pipeline first reserves resources in the agent’s cache to make
them unavailable to the sampling pipeline, then fetches the current information about
the node, checks if the constraints are still fulfilled, and, finally commits the decision by
binding the job to the node. If the commit pipeline fails, the MultiBind mechanism takes
the next best node from the list of m most suitable nodes and tries committing the job
to that one. Only if all m nodes fail, will the job be considered as having a scheduling
conflict, which requires rescheduling, i.e., running the entire scheduling workflow again.
Our experiments show that the MultiBind mechanism reduces the number of conflicts by
a factor of up to 10.

Currently, Vela Scheduler is aimed at stateless microservices. However, its plugin-based
design allows adding plugins to support stateful microservices or batch jobs in the future.

Vela is fault-tolerant by design. The failure of a Cluster Agent means that its cluster is
not available for scheduling, but does not affect the availability of other clusters. Since
no coordination is needed among scheduler instances, the failure of one instance only
requires users to submit new scheduling requests to another instance, but has no effect
on the operational status of the overall system.

6.3 Vela’s Main Scheduling Mechanisms

In this section we present the two most important scheduling mechanisms, i.e., 2-Smart
Sampling and MultiBind in detail.

6.3.1 2-Smart Sampling

To reduce latency and avoid large sample sizes, even in loaded clusters (see RC-2),
Vela Scheduler introduces 2-Smart Sampling, a two-step informed sampling approach,
where the scheduler delegates sampling to the Cluster Agents in the selected clusters.
This delegation frees the scheduler from communicating with globally distributed nodes
directly, which would incur high latency, and allows sampling to take full advantage of

100

6.3. Vela’s Main Scheduling Mechanisms

the local information that is available within the cluster. Specifically, 2-Smart Sampling
executes in two steps:

1. The scheduler picks a random subset of all configured clusters to be contacted for
samples. Using only a subset ensures scalability and reduces scheduling conflicts.
Then, the scheduler contacts the Cluster Agent of each selected cluster for a node
sample, passing along all the job’s requirements.

2. Each contacted Cluster Agent runs the sampling pipeline to pick a set of nodes and
check them for eligibility for hosting the job. The nodes that are deemed eligible
are scored and then returned to the scheduler.

The percentage of clusters to be sampled (Cp) and the percentage of nodes to sample per
cluster (Np) can be configured.

The sampling pipeline in the second step of 2-Smart Sampling consists of three stages (see
Figure 6.3): Sampling Strategy, Filter, and Score. The scheduling policy of each stage
is implemented by one or more plugins. Currently we provide two Sampling Strategy
plugins (a sampling request specifies which one to use), one for random sampling and
one for Round-Robin sampling, and three Filter plugins: ReourcesFit ensures that a
node fulfills the job’s resource requirements, GeoLocation allows a job to specify that it
needs to run in a specific location, and BatteryLevel allows restricting a job to running
on a node that has a minimum battery level (if the node has a battery) – the former two
plugins also tie into the Score stage.

For each job 2-Smart Sampling operates as shown in Algorithm 6.1:

Step 1. Lines 3–9 execute the first step of 2-Smart Sampling, i.e., pick a random subset
of all clusters and request a sample from their Cluster Agents. The returned samples
are added to the decision pipeline queue, together with the job.

Step 2. Lines 10–25 execute the second step of 2-Smart Sampling in each involved
Cluster Agent. Lines 13–20 constitute the sampling and filtering loop, which proceeds
until enough eligible nodes have been found or a timeout is reached. Line 14 gets a
set of nodes from the Sampling Strategy plugin, e.g., random sampling (default) or
Round-Robin. Lines 15–19 run all Filter plugins on each sampled node to determine if
it fulfills the job’ requirements. Lines 21–23 execute all Score plugins on each eligible
node. Subsequently, the complete cluster sample is returned to the scheduler.

This approach ensures that each cluster’s sample only contains nodes that meet the job’s
requirements, which allows for a smaller sample size. The sampling pipeline plugins need
to ensure that the job’s resource requirements are met by a node, but they may also
implement complex policies that further improve the quality of the sample. The Cluster
Agent may also implement cluster-specific scheduling policies.

101

6. Vela Scheduler

Algorithm 6.1 Sampling Phase
1: Input: j: The job for which to sample nodes;

Cp: Percentage of clusters to sample;
Np: The number of nodes to sample per cluster;
strat: The sampling strategy to use;

2: Output: Se: The set of sampled nodes that are eligible for hosting j and their scores;

▷ The 1st step of 2-Smart Sampling runs within the scheduler
3: Se ← {}
4: C ← PickRandomClustersToSample(Cp)
5: for all c ∈ C do
6: Se,c ← c.RunClusterSamplingPipeline(j, Np, strat)
7: Se ← Se ∪ Se,c
8: end for
9: AddToDecisionPipelineQueue(j, Se)

▷ The 2nd step of 2-Smart Sampling, i.e., the sampling pipeline, runs within a Cluster Agent
10: function RunClusterSamplingPipeline(j, Np, strat)
11: sampleSize← ComputeSampleSize(Np)
12: Se,c ← {} ▷ The sampled nodes from this cluster

13: while |Se,c| < sampleSize AND NOT timeout occurred do
14: Si ← SampleNodesWithStrategy(strat, sampleSize)
15: for all n ∈ Si do
16: if RunAllFilterPlugins(n) = true then

▷ If the node survives all filter plugins, it is eligible.
17: Se,c ← Se,c ∪ {n}
18: end if
19: end for
20: end while

21: for all n ∈ Se,c do
22: RunAllScorePlugins(n) ▷ Run all score plugins and add the scores to the node n
23: end for

24: return Se,c
25: end function

102

6.3. Vela’s Main Scheduling Mechanisms

6.3.2 MultiBind Commit Phase

Vela Scheduler relies on an optimistic concurrency approach to deal with multiple decision
pipeline or scheduler instances running in parallel. No cluster node resources are locked
during the sampling phase, because most of them will not be used – in the end the job is
assigned to a single node. This improves scalability, but entails that when committing a
scheduling decision, another decision pipeline or scheduler instance may have already
claimed some of the required resources on the node, resulting in a scheduling conflict
for the current job. This is a common issue in distributed scheduling, which is normally
handled by rescheduling the job (see RC-3) [210, 22, 54, 77]. In Vela Scheduler we
mitigate this issue by the randomness in both steps of 2-Smart Sampling. Nevertheless,
scheduling conflicts can occur. Note that the number of jobs per node is not limited, i.e.,
if the selected node has enough resources for both jobs, both are committed and executed
– a conflict only occurs, if the node does not have sufficient resources for hosting both
jobs.

To further reduce the number of scheduling conflicts that require rescheduling, Vela
Scheduler relies on its MultiBind commit phase: instead of trying to commit the job
only to the highest scored node and rescheduling it, if a conflict occurs, we use a list of
the m highest scored nodes and try committing to the next node. Only if committing
to all m nodes fails, the job is considered to have a scheduling conflict and needs to be
rescheduled. Our tests in Section 6.4 show that a setting of m = 3 reduces the scheduling
conflicts by factor of 10 compared to not using MultiBind. When trying to commit a job
to a node, the MultiBind mechanism contacts the Cluster Agent of the node’s cluster to
execute the commit pipeline. This pipeline, which supports running multiple instances
in parallel, contains two stages, whose logic is implemented using plugins: the Check
Conflicts stage and the Commit stage. The entire process executed by the MultiBind
commit phase is shown in Algorithm 6.2:

Step 1. Lines 3–8 represent the MultiBind mechanism, which executes in the scheduler.
It iterates over the list of the m highest scored nodes and tries to commit the job to
every node, stopping and reporting a scheduling success if the commit succeeds. If
all commits fail, a scheduling conflict is reported. Each commit attempt, triggers the
commit pipeline in the respective Cluster Agent.

Step 2. Line 10 proactively reserves the job’s resources in the nodes cache to make them
unavailable for sampling requests. Free resources that are not required by the job are
still available for sampling.

Step 3. Line 11 locks the target node within the Cluster Agent such that no other
commit pipeline can access it. Unreserved resources on the node are still available for
sampling.

Step 4. Lines 12–14 fetch the target node and all jobs currently assigned to it from
the orchestrator and, together with information from the nodes cache, compute the
currently available resources on the node.

103

6. Vela Scheduler

Algorithm 6.2 Commit Phase
1: Input: j: The job to commit;

N = (n1, ..., nm): The m highest scored nodes as commit candidates;
2: Output: SUCCESS or CONF LICT ;

▷ The MultiBind mechanism runs within the scheduler
3: for all n ∈ N do
4: if RunClusterCommitPipeline(n, j) = SUCCESS then
5: return SUCCESS
6: end if
7: end for
8: return CONF LICT ▷ There was a conflict for all nodes in N .

▷ The commit pipeline runs within the Cluster Agent
9: function RunClusterCommitPipeline(n, j)

10: ReserveResourcesInCache(n, j)
11: Lock(n)

12: n∗ ← FetchNodeInfo(n)
13: J ← FetchJobsOnNode(n∗)
14: n∗ ← ComputeAvailableResources(n∗, J)

15: if RunCheckConflictsPlugins(j, n∗) = CONF LICT then
16: UnreserveResourcesInCache(n, j)
17: result← CONF LICT
18: else
19: Commit(j, n∗)
20: result← SUCCESS
21: end if

22: Unock(n)
23: return result
24: end function

Step 5. Lines 15–17 execute the Check Conflicts plugins to check for a scheduling conflict.
If there is a conflict, we undo the resources reservation in the nodes cache carried out in
step 2 and prepare to report the conflict to the scheduler.

Step 6. Lines 19–20 run the Commit plugin to commit the job to the node.

Step 7. Lines 22–20 unlock the target node in the Cluster Agent to make it available to
other commit pipeline instances again and then return the result to the scheduler.

Reserving resources in the nodes cache is a critical step, because otherwise the sampling
pipeline would consider them still available, even though they are currently being bound
to a job. Fetching the target node and its assigned jobs is needed, because the nodes
cache could be outdated. The Commit stage first creates the orchestrator-specific job
object and then binds it to the target node, which completes the commit pipeline.

104

6.4. Evaluation & Implementation

6.4 Evaluation & Implementation

To evaluate our scheduler we focus mainly on the scalability aspect at a global scale, while
keeping low latency and reducing scheduling conflicts, as described in our contributions.
All code to run the experiments, as well as, all results can be found in our repository6.

6.4.1 Implementation

Vela Scheduler and its Cluster Agent are implemented in Go; all their APIs are JSON-
based REST APIs. The two largest engineering challenges lie within the Cluster Agent.
The first one is the nodes cache, which needs to support a very high read frequency from
sampling, but also a considerable write frequency stemming from the commit pipeline
and orchestrator updates. The cache supports read-write locking, but to avoid holding
locks for a long time, we treat all node objects as immutable. Reading is only done
at three points: at the beginning of the sampling pipeline, by the Sampling Strategy
plugins, and at the beginning of the commit pipeline. Writing is also done at three
points: once at the beginning and at the end of the commit pipeline and when there is
a node status update from the orchestrator. The second major engineering challenge
is to reserve resources in the nodes cache as early as possible in the commit phase. It
is critical to do this immediately for all incoming jobs, before locking the node (this
locking only applies to the commit pipelines, not the nodes cache), because otherwise
sampling would still consider resources as available, which will be consumed by a job
waiting to be committed. At the end of the commit pipeline, each resource reservation
is either committed or removed, depending on the outcome of the pipeline. Further
implementation details can be found in our code repository.

6.4.2 Experiments Setup

To evaluate the scalability of Vela Scheduler we set up 10 globally distributed Kubernetes
clusters, which vary in size, depending on the experiment. We run a single instance of
Vela Scheduler, which, however, does not limit the distributed nature of our scheduler,
because i) the 2-Smart Sampling mechanism is fully distributed and ii) each scheduler
instance runs multiple sampling, decision, and commit pipelines independently of each
other in parallel, which is the same as running multiple scheduler instances.

To set up the clusters in our testbed we use 10 Google Cloud Platform (GCP) VMs of type
c2-standard-8, each having 8 vCPUs and 32 GB of memory and running on a physical
machine with an Intel Cascade Lake or later processor. Every VM is bootstrapped
with Ubuntu 22.04, on top of which we install MicroK8s7 v1.25.6 to initialize a distinct
single-node Kubernetes cluster. For all experiments, we rely on fake-kubelet8 to create
simulated nodes in each MicroK8s cluster. The resource properties of these nodes can

6https://polaris-slo-cloud.github.io/vela-scheduler/experiments
7https://microk8s.io
8https://github.com/wzshiming/fake-kubelet

105

https://polaris-slo-cloud.github.io/vela-scheduler/experiments
https://microk8s.io
https://github.com/wzshiming/fake-kubelet

6. Vela Scheduler

Table 6.2: Node Types in Cloud and Edge Clusters.

Node Type &
Occurrence (%) vCPUs RAM Regions

C
lo

ud
50% cloud-small 2 4 Belgium, Oregon,

Finland30% cloud-medium 4 8
20% cloud-large 8 16

E
dg

e

20% Raspberry Pi 4B 4 2 Belgium, Netherlands,
Frankfurt, Montreal,
Oregon, Finland, Iowa

40% Raspberry Pi 4B 4 4
30% Raspberry Pi 3B+ 4 1
10% cloudlet 4 8

be easily configured and they are treated as ordinary nodes by Kubernetes. However,
fake-kubelet nodes do not actually execute any pods (i.e., jobs), but this is not needed
for our experiments, since we benchmark the scheduling performance, i.e., until a job
has been bound to a node. Sampling performance is also not affected by fake-kubelet,
because our sampling algorithm works against the Cluster Agent’s nodes cache, which is
maintained in the background. Other than consuming some CPU time on each VM, the
use of fake-kubelet does not impact the metrics evaluated in these experiments.

Since Vela Scheduler focuses on the Edge-Cloud continuum, the 10 clusters are intention-
ally not homogeneous. We simulate three Cloud and seven Edge clusters with different
types of nodes; the hosting VMs are located in different regions. Cloud clusters are
made up of a combination of VMs of three different sizes and Edge clusters consist of a
combination of Raspberry Pi9 single-board computers and cloudlet servers. The node
details, the percentage of each node type in the composition of a cluster, and the cluster
regions are listed in Table 6.2. These node details serve as realistic configurations for the
resource properties of the simulated nodes. There is no difference between simulating a
cloud node and a Raspberry Pi node using fake-kubelet, because for our experiments
only the configured resource properties are of interest. Vela Scheduler itself is also
deployed on a c2-standard-8 VM and is located in the Zurich region. All tests use
Apache JMeter10 as a load generator – we run it on a VM with 24 vCPUs and 47 GiB of
RAM. The hosting server at our university has an Intel Xeon CPU (Cascade Lake) with
a base clock of 2.1 GHz. JMeter does not allow for configuring a specific request rate per
second, but instead requires configuring the number threads that generate requests and
the approximate timing they should use, e.g., one request every 10 milliseconds.

We run three sets of experiments: i) configuration tuning to find optimal settings for Vela
Scheduler, ii) scalability with respect to infrastructure to assess the performance of our
scheduler on an increasing number of nodes, and iii) scalability with respect to workload
to a assess the performance on an increasing scheduler workload.

Configuration Tuning aims to find optimal values for Cp and Np, i.e, the percentage of
9https://www.raspberrypi.org

10https://jmeter.apache.org

106

https://www.raspberrypi.org
https://jmeter.apache.org

6.4. Evaluation & Implementation

clusters and the percentage of nodes to sample in 2-Smart Sampling. To this end, we
evaluate settings of Cp = {10%, 20%, ..., 100%} and, for each value, run an experiment
iteration with Np = {4%, 8%, 12%, 16%}, for a total of 40 iterations. Each iteration tries
to schedule 11, 200 jobs requiring 4 vCPUs and 4 GiB of RAM on clusters of 2, 000 (2K)
nodes each, adding up to 20K nodes in total. 11, 200 is the maximum number of jobs
of this size that this cluster configuration can support, thus the scheduler must find all
available space to avoid scheduling failures. Additionally, 50% of the nodes are too small
to host such a job.

The two scalability experiments use the settings determined by the configuration tuning
to evaluate the scalability of Vela Scheduler. Akin to the previous experiment, each
scalability experiments uses 10 clusters, each of which contains a tenth of the total nodes
in the experiment, i.e., for 1K total nodes each cluster contains 100 nodes and for 20K
total nodes each cluster contains 2K nodes.

The experiment on scalability with respect to infrastructure schedules 1K jobs on increas-
ing cluster sizes, specifically 1K, 5K, 10K, 15K, and 20K total nodes (for comparison,
Kubernetes officially only supports 5K total nodes [236]). We run three iterations for
each of these cluster sizes. The jobs intentionally fit on each node to allow us to focus on
measuring the execution performance.

The scalability experiment with respect to workload operates on 20K total nodes (i.e.,
2K nodes per cluster) and gradually increases the scheduler workload across 15 iterations,
each lasting three minutes. In this experiment the jobs are heterogeneous; specifically
each JMeter thread iteration creates one job requiring 1 CPU and 1 GiB, two jobs needing
2 CPUs and 2 GiB, and one job requiring 4 CPUs and 4 GiB of RAM. We intentionally use
CPU and RAM requirements only, because adding battery or geo-location requirements
would reduce the number of eligible nodes and, hence, saturate the clusters sooner. Each
job counts as one scheduling request. We use thread and timing configurations for JMeter
to achieve job rates between 15.18 requests/sec and 290.36 requests/sec.

6.4.3 Results

Configuration Tuning

For this experiment we focus on finding the lowest values for Cp and Np that yield zero
scheduling failures. We aim for the lowest configuration values, because sampling fewer
(globally distributed) clusters and fewer nodes within each cluster naturally leads to faster
execution times than sampling more clusters and/or nodes. Since rescheduling attempts
are common in distributed schedulers, we consider a job to have failed scheduling, only
after having attempted rescheduling a total of ten times without success.

Figure 6.4 shows the number of scheduling failures as a percentage of the total jobs. It is
evident that the number of failures decreases as the number of sampled clusters increases,
because the scheduler has more nodes to choose from. The failures first reach zero at
Cp = 50% and Np = 4%, which is what we will use for the remaining experiments. At

107

6. Vela Scheduler

Figure 6.4: Scheduling Failure Percentages for Configuration Tuning.

Cp = 60% and Np = 4%, there is a single failure, but starting at Cp = 70%, there are no
more failures, which is why we have excluded larger Cp values from Figure 6.4 for clarity.
The full set of results, including the number of rescheduling attempts, is available in our
repository. For the remainder of this chapter we use the above mentioned lowest Cp and
Np values that resulted in no failures, i.e., perfect scheduling, within this experiment.
However, future work may investigate dynamic adaptation of these values, because as
the utilization of the clusters increases or decreases, different Cp and Np values may be
needed to maintain a low number of failures and scheduling conflicts.

Scalability with Respect to Infrastructure

This experiment focuses on evaluating the performance of Vela Scheduler on increasing
cluster sizes to show its scalability. We examine execution times of the sampling phase,
the commit phase, and the end-to-end (E2E) times, i.e., the time from adding a job
to the sampling queue until a successful end of the commit phase. Since we noticed a
significant latency increase of the MicroK8s API server under high load (e.g., creating
a pod object sometimes took about 8 seconds), we do not include the interaction with
Kubernetes in the commit and E2E metrics, instead we fetch node information only from
our cache and consider the commit pipeline successful once we make the commit in our
cache, before we issue a write request to the orchestrator. This allows us to focus solely
on the Vela Scheduler performance.

Figure 6.5 summarizes the mean execution times in this experiment, showing a linear
increase for all of them. We observe two different E2E times: one including time spent
in the sampling queue (E2E) and one without sampling queue time (E2E-no-queue or
E2E-nq). When including queuing time, E2E time increases much faster, albeit still
linearly. This is because as the sampling duration increases, the threads responsible for
step one of 2-Smart Sampling in the scheduler are blocked for a longer time. Since we

108

6.4. Evaluation & Implementation

Figure 6.5: Mean Scheduling Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

have 80 sampling threads (CPU cores × 10) in the experiment, these threads are at some
point all waiting for responses and thus many of the 1, 000 jobs that arrive in very quick
succession need to stay in the queue longer. This could be alleviated, e.g., by running
multiple concurrent scheduler instances.

More detailed breakdowns of the sampling, commit, and E2E-nq times are shown in
Figure 6.6, Figure 6.7 and Figure 6.8 respectively. For 1K total nodes, sampling takes
a mean of 243.3 ms, which is a reasonable time for getting samples from five globally
distributed clusters, considering global packet round trip times (e.g., the Verizon SLA
for a Europe-USA packet round trip, including intra-Europe and intra-US round trips
is 165 ms [245]). Sampling times increase linearly with the cluster sizes to a mean of
902.1 ms for 20K total nodes. Since the Cluster Agent performs sampling on its nodes
cache, which is regularly updated in the background, no communication within the cluster

Figure 6.6: Sampling Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

109

6. Vela Scheduler

Figure 6.7: Commit Times (ms) at Cp = 50% and Np = 4% for Total Nodes.

Figure 6.8: End-to-End Times (ms), without Sampling Queue, at Cp = 50% and Np = 4%
for Total Nodes.

is necessary in this phase. However, as the cluster size increases, the absolute number of
nodes per sample also increases, hence more processing time is needed for larger clusters.
Commit times increase linearly as well, ranging from 53.1 ms for 1K nodes to 182.8 ms
for 20K nodes. Since the commit phase involves only communication with the target
cluster, conflicts checking for a single node, cache operations, and possible MultiBind
retries, its contribution to the E2E time is fairly low. E2E-nq times also increase linearly
from 297.9 ms for 1K nodes to 1087.1 ms for 20K nodes. This shows that most of the
time is spent in 2-Smart Sampling, which is reasonable given that all Filter and Score
plugins currently run as part of the sampling pipeline.

The MultiBind overhead when trying to commit to all m = 3 nodes, compared to
succeeding on the first node, varies depending on the communication latency with the
selected clusters. However, it is evident from the execution time results that MultiBind

110

6.4. Evaluation & Implementation

Table 6.3: Scheduling Decisions and Throughput.

Req
/

sec

Queuing
Time

(msec)

Scheduling
Decisions/sec

(SDPS)

Throughput
w MultiBind

(jobs/s)

Throughput
no MultiBind

(jobs/s)
54 0 54 54 49
72 1 72 72 62
94 6 95 94 75
99 106 100 98 73

133 30,097 110 107 77
175 35,499 238 96 87
212 35,672 384 99 94
254 32,562 608 116 112
290 30,847 817 134 131

provides considerable time savings over the alternative strategy of rerunning the entire
Vela Scheduler lifecycle on every scheduling conflict, because this would encompass not
only contacting at least one more cluster for committing, but also running the complete
sampling phase again.

Scalability with Respect to Workload

In this experiment we evaluate all results with focus on the scheduler’s throughput in
jobs per second (jobs/s) and the total number of scheduling decisions per second (SDPS).
We calculate the throughput by dividing the number of successfully scheduled jobs by
the total time the Vela Scheduler was active. This time is calculated using the difference
between the scheduling finish timestamps of the last successful job and the first successful
job. We compute this value for every iteration of our experiment and round it to the
next integer value, giving us a throughput ranging from 15 jobs/s up to 134 jobs/s.
The scheduling decisions per second (SDPS) are the total number number of scheduling
attempts irrespective of their results (i.e., success, conflict, rescheduling due to no nodes
found, or failure due to too many rescheduling attempts) divided by the total execution
time. The SDPS range from 15 to 817. We stopped our experiments at this number,
because the simulated cluster resources were getting exhausted, thus, leaving too little
space for scheduling other jobs.

Table 6.3 summarizes the results of this experiment. It shows the request rate generated
by JMeter in requests per second (req/s), the mean queuing time of a job before it
is dequeued by the sampling pipeline, the SDPS, and the throughput in successfully
scheduled jobs per second with and without MultiBind. The mean queuing time and
the SDPS are good indicators of whether the scheduler is able to keep up with the
incoming workload. Up until 99 req/s the queuing time is negligible, whereas starting
with 133 req/s it suddenly rises to 30 seconds. Likewise, the SDPS are equal to or greater
than the request rate up until 99 req/s and start lagging behind at 133 req/s. The

111

6. Vela Scheduler

Figure 6.9: Scheduling Conflicts with and without MultiBind.

throughput with MultiBind remains approximately equal to the input request rate (the
difference of 1 in the row with 99 req/s is caused by rounding, the actual difference is
less than 0.042), until 133 req/s, where it starts to fall behind. These values indicate
that the single-instance configuration of Vela in the experiments can reliably sustain
the scheduling of an input workload of approximately 100 req/s. While this is sufficient
for our AR use case, Vela is capable of much higher SDPS, as we discuss in the next
paragraph. The sudden increase in queuing time is due to the sampling threads waiting
for responses from the Cluster Agents. A maximum CPU usage of 93% in the scheduler
VM indicates that the current thread configuration is ideal and that the scheduler needs
to be scaled out to further increase performance. Conversely, the Cluster Agents show a
peak CPU usage of approximately 26%, indicating that thread-level parallelism could be
further increased before scaling out, which we defer to future work.

The SDPS show a significant increase after 133 req/s, because of the number of reschedul-
ing attempts, due to not finding suitable nodes. Rescheduling attempts rise from zero
until 99 req/s and 0.04% at 133 req/s to 53.4% at 175 req/s and 75.75% at 290 req/s,
resulting in up to 817 total SDPS in the last case. This is caused by resources becoming
scarce in the cluster, which leads to not finding any suitable nodes during sampling.
However, this shows that a single Vela Scheduler instance is capable of supporting high
numbers of SDPS, while managing clusters of 20k total nodes.

As previously noted, scheduling conflicts are common in distributed schedulers. Their
occurrence rate should be as low as possible to avoid rescheduling jobs, which consumes
processing time. In Figure 6.9 we examine the percentage of scheduling conflicts of
Vela Scheduler with and without the MultiBind mechanism. The number of scheduling
conflicts with MultiBind is reported directly by our scheduler, while the number of
conflicts without MultiBind is obtained by counting all successful commit phases, where
MultiBind retried committing at least once. For the first five experiment iterations there
are between zero and two scheduling conflicts with MultiBind. Then, the rate starts
increasing gradually, but stays below 1% of the total jobs until a throughput of 94 jobs/s,

112

6.5. Summary

reaching its highest value of 2.76% at 107 jobs/s. These numbers are very low compared
to scheduling without MultiBind. In this case there are 2.09% scheduling conflicts already
in the first experiment iteration, gradually increasing up to a maximum of with 28.2% at
107 jobs/s. This clearly shows the benefit of MultiBind; without it, the scheduling time
would double or triple for up to 25% of the jobs, because they would need to traverse
the Vela Scheduler lifecycle two or three times, due to rescheduling. Altogether the
numbers show very promising results, with Vela Scheduler having linear scalability and
the MultiBind mechanism being a great improvement over a simple rescheduling on
conflict approach.

6.5 Summary
In this chapter we have presented Vela, a globally distributed, orchestrator-independent
scheduler for the Edge-Cloud continuum with a 3-phase scheduling workflow. The first
phase consists of the 2-Smart Sampling mechanism, which delegates sampling to globally
distributed clusters, freeing the scheduler from communicating with nodes directly, thus,
reducing latency. By considering the requirements of a job during sampling, the clusters
produce meaningful samples that only contain nodes that are capable of hosting the
job, thus reducing sample wastage and keeping the sample size small. The second phase
filters and scores the sampled nodes according to multiple criteria and selects the best
three nodes as candidates to host the job. The third and final phase commits the job to
a node using the MultiBind mechanism. MultiBind greatly reduces scheduling conflicts
by retrying committing a job to the second or third best suitable node, if the assignment
to a previous node fails, which significantly increases scheduler throughput. We have
evaluated Vela Scheduler on a testbed with 10 clusters with up to 20k simulated nodes,
showing its scalability.

113

CHAPTER 7
ChunkFunc:

Dynamic SLO-aware Configuration
of Serverless Functions

Cost-efficient use of serverless workflows requires selecting resource configurations for
each function that ensure that the end-to-end response time SLO of the workflow is met,
while not spending more money than necessary. This task is further complicated by the
fact that different function inputs may require different processing times. The ChunkFunc
resource configuration optimizer automatically profiles individual functions with typical
inputs to create input size-specific performance profiles. These profiles are leveraged to
dynamically optimize the resource configuration of every function during the execution of
a workflow with the goal of fulfilling the workflow’s response time SLO and keeping the
costs at a minimum.

7.1 Introduction

All major Cloud platforms provide serverless offerings [10, 151, 89, 107] and their usage
is continuously growing. In a 2023 survey, Datadog reports that over 70% of its AWS
customers and 60% of its Google Cloud customers use at least one serverless solution [48].
Serverless computing provides the advantage that developers can focus on the business
logic of their functions and leave scaling and most infrastructure management decisions
to the Cloud provider. Typically, developers only configure the amount of memory that
should be allocated to a function. The memory maps to a predefined resource profile,
which contains a fixed amount of vCPUs – we adopt the same convention for our work.

This chapter is based on the paper T. Pusztai and S. Nastic, “ChunkFunc: Dynamic SLO-aware
Configuration of Serverless Functions,” IEEE Transactions on Parallel and Distributed Systems, 2025.

115

7. ChunkFunc

Despite the seeming simplicity of configuring serverless resources, tuning the amount of
memory, vCPUs, and configuration models to ensure that SLOs are met, while minimizing
the costs still remains a challenge [134, 132].

7.1.1 Tuning of Serverless Workflow Configurations

Tuning resource configurations of serverless workflows to meet SLOs is typically done
using performance models for the comprising functions. There are two main types of
approaches: 1) a-priori profiling of functions to build a performance model in an offline
fashion and 2) monitoring of function executions at runtime to build the performance
model in an online fashion.

1. A-priori profiling systems normally execute functions under varying resource configu-
rations with typical input data to build a performance profile. This is used to configure
the function’s resources in production to meet the defined SLO. Most systems that tune
entire workflows rely on graph algorithms [65, 135, 254]. Another approach is the use
of a max-heap [204]. For a single function or job, linear, binary, and gradient descent
search [270], Bayesian Optimization (BO) [5], and CPU time accounting [44] have been
used. Two common drawbacks of a-priori profiling systems are that a “typical workload”
needs to be defined and the tedious profiling process itself. Finding a typical workload
might not be possible for functions that have highly variable inputs, such as those used
for log or video processing. Profiling often needs to be done manually and/or takes a long
time if all resource profiles need to be tested exhaustively. Some approaches reduce the
number of profiling runs, e.g., using BO, but they require manual tuning of parameters
to get accurate results.

2. Systems that build a performance model online rely on historical or live monitoring
data of function executions. Some approaches passively monitor execution [62, 9, 270].
Others assign different configurations until the performance model is complete [198, 259],
often relying on statistical methods, such as Bayesian Optimization, to reduce the number
of configurations that need to be explored. However, until the performance model is
complete, these approaches may violate the SLO. Thus, to have good SLO adherence from
the first day in production, developers need to issue many requests to allow the model
to train, which is essentially similar to profiling. Additionally, resources for collecting
and processing monitoring data during the entire application lifetime to update the
performance model may incur additional costs.

7.1.2 Motivation

Current approaches often overprovision resources [215, 238] and do not account for
input data size variations, which leads to problems with highly heterogeneous workloads,
because different input sizes may result in different performance under various resource
configurations [111]. A common use case that deals with varying input data sizes is logs
processing, e.g., hourly logs processing of a bank gets more data during the day than

116

7.1. Introduction

2.4 MiB 54.3 MiB 95.8 MiB

Ex
ec

u
�

o
n

 T
im

e
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

Mem=256Mi, CPU=167m Mem=512Mi, CPU=333m

Mem=1024Mi, CPU=583m Mem=2048Mi, CPU=1000m

Mean

SLO

Figure 7.1: extract-successes Response Times under Various Input Data Sizes and
Resource Configurations.

at night. Other examples include video processing (varying lengths, resolutions, and
bitrates), malware scanning (varying file sizes), and continuous integration workflows in
software engineering (varying repository sizes).

To further explore the need for input data size awareness, we run an experiment with
a serverless function on Knative1. The extract-successes function extracts success
messages from logs of a real distributed cluster scheduler [187]. We feed three log sizes
(2.4, 54.3, and 95.8 MiB) to the function under four resource configurations (256, 512,
1024, and 2048 MiB) and measure the response time within the function itself, i.e., it
is not affected by cold starts. Each combination is executed five times, the results are
shown in Figure 7.1.

We define a maximum response time (MRT) SLO of 4,500 ms, indicated by the black
dashed line in Figure 7.1. We observe that the mean response time across all resource
configurations (gray line) increases with the input data size. Furthermore, we see that
for meeting the SLO, different resource configurations may be used for different input
data sizes. For the smallest input of 2.4 MiB, all four configurations meet the SLO,
so the lowest (and cheapest) resource configuration with 256 MiB memory is sufficient.
For the medium input of 54.3 MiB, only three configurations meet the SLO, with the
lowest possible being 512 MiB memory. For the large input of 95.8 MiB, only the
1024 MiB configuration, meets the SLO, while the highest configuration violates the SLO.
In theory, however, the single-threaded extract-successes Node.JS function should
perform best with at least one CPU core, i.e., the 2048 MiB configuration or higher.
Further investigation with a single resource-constrained Docker container showed that

1https://knative.dev

117

https://knative.dev

7. ChunkFunc

this behavior is specific to running the function in our target Kubernetes cluster and is
caused by an interplay of the execution environment, the Node.JS IO thread pool, and
the function structure. The automatic profiling results in our later experiments confirm
that in the target cluster the 1024 MiB configuration is the fastest for the 95.8 MiB
input.

Preliminary findings. The initial experiments show two important correlations for
many serverless functions: i) when the input data size increases, the response time
increases too and ii) for a given input data size, a different resource configuration may
increase or decrease the response time. Consequently, there is usually not a single resource
configuration that is ideal to meet a function’s SLO and minimize its cost, but different
resource configurations, depending on the input data size of an invocation. While there
are exceptions, e.g., image labeling with almost constant runtime, many applications,
like the previous examples, exhibit these correlations and, thus, benefit from input data
size-aware resource configuration.

Shortcomings of the state-of-the-art. Most existing systems have at least one of two
major shortcomings: i) they do not consider the size of the input data when choosing a
resource profile for a function and/or ii) building the performance model for a function
is a tedious, long profiling process or requires observing the live system for a long time.
Most systems disregard the input data size when assigning a resource profile to a function,
e.g., [65, 135, 204, 131, 198, 254]. This can result in SLO violations if a production
input is substantially larger than the one(s) used for building the performance model
and in excessive costs if the input is smaller than expected by the model. Building the
performance model through profiling or by observing the live system requires time. Some
approaches try to shorten that time, e.g., using Bayesian Optimization [269, 198] or
regression [62] to reduce the amount of observations needed to build the performance
model. However, to the best of our knowledge, none of these approaches account for
different input sizes. With the contributions of this chapter, we address both of these
shortcomings.

7.1.3 Contributions

In this chapter, we present ChunkFunc, a framework that dynamically adapts resource
configurations of serverless functions, based on their input data size (payload) and reduces
costs, while ensuring that the SLOs of the entire workflow are met. ChunkFunc is part
of Polaris SLO Cloud2, a SIG of the Linux Foundation Centaurus project3, a platform for
building unified and highly scalable distributed Cloud and Edge systems. Specifically,
the main contributions include:

1. An SLO- and input data size-aware function performance model for
determining optimized configurations in serverless workflows, depending on the
input data size (Section 7.2).

2https://polaris-slo-cloud.github.io
3https://www.centaurusinfra.io

118

https://polaris-slo-cloud.github.io
https://www.centaurusinfra.io

7.2. ChunkFunc System Model & Optimization Problem

2. ChunkFunc Profiler, which automatically builds performance models for
serverless functions and workflows based on typical input data sizes. Profiling
is automatic, users only deploy a function and specify typical input data. A novel,
auto-tuned BO approach reduces the profiling costs by up to 90% compared to
exhaustive profiling and ensures high accuracy of the results. Contrary to state-
of-the-art BO approaches we reuse the Gaussian Process (GP) of the BO to infer
missing parts of our performance model (Section 7.3).

3. ChunkFunc Workflow Optimizer, which leverages various heuristics to
dynamically adapt the resource configuration of functions in a workflow
to meet a performance-based SLO (e.g., response time), while minimizing cost.
Unlike existing systems, the ChunkFunc Workflow Optimizer considers the size
of a function’s input when selecting a resource profile, which, depending on the
workflow, increases SLO adherence by a factor of 1.04 to 2.78 and reduces costs by
up to 61% The Workflow Optimizer is extensible with arbitrary performance-based
SLOs (Section 7.4).

The remainder of this chapter is structured as follows: Section 7.2 formulates the opti-
mization problem, Section 7.3 presents the ChunkFunc Profiler, Section 7.4 describes the
ChunkFunc Workflow Optimizer, in Section 7.5 and Section 7.6 we evaluate ChunkFunc
by comparing it to two state-of-the-art solutions, and Section 7.7 summarizes the chapter.

7.2 ChunkFunc System Model & Optimization Problem

7.2.1 ChunkFunc System Model

A serverless workflow consists of functions chained together in sequence, in parallel, or in
a combination of both, can be represented as a DAG W = G (F ,E). The set of nodes
consists of the functions of the workflow, i.e., F = {f0, f1, . . . , fn}, and the set of edges
E = {(fi, fj), . . .} consists of the invocation relationships among those functions. A
directed edge (fi, fj) indicates that fj is invoked with the output of fi. The input to a
function fi is denoted as xi and its size as |xi|. The size of the output fi(xi) depends
on the particular function and, typically, it cannot be determined from the input data
size without executing the function. The same input data size may yield different output
sizes, e.g., the output size of a function that extracts error messages from a 1 GB log file
depends on how many error messages the file contains.

Each function instance is assigned a set of resources, such as CPU and memory, which
are defined in a resource profile p. The set RP contains all resource profiles that are
available on the underlying serverless platform. Typically, commercial Cloud providers,
allow users to only choose the amount of memory that should be assigned – each memory
size is associated with a predefined number of CPU cores or fraction of CPU cores [90, 41].
We denote an instance of function f deployed with resource profile p as fp. As noted
in Section 7.1.2, serverless functions often exhibit a different performance for different

119

7. ChunkFunc

Table 7.1: Symbols Used in the System Model

Symbol Definition
f Serverless Function
p Resource Profile
RP All resource profiles p that are available on

the underlying serverless platform
fp f deployed with resource profile p
|x| Size of input data x

MSLO (fp,x) SLO metric value of fp, when executed with input x
C (fp,x) Cost of executing fp with input x
PPf Performance profiles for f

PPf =
⋃︁

∀x∈Xf
{(MSLO (fp,x) ,C (fp,x))}

W = G (F ,E) Workflow DAG with
F = {f0, f1, . . . , fn}
E = {(fi, fj), . . .}

sW SLO for the entire workflow W
RPW Selected resource profiles ∀f ∈ W
XW Set of input sizes ∀f ∈ W

M (W ,RPW ,XW) SLO metric value for executing W with inputs XW

under resource profiles RPW

C (W ,RPW ,XW) Cost of executing W with inputs XW under
resource profiles RPW

resource profiles. Thus, we denote the SLO metric of fp, when executed with input x as
MSLO (fp,x). This metric can be the response time or another metric that corresponds
to the desired SLO. Each resource profile has a cost associated per unit of execution time.
C (fp,x) expresses the cost incurred by executing f with input x, when it is deployed
with resource profile p. We observe that, given a function f to be invoked with input x,
the SLO metric value and cost of this invocation depend on the chosen resource profile
p. The pair (MSLO (fp,x) ,C (fp,x)) constitutes a performance profile for f under the
resource profile p. The performance profiles for all typical inputs for f are collected in
the set PPf .

In addition to functions, a complex workflow may contain branch statements or loops.
For the sake of simplicity, we consider these constructs also as functions within our
optimization problem, albeit with special properties. Branch functions always have an
SLO metric and cost of zero and loop functions wrap another function. The SLO metric
value and cost of the loop function is equal to that of the wrapped function, multiplied
by the number of loop iterations, which is known only at runtime. We denote the SLO
of the entire workflow W as sW .

For clarity, all symbols used in the system model and the optimization problem are
summarized in Table 7.1.

120

7.2. ChunkFunc System Model & Optimization Problem

7.2.2 Optimization Problem

The ChunkFunc optimization problem aims to find a set of resource profiles to deploy
the functions of a workflow, given a particular input, while ensuring that the SLO is met
and the cost of the workflow execution is minimized.

We use RPW = {(f0, p0), (f1, p1), . . . , (fn, pn)} to denote the set of resource profiles that
have been chosen to spawn the function instances in a particular execution of W , such
that pi is used to spawn fi.

Let XW = {|x0|, |x1|, . . . , |xn|} be the set of input sizes to the functions of an execution
of W , such that xi is the input to fi. The only element of XW that is known at the
beginning of the workflow is the input to the first function x0; the remaining elements
are added as the workflow progresses.

To enforce the SLO for a workflow W , we need the SLO metric value of a particular
workflow execution, given the set of chosen resource profiles RPW and function inputs
XW . It is calculated by aggregating all function SLO metric values:

MSLO (W ,RPW ,XW) = ∆
fi∈W

MSLO (fpi
i ,xi) (7.1)

Based on the type of SLO metric the semantics of the aggregation operator ∆ change.
There are two types of SLO metrics: i) additive metrics, such as response time, which are
summed along a path in the workflow (∆ =

∑︁
) and ii) min-metrics, such as throughput,

where the minimum of all edges in a path is taken (∆ = min).

We compute the total cost of the workflow execution, by summing the costs of its function
executions:

C (W ,RPW ,XW) =
∑︂

fi∈W

C (fpi
i ,xi) (7.2)

The optimization problem consists in finding a set RPW ⊂ F ×RP for an input set XW

that fulfills constraints (7.3) and (7.4). The former is a hard constraint and establishes
the relation between the SLO metric value of the workflow and the SLO sW . Depending
on the type of SLO, ⋖ is typically either ≤ (e.g., for response time) or ≥ (e.g., for
throughput). The latter is a soft constraint that seeks to minimize the total cost of the
workflow execution.

M (W ,RPW ,XW)⋖ sW (7.3)
min C (W ,RPW ,XW) (7.4)

121

7. ChunkFunc

FaaS Workflow
ChunkFunc ProfilerFunc�on B

Small Input Data

Medium Input Data

Large Input Data

Profile Func�on

Profile Func�on

Profile Func�on

Func�on A
Input size-specific

Configura�ons

…
Func�on C

Func�on B
Input size-specific

Configura�ons

Func�on C
Input size-specific

Configura�ons

ChunkFunc
Workflow Op�mizer

SLO

Launch Workflow

Get Input-specific
Config when Launching
a new Func�on Instance

Workflow Orchestrator

Infer Omi�ed
Profiles

Infer Omi�ed
Profiles

Infer Omi�ed
Profiles

…
Func�on A

Profile
Init Profiles

Infer SLO Metric
for Test Profiles

Init BO Models
Profile

Test Profiles
Pick BO Model

with lowest RMSE
Profile

BO Sugges�ons

Figure 7.2: Overview of the ChunkFunc System and Lifecycle of a Serverless Workflow.

This optimization problem is NP-hard and the fact that only the first input size is known
at the beginning of the workflow execution further complicates finding a solution. Any
function’s input, other than f0’s, is only known once all of its immediate predecessors
have executed.

For example, consider a simple, sequential workflow with two functions, f0 and f1, and
an MRT SLO of sW = 80 ms. For the input data size |x0| the function f0 takes 50 ms
when deployed with the cheap resource profile p0 and 25 ms when deployed with the
expensive resource profile p′

0. The output of f0 will either be small (xs) or large (xl).
For a small input xs the function f1 takes at most 20 ms, while for a large input xl, it
takes at least 40 ms. Thus, when selecting a resource profile for f0, the circumstance
that we do not know the size of its output does not allow us to select the cheap resource
profile with an execution time of 50 ms, because if the output happens to be large, f1
will run for at least 40 ms, leading to a total response time of 90 ms, which violates the
SLO. Since elements of XW , are missing when the workflow is invoked, we cannot find an
exact solution to the optimization problem at this point. However, we can approximate
a solution using a heuristic, which we describe in Section 7.4.

7.3 ChunkFunc Framework Overview & Profiler

The ChunkFunc framework consists of two major components: the Profiler and the
Workflow Optimizer. In this section, we first present an overview of the system and then
describe the Profiler.

7.3.1 Framework Overview

Figure 7.2 presents an overview of ChunkFunc and the lifecycle of a serverless workflow
within the system. Upon their deployment, serverless functions are automatically picked
up by the ChunkFunc Profiler. It deploys function instances using various resource

122

7.3. ChunkFunc Framework Overview & Profiler

configurations to execute profiling runs with their typical input data sizes, without
any user interaction. To reduce the number of profiling runs, while maintaining a
high accuracy of the results, the choice of resource configurations is guided by Bayesian
Optimization. Our BO Dynamic Hyperparameter Selection picks the hyperparameter that
yields the most accurate results for a particular function type and input size combination.
Finally, the input-specific performance profiles are leveraged by the ChunkFunc Workflow
Optimizer, which provides a suitable resource profile, to meet the workflow’s SLO and
minimize cost, to the serverless orchestrator prior to invoking a function.

7.3.2 ChunkFunc Bayesian Optimization-based Profiler

The ChunkFunc Profiler automatically creates input data size-specific performance profiles
for every deployed serverless function. The user only needs to specify several typical input
data payloads (normally two or three) of different sizes for the function as ChunkFunc-
specific metadata. For each defined typical input data size, a distinct performance profile
is computed fully automatically by ChunkFunc.

While exhaustively profiling the function under every resource profile is supported, it
can incur high costs. Thus, we leverage Bayesian Optimization (BO) to reduce the
number of profiling runs. BO is a technique that is normally used to find the maximum
of an unknown objective function, based on a limited set of samples [126]. It builds
a surrogate model, typically using a Gaussian Process, to approximate the objective
function using known samples and uses an acquisition function to guide the exploration
of further samples.

BO is deeply integrated into the ChunkFunc profiler in two ways. First, we use the
acquisition function to determine the most promising input data sizes to profile, similar
to [269, 198]. Second, we leverage the surrogate model to infer the SLO metric for those
input data sizes that were not profiled. This use of BO to infer the missing parts of
the performance profile has, to the best of our knowledge, not been attempted by the
state-of-the-art. Our BO-based profiler allows for an up to 90% reduction of profiling
costs.

Common choices for the acquisition function of BO include Probability of Improvement
(POI) [126] and Expected Improvement (EI) [154, 117]. POI returns the probability
that sampling a certain point will yield an improvement, but it may easily result in
focusing only on a specific region of the objective function (exploitation) or jump around
too much (exploration). EI aims to quantify the improvement and is less prone to the
aforementioned issues [116]. In ChunkFunc we rely on both: we use EI to determine which
point, i.e., resource profile p, to profile next and POI to define the stopping criterion.
Since EI yields an absolute value and POI a percentage, the latter is more suitable as a
stopping criterion.

Our aim is to achieve a relative root mean square error (RMSE) of 10% or less when
comparing the BO-guided profiling results for an input data size to exhaustive profiling
results to ensure that the inferred profiling results adequately reflect the actual perfor-

123

7. ChunkFunc

mance. We use two stopping criteria for BO: i) the POI for sampling the next resource
profile is below 2%, provided that we have sampled at least 10% of the available resource
profiles, or ii) we have sampled 40% of the available resource profiles. Based on our
experience it is necessary to sample at least 10% of all resource profiles, because for
some functions the POI is already below 2% after the initial samples, but the relative
RMSE would be above 10%. The second stopping criterion is necessary, because for some
functions the POI does not drop below 2%, even though the RMSE is already sufficiently
low.

Each input data size |x|, resulting from the user-defined discrete set of typical inputs, is
profiled independently with a distinct BO model. Once a stopping criterion is fulfilled,
the performance profile of the function with the input data size |x| is built. For each
resource profile the profiler takes either the mean SLO metric that was measured, if the
resource profile has been evaluated, or uses the BO’s surrogate model (GP) to infer the
SLO metric. The number of inputs needed for profiling varies depending on the function.
Determining this number is beyond the scope of this work, but we will outline a solution
in Section 7.6.3.

7.3.3 Bayesian Optimization Hyperparameter Selection

The key to make the ChunkFunc Profiler converge quickly to an accurate solution is to pick
the acquisition function’s hyperparameters correctly – for EI this is the ξ hyperparameter.
ξ determines whether the Profiler’s acquisition function will favor exploring unknown
ranges of the input domain to find this maximum (higher ξ values) or focus on finding the
maximum in an already known range (lower ξ values). Since we could not observe any
correlation pattern between function type, input data size, and the ξ value that yields
the lowest RMSE, we devised a dynamic hyperparameter selection approach, which we
describe in Algorithm 7.1.

We start by selecting a fixed number of resource profiles RPinit, evenly distributed from
the set of all resource profiles, and profiling the serverless function with each of them.
For each resource profile a function instance is deployed, executed once to avoid cold
starts, and then executed five times to obtain mean measurements for the SLO metric
and the cost. These measurements are used to initialize one BO model for each of the
candidate hyperparameter ξ values.

Next, we pick another set of evenly distributed profiles RPtest, which will be used to test
the accuracy of the BO models. We profile the function with these to get SLO metric
measurements Mtest to compare the predictions against. For each BO model we infer the
SLO metric values for the profiles in RPtest and, then, compute the RMSE to the actual
measurements Mtest.

Finally, we pick the BO model that yields the lowest RMSE, add Mtest to it, and continue
profiling with it until one of the stopping criteria is fulfilled. This allows us to select the
most suitable ξ hyperparameter without additional profiling runs in the average case. In

124

7.3. ChunkFunc Framework Overview & Profiler

Algorithm 7.1 Bayesian Optimization Dynamic Hyperparameter Selection.
1: Input: f : Function to be profiled;

x: Input to be profiled;
Ξ: Set of ξ candidate values;
RPall: Set of available platform resource profiles;

2: Output: BOx
f : Initialized BO model for f with input x;

3: RPinit ← GetInitProfiles(RPall)
4: Minit ← RunProfiling(f , x, RPinit)
5: BO ← { ∀ξ ∈ Ξ : NewBOModel(ξ, Minit) }

6: RPtest ← GetTestProfiles(RPall)
7: Mtest ← RunProfiling(f , x, RPtest)
8: RMSE ← {}
9: for all BOξ ∈ BO do

10: Minf ← {}
11: for all p ∈ RPtest do
12: Minf ←Minf ∪ { Infer(BOxi, p) }
13: end for
14: RMSE ← RMSE ∪ {(BOξ,CalcRMSE(Minf , Mtest))}
15: end for

16: (BOx
f , rmse)← FindLowestRMSE(RMSE)

17: AddSamples(BOx
f , Mtest)

18: return BOx
f

19: function RunProfiling(f , x, RP)
20: MRP ← {} ▷ SLO metric measurements
21: for all p ∈ RP do
22: (mx, cx)← ProfileWithInput(f , p, x)
23: MRP ←MRP ∪ {(p, mx)}
24: end for
25: return MRP

26: end function

27: function ProfileWithInput(f , p, x)
28: fp ← Spawn(f , p) ▷ Spawn f with profile p
29: fp(x) ▷ Invoke fp to avoid cold start
30: Mx ← {} ▷ SLO metric measurements for x
31: for i← 0 to numIterations do
32: fp(x)
33: Mx ←Mx ∪ { GetSloMetric() }
34: end for
35: Destroy(fp)
36: (mx, cx)← CalcMeanSloMetricAndCost(Mx)
37: return (mx, cx)
38: end function

the worst case, if a stopping criterion would be met after 10% of the resource profiles,
obtaining Mtest results results in a negligible number of additional profiling runs.

125

7. ChunkFunc

7.4 ChunkFunc Workflow Optimizer
ChunkFunc Workflow Optimizer leverages the performance profiles to assign resource
profiles to each individual function instance in a workflow, based on the input data sizes,
while fulfilling the SLO and minimizing cost. The SLO serves as an upper or lower bound
for the aggregated SLO metric of the entire workflow, while the total cost should be
minimized. Since the set of function inputs XW is filled step by step as the workflow
executes, we need a heuristic to approximate the solution of the ChunkFunc optimization
problem as the workflow progresses.

Before executing a function, the workflow orchestrator queries the Workflow Optimizer for
the resource profile. Akin to the optimization problem, the Workflow Optimizer models
the workflow as a DAG. To determine the resource profile for a function, the Workflow
Optimizer needs its input data size. The heuristic receives as input the workflow graph,
the SLO, the input data size for the current function, and the SLO metric value for the
current execution path. Since the heuristic is invoked for each node, while the workflow
is executing, it can react if previous functions affected the SLO metric differently than
expected, e.g., they took more time than expected.

The Proportional Critical Path heuristic can use any performance metric as SLO metric.
This heuristic derives a sub-SLO for the current function and chooses the cheapest
resource profile that allows meeting the sub-SLO, based on the function’s performance
profiles. Adapting the heuristic for cost-based SLOs is possible and planned as future
work.

Since metrics of functions may vary between workflow invocations, for any function,
other than the first one, the remaining SLO metric until a violation of the workflow SLO
may differ. For example, for an MRT SLO suppose sW = 100 ms, if f0 takes 10 ms, the
remaining time for f1 and its successors is 90 ms. If f0 took 15 ms, the remaining time
would be 85 ms. Thus, the each function’s sub-SLO must be calculated dynamically
before selecting a resource profile.

To compute the sub-SLO of a function fi, we need to know how much it contributes to
the overall SLO metric of the remaining workflow. The latter is the length of the critical
path from (including) fi until the end of the workflow. We define the critical path as the
longest path between two nodes [127], with an edge’s weight being the SLO metric of its
target node. Since many metrics vary depending on input data sizes, finding the critical
path is not trivial. We compute the mean SLO metric value of every function across
all resource profiles and input data sizes and use these values as weights for the critical
path. If the SLO metric is an additive metric, we now add the mean SLO metric value of
fi to the critical path to allow us to calculate fi’s proportional contribution to it. This
proportion used on the remaining workflow SLO yields the sub-SLO. For a min-metric,
we take the minimum of the fi’s SLO metric value and the aggregated SLO metric value
of the critical path. Algorithm 7.2 outlines the Proportional Critical Path heuristic:

Step 1. Line 3 computes the sub-SLO of function f using ComputeSubSLO(). For

126

7.4. ChunkFunc Workflow Optimizer

Algorithm 7.2 Proportional Critical Path Heuristic.
1: Input: f : Function, for which to select the resource profile;

x: Input for f ;
P Pf : Set of performance profiles for f ;
W = G(F , E): Workflow DAG;
sW : SLO for W ;
Mavg: Mean SLO metrics for all functions in W ;
mcurr: Current SLO metric value, e.g., elapsed time for MRT SLO;

2: Output: p: Selected resource profile for f ;

3: sf ← ComputeSubSLO(f , sw, mcurr, Mavg)
4: if P Pf contain GP inferences then
5: sf ← sf ∗ safetyMargin
6: end if
7: p← nil ▷ The selected resource profile
8: mp ←∞ ▷ SLO metric value under profile p
9: cp ←∞ ▷ Cost under profile p

10: P P x
f ← GetPerfProfilesForInputSize(P Pf , |x|)

11: for all ppi ∈ P P x
f do

12: mf ← GetSloMetric(ppi)
13: cf ← GetCost(ppi)
14: if mf ⋖ sf then
15: if cf < cp OR (cf = cp AND mf ⋖mp) then
16: p← GetResourceProfile(ppi)
17: mp ← mf

18: cp ← cf

19: end if
20: end if
21: end for
22: if p = nil then
23: p← GetFastestProfileForInputSize(P Pf , |x|)
24: end if
25: return p

26: function ComputeSubSLO(f , sw, mcurr, Mavg)
27: end← FinalNode(W)
28: cp← FindSloCriticalPath(f , end)
29: if M is additive then
30: mf ← GetAvgSloMetric(Mavg, f)
31: mremaining ← sW −mcurr

32: contribf ←
mf

GetSloMetric(cp)+mf

33: return mremaining ∗ contribf

34: else
35: mcp ← GetSloMetric(cp)
36: return Min(sw, mcp)
37: end if
38: end function

127

7. ChunkFunc

additive SLO metrics we use Dijkstra’s shortest path algorithm to find the critical path.
The weight of each edge (fi, fj) is the negative mean SLO metric of fj . All weights
are negative, so Dijkstra’s algorithm works normally and we get the longest path. For
an additive metric we compute the sub-SLO using f ’s proportional contribution to
the critical path, while for a min-metric we use the minimum of f ’s and the critical
path’s SLO metric values. After returning the sub-SLO we multiply it with a safety
margin (line 5) if the performance profiles contain inferences from BO. This ensures
that imprecisions resulting from the inferences do not affect SLO adherence.

Step 2. Lines 7–10 initialize the selected resource profile p to nil and f ’s SLO metric
and cost to infinity. Then, f ’s performance profiles for the current input data size are
retrieved. Performance profiles are stored in buckets, according to the input data size
they were computed for. Input x matches the bucket with the smallest input data size
that is greater than or equal to the size of x. For inputs that are greater than the largest
bucket input data size, that greatest bucket is taken.

Step 3. Lines 11–21 iterate over f ’s performance profiles for the current input data size.
For each performance profile ppi we check if its SLO metric value allows meeting the
sub-SLO (line 14). If that is the case, the cost of ppi is examined (line 15). If ppi is
cheaper than the currently selected profile p or, if their costs are equal, but ppi has a
better SLO metric value, the selected profile is updated to the resource profile in ppi.

Step 4. If no resource profile meets the sub-SLO, we fall back to the fastest profile for
the input size, irrespective of its metrics, hoping that subsequent functions meet their
SLOs. Finally, the selected resource profile is returned.

7.5 Implementation & Experiments Design

To evaluate ChunkFunc we focus on the quality of the Workflow Optimizer results, i.e.,
whether its resource profile selection meets the workflows’ response time SLOs and how
much the total cost is. We compare ChunkFunc to two state-of-the-art approaches. All
code and data needed to run the experiments, as well as, additional results can be found
in our repository4.

7.5.1 Implementation

We implement ChunkFunc Profiler in Go as an open source5 Kubernetes controller and
target serverless functions realized with Knative. Without loss of generality, the Profiler
currently triggers functions via HTTP requests, since this is a common and flexible
invocation method. Our trigger mechanism abstraction allows for adding other trigger
types, e.g., storage events, in the future. ChunkFunc-specific function metadata is passed

4https://polaris-slo-cloud.github.io/chunk-func/experiments/
5https://github.com/polaris-slo-cloud/chunk-func and

https://doi.org/10.5281/zenodo.14174081

128

https://polaris-slo-cloud.github.io/chunk-func/experiments/
https://github.com/polaris-slo-cloud/chunk-func
https://doi.org/10.5281/zenodo.14174081

7.5. Implementation & Experiments Design

to the Profiler, using a Kubernetes CRD, i.e., a custom type of object that can be stored
in the cluster. Each such FunctionDescription object contains a reference to the
Knative function definition object and a list of typical inputs. Once the Profiler detects
a new FunctionDescription it automatically starts profiling the referenced Knative
function and, upon completion, adds the performance profiles to the status subresource
of the FunctionDescription. To evaluate the Workflow Optimizer we design various
workflows and for each we replay real-life function traces from our performance profiles
in our custom simulator. Our simulation with real-life traces is deterministic, so it needs
to be executed only once for each configuration, which enables faster exploration of a
large range of SLOs.

7.5.2 Experiments Setup

To evaluate ChunkFunc we use three real-world and six synthetic serverless workflows. The
real-world workflows are written for our research, but are similar to production use cases.
They are i) a log processing workflow (LogPro), ii) a video processing workflow (VidPro),
and iii) an ML-based face detection workflow (FaceDet). They represent typical examples
of serverless workflows with variable input data size, while exhibiting different response
time characteristics. LogPro takes a log file from a distributed cluster scheduler [187]
from an S3-compatible storage bucket as input. The workflow consists of a sequence of
four serverless functions that validate the log and extract various statistics. VidPro cuts
out an unwanted segment of a video from S3, and encodes the rest in a predefined format
for social media. The workflow consists of four functions that validate the video, cut and
encode the two segments (two parallel instances of the same function), and merge the
encoded segments. FaceDet detects and marks faces in a video from S3. It consists of
a sequence of four functions: validation, transformation of the video to a standardized
resolution, face detection, and marking of all faces in an output video.

Additionally, we use six synthetic workflows, which are assembled using profiling results
from the real-world workflows. Like the real-world functions, the response time of
the functions in the synthetic workflows is dependent on the input size, as determined
by the profiling results. During generation of the workflows, each function’s output
is chosen from the set of supported input sizes of the successor function. For each
workflow there are three input size configurations: small, medium, and large. The
synthetic workflows are: i) homogeneous, a sequence of functions with the same (medium)
resource requirements, ii) LoHiRes, a sequence of functions with low resource requirements,
followed by a sequence of functions with high resource requirements, iii) HiLoRes, high
resource functions, followed by low resource functions, iv) random, a random sequence of
functions with low, medium, and high resource requirements, v) cyclic, a low resource
function, followed by a medium resource, followed by a high resource function, repeated
in cycles, and vi) staircase, a sequence of low resource functions, followed by a sequence
of medium resource functions, followed by a sequence of high resource functions. The first
four workflows consist of 40 functions each, while the last two consist of 42 functions.

Two sets of workflows allow us to demonstrate how ChunkFunc behaves with real-life

129

7. ChunkFunc

applications and to use the longer and more complex synthetic workflows to evaluate
ChunkFunc’s scalability. Our workflows are mostly sequential, because ChunkFunc relies
on the critical path in a workflow and even in a massively parallel workflow, the critical
path is always sequential. The response times of our functions is within the range of the
current state-of-the-art, e.g., AWS imposes a default function timeout of 3 seconds, which
can be changed to a maximum of 15 minutes [12]. The average end-to-end durations
(base SLOs) of our workflows cover a wide range, starting at 12 seconds for LogPro,
approx. one minute for VidPro, 5 minutes for FaceDet, extending to 75 minutes for the
synthetic HiLoRes workflow. The number of functions per workflow is representative of
most serverless workflows currently in use. A large scale study [64] showed that 59% of
workflows consisted of 2–10 functions, 19% of 10–1000 functions, and 3% more than that
(19% could not be categorized).

We implement all real-world functions in TypeScript, except for face detection and
marking, for which we use Python. We deploy them using Knative v1.10 on a Kubernetes
v1.27 cluster. For video processing we wrap ffmpeg6 v6.0 and use the x2647 and AAC
codecs. Face detection and marking relies on the OpenCV8 library.

We run the experiments with two sets of resource profiles. The first set of profiles and
their costs per 100 ms is coarse-grained and resembles the 128 MB – 16384 MB profiles
available on Google Cloud Functions (GCF) [90] (Tier 2 prices). Since for GCF there are
eight profiles in this memory range, we use exhaustive profiling for this set of resource
profiles. The second set of resources profiles and their costs per 1 ms is fine-grained and
resembles the 128 MB – 10240 MB range available on AWS Lambda [11]. Every memory
size maps to the CPU core count defined by AWS [41]. AWS uses a continuous memory
range, which we divide into 64 MB steps, which results in 159 resource profiles, for which
we use BO-guided profiling.

We implement six heuristics: i) Fastest configuration, ii) Cheapest configuration, iii) Chunk-
Func Proportional Critical Path heuristic (ChunkFunc), iv) ChunkFunc with known
function output sizes (CF-Oracle), v) SLAM [204], and vi) StepConf [254]. CF-Oracle is
identical to ChunkFunc, except that the former knows all function output sizes from an
“oracle” when computing the critical path – this is only used in comparison to ChunkFunc
to assess the effectiveness of function output size estimates compared to the actual output
sizes when determining the critical path. Both heuristics compute an average across all
resource profiles for the critical path. SLAM and StepConf both rely on offline profiling
to build a performance model of the functions. We execute all experiments using the
exhaustive profiling results and using the BO predicted profiling results.

SLAM precomputes all function configurations prior to executing the workflow. It inserts
all functions using their response times under the lowest resource configuration into a
max-heap. SLAM pops the slowest function off the heap, increases its resources to the

6https://www.ffmpeg.org
7https://www.videolan.org/developers/x264.html
8https://opencv.org

130

https://www.ffmpeg.org
https://www.videolan.org/developers/x264.html
https://opencv.org

7.6. Experimental Results

Table 7.2: Real-world Workflow Scenarios.

Workflow Input Sizes SLO Interval (sec) for Profiles
Coarse-grained Fine-grained

LogPro
2.4 MiB

54.3 MiB
95.8 MiB

12.1s +/- 15%
[10.3; 14.0] -

VidPro
360p - 40 MiB

720p - 227 MiB
1080p - 500 MiB

77.4s +/- 35%
[50.3; 104.5]

51.0s +/- 35%
[33.2; 68.9]

FaceDet
20s, 720p - 6.51 MiB
40s, 720p - 26.5 MiB

60s, 1080p - 73.5 MiB

330s +/- 35%
[214.5; 445.4]

302.2s +/- 35%
[196.4; 408.0]

next higher profile, and reinserts it into the heap. If the resources cannot be increased
further, the function’s configuration is frozen, and it is not reinserted into the heap.
SLAM continues until an SLO-compliant configuration is found or the heap is empty. A
second version of the algorithm checks if the percentage of decrease in response time is
greater than the percentage of cost increase before returning a function to the heap. We
use the cheaper of the two results.

StepConf chooses each function’s resource profile directly prior to its execution using an
NP-hard algorithm or a heuristic on a DAG and is a representative for state-of-the-art
graph-based algorithms. The heuristic we implemented for our experiments, computes
a sub-SLO for each function step, based on its contribution to the critical path until
the end of the workflow and the remaining time until SLO violation. For computing the
critical path, the response time of the most cost-effective resource profile is used for every
function.

Since SLAM and StepConf are unaware of different input data sizes, we use the profiling
results for each function’s median input data size for these strategies.

7.6 Experimental Results

7.6.1 Real-world Workflows

For each real-world workflow we create and profile scenarios with a small, a medium,
and a large input size. To define MRT SLOs we use the fastest and the cheapest
configurations as the lower and upper bounds. For example, for the largest input
data size for VidPro the lower and upper bounds for the response time on the coarse-
grained profiles are 44.788 seconds and 110.089 seconds. We define the baseSlo =
lowerBound + upperBound−lowerBound

2 , e.g., 77.4 s for VidPro. We explore the SLO
interval of baseSlo±N% in one-percent steps, i.e., N + 1 distinct SLOs. We chose N s.t.
the interval does not exceed the bounds given by the fastest and cheapest configurations.

131

7. ChunkFunc

10.3 10.8 11.2 11.7 12.2 12.6 13.1 13.5 14.0
SLO (s)

10

12

14

16

18
Re

sp
on

se
 T

im
e

(s
)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(a) LogPro 95.8 MiB Response
Times (s)

50.3 57.1 63.9 70.7 77.4 84.2 91.0 97.8 104.5
SLO (s)

50

100

150

200

250

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(b) VidPro 500 MiB Response
Times (s)

214.5 243.4 272.2 301.1 330.0 358.8 387.7 416.6 445.4
SLO (s)

200

250

300

350

400

450

500

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(c) FaceDet 73.5 MiB Response
Times (s)

Figure 7.3: LogPro, VidPro, and FaceDet Maximum Response Time SLO Compliance
for Large Inputs for Coarse-grained Resource Profiles.

10.3 10.8 11.3 11.8 12.3 12.8 13.2 13.7
SLO (s)

0

10

20

30

40

50

Co
st

 ($
)

SLAM
ChunkFunc
CF-Oracle
StepConf

(a) LogPro 95.8 MiB Costs per
10,000 Invocations

50.3 56.5 62.7 68.9 75.1 81.3 87.5 93.7 99.9
SLO (s)

0

500

1,000

1,500
Co

st
 ($

)
SLAM
ChunkFunc
CF-Oracle
StepConf

(b) VidPro 500 MiB Costs per
10,000 Invocations

214.5 240.9 267.3 293.7 320.1 346.4 372.8 399.2 425.6
SLO (s)

0

1,000

2,000

3,000

Co
st

 ($
)

SLAM
ChunkFunc
CF-Oracle
StepConf

(c) FaceDet 73.5 MiB Costs per
10,000 Invocations

Figure 7.4: LogPro, VidPro, and FaceDet Costs per 10,000 Invocations for Large Inputs
for Coarse-grained Resource Profiles.

Since the available resources in the lowest and the highest profiles differ between the
coarse-grained and the fine-grained resource profile sets, also the lower and upper response
time bounds and, hence, the base SLOs differ. All workflow configuration scenarios are
shown in Table 7.2.

Coarse-grained Resource Profiles - Exhaustive Profiling

Figure 7.3 shows the SLO compliance results as response time graphs for the large input
data sizes (the other sizes are available in our repository). The dashed black line denotes
the MRT SLO, i.e., to fulfill the SLO, the workflow’s response time must be equal to or
below this line. Table 7.3 shows details for all input data sizes.

All heuristics exhibit long periods of straight lines in the response time graphs, because
they use a certain set resource configurations until the SLO relaxes enough to use a
less powerful resource profile on one function – this behavior causes a straight line in
the graph. Additionally, the relatively short workflows allow only few functions to be
adapted, thus increasing the length of the straight lines; the synthetic workflows exhibit
many more “steps” in the graphs.

ChunkFunc (standard and CF-Oracle version) is the only heuristic that meets the SLO
in all cases across all input sizes. SLAM and StepConf work well for one or two input
sizes, but fail a substantial amount of SLOs in the rest. SLAM fulfills two thirds of the
LogPro SLOs, 69% of VidPro, and 68% of FaceDet. SLO violations occur for medium
and large inputs for FaceDet and only for large inputs for the other two. Compared to

132

7.6. Experimental Results

Table 7.3: Real-world Workflows SLO Compliance for Coarse-grained Resource Profiles.

Workflow Input Size SLO Adherence
ChunkFunc SLAM StepConf

LogPro
Small

100%
100%

67%
100%

91%Medium 100% 100%
Large 0% 74%

VidPro
Small

100%
100%

69%
100%

78%Medium 100% 100%
Large 6% 34%

FaceDet
Small

100%
100%

68%
100%

75%Medium 87% 73%
Large 17% 51%

Overall 100% 68% 81%

SLAM, ChunkFunc increases SLO adherence by 45% to 49%. StepConf fulfills 91% of
the LogPro SLOs, 78% for VidPro, and 75% for FaceDet. Most violations occur for large
input sizes, but for FaceDet StepConf also misses 27% of the SLOs for medium inputs.
Compared to StepConf, ChunkFunc increases SLO adherence by 10% to 33%. Across all
workflows, SLAM fulfills 68% of the SLOs, while StepConf meets 81%, this amounts to a
mean increase in SLO adherence of 47% and 23% respectively, when using ChunkFunc
instead.

Figure 7.4 shows the costs for 10,000 workflow invocations. If an algorithm violates
an SLO the respective cost bar is shown with a hatch pattern, because if the SLO is
not met, evaluating the cost is pointless. To ensure comparability we show the costs
for each algorithm only where it meets the SLO. To avoid bias from SLO violating
configurations, when analyzing the costs, we conduct a one-on-one comparison, where we
consider only the cases where both strategies meet an SLO. We compare the mean costs
of these cases. When comparing ChunkFunc to SLAM, ChunkFunc is 4% cheaper for
LogPro, 54% cheaper for VidPro, and 19% cheaper for FaceDet. When comparing to
StepConf, ChunkFunc is 165% more expensive for LogPro, 29% cheaper for VidPro, and
22% cheaper for FaceDet. For LogPro ChunkFunc is more expensive than StepConf for
almost all SLOs (for some they are even). This is because ChunkFunc often picks faster
resource profiles, because it knows that it needs to fulfill every sub-SLO for the large
input, while StepConf assumes the medium input, for which the sub-SLO can be fulfilled
with cheaper resource profiles. While this approach allows StepConf to save costs, it also
causes it to miss the tight SLOs for large inputs. In the general case, ChunkFunc fulfills
more SLOs than StepConf. In workflows with long-running functions, such as VidPro
and FaceDet, ChunkFunc allows saving up to 48% of the costs over StepConf.

133

7. ChunkFunc

33.2 37.6 42.1 46.5 51.0 55.5 59.9 64.4 68.9
SLO (s)

30

40

50

60

70

80
Re

sp
on

se
 T

im
e

(s
)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(a) VidPro 500 MiB Response Times.

196.4 222.9 249.3 275.8 302.2 328.7 355.1 381.5 408.0
SLO (s)

150

200

250

300

350

400

450

500

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(b) FaceDet 73.5 MiB Response Times.

Figure 7.5: VidPro and FaceDet MRT SLO Compliance for Large Inputs for Fine-grained
Profiles.

Fine-grained Resource Profiles - BO-guided Profiling

Figure 7.5a and Figure 7.5b show the SLO compliance results as response time graphs for
the large input data sizes. Table 7.4 shows details for all input data sizes. The straight
lines in the graphs are caused by the same reasons as for the coarse-grained resource
profiles. ChunkFunc is the only heuristic that meets the SLO in all cases across all input
sizes. Its SLO adherence is completely unaffected by whether we use the exhaustive
profiling results or the BO-inferred profiling results. SLAM and StepConf work well
for one or two input sizes, but fail a substantial amount of SLOs in the rest. SLAM
fulfills two thirds of all VidPro SLOs and 74% of FaceDet, with SLO violations occurring
mostly for large inputs. Compared to SLAM, ChunkFunc increases SLO adherence by
35% to 50%. StepConf fulfills 62% of the VidPro SLOs and 36% for FaceDet. Only for
small input sizes all the SLOs are met, while as for medium input sizes there are already
considerable violations for VidPro and almost entirely violated for FaceDet. Compared
to StepConf, ChunkFunc increases SLO adherence by 61% to 178%. Across all workflows,
SLAM fulfills 71% of the SLOs, while StepConf meets 49%, this amounts to a mean
increase in SLO adherence of 41% and 104% respectively, when using ChunkFunc instead.
We have excluded LogPro from the experiment with fine-grained resources profiles. This

Table 7.4: Real-world Workflows SLO Compliance for BO-inferred Fine-grained Profiles.

Workflow Input Size SLO Adherence
ChunkFunc SLAM StepConf

VidPro
Small

100%
100%

67%
100%

62%Medium 100% 86%
Large 0% 0%

FaceDet
Small

100%
100%

74%
100%

36%Medium 89% 7%
Large 32% 0%

Overall 100% 71% 49%

134

7.6. Experimental Results

2,695 3,058 3,421 3,783 4,146 4,509 4,872 5,234 5,597
SLO (s)

3,000

4,000

5,000

6,000

7,000

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(a) Cyclic WF Large Input Re-
sponse Times (s)

3,458 3,923 4,389 4,854 5,320 5,785 6,250 6,716 7,181
SLO (s)

3,000

4,000

5,000

6,000

7,000

8,000

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(b) HiLoRes WF Large Input
Response Times (s)

796 903 1,010 1,118 1,225 1,332 1,439 1,546 1,653
SLO (s)

800

1,000

1,200

1,400

1,600

1,800

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(c) Homogeneous WF Large In-
put Response Times (s)

Figure 7.6: Representative Results of Synthetic Workflow Experiments for Coarse-grained
Resource Profiles.

is because its functions are single-threaded (Node.JS) with low memory requirements.
Since the fine-grained resource profiles all contain at least one vCPU, there is almost no
performance difference between the resource profiles, hence the omission of LogPro from
this experiment.

We do not show the cost graphs here, because SLAM and StepConf fail to meet almost all
of the SLOs for large inputs. When comparing ChunkFunc to SLAM one-on-one across all
input sizes, where both heuristics meet the SLO, ChunkFunc is 48% cheaper for VidPro
and 6% more expensive for FaceDet. When comparing to StepConf, ChunkFunc is 36%
more expensive for VidPro and 42% more expensive for FaceDet. However, ChunkFunc
fulfills many more SLOs than SLAM and StepConf. This justifies a slight increase in
cost for one workflow with respect to SLAM. With respect to StepConf, the cost increases
are more substantial. However, these increases cover less than two thirds of the SLOs
for VidPro and only slightly over one third of the SLOs for FaceDet; for the remainder
StepConf fails to meet the SLO.

7.6.2 Synthetic Workflows

Coarse-grained Resource Profiles - Exhaustive Profiling

The synthetic workflows are used to evaluate ChunkFunc’s scalability in longer, more
complex workflows. The homogeneous, LoHiRes, HiLoRes, and random workflows consist
of 40 functions in sequence. The cyclic and staircase workflows use a short-running,
medium-running, and a long-running function, each of which appears 14 times in the
workflow, hence they consist of a total of 42 functions. For all synthetic workflows we
simulate scenarios with a small, a medium, and a large input.

Figure 7.6 shows the SLO adherence for the coarse-grained profiles for the large inputs
to the cyclic, HiLoRes, and homogeneous workflows, which we use as a representative
examples (for other graphs please see our repository). The SLO adherence of the
heuristics shows three pattern categories: For the cyclic, random, and staircase workflows
the heuristics exhibit the pattern exemplified in Figure 7.6a. The LoHiRes and HiLoRes
workflows show the pattern in Figure 7.6b. The SLO adherence for homogeneous workflow
has its own distinct pattern shown in Figure 7.6c.

135

7. ChunkFunc

2,389 2,710 3,032 3,353 3,675 3,996 4,318 4,639 4,961
SLO (s)

3,000

4,000

5,000

6,000
Re

sp
on

se
 T

im
e

(s
)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(a) Cyclic WF Large Input Response Times

954 1,082 1,210 1,339 1,467 1,596 1,724 1,852 1,981
SLO (s)

1,000

1,250

1,500

1,750

2,000

2,250

2,500

Re
sp

on
se

 T
im

e
(s

)

CF-Oracle
ChunkFunc
SLAM
StepConf
SLO

(b) Homog. WF Large Input Response Times

Figure 7.7: Representative Results of Synthetic Workflow Experiments for Fine-grained
Resource Profiles.

ChunkFunc’s pattern shows only minor differences between the workflows. It is the only
heuristic that meets all SLOs for all input sizes. StepConf’s pattern remains consistent
across all workflows. For large inputs, it varies closely between fulfilling and violating
the SLOs. Across all six synthetic workflows and three input sizes, it meets 79% of the
SLOs, with the lowest value being 60% for the homogeneous workflow and the highest
being 96% for the cyclic workflow. SLAM exhibits the largest differences in its patterns.
It violates all large input SLOs, but fulfills all SLOs for the other inputs, yielding an
average adherence of 67%. For the cyclic, random, and staircase workflows, SLAM’s
response times are first close to the SLO line and diverge at some point from it. For
HiLoRes and LoHiRes the response times are always far from the SLO until they plateau
out at some point. For the homogeneous workflow, SLAM’s response times are closer to
the MRT SLO line. For ChunkFunc the results yield an increase in SLO adherence of
27% over StepConf and 50% over SLAM.

For costs we perform the same one-on-one comparison for fulfilled SLOs that we did
for the real-world workflows. For the cyclic workflow ChunkFunc is 48% cheaper than
SLAM and 27% cheaper than StepConf. For the staircase workflow ChunkFunc only
requires 39% of the costs of SLAM, making it 61% cheaper. On average ChunkFunc is
38% cheaper than SLAM and 10% cheaper than StepConf.

Fine-grained Resource Profiles - BO-guided Profiling

Figure 7.7 shows the SLO adherence for the fine-grained resource profiles with large inputs
to the cyclic and homogeneous workflows, which we use as a representative examples (for
other graphs please see our repository). We omit the costs for the cyclic workflow for these
resource profiles, because only ChunkFunc manages to fulfill all SLOs for large inputs.
The SLO adherence of all but one workflow follows the pattern shown in Figure 7.7a,
where ChunkFunc meets all SLOs, StepConf meets some, but closely misses most SLOs,
and SLAM misses all SLOs. The exception is the homogeneous workflow, shown in
Figure 7.7b, where ChunkFunc fulfills all SLOs, StepConf misses all SLOs, and SLAM
fulfills a little less than a quarter of the SLOs.

136

7.6. Experimental Results

ChunkFunc SLAM StepConf
0.00

0.25

0.50

0.75

1.00

1.25

He
ur

ist
ic

Ex
ec

 T
im

e
(m

s)

Figure 7.8: Cyclic WF Large Input Heuristic Execution Times for Fine-grained Resource
Profiles.

ChunkFunc is the only heuristic that meets all SLOs for all input sizes for the BO-
predicted profiles. Across all six synthetic workflows and three input sizes, StepConf
meets 53% of the SLOs, with the lowest value being 45% for the homogeneous workflow
and the highest being 59% for the random workflow. SLAM meets 65% of all SLOs,
with 62% and 74% being the lowest and highest values respectively. For ChunkFunc this
yields an increase in SLO adherence of 89% over StepConf and 54% over SLAM.

For the costs of the cyclic workflow, ChunkFunc amounts to only 49% of the costs of
SLAM and 98% of the costs of StepConf. For the homogeneous workflow ChunkFunc
requires 77% more costs than StepConf, but in any other case, ChunkFunc is cheaper. On
average ChunkFunc reduces costs by 52% compared to SLAM. Compared to StepConf
ChunkFunc is 5% more expensive overall, because of the homogeneous workflow. For the
other five workflows, ChunkFunc is on average 9% cheaper than StepConf.

The cost difference between ChunkFunc and CF-Oracle, which knows all function outputs
when computing a critical path, is negligible. Across all experiments with all workflows
and resource profiles ChunkFunc is only 1% more expensive on average, which shows that
its critical path estimation works well for keeping costs low, while fulfilling the SLOs.

Figure 7.8 examines the execution times of the three heuristics for the cyclic workflow.
We log the execution time for computing each resource profile in a simulation and, then,
compute the mean time for determining a single resource profile. We accumulate these
values across all SLOs for an input size. Since SLAM only performs max-heap operations
it is the fastest. ChunkFunc and StepConf both compute paths through a DAG and show
a similar performance, with median values close to 1 ms and 0.5 ms respectively. Since
ChunkFunc fulfills all SLOs, the slight increase in computation time over StepConf is
justifiable and since it is marginal, it does not affect the user experience when invoking a
workflow.

7.6.3 Takeaways

While automatic profiling causes some up front costs, workflows are typically executed for
months or years in production. For example, profiling the merge-videos function in the
VidPro workflow took 106 minutes, which on a GCP c2-standard-30 VM with SSD
amounts to a one time cost of about $2.27, which amortizes quickly since ChunkFunc

137

7. ChunkFunc

may reduce function execution costs by up to 61%. New versions of a function can
reuse existing performance profiles. Reprofiling is only necessary if the changes affect the
function’s performance. This can be revealed using a performance test in the continuous
integration pipeline.

The number of inputs that should be profiled for a particular function to obtain the best
resource optimization results depends on the function and its typical uses. A suitable
approach for a production system is to monitor a function’s live usage for a representative
period, e.g., one week. A clustering of inputs can be used to identify the ideal number of
inputs for profiling and to obtain sample input data as well. An automation of this step
is currently out of scope, but should be considered as a future expansion.

State-of-the-art approaches for resource optimization do not consider input sizes, causing
them to underestimate function response times, especially for large inputs. This leads to
the selection of too weak resource profiles, often violating the SLO. ChunkFunc is the only
heuristic that always meets the SLO because its input size-aware heuristic provides more
accurate estimates for function response times. The analysis of all results shows that
the more accurate critical path estimation and input data size awareness of ChunkFunc
fulfills the SLOs in all test cases, an increase of a factor of 1.04 to 2.78, with respect to
the state-of-the-art and a maximum cost saving of 61%. The advantage of input data
size awareness becomes more apparent as the input data size-dependent response time of
the functions increase, i.e., ChunkFunc performs better in processing intensive workflows,
such as video encoding, where a badly chosen resource profile has a large effect.

In some cases the input data size is not the most decisive factor for function response
time because other properties of the input are more important. For example, a video’s
file size is determined by its length and bitrate. However, when encoding a video, as
we do in the VidPro workflow, the video’s resolution has a much greater effect on the
encoding duration than its bitrate. Another example is earth observation data from
satellites: the image resolution and raw data size are always the same, but the processing
complexity can change depending on whether the image shows the ocean or an urban
area. To encompass such cases, ChunkFunc’s input size parameter can be generalized
to an abstraction that represents an arbitrary numeric property of the input, which
affects processing time the most. In many cases this is the file size, but in some cases it
may be another property. For example, for VidPro and FaceDet we use the product of
resolution× length as the “input size.” For satellite imagery a preprocessing function
can be used to determine the complexity, which will be used as the “input size” for the
next function.

Our Workflow Optimizer uses bucketing for selecting a performance profile for an input
that does not exactly match one of the pre-computed performance profiles. Doing this
instead of linear interpolation between profiles makes it easier to fulfill the SLOs. In the
future a Gaussian Process could be bootstrapped with the pre-computed profiles and,
then, used to infer the resource profile for such unknown inputs.

138

7.7. Summary

7.7 Summary
Fulfilling a serverless workflow’s end-to-end response time SLO at minimal cost requires
selecting appropriate resource profiles for all functions of the workflow. Many functions
exhibit different performance characteristics for different inputs, necessitating the selection
of different resource profiles based on the input.

We presented ChunkFunc, a framework for input data size-aware resource configura-
tion in serverless workflows. We formulated an optimization problem to find function
configurations that meet performance-based SLOs, while minimizing cost.

The ChunkFunc Profiler executes functions with their typical inputs to create input-size
dependent performance models for them. Bayesian Optimization is used to guide the
profiling, while building a surrogate model that approximates the performance profile of
the function – this significantly reduces the number of configurations that need to be
profiled. The Gaussian Process, which serves as the surrogate model, is used to infer the
performance for configurations that are not explicitly profiled.

The ChunkFunc Workflow Optimizer leverages the performance profiles to adapt the
configuration of functions in a workflow, based on their current input sizes, to meet
performance-based SLOs while minimizing costs. We evaluated ChunkFunc against
SLAM and StepConf and showed that it increases SLO adherence by a factor of 1.04
to 2.78, while reducing costs in many cases. This shows that input data size-aware
resource configuration provides a significant advantage in serverless workflows with highly
fluctuating input sizes.

139

CHAPTER 8
HyperDrive:

Scheduling Serverless Functions
in the Edge-Cloud-Space

3D Continuum

Scheduling serverless workflows in the Edge-Cloud continuum necessitates careful con-
sideration of the network SLOs between individual functions to ensure adherence to the
end-to-end response time SLO of the workflow. Extending the Edge-Cloud continuum with
low earth orbit satellites to form a 3D continuum gives rise to new opportunities, such as
global coverage with datacenter-like compute services and more efficient processing of earth
observation data from monitoring satellites, but it also brings new challenges. HyperDrive
is an SLO-aware serverless scheduler specifically designed to address challenges introduced
by seamless execution of workflows across Cloud, Edge, and space, such as consideration
of network QoS across the entire continuum and awareness of satellite temperature and
satellite battery recharging capacity.

8.1 Introduction

As of 2024, there are over 8,000 low Earth orbit (LEO) satellites orbiting the Earth [172].
Satellites have traditionally communicated with each other via ground stations. Lately,
inter-satellite links (ISLs) aim to connect satellites and create a large orbital network
topology [21]. Starlink is currently the largest LEO mega-constellation with about

This chapter is based on the paper T. Pusztai, C. Marcelino, and S. Nastic, “HyperDrive: Scheduling
Serverless Functions in the Edge-Cloud-Space 3D Continuum,” in 2024 IEEE/ACM Symposium on Edge
Computing (SEC), 2024.

141

8. HyperDrive

7,000 satellites in orbit [216] and almost 12,000 total satellites approved by the FCC,
which must be launched by 2028 [99]. By 2029 a second LEO mega-constellation is
planned to be available with 3,236 satellites [76] and more competition is solicited by the
FCC [216]. ISL capability allows LEO satellites to act as ground edge nodes, processing
data directly in orbit and near the data source, such as Earth Observation (EO) satellite
data. This opens up opportunities for new computing paradigms in space, such as
Serverless Computing.

To address the environmental heterogeneity of the Edge-Cloud-Space Continuum, Server-
less platforms need scheduling mechanisms that identify environmental properties and
their current conditions to deploy functions and meet their requirements [166]. Most com-
mon scheduling approaches focus on meeting requirements based on resources, network,
application and energy [24, 85].

Resource-Aware Schedulers [237] ensure that functions are executed on nodes capable
of handling their computational requirements to prevent overloading any single node,
which could lead to performance degradation or failures. In the Edge Cloud Space Con-
tinuum, resource-aware scheduling mechanisms [197, 17] dynamically allocate functions
considering the infrastructure-specific resource characteristics such as CPU capacity
and architecture, memory, and GPU. In Orbital Edge Computing (OEC), scheduling
mechanisms [226, 30] address specific orbit characteristics such as satellite infrastructure
resource and energy costs to transfer the data between satellites or to the ground stations.
However, current approaches do not consider all aspects of Edge, Cloud, and Space
as a unified continuum. They neglect the impact of resource temperature and heat
generated by the task execution. Due to the substantial temperature variations on
satellites between the daylight and eclipse periods of an orbit, tasks that require intense
computation can produce too much heat, putting satellite components at risk of damage
from overheating [138, 40].

Network-Aware Nodes at the edge typically have different network characteristics
than cloud nodes. These network characteristics include variations in end-to-end latency,
bandwidth availability, and link reliability [24]. Network-aware schedulers [197, 220]
consider these characteristics to optimize function placement, ensuring efficient and
reliable communication. In OEC, schedulers [226] typically also address the intermittent
ISL communication between satellites and high latency communication with ground
stations. However, existing OEC schedulers are not built for serverless functions, so they
cannot guarantee the complete execution of serverless workflows across the Edge Cloud
Space Continuum. Existing schedulers do not consider the positions of satellites, which
is essential to ensure the seamless execution of serverless workflows from orbit to the
Edge and Cloud. Therefore, existing schedulers fail to ensure that serverless functions
can start, complete, and transfer all required data within the connectivity range of the
satellite network.

142

8.1. Introduction

Application and SLO-Aware Applications have SLOs that define the expected
performance and availability during their execution. To meet these requirements, SLO-
aware schedulers [186, 187] need to consider not only infrastructure properties such as
resource availability, but also workload characteristics. Although OEC schedulers ensure
functions can execute in a specific node, they do not guarantee workload requirements,
i.e., SLOs, such as maximum latency.

Energy-Aware Schedulers consider the current power source and estimated task power
consumption during the placement process. Energy-aware scheduling [123, 42] is crucial
to prevent battery-powered devices from running out of power and to reduce overall power
usage. By optimizing energy usage, schedulers ensure prolonged operational lifespans for
edge devices and enhance sustainability, thus optimizing performance and longevity in
the Edge Cloud Continuum. In OEC, energy-aware schedulers [226, 265] consider also
the energy necessary to transmit the data either to other satellite nodes or to the ground
station. However, existing schedulers overlook the satellite position during the energy
consumption estimation. Despite tasks requiring a certain amount of power, the satellite
can auto-recharge its batteries during the daylight periods.

Although current Serverless scheduling approaches address the heterogeneous devices
on the Edge, they are not suitable for the specific environmental properties of the Edge
Cloud Space 3D Continuum, such as satellite position and heat generation. Moreover, the
current orbital scheduling approaches lack integration across the Edge Cloud and Space
environment, essential for latency and function execution across the 3D Continuum.

In this chapter, we introduce HyperDrive, a novel Serverless platform that seamlessly
integrates Edge, Cloud, and Space Computing, creating a 3D Continuum. HyperDrive is
part of Polaris1, a SIG of the Linux Foundation Centaurus project2, a novel open-source
platform for building unified and highly scalable public or private distributed Cloud and
Edge systems, which is now expanding into the 3D Continuum. HyperDrive leverages
the specific capabilities of each layer of the 3D Continuum, such as Edge proximity to
the data and satellite proximity to Earth observation data, to enable optimized serverless
function deployment and execution.

Our main contributions include:

1. The architecture of the HyperDrive Serverless Platform, which introduces novel
components and mechanisms tailored to the unique characteristics of the 3D
Continuum. HyperDrive enables functions to be seamlessly executed anywhere
in the 3D Continuum, optimizing performance and reliability by ensuring that
workflow SLOs are met.

2. The HyperDrive scheduling model is the foundation of our Serverless platform’s
scheduler, which is the main focus of this chapter. The HyperDrive scheduling

1https://polaris-slo-cloud.github.io
2https://www.centaurusinfra.io

143

https://polaris-slo-cloud.github.io
https://www.centaurusinfra.io

8. HyperDrive

model considers constraints such as resource capacity, application SLO requirements,
satellite temperature, and network load to minimize the end-to-end Serverless
workflow latency.

3. Our Heuristic Scheduling Algorithms for the 3D Continuum enable the realization
of the HyperDrive scheduling model using a flexible MCDM approach. It first
filters out nodes that are not capable of hosting a function and, then, scores the
remaining nodes according to multiple criteria to find the best suited node for a
function. Our prototype implementation is available as open-source3. HyperDrive
achieves 71% lower E2E network latency than the next best baseline approach.

This chapter has eight sections. Section 8.2 presents the illustrative scenario and research
challenges. Section 8.3 shows an overview of the HyperDrive Architecture for a Serverless
Platform in the 3D Continuum. Section 8.4 describes the Serverless Workflow Model,
HyperDrive scheduling optimization model, and heuristic scheduling algorithms for the
3D Continuum. Section 8.5 details our implementation approach and describes the design
of our experiments. Section 8.6 discusses the results of the experiments, and Section 8.7
summarizes our work on HyperDrive.

8.2 Motivation

To further motivate our work we present an illustrative disaster response scenario and
leverage it to derive research challenges.

8.2.1 Illustrative Scenario

Early detection of wildfires in remote areas is critical to mitigate their effects. Our
scenario (Figure 8.1) involves using a combination of drones, LEO satellites, and ground-
based Edge nodes that compose a serverless workflow for real-time wildfire detection,
inspired by [129, 47, 146, 242]. The drones operate in high-risk wildfire areas, such as
California during the summer, monitoring specific zones and capturing video and sensor
data to watch for signs of wildfires. They send the data to the nearest Edge node using
streaming frameworks or, when out of range, transmit it to LEO satellites acting as
in-orbit Edge nodes. Once a fire is detected, LEO satellites incorporate satellite Earth
Observation (EO) data for processing. Our serverless workflow processes the data close to
the source to improve latency and reduce network overhead. In some situations, functions
are executed directly on LEO satellites due to the data’s proximity to EO data and the
high latency associated with downloading data to the ground.

Figure 8.2 shows our Serverless workflow with four Serverless functions, partially executed
on the Edge, partially executed in-orbit and partially executed in the Cloud. During the
Ingest stage, real-time videos are transmitted to Edge nodes on the ground or in-orbit.

3https://github.com/polaris-slo-cloud/hyper-drive

144

https://github.com/polaris-slo-cloud/hyper-drive

8.2. Motivation

Te
rr

er
st

ria
l N

et
w

or
k

1Km

LEO
500-2000 Km

MEO
2000 - 20000 Km

S
pa

ce
 N

et
w

or
k

Downlink

Cloud Center
Monitoring area

Ground
Station

Edge Network

ISL

Figure 8.1: Illustrative Scenario: Wildfire Detection with On-ground and In-orbit Server-
less Edge Computing

The Extract Frames function processes small video chunks received from Ingest stage
and extracts image frames. Object Detection functions identify wildfire patterns in the
extracted images, such as smoke, flames, or hotspots. The Prepare Dataset function
prepares the data for resource-intensive tasks. The processed data is transmitted to the
Cloud for storage and more resource-intensive tasks, such as machine learning model
inference. In the Cloud, Alarm trigger functions evaluate the data and decide whether to
trigger local emergency responses or deploy more drones to a specific area to confirm the
wildfire before triggering an alarm.

Serverless computing allows dynamic scaling and processing close to the data source. By
running Serverless functions directly on LEO satellites, we can combine data from the
drones on the Earth and from EO satellites to process data as soon as they are produced.
Atmospheric interference reduces link speeds to ground stations, typical speeds are around
300 Mbps[70]. Thus, downlinking data from EO satellites to Earth would take too long
due to the large volume of data, e.g., each of the ESA Sentinel 2 satellites supplies high
resolution images for a swath of 290 km in 13 spectral bands, producing about 1.5 TB
of data per day [69, 3]. Since EO satellites only downlink to dedicated ground stations,
the data may even be queued [243]. For Sentinel-2 “real-time” product availability is
defined as “no later than 100 minutes after data sensing” [72], which violates the satellite
data ingestion link SLO of the wildfire application. ISLs between EO satellites and LEO
satellites are much better suited for large EO data volumes, since their speeds can be
much higher – recently a 100 Gbps ISL from GEO to LEO has been demonstrated [71].

145

8. HyperDrive

Ingest

Alarm
Trigger

100ms

EO Sat

175ms

Object
Detection

Prepare
Dataset

Edge/Space

Cloud

100ms

Extract
Frames

max
150ms 100ms

L maxL maxL maxL

maxL

Figure 8.2: Simplified Serverless Workflow for Wildfire Detection

Hence, it is much faster to uplink a one GB ML model to the satellite than to downlink
the EO data to a ground station. Drone videos are also moderate in size, e.g., a three
minute 4K video from the FLAME2 dataset [39] amounts to 2.2 GB, which qualifies for
uplinking to a LEO satellite in real-time.

Combining satellite EO data with drone data on LEO satellites allows reducing the time
it takes to analyze and respond to wildfires. Additionally, it provides a reliable alternative
when Edge nodes are out of range or experiencing connectivity issues. Scheduling the
functions to execute in orbit ensures that wildfire detection and monitoring continue
uninterrupted, even if ground-based infrastructure faces limitations. It allows immediate
data processing and decision-making in orbit, reducing delays and ensuring continuous,
real-time monitoring. As a result, we can decrease response times to wildfire threats.
However, there are several challenges associated with scheduling Serverless functions in
3D continuum.

8.2.2 Research Challenges for Scheduling in the 3D Continuum

Based on the illustrative scenario, we identify several key requirements for scheduling
serverless functions on LEO satellites in orbit as follows:

RC-1 Satellite Availability: Unlike Edge nodes, which have fixed positions, LEO satellites
are constantly in motion as they orbit the Earth, which impacts their availability and
communication windows [19]. A satellite must be within range of 1⃝ the drone, 2⃝
the EO satellite, and 3⃝ the ground station to be considered available for scheduling.
Specifically, the satellite needs to be within the drone’s range to receive real-time
video transmissions from Earth. At the same time, it must also be within the range
of the EO satellite to receive and relay additional monitoring data. In addition, the
satellite must be within range of ground stations, which have Cloud control planes
for tasks such as scheduling. However, the term “in range” is more complex than
direct line of sight. Since satellites can communicate via ISLs [96, 38], a satellite can

146

8.2. Motivation

be in range, if the bandwidth and latency via ISLs is acceptable for the purpose of
the communication (e.g., data transfer). According to a recent study [156] Starlink’s
median roundtrip latency (client-LEO-Cloud) is 40-50 ms; the theoretical roundtrip
latency between New York and London when routing exclusively through ISLs is
58-66 ms [96]. As satellites move in and out of range, the Serverless platform must
continuously adapt, reallocating resources and re-establishing communication links.
Therefore, satellite availability is more dynamic and complex compared to static
Edge nodes.

RC-2 Power Supply: The scheduler must consider the satellite’s power state, including
its batteries’ current charge level and the overall health of its energy storage system.
Given the increasing computing power in satellites and the strict size constraints
for some of them [138], the scheduler must be aware of the energy requirements of
specific serverless functions to ensure that the satellite has enough power reserves to
execute these functions without depleting its energy resources. Finally, a CubeSat’s
solar panels produce only up to 7 W of power [50], while batteries can have a density
of up to 190 Wh/kg [167]. This means that a satellite might not be designed to fully
recharge their batteries in a daylight period of an orbit. Thus, the scheduler must
evaluate whether the power expenditure of its workloads can be compensated with
solar power before the battery depletes.

RC-3 Computing Capacity & Heat Generation: LEO satellites are deployed with fixed
and limited resources that cannot be patched or upgraded throughout their lifetime.
These satellites are built to consume minimal energy and are equipped with minimal
components to reduce weight and, consequently, launch costs. As computing increases,
the temperature also rises. Since there is no atmosphere in space, heat dissipation
mainly occurs through thermal radiation and lack of exposure to the sun. LEO
satellites typically face temperatures from −120◦C in the shade to +120◦C when in
the sunlight [78]. This situation can lead to prolonged high temperatures, affecting
the performance of critical components such as the CPU [138, 248, 251, 47]. Therefore,
the scheduler must consider not only the existing processing capacity but also the
current temperature of the components and how long they potentially need to
dissipate the heat.

RC-4 Scalability: Due to the fixed number of satellites in orbit and the increased costs
associated with launching new ones, horizontal scaling presents a significant challenge.
Compared to the ground data centers, where additional servers can be easily deployed
to meet increasing demand, the satellite network is limited by the number of satellites
currently in orbit. This physical resource constraint and fixed number of nodes make
it challenging to auto-scale effectively to meet varying workload demands [180, 178].

RC-5 SLO Awareness: Serverless workflows must meet specific Service Level Objectives
(SLOs) to ensure performance and reliability. These SLOs typically include min-
imal latency and bandwidth, which are essential for maintaining optimal service
performance. Maintaining SLOs on the ground can already be challenging [183, 184]

147

8. HyperDrive

and these challenges are exacerbated by the network specifics, orbital movements,
battery, and heat conditions of satellites [179]. Therefore, to ensure performance and
reliability, the scheduler must consider the state of multiple nodes when enforcing
workload SLOs.

RC-6 Workflow Dependencies: In a mixed environment, Serverless workflows can be
executed on ground-based or LEO Edge nodes. The scheduler needs to take into
account the workflow composition to identify the dependencies and interactions
between the functions. Additionally, the scheduler must consider the placement of
these functions within the workflow to ensure that interdependent tasks are located
closely together to minimize latency and maximize efficiency [197]

8.3 Architecture Overview of a Serverless Platform for the
3D Continuum

HyperDrive is a novel serverless platform specifically designed for the 3D Continuum,
as shown in Figure 8.3. To achieve that, our platform proposes six different layers:
(a) an infrastructure layer that unifies the computing resources in the 3D Continuum,
(b) a core platform layer for efficient and optimized function deployment and execution,
(c) a function runtime layer for lightweight and low-latency execution, (d) a function
model to allow developers change function behavior, (e) monitoring and tracing for

Space

Compute

Edge

Storage Network

Cloud

Power Management

Thermal C. Orbit Pos C.

Infrastructure Layer

Scheduler

Core Platform Layer

Auto ScalerFunction Controller

Communication
Range Manager

Function Runtime

Function Runtime Layer

Event Handler Request Routing State Management

Monitoring
& Tracing

Node
Monitoring

Space
Agent

Simulator

Function Model

fn

User code Metadata SLOs

Logs

Params Trigger

Communication/
Middleware

Power Management

Storage

Provider Service
Interoperability

R
es

ou
rc

es
R

es
ou

rc
e

M
an

ag
em

en
t

Managed VMs / Services

Stewardship
Layer

Compliance

Encryption

Access
Control

Governance

Privacy

Figure 8.3: Architecture Overview of a Serverless Platform for the Edge-Cloud-Space 3D
Continuum

148

8.3. Architecture Overview of a Serverless Platform for the 3D Continuum

real-time insights and (f) a stewardship layer layer composed of frameworks that enforce
governance, security and compliance. Each platform layer introduces components to
address the research challenges presented in Section 8.2.2.

8.3.1 Infrastructure Layer

This layer includes common computing resources across the Edge-Cloud-Space 3D Con-
tinuum, such as computing, storage, and network. Each computing layer, i.e., Edge,
Cloud, and Space within the 3D Continuum, has specific properties that require tailored
resource management. In the Edge layer, the HyperDrive infrastructure layer manages
battery power to prevent Edge devices from running out of power. For example, by
providing battery level information to the scheduler so that only drones with enough
battery capacity execute the Ingest function in the wildfire serverless workflow. In the
Cloud, it handles heterogeneous provider-managed services such as AWS S3 storage and
Azure storage for storing high-resolution satellite images or more intense computing tasks
such as running inference on machine learning models. In the space layer, the platform
manages thermal regulation and power to prevent satellite depletion. Furthermore, the
infrastructure layer provides satellite positioning information, which is critical for Hyper-
Drive scheduler to place functions within range to ensure efficient data exchange between
the functions. These computing resources create a unified infrastructure layer that
adapts to the heterogeneous and dynamic requirements of the 3D Continuum, enabling
the HyperDrive Serverless Platform to adjust to resources based on demand, ensuring
seamless execution across the Edge-Cloud-Space Continuum. This is a key prerequisite
to achieving our vision of self-provisioning infrastructures [162].

8.3.2 Core Platform Layer

This layer incorporates components responsible for managing and orchestrating tasks
across the 3D Continuum. It manages the configuration, deployment, computation
balancing [130], and auto-scaling of serverless functions, handling their lifecycle and scaling
resources up and down based on the workload demand, such as the wildfire serverless
workflow. Moreover, the storage enables HyperDrive to store function deployment
properties and specific function configurations, such as parameters, state management
settings, and SLOs. To allocate functions effectively, HyperDrive scheduler considers
the 3D Continuum requirements described in Section 8.2.2. HyperDrive scheduler
utilizes resource-based scheduling mechanisms, commonly used by various Edge and
Cloud schedulers [197, 186, 187]. HyperDrive considers different requirements, including
resource capacity, workload SLO, power supply, and satellite position, to make decisions
using an MCDM approach. To ensure scalability in the large 3D Continuum, HyperDrive
is a distributed scheduler that operates with multiple instances. Distributed scheduling
requires keeping node state information in sync among the scheduler instances and
handling scheduling conflicts. To address these two challenges, each HyperDrive scheduler
instance obtains a function’s candidate nodes and their states from the Monitoring
Agent using sampling, similar to other distributed schedulers [54, 187], and handles

149

8. HyperDrive

conflicts using the MultiBind mechanism described in Section 8.4.3. By integrating Edge-
Cloud-Space requirements, HyperDrive ensures the optimal placement and performance
of Serverless functions within the 3D Continuum, thus meeting application demands
and respecting boundaries between ground and space requirements such as latency and
financial costs.

8.3.3 Function Runtime Layer

The Function Runtime layer consists of components such as Function Runtime, Event
Handler, Request Routing, and State Management. The Function Runtime relies on
lightweight frameworks such as WebAssembly to provide safety, isolation, and low-latency
communication [143, 217]. In our illustrative scenario, the runtime utilizes function
locality to reduce network overhead, ensuring satellites leverage local mechanisms such as
inter-process communication (IPC) to exchange data between functions on the same host.
Thus, the function runtime reduces latency and ensures that communication between
co-located functions remains local, avoiding unnecessary ISL communication. Serverless
stateless design pushes functions to leverage external services for state management [166,
194]. HyperDrive State Management leverages mechanisms such as short-term memory
state [144, 91] to allow serverless workflows, like wildfire detection, to maintain their state
between executions, thereby avoiding the overhead of external service communication.
Due to the different properties, such as bandwidth, latency, and jitter, between Edge,
Cloud, and Space, HyperDrive Request Routing optimizes load balancing by forwarding
requests to functions in the vicinity, thus reducing latency by avoiding communication
between functions cross-environment, such as Edge and space. The Event Handler
manages events from different sources, such as image drones and EO data, to ensure
proper function invocation. The components in this layer ensure a seamless execution of
serverless functions to meet the workload requirements effectively. The function runtime
layer offers lightweight mechanisms for executing functions on limited resource devices
across the 3D Continuum.

8.3.4 Function Model

This layer introduces a function model that allows developers to define specific behaviors,
such as SLOs and trigger types, in addition to the function code, parameters, and
metadata. Developers can specify the type of event - such as streaming, asynchronous, or
synchronous - that the function should process. In the 3D continuum, the function model
enables users to react to specific satellite events, such as changes in orbit or satellite
payload data received. Specifically, in the wildfire serverless workflow, drones at the
Edge trigger ExtractFrames function using video streams, while ObjectDetection

are triggered by single image frames as data input. Moreover, developers may specify
certain SLOs, such as a maximum latency of 100 ms between two functions, for instance,
between ExtractFrames and ObjectDetection. Without coding effort, developers can
indicate whether functions are stateless or stateful. The HyperDrive Function Model
layer abstracts the underlying infrastructure, enabling developers to manage serverless

150

8.3. Architecture Overview of a Serverless Platform for the 3D Continuum

workflows without the complexity of coding or infrastructure management. Finally,
this layer offers specifically tailored programming modes, e.g., to facilitate dealing with
large-scale, heterogeneous data sources [212].

8.3.5 Monitoring & Tracing

This layer is composed of components that enable real-time tracking and monitoring
such as Space Agent, Node Monitoring, distributed logging systems, and a simulator that
enables developers to simulate functions execution without deploying the function on
the expensive and limited infrastructure, e.g., on the satellites. The Monitoring Agent
is designed to track and analyze key performance metrics across the 3D Continuum,
including Edge, Cloud, and space infrastructure. It watches computing capacity, memory
usage, and resource utilization across all nodes to prevent overloading and ensure efficient
function execution. Additionally, it monitors network quality of service (QoS) parameters,
including bandwidth and latency, to maintain compliance with workload SLOs. By
monitoring the common properties of different layers, the Monitoring Agent enables
seamless integration and reliability across the 3D Continuum.

The Space Agent is specifically designed to address the requirements of in-orbit computing.
It is responsible for tracking the unique properties of the space environment, including
the availability of LEO satellites, taking into account their rapid movement in orbit and
their limited communication windows. Additionally, the Space Agent manages ISLs and
ground-satellite network graphs to ensure that the satellite can meet the user-defined
latency SLOs. It also monitors the satellite power supply, identifying the current charge
levels of batteries and their position in relation to solar energy generation, to ensure
that serverless functions are assigned only to satellites with sufficient battery capacity.
Furthermore, the Space Agent monitors satellite thermal levels to prevent overheating
caused by high computational load or prolonged usage, which could result in execution
failures and potentially lead to long-term hardware damage. By addressing these space-
specific requirements, the Space Agent plays a crucial role in optimizing the scheduling,
deployment and execution of serverless functions across the 3D Continuum.

8.3.6 Stewardship Layer

This layer ensures serverless functions’ secure, compliant, and efficient operation across
the 3D Continuum. Its components enforce compliance with environmental and data
protection regulations relevant to the workflow, such as wildfire monitoring. Encryption
leverages mechanisms to protect stored sensitive information, while privacy mechanisms
ensure that personal or location-based data is handled confidentially by the system.
Moreover, Access Control implements role-based access and fine-grained permissions to
restrict unauthorized access and actions. At the same time, the Governance component
oversees these processes, enforcing policies and standards to maintain system integrity,
security, and performance across the platform under expected conditions but also under
uncertainty [163].

151

8. HyperDrive

8.4 HyperDrive SLO-Aware Scheduler for 3D Continuum

The HyperDrive scheduler is designed to address the challenges that arise in the placement
of serverless functions in the 3D Continuum first using an optimization problem and, then,
using an MCDM approach. Without loss of generality, we assume that every serverless
function is part of a serverless workflow, which we model as follows.

8.4.1 Serverless Workflow Model

A serverless workflow can be modeled as a DAG with every node representing an
executable task, i.e., a serverless function or an operator, such as a condition, fork, or
loop, and every link representing an invocation of the next node. The workflow DAG for
our wildfire detection use case is is part of Figure 8.2; all executable tasks are by nodes
with a λ sign. For the purpose of scheduling we refer to a serverless function instance as
a task.

The workflow graph can be annotated with metadata relevant to its tasks. Each task node
is annotated with information such as container image, resource requirements, preferred
location, and SLOs. Since many network connections in the 3D Continuum are not as
reliable as within a Cloud data center, tasks need to be able to specify special needs
regarding the network QoS for incoming and outgoing links. To this end each workflow
link can be annotated with network SLOs, specifically with maximum allowed latency,
minimum bandwidth, maximum jitter, and maximum packet drop percentage.

In many cases serverless functions do not only depend on data from the predecessor
function(s), but also on an external data source. In the 3D Continuum such an external
data source may be, e.g., an S3 storage in a Cloud data center or high resolution data from
an EO satellite. Workflow SLOs may result in special requirements for the connections
to these data sources, i.e., network QoS SLOs. This entails that a workflow DAG must
capture not only executable nodes, but also data source nodes and support SLOs on their
outgoing links. The “EO Sat” at the bottom of Figure 8.2 represents an EO satellite node
as a data source with its outgoing link providing EO data and imposing a max latency
SLO of 175 ms to the ObjectDetection function. This metadata gives the HyperDrive
scheduler all the required information to make a suitable placement of the workflow’s
tasks.

8.4.2 HyperDrive Scheduling Model

Let a Serverless workflow be a DAG W = (F , E), where each node in the DAG represents
a function in the Set F and each edge in Set E represents the invocation of the next task.
Let the network graph be G = (N , L), where N is a Set of nodes and L the communication
latency between the nodes. The scheduling goal to minimize the latency in the Serverless
workflow W execution in the 3D Continuum, effectively mapping the workflow W onto
the network graph G. To achieve this, we consider the following constraints:

152

8.4. HyperDrive SLO-Aware Scheduler for 3D Continuum

Resource Capacity: This constraint ensures that every node has enough resources to pro-
cess the scheduled function, maintaining system stability and performance. Additionally,
this constraint helps balance the system load across the nodes, optimizing the overall
utilization of available resources. Therefore, the total resource demand Di of function i
on each node n in N must not exceed its availability resources Rn:

∑︂
i∈F

Di ≤ Rn ∀n ∈ N (8.1)

Network SLOs: This constraint ensures that data transfer between functions occurs
within acceptable timeframes, ensuring that functions perform as expected. This means
that communication between functions must meet performance criteria defined by the
user to minimize delays. Thus, the SLOs latency Sij must be met for each function
invocation pair (i, j) in functions F . The latency Lnm of the path between nodes n,m in
N must not exceed the SLO Sij:

Lnm ≤ Sij ∀(i, j) ∈ F , ∀(n,m) ∈ N (8.2)

Temperature: Managing thermal conditions not only protects the physical integrity of the
nodes but also maintains optimal performance and longevity, specially in space where
extreme temperature variations are common. Therefore, the temperature of each node n
in N must not exceed its maximum allowed temperature Tmax , considering the maximum
temperature caused by the satellite exposure to the sun and the temperature sum increase
due to the execution of the each function Texc:

Tn
orb +

∑︂
i∈F

T in
exc ≤ Tn

max ∀n ∈ N (8.3)

The scheduler goal is to minimize the total latency in the workflow execution by summing
the latency Lnm between nodes n,m in N for each function invocation i, j in E , where
variables xin and xjm is a binary that indicates function placement to node. The
optimization problem can be defined as follows:

min
x

∑︂
(i,j)∈E

∑︂
n,m∈N

Lnmxinxjm

s.t.
∑︂
i∈F

Di ≤ Rn ∀n ∈ N

Lnm ≤ Sij ∀(i, j) ∈ F , ∀(n,m) ∈ N

Tn
orb(ti) +

∑︂
i∈F

T in
exc ≤ Tn

max ∀n ∈ N

x ∈ {0, 1} ∀i ∈ F , ∀n ∈ N

(8.4)

153

8. HyperDrive

The HyperDrive scheduling optimization model addresses key constraints of resource
capacity, network SLOs, and temperature to guarantee efficient and reliable execution
of Serverless workflows in the 3D Continuum. Minimizing total latency while adhering
to these constraints enables the scheduler to make placement decisions across diverse
environments, ensuring optimal performance and system stability. The consideration of
satellite costs during scheduling is currently out of scope, since there are currently no
pricing models for satellite nodes available.

8.4.3 Heuristic Scheduling Algorithms for the 3D Continuum

Given the high computational complexity of the aforementioned optimization problem,
heuristics are needed to allow implementing the HyperDrive scheduling model for the
3D Continuum. We now examine the heuristic scheduling algorithms that approximate
the aforementioned optimization problem. To this end we rely on an MCDM approach
consisting of a sequence of filters that remove nodes that are not capable of hosting the
task and scoring algorithms that determine the best suitable node among the eligible
ones.

Vicinity Selection

Since the 3D Continuum may consist of tens of thousands of nodes, we need to perform a
preselection of nodes before we can address the constraints of the optimization problem.
To this end, HyperDrive contacts the orchestrator to select a set of candidate nodes
that are located in the vicinity of the desired location specified by the task or in the
vicinity of its predecessor task. The definition of the term “vicinity” can be configured
independently for each part of the 3D Continuum. For example, for the Cloud any data
center node within a radius of 500 km of the desired location may be selected, while the
radius could be 200 km for Edge nodes, and 2,000 km for satellites. Akin to the vicinity,
the total size of the candidates set and its composition can be configured as well, e.g.,
500 total nodes consisting of 40% Cloud nodes, 40% Edge nodes, and 10% Space nodes.

Resource Checking

After selecting the set of candidate nodes, HyperDrive first filters out all nodes that do not
meet the resource requirements of the task. Specifically, it checks the CPU architecture,
CPU cores, memory, GPU (if present), local storage, and minimum battery charge (if
the node has a battery) requested by the task.

Network SLOs Enforcement

HyperDrive uses a combination of filtering and scoring to ensure that the network QoS
SLOs constraints for the incoming links of the task are fulfilled and the nodes with the
best network properties are preferred. For filtering we use Algorithm 8.1. It iterates
through all network SLOs for incoming links, originating from predecessor tasks and
external data sources (if any) and queries the network QoS values for the lowest latency

154

8.4. HyperDrive SLO-Aware Scheduler for 3D Continuum

path between the candidate node and the node hosting the predecessor task or the data
source. If the network SLO requirements are not met, the node is discarded.

For scoring we iterate through the aforementioned network paths again to determine the
highest latency value We assign the highest score, i.e., 100, to the node with the lowest
latency and zero to the node with the highest latency; all nodes in between are assigned
proportional scores in the target interval.

Algorithm 8.1 Network SLOs Filter.
Input: t: Task to be scheduled;
cn: Candidate node;
W = (VW , EW): Workflow DAG;
N = (VN , EN): Network graph;
St = {(v, s)∀v ∈ VW s.t. (v, t) ∈ EW ∧ s ̸= ∅}: Network SLOs for incoming links of t;
Output: true if cn can host t, otherwise false;

1: for all (v, s) ∈ St do
2: u← GetHostNode(v, W , N)
3: q ← QueryNetworkQoS(u, cn, N)
4: if Latency(q) > MaxLatency(s) then
5: return false
6: end if
7: if Bandwidth(q) < MinBandwidth(s) then
8: return false
9: end if

10: if Jitter(q) > MaxJitter(s) then
11: return false
12: end if
13: if PacketDrop(q) > MaxPacketDrop(s) then
14: return false
15: end if
16: end for
17: return true

Temperature Optimization

The algorithm to enforce the temperature constraint is geared specifically towards the
Space part of the 3D continuum to prevent satellites from overheating due to excessive
workload when in the sunlight. Since a satellite that is close to overheating will reduce
its computational power to prevent damage. Thus, HyperDrive aims to prefer satellites,
where the new task will not cause a problematic temperature. This decision involves a
complex estimate based on the current temperature of a satellite’s compute unit, the
expected duration of the task on the satellite’s hardware, the required CPU and, possibly,
GPU resources, the heat generated by these resources over the duration of the task, and
the highest environmental temperature (based on in-orbit sunlight exposure) expected
for the duration of the task. This is encapsulated in the scoring logic of Algorithm 8.2.

The algorithm first tries to get a duration estimate dt for the task. This can be supplied
by the user or through preceding profiling (on hardware similar to the satellite’s) or
the maximum response time SLO of the task can be used. If none of these values are

155

8. HyperDrive

Algorithm 8.2 Temperature Optimization Scoring.
Input: t: Task to be scheduled;
cput: CPU cores requested by t;
gput: GPU cores requested by t;
n: Node to be scored;
tempn

max: Maximum operating temperature for n;
tempn

rec: Recommended high temperature for n;
Output: Score for the node n in the range [0; 100];

1: if NodeType(n) ̸= “satellite” then
2: return 100
3: end if
4: dt ← GetExpectedDuration(t)
5: if dt == nil then

▷ If dt is unknown use the current temperature to compute the score.
6: tempcurr ← GetCurrTemp(n)
7: return CalcScore(tempcurr, tempn

rec, tempn
max)

8: end if

9: tempinc ← EstimateCompTempIncrease(n, dt, cput, gput)
10: temporb

max ← EstimateMaxOrbitTemp(n, dt)
11: tempt

max ← temporb
max + tempinc

12: return CalcScore(tempt
max, tempn

rec, tempn
max)

13: function EstimateDuration(t)
14: dt ← GetExpectedDuration(t)
15: if dt ̸= nil then
16: return dt

17: end if
18: return MaxResponseTimeSLO(t)
19: end function

▷ Estimates the temperature increase due to computation
20: function EstimateCompTempIncrease(n, dt, cput, gput)
21: tempinc ← CpuTempIncrease(n, cput, dt)
22: tempinc ← tempinc + GpuTempIncrease(n, gput, dt)
23: return tempinc

24: end function

25: function CalcScore(tempexp, temprec, tempmax)
26: if tempexp ≤ temprec then
27: return 100
28: end if
29: if tempexp > tempmax then
30: return 0
31: end if
32: range← tempmax − temprec

33: overrec ← tempexp − temprec

34: return ⌊
(︁
1− overrec

range

)︁
∗ 100⌋

35: end function

available the score is calculated based on the current temperature of the satellite. If
dt value is available, it is used in conjunction with the requested resources to estimate

156

8.5. Implementation & Experiments Design

the computation-based temperature increase tempinc. Subsequently, we determine the
maximum expected environmental temperature temporb

max during the orbit(s) within the
duration of the task. The sum of these two temperatures is the maximum expected
temperature for the satellite during the execution of the task and is used for computing
the node’s score. If the expected temperature is below the recommended temperature or
above the maximum temperature, 100 or zero are returned respectively. Otherwise, a
score is computed based on how much the temperature will go into the range between
recommended and maximum temperature.

Multi Commit

Finally, all scores are accumulated for each node, and the nodes are sorted by their
scores. The HyperDrive scheduler, then, contacts the orchestrator to assign the task to
the highest scored available node using a multi-commit approach based Vela scheduler’s
MultiBind mechanism (see Section 6.3.2). Since multiple schedulers may be active, the
orchestrator checks if the required resources are still available on the selected node. If
that is the case, the task is committed to the node, a success message is returned to the
and the scheduler updates the information in the DAG of the workflow instance. If the
orchestrator reports that the required resources are no longer available, the result is a
scheduling conflict, which most distributed schedulers resolve by rerunning the scheduling
pipeline. To avoid doing this, HyperDrive tries committing the task to the second-best
node and, if that fails too, to the third-best node, before triggering a rescheduling of the
task. As shown in Section 6.4.3, the multi-commit technique decreases the number of
scheduling conflicts by a factor of 10 with respect to immediately rescheduling the task.

8.5 Implementation & Experiments Design

To evaluate the HyperDrive scheduler we focus on the quality of the scheduling decisions
and its scalability. Since HyperDrive is, to the best of our knowledge, the first serverless
scheduler specifically designed for the 3D Continuum, we compare it against three
theoretical scheduling approaches: Greedy First-fit, Round-robin and Random scheduling.

8.5.1 Implementation

The prototype of the HyperDrive scheduler is implemented in Python as available as
open-source4. Since it is not feasible to run experiments on a low earth orbit (LEO)
satellite mega constellation, we have connected our scheduler to a modified version of
the StarryNet satellite constellation simulator [128]. The connection to the simulator is
fully abstracted as an orchestrator interface, so that the simulator can be easily swapped.
StarryNet normally executes Docker containers for all nodes. However, since we are
interested in benchmarking the scheduling algorithms, we have replaced the containers
with an in-memory nodes manager that tracks the available resources.

4https://github.com/polaris-slo-cloud/hyper-drive

157

https://github.com/polaris-slo-cloud/hyper-drive

8. HyperDrive

We have implemented the 3D Continuum-specific scheduling heuristics described in
Section 8.4.3. StarryNet precomputes latencies between adjacent nodes for the entire
duration of an experiment. For each new time index, we use these latencies to update
our network graph for network SLOs enforcement. Due to the absence of real satellite
hardware information, we rely on reasonable estimates for the temperature optimizations.

8.5.2 Experiments Design

With our experiments we evaluate two critical aspects of the HyperDrive scheduler:
i) scheduling quality with respect to latency and satellite temperature management and
ii) scalability.

For assessing the scheduling quality we examine two major quality objectives. The
primary objective is the latency achieved between the individual tasks of a serverless
workflow and the E2E latency. The secondary objective is the intelligent selection of
satellite nodes with respect to their temperature situation, i.e., satellites should be chosen,
which will not overheat and reduce computational power while processing a task.

To set up the experiment we use TLE data, obtained on July 2, 2024 from CelesTrack5,
describing the orbits of 6,192 nodes of the Starlink6 LEO satellite constellation. We
deploy our wildfire detection use case, whose workflow is shown in Figure 8.2. We assign
the Ingest function to a drone flying over a region of California, USA that is prone
to wildfires and trigger the scheduling of the remaining functions as the simulation
progresses. Since the StarryNet only supports satellite and ground station nodes, we
model the drone as a ground station node. Since we evaluate the scheduling at the time
when the second function needs to be placed, we do not require any movement from the
drone, hence modeling it as a ground station does not limit our evaluation scenario. All
experiments are run using Python 3.12 on Ubuntu 20.04 LTS on a Windows Subsystem
for Linux 2 VM with 8 vCPUs and 8 GB of RAM. The VM is hosted on a laptop running
Windows 10 22H2 on a Whiskey Lake-U generation Intel Core i7 processor.

We benchmark HyperDrive against the following theoretical schedulers, which we use as
baselines:

• Greedy First-fit

• Round-robin

• Random selection

For evaluating the scalability we want to examine how HyperDrive scales with respect to
the infrastructure size. To this end, we benchmark the placement of wildfire detection
workflow on increasing infrastructure sizes. For Cloud and Edge nodes we simulate

5https://celestrak.org/NORAD/elements/
6https://www.starlink.com

158

https://celestrak.org/NORAD/elements/
https://www.starlink.com

8.6. Experimental Results

Table 8.1: Infrastructure Sizes used for Evaluation.

Satellites Edge Nodes Cloud Nodes Total Nodes
1,008 100 10 1,118
2,016 200 20 2,236
3,024 300 30 3,354
4,032 400 40 4,472

nodes in the region the workflow is deployed in, while for satellites we simulate an entire
constellation with the current 72 orbital planes of Starlink and an equal number of
satellites per plane. Specifically, we use the infrastructure sizes described in Table 8.1 –
node that the numbers in this table refer to our simulation only, which is limited by the
resources of our host machine.

We execute five iterations of every scheduler’s placement of the wildfire detection workflow
on each of the four infrastructure sizes. We examine the achieved E2E latencies and
temperature characteristics to evaluate the scheduling quality of all four schedulers and
HyperDrive’s processing time per task to assess its scalability.

8.6 Experimental Results

8.6.1 Scheduling Quality

To evaluate the scheduling quality we examine the network latencies achieved by the
placements and the temperatures of the selected satellites (if any).

Figure 8.4 shows the mean network E2E latencies achieved by the four schedulers across
all 20 experiment iterations, i.e., five iterations for each of the four infrastructure sizes.
For clarity, the shown latencies are the sum of the network latencies only, without function
execution times. The E2E network latency SLO, without function execution times, across
all four functions of the wildfire workflow is 350 ms. While all schedulers, except for
the Random scheduler, meet the E2E network latency SLO, HyperDrive clearly has
the lowest latency, because it actively optimizes for it. HyperDrive’s E2E latency is
71% lower than Round-robin’s, which is the second best. While Greedy First-fit and

Random FirstFit HyperDrive RRobin
0

200

400
441.22

231.55

58.43

203.31

E2
E

La
te

nc
y

(m
s)

Figure 8.4: Wildfire Detection Workflow Mean E2E Latency per Scheduler.

159

8. HyperDrive

Random FirstFit HyperDrive RRobin

100

200

D
at

a
La

te
nc

y
(m

s)
Figure 8.5: Data Latency per Scheduler

Round-robin meet the E2E network SLO, they violate individual function network SLOs
in about 33% of the cases for Greedy First-fit and in 30% of the cases for Round-robin.
HyperDrive fulfills all function network SLOs.

Apart from inter-function network SLOs, the wildfire detection workflow also defines
a network SLO for an EO satellite data source. The object-det function requires a
maximum latency of 175 ms to the respective EO satellite. Figure 8.5 shows the EO
data latencies achieved by the schedulers. Random and Greedy First-fit violate the SLO.
HyperDrive and Round-robin fulfill it on average, albeit Round-robin violates the SLO
in 35% of the cases. HyperDrive always fulfills it, because its filtering does not allow
scheduling on nodes that would violate the SLO.

The secondary optimization objective after the network latency, is satellite temperature
measurement to avoid overheating. Figure 8.6 shows a heat map for the three scheduled
functions that documents cases when the functions are scheduled on satellites and their
temperature exceeds the recommended operating temperature. HyperDrive places 34
of the total 60 function instances (56.7%) across all iterations on satellites and never
exceeds the recommended temperature. The Random scheduler places 56 of 60 function
instances (93.3%) on satellites and exceeds the recommended temperature in 23 (41%) of
these cases; in three cases it even exceeds the maximum operating temperature. Round-
robin schedules all 60 function instances on satellites and exceeds the recommended
temperature in one third of the cases; in four cases it exceeds the maximum operating
temperature. It should be noted that as the number of Edge nodes increased in the two
larger infrastructure sizes, HyperDrive selected more Edge nodes instead of satellites,
due to their favorable network latencies; for the smaller two infrastructure sizes 86.7% of
the nodes were satellites, while for the larger two only 33.3% were satellites.

8.6.2 Scalability

The goal of the scalability evaluation is to see how HyperDrive’s performance evolves
as the infrastructure size increases. Figure 8.7 shows the mean scheduling latency for
each of the three serverless functions as well as the overall average. Since the prototype
implementation is not connected to a real orchestrator and manually performs the vicinity
selection with a linear search, we disregard the nominal scheduling latency values and
focus on how they evolve with increasing infrastructure sizes.

160

8.6. Experimental Results

HyperDrive Random RRobin

ob
je

ct
-d

et
pr

ep
ar

e-
ds

ex
tr

ac
t-

fra
m

es

0 14 14

0 4.85 4.85

0 2.9 2.9

14 14

0

4

8

12

O
ve

rh
ea

tin
g

Te
m

pe
ra

tu
re

(°
C)

Figure 8.6: Scheduling Overheating Map.

It is evident that HyperDrive’s performance scales linearly with the infrastructure size.
The object-det function has a steeper incline than the others or the overall average,
because needs to check twice as many network SLOs as the others, because it has a data
source network SLO. Nevertheless, its increase remains linear.

8.6.3 Discussion

As previously seen, HyperDrive is the only scheduler specifically designed for the challenges
of the 3D Continuum. HyperDrive excels at choosing between satellite and terrestrial
nodes, depending on what benefits the network SLOs the most. As more nodes are
available the quality of its scheduling decisions improves, e.g., the mean network latency
between functions drops by 73% in the larger two infrastructures compared to the smaller
two infrastructures.

Larger infrastructures yield better scheduling results, but they also increase processing
time. Increased processing time, however, does not offset the benefits of optimized
scheduling, because transfer and processing times of EO data are orders of magnitude
greater than the scheduling duration. Additionally, scheduling on LEO satellites typically

1,000 2,000 3,000 4,000

200

400

600

800

Total Nodes

La
te

nc
y

(m
s)

extract-frames
object-det
prepare-ds

overall

Figure 8.7: HyperDrive Scheduling Latency Across Infrastructure Sizes.

161

8. HyperDrive

does not require high scheduling throughput, due to the type of applications that are
expected to be deployed, e.g., federated learning in space or at the Edge [147, 83], advanced
automotive use cases [262], monitoring applications [263], or disaster relief [242].

Finding multiple shortest paths through a large network graph is the biggest concern to
the performance of HyperDrive. While HyperDrive scales linearly with the infrastructure
size, the path finding time can be reduced by using a hypergraph to reduce the number
of links and by computing paths between regions instead of single nodes. Additionally,
the paths can be periodically precomputed and cached by the orchestrator. This will be
addressed by our future work.

Currently we assume the absence of congestion on the network routes, but as satellite
usage increases, this will be considered in future work. Additionally, a dense constellation
can provide multiple routes [96] between two nodes and prioritization can be employed
for disaster response applications.

We evaluated HyperDrive in simulations. However, its scheduling algorithms can be
transitioned to a physical system. To this end they must be connected to a real-world
orchestrator, which supplies metadata about real satellites (as well as Edge and Cloud
nodes) and which can deploy functions on these nodes.

8.7 Summary
Extending the Edge-Cloud continuum with low earth orbit satellites into the Edge-Cloud-
Space 3D Continuum provides new possibilities for running compute-intensive distributed
workflows from almost anywhere on Earth. Especially use cases that involve data from
remote regions and/or Earth observation data from satellites, such as wildfire detection,
benefit significantly from this new compute continuum.

We presented HyperDrive, a novel Serverless platform that is specifically designed to
enable a seamless execution of Serverless workflows across the 3D Continuum. We
discussed the unique challenges of the 3D Continuum, such as the short communication
windows of the fast moving LEO satellites, solar power supply, and the possibility of
overheating while facing the sun.

The HyperDrive scheduler enables the optimized placement of Serverless functions in the
3D Continuum by considering network SLOs, workflow and data source dependencies,
and thermal conditions of satellites. HyperDrive is, to the best of our knowledge,
the first Serverless scheduler for the 3D Continuum. We evaluate it against three
theoretical baseline schedulers by scheduling a wildfire disaster response workflow with
strict network SLOs and EO satellite data dependencies. HyperDrive achieves 71% lower
E2E network latency than the best baseline and shows linear performance scalability
with the infrastructure size.

162

CHAPTER 9
Related Work

SLO enforcement, Edge-Cloud scheduling, and serverless resource optimization have been
the focus of a lot of work on academia and industry in recent years. In this chapter we
discuss important works related to our contributions.

9.1 Complex SLO Definition and Enforcement

In this section, we explore work related to SLO Script, presented in Chapter 2, and
Polaris Middleware from Chapter 3, which builds on top of it.

All big commercial cloud providers support automated elasticity of some sort. However,
the vast majority only provides simple SLOs that use a lower and upper bound or
an average threshold for a metric that is directly measurable on the system. Some
requirements can also be expressed in more high-level terms, e.g., AWS allows specifying
the targeted availability of a service [6] or the durability of a DB in “nines” (e.g., “four
nines” meaning 99.99% availability). Nevertheless, availability and durability are only
simple SLOs that address a single elasticity dimension and “nines” cannot be considered
a business metric. Custom metrics can be provided at some cloud providers through
a query language. However, specifying the metrics query in the SLO configuration
reduces maintainability, e.g., our PromQL query to calculate cost efficiency was complex
and specific to the components we used and would, thus, be cumbersome to maintain.
Furthermore, each provider, such as AWS [7], Azure [150], and Google Cloud [88], uses
its own mechanism for configuring the autoscaler, i.e., it is often not possible to write
one configuration that works for all providers, fostering vendor lock-in The supported
elasticity strategies are mostly horizontal and vertical scaling, with some exceptions, such
as an elasticity strategy for the AWS DynamoDB [8] that allows increasing read and
write capacities independently.

163

9. Related Work

For Kubernetes, there are multiple autoscalers available – the most prominent being
Horizontal Pod Autoscaler (HPA) [168], Vertical Pod Autoscaler (VPA), and Cluster
Autoscaler (CA) [234]. HPA allows a workload to scale out/in based on CPU or memory
usage or metrics provided by the Kubernetes metrics server1. The only supported
comparison methods are direct value comparison or average value (or percentage). The
use of complex custom metrics requires an adapter API server to provide the custom
metrics. The kube-metrics-adapter2 allows expressing such complex metrics queries in
PromQL. However, this approach is difficult to maintain, especially for complicated
metrics that require large queries. Vertical Pod Autoscaler (VPA) can be used to scale
up/down, albeit currently not in conjunction with HPA3. It allows configuration of the
vertical elasticity strategy, but not of the SLO – the decision when to scale is taken
automatically based on the current resource usage. The limits defined for the pod are
respected though. Cluster Autoscaler (CA) does not scale single workloads, but the entire
cluster by adding and removing nodes as needed. Its SLO is the time that is allowed to
pass after a pod can no longer be scheduled on the cluster due to a lack of resources until
CA resizes the cluster4. HPA, VPA, and CA all tie their SLOs tightly to the elasticity
strategies. There is research that improves on VPA [195] and CA [250]. However, they
focus on improving the performance of the elasticity strategy and the final result, but not
on the possibilities for defining SLOs or decoupling the elasticity strategy from the SLO.

Wang et al. [252] combine horizontal and vertical scaling to achieve an availability SLO
and reduce costs. The SLO is however, limited to availability. It is achieved through
horizontal scaling, while vertical scaling is utilized to reduce costs if the SLO is fulfilled.
This approach provides a complex elasticity strategy, but it falls short of supporting
complex SLOs and multiple decoupled elasticity strategies.

SLO-ML [66] is a language that allows service consumers to define SLOs in order for
the language runtime to choose appropriate cloud services and SLAs for the deployment.
While facilitating the initial deployment of a workload, it does not provide support for
runtime elasticity.

OpenSLO5 is a specification that allows the definition of and interaction with SLOs.
However, it currently foresees the specification of metrics queries directly inside the
definition/configuration of an SLO, which is hard to maintain for SLOs that depend on
complex metrics and which should be reused many times.

Some frameworks are specifically designed for combining raw metrics into combined
metrics, but they are normally not integrated with an SLO runtime. MELA [157] is

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale-walkthrough

2https://github.com/zalando-incubator/kube-metrics-adapter
3https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-

autoscaler#known-limitations
4https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/

FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler
5https://github.com/OpenSLO/OpenSLO

164

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough
https://github.com/zalando-incubator/kube-metrics-adapter
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#known-limitations
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-service-level-objectives-for-cluster-autoscaler
https://github.com/OpenSLO/OpenSLO

9.2. SLO-aware Scheduling of Microservices in the Edge-Cloud continuum

designed for cloud elasticity monitoring and allows combining metrics using a metric
composition language. StreamSight [84] is a language and framework for generating
optimized queries for distributed processing of streaming analytics in edge computing,
which may also be used to combine multiple metrics.

There are some languages that allow defining SLOs using custom metrics and triggering
elasticity strategies. For example, SYBL [43] is a language and runtime that allow defining
complex constraints, i.e., SLOs, on cloud applications and their components. It supports
the definition of custom metrics and can be extended e.g., with additional elasticity
strategies. However, its implementation is tightly coupled to OpenStack and it lacks
a plugin system, which would allow extensions without recompiling the entire runtime.
rSLA [227] is an SLA definition language with runtime facilities that allows the definition
of SLOs using raw and custom metrics and supports triggering arbitrary actions, e.g.,
scaling, upon SLO violations. Both, SYBL and rSLA support SLOs, custom metrics,
and decouple them from elasticity strategies. However, they do not pass parameters
that result from the SLO evaluation to the elasticity strategies, thus discarding possibly
important information and allowing only generic actions, instead of parametrized elasticity
strategies.

Predictive approaches and AI-based systems have also been proposed to handle SLOs
and scaling [124, 109, 158, 60]. For example, Dustdar et al. [60] propose the use of a
Markov Blanket to model the complex characteristics of Edge-Cloud applications and to
derive suitable actions to maintain certain properties in the computing continuum.

9.2 SLO-aware Scheduling of Microservices in the
Edge-Cloud continuum

In this section, we discuss scheduling approaches for long-running microservices in the
Edge-Cloud continuum, which are related to our Pogonip Scheduler from Chapter 4 and
our Polaris Scheduler from Chapter 5.

Among the large selection of available container orchestrators [199], the default schedulers
of those typically used in production, such as Kubernetes [235] and Docker SwarmKit [56],
often rely on greedy multi-criteria decision making algorithms. Their default configura-
tions tend to spread containers over the cluster, which works well in a Cloud environment,
but has drawbacks in heterogeneous Edge clusters, where network QoS is not uniform.
Nomad6 is also used in production environments and specifically supports Edge clusters;
its default scheduler [97] is also multi-criteria decision making-based, but it has no support
for network QoS SLOs.

Two-level schedulers, such as Apache Mesos [100] or YARN [244] are also commonly
used in production. They do not coordinate containers directly, but other schedulers or
execution frameworks. The first level assigns cluster resources to the execution frameworks

6https://www.nomadproject.io

165

https://www.nomadproject.io

9. Related Work

at the second level – each of these frameworks has its own scheduler. Mesos uses an
offer-based technique, where the first level uses a fair sharing or a strict priorities approach
to offer resources to the second level scheduler, e.g., an Apache Spark7 scheduler or an
Apache Storm8 scheduler, which then operates within the assigned resources. YARN
is a request based two level-scheduler; its first level scheduler receives job scheduling
requests and passes them on to a second level scheduler, which then requests resources
from the first level. While Mesos and YARN are not aware of Edge cluster properties, we
will investigate their two-level approach in our future work for developing a distributed
scheduling framework. YARN supports plugging in different schedulers at the first level.
The Capacity Scheduler [228] is aimed at multi-tenant systems and ensures that each
tenant gets a minimum resource capacity. The Fair Scheduler [229] seeks to achieve a
fair distribution of resources across the application frameworks managed by the second
level schedulers. It supports three policies: i) FIFO prioritizes based on the submit time
of an application, ii) Fair aims for a fair distribution of memory across the application
frameworks, and iii) Dominant Resource First is based on [86] and first determines the
dominant resource for each application framework (the most used resource with respect
to its available capacity) and its usage share, then it aims to equalize these dominant
resource usage shares across all application frameworks. With respect to fairness, Pogonip
and Polaris Scheduler rely on a FIFO approach, which is acceptable, because in both
cases we focus on network SLOs within a single application.

While these Cloud solutions represent interesting approaches, the differences between
Cloud and Edge resources prevent their direct adoption in an Edge environment. Different
Internet connectivity and bandwidth, as well as resource distribution, call for strategies
that explicitly take into account the presence of heterogeneous resources and non-negligible
network delays.

Various techniques have been used for scheduling at the Edge as surveyed, e.g., in [24, 27].
The most common approaches include mathematical programming, heuristics, and genetic
algorithm (GA).

Mathematical programming exploits methods from operational research to solve the
application placement problem, e.g., [106, 159]. For example, to save energy consumption,
Huang et al. [106] model the mapping of IoT services on Edge devices as a quadratic
programming problem. Although simplified into a linear formulation, it may require
prohibitive resolution time when the problem size grows. The main drawback of mathe-
matical programming solutions is scalability. For Pogonip we also proposed an ILP, but
the placement problem is well-known to be NP-hard, therefore, efficient heuristics are
needed.

Many heuristics approaches build upon the previously mentioned Cloud-proven schedulers
and extend them for the Edge and a limited degree of SLO-awareness. Fahs et al. [74]
and Rossi et al. [200] present orchestration frameworks based on Kubernetes to determine

7https://spark.apache.org
8https://storm.apache.org

166

https://spark.apache.org
https://storm.apache.org

9.2. SLO-aware Scheduling of Microservices in the Edge-Cloud continuum

the number and location of replicas that are necessary to meet the application QoS
requirements. Eidenbenz et al. [61] propose a latency-aware Fog layer architecture for
industrial applications. Santos et al. [205] consider network bandwidth in addition to
latency (specifically, round trip time) in their Kubernetes scheduler extension. While
these approaches focus on Edge computing and introduce a notion of network SLO, they
fail to cover all aspects of network QoS, e.g., bandwidth variance, latency variance, and
packet drop are missing. However, especially variances contain important information
about the stability of a network connection and should be considered during scheduling.

Cérin et al. [33] propose a scheduling strategy for Docker Swarm that allows users to
select one of three economically oriented SLA levels for their workloads to define priorities
for the scheduler. While this strategy may yield economic benefits, it is not specifically
designed for the Edge. Menouer et al. [148] present MCDM strategies that improve on
the original Docker SwarmKit strategy, but also remain focused on the Cloud.

Aral et al. [14], like Pogonip and Polaris Scheduler, rely on a graph of the network to
compute scores for the latency and bandwidth between user groups and the deployed
services. However, they do not consider a microservice-based application as a whole,
because they focus on the connection between the users and the service accessed by them.
Faticanti et al. [75] model an application as a DAG, partition it between the Cloud and
Fog, and compute a placement considering the throughput required between the nodes of
of the application graph, other important network QoS parameters are largely neglected.
Pallewatta et al. [175] consider fog nodes organized as a tree. When a fog node receives an
application execution request, it uses a greedy heuristic to allocate microservice starting
from the leaf nodes; if no resources are available, it can forward the request towards the
parent node. This decentralized approach promises to reduce latency and network usage.

To solve the Edge placement problem, different works (e.g., [219, 253, 94, 267]) rely
on genetic algorithms (GAs). For example, [267] introduces the concept of Edge sites
to decentralize the resolution of the microservices placement problem optimizing the
application response time. Each site uses a GA to decide which microservices and how
many instances of them to place in the current site as well as those to propagate to the
neighbor sites. Even though GAs considerably reduce the average time to find a good
solution, especially for a large solution space, they may react slowly to changes of an
Edge computing environment.

All previously mentioned policies, as well as our Polaris Scheduler, consider the problem
of scheduling synchronous applications. However, in certain scenarios an asynchronous
application may prove useful [221], where a (logically centralized) message queue supports
the microservice communication. Although asynchronous applications are starting to be
investigated in the context of load balancing [170], to the best of our knowledge, they
are so far poorly explored in the context of service placement. Our Pogonip Scheduler is
designed to fill this gap and place asynchronous microservice-based applications in the
Edge-Cloud continuum.

While Polaris Scheduler and Pogonip are similar in their ways of treating network SLOs,

167

9. Related Work

they are complimentary in terms of their intended uses. Polaris Scheduler is designed
to find a network SLO-compliant placement of a microservice-based application with a
synchronous communication pattern that results in a complicated graph of dependencies
among its components. The goal of Polaris Scheduler is to not only find an initial
placement that fulfills the network SLOs, but to select nodes that are likely to fulfill the
SLOs for a long time. Pogonip is designed to schedule applications with an asynchronous
communication pattern that relies on a message broker. While the application graph is
simpler here, compliance to network SLOs is equally important. Pogonip prefers placing
microservices on Edge nodes and considers Cloud nodes for offloading, because its cost
model assumes that the latter incur additional cost, while Polaris Scheduler treats Cloud
and Edge nodes equally.

9.3 Distributed Scheduling

This section discusses distributed scheduling approaches and compares them to our Vela
Scheduler from Chapter 6.

A monolithic scheduler is by definition not distributed, but included here for comparison
purposes. It operates as a single instance that sees, and possibly even manages, the
entire cluster state, which facilitates its implementation and makes collisions impossible.
Supporting multiple scheduling policies complicates its implementation, because all
policies must be contained in the monolith. As the cluster size grows or if multiple
clusters need to be managed, like in the Edge-Cloud continuum, maintaining the entire
state within a single scheduler instance becomes very challenging or impossible. The
default schedulers of Kubernetes [237] and DockerSwarm [56] suffer from the typical
issues of monolithic schedulers that we have previously mentioned. There are many works
that focus on Edge-related capabilities for monolithic schedulers, e.g., Rossi et al. [200]
propose a latency-aware Kubernetes scheduler for geo-distributed environments and
Santos et al. [205] add latency- and bandwidth-awareness to their Kubernetes scheduler
extension. Hailiang et al. [267] use a genetic algorithm that aims to reduce the response
time for microservice-based Edge applications, but the algorithm runs offline, which
inherently prevents it from being scalable. In general, none of these works consider a
distributed approach to ensure scalability for the Edge-Cloud continuum, hence they
cannot be applied in a globally distributed context like Vela.

Mesos [100] and YARN [244] are two-level schedulers that are frequently used in produc-
tion [13, 120]. Their top-level is monolithic and the second-level relies on partitioning.
For Mesos all scheduling decisions have to pass through the top-level scheduler, which
may result in a bottleneck, and YARN’s top-level needs to capture the entire cluster
state and assign fine-grained resources to the second level, which may be an issue if the
entire cluster state gets too big to fit into memory. The Fair Scheduler [229] in YARN
allows achieving a fair resource distribution among second-level schedulers and Capacity
Scheduler [228] ensures that each tenant of a multi-tenant system gets a minimum share
of resources, but both approaches are designed for the Cloud, not the Edge. Epsilon [115]

168

9.3. Distributed Scheduling

and OneEdge [208] are also two-level schedulers, whose first levels are monolithic. Ep-
silon’s second level utilizes the shared state concept and supports autoscaling of the
second-level schedulers. OneEdge uses sharding for the second level schedulers and it
supports enforcing and E2E latency SLO. The major issue with these approaches is the
monolithic first level, which can hinder scalability – Vela Scheduler aims to avoid this
using its fully distributed, sampling-based approach, which does not require scheduler
instances to maintain any cluster state beyond the node samples that are retrieved
independently for each job. The downside of sampling is that the ideal solution may not
be part of the sample, an issue that Vela tries to mitigate using its 2-Smart Sampling
mechanism (additionally, we plan further improvements on this using AI-based sampling
in future work). Hydra [46] builds on top of YARN and greatly improves scalability by
federating multiple two-level clusters across multiple data centers, however it is designed
for the Cloud and does not focus on Edge clusters.

Apollo [22], Omega [210], Tarcil [54], and ParSync [77] are shared state schedulers.
Apollo’s shared state is centralized and treated as read-only for the schedulers; the state
can only be updated by status updates received from the cluster nodes. Omega supports
different types of transactions to reduce scheduling conflicts. ParSync partitions the
state internally and the scheduler instances get updates on different partitions on every
synchronization iteration. The schedulers prefer to pick nodes from recently updated
partitions to avoid relying on stale state data and, thus, reduce the chance for scheduling
conflicts. Tarcil improves speed by sampling nodes from a shared state, but if the cluster
is heavily loaded the sample size becomes very large, e.g., 82% of the nodes in one of
their examples. Arktos [105] improves on the scalability of the Kubernetes scheduler by
turning it into a shared state scheduler. All shared state schedulers suffer from the issue
that the entire cluster state may become too large to be handled by a single scheduler
instance and from the occurrence of scheduling conflicts. Our approach avoids the former
issue by being fully distributed and drastically reduces conflicts using the MultiBind
mechanism.

Sparrow [173] is a distributed scheduler designed for batch jobs that relies on sampling
to collect nodes. The nodes are contacted directly, which is not feasible with globally
distributed nodes. A late-binding mechanism is used to ensure that a job starts as
quickly as possible: a job is assigned to the queues of all eligible nodes and the first
node that dequeues the job gets to execute it. Sparrow cannot have scheduling conflicts,
because jobs can always be queued on a node, an assumption that is only valid for batch
processing systems. While Sparrow supports constraints for its sampling phase, they are
evaluated in a centralized fashion. Vela Scheduler avoids contacting nodes directly to
allow for global distribution and it specifically addresses scheduling conflicts, because it
is not restricted to batch jobs.

Mercury [119] and Hawk [53] are hybrid schedulers that combine a monolithic scheduler
for one type of jobs with a distributed scheduler for other jobs. Mercury divides the
two scheduling approaches between “guaranteed” and “queueable” jobs, while Hawk
divides them between “long“ and “short“ jobs respectively. Mercury solves conflicts by

169

9. Related Work

terminating queueable jobs in favor of guaranteed jobs, while Hawk avoids conflicts by
queuing. Naturally, the monolithic part can become a bottleneck and many systems have
a single job type, so these approaches are not always applicable. Vela Scheduler does
not have this bottleneck and, while being primarily designed for microservices, it can
support any job type through appropriate plugins.

9.4 Resource Configuration Optimization for Serverless
Functions

Numerous works aim at optimizing serverless functions and applications to meet their
SLOs, while minimizing cost.

9.4.1 Resource Configuration Optimization

In Chapter 7 we presented ChunkFunc. Solutions most similar to it, which aim to optimize
the resource configurations of functions can be divided into two categories: i) approaches
that build a performance model offline using a-priori profiling and ii) approaches that
build the performance model online using monitoring data. Each category can be further
subdivided depending on whether it supports single functions or entire workflows and by
the algorithm type used to determine function configuration(s).

Offline Performance Modeling using A-priori Profiling. A-priori profiling typically
executes the serverless function or workflow using a representative input or set of inputs
under different resource configurations to build a performance model in an offline fashion,
which is used to tune the function configuration(s) for production execution.

Approaches for single functions use a wide variety of algorithms. AWS Lambda Power
Tuning [29] executes profiling runs and graphs the response times and costs to let users
manually pick a configuration. CPU-TAMS [44] relies on regression modeling to create a
“vCPU-to-memory model” for a particular platform. Subsequently, a single profiling run
for a function using the maximum resources configuration suffices to perform optimization.
CherryPick [5], albeit originally developed for big data analytics jobs, uses BO to reduce
the number of profiling runs needed to find a configuration that matches, e.g., a response
time SLO. MAFF [270] uses linear, binary, or gradient descent search to find a suitable
configuration. It supports an active mode (a-priori profiling) and a passive mode (using
monitoring data only).

Optimizing a workflow to meet an SLO is much harder, because the performance of
one function can affect the available resource choices for subsequent functions. Most
approaches for serverless workflows use graph algorithms on the workflow’s call graph,
or on a graph derived form it, to find suitable configurations. StepConf [254] estimates
function execution times using a piece-wise fitting model, based on results from an “offline”,
i.e., profiling, phase and a quantile regression model for data transmission delays between
functions. These estimates are used in combination with a workflow graph in an NP-hard
algorithm and in a heuristic to find function configurations that fulfill the SLO, while

170

9.4. Resource Configuration Optimization for Serverless Functions

minimizing cost. Lin and Khazaei [135] augment a workflow graph with information, such
as profiling results and probabilities of taking a certain edge after executing a function
node. After transformations, such as removing cycles, they obtain a “probabilistic
DAG”, on which they run a Probability Refined Critical Path (PRCP) Algorithm that
progressively refines the transition probabilities, while determining function configurations.
Costless [65] assesses, in addition to resource configurations, the possibility to fuse multiple
functions into a single function and whether to execute them in the Cloud or on the
Edge. It utilizes a “cost graph”, which contains paths through all possible function fusion
options, with each edge weight containing the execution time and cost of running the
succeeding function node.

Some a-priori profiling approaches do not use graph algorithms, such as SLAM [204],
which places all functions with their lowest resource configurations in a max-heap ordered
by response time. It pops off the top function from the heap, increases its resources, and
checks if the workflow’s SLO is fulfilled now. If not, it reinserts the function into the
heap (if further resource increases are possible) and continues.

Contrary to ChunkFunc, these approaches use either a typical input data size for profiling
or an aggregation of profiling results over multiple input data sizes, but they do not
differentiate between different input data sizes. While CherryPick can detect a large gap
between expected performance and actual performance, e.g., due to changed input data
sizes, and trigger a reprofiling, the current performance profile does not support multiple
input data sizes. StepConf’s approach is similar to ChunkFunc, however, it relies on
piece-wise fitting to determine function performance, while we use BO and its Gaussian
Process. StepConf uses the number of requests to a function to determine inter-function
and intra-function parallelism. Through intra-function parallelism the number of requests
indirectly influences the resources available to a function instance, however, the input
size or complexity of a request does not. In accordance with pure serverless principles,
ChunkFunc assumes each function instance processes one request at at time. Thus, the
number of requests are only relevant to the autoscaler of the serverless platform and
do not influence the resource configuration. Instead for ChunkFunc, the input size or
complexity of each request influences the resource configuration, which leads to superior
results, as shown in our evaluation. The approach of fusing functions in addition to
optimizing their resources, as done by Costless, can serve as a complimentary strategy for
finding SLO-compliant resource configurations. However, it cannot replace the awareness
of input data sizes. The repercussions of not being aware of different input data sizes
are exemplified by our evaluation of SLAM, which fails to meet the SLOs for inputs
that do not match the expected size. Additionally, SLAM and PRCP precompute all
configurations before executing the workflow, SLAM using a max-heap and PRCP on a
graph. This entails that they cannot adjust if some functions take longer than expected.
ChunkFunc executes its heuristic directly before invoking each function, which allows it
to leverage information about the current status of the workflow and react if a previous
function was slower or faster than expected.

Some systems tackle the resource configuration problem specifically for ML workflows

171

9. Related Work

and rely on the request frequency to influence the optimization. AsyFunc [177] reduces
memory usage of Deep Learning (DL) inference workflows by not loading the entire
model into every function and tuning intra-function parallelism. It uses the number of
requests per second to determine the number of CPU cores to be assigned to a function
to achieve efficient memory usage. HarmonyBatch [36] reduces response time and costs
for model inference operations. It batches infrequent requests of different applications
with the same model together on the same function instance. The request frequency and
application SLOs are used to determine the resources and the batching. λDNN [256]
optimizes the resources and number of serverless functions used for training a Deep Neural
Networks (DNN) model, based on the model parameters and a time SLO. It iterates
over all possible memory profiles, similar to ChunkFunc. However, even though λDNN
tunes the entire training workflow, all functions are the same and use the same resource
configuration in the end, which simplifies the problem. λGrapher [104] computes the
memory configuration of serverless functions for Graph Neural Network (GNN) serving
as the sum of the memory required by the runtime, the graphs, and the embeddings;
CPU configuration is determined using Bayesian Optimization to minimize costs. These
systems, which work well for ML workflows, can leverage a-priori knowledge about the
functions and/or assumptions that ChunkFunc cannot use, cause it is designed for generic
serverless workflows. AsyFunc can decide to not not load the entire model into every
function, which is not possible for a generic system like ChunkFunc. HarmonyBatch can
batch requests that use the same model on the same function instance. While ChunkFunc
could do this too if the same input data is used, it would depend on the function type if
this would provide a benefit, e.g., a video encoding function will always encode the video
even if it is the same function instance. Contrary to ChunkFunc λGrapher can leverage
prior knowledge about the memory requirements of the GNNs. While ChunkFunc uses
BO to reduce profiling time, λGrapher uses it to find the CPU configuration with the
minimal costs. This is possible, because λGrapher can leverage more a-priori knowledge
than ChunkFunc has available.

Online Performance Modeling. Approaches that do not use a-priori profiling typically
use historical or live monitoring data to build performance models in an online fashion.

Solutions for single functions use various algorithms. AWS Compute Optimizer [9] ana-
lyzes function invocations, their duration, errors, and the number of throttled invocations
and uses ML (exact technique is unspecified) to make recommendations for configurations,
but does not optimize automatically. Sizeless [62] uses a multi-target regression model
trained on a large dataset obtained from monitoring synthetically generated functions.
This allows it to predict the execution time of a function with monitoring from a single
memory configuration only. Aquatope [269] relies on BO to learn the most suitable
configuration that fulfills an SLO more quickly and aims to reduce cold starts as well.
FaasDeliver [259] applies a new resource configuration to a function after every execution
until its model is complete. It uses a Tree-structured Parzen Estimator to reduce the
number of configurations that need to be explored. Libra [260] harvests unused resources
from function instances and assigns them to other instances that require more resources.

172

9.4. Resource Configuration Optimization for Serverless Functions

It uses the first input to profile the function and to bootstrap multiple ML models;
subsequent monitoring data updates these models. For every invocation, Libra predicts
the required resources and the execution time based on the input size and harvests or
adds resources based on these predictions.

Systems for optimizing workflows also use very diverse approaches. Eismann et al. [63]
use Mixture Density Networks and Monte-Carlo simulations to predict costs of serverless
workflows, based on their input sizes, but they assume that the functions’ resources
are already assigned and do not propose a solution to optimize them. COSE [198]
relies on Bayesian Optimization to pick the resource configuration to apply to the next
function execution, while it is building its performance model. Once it has sufficient
data, it computes configurations and placements (Cloud or Edge) by solving an ILP
problem. Orion [139] optimizes resource profiles, function co-location, and cold starts. It
models function response times as distributions (one for each observed resource profile)
to account for variability and finds correlations between the latencies of functions in
a workflow. FireFace [131] initially does not rely on monitoring data, but uses static
code analysis to extract internal features to allow it to estimate execution time under
various resource configurations using a prediction model. Adaptive Particle Swarm
Optimization using Genetic Algorithm Operators is, then, used to find the function
configurations that harmonize SLO satisfaction and cost minimization. The prediction
model is regularly updated using monitoring data. Jolteon [266] uses monitoring data
to build its models and formulates a chance constrained optimization problem, which is
solved by a convex optimizer after converting it using Monte Carlo sampling. Astra [111],
relies on graph algorithms to approximate the solution to an optimization problem for
analytics workflows. Like FireFace, Astra also does not use monitoring data, but it
determines function execution times with a formula that uses the input data size and the
computation time on a “unit size object” for a given resource configuration.

Online performance modeling does not require profiling or configuration of typical inputs,
because it monitors the running system. However, while the performance model is
incomplete, the SLO will likely be violated. Statistical methods, such as those employed
by COSE, FaasDeliver, and Sizeless reduce this time, but they cannot eliminate it. Except
for Astra and Libra, none of these solutions account for different input data sizes. Libra
reassigns unused resources, but it does not directly support SLOs and it is limited to
tuning a single function. While ChunkFunc uses profiling results from different inputs,
Astra needs to determine the computation time on a “unit size object”. This may be
hard to do complex functions and its approach is limited to analytics workflows. The
Mixture Density Networks and Monte-Carlo employed by Eismann et al. [63] could be an
alternative to BO for creating performance profiles in the ChunkFunc Profiler. However,
their approach also requires a collection of function monitoring data to train its model.
The required volume of monitoring data is not specified, but the authors state that
micro-benchmarks can be used to generate the data. This suggests that the volume is
likely more than what BO needs during ChunkFunc profiling. Orion models response
times as distributions to account for variability, but, contrary to ChunkFunc, Orion

173

9. Related Work

ignores that some variability may come from different input data sizes. Similar to SLAM,
the approaches employed by COSE, FireFace, Orion, and Astra precompute the set of
resource configurations prior to executing the workflow. Thus, unlike ChunkFunc, they
cannot react to unexpectedly slower or faster function executions.

9.4.2 Vertical Scaling Approaches

Vertical scaling can be seen as the counterpart to resource configuration optimization for
serverless functions, which is typically used in (micro)service-based applications. Many
solutions use machine learning on historical and/or live monitoring data to predict scaling
targets for combined vertical and horizontal scaling [201, 108, 203]. Other techniques,
such as control theory [152] are also used. Approaches that focus solely on vertical
scaling also rely on a variety of techniques, such as reinforcement learning [26, 258],
rule-based [4], fuzzy logic [257], or regression [174, 222]. Vertical microservice autoscalers
try to predict a configuration to fulfill a demand consisting of many user requests, whereas
serverless configuration tuning, such as ChunkFunc, is applied on a per-request basis.
Thus, traditional vertical scaling offers less flexibility since it can update resources only
at coarser grain. Since Libra [260] allows harvesting unused resources from serverless
function instances and assigning them to instances in need, it can be seen as a vertical
scaler for serverless, albeit without direct support for SLOs.

9.4.3 Scheduling & Miscellaneous

Proper placement/scheduling of serverless functions can also play an important role in
meeting SLOs. Many systems rely on monolithic schedulers. Knative uses the default
Kubernetes scheduler [237], which uses a greedy multi-criteria decision making approach
to find suitable nodes for the pods, but it is not SLO-aware. FnSched [223] relies on
a greedy algorithm to place function instances on as few nodes as possible to allow
unused nodes to be turned off. Skippy [197] is a scheduler for data-intensive serverless
applications at the Edge. FaaSRank [261] uses reinforcement learning to automatically
learn scheduling policies to to optimize function completion time. Owl [238] allows
overcommitting physical resources with multiple serverless functions to improve resource
utilization, while carefully monitoring and preventing service degradation. Monolithic
schedulers have limited capacity, which means that the high scheduling frequency in
serverless systems necessitates at some point a distributed scheduler to keep up with the
load. Hydra [46] uses a federation of 2-level schedulers to achieve up to 40K scheduling
decisions per second. Hermod [118] supports a distributed mode and uses early binding
and hybrid load balancing to reduce slowdown compared to vanilla OpenWhisk scheduling.
AuctionWhisk [18] adopts a distributed scheduling approach based on an auctioning
mechanism. YuanRong [37] is a complete serverless platform that is used in production.
Its uses a highly-scalable multi-level hierarchical scheduler that reduces cross-node
communication. Scheduling is orthogonal to the SLO-aware resource configuration
provided by ChunkFunc. ChunkFunc and other resource optimization frameworks rely

174

9.5. Scheduling in the 3D Continuum

on schedulers to place new function instances on the most suitable nodes to deliver the
required performance.

Cold starts are known to affect the response times of serverless functions [249]; mitigation
of cold starts is another complimentary approach to resource tuning to ensure SLO
adherence of serverless functions. Caching or keep-alive guided by probability distributions
is a common strategy for cold start avoidance and employed, e.g., by FaasCache [80] and
O-RDC [176]. Pre-warming, as done by StepConf [254], IceBreaker [202], or Orion [139],
is a complimentary strategy that often uses workflow context information to predict
which functions will be called next. Another approach is to reduce the function startup
time with alternative runtimes. Catalyzer [57] restores checkpoints of previously running
functions instead of starting completely new instances. The Firecracker [1] microVM
relies on a lightweight Virtual Machine Monitor and a stripped down Linux kernel that
boots in 125 ms. WebAssembly runtimes allow multiple functions to be hosted in the
same container and, hence, allow for faster startup than a container or VM [82].

Some works are dedicated to a detailed study of serverless functions and platforms, such
as [214], which deeply analyzes compute and memory performance, scheduling, and the
overhead of containers. Jindal et al. [114] use profiling, statistical methods, and Deep
Neural Network methods to estimate how many concurrent invocations a function can
support without violating an SLO – such information can be intergrated into the profilers
of resource configuration optimizers. Liu and Niu [136] examine the current pricing
practices of serverless providers and formalize them into a model. As an alternative
to the current static pricing, they propose a dynamic auction-based pricing model. If
providers decide to adapt their pricing models, this orthogonal research can be used to
update the current pricing models used by ChunkFunc and similar solutions.

9.5 Scheduling in the 3D Continuum

In this section, we discuss work related to the 3D continuum and scheduling within this
continuum.

9.5.1 Edge Cloud Continuum & Orbital Edge Computing

Several research studies [164, 59, 241, 60, 166] have proposed a paradigm known as the
Edge-Cloud continuum (ECC). This paradigm involves integrating computing resources
in different layers, composed of Edge devices such as sensors and wearables that produce
data processed by low-resource Edge nodes close that are close to the Edge devices and
high-resource Cloud servers. ECC aims to enable seamless integration between all the
layers, allowing for efficient task distribution and improved application performance. By
utilizing the advantages of both Edge and Cloud resources, ECC enables heterogeneous
environments to adjust to computational needs and connectivity conditions. Our Hyper-
Drive architecture from Chapter 8 proposes to expand the ECC to orbit by seamlessly
integrating satellites as Edge nodes, thus creating a 3D Edge-Cloud-Space Continuum.

175

9. Related Work

Lately, the extensive effort to expand on-orbit capability has led to further research to
explore the implementation of core networks in space, offering several benefits such as
enhancing mobile coverage in remote areas, facilitating direct device-satellite connections,
and satellite computing [268, 16, 255, 243].

LEO satellites, like terrestrial Edge nodes, have limited computing capacity and like Edge
nodes, satellites can be near data sources, such as Earth observation satellites. Therefore,
the increase in LEO satellites in orbit allows data to be processed directly in orbit, near
the data source, enabling Orbital Edge Computing (OEC) [55, 20]. Research [110, 35, 34,
67, 81] enables federated learning by leveraging their distributed localized data processing
capabilities, enhancing real-time data analysis and decision-making in space applications.

The Tiansuan [251, 248] constellation leverages a cloud-native design to enhance onboard
services, resources, and the development and management of satellite equipment. Tian-
suan’s cloud-native approach provides advantages in application deployment, scalability,
and cost-effectiveness compared to traditional satellite designs, allowing for seamless
integration of computing and networking. Tisuan’s platform is composed of six different
layers: Physical, Virtual Resource, Operating System, Container Service, Collaborative
Orchestration, and Function Application. MobileViT [137] proposes a three-layer archi-
tecture to enable Satellite Internet of Things for Smart Agriculture. The infrastructure
layer is composed of IoT devices such as sensors, drones and satellites. The capacity layer
contains computing communication and caching while the application layer represents
the different use cases such as Smart Agriculture, Smart Grid and Smart Port.

9.5.2 Space-as-a-Service

Research identifies emerging services in space [125, 98] such as Constellation-as-a-Service,
Satellite-as-a-Service and Payload-as-a-Service.

Constellation-as-a-Service Mission MP42 [161] by NanoAvionics and Satellogic [206]
aims to offer a satellite constellation service to IoT/M2M operators. Constellation-as-a-
service allows businesses to deploy and manage their satellite network without launching
their own spacecraft. This business model promises customized services such as dedicated
satellites, dedicated rocket launches, in-country operation centers, access to a global
ground station network, and dedicated platforms, including a private Cloud for image
cataloging, processing, and storage.

Satellite-as-a-Service It proposes a shared multi-tenant satellite concept [73, 121, 264].
The shared-access model allows multiple missions to be hosted on a single satellite,
enabling users to share platform and payload capabilities. The Satellite as a Service
model includes ground segment validation using continuous integration and hardware
simulators to ensure the reliability and safety of user-uploaded software. This approach
uses existing satellite infrastructure and modern software tools such as CI/CD to create
a flexible and cost-effective platform for space technology development.

176

9.5. Scheduling in the 3D Continuum

Payload-as-a-Service It emerged after a shift from analog to digital satellite payload,
which enabled satellites to serve multiple clients. Digital payload made it possible to
customize satellite computing for specific purposes such as machine learning and earth
observation [87]. Consequently, it enabled an alternative to expensive space infrastructure
- Payload-as-a-Service. In this business model, a commercial operator owns and manages
the satellite system, providing data (payload) to customers on demand. The service
providers manage the satellite bus, integration, launch, and operations. On the other
hand, clients access the data and may even operate the payload by starting/stopping
data collection and monitoring [98, 213, 102].

All of these approaches focus mostly on satellites only, with very little or no involvement
of terrestrial compute nodes. HyperDrive proposes a unified computing continuum that
spans seamlessly across Edge, Cloud, and Space nodes. As such HyperDrive goes further
than the aforementioned concepts. But the HyperDrive scheduler can also complement
the Constellation-as-a-Service and Satellite-as-a-Service, because both allow customers
to run their own workloads on satellites and, thus, require a scheduling mechanism.

9.5.3 Satellite Edge Task Scheduling & Offloading

In [93], an efficient framework is proposed for offloading inference tasks by partitioning
Deep Neural Network (DNN) models into multiple satellites, including one high Earth
orbit (HEO) satellite and multiple LEO satellites. The approach divides inference tasks,
with the task owner executing the initial portion of the DNN and offloading the remaining
portion to other satellites. FedLEO [67] proposes a distributed scheduling mechanism
for LEO satellite constellations to overcome bandwidth limitations and intermittent
connectivity. FedLEO leverages Satellite Edge Computing (SEC) to improve training
efficiency by adding horizontal communication pathways among satellites and optimally
scheduling interactions with ground stations. Unlike HyperDrive, FedLEO and task
offloading approach considers data processing only satellites SEC, thus excluding Edge
nodes in the ground for task placement.

An Orbital Edge (OE) [30] platform leverages ISL for satellite processing, reducing
latency and leveraging distributed computational capabilities. It offloads computing
tasks from ground nodes to a single satellite and its neighboring satellites. While the OE
platform relies on satellite-ground communication links, which may cause data transfer
delays, HyperDrive addresses each computing layer’s challenges separately to create a
unified Edge Cloud and Space Continuum platform.

177

CHAPTER 10
Conclusion

After having discussed all our contributions in detail and presented related work, we
conclude this thesis with a summary of the important aspects, revisit our research questions,
and present avenues for future work.

10.1 Summary
In Chapter 1 we defined the problem we focused on, i.e., the definition and enforcement
of Service Level Objectives in the Edge-Cloud continuum. We presented our research
questions, which we will revisit in Section 10.2, and we introduced our multi-layer
architecture for a reliable SLO-aware orchestrator for the Edge-Cloud continuum. We
now summarize our contributions that fit into this architecture as shown in Figure 1.1.

In Chapters 2 and 3 we presented SLO Script and Polaris Middleware for the definition
and enforcement of complex SLOs. SLO Script provides a set of abstractions to define
and configure complex workload-specific SLOs and elasticity strategies using a type-
safe language. This enables the creation of a variety of SLOs, which are tailored to
specific workload types, as well as, more efficient configuration of these SLOs, because
incompatibilities or configuration errors are revealed before applying the configuration to
the cluster. SLO Script’s strongly typed metrics API allows for efficient querying and
aggregation of metrics, as well as the definition of high-level composed metrics, and the
orchestrator-independent object model enables the reuse of SLOs on multiple orchestration
platforms. Polaris Middleware builds upon SLO Script to provide a framework for creating
orchestrator-independent SLO controllers, which periodically evaluate their assigned
SLOs and trigger elasticity strategies in case of a violation. A provider-independent
metrics collection and processing mechanism extends the abstractions provided by SLO
Script to enable the creation of composed, reusable metrics. Finally, Polaris Middleware
provides a CLI for easy bootstrapping of Polaris projects and generation of scaffolding
code.

179

10. Conclusion

In Chapters 4 and 5 we addressed SLO-aware scheduling in the Edge-Cloud continuum.
The Pogonip scheduler handles network QoS-aware placement of applications that con-
sist of long-running microservices, which communicate with each other asynchronously
through a message broker. We formulated an optimization problem and presented a
heuristic to approximate a solution for use in a Kubernetes scheduler. The Polaris
Scheduler extended the ideas of Pogonip to synchronous microservice-based applications,
whose interactions from a complex dependency graph. We capture these dependencies in
a service graph and model the network QoS state in a network topology graph. Polaris
Scheduler consists of an SLO- and network topology-aware scheduling framework and
scheduling plugins that ensure that the network SLOs of the application are fulfilled and
that the placement is likely to maintain the network QoS for a prolonged period of time.

Vela Scheduler, which we presented in Chapter 6, is a distributed scheduler designed
to scale to tens of thousands of compute nodes dispersed over multiple clusters. Vela’s
architecture consists of two major components: an orchestrator-independent scheduler,
which can be run in an arbitrary number of instances, and a cluster agent that is deployed
in every target cluster and which acts as the connection to the local orchestrator. The
scheduling pipeline consists of three stages: sampling, decision, and commit. The sampling
stage leverages a two-level informed sampling mechanism that delegates sampling to the
cluster agents to ensure scalability and which uses the requirements of the job to ensure
that only nodes that are likely to be suitable for the job are returned to the scheduler.
The decision stage filters and scores the nodes and picks the best three nodes as commit
candidates. The commit stage first attempts to commit the job to the highest scored
node and falls back to the second or third best node in case the resources have already
been claimed by another scheduler instance. This approach reduces scheduling conflicts
and the need for rerunning the entire pipeline.

In Chapter 7 we introduced ChunkFunc, an SLO- and input-aware resource optimizer for
serverless workflows. Many serverless functions require different amounts of computational
effort depending on the size of their inputs. ChunkFunc leverages this fact to assign
different resource profiles to functions depending on their current input with the goal of
minimizing costs, while adhering to the workflow’s end-to-end response time SLO. The
ChunkFunc Profiler automatically profiles each serverless function with typical inputs and
uses Bayesian Optimization to reduce the number of profiling runs and to infer response
times for not profiled configurations. The ChunkFunc Workflow Optimizer leverages
these performance profiles to optimize the resources of each function in the workflow to
meet the end-to-end response time SLO of the workflow.

In Chapter 8 we extended the Edge-Cloud continuum with low earth orbit satellites to
form an Edge-Cloud-Space 3D continuum and we introduced the HyperDrive scheduler to
place serverless functions in this compute continuum. HyperDrive includes a vision for a
serverless platform for the 3D continuum, which enables seamless execution of serverless
workloads in this continuum, e.g., to improve the responsiveness of disaster response and
Earth observation applications. When scheduling a function, the HyperDrive scheduler
considers not only the network QoS state such that the end-to-end response time SLO of

180

10.2. Revisiting the Research Questions

the workflow is met, but also satellite-specific properties, such as satellite temperatures
and possibilities to recharge batteries during the daylight periods of an orbit.

Finally, in Chapter 9 we discussed existing literature related to our contributions.

10.2 Revisiting the Research Questions
We now revisit the research questions that we presented in Section 1.2.1 and discuss how
our work has addressed them.

RQ1. How can complex Cloud-native SLOs be effectively monitored and enforced for
long-running workloads in containerized infrastructures at application runtime?

We have addressed this research question by Chapters 2 and 3. SLO Script enables the
definition and configuration of complex workload-specific SLOs and elasticity strategies,
which is a prerequisite to enforcing SLOs. One of the main design goals is to decouple
SLOs from elasticity strategies. The strongly typed metrics query abstractions introduced
by SLO Script and complemented by the processing mechanisms of Polaris Middleware
facilitate the monitoring of long-running workloads, because they allow efficient querying
and aggregation of metrics at runtime. These aggregations can be exposed as composed
metrics, which enables decoupling of the metrics computation from metrics use in SLOs.
Furthermore, it allows reusing metrics in multiple SLOs. The orchestrator-independent
object model provided by SLO Script and the runtime mechanisms added by Polaris
Middleware enable the realization of controllers that monitor complex SLOs using
the previously mentioned metrics abstractions. The intrinsic separation of SLOs from
elasticity strategies in Polaris allow users to leverage the same elasticity strategy for
multiple SLOs, as long as the inputs/outputs are compatible. This significantly increases
the number of SLO and elasticity strategy combinations available to the user without
the need to duplicate code in additional controllers.

RQ2. How can network QoS SLOs be leveraged to improve the scheduling of long-running
workloads in the Edge-Cloud continuum and how can a scheduler scale with the growing
infrastructure size?

The first part of this research question is addressed by Chapters 4 and 5. The Pogonip
Scheduler deals with network QoS-aware scheduling of Edge-Cloud applications, composed
of long-running microservices that rely on a message broker for communication. These
asynchronous applications exhibit a simplified communication pattern, because each
component “only” communicates with the message broker. Hence, its proper placement
is imperative for an SLO-compliant placement of the entire application. Polaris Scheduler
extends the communication model to synchronous applications, which may exhibit
complex dependencies among their microservices due to their direct calling behavior. We
model these dependencies and their respective SLOs in a service graph, which we traverse
in a breadth-first search to queue the application’s microservices for scheduling. The
extensible Polaris Scheduler framework relies on a greedy multi-criteria decision making
approach to pick suitable nodes, while maintaining an acceptable scheduling throughput.

181

10. Conclusion

Each microservice is placed on a node that meets the network SLOs to the nodes that
host the calling services and whose network QoS parameters exhibit a low variability, i.e.,
a high stability to maintain SLO-compliance for a long time. Meeting the network SLOs
of the downstream microservices is more challenging, because their host nodes are not
yet known. Thus, we resort to a heuristic, which ensures that the current node meets the
most stringent network SLOs of the next direct downstream services.

The second part of this research question is addressed by Vela Scheduler in Chapter 6.
Since even the most efficient monolithic schedulers have infrastructure size limits, the
only option to scale the infrastructure further is to rely on distributed scheduling. Vela’s
architecture allows an arbitrary number of scheduler instances to be executed, where jobs
may be submitted to any of those instances. The schedulers are orchestrator-independent,
the only orchestrator-specific component is the cluster agent, which must be running in
each cluster and which connects to the local orchestrator. Vela uses sampling to obtain
candidate nodes for every job, but unlike typical existing solutions, Vela leverages the
requirements of a job to sample only nodes, which are likely capable of hosting the job. To
increase scalability sampling is not performed by a scheduler instance, but it is delegated
to a selection of cluster agents, which have faster access to local node information. After
sampling is complete, Vela chooses the best three nodes as candidates for hosting the
job. Vela’s commit mechanism processes tries committing the job first to the best suited
node, falling back to the other two if the resources were already assigned by another
Vela instance. This significantly reduces the number of scheduling conflicts that would
otherwise trigger a rerun of the entire scheduling pipeline.

RQ3. How can end-to-end response time SLOs of a workflow be used to optimize resources
and placement of short-running serverless functions in the Edge-Cloud continuum?

We addressed the first part of this research question in Chapter 7 with the ChunkFunc
resource optimizer for serverless workflows. Since serverless functions are short-lived, the
best lever to tune them for SLO compliance is to adjust their resource configurations. Any
resource optimization for a serverless function needs a performance profile that indicates
how the function performs with a particular set of resources. The aim of ChunkFunc is
to provide precise optimization by considering the input size of a function when making
a resource assignment. This necessitates input-specific performance profiles. ChunkFunc
relies on profiling a function with typical inputs to obtain these profiles. However, to
reduce the number of profiling runs, we leverage Bayesian Optimization to guide the
optimization process. BO uses a Gaussian Process as a surrogate model to approximate
the performance profile. Once we have collected enough profiling samples, we use the
GP to infer missing parts of a performance profile. The ChunkFunc Workflow Optimizer
computes the critical path from the current function to the end of the workflow using
average function response times across all inputs and determines the relative contribution
of the current function to that critical path to calculate a sub-SLO. Subsequently, a
resource profile that fulfills this sub-SLO is chosen. This approach allows fulfilling end-to-
end response time SLOs of workflows across all their typical input sizes, while minimizing
costs.

182

10.3. Limitations & Future Work

Chapter 8 addressed the second part of this research question with the HyperDrive
scheduler and platform. As an avenue to future work we extended the Edge-Cloud
continuum with low earth orbit satellites to form the Edge-Cloud-Space 3D Continuum.
LEO satellites exhibit very low latency and see an increase in computing power with every
new generation, hence they can be treated similar to Edge nodes. Akin to scheduling at
the Edge, network SLO adherence is of high importance in the 3D Continuum as well.
HyperDrive uses a similar approach like Polaris Scheduler by using a graph to collect the
requirements and call graph of a serverless workflow and relies on a network topology
graph to compute shortest paths between nodes. However, scheduling on satellites
introduces new challenges – apart from resources and network SLOs, HyperDrive also
considers satellite temperature and the possibility to recharge the lost power using the
solar panels when making a placement decision.

10.3 Limitations & Future Work

In this thesis we have proposed three research questions and discussed our contributions
to addressing them. Like every technology, our work faces certain limitations and the
research questions cover large fields. Thus, we now identify several directions for future
work to complement and extend our work.

10.3.1 Complex SLO Enforcement for Long-lived Microservices

SLO Script and the Polaris Middleware enable the type-safe definition of SLOs, elasticity
strategies, and controllers to enforce them. However, in our work we have only given
examples of elasticity strategies that perform a single action, such as horizontal scaling or
changing a microservice’s configuration. Future work should investigate the possibility to
flexibly combine multiple elementary elasticity strategies in compound elasticity strategies.
For example, a compound elasticity strategy could combine the two elementary elasticity
strategies of changing the configuration of a microservice and scaling it horizontally. The
configuration change strategy is specific to the microservice, but the horizontal strategy
can be the reusable one we already presented in this thesis. It is also worth investigating
compound elasticity strategies that can be applied to entire application, which consists
of multiple microservices, each of which is scaled with one or more distinct elementary
elasticity strategies. Depending on the state of the SLO, the compound elasticity strategy
decides which elementary elasticity strategies to trigger and for which microservices.

To reduce the number of SLO violations, the time when the elasticity strategy is triggered
needs to be investigated. Our work has dealt with reactive triggering, i.e., the elasticity
strategy is triggered once the SLO is violated. However, as noted in the related work,
predictions and AI-based triggering are an active field of research. The combination of
predicted metrics with existing Polaris SLO controllers is a promising avenue to explore,
especially since our abstractions make it easy to replace an existing composed metric
with a predicted metric.

183

10. Conclusion

10.3.2 SLO-aware Scheduling of Long-lived Microservices

Pogonip an Polaris Scheduler achieve good results for network SLO adherence and Vela
Scheduler scales well to tens of thousands of nodes, but they all have limitations that
should be investigated in future work.

The impact of mobile nodes, such as smart cars or drones, is currently only addressed in
Pogonip and Polaris Scheduler by the assumption that the monitoring system regularly
updates the network topology graph. However, this could lead to the deployment of a
microservice on a node that will soon enter an area of poor network coverage, which
may violate a network SLO. To mitigate this issue, movement predictions should be
incorporated for mobile nodes, such that network QoS changes can be anticipated and
included in the decision making process.

Scalability tests for Polaris Scheduler have shown that its shortest network path compu-
tation could cause scheduling throughput to decrease in very large clusters. To address
this, we plan to investigate the use of hypergraphs for the Cluster Topology Graph to
improve performance in such large cluster scenarios.

Vela Scheduler has a scalable design, but provides interesting avenues for future work in
the fields of SLO support and further improvements to the sampling process. Extending
Vela with support for network SLOs is an important, but challenging task, because of the
large number of nodes. While this endeavor will profit from the above mentioned work
on hypergraphs, the problem is exacerbated by the fact that a Vela scheduler instance
has no knowledge of where other microservices of an application were scheduled. Yet,
this information is needed for enforcing network SLOs. It is also needed for affinity/anti-
affinity support. One possibility to enable such features would be to tie all microservices
of a specific application to a particular scheduler instance. Vela’s sampling process
could be improved with AI-based sampling strategies that leverage information on the
previous execution of similar jobs to produce even better samples. Additionally we want
to further improve the scalability of our approach by increasing sampling performance
and introducing sharding into the Cluster Agents.

10.3.3 SLO Adherence of Serverless Workflows

ChunkFunc has surpassed the state-of-the-art in SLO adherence, but it has some short-
comings that offer good possibilities for future work. We intend to adapt ChunkFunc for
cost-based SLOs, such that it can find resource configurations that will yield the fastest
possible response time for a maximum or average cost. The need to define typical inputs
is a shortcoming, which may be addressed by adding a learning mode to automatically
discover the most typical inputs, which could later be transferred to profiling. If the
Workflow Optimizer discovers that an input size is not part of a performance profile, it
currently uses the next larger input size that has been profiled. An interesting avenue
is to investigate the use of a Gaussian Process to infer more precise resource profiles
for such input sizes that are not part of the performance profile. In the longer term,
our goal is to design a lightweight and extensible serverless-native framework for the

184

10.3. Limitations & Future Work

development of serverless applications, which supports the definition and enforcement of
SLOs, cold-start optimizations, and optimizations for inter-function communication.

For the 3D Continuum we plan to continue our realization of the HyperDrive Serverless
platform. Since testing algorithms for the 3D Continuum requires simulation of thousands
of satellites and terrestrial nodes, we plan to create a flexible 3D Continuum simulator.
This simulator should be able to operate in a lightweight mode, which only computes
node positions and the network topology, on a single machine for testing scheduling
algorithms and in a full-fledged mode across multiple machines, where it allows executing
the deployed workloads in containers or VMs. An important goal for the HyperDrive
platform itself is to further to improve the coordination of function execution and satellite
orbits, by placing functions on satellites that will be in the ideal position for a low-
latency handoff to the next node when the function completes. We also intend to reduce
scheduling complexity for large infrastructure sizes by using hypergraphs for inter-node
path computations, based on the future work for Polaris Scheduler and Vela. This could
be complemented by running shortest path computations regularly and caching the
results for a certain time. Finally, we envision space-specific plugin components for our
above mentioned lightweight serverless framework to enable the development the next
generation 3D Continuum applications.

185

Overview of Generative AI Tools
Used

No generative AI tools were used for writing this thesis and the publications it is based
on.

187

List of Publications

This is an exhaustive list of all publications that this thesis is based on, as well as a list
of the contributions of each author according to the CRediT taxonomy.

1. T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding, D. Vij, and
Y. Xiong, “SLO Script: A Novel Language for Implementing Complex Cloud-Native
Elasticity-Driven SLOs,” in 2021 IEEE International Conference on Web Services
(ICWS).

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• A. Morichetta: Conceptualization and validation.
• V. C. Pujol: Conceptualization and validation.
• S. Dustdar: Supervision, conceptualization, funding acquisition, and writing – review

& editing.
• S. Nastic: Conceptualization, methodology, validation, and writing – review & editing.
• X. Ding: Validation.
• D. Vij: Validation.
• Y. Xiong: Validation.

2. T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding, D. Vij,
and Y. Xiong, “A Novel Middleware for Efficiently Implementing Complex Cloud-
Native SLOs,” in 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), 2021.

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• A. Morichetta: Conceptualization and validation.
• V. C. Pujol: Conceptualization and validation.
• S. Dustdar: Supervision, conceptualization, and funding acquisition.
• S. Nastic: Conceptualization, methodology, validation, and writing – review & editing.
• X. Ding: Validation.
• D. Vij: Validation.

189

• Y. Xiong: Validation.

3. T. Pusztai, F. Rossi, and S. Dustdar, “Pogonip: Scheduling Asynchronous Ap-
plications on the Edge,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), 2021.

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• F. Rossi: Conceptualization, investigation, methodology, software, writing – original
draft, and writing – review & editing.

• S. Dustdar: Supervision, funding acquisition, and writing – review & editing.

4. T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Polaris Scheduler: SLO- and Topology-aware
Microservices Scheduling at the Edge,” in 2022 IEEE/ACM 15th International
Conference on Utility and Cloud Computing (UCC), 2022.

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• S. Nastic: Conceptualization, methodology, validation, and writing – review & editing.
• A. Morichetta: Validation.
• V. C. Pujol: Validation.
• P. Raith: Validation.
• S. Dustdar: Supervision, validation, and funding acquisition.
• D. Vij: Conceptualization and validation.
• Y. Xiong: Conceptualization and validation.
• Z. Zhang: Conceptualization, methodology, and validation.

5. T. Pusztai, S. Nastic, P. Raith, S. Dustdar, D. Vij, and Y. Xiong, “Vela: A 3-Phase
Distributed Scheduler for the Edge-Cloud Continuum,” in 2023 IEEE International
Conference on Cloud Engineering (IC2E), 2023.

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• S. Nastic: Conceptualization, methodology, validation, and writing – review & editing.
• P. Raith: Conceptualization and methodology.
• S. Dustdar: Supervision, validation, and funding acquisition.
• D. Vij: Methodology and validation.
• Y. Xiong: Methodology and validation.

6. T. Pusztai, C. Marcelino, and S. Nastic, “HyperDrive: Scheduling Serverless Func-
tions in the Edge-Cloud-Space 3D Continuum,” in 2024 IEEE/ACM Symposium
on Edge Computing (SEC), 2024.

• T. Pusztai: Conceptualization, investigation, methodology, software, writing – original
draft, and writing – review & editing.

190

• C. Marcelino: Conceptualization, investigation, methodology, visualization, writing –
original draft, and writing – review & editing.

• S. Nastic: Supervision, conceptualization, funding acquisition, methodology, valida-
tion, and writing – review & editing.

7. T. Pusztai and S. Nastic, “ChunkFunc: Dynamic SLO-aware Configuration of
Serverless Functions,” IEEE Transactions on Parallel and Distributed Systems,
2025.

• T. Pusztai: Conceptualization, investigation, methodology, software, visualization,
writing – original draft, and writing – review & editing.

• S. Nastic: Supervision, conceptualization, funding acquisition, methodology, valida-
tion, and writing – review & editing.

191

List of Figures

1.1 SLO-aware Orchestrator for the Edge-Cloud Continuum. 6

2.1 Gentics Mesh CMS cloud scenario overview. 13
2.2 SLO Script meta-model (partial view). 17
2.3 Type safety provided by StronglyTypedSLO. 19
2.4 Strongly Typed Metrics API (simplified view). 20
2.5 Core SLO Script Object Model Types (partial view). 22
2.6 SloMappingController workflow and SLOs lifecycle. 24

3.1 Polaris Runtime Architecture (the colors indicate, which connector realizes
interfaces from a particular component). 35

3.2 SLO Control Loop. 38
3.3 Cost efficiency SLO mapping before and after transformation. 39
3.4 SLO Control Loop components (simplified). 43
3.5 Cost Efficiency SLO Implementation (blue), Kubernetes Connector (green),

Prometheus Connector (orange). 45
3.6 Average total execution times of execute Control Loop Iteration() and

its children across all 300 seconds profiling sessions. 49

4.1 Scheduling cycle (adapted from [237]) and Pogonip plugins. 61
4.2 Cluster topologies in experiments: Scenario 1 (left), Scenario 2 (right). . . 65
4.3 Latency between microservices and the queue system, when a single application

is deployed using different placement policies. 66
4.4 Successfully deployed application instances (out of 8 submitted) when different

placement policies are used. Each experiment is run 5 times. 67
4.5 Latency between microservices and the queue system, when multiple applica-

tions are deployed using different placement policies. 68

5.1 Traffic Analysis & Hazard Detection Service Graph (simplified). 75
5.2 Scheduling Pipeline (based on [237]) and Polaris Scheduler Plugins. 78
5.3 Most Stringent QoS Requirements for Service γ. 80
5.4 Incoming Service Links for Service γ (left), Shortest Network Paths to Candi-

date Node from Service α (right). 83
5.5 Edge Cluster Topologies: Network QoS SLOs Compliance Experiment (left);

Performance and Scalability Experiment with 10 Subclusters (right). . . . 86

192

5.6 Average Max Latencies Achieved by Schedulers and SLO Bounds. 88
5.7 Average Min Bandwidth Achieved by Schedulers and SLO Bounds. 89
5.8 Scalability Analysis. 89

6.1 Globally Distributed Machine Learning. 95
6.2 Scheduling Workflow and Job Lifecycle. 98
6.3 3-Phase Scheduling Workflow with Sampling, Decision, and Commit Pipelines. 99
6.4 Scheduling Failure Percentages for Configuration Tuning. 108
6.5 Mean Scheduling Times (ms) at Cp = 50% and Np = 4% for Total Nodes. 109
6.6 Sampling Times (ms) at Cp = 50% and Np = 4% for Total Nodes. 109
6.7 Commit Times (ms) at Cp = 50% and Np = 4% for Total Nodes. 110
6.8 End-to-End Times (ms), without Sampling Queue, at Cp = 50% and Np = 4%

for Total Nodes. 110
6.9 Scheduling Conflicts with and without MultiBind. 112

7.1 extractsuccesses Response Times under Various Input Data Sizes and
Resource Configurations. 117

7.2 Overview of the ChunkFunc System and Lifecycle of a Serverless Workflow. 122
7.3 LogPro, VidPro, and FaceDet Maximum Response Time SLO Compliance for

Large Inputs for Coarse-grained Resource Profiles. 132
7.4 LogPro, VidPro, and FaceDet Costs per 10,000 Invocations for Large Inputs

for Coarse-grained Resource Profiles. 132
7.5 VidPro and FaceDet MRT SLO Compliance for Large Inputs for Fine-grained

Profiles. 134
7.6 Representative Results of Synthetic Workflow Experiments for Coarse-grained

Resource Profiles. 135
7.7 Representative Results of Synthetic Workflow Experiments for Fine-grained

Resource Profiles. 136
7.8 Cyclic WF Large Input Heuristic Execution Times for Fine-grained Resource

Profiles. 137

8.1 Illustrative Scenario: Wildfire Detection with On-ground and In-orbit Server-
less Edge Computing . 145

8.2 Simplified Serverless Workflow for Wildfire Detection 146
8.3 Architecture Overview of a Serverless Platform for the Edge-Cloud-Space 3D

Continuum . 148
8.4 Wildfire Detection Workflow Mean E2E Latency per Scheduler. 159
8.5 Data Latency per Scheduler . 160
8.6 Scheduling Overheating Map. 161
8.7 HyperDrive Scheduling Latency Across Infrastructure Sizes. 161

193

List of Tables

2.1 Lines of Code (excl. comments and blanks). 29

3.1 Lines of Code (excl. comments and blanks). 48

4.1 Placement Problem Notations. 55
4.2 Scheduler Resolution Times . 70

6.1 Scheduler Architectures Comparison . 94
6.2 Node Types in Cloud and Edge Clusters. 106
6.3 Scheduling Decisions and Throughput. 111

7.1 Symbols Used in the System Model . 120
7.2 Real-world Workflow Scenarios. 131
7.3 Real-world Workflows SLO Compliance for Coarse-grained Resource Profiles. 133
7.4 Real-world Workflows SLO Compliance for BO-inferred Fine-grained Profiles. 134

8.1 Infrastructure Sizes used for Evaluation. 159

195

List of Algorithms

4.1 Placement Heuristic on Edge Nodes 59
4.2 Placement Heuristic on Cloud Resources 60
5.1 NetworkQoS PreFilter Stage . 81
5.2 NetworkQoS Filter Stage . 82
6.1 Sampling Phase . 102
6.2 Commit Phase . 104
7.1 Bayesian Optimization Dynamic Hyperparameter Selection. 125
7.2 Proportional Critical Path Heuristic. 127
8.1 Network SLOs Filter. 155
8.2 Temperature Optimization Scoring. 156

197

Acronyms

AR augmented reality. 1, 95, 112

BO Bayesian Optimization. 116, 118, 119, 123–125, 128, 130, 134, 136, 137, 139, 170–173,
180, 182, 195, 197

CA Cluster Autoscaler. 164

CI Continuous Integration. 36

CLI Command-Line Interface. 26, 28–30, 32, 34, 36, 37, 42, 45, 46, 48, 50, 179

CMS Content Management System. 13

CNN Convolutional Neural Network. 95

CRD Custom Resource Definition. 28, 36, 37, 45, 78, 129

DAG directed acyclic graph. 78, 119, 126, 131, 137, 152, 157, 167, 171

DB database. 32–36, 40–42, 44–48, 50

DL Deep Learning. 172

DNN Deep Neural Networks. 172

E2E end-to-end. 108, 110, 144, 158–160, 162, 169

EI Expected Improvement. 123, 124

GA genetic algorithm. 166, 167

GCF Google Cloud Functions. 130

GCP Google Cloud Platform. 105

GP Gaussian Process. 119, 123, 124, 138, 139, 171, 182, 184

199

HPA Horizontal Pod Autoscaler. 14, 15, 33, 164

ILP Integer Linear Programming. 52, 56, 63, 166, 173

IoT Internet of Things. 4, 64, 93

ISL inter-satellite link. 141, 145–147, 151

KPI Key Performance Indicator. 12

LEO low earth orbit. 157, 162, 180, 183

MAPE Monitor Analyze Plan Execute. 31

MCDM multi-criteria decision making. 77, 91, 99, 144, 149, 152, 154, 165, 167, 181

ML Machine Learning. 2, 95

MRT maximum response time. 117, 122, 126, 127, 131, 132, 134, 136, 193

ms milliseconds. 49, 64–70

POI Probability of Improvement. 123, 124

Polaris Polaris SLO Cloud. 12, 15, 23, 29, 32–37, 39, 40, 42–50, 192

QoS Quality of Service. 4, 5, 7, 8, 51, 73, 74, 76, 78–81, 83, 85–87, 90, 91, 141, 152, 154,
165, 167, 180–182, 184, 192

RMSE root mean square error. 123, 124

SaaS Software-as-a-Service. 33

SDPS scheduling decisions per second. 111, 112

SLA Service Level Agreement. 2, 164, 165, 167

SLO Service Level Objective. 2–8, 11–19, 22–40, 42–51, 73–77, 84–88, 90, 91, 115–139,
141, 143, 147–152, 154, 155, 158–175, 179–185, 192, 193, 195

vCPU virtual CPU core. 76, 84, 115, 116

VM virtual machine. 48

VPA Vertical Pod Autoscaler. 164

200

Bibliography

[1] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and
D.-M. Popa, “Firecracker: Lightweight virtualization for serverless applications,”
in 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, 2020, pp. 419–434. [Online].
Available: https://www.usenix.org/conference/nsdi20/presentation/agache

[2] Y. Ai, M. Peng, and K. Zhang, “Edge computing technologies for internet of things:
a primer,” Digital Communications and Networks, 2018.

[3] Airbus, “Airbus built sentinel-2c satellite successfully launched,” 2024. [Online].
Available: https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-
built-sentinel-2c-satellite-successfully-launched

[4] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic vertical
elasticity of docker containers with elasticdocker,” in 2017 IEEE 10th International
Conference on Cloud Computing (CLOUD), 2017, pp. 472–479.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang,
“Cherrypick: Adaptively unearthing the best cloud configurations for big data
analytics,” in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). Boston, MA: USENIX Association, 2017, pp.
469–482. [Online]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/alipourfard

[6] Amazon Web Services, Inc., “5 9s (99.999%) or higher scenario
with a recovery time under 1 minute,” 2020. [Online]. Avail-
able: https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-
99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html

[7] ——, “Aws auto scaling features,” 2020. [Online]. Available: https:
//aws.amazon.com/autoscaling/features/

[8] ——, “Managing throughput capacity automatically with dynamodb auto scaling,”
2020. [Online]. Available: https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/AutoScaling.html

201

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-built-sentinel-2c-satellite-successfully-launched
https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-built-sentinel-2c-satellite-successfully-launched
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/s-99.999-or-higher-scenario-with-a-recovery-time-under-1-minute.html
https://aws.amazon.com/autoscaling/features/
https://aws.amazon.com/autoscaling/features/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

[9] ——, “Aws compute optimizer,” 2023. [Online]. Available: https://aws.amazon.
com/compute-optimizer/

[10] ——, “Aws lambda,” 2023. [Online]. Available: https://aws.amazon.com/lambda/

[11] ——, “Configure lambda function memory,” 2025. [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html

[12] ——, “Configure lambda function timeout,” 2025. [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/configuration-timeout.html

[13] Apache Software Foundation, “Powered by mesos: Organizations using mesos,”
2022. [Online]. Available: https://mesos.apache.org/documentation/latest/powered-
by-mesos/

[14] A. Aral, I. Brandic, R. B. Uriarte, R. de Nicola, and V. Scoca, “Addressing appli-
cation latency requirements through edge scheduling,” Journal of Grid Computing,
vol. 17, no. 4, pp. 677–698, 2019.

[15] J. Arents, V. Abolins, J. Judvaitis, O. Vismanis, A. Oraby, and K. Ozols,
“Human–robot collaboration trends and safety aspects: A systematic review,”
Journal of Sensor and Actuator Networks, vol. 10, no. 3, 2021. [Online]. Available:
https://www.mdpi.com/2224-2708/10/3/48

[16] M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert,
J. F. Mendoza Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani, E. Lagunas,
and B. Ottersten, “Evolution of non-terrestrial networks from 5g to 6g: A survey,”
IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2633–2672, 2022.

[17] D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of kubernetes pods,” in
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2020, pp. 1–5.

[18] D. Bermbach, J. Bader, J. Hasenburg, T. Pfandzelter, and L. Thamsen, “Auction-
whisk: Using an auction-inspired approach for function placement in serverless fog
platforms,” Software: Practice and Experience, vol. 52, no. 5, pp. 1143–1169, 2022.

[19] D. Bhattacherjee, W. Aqeel, I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B.
Godfrey, G. Laughlin, B. Maggs, and A. Singla, “Gearing up for the 21st century
space race,” in Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’18. New York, NY, USA: Association for Computing Machinery,
2018, pp. 113–119.

[20] D. Bhattacherjee, S. Kassing, M. Licciardello, and A. Singla, “In-orbit computing:
An outlandish thought experiment?” in Proceedings of the 19th ACM Workshop on
Hot Topics in Networks, ser. HotNets ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 197–204.

202

https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/compute-optimizer/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-timeout.html
https://mesos.apache.org/documentation/latest/powered-by-mesos/
https://mesos.apache.org/documentation/latest/powered-by-mesos/
https://www.mdpi.com/2224-2708/10/3/48

[21] D. Bhattacherjee and A. Singla, “Network topology design at 27,000 km/hour,”
in Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, ser. CoNEXT ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 341–354.

[22] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). Broomfield, CO: USENIX Association, 2014, pp.
285–300. [Online]. Available: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/boutin

[23] Broadcom, “Using rabbitmq cluster kubernetes operator.” [Online]. Available:
https://www.rabbitmq.com/kubernetes/operator/using-operator.html

[24] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in the fog:
State of the art and open challenges,” Software: Practice and Experience, vol. 50,
no. 5, pp. 719–740, 2020.

[25] A. Brogi, S. Forti, and A. Ibrahim, “Predictive analysis to support fog application
deployment,” Fog and edge computing: principles and paradigms, pp. 191–222,
2019.

[26] X. Bu, J. Rao, and C.-Z. Xu, “Coordinated self-configuration of virtual machines
and appliances using a model-free learning approach,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 4, pp. 681–690, 2013.

[27] V. Cardellini, F. Lo Presti, M. Nardelli, and F. Rossi, “Self-adaptive container
deployment in the fog: A survey,” in Algorithmic Aspects of Cloud Computing
(ALGOCLOUD 2019), I. Brandic, T. A. L. Genez, I. Pietri, and R. Sakellariou,
Eds. Cham: Springer International Publishing, 2020, pp. 77–102.

[28] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and challenges,”
ACM Comput. Surv., vol. 55, no. 7, 2022.

[29] A. Casalboni, “Aws lambda power tuning,” 2023. [Online]. Available:
https://github.com/alexcasalboni/aws-lambda-power-tuning

[30] P. Cassará, A. Gotta, M. Marchese, and F. Patrone, “Orbital edge offloading on
mega-leo satellite constellations for equal access to computing,” IEEE Communica-
tions Magazine, vol. 60, no. 4, pp. 32–36, 2022.

[31] Castillo Guido A. Gavilanes, Bonetto Edoardo, Brevi Daniele, Scappatura Francesco,
Sheikh Anooq, and Scopigno Riccardo, “Latency assessment of an its safety appli-
cation prototype for protecting crossing pedestrians,” in 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), 2020, pp. 1–5.

203

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.rabbitmq.com/kubernetes/operator/using-operator.html
https://github.com/alexcasalboni/aws-lambda-power-tuning

[32] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of serverless
computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54, 2019.

[33] C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah, “A new docker swarm
scheduling strategy,” in 2017 IEEE 7th International Symposium on Cloud and
Service Computing (SC2), 2017, pp. 112–117.

[34] C.-Y. Chen, L.-H. Shen, K.-T. Feng, L.-L. Yang, and J.-M. Wu, “Edge selection
and clustering for federated learning in optical inter-leo satellite constellation,” in
2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC), 2023, pp. 1–6.

[35] H. Chen, M. Xiao, and Z. Pang, “Satellite-based computing networks with federated
learning,” IEEE Wireless Communications, vol. 29, no. 1, pp. 78–84, 2022.

[36] J. Chen, F. Xu, Y. Gu, L. Chen, F. Liu, and Z. Zhou, “Harmonybatch: Batch-
ing multi-slo dnn inference with heterogeneous serverless functions,” in 2024
IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS), 2024,
pp. 1–10.

[37] Q. Chen, J. Qian, Y. Che, Z. Lin, J. Wang, J. Zhou, L. Song, Y. Liang, J. Wu,
W. Zheng, W. Liu, L. Li, F. Liu, and K. Tan, “Yuanrong: A production general-
purpose serverless system for distributed applications in the cloud,” in Proceedings
of the ACM SIGCOMM 2024 Conference, ser. ACM SIGCOMM ’24. New York,
NY, USA: Association for Computing Machinery, 2024, pp. 843–859.

[38] Q. Chen, G. Giambene, L. Yang, C. Fan, and X. Chen, “Analysis of inter-satellite
link paths for leo mega-constellation networks,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 3, pp. 2743–2755, 2021.

[39] X. Chen, B. Hopkins, H. Wang, L. O’Neill, F. Afghah, A. Razi, P. Fulé, J. Coen,
E. Rowell, and A. Watts, “Wildland fire detection and monitoring using a drone-
collected rgb/ir image dataset,” IEEE Access, vol. 10, pp. 121 301–121 317, 2022.

[40] Y. Cheng and Z. Zhou, “Autonomous resource scheduling for real-time and stream
processing,” in 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2018, pp. 1181–1184.

[41] Chris Munns, “Aws re:invent 2020: What’s new in serverless,” 2020. [Online].
Available: https://youtu.be/aW5EtKHTMuQ?t=339

[42] Chunrong Yao, Wantao Liu, Weiqing Tang, and Songlin Hu, “Eais: Energy-aware
adaptive scheduling for cnn inference on high-performance gpus,” Future
Generation Computer Systems, vol. 130, pp. 253–268, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X22000127

204

https://youtu.be/aW5EtKHTMuQ?t=339
https://www.sciencedirect.com/science/article/pii/S0167739X22000127

[43] G. Copil, D. Moldovan, H. Truong, and S. Dustdar, “Sybl: An extensible language
for controlling elasticity in cloud applications,” in 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing, 2013, pp. 112–119.

[44] R. Cordingly, S. Xu, and W. Lloyd, “Function memory optimization for heteroge-
neous serverless platforms with cpu time accounting,” in 2022 IEEE International
Conference on Cloud Engineering (IC2E), 2022, pp. 104–115.

[45] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N.
de Souza, “Elasticity in cloud computing: a survey,” annals of telecommunications
- annales des télécommunications, vol. 70, no. 7-8, pp. 289–309, 2015.

[46] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M. Fumarola, B. Huang, K. Chali-
parambil, A. Suresh, Y. Chen, S. Heddaya et al., “Hydra: a federated resource
manager for data-center scale analytics,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 177–192.

[47] N.-N. Dao, Q.-V. Pham, D.-T. Do, and S. Dustdar, “The sky is the edge—toward
mobile coverage from the sky,” IEEE Internet Computing, vol. 25, no. 2, pp.
101–108, 2021.

[48] Datadog, “The state of serverless,” 2023. [Online]. Available: https:
//www.datadoghq.com/state-of-serverless/

[49] Dave Barth, “The bright side of sitting in traffic: Crowdsourcing road congestion
data,” 2009. [Online]. Available: https://googleblog.blogspot.com/2009/08/bright-
side-of-sitting-in-traffic.html

[50] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Patrone,
“Small satellites and cubesats: Survey of structures, architectures, and protocols,”
International Journal of Satellite Communications and Networking, vol. 37, no. 4,
pp. 343–359, 2018.

[51] C. de la Torre, B. Wagner, and M. Rousos, .NET Microservices: Architecture for
Containerized .NET Applications v5.0. Microsoft Corporation, 2020.

[52] C. J. L. de Santana, B. de Mello Alencar, and C. V. S. Prazeres, “Reactive
microservices for the internet of things,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, C.-C. Hung and G. A. Papadopoulos, Eds. New
York, NY, USA: ACM, 2019, pp. 1243–1251.

[53] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association, 2015, pp.
499–510. [Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/delgado

205

https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado

[54] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling scheduling speed
and quality in large shared clusters,” in Proceedings of the Sixth ACM Symposium on
Cloud Computing, ser. SoCC ’15. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 97–110.

[55] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constellations as a
new class of computer system,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 939–954.

[56] Docker Inc., “Scheduler design,” 2017. [Online]. Available: https://github.com/
docker/swarmkit/blob/master/design/scheduler.md

[57] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen, “Catalyzer:
Sub-millisecond startup for serverless computing with initialization-less booting,” in
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 467–481.

[58] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic processes,”
Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[59] S. Dustdar and I. Murturi, “Towards iot processes on the edge,” in Next-Gen
Digital Services. A Retrospective and Roadmap for Service Computing of the Future:
Essays Dedicated to Michael Papazoglou on the Occasion of His 65th Birthday and
His Retirement, M. Aiello, A. Bouguettaya, D. A. Tamburri, and W.-J. van den
Heuvel, Eds. Cham: Springer International Publishing, 2021, pp. 167–178.

[60] S. Dustdar, V. C. Pujol, and P. K. Donta, “On distributed computing continuum
systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4,
pp. 4092–4105, 2023.

[61] R. Eidenbenz, Y.-A. Pignolet, and A. Ryser, “Latency-aware industrial fog applica-
tion orchestration with kubernetes,” in 2020 Fifth International Conference on Fog
and Mobile Edge Computing (FMEC), 2020, pp. 164–171.

[62] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev, “Sizeless:
Predicting the optimal size of serverless functions,” in Proceedings of the 22nd
International Middleware Conference, ser. Middleware ’21. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 248–259.

[63] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev, “Predicting
the costs of serverless workflows,” in Proceedings of the ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 265–276.

206

https://github.com/docker/swarmkit/blob/master/design/scheduler.md
https://github.com/docker/swarmkit/blob/master/design/scheduler.md

[64] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L.
Abad, and A. Iosup, “A review of serverless use cases and their characteristics,” 2021.
[Online]. Available: https://research.spec.org/news/2020-05-29-11-38-technical-
report-on-a-review-of-serverless-use-cases-and-their-characteristics-published/

[65] T. Elgamal, A. Sandur, K. Nahrstedt, and G. Agha, “Costless: Optimizing cost of
serverless computing through function fusion and placement,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC), 2018, pp. 300–312.

[66] A. Elhabbash, A. Jumagaliyev, G. S. Blair, and Y. Elkhatib, “Slo-ml: A language
for service level objective modelling in multi-cloud applications,” in Proceedings of
the 12th IEEE/ACM International Conference on Utility and Cloud Computing,
K. Johnson, J. Spillner, D. Klusáček, and A. Anjum, Eds. New York, NY, USA:
ACM, 2019, pp. 241–250.

[67] M. Elmahallawy and T. Luo, “Optimizing federated learning in leo satellite con-
stellations via intra-plane model propagation and sink satellite scheduling,” in ICC
2023 - IEEE International Conference on Communications, 2023, pp. 3444–3449.

[68] ETSI, “Etsi ts 101 539-3: Intelligent transport systems (its); v2x applications; part
3: Longitudinal collision risk warning (lcrw) application requirements specification,”
2013-11.

[69] European Space Agency, “Sentinel-2 operations.” [Online]. Available: https:
//www.esa.int/Enabling_Support/Operations/Sentinel-2_operations

[70] ——, “European data relay satellite system (edrs) overview,” 2024. [Online].
Available: https://connectivity.esa.int/european-data-relay-satellite-system-edrs-
overview

[71] ——, “European space agency-funded projects reach new performance level
in groundwork for optical leo to geo data relays,” 2024. [Online]. Avail-
able: https://connectivity.esa.int/news/european-space-agencyfunded-projects-
reach-new-performance-level-groundwork-optical-leo-geo-data-relays

[72] ——, “Sentinel online - glossary,” 2024. [Online]. Available: https://sentinels.
copernicus.eu/web/sentinel/technical-guide/sentinel-2-msi/glossary

[73] Exodus Orbitals, “Satellite-as-a-service: A new approach for space industry,” 2019.
[Online]. Available: https://www.exodusorbitals.com/files/whitepaper.pdf

[74] A. J. Fahs, G. Pierre, and E. Elmroth, “Voilà: Tail-latency-aware fog application
replicas autoscaler,” in 2020 28th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), 2020,
pp. 1–8.

207

https://research.spec.org/news/2020-05-29-11-38-technical-report-on-a-review-of-serverless-use-cases-and-their-characteristics-published/
https://research.spec.org/news/2020-05-29-11-38-technical-report-on-a-review-of-serverless-use-cases-and-their-characteristics-published/
https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations
https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations
https://connectivity.esa.int/european-data-relay-satellite-system-edrs-overview
https://connectivity.esa.int/european-data-relay-satellite-system-edrs-overview
https://connectivity.esa.int/news/european-space-agencyfunded-projects-reach-new-performance-level-groundwork-optical-leo-geo-data-relays
https://connectivity.esa.int/news/european-space-agencyfunded-projects-reach-new-performance-level-groundwork-optical-leo-geo-data-relays
https://sentinels.copernicus.eu/web/sentinel/technical-guide/sentinel-2-msi/glossary
https://sentinels.copernicus.eu/web/sentinel/technical-guide/sentinel-2-msi/glossary
https://www.exodusorbitals.com/files/whitepaper.pdf

[75] F. Faticanti, F. de Pellegrini, D. Siracusa, D. Santoro, and S. Cretti, “Throughput-
aware partitioning and placement of applications in fog computing,” IEEE Trans-
actions on Network and Service Management, vol. 17, no. 4, pp. 2436–2450, 2020.

[76] Federal Communications Commission, “Kuiper systems, llc – application for
authority to deploy and operate a ka-band non-geostationary satellite orbit
system – order and authorization.” [Online]. Available: https://docs.fcc.gov/public/
attachments/FCC-20-102A1.pdf

[77] Y. Feng, Z. Liu, Y. Zhao, T. Jin, Y. Wu, Y. Zhang, J. Cheng,
C. Li, and T. Guan, “Scaling large production clusters with partitioned
synchronization,” in 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 2021, pp. 81–97. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/feng-yihui

[78] M. M. Finckenor and K. K. de Groh, “A researcher’s guide to: Space
environmental effects.” [Online]. Available: https://www.nasa.gov/science-
research/for-researchers/a-researchers-guide-to-space-environmental-effects/

[79] M. Fowler, Domain-specific languages. Upper Saddle River, NJ: Addison-Wesley,
2010.

[80] A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing alive with
greedy-dual caching,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’21. New York, NY, USA: Association for Computing Machinery, 2021,
pp. 386–400.

[81] A. Furutanpey, Q. Zhang, P. Raith, T. Pfandzelter, S. Wang, and S. Dustdar,
“Fool: Addressing the downlink bottleneck in satellite computing with neural
feature compression,” 2024. [Online]. Available: https://arxiv.org/abs/2403.16677

[82] P. Gackstatter, P. A. Frangoudis, and S. Dustdar, “Pushing serverless to the edge
with webassembly runtimes,” in 2022 22nd IEEE International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), 2022, pp. 140–149.

[83] R. Gajanin, A. Danilenka, A. Morichetta, and S. Nastic, “Towards adaptive
asynchronous federated learning for human activity recognition,” in Proceedings
of the 14th International Conference on the Internet of Things (IoT 2024). New
York, NY, USA: ACM, 2024.

[84] Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Stream-
sight: A query-driven framework for streaming analytics in edge computing,” in
2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC), 2018, pp. 143–152.

208

https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf
https://www.usenix.org/conference/atc21/presentation/feng-yihui
https://www.nasa.gov/science-research/for-researchers/a-researchers-guide-to-space-environmental-effects/
https://www.nasa.gov/science-research/for-researchers/a-researchers-guide-to-space-environmental-effects/
https://arxiv.org/abs/2403.16677

[85] M. Ghobaei-Arani and M. Ghorbian, “Scheduling mechanisms in serverless com-
puting,” in Serverless Computing: Principles and Paradigms, R. Krishnamurthi,
A. Kumar, S. S. Gill, and R. Buyya, Eds. Cham: Springer International Publishing,
2023, pp. 243–273.

[86] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,
“Dominant resource fairness: Fair allocation of multiple resource types,” in 8th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
11). Boston, MA: USENIX Association, 2011.

[87] GMV, “Evolution of payload management systems for com-
munications satellites: New challenges,” 2022. [Online].
Available: https://www.gmv.com/en/media/blog/space/evolution-payload-
management-systems-communications-satellites-new-challenges

[88] Google, LLC, “Autoscaling groups of instances,” 2020. [Online]. Available:
https://cloud.google.com/compute/docs/autoscaler

[89] ——, “Cloud functions,” 2023. [Online]. Available: https://cloud.google.com/
functions

[90] ——, “Cloud functions pricing,” 2024. [Online]. Available: https://cloud.google.
com/functions/pricing

[91] V. Goronjic and S. Nastic, “Miso: A crdt-based middleware for stateful objects in
the serverless edge-cloud continuum,” in 2024 IEEE International Conference on
Cloud Engineering (IC2E), 2024, pp. 55–65.

[92] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application placement
technique for concurrent iot applications in edge and fog computing environments,”
IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1298–1311, 2021.

[93] J. Guan, Q. Zhang, I. Murturi, P. K. Donta, S. Dustdar, and S. Wang,
“Collaborative inference in dnn-based satellite systems with dynamic task streams,”
2023. [Online]. Available: https://arxiv.org/abs/2311.06073

[94] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective optimiza-
tion of container allocation in cloud architecture,” Journal of Grid Computing,
vol. 16, no. 1, pp. 113–135, 2018.

[95] Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. M. Lau, “Ondisc: Online
latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds,”
IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp. 2472–2485, 2019.

[96] M. Handley, “Delay is not an option: Low latency routing in space,” in Proceedings
of the 17th ACM Workshop on Hot Topics in Networks, ser. HotNets ’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp. 85–91.

209

https://www.gmv.com/en/media/blog/space/evolution-payload-management-systems-communications-satellites-new-challenges
https://www.gmv.com/en/media/blog/space/evolution-payload-management-systems-communications-satellites-new-challenges
https://cloud.google.com/compute/docs/autoscaler
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://arxiv.org/abs/2311.06073

[97] HashiCorp, “Scheduling in nomad.” [Online]. Available: https://www.nomadproject.
io/docs/internals/scheduling/scheduling

[98] A. M. Hein and C. Rosete, “Space-as-a-service: A framework and taxonomy of
-as-a-service concepts for space,” in 73rd International Astronautical Congress
(IAC). International Astronautical Federation (IAF), 2022.

[99] C. Henry, “Fcc oks lower orbit for some starlink satellites,” Space News, 2019.
[Online]. Available: https://spacenews.com/fcc-oks-lower-orbit-for-some-starlink-
satellites/

[100] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in
the data center,” in 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11). Boston, MA: USENIX Association, 2011.

[101] T. A. Hjeltnes and B. Hansson, “Cost effectiveness and cost efficiency in e-learning,”
QUIS-Quality, Interoperability and Standards in e-learning, Norway, 2005.

[102] M. Höyhtyä, S. Boumard, A. Yastrebova, P. Järvensivu, M. Kiviranta, and A. Ant-
tonen, “Sustainable satellite communications in the 6g era: A european view for
multilayer systems and space safety,” IEEE Access, vol. 10, pp. 99 973–100 005,
2022.

[103] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons,
and O. Mutlu, “Gaia: Geo-distributed machine learning approaching lan speeds,” in
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). Boston, MA: USENIX Association, 2017, pp. 629–647. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh

[104] H. Hu, F. Liu, Q. Pei, Y. Yuan, Z. Xu, and L. Wang, “λgrapher: A resource-efficient
serverless system for gnn serving through graph sharing,” in Proceedings of the
ACM Web Conference 2024, ser. WWW ’24. New York, NY, USA: Association
for Computing Machinery, 2024, pp. 2826–2835.

[105] P. Huang, Y. Bai, F. Li, X. Ding, Q. Chen, D. Vij, Du Peng, and Y. Xiong,
“Arktos: A hyperscale cloud infrastructure for building distributed cloud,” in 2022
IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC),
2022.

[106] Z. Huang, K.-J. Lin, S.-Y. Yu, and J. Yung-jen Hsu, “Co-locating services in
iot systems to minimize the communication energy cost,” Journal of Innovation
in Digital Ecosystems, vol. 1, no. 1, pp. 47–57, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352664515000061

[107] IBM Corp., “Ibm cloud functions,” 2023. [Online]. Available: https:
//cloud.ibm.com/functions/

210

https://www.nomadproject.io/docs/internals/scheduling/scheduling
https://www.nomadproject.io/docs/internals/scheduling/scheduling
https://spacenews.com/fcc-oks-lower-orbit-for-some-starlink-satellites/
https://spacenews.com/fcc-oks-lower-orbit-for-some-starlink-satellites/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.sciencedirect.com/science/article/pii/S2352664515000061
https://cloud.ibm.com/functions/
https://cloud.ibm.com/functions/

[108] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-based auto-
scaling for containerized applications,” Neural Computing and Applications, vol. 32,
no. 13, pp. 9745–9760, 2020.

[109] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, “Predictive auto-scaling of
multi-tier applications using performance varying cloud resources,” IEEE Transac-
tions on Cloud Computing, vol. 10, no. 1, pp. 595–607, 2022.

[110] M. R. Jabbarpour, B. Javadi, P. Leong, R. N. Calheiros, D. Boland, and C. Butler,
“Performance analysis of federated learning in orbital edge computing,” in Pro-
ceedings of the IEEE/ACM 16th International Conference on Utility and Cloud
Computing, ser. UCC ’23. New York, NY, USA: Association for Computing
Machinery, 2024.

[111] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Astra: Autonomous serverless
analytics with cost-efficiency and qos-awareness,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp. 756–765.

[112] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli, R. Montanari,
and A. Palopoli, “Container orchestration engines: A thorough functional and per-
formance comparison,” in 2019 IEEE International Conference on Communications
(ICC). IEEE, 2019, pp. 1–6.

[113] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “The limit of horizontal scaling in public
clouds,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 5, no. 1, 2020.

[114] A. Jindal, M. Chadha, S. Benedict, and M. Gerndt, “Estimating the capacities
of function-as-a-service functions,” in Proceedings of the 14th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing Companion, ser. UCC ’21.
New York, NY, USA: Association for Computing Machinery, 2021.

[115] Jing Hui Alex Neo and Lee Bu Sung, “Epsilon: A microservices based distributed
scheduler for kubernetes cluster,” in 2021 18th International Joint Conference on
Computer Science and Software Engineering (JCSSE), 2021, pp. 1–6.

[116] D. R. Jones, “A taxonomy of global optimization methods based on response
surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp. 345–383, 2001.

[117] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of
expensive black-box functions,” Journal of Global Optimization, vol. 13, no. 4, pp.
455–492, 1998.

[118] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Hermod: Principled and practical
scheduling for serverless functions,” in Proceedings of the 13th Symposium on Cloud
Computing, ser. SoCC ’22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 289–305.

211

[119] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M.
Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga, “Mercury:
Hybrid centralized and distributed scheduling in large shared clusters,” in
2015 USENIX Annual Technical Conference (USENIX ATC 15). Santa Clara,
CA: USENIX Association, 2015, pp. 485–497. [Online]. Available: https:
//www.usenix.org/conference/atc15/technical-session/presentation/karanasos

[120] K. Karanasos, A. Suresh, and C. Douglas, “Advancements in yarn resource manager,”
in Encyclopedia of Big Data Technologies, S. Sakr and A. Zomaya, Eds. Cham:
Springer International Publishing, 2018, pp. 1–9.

[121] T. M. Kebedew, V. N. Ha, E. Lagunas, J. Grotz, and S. Chatzinotas, “Qoe-aware
cost-minimizing capacity renting for satellite-as-a-service enabled multiple-beam
satcom systems,” IEEE Transactions on Communications, vol. 72, no. 3, pp.
1773–1789, 2024.

[122] A. Keller and H. Ludwig, “The wsla framework: Specifying and monitoring service
level agreements for web,” Journal of Network and Systems Management, vol. 11,
no. 1, pp. 57–81, 2003.

[123] Kernel.org, “Energy-aware scheduling,” 2024. [Online]. Available: https:
//docs.kernel.org/scheduler/sched-energy.html

[124] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, “Empirical evaluation of workload
forecasting techniques for predictive cloud resource scaling,” in 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), 2016, pp. 1–10.

[125] E. Kulu, “Satellite constellations - 2021 industry survey and trends,” in 35th Annual
Small Satellite Conference, 2021.

[126] H. J. Kushner, “A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise,” Journal of Basic Engineering, vol. 86,
no. 1, pp. 97–106, 1964.

[127] Y.-K. Kwok and l. Ahmad, “Dynamic critical-path scheduling: an effective technique
for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 5, pp. 506–521, 1996.

[128] Z. Lai, H. Li, Y. Deng, Q. Wu, J. Liu, Y. Li, J. Li, L. Liu,
W. Liu, and J. Wu, “Starrynet: Empowering researchers to evaluate
futuristic integrated space and terrestrial networks,” in 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23).
Boston, MA: USENIX Association, 2023, pp. 1309–1324. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/lai-zeqi

[129] C. Li, Y. Zhang, R. Xie, X. Hao, and T. Huang, “Integrating edge computing
into low earth orbit satellite networks: Architecture and prototype,” IEEE Access,
vol. 9, pp. 39 126–39 137, 2021.

212

https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
https://www.usenix.org/conference/nsdi23/presentation/lai-zeqi

[130] K. Li and S. Nastic, “Attentionfunc: Balancing faas compute across edge-cloud
continuum with reinforcement learning,” in The 13th International Conference on
the Internet of Things (IoT 2023), 2023.

[131] M. Li, J. Zhang, J. Lin, Z. Chen, and X. Zheng, “Fireface: Leveraging
internal function features for configuration of functions on serverless
edge platforms,” Sensors, vol. 23, no. 18, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/18/7829

[132] Y. Li, Y. Lin, Y. Wang, K. Ye, and C. Xu, “Serverless computing: State-of-the-art,
challenges and opportunities,” IEEE Transactions on Services Computing, vol. 16,
no. 2, pp. 1522–1539, 2023.

[133] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue of metrics for evaluating
commercial cloud services,” in 2012 ACM/IEEE 13th International Conference on
Grid Computing. IEEE, 20.09.2012 - 23.09.2012, pp. 164–173.

[134] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless computing
survey: A technical primer for design architecture,” ACM Comput. Surv., vol. 54,
no. 10s, pp. 1–34, 2022.

[135] C. Lin and H. Khazaei, “Modeling and optimization of performance and cost of
serverless applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 615–632, 2021.

[136] F. Liu and Y. Niu, “Demystifying the cost of serverless computing: Towards a
win-win deal,” IEEE Transactions on Parallel and Distributed Systems, vol. 35,
no. 1, pp. 59–72, 2024.

[137] J. Liu, W. Jiang, H. Han, M. He, and W. Gu, “Satellite internet of things for
smart agriculture applications: A case study of computer vision,” in 2023 20th An-
nual IEEE International Conference on Sensing, Communication, and Networking
(SECON), 2023, pp. 66–71.

[138] X. Ma, M. Xu, Q. Li, Y. Li, A. Zhou, and S. Wang, “Visions of edge computing
in 6g,” in 5G Edge Computing: Technologies, Applications and Future Visions.
Singapore: Springer Nature Singapore, 2024, pp. 179–202.

[139] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and S. Bagchi, “Orion
and the three rights: Sizing, bundling, and prewarming for serverless dags,” in 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). Carlsbad, CA: USENIX Association, 2022, pp. 303–320. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/mahgoub

[140] F. Malandrino, C. F. Chiasserini, and G. M. Dell’Aera, “Edge-powered assisted
driving for connected cars,” IEEE Transactions on Mobile Computing, p. 1, 2021.

213

https://www.mdpi.com/1424-8220/23/18/7829
https://www.usenix.org/conference/osdi22/presentation/mahgoub

[141] Manner Johannes, Endreß Martin, Heckel Tobias, and Wirtz Guido, “Cold start
influencing factors in function as a service,” in 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion), 2018,
pp. 181–188.

[142] E. Manoel, M. J. Nielsen, A. Salahshour, S. Sampath K.V.L., and S. Sudarshanan,
Problem determination using self-managing autonomic technology, 1st ed., ser. IBM
redbooks. Austin Tex.: IBM International Technical Support Organization, 2005.

[143] C. Marcelino and S. Nastic, “Cwasi: A webassembly runtime shim for inter-function
communication in the serverless edge-cloud continuum,” in 2023 IEEE/ACM
Symposium on Edge Computing (SEC), 2023, pp. 158–170.

[144] C. Marcelino, J. Shahhoud, and S. Nastic, “Goldfish: Serverless actors with short-
term memory state for the edge-cloud continuum,” in Proceedings of the 14th
International Conference on the Internet of Things, ser. IoT ’24. New York, NY,
USA: Association for Computing Machinery, 2024.

[145] Martin Fowler, “Fluentinterface,” 2005. [Online]. Available: https://martinfowler.
com/bliki/FluentInterface.html

[146] G. Mateo-Garcia, J. Veitch-Michaelis, C. Purcell, N. Longepe, S. Reid, A. Anlind,
F. Bruhn, J. Parr, and P. P. Mathieu, “In-orbit demonstration of a re-trainable
machine learning payload for processing optical imagery,” Scientific Reports, vol. 13,
no. 1, p. 10391, 2023.

[147] B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and P. Popovski, “Feder-
ated learning in satellite constellations,” IEEE Network, vol. 38, no. 2, pp. 232–239,
2024.

[148] T. Menouer, C. Cérin, and É. Leclercq, “New multi-objectives scheduling strategies
in docker swarmkit,” in Algorithms and Architectures for Parallel Processing,
J. Vaidya and J. Li, Eds. Cham: Springer International Publishing, 2018, pp.
103–117.

[149] Microsoft, “Linux virtual machines pricing | microsoft azure.” [Online]. Available:
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

[150] ——, “Autoscaling,” 2017. [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/best-practices/auto-scaling

[151] ——, “Azure functions,” 2023. [Online]. Available: https://azure.microsoft.com/en-
us/products/functions

[152] V. Millnert and J. Eker, “Holoscale: horizontal and vertical scaling of cloud
resources,” in 2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC), 2020, pp. 196–205.

214

https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions

[153] D. Milojicic, “The edge-to-cloud continuum,” Computer, vol. 53, no. 11, pp. 16–25,
2020.

[154] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian methods for
seeking the extremum, vol. 2,” L Dixon and G Szego. Toward Global Optimization,
vol. 2, 1978.

[155] P. Mohagheghi and Ø. Haugen, “Evaluating domain-specific modelling solutions,”
in Advances in Conceptual Modeling – Applications and Challenges, ser. Lecture
Notes in Computer Science, J. Trujillo, G. Dobbie, H. Kangassalo, S. Hartmann,
M. Kirchberg, M. Rossi, I. Reinhartz-Berger, E. Zimányi, and F. Frasincar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6413, pp. 212–221.

[156] N. Mohan, A. E. Ferguson, H. Cech, R. Bose, P. R. Renatin, M. K. Marina, and
J. Ott, “A multifaceted look at starlink performance,” in Proceedings of the ACM
on Web Conference 2024, ser. WWW ’24. New York, NY, USA: Association for
Computing Machinery, 2024, pp. 2723–2734.

[157] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: elasticity analytics
for cloud services,” International Journal of Big Data Intelligence, vol. 2, no. 1, pp.
45–62, 2015.

[158] A. Morichetta, V. C. Pujol, S. Nastic, S. Dustdar, D. Vij, Y. Xiong, and Z. Zhang,
“Polarisprofiler: A novel metadata-based profiling approach for optimizing resource
management in the edge-cloud continnum,” in 2023 IEEE International Conference
on Service-Oriented System Engineering (SOSE), 2023, pp. 27–36.

[159] M. I. Naas, P. R. Parvedy, J. Boukhobza, and L. Lemarchand, “ifogstor: An iot
data placement strategy for fog infrastructure,” in 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), 2017, pp. 97–104.

[160] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice Architec-
ture: Aligning Principles, Practices, and Culture. O’Reilly, 2016.

[161] NanoAvionics, “Startical to test its technology on a nanoavionics-built satellite,
paving the way for the first space-based air traffic service constellation,”
2024. [Online]. Available: https://nanoavionics.com/news/startical-to-test-its-
technology-on-a-nanoavionics-built-satellite-paving-the-way-for-the-first-space-
based-air-traffic-service-constellation/

[162] S. Nastic, “Self-provisioning infrastructures for the next generation serverless
computing,” SN Computer Science, vol. 5, no. 6, pp. 678–693, 2024.

[163] S. Nastic, G. Copil, H.-L. Truong, and S. Dustdar, “Governing elastic iot cloud
systems under uncertainty,” in 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, 2015, pp. 131–138.

215

https://nanoavionics.com/news/startical-to-test-its-technology-on-a-nanoavionics-built-satellite-paving-the-way-for-the-first-space-based-air-traffic-service-constellation/
https://nanoavionics.com/news/startical-to-test-its-technology-on-a-nanoavionics-built-satellite-paving-the-way-for-the-first-space-based-air-traffic-service-constellation/
https://nanoavionics.com/news/startical-to-test-its-technology-on-a-nanoavionics-built-satellite-paving-the-way-for-the-first-space-based-air-traffic-service-constellation/

[164] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and Y. Xiong,
“Sloc: Service level objectives for next generation cloud computing,” IEEE Internet
Computing, vol. 24, no. 3, pp. 39–50, 2020.

[165] S. Nastic, T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, D. Vij, and Y. Xiong,
“Polaris scheduler: Edge sensitive and slo aware workload scheduling in cloud-edge-
iot clusters,” in 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), 2021, pp. 206–216.

[166] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A serverless
computing fabric for edge & cloud,” in 2022 IEEE 4th International Conference on
Cognitive Machine Intelligence (CogMI), 2022, pp. 1–12.

[167] National Aeronautics and Space Administration, “State-of-the-art small spacecraft
technology.” [Online]. Available: https://www.nasa.gov/wp-content/uploads/2024/
03/soa-2023.pdf

[168] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, “Horizontal pod
autoscaling in kubernetes for elastic container orchestration,” Sensors (Basel,
Switzerland), vol. 20, no. 16, 2020.

[169] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and M. Danesh-
mand, “A survey on the metaverse: The state-of-the-art, technologies, applications,
and challenges,” IEEE Internet of Things Journal, 2023.

[170] Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,” in IEEE INFO-
COM 2018 - IEEE Conference on Computer Communications, 2018, pp. 198–206.

[171] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Assessing architecture
conformance to coupling-related patterns and practices in microservices,” in Soft-
ware Architecture, ser. Lecture Notes in Computer Science, A. Jansen, I. Malavolta,
H. Muccini, I. Ozkaya, and O. Zimmermann, Eds. Cham: Springer International
Publishing, 2020, vol. 12292, pp. 3–20.

[172] Orbit.ing-now.com, “Low earth orbit,” 2024. [Online]. Available: https://orbit.ing-
now.com/low-earth-orbit/

[173] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed, low
latency scheduling,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, pp. 69–84.

[174] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and
A. Merchant, “Automated control of multiple virtualized resources,” in Proceedings
of the 4th ACM European Conference on Computer Systems, ser. EuroSys ’09. New
York, NY, USA: Association for Computing Machinery, 2009, pp. 13–26.

216

https://www.nasa.gov/wp-content/uploads/2024/03/soa-2023.pdf
https://www.nasa.gov/wp-content/uploads/2024/03/soa-2023.pdf
https://orbit.ing-now.com/low-earth-orbit/
https://orbit.ing-now.com/low-earth-orbit/

[175] S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based iot application
placement within heterogeneous and resource constrained fog computing envi-
ronments,” in Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing, ser. UCC’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 71–81.

[176] L. Pan, L. Wang, S. Chen, and F. Liu, “Retention-aware container caching for
serverless edge computing,” in IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 1069–1078.

[177] Q. Pei, Y. Yuan, H. Hu, Q. Chen, and F. Liu, “Asyfunc: A high-performance
and resource-efficient serverless inference system via asymmetric functions,” in
Proceedings of the 2023 ACM Symposium on Cloud Computing, ser. SoCC ’23.
New York, NY, USA: Association for Computing Machinery, 2023, pp. 324–340.

[178] T. Pfandzelter, “Serverless abstractions for edge computing in large low-earth orbit
satellite networks,” in Proceedings of the 24th International Middleware Conference:
Demos, Posters and Doctoral Symposium, ser. Middleware ’23. New York, NY,
USA: Association for Computing Machinery, 2023, pp. 3–6.

[179] T. Pfandzelter and D. Bermbach, “Qos-aware resource placement for leo satellite
edge computing,” in 2022 IEEE 6th International Conference on Fog and Edge
Computing (ICFEC), 2022, pp. 66–72.

[180] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a computing platform
for the leo edge,” in Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, ser. EdgeSys ’21. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 43–48.

[181] N. Potu, C. Jatoth, and P. Parvataneni, “Optimizing resource scheduling based on
extended particle swarm optimization in fog computing environments,” Concurrency
and Computation: Practice and Experience, vol. 33, no. 23, 2021.

[182] T. Pusztai, C. Marcelino, and S. Nastic, “Hyperdrive: Scheduling serverless func-
tions in the edge-cloud-space 3d continuum,” in 2024 IEEE/ACM Symposium on
Edge Computing (SEC), 2024.

[183] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding, D. Vij, and
Y. Xiong, “A novel middleware for efficiently implementing complex cloud-native
slos,” in 2021 IEEE 14th International Conference on Cloud Computing (CLOUD),
2021, pp. 410–420.

[184] ——, “Slo script: A novel language for implementing complex cloud-native elasticity-
driven slos,” in 2021 IEEE International Conference on Web Services (ICWS),
2021, pp. 21–31.

217

[185] T. Pusztai and S. Nastic, “Chunkfunc: Dynamic slo-aware configuration of serverless
functions,” IEEE Transactions on Parallel and Distributed Systems, 2025.

[186] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Polaris scheduler: Slo- and topology-aware
microservices scheduling at the edge,” in 2022 IEEE/ACM 15th International
Conference on Utility and Cloud Computing (UCC), 2022.

[187] T. Pusztai, S. Nastic, P. Raith, S. Dustdar, D. Vij, and Y. Xiong, “Vela: A 3-phase
distributed scheduler for the edge-cloud continuum,” in 2023 IEEE International
Conference on Cloud Engineering (IC2E), 2023.

[188] T. Pusztai, F. Rossi, and S. Dustdar, “Pogonip: Scheduling asynchronous ap-
plications on the edge,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), 2021, pp. 660–670.

[189] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar: A promising
future for mobile augmented reality—state of the art, challenges, and insights,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 651–666, 2019.

[190] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and collective deep
reinforcement learning for computation offloading: A practical perspective,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1085–1101,
2021.

[191] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications in clouds,”
ACM Comput. Surv., vol. 51, no. 4, pp. 1–33, 2018.

[192] RAINBOW Project, “D1.1 – rainbow stakeholders requirements analysis,” 2020.
[Online]. Available: https://rainbow-h2020.eu/deliverables/

[193] ——, “D1.3 – rainbow use-cases descriptions,” 2021. [Online]. Available:
https://rainbow-h2020.eu/deliverables/

[194] P. Raith, S. Nastic, and S. Dustdar, “Serverless edge computing—where we are
and what lies ahead,” IEEE Internet Computing, vol. 27, no. 3, pp. 50–64, 2023.

[195] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential for
non-disruptive vertical auto scaling and resource estimation in kubernetes,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, 2019,
pp. 33–40.

[196] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar,
“Synthesizing plausible infrastructure configurations for evaluating edge
computing systems,” in 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20). USENIX Association, 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/rausch

218

https://rainbow-h2020.eu/deliverables/
https://rainbow-h2020.eu/deliverables/
https://www.usenix.org/conference/hotedge20/presentation/rausch

[197] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container scheduling for
data-intensive serverless edge computing,” Future Generation Computer Systems,
vol. 114, pp. 259–271, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X2030399X

[198] A. Raza, N. Akhtar, V. Isahagian, I. Matta, and L. Huang, “Configuration and
placement of serverless applications using statistical learning,” IEEE Transactions
on Network and Service Management, vol. 20, no. 2, pp. 1065–1077, 2023.

[199] M. A. Rodriguez and R. Buyya, “Container–based cluster orchestration systems: A
taxonomy and future directions,” Software: Practice and Experience, vol. 49, no. 5,
pp. 698–719, 2019.

[200] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed efficient
deployment of containers with kubernetes,” Computer Communications, vol. 159,
pp. 161–174, 2020.

[201] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling of container-
based applications using reinforcement learning,” in 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, 2019, pp. 329–338.

[202] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless functions
better with heterogeneity,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’22. New York, NY, USA: Association for Computing Machinery, 2022,
pp. 753–767.

[203] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek, P. Nowak,
B. Strack, P. Witusowski, S. Hand, and J. Wilkes, “Autopilot: workload autoscaling
at google,” in Proceedings of the Fifteenth European Conference on Computer
Systems, A. Bilas, K. Magoutis, E. Markatos, D. Kostic, and M. Seltzer, Eds. New
York, NY, USA: ACM, 2020, pp. 1–16.

[204] G. Safaryan, A. Jindal, M. Chadha, and M. Gerndt, “Slam: Slo-aware memory op-
timization for serverless applications,” in 2022 IEEE 15th International Conference
on Cloud Computing (CLOUD), 2022, pp. 30–39.

[205] Santos José, Wauters Tim, Volckaert Bruno, and De Turck Filip, “Towards network-
aware resource provisioning in kubernetes for fog computing applications,” in 2019
IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 351–359.

[206] Satellogic, “Constellation-as-a-service,” 2025. [Online]. Available: https:
//satellogic.com/products/constellation-as-a-service/

[207] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,
pp. 30–39, 2017.

219

https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://www.sciencedirect.com/science/article/pii/S0167739X2030399X
https://satellogic.com/products/constellation-as-a-service/
https://satellogic.com/products/constellation-as-a-service/

[208] E. Saurez, H. Gupta, A. Daglis, and U. Ramachandran, “Oneedge: An efficient
control plane for geo-distributed infrastructures,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 182–196.

[209] M. Schwarzkopf, “The evolution of cluster scheduler architectures,” 2016. [Online].
Available: https://www.cl.cam.ac.uk/research/srg/netos/camsas/blog/2016-03-
09-scheduler-architectures.html

[210] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: Flexible,
scalable schedulers for large compute clusters,” in Proceedings of the 8th ACM
European Conference on Computer Systems, ser. EuroSys ’13. New York, NY,
USA: Association for Computing Machinery, 2013, pp. 351–364.

[211] B. Sedlak, I. Murturi, and S. Dustdar, “Specification and operation of privacy
models for data streams on the edge,” in 2022 IEEE 6th International Conference
on Fog and Edge Computing (ICFEC), 2022, pp. 78–82.

[212] S. Sehic, F. Li, S. Nastic, and S. Dustdar, “A programming model for context-
aware applications in large-scale pervasive systems,” in Proceedings of the IEEE
8th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob 2012). IEEE Computer Society, 2012, pp. 142–149.

[213] P. Senior, S. Eckersley, V. Irwin, B. Stern, A. Haslehurst, A. Cawthorne, A. Da
Silva Curiel, and M. Sweeting, “Can we use low cost small satellites to observe space
debris missed by ground systems,” in Proceedings of the 8th European Conference
on Space Debris, Darmstadt, Germany, 2021, pp. 20–23.

[214] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of function-
as-a-service computing,” in Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 1063–1075.

[215] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in
the wild: Characterizing and optimizing the serverless workload at a large
cloud provider,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 2020, pp. 205–218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[216] D. Shepardson, “Fcc chair wants more competition to spacex’s starlink unit,” 2024.
[Online]. Available: https://www.reuters.com/technology/space/fcc-chair-wants-
more-competition-spacexs-starlink-unit-2024-09-11/

[217] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in 2020 USENIX Annual Technical Conference

220

https://www.cl.cam.ac.uk/research/srg/netos/camsas/blog/2016-03-09-scheduler-architectures.html
https://www.cl.cam.ac.uk/research/srg/netos/camsas/blog/2016-03-09-scheduler-architectures.html
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.reuters.com/technology/space/fcc-chair-wants-more-competition-spacexs-starlink-unit-2024-09-11/
https://www.reuters.com/technology/space/fcc-chair-wants-more-competition-spacexs-starlink-unit-2024-09-11/

(USENIX ATC 20). USENIX Association, 2020, pp. 419–433. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shillaker

[218] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A survey on mo-
bile augmented reality with 5g mobile edge computing: Architectures, applications,
and technical aspects,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2,
pp. 1160–1192, 2021.

[219] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized
iot service placement in the fog,” Service Oriented Computing and Applications,
vol. 11, pp. 427–443, 2017.

[220] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-aware fog service
placement,” in 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC). IEEE, 14.05.2017 - 15.05.2017, pp. 89–96.

[221] H. Song, F. Chauvel, and P. H. Nguyen, “Using microservices to customize multi-
tenant software-as-a-service,” in Microservices: Science and Engineering. Springer,
2020, pp. 299–331.

[222] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and R. Griffith,
“Runtime vertical scaling of virtualized applications via online model estimation,” in
2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing
Systems, 2014, pp. 157–166.

[223] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for serverless functions,”
in Proceedings of the 5th International Workshop on Serverless Computing, ser.
WOSC ’19. New York, NY, USA: Association for Computing Machinery, 2019,
pp. 19–24.

[224] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Demo:
Emulating geo-distributed fog services,” in Proceedings of the 5th ACM/IEEE
Symposium on Edge Computing, ser. SEC ’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[225] ——, “Fogify: A fog computing emulation framework,” in Proceedings of the 5th
ACM/IEEE Symposium on Edge Computing, ser. SEC ’20. New York, NY, USA:
Association for Computing Machinery, 2020.

[226] Q. Tang, R. Xie, Z. Fang, T. Huang, T. Chen, R. Zhang, and F. R. Yu, “Joint service
deployment and task scheduling for satellite edge computing: A two-timescale
hierarchical approach,” IEEE Journal on Selected Areas in Communications, vol. 42,
no. 5, pp. 1063–1079, 2024.

[227] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and H. Ludwig, “rsla: A
service level agreement language for cloud services,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 27.06.2016 - 02.07.2016, pp.
415–422.

221

https://www.usenix.org/conference/atc20/presentation/shillaker

[228] The Apache Software Foundation, “Apache hadoop 3.3.3: Capacity scheduler.”
[Online]. Available: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/CapacityScheduler.html

[229] ——, “Apache hadoop 3.3.3: Fair scheduler.” [Online]. Available: https://hadoop.
apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html

[230] The Kubernetes Authors, “Custom metrics api - design proposal,” 2018-01-22.
[Online]. Available: https://github.com/kubernetes/community/blob/master/
contributors/design-proposals/instrumentation/custom-metrics-api.md

[231] ——, “Hpa v2 api extension proposal,” 2018-02-14. [Online]. Avail-
able: https://github.com/kubernetes/community/blob/master/contributors/
design-proposals/autoscaling/hpa-external-metrics.md

[232] ——, “Horizontal pod autoscaler with arbitrary metrics - design proposal,”
2018-11-19. [Online]. Available: https://github.com/kubernetes/community/blob/
master/contributors/design-proposals/autoscaling/hpa-v2.md

[233] ——, “External metrics api - design proposal,” 2018-12-14. [Online].
Available: https://github.com/kubernetes/community/blob/master/contributors/
design-proposals/instrumentation/external-metrics-api.md

[234] ——, “Autoscaling components for kubernetes,” 2020. [Online]. Available:
https://github.com/kubernetes/autoscaler

[235] ——, “Scheduler configuration | kubernetes,” 2022. [Online]. Available:
https://kubernetes.io/docs/reference/scheduling/config/

[236] ——, “Considerations for large clusters,” 2023-01-12. [Online]. Available:
https://kubernetes.io/docs/setup/best-practices/cluster-large/

[237] ——, “Scheduling framework | kubernetes,” 2024. [Online]. Available:
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

[238] H. Tian, S. Li, A. Wang, W. Wang, T. Wu, and H. Yang, “Owl: performance-aware
scheduling for resource-efficient function-as-a-service cloud,” in Proceedings of the
13th Symposium on Cloud Computing, ser. SoCC ’22. New York, NY, USA:
Association for Computing Machinery, 2022, pp. 78–93.

[239] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic scheduling for
stochastic edge-cloud computing environments using a3c learning and residual
recurrent neural networks,” IEEE Transactions on Mobile Computing, vol. 21,
no. 3, pp. 940–954, 2022.

[240] A. Ullah, J. Li, Y. Shen, and A. Hussain, “A control theoretical view of cloud
elasticity: taxonomy, survey and challenges,” Cluster Computing, vol. 21, no. 4, pp.
1735–1764, 2018.

222

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/custom-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-external-metrics.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-external-metrics.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/external-metrics-api.md
https://github.com/kubernetes/autoscaler
https://kubernetes.io/docs/reference/scheduling/config/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

[241] V. Pujol, P. Donta, A. Morichetta, I. Murturi, and S. Dustdar, “Edge intelligence—
research opportunities for distributed computing continuum systems,” IEEE Inter-
net Computing, vol. 27, no. 04, pp. 53–74, 2023.

[242] C. van Arsdale, “A breakthrough in wildfire detection: How a new constellation of
satellites can detect smaller wildfires earlier,” 2024. [Online]. Available: https:
//blog.google/outreach-initiatives/sustainability/google-ai-wildfire-detection/

[243] D. Vasisht, J. Shenoy, and R. Chandra, “L2d2: low latency distributed downlink
for leo satellites,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
ser. SIGCOMM ’21. New York, NY, USA: Association for Computing Machinery,
2021, pp. 151–164.

[244] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another resource
negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing, ser.
SOCC ’13. New York, NY, USA: Association for Computing Machinery, 2013.

[245] Verizon, “Ip latency statistics,” 2023. [Online]. Available: https://www.verizon.
com/business/terms/latency/

[246] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at google with borg,” in Proceedings of the Tenth
European Conference on Computer Systems - EuroSys ’15, L. Réveillère, T. Harris,
and M. Herlihy, Eds. New York, New York, USA: ACM Press, 2015, pp. 1–17.

[247] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration
in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics,
vol. 55, pp. 248–266, 2018.

[248] C. Wang, Y. Zhang, Q. Li, A. Zhou, and S. Wang, “Satellite computing: A case
study of cloud-native satellites,” in 2023 IEEE International Conference on Edge
Computing and Communications (EDGE), 2023, pp. 262–270.

[249] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind the
curtains of serverless platforms,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, 2018, pp. 133–146. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/wang-liang

[250] M. Wang, D. Zhang, and B. Wu, “A cluster autoscaler based on multiple node types
in kubernetes,” in 2020 IEEE 4th Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC). IEEE, 12.06.2020 - 14.06.2020, pp.
575–579.

[251] S. Wang and Q. Li, “Satellite computing: Vision and challenges,” IEEE Internet
of Things Journal, vol. 10, no. 24, pp. 22 514–22 529, 2023.

223

https://blog.google/outreach-initiatives/sustainability/google-ai-wildfire-detection/
https://blog.google/outreach-initiatives/sustainability/google-ai-wildfire-detection/
https://www.verizon.com/business/terms/latency/
https://www.verizon.com/business/terms/latency/
https://www.usenix.org/conference/atc18/presentation/wang-liang

[252] W. Wang, H. Chen, and X. Chen, “An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications,” in 2012 9th International Con-
ference on Ubiquitous Intelligence and Computing and 9th International Conference
on Autonomic and Trusted Computing, 2012, pp. 509–516.

[253] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog orchestration
for internet of things services,” IEEE Internet Computing, vol. 21, no. 2, pp. 16–24,
2017.

[254] Z. Wen, Q. Chen, Y. Niu, Z. Song, Q. Deng, and F. Liu, “Joint optimization
of parallelism and resource configuration for serverless function steps,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 4, pp. 560–576, 2024.

[255] R. Xing, X. Ma, A. Zhou, S. Dustdar, and S. Wang, “From earth to space: A first
deployment of 5g core network on satellite,” China Communications, vol. 20, no. 4,
pp. 315–325, 2023.

[256] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λdnn: Achieving predictable
distributed dnn training with serverless architectures,” IEEE Transactions on
Computers, vol. 71, no. 2, pp. 450–463, 2022.

[257] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the use of fuzzy mod-
eling in virtualized data center management,” in Fourth International Conference
on Autonomic Computing (ICAC’07), 2007, p. 25.

[258] L. Yazdanov and C. Fetzer, “Vscaler: Autonomic virtual machine scaling,” in 2013
IEEE Sixth International Conference on Cloud Computing, 2013, pp. 212–219.

[259] G. Yu, P. Chen, Z. Zheng, J. Zhang, X. Li, and Z. He, “Faasdeliver: Cost-efficient
and qos-aware function delivery in computing continuum,” IEEE Transactions on
Services Computing, pp. 1–16, 2023.

[260] H. Yu, C. Fontenot, H. Wang, J. Li, X. Yuan, and S.-J. Park, “Libra: Harvesting
idle resources safely and timely in serverless clusters,” in Proceedings of the 32nd
International Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’23. New York, NY, USA: Association for Computing Machinery, 2023,
pp. 181–194.

[261] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd, “Faasrank: Learning to
schedule functions in serverless platforms,” in 2021 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), 2021, pp. 31–40.

[262] H. W. Zaglauer, “Intelligent satellite payloads as enablers for 6g,” ETSI
Conference on Non-Terrestrial Networks, A Native Component of 6G, 2024.
[Online]. Available: https://docbox.etsi.org/Workshop/2024/04_ETSI_6G_NTN/
SESSION%2006/S6_03_Zaglauer.pdf

224

https://docbox.etsi.org/Workshop/2024/04_ETSI_6G_NTN/SESSION%2006/S6_03_Zaglauer.pdf
https://docbox.etsi.org/Workshop/2024/04_ETSI_6G_NTN/SESSION%2006/S6_03_Zaglauer.pdf

[263] Z. Zhai, L. Zeng, T. Ouyang, S. Yu, Q. Huang, and X. Chen, “Seco: Multi-satellite
edge computing enabled wide-area and real-time earth observation missions,” in
IEEE INFOCOM 2024 - IEEE Conference on Computer Communications, 2024,
pp. 2548–2557.

[264] W. Zhang, Y. Xue, J. Wu, and X. Xu, “Satellite as a service: a hybrid resource man-
agement framework for space-terrestrial integrated networks,” in 2020 IEEE 11th
International Conference on Software Engineering and Service Science (ICSESS),
2020, pp. 171–174.

[265] X. Zhang, J. Liu, R. Zhang, Y. Huang, J. Tong, N. Xin, L. Liu, and Z. Xiong,
“Energy-efficient computation peer offloading in satellite edge computing networks,”
IEEE Transactions on Mobile Computing, vol. 23, no. 4, pp. 3077–3091, 2024.

[266] Z. Zhang, C. Jin, and X. Jin, “Jolteon: Unleashing the promise
of serverless for serverless workflows,” in 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24). Santa Clara,
CA: USENIX Association, 2024, pp. 167–183. [Online]. Available: https:
//www.usenix.org/conference/nsdi24/presentation/zhang-zili-jolteon

[267] Zhao Hailiang, Deng Shuiguang, Liu Zijie, Yin Jianwei, and Dustdar Schahram,
“Distributed redundant placement for microservice-based applications at the edge,”
IEEE Transactions on Services Computing, vol. 15, no. 3, pp. 1732–1745, 2022.

[268] D. Zhou, M. Sheng, J. Li, and Z. Han, “Aerospace integrated networks innovation for
empowering 6g: A survey and future challenges,” IEEE Communications Surveys
& Tutorials, vol. 25, no. 2, pp. 975–1019, 2023.

[269] Z. Zhou, Y. Zhang, and C. Delimitrou, “Aquatope: Qos-and-uncertainty-aware
resource management for multi-stage serverless workflows,” in Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2022, pp. 1–14.

[270] T. Zubko, A. Jindal, M. Chadha, and M. Gerndt, “Maff: Self-adaptive memory
optimization for serverless functions,” in Service-Oriented and Cloud Computing,
F. Montesi, G. A. Papadopoulos, and W. Zimmermann, Eds. Cham: Springer
International Publishing, 2022, pp. 137–154.

225

https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-jolteon
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-jolteon

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Scientific Contributions

	SLO Script: A Novel Language for Implementing Complex Cloud-Native Elasticity-Driven SLOs
	Introduction
	Motivation
	SLO Script Language Design & Main Abstractions
	Runtime Mechanisms
	Evaluation & Implementation
	Summary

	A Novel Middleware for Efficiently Implementing Complex Cloud-Native SLOs
	Introduction
	Motivation
	Framework Overview
	Mechanisms
	Implementation
	Evaluation
	Summary

	Pogonip: Scheduling Asynchronous Applications on the Edge
	Introduction
	System Model and Problem Definition
	Optimization Problem Formulation
	The Pogonip Heuristic
	Prototype
	Experimental Results
	Summary

	Polaris Scheduler: SLO- and Topology-aware Microservices Scheduling at the Edge
	Introduction
	Motivation
	Approach Overview and Scheduling Pipeline
	Polaris Scheduler Plugins
	Evaluation
	Summary

	Vela: A 3-Phase Distributed Scheduler for the Edge-Cloud Continuum
	Introduction
	Vela 3-Phase Scheduling Workflow
	Vela's Main Scheduling Mechanisms
	Evaluation & Implementation
	Summary

	ChunkFunc: Dynamic SLO-aware Configuration of Serverless Functions
	Introduction
	ChunkFunc System Model & Optimization Problem
	ChunkFunc Framework Overview & Profiler
	ChunkFunc Workflow Optimizer
	Implementation & Experiments Design
	Experimental Results
	Summary

	HyperDrive: Scheduling Serverless Functions in the Edge-Cloud-Space 3D Continuum
	Introduction
	Motivation
	Architecture Overview of a Serverless Platform for the 3D Continuum
	HyperDrive SLO-Aware Scheduler for 3D Continuum
	Implementation & Experiments Design
	Experimental Results
	Summary

	Related Work
	Complex SLO Definition and Enforcement
	SLO-aware Scheduling of Microservices in the Edge-Cloud continuum
	Distributed Scheduling
	Resource Configuration Optimization for Serverless Functions
	Scheduling in the 3D Continuum

	Conclusion
	Summary
	Revisiting the Research Questions
	Limitations & Future Work

	Overview of Generative AI Tools Used
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

