
Provisioning and Management
Techniques for Elastic Collectives

in Human Computation

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Mirela Riveni, MSc.
Registration Number 1028032

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.-Prof. Dr. Schahram Dustdar
Second advisor: Priv.-Doz. Dr. Hong-Linh Truong

External reviewers:
Prof. Dr. Harald C. Gall. University of Zurich, Switzerland.
Assoc. Prof. Mehmet S. Aktas. Yıldız Technical University, Turkey.

Vienna, 6th June, 2018
Mirela Riveni Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Declaration of Authorship

Mirela Riveni, MSc.
Vienna, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 6th June, 2018
Mirela Riveni

iii

To my parents, and my sister

Acknowledgements

First, i would like to thank my advisor, Schahram Dustdar, for giving me the opportunity
to work under his mentorship. I feel honored to have been a part of a research group
under the guidance of a scientist with admirable achievements and character, and who is
a role model for many; so much more because i was continuously encouraged and inspired
along the way. My advisor has given me guidance, freedom and trust, and has shown
flexibility regarding my research topic, which are crucial values in intellectual endeavor.
In addition, I thank Hong-Linh Truong, my second advisor, for the fruitful brainstorming
sessions, idea exchanges, and collaboration for parts of this work. Moreover, I thank
the PhD School of Informatics for the financial support, and it’s staff for the admirable
organizational and administrative work. The research process, including the environment
I have been in, the wonderful people I was surrounded with and hope to be so in the future,
have given me invaluable academic experience, but most importantly an extraordinary
life experience. I am grateful for every moment.

I am happy to have met remarkable people, with whom we shared similar exciting
research experience. Specifically, I would like to thank Mohamed Radwan, Kseniya
Cherenkova, Soheil Qanbari, Peter Kán, Danijel Novakovic, Ognjen Scekic, Muhammad
Candra, Vitaliy Lipchinsky, Andreas Scharf and Shaghayegh Sharif Nabavi, for the
interesting conversations within our shared time in Vienna, and their friendship.

Thanks to my collaborators from around the world for the knowledge exchange,
constructive comments and contributions. In particular, I thank Mehmet S. Aktas from
the Yıldız Technical University, in Istanbul, and his student Muhamed J. Baeth, with
whom we did joint work while I was on a short research visit there. Thanks to Tien-Dung
Nguyen and Christiaan Hillen as well, for valuable discussions and cooperation. I would
also like to thank Aksenti Grnarov, my professor from my BSc studies, who follows my
successes. In addition, thanks to my close friends for their cheering.

Finally, I am eternally grateful to my parents, Mübedzel and Namik Riveni, and my
sister Laura. My parents have continuously been my greatest support, and above all
they are my greatest examples and inspiration in life. They have showed me what is
understanding, compassion, trust, patience and love, and provided me with opportunities
in life along with showing me the way to create them. Thank you for all your love.

vii

Abstract

Technology and society are in an interminable process of mutual effect on each-other’s
transformation; thus, computational challenges along evolving social dynamics are get-
ting highly complex. New approaches are needed to tackle this complexity, as some
computational tasks cannot be solved solely by software. Consequently, we argue that
systems need to be evolving toward the integration of software services, things and people
that work together, e.g., as Collective Adaptive Systems. This thesis focuses on the
people part of these systems, and more precisely on automating the provisioning and
management of human-based resources, in scenarios where applications and systems
include human-computation.

Human computation has been slowly but firmly gaining its momentum, and software is
beginning to be designed and built with the possibility of enabling human task-execution
to be provisioned as a service. In this work, we investigate the mechanisms to provision
and elastically manage collective and collaborative human computation. We present
a report of our investigation of strategies for formation and elastic coordination and
management of collectives of experts who provide their skills online as services. With
particular focus on elasticity we argue that human computation is more efficient, reliable,
on-time and cost-effective when expertise can be scaled in and out, at runtime. Moreover,
we argue that trust is highly important due to the many uncertainties that come from the
human nature. Hence, we investigated trust metrics and ways of using trust in automated
coordination of collectives. Furthermore, we see runtime negotiations as an additional
mechanism to guarantee quality of results for online human-task execution and argue
that they are as crucial for human-based services as they are for software services. Last
but not the least, we investigated the benefits of storing provenance data, along with the
challenges that human-computation entails regarding privacy.

ix

Contents

Abstract ix

Contents xi

List of Figures 1

List of Tables 2

List of Algorithms 5

Acronyms 7

1 Introduction 9
1.1 Social Compute Units Fundamentals and Motivation 10

1.1.1 Social Compute Units: Basics . 10
1.2 Problem Statement and Research Questions 10
1.3 Contributions . 12

1.3.1 Publications . 13
Publication List . 15

1.4 Thesis Structure . 16

2 State of The Art 19
2.1 Human Computation: Categories and Definitions 19

2.1.1 Social Compute Units . 21
2.2 Service Oriented Computing . 21

2.2.1 Human Provided-Services . 21
2.3 Frameworks, Models and Platforms . 22
2.4 Resource Management . 23

2.4.1 Metrics . 23
2.4.2 Resource Ranking and Selection Algorithms 24

Individual Resource Selection . 24
Team/Collective Formation . 25

2.4.3 Runtime Resource Provisioning, Management and Adaptation Tech-
niques . 25

xi

2.4.4 Elasticity . 26
2.5 Incentive Mechanisms and Pricing . 26
2.6 Trust and Reputation . 27
2.7 Quality of Service and Service Level Agreements 30

3 Elastic Social Compute Units: Provisioning and Management 31
3.1 SCU Preliminaries . 31

3.1.1 ICU and SCU Definitions . 31
3.2 Motivation Scenario . 33
3.3 On the Elasticity of Social Compute Units 34

3.3.1 Definition and Principles of Elasticity 35
3.3.2 ICU/SCU Formal Notation . 35
3.3.3 Metrics: Notation and Definitions 36
3.3.4 SCU Execution Model . 36

SCU States . 36
SCU in Execution . 37
Elasticity APIs . 39

3.3.5 Elastic SCU Provisioning Platform 39
3.4 SCU Runtime Management: Elastic Adaptation Mechanisms 40

3.4.1 Programming an Elasticity Strategy: A semi-automatic adaptation
strategy with human-in-the-loop decision making 41

3.4.2 Experiment: Executing an Elasticity Strategy 44
Utilizing an Analytic Hierarchy Process (AHP) model for ranking

of ICUs . 44
Implementation of Algorithmn 3.1 and results 45

3.5 Related Work . 46

4 Trust in Social Computing: Metrics, Model and Algorithms 49
4.1 Background and Motivation . 49

4.1.1 Trust for Social collectives . 49
4.1.2 Motivation Scenario and Challenges 50

Observations and Challenges . 51
4.2 A Socio-Technical Trust Model for Social Compute Units 53

4.2.1 Modeling Trusted Individual Compute Units 53
4.2.2 Metrics: Notation and Definitions 53
4.2.3 Socio-Technical Trust (STT) Model 54

Context . 56
4.2.4 Modeling Trusted Social Compute Units 56

4.3 Elastic Adaptation Strategies with Trust: Algorithms and Experiments . 59
4.3.1 Experiments . 59

4.4 Incentive Mechanisms with Trust . 64
4.5 Related Work . 65

4.5.1 Trust in Social Computing . 65
4.5.2 Agent-based Trust . 67

5 Team Formation 69
5.1 Team Formation based on trust and multiple interaction types 70

5.1.1 Problem Statement . 70
5.1.2 Model . 70
5.1.3 Expert role connected to different types of interaction links-Discussion 74

5.2 Programming team formation . 74
5.3 Experiments . 76

5.3.1 Evaluation with synthetic data . 76
5.3.2 Evaluation with real data . 78

5.4 Related Work . 80

6 The Application of Service Level Agreements for Social Collectives 83
6.1 Motivation Scenario . 84

6.1.1 Language translation . 84
6.1.2 On the need for SLAs supporting human computation 84

6.2 Computational-Environment Setting . 85
6.3 Modeling SLAs for SCUs . 87

6.3.1 Human-centric properties and metrics 87
6.3.2 Penalties . 87
6.3.3 Enforcing Privacy with SLAs . 89
6.3.4 Examples . 89

6.4 SLAs and Elasticity . 91
6.4.1 Programming SLA Parameter Changes at Runtime 91
6.4.2 Implementation of a Proof of Concept prototype and Experiments 92

6.5 RelatedWork . 97

7 Provenance in Human Computation 99
7.1 Motivation . 100

7.1.1 Provenance data in social-computing management-mechanisms . . 100
Individual Task-assignment and Formation of collectives/Social

Compute Units . 100
Adaptation mechanisms for Social Compute Units 100
Misbehavior prevention and False negatives in Misbehavior detection100
Incentive mechanisms . 101
Compensations . 101

7.1.2 Challenges . 101
7.2 SCU Environment and Provenance . 102

7.2.1 SCU Environment . 102
7.2.2 Modeling Provenance for SCUs . 103

7.3 Experiments . 104
7.3.1 Setup . 104
7.3.2 Dataset . 106
7.3.3 Experiment types and Results . 107

Provenance Visualization . 107

Komadu experiments . 111
7.4 Provenance-based Inferred Metrics for Social Computing 112
7.5 Privacy Implications: A Discussion . 115
7.6 Related Work . 117

8 Privacy in Human Computation 119
8.1 Personal Data on Human Computation Systems 119

8.1.1 Collected data . 119
8.1.2 Reasons for collecting personal data 120

Task-Assignment and Formation of collectives 121
Management Mechanisms . 121
Quality of Service . 121
Misbehavior prevention . 121
Incentive Mechanisms . 122
Payments . 122

8.2 Privacy Risks . 122
User Privacy Policy Awareness . 122
Lack of Transparency in Privacy Policies 122
Profiling . 123
Lack of Control . 124
Lack of Ownership . 124
Lack of Security . 124

8.3 Study . 124
8.3.1 Method: Survey Design and Distribution 124
8.3.2 Results and Analysis . 127

Demographics . 127
Privacy Awareness . 127

8.4 Suggestions . 130
8.4.1 Recommendations . 130
8.4.2 Research directions . 133

Transparency with rules or SLAs 133
Privacy preserving workflows . 133
Payment methods . 133
Location . 133
Evaluation methods . 134
Raising people awareness about privacy 134

8.5 Related Work . 134

9 Conclusions 137

Bibliography 139

Appendices 154

Appendix A 155

Appendix B 157

Appendix C 159

List of Figures

3.1 SCU lifecycle states . 32
3.2 SCU basic-working concept . 32
3.3 An illustrative example of an SCU in execution: expanding and reducing states 38
3.4 Conceptual platform model supporting elastic SCUs 40
3.5 SCU Productivity and Effort in relation to Task and ICU number 45

4.1 SCU Working Environment in a Predictive Maintenance Scenario 51
4.2 Platform/SCU Management with Trust . 52
4.3 SCU Socio-Technical Trust Model . 58
4.4 SCU trust metrics and relations updates . 59
4.5 SCU metric updates without considering trust for delegations 61
4.6 SCU metric updates considering the STT trust model 62
4.7 Illustrative xml file with ICU metrics . 63
4.8 SCU operation and ICU trust updates . 64

5.1 The lighter lines represent interactions only in terms of communication, the
darker lines represent the presence of two types of interactions: communication
and coordination. Edge values represent interaction weights, a single value
represents communication weight, while sets of two values represent weights
of communication and coordination, respectively. Values in red represent STT
scores of experts. 73

6.1 SLA-based ICU-SCU Provisioning and Management Platform 86
6.2 Elastic SCU adaptation with SLA cost changes 92
6.3 Proof-of-concept prototype . 94
6.4 Elastic SCU adaptation with SLA cost changes 95
6.5 Time Comparison of elastic and fixed SCU adaptation algorithms 95
6.6 Code snippet from our experiments for delegating a task with a new cost to a

new ICU . 96

7.1 SCU environment model. 102
7.2 A graphical provenance-model based on the PROV-O specification, focusing

on ICU task executions and profile updates. 105
7.3 A specific example focused on ICU task assignments and profile updates. . . 105

1

7.4 Code snippet from defining Entities, Activities and Relationships. 106
7.5 Tasks for ICU 16 and 22 at four selected checkpoints during one SCU execution.107
7.6 Provenance details after a run of an SCU adaptation-algorithm 108
7.7 ICUs and tasks during the execution of one bag-of-tasks. The graph result of

checkpoint 7. 108
7.8 Provenance graphs for an SCU after execution of bag-of-tasks at two different

checkpoints during run-time . 109
7.9 Provenance graphs for an SCU after execution of bag-of-tasks at two different

checkpoints during run-time . 109
7.10 A sample xml file generated with ProvToolbox. 110
7.11 PROV Agents in our experiments inserted to Komadu 111

8.1 User reports on regulations . 131

List of Tables

2.1 Overview of metrics for people in social computing (individuals and collectives) 24

3.1 Notation and description of basic ICU metrics and parameters 35
3.2 SCU metrics to be used in adaptation mechanisms 37
3.3 Fundamental state alternatives of the SCU Execution phase 38
3.4 Example API, abstract methods for ICU manipulation 39

4.1 Notations . 57

5.1 Notations . 72
5.2 Ranked teams and values of three objectives 77
5.3 Ranked teams and values of three objectives as input for Algorithm 5.2 . . . 78
5.4 Ranked teams and values of three objectives at a final run of team generations

in Algorithm 5.2 . 79
5.5 Ranked teams and values of three objectives from a real-world data-set . . . 80

6.1 Notation and description of basic parameters for SCU SLAs 88

7.1 Komadu injection processing time of specific log-data 113
7.2 Komadu injection data for 50 checkpoints, and a total of 2664 activities

treated as events . 113

2

List of Tables

7.3 Komadu injection data for 400 checkpoints, and a total of 21780 activities
treated as events . 113

8.1 Demographics of participants . 126
8.2 Most common collected data . 126
8.3 Data concerns . 128
8.4 Security related survey statements . 129
8.5 Opinions on regulations, and approaches in research and industry 131

3

List of Algorithms

3.1 SCU Adaptation: Task-delegations with ICU-side assurance 43

4.1 A Cost-Effective Algorithm for Elastic Adaptation of SCUs based on ICU
Reputation . 60

4.2 Membership-Collaboration Trust Update Algorithm as an Incentive Mecha-
nism . 66

5.1 Team-formation algorithm utilizing AHP for ranking experts and non-
evolutionary Pareto based team selection 75

5.2 Team-formation Genetic Algorithm . 76

6.1 Elastic Adaptation of SCUs based on SLA changes 93

5

Acronyms

ABC Attribute Based Credentials. 120

AHP Analytic Hierarchy Process. 40

BPEL4People Web Service Business Process Execution Language Extension for People.
20

BPMN Business Process Model and Notation. 82

CAS Collective Adaptive Systems. 10, 73

GWAPs Games with a Purpose. 9

HPS Human Provided Services. 20

ICU Individual Compute Unit. 10

NFP Non-functional properties. 20, 45

QOS Quality of Service. 20

SCU Social Compute Unit. 9

SLA Service Level Agreement. 73

SOA Service Oriented Architectures. 20

STT Socio-Technical Trust. 46

WSLA Web Service Level Agreement. 79

7

CHAPTER 1
Introduction

The fact that a large number of people are present and act online has opened up extensive
possibilities of utilizing peoples’ capabilities in various areas. Today, power is in the
hands of those who know how to utilize the opportunities conferred by the effective use of
these skills provided online, regardless if it is the one who offers skills, or the party that
requests those skills. Namely, both parties may end up with gains in different contexts,
such as social, political and monetary. To avoid the misuse of those gains, it is imperative
that human computation is exercised in an ethical manner by both developers and people
who consume its benefits. This thesis should be read with a consideration of the fact
that everything proposed was investigated, and should be applied with regard for ethical
principles, such as transparency and privacy-respecting approaches in application and
system design.

Human Computation is a wide concept that encapsulates the online activity of people
who use their skills to bring value through content or task execution. It has already been
put into practice in various forms. Microblogging, Wiki’s, social and expert networks
for example enable content sharing and knowledge creation. On the other hand, we
see systems that are already enabling online task execution. Games with a Purpose
(GWAPs) include human-in-the-loop and engage people in executing tasks that cannot
yet be solved by computers. Crowdsourcing enables people to individually execute small
and simple online tasks so that vast amount of information can be processed in a short
time. In this context, the term social computing is also widely used to cover the online
activities of people who are socially connected while executing these activities. We use
the terms social computing and human computation interchangeably in this thesis, and
we elaborate the reason in Chapter 2. In this thesis we focus on a social computing
construct named Social Compute Unit (SCU), which is a concept defined by people who
are engaged in complex task execution, while being connected in a certain social context
within which they work together in a collective, for a certain common goal. We give
concrete real-life scenarios for SCUs in Chapter 3, 4, and 5.

9

1. Introduction

From the systems perspective, we see the rise of Collective Adaptive Systems (CAS)
that encapsulate heterogeneous types of resources and services enabling new ways of
resource utilization. To specify, these systems are aimed at integrating various types of
resources, such as software, Internet of Things and people working together in a collective
and being managed in an automated way. Thus, today’s systems should be and are
already moving toward being socio-technical in character, as are most of our societies.
We envision Social Compute Units as part of these systems, providing services offered by
a collective of people as compute resources, and in this thesis we investigate mechanisms
of their effective provisioning and management, in this way contributing to the effort of
building complex socially-enhanced applications and systems.

1.1 Social Compute Units Fundamentals and Motivation

1.1.1 Social Compute Units: Basics

The Social Compute Unit concept is first introduced in [DB11]. An SCU is a construct
representing a collective of people who provide their skills as computing resources or
services, for execution of human-computation tasks. In our work, a member of an SCU is
called an Individual Compute Unit (ICU). In other words, an ICU is an individual who
provides his/her capabilities online to execute human-computation tasks. We will use this
terminology throughout this thesis. However, we also use the terms resources, services
as well as workers, to refer to ICUs where we find it more fitting for the context of the
discussion. Social Compute Units are possible today because of the resource pools that
are provided by human computation platforms, including crowdsourcing platforms, social
networking platforms, expert networks, enterprise networks and similar. In addition, we
can see advancements in modeling online human-based task execution under the service
oriented model, as presented in [STD08].

SCUs are formed ad-hoc or on customer request, and they have a certain goal. Thus,
they have their own life-cycle. We work with them as having a cloud-like behavior, in the
sense that during their life-cycle new members can be included and existing members
excluded as needed to adapt the SCU. With these collectives, our goal is to manage
human-based task execution in a programmatic way and contribute in the effort to make
software and human computation work together as discussed in [TDB12]. In particular, in
this thesis, we focus on provisioning and proactive management of team-based/collective
human computation that we investigate under the term Social Compute Units.

1.2 Problem Statement and Research Questions
Due to the unpredictable nature of human behavior, SCUs bring significant challenges if
we want to manage them in a programmatic way. First, SCUs are collectives and thus
their provisioning is very different and more complex than that of crowdsourced workers,
as workers in crowdsourcing are managed from the perspective of an individual. With
SCUs we have complex provisioning of collective work where tasks may be interdependent

10

1.2. Problem Statement and Research Questions

in addition to the fact that SCUs are envisioned for more complex tasks than those in
crowdsourcing. Second, the definition of SCUs entails that SCUs are managed elasticically,
as much as this makes them efficient however, their management is more complex than
that of online teams that include a fixed number of workers for example. Consequently,
as an SCU adapts at runtime, monitoring metrics and ranking algorithms are needed to
match a particular task to an appropriate ICU that would be included in the SCU at
runtime, or to exclude an ICU from an SCU when it is not needed anymore. Third, along
ICU management, task management is crucial. Existing task management solutions for
businesses mostly provide task tracking/monitoring and some are even designed with a
certain domain in mind, what lacks is automated task management, not only tracking,
which at the same time would be generic so it can be used across domains. In relation to
all of the aforementioned challenges is the challenge of trusted ICUs and consequently
trusted SCUs.

Trust plays an important role in human computation and is used for activities such as
raking and decision-making. Selecting not only the appropriate members for tasks based
on predefined customer requirements but also the best among the available ones is of
paramount importance in forming an SCU and in managing it at runtime. Furthermore,
while the utilization of software services is managed by Service Level Agreements (SLAs),
human resources/services are not, and we posit that human computation management
with automated SLAs would result in more efficient online work and more transparency
than what exists in current industry-based platforms. Hence, mechanisms for processes
that include automated negotiation-management, where contracts can be adapted at
runtime on customer or worker request are a challenge to be addressed. This would bring
even more flexibility to online collectives. Last but not the least, when we have to do
with people as resources online, it is of utmost importance to have mechanisms that
will protect their privacy, as well as ethical approaches in their management such as in
incentive and compensation mechanisms. Privacy is a challenge that is mostly overlooked
by researchers in human-based computation.

Let us now relate the aforementioned challenges to the systems perspective. Tradi-
tional platforms that support virtual fixed-sized collaborations might not be as efficient
as those that support SCUs with elastic capabilities that offer opportunities for variable
resource numbers with scalable capabilities. There are several reasons for this. First,
unexpected tasks might be generated at run-time which may require resources with new
type of capabilities that the current collaboration lacks. In fixed-resource collabora-
tions, usually existing members need to learn these tasks and thus the work might be
delayed and/or executed with a quality lower than expected. Next, there might be a
human-compute unit that is temporarily misbehaving or its performance is degraded.
Its exclusion would bring degradation in the performance of the collective, if another
appropriate resource is not employed/engaged as a replacement. Furthermore, due to
badly planned delegations, it is often the case that some resources are overloaded while
others are underutilized. The latter comes as a consequence of the problem of the reliance
on human resource availability as one of the fundamental ones in social computing. To

11

1. Introduction

sum up, in already existing platforms we have vertical elasticity, which means that the
optimization and adaptation is executed within the collective and often with a centralized
decision-making, while current needs and developments require dynamic and elastic
applications where resources/services are utilized on demand. The latter case tells us
that in socially enhanced applications and platform we need horizontal elasticity, similar
to cloud computing. Finally, we focus on the following fundamental research questions in
this work:

• What are the mechanisms that a human computation system needs to deploy so as
to provide and manage SCUs with elastic capabilities, in terms of included resources
and their dynamic properties, and in terms of task management?

• What are some effective ways of collective formation?

• Can we come up with a trust model that can be included in mechanisms for elastic
management of SCUs, and what would be some conceivable trust-based mechanisms
utilizing this model?

• How should service contracts for SCUs be defined and how can they be utilized?

• How can provenance be utilized in human computation systems?

• Which are the privacy implications in human computation systems that need to be
addressed?

1.3 Contributions

The main contribution of this thesis is to provide a set of mechanisms to be used for the
full support of the whole lifecycle of SCUs, from SCU provisioning and their effective
elastic runtime management to their dissolution. That is why we focus on multiple areas
of investigation, such as: metrics in social computation, elasticity, trust, SLAs for SCUs,
and provenance. Thus, our goal in this dissertation is to investigate and present a holistic
support for the whole lifecycle of SCUs. In order to achieve this:

• We define and present a set of metrics for measuring ICU performance as well
as social metrics, both of which we use in ICU and SCU ranking, selection and
adaptation algorithms. In relation, we also derive and define SCU related metrics.

• We define elasticity in social computing and describe its principles and properties
and ways that these properties can be used to provide elastic SCUs.

• We construct and introduce a novel trust model for ICUs and SCUs that we call a
Socio-Technical Trust Model or STT.

12

1.3. Contributions

• We define and present a set of algorithms for formation of collectives and their
elastic adaptation at runtime (some of which are based on our presented trust
model). In addition, we present process-based mechanisms with which negotiations
can be conducted at runtime and social collectives adapted accordingly.

• Last but not the least, we investigate the use of provenance data in social computing
and demonstrate its benefits together with a discussion on privacy implications.

• We discuss privacy implications in social computing systems as well as present
results from a study we conducted by interviewing crowdsourcing workers regarding
privacy related issues and their concerns.

Our contributions are of benefit to researchers in social computation and in particular
for areas such as ranking, recommendation systems for human computation, adaptation
mechanisms and incentives in social computing. Moreover, the challenges we address are
all related to providing mechanisms that contribute to building platforms that provision
and manage human computation.

1.3.1 Publications

We published our research as conference papers, workshop papers and book chapters.
Parts of our publications are included in this dissertation in verbatim. In particular, we
presented the following contributions:

• Elastic Management of Social Compute Units - The principles of the concept of
Social Compute Units were elaborated in [RTD14], published at the 26th Interna-
tional Conference on Advanced Information Systems Engineering(CAISE 2014). In
particular, we introduced novel performance metrics for experts providing their
capabilities as services as part of an elasticity model for Social Compute Units. We
investigated the SCU lifecycle and the different states that it can be at runtime
in different situations. Thus, we provided an execution model for Social Compute
Units. Furthermore, we introduced an algorithm for a cost-effective elastic adapta-
tion of Social Compute Units using reliable delegations. These contributions are
presented in Chapter 3 of the thesis.

• Trust - When people are one of the core resources of a software application,
control and management of task execution need to be tuned with the innate
uncertainties and unpredictability that comes with the nature of people. Thus,
we identified trust as being one of the crucial metrics when managing social
computing applications. However, the bulk of existing work is focused solely on
the social aspect of a trust metric in areas such as crowdsourcing and web-based
collaborations or social/expert networks. We argue that a trust metric for human
based computation need to consider metrics that reflect the performance level
of people, and that can be measured in an automated way. Consequently, we

13

1. Introduction

worked on an integrated trust model for human based resources, that we call
Socio-Technical Trust and we presented our work at the 14th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(IEEE TrustCom-15), [RTD15]. We present our proposed trust model, adaptation
strategies and incentive mechanisms in which we apply our trust model in Chapter
4.

• Team Formation - Collective formation and selection presents a multi-objective
challenge. The type of skills, performance and interaction dynamics between people
are among the indicators for effective teams. While existing work has approached
interactions as indicators in combination with other metrics, such as coordination
cost, and cost in relation to available team budget, we focus on interaction types in
combination with a trust metric. Our approach to the team formation and selection
problem is elaborated in Chapter 5. The paper approaching this problem was
accepted and presented at the 17th IEEE International Conference on Cognitive
Informatics & Cognitive Computing, (won a Best Paper Award), and is due to be
published.

• Service Level Agreements - While other resources in CAS are managed by SLAs,
human-based services are not managed by machine-readable contracts. Considering
the fact that not much work has been reported on SLAs in settings where human
computation is an integral part of a process, we investigated SLAs for social com-
puting. We provide an example mechanism for an adaptation of a collective based
on parameter changes at runtime, and describe a proof-of-concept prototype for
process-based management of SCUs. We argue that social-computing mechanisms
designed with elasticity in mind, with which SLA parameters can be changed at
runtime in negotiations with people who provide their skills as resources, and with
which SCUs can be adapted based on those changes, are more efficient than tradi-
tional processed with fixed-resource management. Chapter 6 reports our work on
process-based SLAs. We presented this work at the Business Process Management
Workshops, 2017, [RND17].

• Provenance - Mechanisms for assessing peoples’ behavior, performance and com-
petence depends on historical data. Hence, we look into the possibilities that
provenance data offers, which would benefit the aforementioned mechanisms. We
present a case study, in which we map social computing terms to provenance
terms, and evaluate the use of provenance data through storing this type of data
generated from a collective adaptation algorithm. This part of our work is described
in Chapter 7. We have presented our work on provenance with a paper at the
13th International Conference on Semantics, Knowledge and Grids (SKG), Beijing,
China, [RBAD17], and in [RNAD].

• Other work related to this thesis - We discussed what are the requirements for a
simulation system of socially enhanced applications in [RTD12] presented at the 1st
International Workshop On Socially Intelligent Computing (SINCOM2012), part

14

1.3. Contributions

of the OnTheMove OTM Federated Conferences and Workshops 2012 (OTM’12).
We also worked on a survey of the state of the art on social interactions in online
teams, focusing on research regarding types of online collaborations, monitoring
and analysis through different categories of metrics, task types and their online-
execution management. This survey was published as part of the Encyclopedia
of Social Network Analysis and Mining, in [SRTD14] and in a second edition in
[SRTD17]. We use material from the latter mentioned work for our discussion of
related work in Chapter 2. Privacy related topics and a survey on privacy awareness
is provided in Chapter 8. The paper discussing privacy related issues was accepted
and is due to be published in Emerging Research Challenges and Opportunities in
Computational Social Network Analysis and Mining, Springer.

Publication List

• M.Riveni, T-D Nguyen, M.S, Aktas, S. Dustdar. Application of provenance in
social computing: A case study. Concurrency Computat Pract Exper.2018;e4894.
https://doi.org/10.1002/cpe.4894

• M. Riveni, M. J. Baeth, M. S. Aktas and S. Dustdar. Provenance in Social
Computing: A Case Study. 13th International Conference on Semantics, Knowledge
and Grids (SKG), Beijing, China, 2017, pp. 77-84.

• M. Riveni, T.-D. Nguyen, S. Dustdar. SLA-Based Management of Human-Based
Services in Business Processes for Socio-Technical Systems. Business Process
Management Workshops, 2017: 361-373

• O. Scekic, M. Riveni, H. L. Truong, and S. Dustdar. Social interaction analysis for
team collaboration. In Encyclopedia of Social Network Analysis and Mining, pages
1–16. Springer New York, New York, NY, 2017.

• M. Riveni, H.-L. Truong, and S. Dustdar. Trust-aware elastic social compute units.
In Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 135–142. IEEE, 2015

• M. Riveni, H.-L. Truong, and S. Dustdar. On the elasticity of social compute units.
In M. Jarke, J. Mylopoulos, C. Quix, C. Rolland, Y. Manolopoulos, H. Mouratidis,
and J. Horkoff, editors, Advanced Information Systems Engineering, volume 8484
of Lecture Notes in Computer Science, pages 364–378. Springer International
Publishing, 2014

• O. Scekic, M. Riveni, H. L. Truong, and S. Dustdar. Social interaction analysis for
team collaboration. In Encyclopedia of Social Network Analysis and Mining, pages
1807–1819. Springer New York, New York, NY, 2014.

• M. Riveni, H. L. Truong, and S. Dustdar. A simulation framework for socially
enhanced applications. In P. Herrero, H. Panetto, R. Meersman, and T. S. Dillon,
editors, OTM Workshops, volume 7567 of Lecture Notes in Computer Science,
pages 544–553. Springer, 2012

15

1. Introduction

1.4 Thesis Structure

Chapter 2 covers an extensive survey of related work. Because of the reason that we
intend to provide mechanisms for the maintenance of the work of an SCU during its
whole lifecycle we cover multiple areas in our work, from the investigation of human
behavior from the social perspective, such as finding out metrics that would at least to
some extent help us to quantify some characteristics such as capabilities and performance
levels, ranking algorithms in web science that we can use in ranking algorithms for ICUs,
research on trust as well as recommender systems from multiple areas to help us come up
with a trust and reputation model for ICUs and SCUs, service selection and composition
mechanisms in service oriented architectures to help us with SCU formation concepts, to
the elasticity concept in cloud computing to help us with defining elasticity properties
for SCUs. Thus, the state of the art work from these multiple areas and the relation to
the work presented in this dissertation is discussed in Chapter 2.

Defining new metrics to quantify and measure a human activity or the quality of an
artifact coming from that activity is extremely difficult, especially when they need to
be generalized. However, with the clearly defined ICUs and SCUs, as well as with the
possible domains of online task execution in mind we have come up and defined metrics
for different ICU/SCU characteristics. We use these metrics for ICU ranking based on
different criteria, for task assignment, as well as for SCU adaptation mechanisms. As we
aim for elasticity in SCU adaptations we define elasticity for SCUs and have presented
algorithms for their elastic adaptation. Hence, metrics, an elasticity model for SCUs and
a set of elastic adaptation algorithms are presented in Chapter 3.

Based on the understanding of the SCU and the way it can be provisioned and
managed, we continued investigating ways for making our adaptation algorithms more
efficient. As trust is an important metric in todays human computation platforms, we
worked on a feasible trust model for ICUs and SCUs. Seeing that most of the existing
work on trust is based on social trust, i.e., how trusted is a person by others with whom
he/she has interacted, we realized the lack of a model that considers both the social aspect
of trust as well as automatically measured performance metrics in human computation,
and investigated a possible one. We present our Socio-Technical Trust Model in Chapter
4. Furthermore, incentive mechanisms in human computation are utterly important to
motivate online work. Many human computation platforms have some kind of incentive
mechanisms, such as monetary or reputation incentives. We utilized our trust model
to provide an incentive mechanism for ICUs as well. Chapter 4 also includes a set of
adaptation algorithms as well as incentive mechanisms, based on our trust model.

Chapter 5 reports on our investigation on team formation and selection strategies.

In Chapter 6 we discuss process-based SLA-adaptations at runtime and SLA-based
management of SCUs, where SLA parameters can be changed at runtime both by
customers and workers.

Chapter 7 discusses the utilization of provenance data for human computation.

16

1.4. Thesis Structure

We came up with a list of privacy implications in human computation systems by
investigating the data that is collected from current existing business platforms and
reading their privacy policies. Most importantly, we conducted a survey and interviewed
people that use crowdsourcing platforms as well as some domain-based platforms for
more complex tasks such as translation and software development, asking them about
privacy concerns. We got results that indicate a certain level of awareness for privacy
issues in these platforms and got some insight to problems that people face. The results
of this investigation are presented in Chapter 8 along with some recommendations for
developers of socially-enhanced applications.

We conclude the thesis in Chapter 9 along with some open research questions.

17

CHAPTER 2
State of The Art

In this work we took a holistic approach to investigate social computing from the aspect
of collaborative and highly coordinated online task execution which we model in the
form of a construct that we call Social Compute Units. With Social Compute Units
we make a clear distinction from individual, non-coordinated and non-collaborative
computation (including those such as individual task execution as in crowdsourcing, as
well as email, blogs and social networks). Because we take a holistic approach, for our
purposes we needed to investigate works related to multiple research areas and did so in
the following ones: performance and behavioral metrics, (human resource) management
algorithms, scheduling and adaptation algorithms, trust and reputation models, incentive
and payment models in social computing, service level agreements, and privacy. Thus,
in this chapter we provide our extensive review that we conducted to find works that
tackle our aforementioned interest areas and discuss how these works are related to our
contributions. In the next section we look into fundamental work that define different
types of computation where humans are involved in task execution so as to give an
overview and to clarify the place of Social Compute Units, the construct that we work
with, among the plethora of terms, definitions, models and systems that include human
task-execution.

2.1 Human Computation: Categories and Definitions

As e term, human computation, is considered to be first used by Luis von Ahn in
his doctoral dissertation in [VA05]. In it he presents CAPTCHA, a mechanism that
utilizes human capabilities in order to differentiate humans from machines, to be used
in various applications, e.g., for object recognition in images or reading hard-to read
text from scanned books. In addition, he discusses games with a purpose and their use.
In [QB11], Quinn and Bederson have provided a classification of human computation
systems with a review of the state of the art. In their classification human computation

19

2. State of The Art

differs from social computing in the sense that human computation is managed by a
software system, whereas social computing implies human behavior that is only mediated
by a software system in terms of communication and includes no task-execution but
more content-sharing. On the other hand, collective intelligence is a group of people
working together to conduct intelligent work (and this includes online as well as offline
work). The classification of Quinn and Bederson is cited by many researchers and is
an acceptable one. However, there is no formal convention for the use of the terms
that include human task-execution and we slightly differ in the definition of the term
human computation. When referring to human computation, we consider several types of
task-execution conducted by humans, be it crowdsourcing (see a survey in [YKL11], and
an example of crowdsourcing process-approaches under the term human computation
in [LCGM10]), or social computation as automated collaborative execution of complex
tasks in complex socio-technical systems, and we support this approach (varying a little
from the taxonomy presented in [QB11] by Quinn et al.). Some researchers also support
this view, e.g., the authors that introduce the term distributed human computation in
[GRS05], whereas Law in [Law11] intersect human computation with social computing
similar to Quinn and Bederson.

To generalize human computation, in a form that fits the topics investigated in
this thesis, we define it as the utilization of human intelligence for tasks, activities and
problems that cannot yet be executed and solved by artificial intelligence, where those
are tasks, activities and problems in a form that could be solved only by humans who
utilize software tools, or by a combination of software and humans in a semi-automated
collaboration and coordination. In addition, we define the term social computing as task
execution or problem solving by people connected in a specific social context, and do
not imply content-sharing in social networks. Thus, in this thesis we sometimes use the
terms human computation and social computing interchangeably.

In the following we give our own definitions (with some adaptations from those in
the state of the art) of some of the types of computing concepts with human-in-the-loop,
with the aim to further clarify where the concept of SCUs fit within the wide area of
human computation.

• Crowdsourcing - is the engagement of a large number of online (anonymous) people
in the execution of tasks that are simple for humans but are unsolvable or hard to
be solved by computers.

• Social Computing - is the engagement of a group of people in task-execution and
content-sharing, for a common goal, where people are connected in a particular social
context defined by a common (inter)organizational project, an ad-hoc volunteer
project, or a common topic of interest. Hence, the social context of collaboration is
one of the important factors that brings people together in social computing.

• Computer Supported Collaborative Work (CSCW) - is the engagement of people in
different forms of online team-based work: a) static work, where work is well-defined

20

2.2. Service Oriented Computing

by processes, typically within a single organization, b) ad-hoc collaborations where
tasks are more complex and team actors cross organizational boundaries, and c)
open collaborations where people get together to work on a common goal based
on their personal interests (e.g., open source development). (See our encyclopedia
article in [SRTD17] for a similar definition).

• Hybrid/Mixed Resource Computations (Mixed Systems) - include human and
computer resources working together for a common task. Shahaf and Horvitz for
example investigate these types of systems in [SH10]. They present a prototype
for language translation, where translation can be conducted only by humans
(experts, or crowdsourcing workers), or by hybrid resources where text is first
machine-translated and then corrected by human translators. Some other works
that include mixed resource computation include [MBO12], [CTD15], [SDC15].

2.1.1 Social Compute Units

In our definitions, Social Compute Units (SCUs) fall within social computing as a
subcategory of human computation. However, systems supporting SCUs may fall within
social computing systems as well as mixed systems such as collective adaptive systems:in
social computing systems because members of an SCU are socially connected within
a specific context, be it a specific goal, domain or skills, the same client, or the same
enterprise and would use the underlying infrastructure for communication; in Mixed
Systems because SCUs are collectives intended for complex problem solving in complex
socially enhanced applications and systems that require the use of software services as
resources working seamlessly with human resources. The concept of SCU is first presented
by Dusdtar et al. in [DB11]. This is the first and fundamental work introducing the
SCU, it describes its life-cycle and does not go into details into the SCU execution phase
as this was not its aim. SCU execution is tackled in [SJB+12], where authors have
looked into a specific case of incident management to investigate how SCUs and their
evolution (adaptation) perform better over traditional process management. Thus, by
discussing a concrete real-life scenario they detail further the ways of SCUs utilization
and its benefits. The SCU utilization in dynamic processes is presented in a recent work
[FTDC15]. In Chapter 3 we present our investigation of the SCU execution phase and
runtime management, and provide mechanisms for elastic runtime management of SCUs.

2.2 Service Oriented Computing

2.2.1 Human Provided-Services

Service oriented computing is a possibility in implementing human computation, and
needless to say different than that of how human capabilities are used in computational
types such as crowdsourcing, games with a purpose, social and expert networks, and
freelance platforms. The WS-BPEL Extension for People Technical Committee within
the Organization for the Advancement of Structured Information Standards (OASIS) has

21

2. State of The Art

approved the Web Services Human Task specification document, version 1.1., [ICK+12].
The document specifies human tasks to be executed by people in service oriented appli-
cations. More specifically, it provides notations, a language for defining human tasks,
defines task behaviors, and provides an API with specific operations to manage tasks.
This document is closely related to Web Service Business Process Execution Language
Extension for People (BPEL4People), the specification document of which is a guide for
defining and specifying human behavior in business processes (see [ICK+10]). On the
other hand, Schall et al. in [SDB10], and [STD08] discuss the feasibility of provisioning
and managing human capabilities as services, which they name Human Provided Services
(HPS). In addition to these works, authors in [DT12] investigate and provide concepts
and proposals for integrating human capabilities, provisioned as services within Service
Oriented Architectures (SOA) so that they can be seamlessly used together with software
services in a unified way. The importance of Non-functional properties (NFP), Quality of
Service (QOS) models and, trust and reputation models in composing human-provided
services in the mentioned works is accentuated equally as for software services. Thus,
indeed we can talk about mixed service oriented-systems where human and software
services are interacting with each other [SSPD11] and are managed in a similar way.

2.3 Frameworks, Models and Platforms

An earlier work describing research challenges of distributed human computation presented
in [GRS05] describes a basic framework with which it would be feasible to provide secure
human computation, in the sense that misbehaviors would be avoided, results would
be fairly aggregated and payments would be made to the right workers. They include
customers with a specific budget, human clients that execute tasks, a broker that manages
work and so called storefronts that give some utility to workers needed to complete their
tasks (e.g.,products, services). A specific domain-based discussion for an architecture of a
cloud supported crowdsourcing platform that can support team-based work for software
development is discussed in [TWH14]. Specifically, the authors investigate and propose
a conceptual architecture where a cloud of people and machines will work together for
developing high-quality software products.

Lopez et al. in [VLL10] propose PeopleCloud, a framework intended for enterprise
crowdsourcing, where the crowd workers can be from within the enterprise or outsourced.
The framework employs an approach of providing the functionality of selecting a number
of appropriate crowdworkers according to the parameters that a requester states, including
expert discovery and recommendation mechanisms. In connection to our research problem
this work is only related with the fact that it allows for collective and collaborative team
work, where the platform can dynamically form and suggest teams. The assignment of
tasks is done as in traditional crowdsourcing with competitive submissions, accumulative
or one submission per task. Our work regarding task assignment differs in that we focus
on a push approach when assigning tasks.

Authors of [BCBM12] present AutoMan which is a framework for designing human-

22

2.4. Resource Management

computation applications. They present a domain specific programming language, with
which programmers can configure the crowdsourcing platform to be used in the backend
for invoking workers, they can configure task parameters including the available budget;
quality control and scheduling mechanisms are available as well. Collaborative task
execution is not mentioned, however, these types of platforms demonstrate the feasibility
of utilizing crowdsourcing platforms as pools of resources. Collaborative mechansims
can be built on top of them. Authors of [MB12] present a programming language and
framework called CrowdLang for systems that incorporate human computation, and what
is of interest to us is that they provide cross-platform integration of resources, in this way
making a human cloud possible. Authors in [KPSD11] have presented a platform model
for crowdsourcing with monitoring and worker profile management and a skill-based
crowd scheduling algorithm. However, their focus is on managing crowd workers and not
explicitly SCUs.

From the SOA perspective, Schall et al. in [SDB10], provide a reference architecture
for provisioning human provided services(HPS), which includes a registry for service
discovery (just as in web services), a services layer that represents HPS that can be
discovered, a service bus that provides a messaging infrastructure and a middleware
layer which in turn includes a protocol module with rules and patterns as well as a
monitoring module. Psaier et al. have designed and implemented a framework for adaptive
service-oriented collaborations and have presented it in [PJS+10]. The framework is an
integration of the Genesis2 framework, which is a testbed generator for service-oriented
environments, and an adaptation framework (named VieCure). The framework presented
includes a few services and modules such as, monitoring and logging services, event
subscribers to capture e.g., the state of a node, an adaptation module with which are
deployed adaptation mechanisms such as changing delegation strategies of nodes based
on events. With this work, they make a significant contribution to the available tools
and frameworks for designing and developing self-adaptive collaborative applications and
systems. Other platform considerations for humans as a service are shortly discussed in
[MKGD].

Collective Adaptive Systems are gaining momentum as the possibility of resource
diversification in systems are raising with the inclusion of Internet of Things (IoT) and
social computation in cloud supported systems [ZSTD15].

2.4 Resource Management

2.4.1 Metrics

In complex adaptive systems that include social computation, metrics are key factors in
adaptation mechanisms designed to trigger adaptation events based on constraints, much
more because of the unpredictable human nature and behavioral dynamics online. We
conducted a survey regarding metrics, mostly used in expert collaborations [SD10](also
see our article on social interaction analysis [SRTD17]), but also from (social) networks
[New10], crowdsourcing [KK08], [PP11], human-provided services as envisioned within

23

2. State of The Art

Service Oriented Architectures [TD09] and multiagent systems [HC08]. Table 2.1, provides
our categorization of different metrics regarding people, their interactions and performance
within socially enhanced applications and systems. We utilize some of these metrics
in our work by providing our own definitions for them, and present novel metrics like
willingness, for which we also give utilization examples in algorithms.

Profile metrics
(individual and
SCU level)

Static Identification parameters

Dynamic
Skill type/s, skill level
Homophily(e.g.,topic interests)
Role, state(e.g.,current availability)
Reputation
Price

Structural metrics

Centrality Measures
(degree, closeness, betweenness, eigenvector)
Structural groups
(within the same collaboration context,
different SCUs working for a common goal)

Interaction metrics

Interaction context
(common goal)
Interaction intensity
Interaction availability (in terms of time slots)
Responsiveness
Social Trust

Performance metrics
(individual and SCU level)

Productivity
Effort
Reliability
(success rate of non-delegated tasks,
success rate of delegated tasks, consistency)
Willingness, Willingness Confidence-score
Performance Trust

Quality of Results/Data Completeness
(accuracy, freshness, relevancy, consistency)

Table 2.1: Overview of metrics for people in social computing (individuals and collectives)

2.4.2 Resource Ranking and Selection Algorithms

Individual Resource Selection

A ranking algorithm based on interaction history between people, named DSARank
is presented in [SD10]. The algorithm is intended for selecting collaborators in open
collaboration environments, and it considers not only the connections and interactions
of people who are experts in specific fields with other experts of the same expertise but

24

2.4. Resource Management

also the intensity of those interactions. The HITS method described in [Kle99], which
finds the most authoritative nodes in a network is another example, that can be used
in expert selection. Ranking algorithms that are used in service selection can also be
used in human computation. The Analytic Hierarchy Process (e.g.,[CFMT09]) is one
such mechanism that provides an opportunity to conduct ranking based on multiple
metrics even if they are comprised of multiple atomic ones, so this method is useful
when we want to do ranking with complex metrics and we explain this method in more
details in Chapter 3. The Logic Scoring Preference methods can also be used in these
context (e.g., [YRM08]). In human computation metrics such as interaction intensity,
trust and performance based metrics are used in ranking mechanisms. The importance
of homophily (e.g.,affiliation,gender) as a primary criteria before expertise, is observed
by authors in [FZDHC11] for collaboration use cases, which caught are eye as especially
interesting.

Team/Collective Formation

Resource discovery in human computation and team formation strategies and algorithms
have been the subject of investigation in many works. Anagnostopoulos et.al in [ABC+10]
present team formation algorithms such as forming teams with minimum size (number
of members) that have all required skills, and an algorithm that forms a team with
workload optimization, where teams are formed, having minimum size with members that
satisfy the required skills and have a pre-specified minimum load. The same authors in
[ABC+12] present team formation algorithms that while keeping low load also enable low
team coordination costs. Authors of [LLT09] present a team formation algorithm that
minimizes team communication cost. Dorn and Dustdar in [DD10] have demonstrated
the trade-off between expert skills and expert social connections when forming teams of
experts, one observation being that high expertise teams may not be the most appropriate
ones if team members are socially not well connected within their domain network. The
aforementioned algorithms can be utilized for SCU formation, and some also for ICU
selection when an SCU needs to be extended via adaptation mechanisms.

2.4.3 Runtime Resource Provisioning, Management and Adaptation
Techniques

Task executing collaboration models and runtime collaborations are investigated in works
such as [Sag12]. However, the mentioned works focus on fixed teams without elasticity
assumptions. Adaptation mechanisms in human computation within (Service Oriented
Architectures) SOA, are discussed in [SSPD11]. They focus on adaptations from two
perspectives, that of the a) service providers (workers), whose request rate is balanced
through automated rejection of requests or delegations, and b) consumers (clients), who
are protected by the system by blocking service requests to providers that misbehave or
urging them to renegotiate a contract with the same human service provider.

25

2. State of The Art

2.4.4 Elasticity

The notion of elasticity is treated in several domains and contexts and has especially
gained importance with the advance of cloud computing. In [DT12] authors discuss the
reasons, challenges and their approach toward virtualizing humans and software under
the same service-based model that will enable elastic computing in terms of scaling both
software and human resources. The concept of elasticity in Cloud computing, is being
extended to concepts like application [ZKJG11] and process [DGST11] elasticity, e.g.,
in [DGST11], the authors identify resource, cost and quality elasticity as being crucial
in modeling processes in service oriented computing. Mechanisms and a middleware
to support scaling services in and out from applications utilizing Software-as-a-Service
(SaaS) are presented in [KHCK13].

2.5 Incentive Mechanisms and Pricing
There are two general types of incentives used in social computing: a) intrinsic - in which
case people execute tasks based on desire and/or interest, curiosity or willingness to
help, e.g., for altruistic reasons and, b) extrinsic - when people execute tasks because
they have some gain, e.g., monetary rewards, or reputation. There is much work on
incentives, and particularly in the crowdsourcing area. We considered and conducted
incentive investigation in crowdsourcing as well, because even though it provides execution
of simple-tasks, it still employs human behavior and it is widely investigated both in
academia and business. Indeed, it gave us valuable insight. Kaufmann and Schulze in
[KS11] present their observation that intrinsic motivation dominate extrinsic incentive
types. Authors in [RKK+11] have observed that monetary incentives have more effect
when tasks are more complex, and the higher the monetary reward the higher the number
of completed tasks by workers. However, they also note that when the task description
includes a description that implies the task being relevant and important for a social
good deed, then workers performed well in terms of accuracy with lower monetary gain.

Authors in [MKC+13] compare different payment schemes, but also make observations
of non-paid work. They observe that people who are paid complete tasks more quickly
than those who work as volunteers. Also, workers that are paid by task spend give more
effort than those that are paid on an hourly basis. Authors in [MW09] also observe that
while the amount of work increases, the quality/accuracy of work is not increased with
higher payments. Hence, research shows that higher intrinsic motivation combined with
a (not extremely high) fair monetary gain is a good strategy for accuracy in human
tasks. Incentives in enterprise crowdsourcing are investigated in [SHS09]. The authors
report that non-monetary extrinsic motivators are important even when the tasks are
paid,because they motivate people to become more active and not loose interest in the
long term. However, they do state that finding the right motivator is crucial.

Work presented in [STD13] describes an analysis of existing incentive mechanisms,
and the part that is of concern to our work is their conclusion and suggestion that for
existing business models and more complex social computing such as socially-enhanced

26

2.6. Trust and Reputation

applications (within enterprises) incentives should be dynamic. In other words, systems
should be able to adapt incentive and rewarding mechanisms at runtime based on
monitoring data, as to lessen (or even avoid) misbehavior by workers. In addition, they
describe team-based compensation where the whole team is rewarded for work, the
reward being equally split among members or based on member effort. In Chapter 4 we
provide an incentive mechanism that tends to motivate SCU workers both on monetary
and non-monetary gain. Specifically, we provide an algorithm to pay workers assuming
workers are paid by task, and update workers’ trust and reputation on a per-task basis.
Moreover, we also include a collective trust score that is assigned to all of the workers
within the SCU, when all the work is done. And this collective trust score is used to
update workers’ reputation.

2.6 Trust and Reputation
Trust as a computational concept is first introduced by Marsh in [Mar94]. Trust toward
a person, an agent, or any actor in a system, is generally defined and investigated in two
contexts:

• objective trust - which is based on a person’s expertise (area) and competence
to execute tasks and can be measured with historical data of task executions, and,

• subjective trust - which is based on a subjective impression of the trustor to
the trusted person about his/her behavior in the future. This impression can be
inferred via different mechanisms, such as based on profile similarities (e.g., common
interests) between the trustor and the trustee, based on past interactions, on third
party references, and trustee’s reputation.

Trust models and mechanisms for trust calculation are investigated in two contexts as
well:

• global trust/reputation, which are models and mechanisms that compute a
global score of trust for people based on their interactions with others and/or their
behavior and performance, and

• local trust, which are models and mechanisms that compute task from one node
(source) to another node (sink) within a network by a specific inferring and/or
propagation mechanisms.

In our work we name objective trust as performance trust or technical trust, and
we define it based on metrics related to task-execution which can be calculated in an
automated way. On the other hand, we name subjective trust as social trust, and we
define it based on metrics related to voting mechanisms. We integrate these two types of
trust in a trust model for social computing that we present in Chapter 4.

Authors in [SSD10a] investigate trust for human computation from the service-oriented
perspective, where human-provided services and software services are utilized seamlessly

27

2. State of The Art

in a mixed system. They discuss a trust inference model based on fuzzy theory and
different metric categories, as well as composition mechanisms for HPS using trust. In
the aforementioned work, trust inference mechanisms are categorized in the following
types:

• direct trust - is the trust inferred based on direct interactions with another actor
in a certain context;

• trust mapping - is a mechanism for trust prediction based on a scope(context),
ie., if a person is an expert in one field with a certain skill, this trust can be mapped
to trust this actor for another skill very closely related to the previous one;

• recommendation - is a mechanism that usually implies an aggregation of trust
scores of multiple actors about a specific actor, and thus is usually named third-party
trust;

• reputation - is a global trust inference mechanism, and in many works, as well
as in our trust model, reputation is computed as an aggregate score (usually a
subjective one), given by all actors that have interacted with the actor for whom
this score is computed;

• trust mirroring - is trust inferred between actors with similar skills, competencies,
and interests; e.g., a person x, will trust a person y for a book recommendation if
both have the same interest in books;

• trust teleportation - is a trust inference mechanism by which when an actor x
trusts another actor y, then it also trusts a third actor z with similar capabilities
as y.

Another aspect of trust inference is trust transitivity, which is investigated in [FC12]
within the multiagent domain. If an actor x, trusts an actor y, and an actor y trusts
an actor z, then x may trust z. Reciprocity within interactions in a social network as
a measure of trust is mentioned in [MMH02]. Example of trust inference algorithms in
social networks are works presented in [Gol05], [KG07]. Authors in [BN16] describe their
model of trust inference which consists of finding the most trusted path from the source
to the sink node, by traversing a path where each edge connects a node with one that
has a higher trust rating, and after finding the shortest most trusted path their model
calculates trust to the sink node by averaging the sum of the trust ratings of each node
on the path weighted by the distance from the source node to each node along the path.

A trust inference algorithm named TidalTrust, is presented by Golbeck in [Gol06],
with which trust from a source node to a sink node is inferred by averaging the trust
ratings from each node to its neighboring node through a path in a breadth-first-search
manner, where a maximum value of trust is set that represents a threshold value that can
be utilized as a minimum value for the trust on nodes so that a path from source to sink
could be found with a specific trust value. Thus, the model considers the trustworthiness
of each neighbor along a path to the sink. It uses a trust accuracy measure by considering
the difference between trust ratings from a specific node x and its neighbor to a common
neighbor. For example, if x has a neighbor n1, and n2 is a neighbor of both x and n1,

28

2.6. Trust and Reputation

then the difference between the trust rating from x to n2, and from n1 to n2 is used as
an indicator of trust accuracy. If the difference between trust ratings is low then the
trust accuracy is high. The network-based experiments in this work have shown that
higher trust ratings have a lower difference, and thus higher accuracy for a fixed path
length. Hence, higher trust rating along a path provide for higher accuracy in inferring
trust from a source note to the sink. To summarize again, in TidalTrust, trust from a
source node to a sink node is inferred by averaging the trust ratings from each node to
its neighboring node through a path in a breadth-first-search manner, where a maximum
value of trust is set that represents a threshold value that can be utilized as a minimum
value for the trust on nodes so that a path from source to sink could be found with a
specific trust value. Each node is denoted with a maximum trust value on the path from
the sink to that node, this maximum value is the minimum of trust rating values from
node to node on the way from the sink to the specific node. The maximum trust value is
used as a threshold value, and only those paths that bring to the last neighbors of the
sink having the trust values at maximum or above are selected to calculate and infer
trust from source to the sink. Thus, this algorithm considers the strongest path among
the shortest paths from source to sink to infer trust.

MoleTrust presented in [AMT05] is a trust method that as TidalTrust considers path
lengths. In particular, the method uses a value called Trust Propagation Horizon to
define the distance to which trust is propagated (with the default value being 3), any
path going back to the beginning node for example is deleted, and thus the first step of
the method is deleting cycles and creating a directed acyclic graph from the network.
The second step of the method is computing the trust scores at each hop, for example, if
node x is the sink, then the trust scores at distance 1 are considered, then at distance
2 and so on. The authors define a pre-set value of 0.6, which they use to consider only
edges coming from nodes with that value and higher. The trust score of the sink node
is computed by averaging the trust ratings from incoming edges weighted by the trust
ratings of the nodes that give the ratings.

The well-known EigenTrust model, designed for decentralized (rating) systems, is
presented in [KSGM03]. It is a model with which a global trust score for peers is assessed
by computing the left principal eigenvector matrix of normalized values for local trust
values of peers. Thus, trust on a peer is assessed by weighting the opinion of others based
on how much the trusting peer trusts them. EigenTrust considers pre-trusted peers (e.g.,
the network designers), which can be used for trust assessments by peers who enter the
network and do not have any friends through which they could infer trust for other peers.
The pre-trusted peers are also used as a mechanism to avoid issues with group-based
malicious network-members who want to trick the system by rating the group members
highly by voting lower for other peers.

The author in [Orm13] presents a Bayesian trust inference method in networks by
departing from the more common definition of trust with having the characteristic of
transitivity. In contrast, he defines trust as intransitive, where a trust relation between x
and y, and a trust relation between y and z, does not necessarily mean that x will trust

29

2. State of The Art

z. For example, if x trusts y with a sensitive personal information, and y trusts z with
his/her sensitive personal information, it does not mean that x will trust z with his/her
sensitive information because x and z might have the same friendship-related interest
in y, and thus might be in a conflicting relation, rather than a trust relation. On the
other hand, the concept of reliance is also introduced in the same work, to help with the
concept of transitivity. In terms of reliance if x relies on y, and y trusts c, then x will
trust c as well, which means that there is a transitivity relation between trust links and
reliance links.

Any type of a trust metric depends on the domain and competencies of people
in different domains. Thus, trust is context-sensitive, and we treat it as such in this
dissertation.

2.7 Quality of Service and Service Level Agreements
There is very little work on SLAs in human computation environments. Initial work
which concerns crowdsourcing environments in particular is presented in [KPSD11]. The
authors give an example of an SLA that may be exchanged between customers and
crowd-provider platforms and also present a few crowdsourcing specific SLOs concerning
worker skills, quality of executed tasks and customer fees. As we mentioned that Social
Compute Units should be provisioned elastically so that the performance and time of
humans on task execution is utilized optimally for specific fees (or other types of rewards),
elasticity plays a role in SLAs as well. Elastic management of properties such as cost
and workload are presented in [Sch13b], where elasticity is used to define restrictions for
performance metrics defined in SLA guarantee terms. Because human behavior is highly
unpredictable, the strict definition of time-related constraints is crucial for SCUs. The
temporality aspect for SLAs is investigated in [MMDC+07], where the authors present a
specific proposal for extension of WS-Ag to support temporality.

30

CHAPTER 3
Elastic Social Compute Units:
Provisioning and Management

3.1 SCU Preliminaries

3.1.1 ICU and SCU Definitions

Definition 1 Individual Compute Units (ICUs) represent people who provide their
capabilities online, to be utilized as services or activities for executing on-demand human-
computation tasks.

Hence, in this dissertation we use the term ICU to refer to human-based resources and/or
services, but in some cases we use the terms resources, services, experts and workers
where the context of the discussion requires it for clarity.

Definition 2 Social Compute Units (SCUs) are elastic collective and collaborative
units, performing human-computation tasks with a certain goal, the core resources of
which are people with a certain expertise who provide their capabilities as services or
activities (ICUs).

SCUs can be created ad-hoc or on request from a customer who defines requirements
and sets constraints. Because our work on SCUs is guided by the end goal of providing
this construct to be utilized in hybridity-aware collective adaptive systems, which means
systems where people and software collaborate together, our assumption is that an SCU
can be requested by a customer as well as by a software agent. SCUs have their own
lifecycle, with the following states: Request, Create, Assimilate, Virtualize, Deploy and
Dissolve [DB11], as Figure 3.1 illustrates. A customer requests a SCU to be formed, the

31

3. Elastic Social Compute Units: Provisioning and Management

provisioning platform then creates the SCU by running ranking, selection and formation
mechanisms. The assimilation phase has to do with the assignment of each ICU within
the SCU to a certain domain of the problem to be solved, which means that tasks
of a certain type will be assigned to ICUs with appropriate skills to those task types.
The virtualization step is setting up the collaboration environment for the SCUs and
the deployment step is actually the runtime execution and result gathering. In the
dissolution phase the SCU is dissolved after member ICUs are compensated and rewarded
appropriately for their performance and results. SCUs have a Cloud-like behavior, which
means that ICUs can be added or excluded from them at runtime on demand or when
preset thresholds regarding non-functional parameters are reached (or violated. Moreover,
in SCU duration and performance depends on the goal, customer constraints as well as
events generated during SCU execution. SCUs have their own compute power and this
depends on the requirements of the customers and the effectiveness of the formation
process in selecting the most appropriate ICUs according to requirements. In other words,
the compute power of an SCU can be (to a certain degree) measured by metrics that
appropriately reflect the performance and skill capabilities of ICUs as well as their cost
for executing tasks. To sum up, Figure 3.2 illustrates the basic working principles for
SCUs: formation, monitoring and runtime-adaptation.

Figure 3.1: SCU lifecycle states

Figure 3.2: SCU basic-working concept

32

3.2. Motivation Scenario

3.2 Motivation Scenario
Consider a scenario of a software development project. A new software consulting and
development company is engaged in a health-care project and is assigned the task of
developing of a health-care platform for a hospital. We assume the company is small and
has a few employees with software development skills. However, delivering a product such
as a health-care platform requires a diverse set of skills, some of which the company lacks.
To address this issue, some of the work would need to be outsourced to other companies
or new employees would be needed to be hired for areas for which the company lacks
skills, such as health-care consultants. Outsourcing part of the project to other companies
means that the budget needs to be shared to the services of the outsourced company
which brings additional costs. In addition, hiring new employees would bring challenges
related to keeping deadlines since hiring new employees is an activity that requires time
to find an appropriate person. Last but not the least, even in the case when a company
has acquired all the skills needed for the project unplanned problems related to the
fixed number of resources allocated for the project often arise. This is due to the fact
that task management is always difficult and often some employees become overloaded
with work while others are idle at the same time. Badly planned work-balancing often
causes delays in delivering milestone results and/or the end product. On the other hand,
catching up deadlines with lack of appropriate skills affects the quality of the delivered
product. To sum up, problems such as lack of skills, project delays, budget allocation
issues and unsatisfactory products in these type of scenarios demonstrate the need of
new approaches in managing collective work. All of these challenges come from the
importance of performance and quality of results in paid expert collectives.

To generalize further the aforementioned challenges, we need to understand that
traditionally even in outsourced work we have fixed collectives, in terms of number
of employees as well as skill variety and optimization is done within the collectives,
adaptations are done with task reassignments within the collective; decision-making is
also in most cases centralized. Thus, we have vertical elasticity. However, current trends
come up with new needs, today we have tailored and elastic applications to fit customer
requirements on demand and cloud computing has become the paramount support
mechanism for these applications. New needs are already reflected in socially-enhanced
applications engaging people for a variety of tasks. Thus, we need dynamic adaptation
at runtime, we need resource variability as well as decentralized decision-making to fit
the collective’s goals and runtime needs. Consequently, what we need today is horizontal
elasticity.

Our approach of addressing the aforementioned challenges is to form a collective of
experts, that we call Social Compute Unit, with the needed skills utilizing the company
employees as well as experts available from human computation platforms. With the
availability of online resource-pools from the so called human clouds [KCHO13], experts
can be acquired and released on demand. Thus, the problem of time delays in finding part-
time appropriate experts to employ for the project duration or companies to outsource
the skills that are lacking can be addressed with automated online resource selection from

33

3. Elastic Social Compute Units: Provisioning and Management

available human computation platforms. Hence, we assume that the outside experts can
be recruited from human clouds on demand. Moreover, work balance can be achieved by
automated task delegation mechanisms where tasks are re-assigned to appropriate and
available experts.

These scenario assumptions and the more general challenges that we discussed,
demonstrate the issues in existing work in human computation today that need addressing:

1. an investigation of provisioning mechanisms for collective work in human computa-
tion, and

2. the development of platforms that will support not only resource discovery and
task assignment but also the management of runtime task execution.

The related but more concrete challenges that we focus on in this chapter however
are the following:

• Which are the most relevant metrics to monitor ICU activity and task-execution in
an automated way, in order to enable self-adaptive ICU and SCU management?

• Given an initial formed SCU and a set of monitored performance metrics, what
are the set of actions and mechanisms that can enable SCU elastic capabilities,
in situations when performance is degraded and reaches a threshold value for a
customer set constraint?

• What are the design requirements of an SCU provisioning platform, having in mind
the mechanisms for SCU provisioning and management?

3.3 On the Elasticity of Social Compute Units

We discussed that there is a need for management mechanisms to support elasticity
by scaling in size and computing capabilities of SCUs in an elastic way. Authors in
[DT12],[TDB12] identify the underlying challenge in provisioning SCU elasticity to be
the lack of techniques that enable proactive provisioning of human capabilities in a
uniform way in large scale. To address this and the aforementioned issues, in this chapter,
we investigate and provide runtime mechanisms with the elasticity notion in mind, so
that platforms would be able to provide elastic capabilities of human-based compute
units/SCUs, that can be managed flexibly in terms of the number of resources, as well as
their parameters such as cost, quality and performance time. Hence, our key contributions
in this chapter are:

• defining metrics to be used in ICU monitoring and SCU adaptation mechanisms
• conceptualizing and modeling the SCU execution phase and states,
• defining SCU-elasticity properties, and
• designing an SCU provisioning platform model with elastic capabilities.

34

3.3. On the Elasticity of Social Compute Units

3.3.1 Definition and Principles of Elasticity

Elastic SCUs have elastic capabilities that can be triggered at runtime to tailor their
performance to best fit client requirements at runtime. With human based resources
being unpredictable and dynamic, their skills, price, interest and availability can change
with time and within a specific context. However as stated in [DB11] the concept of
SCU does not have a notion of elasticity in itself, thus an SCU provisioning platform
which creates, deploys and supports the execution of SCUs needs to include mechanisms
for scaling it up or down as needed, and as aforementioned, with this scale an SCUs
performance parameters vary as well. These mechanisms should ensure that at each time
point these parameters are within desired levels and comply with customer constraints.
For our purposes, we conceptually define the elasticity of SCUs as follows:

Definition 3 The Elasticity of Social Compute Units is the ability of SCUs to
adapt at runtime in an automatic or semi-automatic manner, by scaling in size and/or
reorganizing and rescheduling, such that the variations in the overall performance indica-
tors such as capability, availability, effort, productivity and cost, at each point in time are
(near)optimal within the boundaries of the customer-set constraints.

3.3.2 ICU/SCU Formal Notation

We denote a cloud of ICUs (e.g.,from online platforms and/or enterprise internal pool)
as the set R = {r1, r2, r3...rn}, and the set of ICUs that are members of a particular
SCU as S = {s1, s2, s3...sn}, where S ⊂ R. Let the set of tasks to be executed from a
specific SCU be T = {t1, t2, t3...tn}. For each task ti ∈ T , we denote the set of matching,
appropriate and possible ICUs that can perform the task ti as P = {p1, p2, p3...pn},
where P ⊂ R. Depending on constraints the following can be valid in different situations:
S ⊂ P (when P also contains reserve ICUs that are not included in the SCU), P ⊂ S or
P = S. To enable elasticity, ICUs from S can be released and new ones can be added from
P to S, therefore, S might change at runtime. We use these notations in other chapters
throughout this dissertation as well. We denote the collection of SCUs, in which a specific
ICU, si has been a member over a specific time period, with Uτsi = {Sτ1,si , S

τ
2,si ...S

τ
n,si}.

ICU-related Metrics Description
napproved(si) Total number of successfully executed/approved

tasks for an ICU
τ(si, tx) Processing time for task x executed by an ICU
c(si, tx) Cost for task x when executed by an ICU
c(s

nw
i , tx) Cost for task x when reassigned to a new ICU

Table 3.1: Notation and description of basic ICU metrics and parameters

35

3. Elastic Social Compute Units: Provisioning and Management

3.3.3 Metrics: Notation and Definitions

Let us look at some basic metrics for SCUs. We denote the number of all completed

tasks of an SCU as: CT (scui) =
|S|∑
i=1

ncompleted(si). However, the result of all completed

tasks does not always mean that all of these tasks are approved at the end when the SCU

is dissolved. Thus, we also define SCU approved tasks as AT (scui) =
|S|∑
i=1

napproved(si).

Then we have the success rate of an SCU defined as ST (scui) = AT (scui)/CT (scui).
Some tasks can be delegated at runtime, and their completion at another ICU different
from the initially assigned one is, needless to say, also included in the completed tasks,
but it is worth noting that we consider delegated tasks because they play a crucial role
in adaptation mechanisms.

Project effort and productivity have been listed as performance measures for software
projects [Kas08]. Modified versions of these metrics can be reused for SCUs on software
and other goals. We define the SCU effort as the average time spent by each ICU on
each assigned task:

Effort(scui) =
|S|∑
s=1

m∑
x=1

τ(si, tx) (3.1)

Related to this metrics we define the productivity of an SCU as the ratio of approved
tasks to the given effort by the SCU for all assigned and completed tasks, as follows

Productivity(scui) = ST (scui)/Effort(scui) (3.2)

This means that the productivity of the SCU shows the effective time for which the
number of successful tasks with accepted results are executed.

The cost of an SCU is an aggregate sum of the cost of each of the ICUs for each
type of tasks that they have executed as each type of tasks has different type of skill and

skill-level requirements, Cost(scui) =
|S|∑
i=1

m∑
x=1

c(si, tx). Table 3.2 gives a clear overview of

the described metrics, while Table 3.1 gives the notation of some metrics that we use for
calculating some of the metrics in Table 3.2.

3.3.4 SCU Execution Model

SCU States

As we are defining the SCU as a computational concept, we need to define its execution
states as well. Thus, an SCU in execution mode, at a specific time point τ , can be in one of
the following action-states, SCUstate(τ) = {running, suspending, resuming, expanding,
reducing, substituting, stopped}. These states are listed in Table 3.3. The mentioned
states are basic/atomic ones and a combination of them makes a complex SCU execution

36

3.3. On the Elasticity of Social Compute Units

SCU Metrics Definition

SCU Total Completed Tasks CT (scui) =
|S|∑
i=1

ncompleted(si)

SCU Approved Tasks AT (scui) =
|S|∑
i=1

napproved(si)

SCU Success Rate ST (scui) = AT (scui)/CT (scui)

SCU Effort Effort(scui) =
|S|∑
s=1

m∑
x=1

τ(si, tx)

SCU Productivity Productivity(scui) =
ST (scui)/Effort(scui)

SCU Reputation Reputation(scui) =
|S|∑
i=1

wexpertise ∗

reputation(si)

SCU Cost Cost(scui) =
|S|∑
i=1

m∑
x=1

c(si, tx)

Table 3.2: SCU metrics to be used in adaptation mechanisms

state. For example, an SCU might be running but due to an adaptation action, at the
same time multiple ICUs (a cluster of ICUs) within an SCU might be suspended, while a
new ICU is being added in expanding state. In this case because running, suspending and
expanding are all execution states of an SCU, then running ∧ suspending ∧ expanding
is also an SCU state. However, some states are mutually exclusive if they refer to the
whole SCU and cannot be aggregated, i.e., an SCU cannot be in running ∧ stopping
state. If one of the atomic states refers to (a change in) individual or a cluster of
ICUs, an SCU can be in running ∧ extending state or for example an SCU can be in
a running ∧ reducing state. Thus, the aggregate states are valid in the context of the
scope that a state-changing action takes place. Table 3.3 also shows the scope for which
the state-changing actions are valid, in terms of the whole SCU, a cluster of ICUs, or
ICUs only. The importance of the state of an SCU as a whole is tightly coupled with
ICU states and is crucial when applying elastic strategies in two ways: 1) the state of
the SCU can be a trigger for elastic operations on the SCU, and 2) it can be a desired
result after applying these operations.

SCU in Execution

Table 3.3 shows ways of adaptation triggering: platform based, customer based and ICU
based. To clarify, a platform that supports an SCU should have the mechanisms to
support all of its execution states elastically. Thus all state-changing actions can be

37

3. Elastic Social Compute Units: Provisioning and Management

Trigger action State Scope Triggering Role
Platform Customer ICU

Run Running SCU
√ √

Suspend Suspending SCU/ICUcluster/ICU
√ √ √

Activate Resuming SCU/ICUcluster/ICU
√ √ √

Add Expanding ICUcluster/ICU
√ √ √

Exclude Reducing ICUcluster/ICU
√ √ √

Stop/Exclude/Add Substituting ICUcluster/ICU
√ √ √

Stop Stopping SCU
√ √

Table 3.3: Fundamental state alternatives of the SCU Execution phase

triggered in an automated way as shown in Table 3.3. Referring to our motivational
scenario, in rare cases the customer could suspend the whole SCU of software development
until he has consulted and decided for crucial changes. There are other triggering state-
changing actions that the customer can also make(shown with light gray check signs).
Table 3.3 also shows which state-changing actions can be most affected by communication
and ICU feedback, which we illustrate in Section 4. We show an example for a software

Figure 3.3: An illustrative example of an SCU in execution: expanding and reducing
states

developing SCU in execution mode in Fig. 7.3. At a specific time point ICUs with
developer skills are in running state while designers are suspended. Next, due to an
event when expert information is needed(e.g.,health-care information in our scenario),
the SCU is expanded by including ICU with specific expertise and consultancy skills
while a designer-ICU is resumed. At another time point each ICU is running, while
before dissolving, the SCU is reduced as ICUs with designer and consultancy skills have
finished their tasks. Adaptation actions on an SCU can change its execution model not
only in terms of the state but also in terms of its execution structure. These changes are
interdependent with task structure changes and ICU state changes.

38

3.3. On the Elasticity of Social Compute Units

Scheduling methods Description
abstract AddICU() adds an ICU to the SCU
abstract void SuspendICU(SCU scu) brings an ICU to idle state, still included

in the SCU
abstract void ExcludeICU(SCU scu) excludes an ICU form the SCU
abstract void ResumeICU(SCU scu) restart an ICU and its associated tasks
abstract void ReserveICU(Task t) reserves an alternative ICU for an already

assigned task
abstract void SubstituteICU() substitutes an ICU with a reserved one
public List <ICU> getAllICUinSCU(SCU
scu)

returns ICUs within the SCU

public List<ICU>getSuspendedICUs(SCU
scu)

returns suspended ICUs within an SCU

public List<ICU>getIdleICUs(SCU scu) returns idle ICUs in an SCU
public List<ICU>getReservedICUs(Task
t)

maintains an ordered list of top appropri-
ate ICUs for a certain task (ICUs might
be in/out of the specific SCU)

Table 3.4: Example API, abstract methods for ICU manipulation

Elasticity APIs

To be able to test mechanisms for SCU elasticity capabilities, which include ICUs having
the aforementioned (and other domain-dependent) properties, we designed a proof of
concept prototype, where we modeled ICUs, SCUs, their description and management
classes. We designed classes which we categorized in ICU-description Interfaces for
manipulating ICU profiles, ICU-scheduling Interfaces for ICU management and elastic
operations, and communication operations. Table 3.4 describes some specific methods
that we develop to be utilized in strategies providing SCU elastic capabilities.

3.3.5 Elastic SCU Provisioning Platform

Figure 3.4 shows a model of our concept of an elastic SCU provisioning platform, that
utilizing our SCU execution model, including metrics, is able to support elastic SCU
management. Thus, the platform supports the following behavior: a customer/SCU
consumer submits a project/request with multiple tasks to it. When submitting tasks
and request for SCU formation, the client specifies functional and non-functional ICU
requirements such as: skill, reputation and cost. In addition he specifies overall SCU
constraints, such as trust, total budget and deadline. The platform integrates an SCU
formation component with ICU selection/ranking algorithms. The SCU creation/forma-
tion component’s output is an initial SCU created by selecting ICUs from human cloud
providers. This SCU is "fed" to a controller-a component that hosts monitoring and
adaptation algorithms utilizing APIs for elasticity control, which provide SCU runtime

39

3. Elastic Social Compute Units: Provisioning and Management

management. The challenge of this component, is to monitor and adapt the SCU in
accordance to customer set constraints, such that the SCU gives the maximum perfor-
mance and quality within the preset boundaries for time related, cost and quality related
indicators. Different scheduling and ICU management algorithms can be plugged into
the platform, which would support the SCU during its lifecycle.

Figure 3.4: Conceptual platform model supporting elastic SCUs

3.4 SCU Runtime Management: Elastic Adaptation
Mechanisms

In this section we show the benefit of having an explicit execution model for SCU.
We present an implementable adaptation mechanism to illustrate the usefulness of our
framework in simplifying the complexity of the development of runtime mechanisms to
support elastic adaptation of SCUs. Typically, an elasticity strategy for an SCU would
depend from the domain of an SCU execution. In other words, much of the adaptation
mechanisms depend on the type of tasks that are going to be executed by the SCU and
the task-interdependence. However, as part of our framework we provide a few basic
algorithms that can be easily extended to tailor them to specific domains. In the following,
we provide an elastic adaptation algorithm to demonstrate how an ICU Feedback-based
elastic SCU management strategy can be implemented.

40

3.4. SCU Runtime Management: Elastic Adaptation Mechanisms

3.4.1 Programming an Elasticity Strategy: A semi-automatic
adaptation strategy with human-in-the-loop decision making

As ICUs within an SCU are inherently dynamic and unpredictable due to human nature,
we cannot always fully rely on the system-based availability information concerning an
ICU and fully automated task assignment and scheduling might not always be the most
suitable approach, especially when there is a possibility of unexpected generation of tasks
at runtime. Hence, we propose an SCU adaptation strategy that uses system requests and
corresponding ICU acknowledgments for their willingness to work on specific tasks. More
specifically, the acknowledgments are sent in response to system requests for availability
guarantees. These availability guarantees are requested in two cases:

1. for specific tasks that would need to be executed in the future during SCU execution,
which means that willingness requests can be sent for a task before it is assigned,
and multiple ICUs that send acknowledgments as a reply to willingness requests
stating that they are willing to execute particular tasks can be used as reserve
resources, and

2. at run-time for immediate execution of tasks that need reassignment, where ICUs
who send willingness ACKs are ranked so that tasks can be reassigned to the most
appropriate ICU at run-time.

Our example of elastic SCU mechanism is a semi-automatic task scheduling strategy
where part of the coordination and decision-making for task re-assignment is delegated to
ICUs. With this approach a task is being re-assigned to a more available ICU, on an ICUs
own approval and when certain conditions apply (e.g, when a threshold is reached). Thus,
the task reassignment decisions are partly based on feedback from ICUs and in this way
the elastic SCU management is not completely automated but involves “human in the
loop” decentralized coordination. With this example, we show how new SCU metrics can
be derived and how APIs for elastic capabilities can be used. By utilizing programming
interfaces for obtaining SCU metrics at runtime, we can calculate the willingness of an
ICU. We define ICU Willingness as the ratio of the number of acknowledgments sent by
ICUs to the number of willingness requests sent to the ICUs, as in the following:

ICUWillingness = SentAcks
ReceivedReqs . (3.3)

Related to the willingness metric we define and derive another metric to help us
further quantify the task execution performance of an ICU, namely the Confidecne-Score
for the ICU Willingness metric, that we naturally call Willingness Confidence-Score. We
derive it from the basic indicators, ICU Willingness, and the ICUs rate of success in
executing the reassigned/delegated tasks. More specifically the ICU Willingness Confidence
value or score, is computed from the number of acknowledgments that an ICU has
sent to the scheduler in response to its requests for willingness, and the number of
successfully completed tasks from the ones that are delegated to it as responses to those

41

3. Elastic Social Compute Units: Provisioning and Management

acknowledgments. In other words, Willingness Confidence-Score of an ICU which we
define as a product of Willingness and the rate of success in executing the number of
tasks that are delegated to the ICU as a result of its own feedback for willingness to
execute those tasks, as in the following:

WillingnessConf = ICUWillingness× DelegatedTasksExecuted
TotalDelegatedTasks [RTD14]. (3.4)

Thus, the Willingness Confidence-Score is a measure of the delegation reliability of an
ICU for tasks that have been delegated to it, because it shows how true to its own
statements an ICU is by accounting how many tasks it has executed of those it claimed
that it is willing and going to execute.

To detail our adaptation strategy that utilizes willingness and willingness confidence-
score we assume that each incoming task is assigned to the ICU at the top of a ranked list
that is returned by a ranking algorithm, and references to the first x most appropriate
ICUs from the ranked list are stored as reserves/alternatives for each task. The algorithm
can be summarized with the following steps:

1. When a preset threshold, related to a task which is already assigned to the most
appropriate ICU matching the requirements is reached, e.g.,the tasks waiting-time
in an ICUs task-queue, the scheduler sends a willingness request for executing that
particular task to the next top x number of ICUs that it has references to (reserves
from the initial ranked list). These appropriate ICUs at the same time need to be
idle, or their task queues need to be smaller than that of the ICU to which the
task was initially assigned and at which it reached a threshold. With this request
for willingness, a scheduler notifies the reserve experts that there is a task that
they can work on. This request is a resource availability-check. In other words, it
is a request for a resource’s willingness to work on a specific task as a form of a
worker-side commitment and a form of a guarantee that the task will be executed
by him/her.

2. Each ICU that receives this request and is ready and wishes to work on the task,
sends the scheduler a willingness acknowledgment(Ack), which at the same time is
a positive feedback to this request.

3. The scheduling component reassigns the task on threshold to the alternative resource
that has sent a willingness acknowledgment and that is idle or has the smallest
task queue. Priority is given to idle or less loaded ICUs that are already members
of the SCU. Thus, the task is assigned by going in descending order through the
ranked list of reserve ICUs that have sent Acks and assigning the task to the first
found ICU that is idle or has a smaller task-queue than a preset task-queue value.

This type of scheduling combines the freedom of choosing tasks that workers have in
crowdsourcing environments, with policy based assignment of tasks. It is these ICU-side
guarantees combined with task queue analysis, that can avoid problems such as delegation
sinks. The steps of our strategy are given in the pseudo-code in Algorithm 3.1, which

42

3.4. SCU Runtime Management: Elastic Adaptation Mechanisms

Algorithm 3.1: SCU Adaptation: Task-delegations with ICU-side assurance
Data: scuTasks for SCU
Data: customer constraints on NFP

1 forall tasks in T do
2 rank matching ICUs and return the first 10 appropriate ;
3 P ← getReservedICUList(Task t) /* store reserve ICUs */

4 assign task t to top ranked ICUs r;
5 if r is not an element in SCU then
6 SCU ← addICU() /* add ICU r to SCU x and update its profile */

7 end
8 if task.taskQueueT ime == task.timeThreshold then
9 if r == idle then

10 SCU ← removeICU() /* reduction: remove ICU r from SCU */

11 end
12 forall ICU in P do
13 getICUState(ICU ICUid) ;
14 if ICU_ STATE==idle AND icuReserve.tQueue()

<r.tQueueSize()/2 then
15 willingnessReqMessage() ;
16 end
17 end
18 forall ICU in P in ascending order of icuResource.taskQueue do
19 if icuReserve.sentAck == true then
20 substituteICU() /* delegate task to another ICU */

21 ;
// check if the ICU already belong to the SCU or not, if

not include it in

22 ;
23 if !SCU.contains(icuReserve) then
24 SCU ← addICU()
25 end
26 ;
27 Break ;
28 end
29 end
30 end
31 end

43

3. Elastic Social Compute Units: Provisioning and Management

also shows how the concept of elasticity in social computing departs from the idea that a
customer knows in advance which and how many experts will contribute to the project
and what the final cost will be. However, the customer budget is kept within its limits as
the cost may vary within these limits, just as the size and structure of the assembled
SCU may vary with time until the final result is returned. When a delegation is executed,
the new cost calculation includes the price of the new ICU. Thus, the cost of an SCU is
adapted with each delegation as follows:

Costadapt(scui) = Costprevious(scui)−
m∑
i=1

j∑
x=1

c(si, tx) +
m∑
i=1

j∑
x=1

c(s
nw
i , tx) (3.5)

, where Costadapt(scui) ≤ Allowed Budget.

3.4.2 Experiment: Executing an Elasticity Strategy

Utilizing an Analytic Hierarchy Process (AHP) model for ranking of ICUs

For the implementation of the described adaptation strategy, we need to form an SCU
first. For SCU formation in this case we used an Analytic Hierarchy Process (AHP)
model, and more specifically a modified version of the methodology presented from
authors in [CFMT09]. In a nutshell an AHP mechanism is used for decision-making
scenarios based on multiple metrics, complex or simple. We use it to rank our ICUs for
each task according to customer constraints and thus form an SCU with appropriate
ICUs. Our approach to it and our implementation considers the following steps:

• Get the non-functional parameters for which a customer sets a constraint, as an
input (to simplify we require a set of three metrics with which we rank ICUs).
Thus, the input is a list of three metrics and required values for them.
• Next we request customer input for the importance of the three metrics, as follows:
1 means equal importance, 2 means moderate importance and 3 strong importance.
Then we create a comparison matrix for the three metrics according to the impor-
tance of each of them in relation to each other, which is different from the method
of authors in [CFMT09], where they compare the importance of sub-characteristics
of one metric, but for our needs we modify the model and compare metrics without
sub-characteristics such as average and maximum values of a metric. Thus, we
create the matrix by following the formula k(i, j) = 1

m(j,i) ,∀i, j, where i and j are
metrics and not sub-characteristics of a metric, so here we differ from the model in
[CFMT09]; k(i, i) = 1,∀i.

• In the next step the matrix is normalized and a weight for each metric is calculated

with the following formula: w(i) =

n∑
j=1

m
′ (i,j)

n , ∀i, where m′(i, j) is the normalized
matrix.

• Finally, w is multiplied with the results of a utility function in relation to the ratio
between the requested value for the metric from the customer and the offered value

44

3.4. SCU Runtime Management: Elastic Adaptation Mechanisms

from an ICU. The sum of this multiplication for all metrics is the ranking score
of the ICU. The formulas to describe our AHP method are all from [CFMT09].
We modified the version of the authors model to fit our purposes and utilize this
AHP-based algorithm to rank ICUs in the experiment with the implementation
of the adaptation strategy that we describe in this section. Just for illustration,
Appendix A, shows a code snippet from the method of getting a satisfaction score
for ICUs based on three metrics, and ranking a list of ICUs based on that score, and
one short code snippet from our delegation mechanisms based on a time threshold.

Of course, there are other methods that could be used for ranking ICUs based on
multiple criteria, such as Logical Scoring Preference, and different genetic algorithms (-
we present a genetic algorithm based SCU formation strategy in Chapter 5). We used
the AHP method to help us in the formation of SCUs, as our elastic adaptations take as
input a ranked list of ICUs when delegating tasks.

Implementation of Algorithmn 3.1 and results

We implemented our previously described elastic adaptation algorithm using methods
described in the API section with a Java based simulation. We created tasks with
different skill requirements and modeled ICUs with a single skill for simplicity, using a
few different types of skills (e.g., design, development, database-management, tester).
We also assigned different costs to each of the ICUs, and to each of the Tasks based on
skill-type. New tasks were generated in multiple steps, after every bag of tasks executed.
The results of our experiments show that SCU productivity raises with the number of
ICUs, while it declines if the effort is high for a low number of tasks. The productivity
declines in case a small number of tasks are executed by a high number of ICUs, which
means they are first assigned to other ICUs and then delegated to others. Sub-figures
a) and b) of Figure 3.5 show productivity and effort in relation to the number of ICUs,
number of tasks, and number of delegated tasks as a result of the SCU adaptation based
on our algorithm, after each checkpoint in 10 time checkpoints, in each checkpoint we
assigned a new bag of tasks to appropriate ICUs.

Figure 3.5: SCU Productivity and Effort in relation to Task and ICU number

45

3. Elastic Social Compute Units: Provisioning and Management

3.5 Related Work

Resource Management and Adaptation. We discuss here specific works related to
resource management and load balancing that are closely related to our elastic adaptation
strategy. Work on a retainer model for crowdsourcing environments and examples of its
application are presented in [BKMB12],[BBMK11]. The model is designed for recruiting
guaranteed workers by paying them a small additional amount, and in this way keeping
them in reserve and ready for handling real-time tasks. By being paid they are asked to
be in ready state when a task from a specific client arrives. This work has also improved
existing retainer models on minimizing task waiting times by using predictive recruitment.
With this approach, by using the queuing theory M/M/c/c model the authors find the
probability when a task will arrive and pre-recruit a worker from the retainer pool for it.
The similarity of our ICU-feedback based task-assignment strategy to the aforementioned
work is in that our scheduler keeps references to the top x number of resources that are
previously ranked as most suitable for a specific task. Hence, these resources are the
reserve resources in our approach. However, the difference in our approach is that no
prior payment is made for reservation of these resources, rather the scheduler sends them
a notification asking for feedback for their willingness to execute a task. In addition,
the request for willingness messages are sent for tasks that are already assigned to
another resource and which need to be delegated (e.g., for which a time-based threshold
is reached). Our strategy is not concerned with initial task assignment and it is not
intended for crowdsourcing tasks, although ICUs may be invoked from a crowdsourcing
platform. For illustration, and an additional justification of our willingness metric, the
work presented in [SKS12] is worth mentioning, where authors have investigated factors
for workers’ task-choice in human computation/crowdsourcing markets. Some of the
mentioned ones are: abilities fit, payment fit, time fit-related to task deadline and task
familiarization, as well as work intention, where willingness is mentioned as a person’s
overall impression about the task and his/her decision on whether to work on it. In our
work, we try to define willingness, and in such a way that it can be calculable so that it
provided us with a one type of a reliability metric (based on delegated tasks), indicating
the behavior of a person in terms of words vs. action.

There is a considerable amount of work conducted on adaptation and more interestingly
on self-adaptation strategies. For example, the authors of [PJS+10], who we have
mentioned in Chapter 2, along the presented architecture that includes a self-adaptation
framework for service-oriented collaboration systems, have presented their approach on
identifying worker misbehavior patterns (e.g., as a result of uncontrolled task delegations)
and provided a solution of reassigning tasks to other alternative resources by taking into
account their task-queue size. Our feedback-based approach is closely related to their
delegation mechanism in that it also takes into account task-queue sizes but differs from
their approach in that tasks are not delegated if resources with small task-queue sizes
are not willing to accept tasks. In our approach, a scheduler/controller manages the
task reassignment with consent from workers which are considered as alternatives (i.e.,
are most trustworthy and have small task-queue size). The work presented in [HC08]

46

3.5. Related Work

describes a delegation model and related algorithms that concern trust updates. The
authors mention adoption as a process where an entity accepts an object from another
one. Our willingness-based adaptation algorithm is related to the adoption concept, as
tasks are delegated only with workers consent.

Elasticity. The notion of elasticity is treated in several domains and contexts and
has especially gained importance with the advance of cloud computing. In [DT12]
authors discuss the reasons, challenges and their approach toward virtualizing humans
and software under the same service-based model that will enable elastic computing
in terms of scaling both software and human resources. The concept of elasticity in
cloud computing, is being extended to concepts like application [ZKJG11] and process
[DGST11] elasticity, e.g., in [DGST11], the authors identify resource elasticity, cost
elasticity and quality elasticity as being crucial in modeling processes in service oriented
computing. Mechanisms and a middleware to support scaling services in and out from
applications utilizing SaaS is presented in [KHCK13].

47

CHAPTER 4
Trust in Social Computing:

Metrics, Model and Algorithms

4.1 Background and Motivation

4.1.1 Trust for Social collectives

In the previous chapter we introduced a number of metrics with which it is possible to
monitor ICU performance and at least to some degree quantify human performance in
elastic social computing constructs such as SCUs. However, a crucial parameter is missing
to make the picture more complete, namely trust. Trust has been extensively researched
in the area of social networks, e.g., in [ZF11] and [Gol05] as well as in crowdsourcing,
e.g., [AIB+]. Moreover, existing works that treat human task execution within service
oriented environments also include trust, such as [SSD10b]. In short, trust has been
identified as an important indicator of the appropriateness of people for sharing content
in a certain topic, exchanging information, and collaborating in various domains that
require online task-execution.

For social networks and crowdsourcing platforms it is already identified that trust is
important in deciding with whom to establish connections and with whom to interact
[Gol05], [ZF11], [AIB+]. We stress that this importance is even higher in SCUs because
they entail complex structures and organized work. In the previous chapter we argued
that ICUs should be managed elastically for effective SCU performance and customer
cost savings. This implies that ICUs can be added and removed from the SCU at runtime
based on different strategies, so that the SCU capabilities and performance are optimized
at any time and for any changes in customer requirements. Hence, as much as trust is
needed at the stage of the formation or selection of SCUs, it also plays a crucial role
during their lifecycle for runtime adaptation, i.e., for managing SCU execution and thus
controlling the level of non-functional parameters and quality of the returned results.

49

4. Trust in Social Computing: Metrics, Model and Algorithms

4.1.2 Motivation Scenario and Challenges

Consider an enterprise that is hired as a contractor to do infrastructure maintenance
of buildings in multiple smart cities. Clients may vary from governmental institutions,
to private businesses, to individuals. All clients have different types of maintenance
requirements for different type of infrastructure. Usually maintenance today operates
such that infrastructure is monitored and when a malfunction is detected experts are
engaged to fix it. All this is done through predetermined processes and procedures.
However, problems arise in these setups as maintenance is based on momentary detection
of malfunctions. In addition, the expert technicians sometimes can not tell whether the
component problem arose because it was malfunctioning or the predefined maintenance
procedure for increasing components effectiveness was itself faulty. These problems can
be avoided if they can be predicted. Thus, a maintenance process is much more effective
if it is predictive. Consider for example the maintenance of multiple chillers. Chillers have
very high cost if they need to be replaced, their component replacement costs are also
very high and most of the time electricity costs are high. Thus, predicting a malfunction
early can help tune a chiller’s parameters so that it does not suffer damage, it can help
preserve components, as well as high operational costs. Three types of SCUs can be
utilized in this scenario:

(a) an SCU with data science experts, who will collect monitoring data from facilities
of different clients, they will filter this data, structure it and provide it as Data-
as-a-Service (DaaS). The data to be monitored, gathered, and provided in a way
that can be utilized by proactive processes, may be metrics values and properties
of the chiller and its components, such as: the temperature of the water going in
and out, the compressor state, the evaporator state, the water flow, the state of
the condenser, the on/off status of the chiller but also environmental data;

(b) an SCU with experts in data analytics, who will implement predictive maintenance
procedures using the DaaS that the aforementioned SCU will provide;

(c) an SCU with technical expertise who will react according to the predictive proce-
dures and do maintenance on-site before any malfunctions happen.

Selecting not only the appropriate members according to specific requirements but
also the best among the available ones is important for forming an effective SCU. From
the system perspective, the aforementioned SCUs should have a common collaboration
platform, which will at the same time provision and manage the task-execution and the
SCU members at runtime. In cases of incidents regarding a malfunction of a certain
component of a chiller, new expertise might be needed that the members of the already
formed SCU lack. In these cases, the SCU should be extended by including new members
with the required expertise and the common collaboration and SCU management platform
will have the mechanisms to support these type of elastic adaptations. Figure 4.1 illustrates
the described scenario, whereas Figure4.2 extends the description of the platform from
the previous chapter with trust considerations.

50

4.1. Background and Motivation

Figure 4.1: SCU Working Environment in a Predictive Maintenance Scenario

The envisioned SCU provisioning platform keeps a record of registered ICU profiles,
including their expertise, and logs their information regarding the SCUs in which they
have been included. Hence, it maintains SCU profiles as well. SCU data such as the
domain and skills utilized, the number of ICUs, the cost, success rate etc, need to
be logged not only to extract data regarding its members when they are assessed for
inclusion in new SCUs, but also for strategies where an SCU is not formed from scratch
for a new project, rather if SCUs exist for the same problem domain, SCUs can also be
ranked and one or more of them selected for a new project. The ICU profiles may be
registered and hosted on the SCU provisioning platform but they can also be references
to other resources from other online resource pools such as crowdsourcing platforms,
expert networks and social networks. The platform runs SCU formation algorithms to
create new SCUs from trusted ICUs, or it can run a ranking algorithm for whole SCUs
to chose the most trusted one, depending on the submitted client request. The selected
SCU, or the newly formed one, is monitored at runtime and may be elastically adapted in
response to different events, and based on different elastic strategies to best fit customer
requirements. The adaptations include activities such as task reassignments, delegations,
addition of new ICUs and removal of existing ICUs. Thus, the capabilities and expertise
of ICUs can be adapted, and consequently, the performance of the SCU can be changed
at runtime. The SCU collaboration can be supported by communication services, cloud
services, and also data from Internet of Things devices.

Observations and Challenges

From the described environment we derive the fundamental trust related observations in
SCU provisioning, generalized across domains:

• Because an SCU is based on expertise and task execution, a trust (and reputation)

51

4. Trust in Social Computing: Metrics, Model and Algorithms

Figure 4.2: Platform/SCU Management with Trust

score of an ICU to be included in the SCU should be calculated both from the
social trust scores of collaborators out of interaction satisfaction, and from its
performance within the required expertise.

• SCUs are elastic in term of number of ICUs, topology, price and NFP. Consequently,
the SCU trust is an elastic property as well.

• SCU is a socio-technical formation that has ICUs (people who offer their capabilities
as services) as its core resources, thus its nature is unpredictable and trust is crucial
when regulating their behavior.

These observations bring us to the following corresponding salient research challenges:

• What are the fundamental metrics to be included in a socio-technical trust model
that will include both the social and performance contexts of ICU?

• How is trust updated and how it fluctuates within the dynamics of an elastic SCUs
lifecycle?

• How can trust be included in elasticity-based management strategies for effective
SCUs?

• What can be a feasible trust-based incentive strategy for ICUs?

In the following sections we present a Socio-Technical Trust (STT) model for ICUs
and a Socio-Technical Trust model for SCUs. In addition we present elastic adaptation

52

4.2. A Socio-Technical Trust Model for Social Compute Units

mechanisms which consider trust, as well as incentive mechanisms for ICUs based on
trust. Through these models and mechanisms we address the aforementioned challenges.

4.2 A Socio-Technical Trust Model for Social Compute
Units

4.2.1 Modeling Trusted Individual Compute Units

To come to an SCU trust model, understandably we first need to define ICU trust as
ICUs are the core resources of an SCU. ICU trust can be defined from two perspectives:

1. that from an SCU of which it is a member, and
2. from the global perspective of its performance and social impression, derived from

each of its task executing engagements within all SCUs of which it has been a
member during a certain time-line.

The trust defined from the perspective described under 2), implies a global trust score
for an ICU, and aside form calling it the global STT we also call it reputation of the ICU
to differentiate it from its local trust score within a specific SCU. Therefore, we present
here two types of trust models for ICUs, local and global STT.

4.2.2 Metrics: Notation and Definitions

Based on the work from Chapter 3 on ICU performance as well as on related work,
we have identified key performance indicators for ICUs and SCUs that can be used in
ICU/SCU elastic management. We discuss them in this section, even also some that are
introduced in Chapter 3 as they are part of the core of our socio-technical trust model,
and their elaboration has the purpose of easing the flow of our model discussion.

Effort- the effort of an ICU is the average time spent by an ICU for executing a
task, thus it indicates timeliness. The SCU effort is an aggregate of the effort of its
members-ICUs, as in Equation (3.1).

Productivity- we define ICU productivity as the number of successfully executed tasks
over a time unit. Thus, productivity is the ratio of successfully executed tasks that are
submitted by an ICU as a result, and the total number of tasks executed per time unit.
The SCU productivity is an aggregate of the productivity of the constituting ICUs, or it
can be calculated as the ratio of approved tasks to the given effort by the SCU for all
assigned and completed tasks, as in Equation (3.2).

Consistency- the performance of ICUs over time is important in some cases, and
even-though we haven’t used consistency in our model and experiments we need to
mention it as an important metric that could be used as one of the atomic metrics to
calculate reliability. In some cases, the performance of ICUs gets better with time as
ICU skills get better, so this metric would be relevant in some cases (e.g., number of

53

4. Trust in Social Computing: Metrics, Model and Algorithms

pages translated, number of objects tagged) and not in others; consequently, we chose
not to generalize it. To define it for our purposes we use the standard deviation over the
productivity values of a specific ICU in different SCUs within a specific time-interval or
in every SCU it has taken part over time.

Reliability- we derive ICU reliability from multiple atomic metrics. Namely, in
Chapter 3 we presented two novel metrics, Willingness and Willingness Confidence-Score.
Reliability in our trust model is partly indicated by the Willingness Confidence Score,
because this value shows how true to its own statements an ICU is by accounting the
number of tasks it has executed of those it claimed that it is going to execute when it
was sent requests for task executions. To define a comprehensive reliability metric for
an ICU we combine the delegation reliability with the total successfully executed tasks
of an ICU, including tasks that are initially assigned to it. To calculate it, we use a
weighted sum of the delegation and success rate. If we want to include consistency in
calculating reliability then we would add it in the weighted aggregated sum with the
values in negative sign (as we need a small standard deviation of productivity over time
if used).

Quality of Results/Client Satisfaction Score- the quality of tasks results (QoR) depends
on multiple factors, such as the domain of the SCU goal, the task types, the SCUs structure
[18]. In this work we define it as the client satisfaction from the task results. Thus, in
our model this metric is calculated as a vote from the client to the SCU, and denoted as
Client Satisfaction Score. However, QoR can be set up to be automatically measured in
some cases when expected task results are specified, or defined differently for different
domains. Related to this metrics we define the productivity of an SCU This means that
the productivity of the SCU shows the effective time over which the number of successful
tasks with accepted results are executed.

System-based Satisfaction Score-The System-based satisfaction score STTR, is a value
that is assigned to all ICUs at the end of the execution (SCU dissolution) based on their
collective performance. This metric can be used as an incentive mechanisms to encourage
people to have better collective performance, because a higher value of a collective’s trust
signifies that an ICU will be given a higher STTR. This metric is up to the developer to
define, but we postulate that to be used as an incentive mechanism it should be a value
equal for all members of the SCU. In our model we define it as STTR = STT (scui)÷|S|,
where S is the set of members of scui. Of course with our formula, STTR will be very
small, but it is enough to have an effect nonetheless.

4.2.3 Socio-Technical Trust (STT) Model

In the following subsections we discuss how we use the mentioned metrics in trust models
for ICUs and SCUs. We define an ICUs software-based trust, called performance trust
as the product of its productivity and reliability, which are calculated from automated
monitoring.

PT (si) = Productivity(si) ∗Reliability(si) (4.1)

54

4.2. A Socio-Technical Trust Model for Social Compute Units

To come to a social trust score of an ICU in the context of an SCU we define the
Membership Collaboration Trust Score of an ICU within a specific SCU. For this metric
we propose the strategy that each ICU within the same SCU votes for all other ICUs
of the same SCU before the SCU is dissolved. This vote is given for the interaction
satisfaction with the ICUs with which the voting ICU has interacted within the same
SCU or, in the case if it has not interacted with, the vote is cast based on the perception
of what the ICU to whom it casts a vote has contributed for the SCU. Thus, we assume
here that every member has either interacted with all others at least once or if not then
at least it knows what all members have contributed. Consequently, the Membership
Collaboration Trust Score of an ICU is calculated from the votes that each member of
the SCU gives to another member of the SCU before the SCU is dissolved as in Equation
(4.2). This metric is a weighted aggregation of scores, such that the votes of ICUs with
higher reputation are given higher weight. In this work, in all equations the sum of the
weights is 1, and every metric value is in the (0,..1] range.

MCTS(si) =
|S|∑

k=1,k 6=i
w(sk) ∗mc(sk, si)/|S| − 1 (4.2)

From the global perspective, the Global Membership Collaboration Trust Score of an
ICU in regard with all SCUs that it has been a member of, is an aggregate of its MCTS
scores from every SCU of which it has been a part of, taking into account the number of
invocations of each SCU, because an SCU can be invoked multiple times for the same
or different clients. In addition, because human behavior is highly unpredictable and
changes with time, the inclusion of a time restriction is important. Thus, a time period
limit for the number of SCU invocations, has to be assigned in calculations, with the
purpose of accounting for the freshness of trusted relations. Equation (4.3) shows the
definition.

MCTSgl(si, τ) = 1
|Uτ |

|Uτ |∑
j=1

1
m

m∑
l=1

MCTS(si)l,j , (4.3)

where m is the number of invocations of a specific SCU, of which an ICU has been a
member, and Uτ is the total number of different SCUs that the ICU has been a member
of, within a specific time τ .

The local Socio-Technical Trust of an ICU (in the context of a specific SCU invocation)
STT (si) is a weighted sum of its performance trust and the Membership Collaboration
Trust Score from its co-members in the SCU, given in Equation (4.4).

STT (si) = wpt ∗ PT (si) + wmcts ∗MCTS(si) (4.4)

On the other hand, we name the global Socio-Technical Trust Score of an ICU,
Reputation(si). This is in line with the concept that trust in an ICU is individual,
whereas reputation is a global metric that includes the trust scores from all the actors in
the system who have interacted with the ICU. We calculate the reputation of an ICU as

55

4. Trust in Social Computing: Metrics, Model and Algorithms

a sum of its STT and a Socio-Technical Trust score that we assign to it based on the
STT scores of the SCUs to which the ICU have belonged, considering all invocations of
the ICU within different SCUs in a specific period of time.

Reputation(ri, τ) = 1
|Uτ |

|Uτ |∑
j=1

1
m

m∑
l=1

(wsttSTT (si)l,j + wsttrSTTR(si)l,j). (4.5)

Context

To account for the possibility of multiple capabilities of people, it is important to note
here that our metrics for calculating the Socio-Technical Trust for ICU and SCUs are
calculated in the context of a particular skill or expertise of an ICU, for which an ICU
is invoked in the SCU; e.g., a data scientist can conduct tasks related to structuring
and filtering data to provide DaaS but he/she can also be involved in another SCU for
analyzing data and creating operations plans. Consequently, in fact we have separate roles
for the same ICU, so the same ICU is treated as separate in the context of its expertise
within different roles (icu1 in Figure 4.4 after SCU adaptation during time τ). Tasks are
assigned based on a match of the skill needed to execute the task and the skill that an
ICU possesses. We define the set of skills of an ICU with SK(si) = {sk1, sk2, ...skn}, and
the set of tasks assigned to an ICU with T (si) = {t1, t2, ...tn}, where ∀t ∈ T, ∃sk ∈ SK.
The set denoting the skill-task/s pairs is ST = {ST1, ST2, ...STn}, with its elements
defined as ST = {(sk, {Tsub}) | Tsub ⊆ T ∧ Tsub 6= ∅ ∧ sk ∈ SK}. The context C, in
which we calculate a metric M for an ICU corresponds to the skill type with which the
ICU is invoked in an SCU, so we have C(M, si) = sk ⇔ sk ∈ ST .

4.2.4 Modeling Trusted Social Compute Units

We consider two cases where trust is important for SCUs: a) when an SCU is newly-
formed and composed from ICUs with appropriate expertise for the SCU tasks, and
b) when the client may chose an already existing SCU. For SCU formation algorithms,
we propose an aggregated trust score that is based on the reputation score of ICUs
over which the selection algorithm is executed. As every skill does not have the same
importance within an SCU, weights are assigned to ICUs with different type of skills and
for each skill-type. For example in our scenario, data scientist members may have higher
weight than ICUs with other roles. In different domains, the importance of expertise may
vary drastically depending on the SCUs goal. The Socio-Technical Trust for an SCU that
is newly formed is calculated as a weighted aggregate score of the reputation of the ICUs
of which it will be formed, because the reputation contains the performance as well as
the social trust of ICUs. Thus, this metric can be used in formation algorithms to decide
about the most trusted SCU from the possible compositons.

STT f (scui) =
|S|∑
i=1

(wexpertise(si) ∗Reputation(si))/
|S|∑
i=1

wexpertise(si) (4.6)

56

4.2. A Socio-Technical Trust Model for Social Compute Units
Table 4.1: Notations

Notation Description

si ICU, a member of an SCU

scui/S SCU/an SCU as a set of ICUs

ri ICU not associated to any specific SCU, a global profile of an
ICU in the pool of ICUs

m Number of invocations of a particular SCU

mc(sk, si) Trust vote from ICU k to ICU i based on their collaboration
experience within the same SCU

MCTS(si),MCTSgl Local, respectively, global Membership Collaboration Trust
Score of an ICU

STTR Socio-Technical Trust score given to ICUs based on the STT
of the SCUs in which it has been a member

PT (si) Performance/Technical trust of an ICU in SCU

ST (scui) Social Trust of a specific SCU

STT f (scui) Socio-Technical Trust metric of an SCU at the time of forma-
tion

STT e(scui) Socio-Technical Trust metric of an SCU that has been invoked
before

STT (scui) Socio-Technical Trust metric of a specific SCU scui

In the case when a customer or a software client wants to chose an SCU that has been
previously invoked, our model takes into account overall SCU metrics. SCU specific
metrics are aggregates of the ICUs that have taken part in it and it is also a function of
performance-based trust (Equation 4.7), as well as social trust (Equation 4.8). PT or
software-based trust of an SCU, which is the technical part of trust in our model, is an
aggregate of the performance trust of its member ICUs, considering the total number of
SCU invocations m, over a period of time.

PT (scui) = 1
m

m∑
k=1

|S|∑
i=1

PT (si)k/S (4.7)

ST (scui) = 1
m

m∑
k=1

(wmcts ∗MCTS(scui)k + wcss ∗ CSS(scui)k). (4.8)

The social trust of an SCU, ST, is calculated as a weighted average of MCTS of its
members, and the customer satisfaction score of the client (CSS) regarding SCU’s

57

4. Trust in Social Computing: Metrics, Model and Algorithms

performance and quality of results, as presented in Equation (4.8). Here too, CSS is
a subjective trust vote from the client to the SCU. Equation (4.9) defines the Socio-
Technical Trust of an SCU that can be used in SCU selection algorithms, as it considers
historical data for SCUs, by including both performance trust (Eq.4.8) and social trust
(Eq.4.9) over a number of invocations of the SCU, m.

STT e(scui) = 1
2(PT (scui) + ST (scui)) (4.9)

Figure 4.3 shows the metrics that we have discussed and consequently gives an
overview of our Socio-Technical Trust Model of an SCU. The lines with arrowheads
are in the direction from more simple metrics, to metrics which are comprised of those
simple ones, and show how we derive the STT for SCUs from both the social scores and
automatically calculated scores based on SCUs performance monitoring. As QoR metric
is domain-dependent we have not included it in our definitions but the model shows that
it is easy to add this and any other metric to it.

Figure 4.3: SCU Socio-Technical Trust Model

Definition 4 Trust in a collective in the context of a specific goal is the expectation
that at any point in time within its lifecycle, its structure and member-capabilities are
appropriate for executing the tasks and will perform within the preset or negotiated
constraints.

58

4.3. Elastic Adaptation Strategies with Trust: Algorithms and Experiments

a) b)

Notation
Figure 4.4: SCU trust metrics and relations updates

4.3 Elastic Adaptation Strategies with Trust: Algorithms
and Experiments

The objective of an SCU provisioning platform is not only to provision an appropriate SCU
for a specific client, but also to maximize performance, which means keeping deadlines,
submitting high quality results and maintaining the SCU operation cost within the
allowed budget. In our scenario, e.g., we need to ensure that data is always available for
the second SCU (Section 4.1.2/B/b), and that a person is always available for immediate
response for the third SCU (4.1.2/B/c). This requires for ICU availability at all times
for all SCUs. For this, for efficient SCU performance with Algorithm 4.1 we propose an
approach for elastic SCU adaptation based on delegations and considering ICU trust
(that includes availability and performance metrics). The algorithm monitors each task
and in case of a time-threshold at one ICU, it delegates the task to another available ICU.
Lines 2-7 check for the reputation score and current execution state of the ICU from
which the task needs to be withdrawn and delegated to another. If its trust score is less
than 0.5 and the ICU does not have tasks in execution it is removed from the SCU. Lines
9-13 check ICU reputation and cost for all ICUs in the pool of available ICUs, regardless
if they are members of the SCU or not. ICUs that have a reputation higher or equal to
0.5 and that fit the allowed cost are ranked in ascending order of their task queues. A
request to work on the task that needs to be delegated is then sent to the ranked list of
ICUs. The task is finally reassigned to the ICU highest on the ranked list that has sent
an acknowledgment for willingness to execute the task. If the ICU is not a member of
the SCU, it is added. The SCU trust is updated at runtime during the adaptation of the
SCU.

4.3.1 Experiments

We evaluated our trust model via simulations. We designed ICU Profiles with static
properties (unaltered values) and dynamic properties (updated at runtime). The static
properties are skill type and cost per task, whereas the dynamic properties are: Pro-

59

4. Trust in Social Computing: Metrics, Model and Algorithms

Algorithm 4.1: A Cost-Effective Algorithm for Elastic Adaptation of SCUs
based on ICU Reputation
Data: icu member of SCU, icu member of P
Data: task assigned in SCU

1 forall task in T do
2 if task.inIcuQueueDuration ==
3 task.thresholdDuration then
4 icuCurrent = task.getICU() ;
5 if icuCurrent.icuReputation 6 0.5 &&
6 icuCurrent.taskExecuting = 0 then
7 SCU ← removeICU();
8 end
9 forall icu in P do

10 if icu.STT > 0.5&&
11 (currentCost+ icu.Cost) ≤ Budget then
12 rankingList← min(icu.taskQueue) ;
13 end
14 sendWillingnessReq();
15 end

/* Assign the task on threshold to the highest ranked ICU that

acknowledges a Willingness request */

16 forall icu in rankingList do
17 if icu.Ack() == true then
18 icuCurrent = icu;
19 if icu is not a member of SCU then
20 SCU ← addICU(icuCurrent);
21 end
22 Break;
23 end
24 end
25 end
26 end

60

4.3. Elastic Adaptation Strategies with Trust: Algorithms and Experiments

a) b)

c)
Figure 4.5: SCU metric updates without considering trust for delegations

ductivity, MBCT, ICUReputation, STT and all the atomic metrics discussed in this
work, all of which are calculated according to our model. Nevertheless, we note here that
we calculate social trust only with membership collaboration trust scores not including
the client satisfaction. Tasks are designed with states: ASSIGNED, INEXECUTION,
SUCCESS, FAILURE (if in FAILURE state a task is delegated). Tasks are individually
executed and they are not interdependent.

Base Algorithm We implemented an algorithm which we take as a base for compar-
ison and which adapts the SCU without considering trust. We assigned tasks randomly
and delegated randomly to ICUs. Graph a) in Figure 4.5 shows the STT score, MCTS
and Productivity for multiple invocations of an SCU. We calculated trust by assigning
different weights to performance and social trust (0.4 for PT and 0.6 for ST). Figure
4.5(c) shows performance trust updates of particular SCU invocations at runtime. If we
take the 10th invocation as an example, we can see that we have four delegated tasks
out of five in total so the decline in the performance trust (productivity) in Figure 4.5(c)
comes at the point when delegations occur. If we look at Figure 4.5(a) and Figure 4.5(b)
for SCU7, we notice that the performance trust is higher than the social trust, because
here we have a high number of delegations and exclusions of ICUs. This means, that a
small number of ICUs executed high number of tasks but the social trust of the SCU is

61

4. Trust in Social Computing: Metrics, Model and Algorithms

a) b)

c)
Figure 4.6: SCU metric updates considering the STT trust model

low because many ICUs failed to execute tasks.

Adaptation Algorithm considering the STT score In order to evaluate our
trust model’s behavior we implemented the aforementioned Algorithm 4.1 with the
following settings: we set all the ICUs’ reputation in the SCU to be higher than 0.5 and
thus we assigned the delegated tasks only to ICUs that have MBCT higher than 0.5.
We set the weight of both the social and performance trust of the SCU to be the same,
i.e. 0.5. We set ICUs that had previously failed at all assigned tasks to be excluded
from the SCU after they delegate a task, some ICUs can be excluded from SCUs after
a delegation even if they have previously completed tasks(their PT is then included in
the final trust calculations of the SCU). Analyzing the results of this experiment we see
SCU adaptations due to delegations. In some SCU invocations tasks are delegated to
SCU members, in some they are delegated to ICUs that were not members and so there
were inclusions of new ICUs and exclusions of ICUs. Figure 4.6 shows the end results of
each SCU invocation (out of 15), while the graph in Figure 4.6(c) shows performance
trust updates of some selected SCUs at runtime. Examining the case of the SCU11 from
Figure4.6(a) we noticed that its PT was 1 while ST was lower and the STT was high as
well. From Figure 4.6(b) we noticed that the number of ICUs is lower at SCU dissolution

62

4.3. Elastic Adaptation Strategies with Trust: Algorithms and Experiments

than at start, which means that some ICUs are excluded and thus their productivity
is not included in the PT calculation because the excluded ICUs had no successfully
completed tasks. Hence, the PT is constant at 1.0. Examining ICU12 we saw that at
runtime the number of ICUs also changed with delegations. Some tasks were delegated
to ICUs within the SCU, whereas some new ICUs were included for executing a task
that needed to be delegated. An ICU with a failed task was not excluded from the SCU
and its performance was included in calculating the SCUs PT. Hence the lower points
in PT Figure 4.6(c) for SCU12. In all cases, those ICUs that had previously performed
well but had failed in a task or two were still included in the STT calculation so the
variations of the trust score to lower values is also due to this fact and not only due to
the number of failed tasks. For excluded ICUs the MBCT is low, in our implementation
this value is excluded from the ST calculation at runtime. Hence the social trust values
are relatively high in Figure 4.6(a). Comparing the two algorithms it is clear that the

Figure 4.7: Illustrative xml file with ICU metrics

algorithm implemented with our STT model keeps a high-value trust of an SCU during
runtime as well as with time brings a steady performance of an SCU as compared to a
strategy that adapts the SCU without considering trust (both social and technical).

As much as experimenting with real data sets would give more accurate results it is
very difficult to conduct the experiments due to lack of available data sets that fit the
SCU construct. We designed the ICU profiles the best we could, to fit the purpose of our
algorithms. The experiment also reflects the advantage of using our model in adaptation
strategies for SCUs, because based on our model the SCU can be tuned in terms of
structure and non-functional parameters to keep a certain level of desired performance.

Lastly, for illustration, Figure 4.7 shows one ICU, and some of its metrics data in
an xml format generated from one run of an SCU with an assignment of one batch-of-

63

4. Trust in Social Computing: Metrics, Model and Algorithms

tasks. Appendix B shows selected results from running Algorithm 4.1, where results are
regarding an SCU in separate time points together with information about members,
member metric values as well as collective metrics.

4.4 Incentive Mechanisms with Trust

Social Capital as a collective gain is seen as one of the main drivers for people to cooperate
[WF05] and perform well in collaborations. We were motivated by this concept to model
Reputation(si) but most importantly to use it as an incentive method to control the
behavior of SCU members for performing efficiently and avoid misbehavior. In calculating
the reputation of an ICU we include the Socio-Technical Trust scores of each SCU that it
has been a member of. Equation (4.5) and Algorithm 4.2 describe the reputation update
that is our incentive mechanism. With this mechanism, ICUs become aware that the
total trust score of the SCU in which they are engaged, will affect their reputation and
so this may influence their motivation to work and the SCU provisioning platform can
avoid or lessen misbehavior within the SCU. This incentive mechanism is enforced with
designing the ICU/SCU supporting platform in a way that gives ICUs the knowledge that
their performance data and the Membership Collaboration Trust Score are included in
the SCU STT score, and in turn the SCU STT score is used to update their reputation.

Lines 2-7 in Algorithm 4.2 check if all ICUs have finished their tasks and ask them to
give a membership collaboration trust score to every other ICU in the SCU. Lines 13-16
calculate ICU and SCU STT scores, according to the presented model.

Figure 4.8: SCU operation and ICU trust updates

In [SSD10b] the authors argue that people have low incentives to manually assign
ratings. To overcome this challenge, our strategy enforces Membership Collaboration
Trust score voting as a condition for an ICU so that its work can be accepted and a
payment can be made before the SCU is dissolved. See Figure 4.8. Thus, lines 17-21

64

4.5. Related Work

update ICUs’ Reputation, pay the ICUs after they have voted, and the SCU dissolves.
On the other hand, the incentive mechanism obviously brings the challenge of keeping
ICUs from misbehaving while voting, because the Socio-Technical Trust score of the SCU
in our model is higher the higher the trust score between SCU members is, thus ICUs
can be tempted to give a higher score to collaborators (mc(sk, si)) to increase the SCU
trust so that their reputation is also increased. This might lead to unfairness, because
ICUs can vote high for others only for their own gain.

To overcome the issue on unfair ratings, based on the voting ICU’s current reputation,
we assign it an allowed trust range for voting (line 5 of Algorithm 4.2). This range can
vary according to the range values that a user will impose on the model. For example, if
the voting ICU’s (sk) reputation is lower than 0.5, we chose the allowed voting ranges for
the voted ICU’s (si) as follows:

mc(sk, si) =
{

[0.5, 1] if Reputation(si) > 0.5;
(0, 0.5] if Reputation(si) < 0.5. (4.10)

Hence, the person who votes a collaborator can assign votes to that collaborator only
from an allowed range of votes, and this is defined depending on his/her own reputation.

4.5 Related Work

4.5.1 Trust in Social Computing

Different context-based platforms such as those enabling pure social networking and
those enabling networking in terms of expertise are an important part for provisioning
human capabilities. Thus, there is a solid amount of work that investigates trust for
human computation from the pure crowdsourcing perspective, modeling individual worker
trust, as well as work that mix crowdsourcing with context-based networking, such as
those in expert networks. Golbeck in [Gol06], describes the TidalTrust algorithm for
computing trust in online social networks, which is based on the breadth-first search.
Urbano models Social Computational Trust in [Urb13]. Authors in [GW11] discuss trust
in network of people and computers, focusing on behavioral trust and computational
trust, where behavioral trust is characterized by peoples’ trust in others (defined by
multiple dimensions such as beliefs and preferences), while computational trust is one
that can be computationally measured, as for example reputation score. Skopik et. al,
in [SSD10b] present a framework to analyze trust in mixed service oriented networks,
metrics and rules for inferring trust. They solve the issue of overloaded workers with an
approach on interaction balancing through delegations to trusted actors. We believe that
our approach, further strengthens trust models that consider delegation mechanisms as
our willingness confidence metric can be used to strengthen trust metrics when deciding
about task delegations.

Most trust models concerning social computing omit the aspect of people collaborating
for executing complex tasks and their semi-automatic elastic management. Rather, most of

65

4. Trust in Social Computing: Metrics, Model and Algorithms

Algorithm 4.2: Membership-Collaboration Trust Update Algorithm as an
Incentive Mechanism
Data: icu worker in SCU

1 forall icu in SCU do
2 if icu.getStatus() == FINISHED_TASKS then
3 icuCurrent = icu.geticuId()
4 forall icu in SCU && icuId! =icuCurrent do
5 getTrustRange(icu)
6 votes← mc(icuCurrent, icu)
7 icuCurrent.UpdateMCTS(votes)
8 end
9 end

10 icuMCTSList← getMCTS(icuCurrent)
11 icuPTList← getPT (icuCurrent)
12 end

// calculate SCU Socio-Technical Trust

13 scuMCTS = calculateSCUMCTS()
14 scuCSS = getClientSatisfaction()
15 scuPT = calculateSCUPT ()
16 scuSTT = calculateSCUSTT ()
17 sttr = calculateSTTR(scuSTT)
18 forall icu in SCU do

// calculate the reputation of ICUs by adding the SST score derived

from the current SCU, to the existing global Socio-Technical

Trust score

19 icu.Reputation=UpdateReputation(icu,sttr)
20 icu.Payment=getICUPayment()
21 SCU ← SCU \ ICU /* dissolve SCU */

22 end

the existing work focuses on initial collaborator/partner selection and more often analyze
trust on the individual, which include for example the exchange of eCommerce goods
in electronic marketplaces [ZMM00], user trust in mobile networks [LZZ10], or simple
non-complex task executions such as those similar to HITs in Amazon Mechanical Turk.
Some work have modeled trust in group collaborations, such as [CAK13]. The difference
of our work is that it concerns complex socio-technical systems, where collaborations are
automatically managed with input from a human-in-the-loop.

Authors in [LCCM09] present a trust model for a specific collaboration scenario
that includes document creation and development. They introduce a trust score that
is computed based on the amount of words added and deleted to a word document,
including different roles for people working on the document creation, writers, reviewers
and one validator. This approach is focused on automated trust computation but it does

66

4.5. Related Work

not take into account the social aspect of trust where collaborators can decide whether
to read or not changes in the document based on historic behavior of their collaborators
and subjective impressions for example. Moreover, the utilization of trust scores during
collaboration will help to raise its effectiveness. However, the authors do mention that
these are important open questions for their future work. Our model, includes social
metrics that are computed from input by humans (clients, collaborators) in addition to
metrics that can be automatically monitored. A survey of trust in multiple areas such as
computer science, economy, and sociology is presented by Caton et al. in [CDG+12]. As
we also showed a way to include trust scores for incentivizing workers by adding a score
to their overall individual trust-score based on the overall trust-score of the collective
after the work is finished, the work in [Kea12] is worth mentioning, as in the description
of a variety of social computing experiments the authors mention one where people were
incentivized to bring value at the collective level, by being paid for their activites that
would result in a good collective result rather than good individual results.

4.5.2 Agent-based Trust

Multidimensional trust inference for selecting a partner for collaboration is described in
[KG08]. The mechanism of trust and reputation is based on multiple sources, such as from
direct interactions, and trusted recommendations from direct and indirect communication
that they name as witness reputation. [ARH00] also considers indirect trust, where one
agent is trusted to give recommendations about others within a specific context. A survey
of various trust and reputation models and their possible use in various agent-based
distributed system models is presented in [KG10].

Examples of research reports on utilizing fuzzy approaches in trust investigations are
[RMM03], [Gri06].

67

CHAPTER 5
Team Formation

One of the existing challenges that still requires attention in human computation is
forming the most efficient team/s for a particular need. In this chapter we investigate
this problem. Existing works have focused on team formation strategies, mostly based on
the appropriateness of skills and team connectivity based on existing interaction analysis
between possible team participants. They provide solutions to team-formation in terms
of minimizing coordination cost, team size, and workload. Authors in [DSSD11] for
example consider that the frequency of previous interactions are one of the indicators for
efficient teams. As far as we know, existing work has focused on efficiency metrics, but
only on one type of connections between team members, coordination cost between team
members, general interaction frequency or both, while we chose to look at interaction
in more details, specifically focusing on interaction types. We consider two types of
interaction networks, communication interactions which include only natural language
communication between people, and coordination interaction, which include task-related
interactions, such as a delegation of one task from one person to another. To generalize,
our hypothesis is that if we are to assemble efficient collectives, a group of individuals
who have the required skills for the specific goal can not be formed without considering
multiple underlying (possible) relation types between them. Our contributions in this
chapter are:

• a novel approach to team formation considering interaction types,
• a team-formation algorithm by ranking experts based on trust and weighted inter-

action values,
• a team formation algorithm based on data of previously formed teams that have

already completed projects.

69

5. Team Formation

5.1 Team Formation based on trust and multiple
interaction types

5.1.1 Problem Statement

The specific team-formation problems that we investigate in this chapter can be defined
as in the following definitions.

Problem 1 Given a network of experts with information about their previous performance
and interactions, and a given project-requirement, find a collective/team of experts from
the network who can execute the project effectively.

Problem 2 Given a set of existing teams with information about their previous perfor-
mance and interactions, and a given project-requirement, find and select a collective/team
of experts who can execute the project effectively.

5.1.2 Model

To approach the stated problems we consider two types of information crucial for our
team-formation model and strategies:

1. interaction links, and
2. data regarding expert performance, ie., votings and recommendations, accep-

tance or rejection of tasks assigned from the system etc.

Regarding the interaction links, we are distinguishing two types of them in the context
of a specific collaboration:

1. communication links, which include messages in natural language; and
2. coordination links, which include task-related interactions such as delegation of

tasks (control flow with human in the loop).

Regarding the performance-data of experts, we consider the STT trust metric for experts
and teams over a specific period of time presented in Chapter 4.

Specifying our expert environment model now, we denote a pool of experts as
P = {p1, p2, p3...pn}, a team of people (a collective) as C ⊆ P and a set of initial tasks
for a specific team C as T = {t1, t2, t3...pn}. Every expert in the pool P has her/his
own profile properties. The important ones for us in this work are s(p) denoting the
skill type of p, stt(p), denoting the trust score of p, and c(p) denoting the labor cost of
expert p for skill s(p). As aforementioned, we consider two interaction network types:
a) a communication network, in which the interaction intensity between two people is
denoted by weight wm(pi, pj), and b) a coordination network, in which the intensity

70

5.1. Team Formation based on trust and multiple interaction types

of interactions in terms of coordination is denoted by weight wc(pi, pj). The shortest
path between two people in the network is denoted by d(pi, pj). The edges within a
team are denoted with the set E, and the total number of edges is denoted with |E|. A
communication edge between two team-members is denoted with em, while a coordination
one with ec. The total number of edges between pi and pj is denoted with em,c Thus,
wm(pi, pj) =

∑
em

em,c
, and wc(pi, pj) =

∑
ec

em,c
. A pair of two team members within a team

between who exists at least one interaction link is denoted with (pi, pj)e. We denote the
collection of teams, in which a specific person has been a member (over a specific time
period), with Uτ = {Cτ1 , Cτ2 ...Cτn}.

The requirements for team-members (for each particular task) are denoted with
I(s, r, c) individually, where s is the skill-type, r is the reputation of a member of a team
in the context of a particular skill, and c is labor cost. The initial network consists
of multiple experts who have previously worked together in teams and consequently
created different types of interaction links. From this network we distinguish two types of
interactions, one based on communication and another based on coordination interactions.

Because we consider trust scores of experts, we hypothesize that given a high STT, a
high number of interactions between experts in the context of message exchanges and/or
task-related coordination is an indicator that those experts can work well with each other.
Thus, in our model we aim to form teams with a high value for the weighted values of
these type of interactions. We denote the total weight of communication interactions
within a specific team, with Wm(C), whereas the total weight of interactions in terms of
task-coordination as Wc(C).

As aforementioned, in our strategies we use the previously introduced STT metric,
which we use in our human-based resource model in this chapter. Thus, each node in
our model is defined with a trust score. The team trust score is a normalized aggregated
trust score from the member expert trust values. The threshold value for the team STT
is denoted with δ. Now we have mentioned all the indicators over which we want to
execute a team-formation algorithm (notations are given in Table 5.1). Consequently, we
need to form a team that:

• includes experts with matching skill requirements
• satisfies STT ≥ δ
• minimizes the team diameter, D(C)
• maximizes the weight of communication interactions between team-members,
Wm(C)

• maximizes the weight of coordination interactions between team-members, Wc(C).

The team-weight of communication interactions is defined as:

Wm(C) = 1∑
(pi,pj)e

∑
i 6=j

wm(pi, pj) ∀pi, pj ∈ C (5.1)

71

5. Team Formation

The team-weight of coordination interactions is defined as:

Wc(C) = 1∑
(pi,pj)e

∑
i 6=j

wc(pi, pj) ∀pi, pj ∈ C (5.2)

We approach the problem of team formation in two ways: a) by using an Analytic
Hierarchy Process (AHP) method in ranking the importance of the above constraints for
experts individually, and using a non-evolutionary Pareto-based approach to rank formed
teams and select the most appropriate one, and b) by using a Genetic Algorithm approach
by assuming we have team-based historical information and creating new efficient teams
out of existing teams and their data. We compare both approaches in the experiment
section. The team requirements and consequently, indicators of efficiency, in our model
are: C(s), STT,D(C),Wm(C), and Wc(C).

Table 5.1: Notations

Notation Description
P Pool of people/experts
Ci Team Ci ⊂ P
em a communication interaction-type link between two exerts
ec a coordination interaction-type link between two experts
em, c total communication and coordination interaction links between two

experts
(pi, pj)e a pair of team members with at least one interaction link
wm(pi, pj) communication link strength between expert pi and expert pj
wc(pi, pj) coordination link strength between expert pi and expert pj
STT Socio-technical trust score of a team
Wm(C) Normalized weight of communication interactions (message-exchange)

between team-members
Wc(C) Normalized weight of coordination interactions between team-members
D(C) Team diameter

Let us look at an example to further motivate our problem and justify the reason
behind our argument that interaction types provide valuable information regarding team
collaborations and efficiency. Figure 5.1 shows two same sections of an expert network
with two teams on each of them. The lighter links represent communication interactions,
and the ones in dark blue represent two types of interactions existing between team
members, communication and coordination, and edge values are given respectively as
well for illustration purposes. In sub-figure a) the team formed by A,B,C,D,K is more
favorable than the one formed by K,E,F,G,H. Both teams have the same number of nodes
and close values for the total team socio-technical trust scores (if we have an average
value of all node STT-values), which are presented by the values in red. However, in the
same sub-figure the favorable team is better connected and has more connections of both

72

5.1. Team Formation based on trust and multiple interaction types

a)
Favorable and non-favorable teams in the case when a better connected team has

favorable interaction weights. The bordered area with a full line represents a favorable
team, whereas the bordered area with a dashed line represents a non-favorable one.

b)
Favorable and non-favorable teams in the case when a better connected team has less
favorable interaction weights. The bordered area with a full line represents a favorable
team, whereas the bordered area with a dashed line represents a non-favorable one.

Figure 5.1: The lighter lines represent interactions only in terms of communication,
the darker lines represent the presence of two types of interactions: communication
and coordination. Edge values represent interaction weights, a single value represents
communication weight, while sets of two values represent weights of communication and
coordination, respectively. Values in red represent STT scores of experts.

73

5. Team Formation

interaction types between team members. Thus, this case is fairly intuitive for our case.
However, looking at sub-figure b), we see that the more favorable team is the one that
includes K,E,F,G,H. The STT score does not have a high discrepancy, but the values
for the edge weights for both interaction types are much higher then the ones for the
team with nodes A,B,C,D,K. This means that a ranking algorithm or a team-formation
algorithm should take into consideration the case when a team that is "less connected" has
more communication and coordination interactions between connected members, because
this might be an indicator of effective collaborations and higher trust between team
members. Hence, it is these type of specific cases that bring us to consider the type of
interaction links, and the distance between team members/diameter in a multi-objective
team-formation strategy that we present in Algorithm 5.1.

5.1.3 Expert role connected to different types of interaction
links-Discussion

One reason of separating communication interactions and coordination interactions is
because these two types of interactions separately can inform about the member roles.
More specifically, one application of the analysis of these two interaction types is the
differentiation between a leader of the team or unavailability of a team member. For
example, if a member of a team has a high trust score and it has more communication
interactions in terms of message-exchanges in natural language and more coordination
interaction, then these three metrics can indicate that the member might be the lead-
er/coordinator in the team, as it communicated but also manages the control flow, e.g.,
delegated tasks to other members of the team. If on the other hand, a member of the team
does not have a high number of communication messages and has high coordination-based
interactions then it can mean that the member has been unavailable because it has not
communicated and it had rejected tasks or delegated tasks to co-members. However,
these are only assumptions, and the investigation of the problem of role-identification
based on interaction types is an open question.

5.2 Programming team formation
SCUs can be formed from scratch by selecting appropriate ICUs, or they can be engaged
in task-execution/project through a selection process based on historical data of existing
SCUs. We have come up with two algorithms for both cases and in the following we
describe their implementation and the experiments we conducted. With Algorithm 5.1 we
present a strategy to form teams out of a ranked list of available experts, while Algorithm
5.2 presents a genetic algorithm method to form teams out of an existing initial set of
teams.

Algorithm 5.1 ranks all experts by reputation separating them by skill. Because the
reputation metric is a composite one, we use an AHP based algorithm to rank experts
as AHP provides a hierarchical weighting method for parameters that are comprised
of several others. Next, a team is formed in such a way that based on skill types an

74

5.2. Programming team formation

Algorithm 5.1: Team-formation algorithm utilizing AHP for ranking experts
and non-evolutionary Pareto based team selection
Data: Graph G(P,I), T, I(s, r, c), Cr

1 U = ∅ forall task in T with I(sk, r, c) do
2 rankWithAHP (P) /* store ranked experts in separate lists by skill type */

listP (sk)← ranked experts with skill sk /* store ranked experts in

separate lists by skill type */

3 forall listP (sk) do
4 create x number of teams by choosing experts from the same rank, from

each list with ranked experts based on skill, in descending order ;
5 Ci ← listP (sk).getF irstAListElement() U ← Ci
6 end
7 /* Rank all teams within U compared according to objectives with weights:

minD(C) ∈ CO, maxWm(C) ∈ CO, maxWc(C) ∈ CO */ Collections.sort(U,
ParetoComparator(Ci, Cj , o));

8 end
9 return U

available expert with the highest reputation score for each skill type is included within the
team. After forming multiple such teams in descending order from the reputation-based
ranked lists the algorithm compares teams based on communication and coordination
interaction weights, and team diameter, and ranks the teams maximizing communication
and coordination interactions, and minimizing the team diameter. Algorithm 5.1 shown in
this paper is a high-level pseudo-code showing the basic steps for clarity, as algorithms and
methods such as the AHP ranking of experts and the ParetoComparator are implemented
in different classes; thus details are not shown for clarity of the overall algorithm.

Algorithm 5.2 is a genetic algorithm, which takes as input a number of appropriate
teams for the tasks. Instead of ranking existing teams we generate new configurations
from them to get more effective teams but also to avoid being forced to use only solutions
from a set of "local optimum" ones, if other more effective solutions are possible.In our
algorithm, a population is represented by a set of teams, each team having the same
number of team-members. The set of genes considered for each team are the values for
Wm(C), Wc(C) and D(C). For the fitness function, we set the following requirements:
STT >= 0.5, ((Wm(C) +Wc(C))/2) >= 0.5, and D(C) <= 0.5. The algorithm gives a
sorted list of teams based on a comparison function of our communication, coordination,
and team diameter objectives.

75

5. Team Formation

Algorithm 5.2: Team-formation Genetic Algorithm
Data: PC

1 population =← PC.size(), newPopulation = ∅ ;
2 forall teams in PC do
3 team← setGenes(Wm(C),Wc(C), D(C)) population.add(team)
4 end
5 while generationCount 6 maxSteps do
6 forall team in PC do
7 calculateFitness();
8 end
9 selectParentsByRouletteWheel();

10 newChildrenCrossover();
11 if mutateVar 6 mutatePercent then
12 newChildrenMutation();
13 end
14 calculate fitness for children;
15 calculateFitness();
16 newPopulation← newPopulation.add(child) population← newPopulation

sort(population)
17 end

5.3 Experiments

5.3.1 Evaluation with synthetic data

We implemented Algorithm 5.1 for team formation and selection, combining AHP for
team formation and Pareto-based efficiency for selecting the most appropriate team,
based on pre-set requirements. Thus, we used an a priory decision making approach,
considering a scenario where teams are not formed ad-hoc but with a customer request.
We used the AHP method for ranking people based on skill-types and reputation 1. We
modeled and generated a pool of 400 human profiles with skills and different metric
values, such as values for cost per task, and a socio-technical trust score. Each person
has a single skill. We modeled and generated tasks, where each task was associated with
a single skill. Every person was modeled to have a connection with a (random) number
of other experts from the pool of resources indicating a previous collaboration. Every
connection/edge had two weighted values, one indicating a communication interaction
and the other indicating a coordination interaction.

Algorithm 5.1 has two blocks, the first one forms and ranks teams based on AHP
analysis of two requirements for teams: cost per task and global socio-technical trust
score (reputation) of team members (lines 1-9); the second block (lines 10-15) ranks
teams based on Pareto analysis of three pre-set objectives: higher Wm(C) and Wc(C),
and lower D(C). We set the requirement for the STT of the team as STT ≥ 0.5 in the

1We based our model on the framework presented by authors in [CFMT09].

76

5.3. Experiments

team formation with AHP. We generated 10 initial tasks, with 6 tasks having the same
skill and 4 tasks having different skills, so as to simulate for example realistic teams
such as development, where development skills are represented more often, while testing,
and design skills for example are represented with fewer people. Thus, the size of each
team is the same and does not influence the formation, ranking and selection process.
The teams were formed such that we ranked and matched people to the requirements
for each incoming task, by skill type, reputation and cost per task. For one run of
the algorithm 30 teams were created with 30 rounds of 10 task assignments. We ran
a Pareto comparison and ranking method on the 30 teams and ranked them based on
the three interaction-based objectives, namely the normalized, communication weights,
coordination weights, as well as the diameter weight of the team. Table 5.2 gives the
results of the 10 most appropriate teams returned by a run of Algorithm 5.1.

Analyzing the results we could observe that for example the most appropriate team
with our algorithm does not necessarily have the highest trust score but it has a fairly
high trust score and enough high scores for the communication and coordination values
and low enough value for the diameter value. Looking at Table 5.2, we notice that team
with Id 21 has better scores when considering the three objectives, although it might
have worse scores when considering single objectives one by one, compared to individual
objectives of various other teams. Let us check two other interesting examples, the teams
with Id 6 and 22 for example. Team 22 is better with regard to Wm(C) and Wc(C)
when considered together, but on the other hand is worse regarding D(C) than the team
with Id 6, that is why it is ranked much lower. Thus, selecting the highest ranked team
returned from Algorithm 5.1 seems a valid option, considering every pre-set requirement.
Perhaps it is not the best solution considering single requirements, as for example team
with Id 22 might be better in terms of trust and cost (not shown in the results for the
sake of clarity) but not better than team with Id 21 in terms of the overall requirements
considered in combination.

Table 5.2: Ranked teams and values of three objectives

Team ID Trust Wm(C) Wc(C) D(C)
21 0.8 1 0.6 0.4
6 0.64 0.8 0.6 0.3
23 0.75 0.6 0.6 0.1
19 0.52 0.5 0.2 0.2
8 0.65 0.5 0.4 0.3
27 0.6 0.3 1 0.5
22 0.82 0.5 0.8 0.8
3 0.65 0.4 0.2 0.6
17 0.62 0.2 0.6 0.8
7 0.56 0.1 0.5 0.5

Algorithm 5.2 takes as an input 10 team configurations ranked according to higher

77

5. Team Formation

communication and coordination weights and lower team diameter. Table 5.3 shows the
teams at the beginning of the algorithm, and the values for our three objectives, while
Table 5.4 shows the last returned teams as they were changed/generated in each run
for new generation of teams with the algorithm. The results show that up to the point
of the pre-set number for new team generations, the communication weight got to the
value of 1 for all generated teams, while the communication weight value did so for only
a few teams, this is due to our configurations and the pre-set values for team members
regarding these values.

From the perspective of the comparison of both algorithms, we can conclude that
in the case we want to form new teams from existing ones, which have been invoked
with similar project requirements and with the same number of team members, a genetic
algorithm approach that considers both high trusted teams, high communication and
coordination interaction weights, and low team distance measure returns better teams
than an algorithm such as the one presented in Algorithm 5.1, which forms teams from
a pool of experts not considering previous individual membership in teams. However,
Algorithm 5.1 returns efficient enough teams when considering individuals from a large
pool instead of individuals from already existing teams. Needless to say, Algorithm 5.2
can be run on existing team-network structures in the case that such logs exist, and only
on cases where team-structures include all the skill types required.

Table 5.3: Ranked teams and values of three objectives as input for Algorithm 5.2

Team ID Wm(C) Wc(C) D(C)
12 1 0.4 0.1
13 0.8 0.8 0.5
2 1 0.5 0.5
28 0.8 0.8 0.6
20 0.2 0.5 0.2
27 0.6 0.4 0.8
14 0.1 0.4 0.2
17 0.1 0.2 0.8
25 0.3 0.2 0.1
6 0.3 0.2 0.2

5.3.2 Evaluation with real data

In addition to our synthetically generated data-set we investigated how Algorithm 5.1
behaved with a real data-set for comparison. We utilized a data-set created by authors
in [PSO+16]2, which provides real and anonymous data for the activities of software
engineering student teams for a final project in a software engineering course. The

2We found the data-set from: http://archive.ics.uci.edu/ml/
datasets/Data+for+Software+Engineering+Teamwork+Assessment
+in+Education+Setting.

78

5.3. Experiments

Table 5.4: Ranked teams and values of three objectives at a final run of team generations
in Algorithm 5.2

Team ID Wm(C) Wc(C) D(C)
4 1 1 0.2
2 1 1 0.2
8 1 1 0.4
14 1 0.8 0.1
5 1 0.6 0.1
24 1 0.5 0.4
27 1 0.5 0.1
11 1 0.5 0.3
3 1 0.2 0.4
1 1 0.1 0.1

data-set provides a variety of data regarding 74 teams working on projects with the same
requirements, collected during several semesters at the San Francisco State University.
Each team within the data-set is assigned two different grades, one for the development
process, and another for the final software built. The grades assigned are A, and F, A
representing good results or above expectations and F representing below expectation
teams.

The difference between our generated data and the real data-set is that with the
synthetic data we generated expert profiles and formed teams according to their rank
in the context of their reputation score, and then ranked the teams optimizing three
objectives, while the real data-set does not provide information regarding team member
skills and competencies, rather it provides data on a team-level. Thus, we evaluate the
ranking part of Algorithm 5.1 based on the three objectives only: communication score
for the team, coordination score and distance between team members. Moreover, we
did not form teams by ranking experts but ranked teams from the data-set by mapping
appropriate team related data that fitted our model.

Mapping the data from the data-set, we selected the following team indicators that
fitted most to our objectives: meetingHours, from the data-set gives the number of team
meeting hours which we associated with communication weight value in our model to
indicate the communication intensity of teams, and teamMemberResponseCount and
leadAdminHoursResponseCount, which are self-reporting team-member and team-lead
reports collected multiple times during the development process, which we associated
with our coordination weight value in our model. The sum of teamMemberResponseCount
and leadAdminHoursResponseCount for each team represents a teams coordination weight
value.

The teams in the data-set are of two types, local (from the same university) and
global (composed of members from multiple universities). Thus, mapping this data to
our model, we assign D(C) = 1 to the local teams, and D(C) = 0.5 to global teams, with
the assumption that members in the local teams know each other better than those in

79

5. Team Formation

the global teams, and thus we assign a hard-coded distance weight value to each team
based on this assumption. Table 5.5 shows the returned list of the first ranked 13 teams.
After examining the ranked teams we noticed that most of the teams had A score for
both the development process and the product delivered, but some had A either for the
development process or the product delivered. However, the global teams which were
formed from various universities had less meetings than those that could meet online,
but some of these global teams got grade A even with lower communication interactions.
If we take the grade A as a trust indicator, the results show that communication and
coordination interactions should be considered together with a trust score for team
formation algorithms to be effective. Consequently, trust plays an important role in two
contexts when considering communication, coordination and network distance. On one
side it can be used as an additional indicator to clarify cases where the communication
link number is low, because if the trust between two experts is high, low communication
does not mean bad communication. On the other hand, trust can be an indicator of
communication link type such that if we want to denote communication links with positive
and negative signs denoting positive and negative communication between two experts
then understandably, a trust score can be used in decision-making scenarios for the sign
of communication links. We leave this problem for our future research.

Table 5.5: Ranked teams and values of three objectives from a real-world data-set

Team ID Wm(C) Wc(C) D(C) Type
2 176.57 49.0 0.5 local
4 145.57 49.0 0.5 local
1 102.92 48.0 0.5 local
5 219.0 46.0 0.5 local
0 94.95 41.0 0.5 local
3 78.36 43.0 0.5 local
6 56.32 41.0 0.5 local
8 138.86 38.0 0.5 local
12 139.86 34.0 1.0 global
9 54.29 31.0 0.5 local
7 52.86 23.00.1 1.0 global
10 47.71 35.0 1.0 global
11 52.43 27.0 1.0 global

5.4 Related Work

The authors in [DSSD11] have presented two heuristics based on genetic algorithms
and simulated annealing for team-formations that consider skills and connectivity of
teams members. They also present and discuss a recommendation model for adding
new members to the team to fulfill skill requirements. Interactions are also considered
in [AKZ13] where authors present multiple strategies for team-assembly focusing on

80

5.4. Related Work

multiple aspects of cost, they present team-assembly strategies considering the cost
of communication, a strategy to find a team based on the cost of team-members, as
well as finding Pareto-optimal teams considering both the communication cost and the
team-member cost. Lappas et al. in [LLT09] also present Pareto-optimal team formation
algorithms with minimized communication cost. Anagnostopoulos et al. in [ABC+10]
discuss forming teams considering the trade-offs between team-size and load with the help
of a greedy task-assignment algorithm, while in [ABC+12] they provide team-formation
algorithms that consider coordination cost and workload balancing. Examples of work
that in general consider the underlying social network from which teams are formed are
[LSL15], [CDS13]. Contractor in [Con13] also argues that the network structures play
an import role in team effectiveness.

If we allow for elastic teams once the team is formed we can adapt the teams at
run-time like some approaches in [RTD15], and avoid considering the trade-off between
team-size and cost at the time of the formation of the team as is the concern of authors
in [KAK16].

The authors in [Gd05] discuss team formation as well as network adaptations based
on two different approaches, namely, structure-based and performance-based strategies.
Authors in [KA11] present algorithms for team formation based on skill and coordination
cost in two different situations, when a team does not have a leader and when a team
has a leader responsible for the team coordination, and run experiments on the DBLP
dataset, concluding that the algorithms can form small teams with a high number of
common publications and high expertise. An AHP-based approach of a multi-objective
optimization is presented in [MCR12].

[Par08] presents an overview of distributed intelligence where human teams are
mentioned as entities in distributed intelligence systems. Another mentioned fact is that
organizational and social paradigms are a starting point for designing agent systems that
can cooperate and collaborate for a common complex objective. Hence, we postulate that
learning the formation of efficient human-based collectives could be valuable for agent
and mixed-system resource-assembly problems. Distributed intelligence including human
computation in various application areas are discussed in [Hey13]. The authors present
the term ’global brain’ and elaborate on the benefits of distributed intelligence, such as
for example disaster prevention and relief, research, innovation, traffic management and
others. Considering the team formation problem in this work, the benefits of it can be seen
in many areas where distributed expert teams need to be formed for a specific objective.
The importance of social interactions in human computation is emphasized in [LP13],
where the authors make parallels between neural networks and human computation ones.

81

CHAPTER 6
The Application of Service Level
Agreements for Social Collectives

Collective Adaptive Systems include heterogeneous type of resources and services that
interoperate and provide seamless service. Typical resources can be software services,
Cloud services, different agents, sensors and Internet of Things (IoT) services. However,
there is a crucial component of collectives that will make a key difference in CAS, namely
people. While other types of resources in CAS can, and are managed by automated
Service Level Agreements (SLAs), human-based services are not. People providing their
skills as services online (and offline), are mainly managed by standard (human-language)
contracts. Nevertheless, client requirements and consequently people performance should
be monitored in an automated way, so that task management can be efficient and customer
needs can be fulfilled. Thus, SLAs for social computing is the challenge that we tackle in
this paper. To approach it, we utilize the terms Social Compute Units (SCUs) for social
collectives and Individual Compute Units (ICUs) for individual workers, in line with the
previous chapters.

For SCUs, a Service Level Agreement (SLA) may play a crucial role in managing SCU
execution and controlling the quality of the offered services and thus the returned results.
However, as far as we know, Service Level Agreements in human computation [QB11] in
general are not explicitly investigated. Although, there is some work that mentions SLAs
in crowdsourcing, virtual teams and human-enhanced service oriented environments(e.g.,
[KPSD11]) that we discuss in the related work, but no specific Service Level Objectives
(SLOs) investigation based on metrics relevant for human-based collectives. Having the
possibility to describe and define the terms and conditions under which platforms will
provision and manage their human-based services is crucial, because it is one of the
conditions for enabling human work to actually and properly be utilized as a service.

In Chapters 3 and 4 we described a conceptual architecture of a platform for SCU

83

6. The Application of Service Level Agreements for Social Collectives

provisioning with elastic capabailities and mechanisms to implement elastic SCUs with
adaptations such as changes in size and ICU type. We took into account different
performance metrics for an example of an adaptation based on ICU feedback. In the
elastic SCU provisioning mechanisms the QoS requirements of the SCU customers are
taken into account. In this chapter we extend those chapters with possible human-centric
SLAs for Social Compute Units, we discuss SLAs for Individual Compute Units and how
SLAs fit in an SCU provisioning platform.

6.1 Motivation Scenario

In Chapter 4 we discussed a facility-management scenario with proactive incident man-
agement, to justify the need of collectives such as SCUs and raise trust-related issues.
Here, we take another scenario to justify the same, and raise negotiation related issues.

6.1.1 Language translation

Recently we have seen an increase in online platforms for translations e.g., documents,
books, documentary (film) subtitles and available languages for software applications
(mostly for mobile ones). Let us consider a publishing company that needs to translate
a book within a short time in a specific language for which it does not have suitable
translators or contractors. Today it is feasible to hire multiple translators online who would
translate the book for the required time and within budget. Let us assume that the book is
submitted to be translated as a task to a Socio-technical CAS. There are two possibilities
in this case: 1) The SCU provisioning platform uses software translation services as a
first round for translating the material and then assigns appropriate people/ICUs to
fix the software translation, and lastly another SCU to do the final editing; and 2) the
platform assigns the translation task to a set of ICUs, forming a language-translation
SCU from start, and in a second iteration assigns the translated material to a set of
ICUs, (can be the same SCU or a new one) for reviewing and final editing. Thus in this
scenario two SCUs will be formed: a) Language-translation SCU, and b) Reviewing and
Final-editing SCU.

6.1.2 On the need for SLAs supporting human computation

The scenario in Chapter 4 and the language translation scenario are very different and
require very different types of SCUs. The first one forms multiple SCUs, while the
work is done online as well as on-site and offline. The second concerns SCUs which are
formed, invoked, and executed online, which is to say that the task execution and service
execution is done as with software services - the SCUs lifecycle is completely online and
the artifacts are delivered online. However, from both of the scenarios it is clear that
SCU customers have certain requirements when submitting a request for SCUs.

Usually, SaaS, PaaS and IaaS are managed with Service Level Agreements. However,
for efficient management of Socially-enhanced CAS we need proactive management of

84

6.2. Computational-Environment Setting

people as well. To provide efficient performance of SCUs and minimize cost for the
customers an SCU platform should strictly manage the ICUs, and this can be done only
if there is a negotiation between it and the customer defining clear terms and conditions
in the form of contracts such as Service Level Agreements (SLAs). There is no research
in SLAs for human-computation specifically, to go along with research on how to manage
online work based on metrics. The current state of the art engages people in human-
computation based on natural language contracts or no contracts at all. However, as
aforementioned this is a challenge that needs to be addressed for Socially-enhanced CAS
to be able to efficiently manage human-computation in an automated or semi-automated
manner. In particular, research in managing mechanisms, such as, collective formation,
task delegations, proactive and elastic adaptation of human collectives online, need to
address the challenge of SLAs, because of the unpredictable nature of humans. To clarify
this, we identify some of the core characteristics of human-based resources that would
impact the different types of SLA specification and management as follows:

• Human performance is a function of monetary or non-monetary rewards and
penalties. Thus, human misbehavior can be prevented or managed by various
sanctions respectively incentives.
• People are paid to/rewarded for the services they provide by the service provisioning
platform as an intermediary and/or by the platform-customers; the provisioning
platform in turn is paid by its customers. Thus, in human computation that
involves customers, contract negotiations are hierarchical between client and the
service-provisioning platform and between the platform and people who provide
their skills online and are managed through it.

• People need to be managed with their consent and guided by human-rights principles.
Hence, privacy as well as rewards based on ethical principles are crucial elements
to be considered during system design, which unfortunately are often overlooked.

6.2 Computational-Environment Setting
In [RTD14] we proposed a conceptual framework for provisioning SCUs on demand and
their elastic management. With SCU provisioning platforms there is a crucial difference
opposing those of pure software services and, needless to say, it relies on the unpredictable
nature of humans. Hence, the SLA negotiation and establishment is two-fold, it concerns
the customer and the SCU platform and the platform and the human-based services
selected as SCU members. To achieve this and to prevent SLA violations the platform
should have reliable monitoring and elasticity mechanisms. As aforementioned; an SCU
has its own lifecycle, and so does an SLA. In Figure 6.1 we give an abstract overview of a
SCU provisioning platform (without much details and this is not the focus of this work).
The figure shows that SLAs are established between a customer and the platform for a
specific project, which requires a specific SCU, so there are SLAs for SCUs. Depending
on these requirements, the platform can ran a ranking algorithm to rank ICUs from the
ICU Pool (connected to it or a pool that it has access to) according to the requirements
within the SCU SLAs. The ranking can be done according to the weight of importance

85

6. The Application of Service Level Agreements for Social Collectives

Figure 6.1: SLA-based ICU-SCU Provisioning and Management Platform

of different SLA parameters in the customer agreements. In the next step, a negotiating
component will negotiate individual SLAs with ICUs in the ranked list (in a descending
ranking order) and form an appropriate SCU. The negotiations should be automatic so
that SLAs can be automatically changed at runtime if customers or workers decide to
change and re-negotiate specific SLA parameters.

In previous chapters we have discussed how to enable elastic properties for SCUs.
We showed the need of being able to adapt an SCU at runtime based on different elastic
strategies which trigger events based on monitoring metrics. We discussed that an SCU
can be elastically adapted when a threshold for some predefined customer-set constraint
is reached, when customers change their requirements or decisions or based on workers’
feedback about their willingness to work. In this work we bring SLAs to the elasticity
model. From the aspect of SCU execution controlled by SLAs, the SCU may elastically
be adapted, such that:

• compliance with run-time changes and customer or worker requirements is achieved,
• an SLA violation is prevented or managed.

The platform needs to enable the changing and adaptation of an SLA as the customer
or worker requirements change. A customer or a worker might want to change his/her

86

6.3. Modeling SLAs for SCUs

requirements at runtime, in this case the platform should enable automated SLA changes
at run-time. On the other hand, when adapting an SCU such that an SLA violation is
prevented, e.g., by substituting a misbehaving ICU with another more appropriate one,
from the customers requirements perspective the same SLA terms and conditions for the
substituted ICU must be valid. However, the new ICU may have its own requests. In
these cases negotiations could be also conducted at run-time. In consequence to these
two cases, to best reflect human behavior we argue the need of elastic SLAs, because of
the mere nature of people and their working dynamics. Thus a provisioning platform
supporting elastic SCUs governed by SLAs should support elastic SLAs as well.

6.3 Modeling SLAs for SCUs

6.3.1 Human-centric properties and metrics

Non-functional properties (NFPs) as key indicators of service performance are the
parameters that are the most important in SLA negotiations and establishment. Hence,
the definition of Quality of service (QoS) metrics and the proper way of their monitoring
is crucial for service providers as well as consumers. In Table 6.1 we list relevant metrics
from our previous chapters and some new ones that we have identified as crucial for
SCUs, and which can be used as Service Level Objectives (SLOs) in SLAs. We denote
an ICU, part of an SCU with si.

6.3.2 Penalties

Human service characteristics differ from those of software due to the human-centric
dynamic and unpredictable behavior that is conditioned by many factors. Thus, penalties
should be given an important role in defining SLAs for SCUs. Since we advocate for
elastic SLAs and integrating SLAs to a collectives lifecycle, allowing SLA adaptation
together with collectives’ adaptations, we have two cases to consider regarding penalties:
1) when SLA parameters are changed at runtime, and 2) when there has been an SLA
violation.

In Chapter 4 we defined the Socio-technical Trust score, calculated as: STT (si) =
wpt ∗ PT (si) + wmcts ∗MCTS(si), where si denotes an ICU and wx is the weight of a
metric x.

Now we extend this formula and define it as:

STT (si) = wpt ∗ PT (si) + wmcts ∗MCTS(si) + wmcts ∗ CPS(si), (6.1)

where CPS is defined as:

CPS(si) = wpt ∗ CSS(si) + wmcts ∗ PSS(si), (6.2)

where CSS is Client/Customer Satisfaction Score and PSS is Platform Satisfaction Score.

87

6. The Application of Service Level Agreements for Social Collectives

Properties Description Value/Range
Responsive-
ness Reciprocity [0..1]

Consistency in
behavior Executed tasks as promised, e.g., via feedback

messages
[0..1]

Socio-
Technical
Trust Score

Includes other metrics: social scores (subjective),
and monitored performance metrics(objective),
such as: productivity, effort, success rate, number
of successfully executed delegations, etc.

[0..1]

Reputation An average of the performance and social scores
of ICUs across all SCUs in which it was invoked

[0..1]

Average Queue
Time An average of task waiting time in an ICUs queue;

for tasks with specific skill requirements and com-
parable complexities (e.g., a page for translation)

[0..1]

Result
Timeliness An average of on-time result-delivery score of

SCU members
%

Availability An average of ICU availability (as percentage or
time periods executing tasks)

hour

Budget The max price that the customer is willing to pay specific currency

Table 6.1: Notation and description of basic parameters for SCU SLAs

When an SLA change occurs at runtime, e.g., a customer requests a cost-change for a
specific skill type, ICUs can be sent a notification request message for task acceptance for
the new changed fee. In this example, those ICUs that are already within the SCU and
do not accept the changes are excluded from the SCU and their Platform Satisfaction
Score(PSS) is lowered by a preset value ∂ as a penalty, lines 10-11 in Algorithm 6.1.
The tasks for the changed cost are executed by other appropriate ICUs which are newly
included in the SCU from the available pool of ICUs. ICUs should always be informed
that they will get lower social scores which will influence their overall reputation score,
so that this knowledge can sometimes serve as an incentive.

The same penalties can be applied in SLA violations. In these cases, in addition to
lowering performance metrics and satisfaction scores, monetary penalties are unavoidable.
These can sometimes be used as an incentive for keeping to the agreed contract parameters
next time an ICU is assigned to an SCU. As an extension to our cost model from Chapter
3, the new cost of the SCU after adapting it because of a violation by ICUs will be:

Costadapt(scui) = Costagreed(scui)−
m∑
i=1

j∑
x=1

c(si, tx) +
m∑
i=1

j∑
x=1

c(s
nw
i , tx)−

m∑
i=1

c(si, vSLAi),

(6.3)

88

6.3. Modeling SLAs for SCUs

where tx denotes a task executed by an ICU si. In the case of a violation by the customer
the new SCU cost will be:

Costadapt(scui) = Costprevious(scui) + Costcustomer(c(scui), vSLA(c(scui), scui).
(6.4)

6.3.3 Enforcing Privacy with SLAs

Currently, platforms in the industry that involve social-computing, as well as crowd-
sourcing platforms all have a common flaw, lack of privacy. Current platforms all require
private information to register on them, such as real names, addresses, date of birth,
gender, education details. Some platforms also utilize other sensitive data such as current
location information. In CAS, this problem is and will get even more serious if it is
not approached with radical changes in the way we design and develop them. Sensitive
information in socially-enhanced CAS can be collected from all the devices that people
may use to execute tasks, to provide the end-artifact, as well as to require tasks. Some
information, may be collected and stored for years without the knowledge and consent of
the end-users. However, platforms usually publish their own Privacy Policies, about what
information they collect and how they use them. These are not always fully transparent
and understandable, and people rarely read them. SLAs can be a tool to enforce privacy
in addition to privacy policies. Privacy clauses can be included in agreements. This
can improve peoples knowledge if and what data will be collected during and after
they engagement on a platform, whether as a worker or a client. Developers should
always design privacy aware platforms of course and provide privacy-by-default. Some
platforms allow users to delete their bank account information after they have transferred
the needed money to use the platform as requestors of work1.However, in situations
where an application cannot work or a service cannot be provided without data (like
medical applications) SLAs can help in getting consent. Some privacy conditions that
can be included in SLAs, may be: specification of server locations if the platform has
servers in multiple locations, software to be used for task execution and communication
(e.g.,encrypted), time allowed to keep the collected data (e.g. location), audit periods
for third-parties to check if obligations are fulfilled, time period until an audit report is
received, time period after a security breach to inform the users about it, privacy breach
penalties for the platform.

6.3.4 Examples

To date, there is still no standardization about exposing ICUs as services, but as we discuss
in the introduction section and in related work, existing work has shown that it is possible
that they are provided as web services. Thus, for establishing an SLA we turn to standards.
Examples are the web service agreement specification (WS-Agreement) [ACD+07] and
the Web Service Level Agreement (WSLA) language specification [LKD+03], which
were proposed as a way to facilitate and standardize the establishment of service level

1https://microworkers.com/

89

6. The Application of Service Level Agreements for Social Collectives

agreements between service users and service providers. Listing 6.1 provides an example
SLA describing the parties involved in the agreement, in this case a customer and the
SCU provisioning platform. Listing 6.2 provides an example of the obligations part of
the same SLA presented in Listing 6.1, where we include some metrics discussed in
this section. Listing 6.3 shows a similar part of an SLA between the SCU provisioning
platform and an ICU, illustrating the hierarchical SLA establishment between ICU and
the platform on one hand, and the platform and customers on the other.

Listing 6.1: Example WSLA - Parties part
1 <wsla:SLA
2 xmlns:wsla="http://www.ibm.com/wsla"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 name="SLA11">
5 <wsla:Parties>
6 <wsla:ServiceProvider name="Customer">
7 </wsla:ServiceProvider>
8 <wsla:ServiceConsumer name="Platform">
9 </wsla:ServiceConsumer>

10 </wslaParties>
11 <wsla:ServiceDefinition name="SCUProvisioning">
12 <wsla:Operation xsi:type="wsla:

WSDLSOAPOperationDescriptionType" name="ProvisionSCU">
12 <wsla:SLAParameter name="SCUAvailability" type="int" unit="Hours">
12 <wsla:Metric>CalculateAllICUAvailability</wsla:Metric>
12 </wsla:SLAParameter>
12 <wsla:SLAParameter name="SCUMaxBudget" type="double" unit=" ">
12 <wsla:Metric>CompareBudget</wsla:Metric>
12 </wsla:SLAParameter>
12 <wsla:SLAParameter name="SCUSocTechTrust" type="double" unit=" ">
12 <wsla:Metric>CalculateTrustScore</wsla:Metric>
12 </wsla:SLAParameter>
12 <!_ _details about other parameters and metrics_ _>
13 </wsla:Operation>
14 </wslaServiceDefinition>
15 <!_ _definition of Obligations _ _>
16 </wsla:SLA>

Listing 6.2: Example WSLA - Obligations part
1 <wsla:Obligations>
2 <wsla:ServiceLevelObjective name="sloMetrics" serviceObject="ExecTask">
3 <wsla:Obliged>Platform</wsla:Obliged>
4 <wsla:AND>
5 <wsla:OR>
6 <wsla:Expression>
7 <wsla:Predicate xsi:type="GreaterEqual">
8 <wsla:SLAParameter>SCUAvailability</wsla:SLAParameter>
9 <wsla:Value>12</wsla:Value>

10 </wsla:Predicate>
11 </wsla:Expression>
12 <wsla:Expression>
13 <wsla:Predicate xsi:type="LessEqual">

90

6.4. SLAs and Elasticity

14 <wsla:SLAParameter>SCUMaxBudget</wsla:SLAParameter>
15 <wsla:Value>12750.00</wsla:Value>
16 </wsla:Predicate>
17 </wsla:Expression>
18 </wsla:OR>
19 <wsla:Expression>
20 <wsla:Predicate xsi:type="GreaterEqual">
21 <wsla:SLAParameter>SCUSocTechTrust</wsla:SLAParameter>
22 <wsla:Value>0.8</wsla:Value>
23 </wsla:Predicate>
24 </wsla:Expression>
25 </wsla:AND>
26 <!_ _further details_ _>
28 </wsla:Obligations>

Listing 6.3: Example WSLA - Parties part
1 <wsla:SLA
1 xmlns:wsla="http://www.ibm.com/wsla"
1 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
1 name="SLA12">
1 <wsla:Parties>
1 <wsla:ServiceProvider name="ICU">
1 </wsla:ServiceProvider>
1 <wsla:ServiceConsumer name="Platform">
1 </wsla:ServiceConsumer>
1 </wslaParties>
1 <wsla:ServiceDefinition name="ICU_1">
1 <wsla:Operation xsi:type="wsla:
WSDLSOAPOperationDescriptionType" name="ProvideSkill">

12 <wsla:SLAParameter name="SkillType" type="Skill" unit="String">
12 <wsla:Metric>CheckSkillType</wsla:Metric>
12 </wsla:SLAParameter>
12 <wsla:SLAParameter name="CostPerSkillType" type="double" unit=" ">
12 <wsla:Metric>CompareICUCost</wsla:Metric>
12 </wsla:SLAParameter>
12 <wsla:SLAParameter name="SCUSocTechTrust" type="double" unit=" ">
12 <wsla:Metric>CalculateTrustScore</wsla:Metric>
12 </wsla:SLAParameter>
12 <!_ _details about other parameters and metrics_ _>
13 </wsla:Operation>
14 </wslaServiceDefinition>
15 <!_ _definition of Obligations _ _>
16 </wsla:SLA>

6.4 SLAs and Elasticity

6.4.1 Programming SLA Parameter Changes at Runtime

In Algorithm 6.1 we show an example of adapting an SCU at runtime when a specific
SLA Parameter is changed by the customer at runtime, namely cost. We suppose that

91

6. The Application of Service Level Agreements for Social Collectives

we have a ranked pool of resources by ranking requirements set from the customer and
that an SCU is formed from that ranked list, and describe an adaptation algorithm of an
already formed SCU. When the budget for the SCU is lowered, this strategy calculates
new costs for each skill type and sends a notification request message for approval or
rejection of the changes to each ICU, (lines 1-5 of Algorithm 6.1). Figure 6.2 shows
the process in Business Process Model and Notation (BPMN) notation. The Platform
Satisfaction score and reciprocity, metrics which we have described earlier, are lowered
for those ICUs that have rejected the payment changes, and those ICUs are excluded
from the collective (lines 7-13 of Algorithm 6.1). The tasks for specific skills for which
the cost is changed is then delegated to ICUs from the pool of available ICUs outside of
the SCU, and those ICUs that accept the agreement terms are then included in the SCU.

Figure 6.2: Elastic SCU adaptation with SLA cost changes

6.4.2 Implementation of a Proof of Concept prototype and
Experiments

We ran a Java-simulation experiment to evaluate runtime adaptations of SCUs when
requirements of parameters are changed at runtime. We designed and implemented ICUs
with skill (each individual ICU having a single skill, for better overview of the results) and
cost per task as properties. In addition, we designed the metrics (that we have previously
defined in [RTD15] and this work). There are both atomic metrics which are designed by
monitoring one parameter only, and non-atomic metrics, which are comprised of multiple
atomic ones. The following are only some of the metrics: availability, total assigned
tasks, delegated tasks, success-rate, productivity, reliability, social trust, performance

92

6.4. SLAs and Elasticity

Algorithm 6.1: Elastic Adaptation of SCUs based on SLA changes
Data: icu member of SCU, icu member of ICU Pool

1 if scu.currentBudget == (scu.currentBudget− amount) then
2 forall icu in SCU do
3 calculateNewFees(taskList)
4 sendFeeChangeNotification()
5 icuApprovalList ← getApproval(icu)
6 end

// Adapt the SCU if not all ICUs approved the agreement changes

7 forall icu in icuApprovalList do
8 while icuCurrent.Approval()== false do
9 icuNeededSkillsList ← icuCurrent.getSkill()

10 icuCurrent.icuMetrics.PSS=getPSS(icuCurent)-∂
11 updateAgreementReciprocity(icuCurrent)
12 icuCurrent.updateMetrics()
13 SCU ← removeICU(icuCurrent)
14 end
15 end
16 /* Add the next ICU from the ranked list that has the skills from the

removed ICU that approves the agreement */ forall icuNeededSkillsList do
17 forall icu in rankingList do
18 if icu.Approve() == true then
19 icuCurrent = icu SCU ← addICU(icuCurrent)
20 end
21 Break
22 end
23 end
24 end

trust, socio-technical trust. We designed tasks with skill and cost requirements, and
SCUs with the same metrics as for ICUs. Our proof-of-concept prototype consists of the
following components: 1) a model of ICUs, SCUs, ICU and SCU metrics, and Tasks; 2) a
component for ICU ranking, according to specific metric constraints from the customer;
3) adaptation algorithms that we feed to our process engine; and 4) a process execution
engine, as shown in Figure 6.3.

SCU Adaptation with SLA parameter changes at runtime. We implemented
a variation of Algorithm 6.1 where the cost is the parameter to be changed, but instead
of lowering the total budget of the SCU we lowered the fee for tasks of specific skill types.
Thus, we simulated time points at which changes for specific skill-types are required as an
input and delegated already assigned tasks for which the fee was lowered to other ICUs
with matching skill and (lower) cost requirements. In addition, tasks were also delegated
at points when they were assigned but were not executed on a time-threshold. In both

93

6. The Application of Service Level Agreements for Social Collectives

Figure 6.3: Proof-of-concept prototype

cases tasks were delegated to ICUs already within the SCU or new ICUs were invoked
from an ICU pool if no matches were found. Let us examine the results, which are shown
in Figure 6.4. Fig. 6.4 a) shows the socio-technical trust scores of four SCUs that we
selected (as interesting cases to analyze). We selected to show the socio-technical trust
score, as it is a metric that encompasses all other important metrics, such as success rate,
performance, productivity of ICUs as well as social-trust scores that ICUs assign to each
other according to their collaboration satisfaction, which score here we randomized giving
higher scores to ICUs that were more productive and lower scores to those that delegated
their tasks. In a) we can see that the trust scores are generally rising, but some low
points exist. The cost change requirement for SCU1 and SCU2 are at the last adaptation
point, while the cost changes for SCU3 and SCU6 are at the sixth point of adaptation.
Let us examine these cases more closely, SCU1 has a high STT after the end of the last
adaptation, if we examine sub-figure b) we will see that at that point it had a low nr of
ICUs (6) but high delegations (sub-figure d)), so SCU performance is high, some ICUs
are excluded form the SCU and more tasks are executed with lower nr of people. The
case with SCU2 is very similar. Examining the case of SCU3 we see that at the sixth
adaptation point it has a spike on STT scores shown in sub-figure a), sub-figure b) clearly
shows that the number of ICUs at point 6 is five, and we do not have delegation of tasks
at point 6 (shown in sub-figure d)). In this case the cost changes were made at point
6, and all the new tasks to be assigned with the those changes were accepted by ICUs
already in the SCU, in other words ICUs with appropriate skills accepted the lowering of
the cost per task. SCU6 on the other hand has a clearly low score of STT at point 6
in sub-figure a). Sub-figure b) shows that the number of ICUs is considerably high, 25
ICUs at point 6, and the number of delegated tasks at point 6 is 20 (sub-figure d). We
noticed that 18 new ICUs were added to adapt to the cost change requirements, and we
gave as an input a very low cost for two skill types. In addition, when ICUs are newly
included in the SCU their social trust score is lower (we count invocations within an SCU
at each adaptation point), which also adds to the lower value of the STT. In summary,
this kind of flexibility at runtime is not possible without having a platform design that
provided the possibility to change SLAs at runtime but most importantly to include
ICUs in negotiations when SLAs change so that collective adaptations at run-time are
easier, efficient and agreeable for all parties.

For illustration, a code snippet of adding a new ICU that had accepted the new cost,
by acknowledging a willingness to work with the new cost, is shown in Figure 6.6. The

94

6.4. SLAs and Elasticity

Figure 6.4: Elastic SCU adaptation with SLA cost changes

Figure 6.5: Time Comparison of elastic and fixed SCU adaptation algorithms

95

6. The Application of Service Level Agreements for Social Collectives

code snippet is just an illustration of different possible cases for task-delegations, it differs
from our experiment in that it checks all available ICUs from the ranked list that have a
lower cost for a specific skill and are willing to work for that cost, and that do not belong
to the current collective, the task is then delegated to the selected ICU and the selected
ICU added to the collective.

Figure 6.6: Code snippet from our experiments for delegating a task with a new cost to
a new ICU

Comparison of elastic and fixed SCU adaptation. We ran another experiment
comparing the variation of Algorithm 6.1 and a Base-Algorithm with which the SCU was
adapted as tasks were scheduled and assigned according to skills, and they were delegated
when they reached a time-threshold, as well as when a cost change requirement was given
as an input at runtime. However, in the base-algorithm tasks are delegated only to ICUs
that are already within the SCU, and no new ICUs were added to the SCU. Thus, in
the variation of Algorithm 6.1 the adaptation is elastic, we exclude and add ICUs from
the pool of ICUs, while in the base algorithm after the SCU is formed, ICUs are not
changes. We compared the two in terms of time efficiency. Figure 6.5 shows the results.
At each adaptation point a new bag of tasks is assigned to SCUS, Figure 6.5 a) shows
the number of tasks with each adaptation point. Sub-figure b) shows the time units after
each adaptation point, these time units are calculated as the time to execute the bag of

96

6.5. RelatedWork

tasks for (and after) each adaptation point, including the delegated tasks. Sub-figure b)
clearly shows that even if the task number assigned at each adaptation point is similar in
both SCUs, the time to execute the tasks is not. In the fixed SCU the changes in cost
for a skill resulted in delegating multiple tasks to a single ICU, thus the waiting time in
queue and the total execution time of tasks has a higher value. On the other hand, in
the elastic adaptation algorithm we scheduled each task for which the cost is changed to
a new and different available ICU from outside the SCU and included them in the SCU
at the needed adaptation points and excluded them when no longer needed. This clearly
lowered the time to execute tasks significantly, as shown in sub-figure b). We designed
ICUs to randomly have an "accept" field as "true" for the newly calculated cost and thus
the tasks were delegated to ICUs that match the skills and accepted the tasks.

6.5 RelatedWork

There is very little work on SLAs in human computation environments. Initial work
which concerns crowdsourcing environments in particular is presented in [KPSD11]. The
authors give an example of an SLA that may be exchanged between customers and
crowd-provider platforms and also present a few crowdsourcing specific SLOs concerning
worker skills, quality of executed tasks and customer fees. Another work considering SLAs
for human computation, is presented in [PSSD11] by Psaier et.al. The authors discuss
scheduling mechanisms for crowdsourcing environments, which will meet the requirements
of contracts, between multiple entities/roles. Schall in [Sch13a] discusses protocols
for human computation and supports our claim that platforms for provisioning social
computation need to work with SLAs, for better task management, so that the requester’s
requirements are met, just as in software services. A description of requirements and
considerations for platforms that support Quality of Service management with SLAs in
human computation is introduced in [KZA08]. Authors in [CGR+13] have presented a
priority-based assignment of human resources to business process activities, based on
ranking of human resources. Enabling requirement-changes at runtime would give more
flexibility to these type of approaches.

As we mentioned that Social Compute Units should be provisioned elastically so
that the performance and time of humans on task execution is utilized optimally for
specific fees (or other types of rewards), elasticity plays a role in SLAs as well. Elastic
management of properties such as cost and workload are presented in [Sch13b], where
elasticity is used to define restrictions for performance metrics defined in SLA guarantee
terms. On the other hand, because human behavior is highly unpredictable, the strict
definition of time-related constraints is crucial for SCUs. The temporality aspect for
SLAs is investigated in [MMDC+07], where the authors present a specific proposal for
extension of the WS-Agreement Specification to support temporality.

Müller et. al in [MGMD+14] have presented a formalization model for creating SLAs
with compensations such as rewards and penalties. The compensation functions that
they propose can be used in Compensable Guarantees (a term the authors coin in the

97

6. The Application of Service Level Agreements for Social Collectives

work for Guarantee Terms with compensation functions). They also provide examples of
real world SLAs, analyzing them and explaining how their compensation model would
fit in those existing specific examples of SLAs. Interesting for our work is the fact that
this work concerns Cooperative Information Systems and the models would also be fit to
be used for SLAs for human-based services. Authors of [MH11] also discuss a contract
model and a negotiation process in a social computing scenario considering the nature of
social computing where rewards and penalties are not only monetary.

98

CHAPTER 7
Provenance in Human

Computation

In social computing environments and collaborative ones in particular, there are several
information types that are of significant importance, such as information about who
worked on tasks, who created and influenced different produced artifacts, which events
occurred during run-time and what was their effect and how were they approached, and
similar. This information may be utilized for several reasons, such as for calculating
performance metrics, which in turn influence reputation scores and consequently task
assignments; for accountability reasons for workers in case of erroneous or problematic
results; for having a clear overview of which artifacts were created by which organization
in complex inter-organizational collaborations. This type of information can be stored
as provenance data. While appreciable work exists on metrics, monitoring strategies,
coordination and management mechanisms for social computing concepts, little work exists
on the utilization of provenance in social computing. However, we believe that provenance
data can help social computing systems in several contexts, such as: a) extracting different
behavior patterns for workers, based on which management mechanisms can be improved;
b) easier visualization of events for business stakeholders; c) sharing of a common
provenance model by multiple social computing environments, which would give a better
overview of the capabilities of workers, and most importantly it will allow interoperability,
so that workers from several different provisioning platforms can be invoked to work
in a common collective. The main contribution of this chapter is to investigate how
provenance data can be used in social computing, the benefits it can offer and trade-off
implications, taking the concept of SCUs as our case study.

99

7. Provenance in Human Computation

7.1 Motivation

7.1.1 Provenance data in social-computing management-mechanisms

We describe next, the most important cases where performance and interaction data is
crucial for social computing systems, both from the perspective of an individual and
from the perspective of collectives.

Individual Task-assignment and Formation of collectives/Social Compute
Units

Whether it is for individual task execution or for task assignment in collectives, workers
are ranked based on several pre-set metrics regarding their performance, with which the
appropriateness for a task is assessed. Worker selection algorithms are also run during
runtime, when a new worker is needed due to different events, such as unexpected task
generations with new skill requirements, or insufficient capacity of a collective to handle
tasks. Data about worker performance through time is crucial for designing effective
ranking and selection mechanisms.

Adaptation mechanisms for Social Compute Units

Defining, modeling and measuring workers’ performance is also important for novel
systems that enable elastic adaptation of Social Compute Units. Algorithms that
calculate ICU performance can be used with adaptation mechanisms that include task
delegations based on events. A task can be delegated at runtime, to a worker who had
not been included in the collective from start. Consequently, with elastic-adaptations of
collectives, a worker can be added to a collective as well as excluded from a collective at
run-time [RTD14]. After each adaptation, and at the end of each SCU execution, worker
metrics are updated.

Misbehavior prevention and False negatives in Misbehavior detection

Worker misbehavior, such as assigning a lower vote to another worker on purpose,
tricking the system by sometimes uploading non-complete or unsatisfactory results and
still getting rewarded and other times uploading satisfactory results are common in
human computation in general. With available provenance data of workers over a period
of time, misbehavior detection mechanisms can be developed, by extracting different
misbehavior patterns and models from that data. Moreover, mistakes can be treated
as a misbehavior sometimes, and if there is a way to visualize which worker did what
during an SCU execution, mistakes can be found more easily, false negatives identified
and existing misbehavior patterns corrected.

100

7.1. Motivation

Incentive mechanisms

Social computing systems employ monetary or non-monetary based incentive mechanisms.
Some incentive mechanisms are based on updating trust and reputation metrics for workers,
which are defined considering performance-based and interaction-based historical data
of workers, whereas some incentive mechanisms are purely monetary. Incentive models
utilize worker interests as well as behavior over time beginning from the starting point of
worker engagement in a system, and in this way different incentive plans for each worker
can be built.

Compensations

Closely related to incentives, compensation mechanisms are also based on monetary
and/or non-monetary rewards or sanctions, both for workers and customers. One of the
most common compensation types is updating worker and customer reputation. Once
again, these mechanisms are based on appropriate metrics with which worker behavior is
monitored over time, as well as metrics for customer behavior, e.g., their payment method
and behaviors, and/or sincerity when specifying their satisfaction from the received
results. Regardless of the motivation of people, whether they want to work voluntarily
to benefit a cause, or to get paid, workers need to have a clear overview of their progress
and of the way in which their work was rewarded or sanctioned over time, so that they
can make better decisions as how to act in their future engagements in social computing
systems.

7.1.2 Challenges

All of the aforementioned strategies, require data regarding workers, and most of it depends
on data that is updated based on workers’ history of interactions and performance. Thus,
provenance can be a good fit to represent historical data for workers. We hypothesize
that with provenance-data, the aforementioned mechanisms would serve social computing
provisioning-systems in making them more efficient by focusing on providing qualitative
work to get high-quality results, in shorter time and on a lower budget, than expected
from cases when provenance data is not utilized. Several research questions arise from
our hypothesis:

• Can provenance help us in tracing the path of a particular task, which means
who worked on a particular task, who was assigned with the task and successfully
executed it, and who was assigned a task and delegated it and why?

• Can provenance data help us in conceiving, modeling and defining novel metrics
that could be used in worker/ICU ranking and selection algorithms for collective
formations as well as for elastic-adaptation mechanisms? Consequently, can we
enhance existing trust and reputation models, incentive mechanisms and rewarding
with new metrics derived from provenance data?
• Can we predict which ICUs collaborate well with which ICUs based on provenance-

data of their performance and interactions within the same SCU?

101

7. Provenance in Human Computation

• How can a worker trace his/her progress across several SCUs and extract relevant
information that would benefit his/her future behavior in being more productive,
and contribute more efficiently in future engagements?

• Can we trace the events that brought to SCU adaptations and the parameters
of the SCU adaptation due to those events, so that in future executions of SCUs
with similar customer requirements and constraints, adaptations could be more
efficient due to action plans that can be devised from provenance data that trace
SCU executions?

7.2 SCU Environment and Provenance

7.2.1 SCU Environment

Figure 7.1: SCU environment model.

Figure 7.1 shows a model of an SCU provisioning platform. We do not show specific
components as this is not the focus of this work, but some core management mechanisms
of an SCU platform are listed. SCUs have their own life-cycle, so customers that can be
companies, different organizations, private individuals etc submit their task request to the
SCU provisioning platform, the platform then generates tasks based on the requirements
and constraints given, e.g., required skills, cost, deadline. An ICU selection module,
which is a task-to-ICU matching module returns the most appropriate ICU for each task.
A collective formation module is a composition module, and an orchestrator. ICUs and
SCUs have their own profile, which includes ICU specific metrics and which is monitored
and updated at run-time and at the end of the SCU execution. Customers can give
feedback about the final results, and ICUs are rewarded or sanctioned at the end of the
SCU execution. Depending on the domain, an SCU provisioning platform may have its
proprietary pool of resources, but human-based resources/services can also be invoked
from multiple external sources. We have implemented a proof-of-concept prototype with
ranking, monitoring, collective-adaptation algorithms and profile updates, (presented also
in [RTD15]), and here we present our updated prototype which includes mapping of our
collective-adaptation algorithm result-logs to PROV terms and adding provenance-data
to our prototype, including visualization of ICU, SCU, and task related provenance data.

102

7.2. SCU Environment and Provenance

From the perspective of a specific SCU environment, a provenance approach to
logging can give an overview of historical data useful for the mechanisms supporting
social collective provisioning and management. On the other hand, if we assume that
there can be multiple social computing milieus and that a third-party can provide
provenance storage for multiple SCU provisioning platforms, workers can be treated
equally regardless of the fact on which platform they have been registered, and from
which SCU environment they are invoked. This brings to interoperability of multiple SCU
environments, which will allow for a common large-scale pool of human-based resources
bringing flexibility to the types of social-computing applications.

7.2.2 Modeling Provenance for SCUs

Provenance data is meta-data, and can be used to prove the ownership of data, the source
of data, and how it changes over time. Provenance has mostly been used to trace data
flows and to keep records of data in scientific experiments so that they can be repeated,
e.g, in workflows. Today, provenance is gaining more usage in various areas as complex
systems have complex data flows, which can be managed with information extracted
from provenance data.

A provenance data model named PROV-DM [MM13] has been standardized by
W3C on which we base our discussion. Other models and extensions exist as well, e.g.,
[MLJ+10]. The PROV data model provides several types and relations, the fundamental
of types being: an Agent, an Entity, and an Activity. An Agent is a type which as a
result of an engagement in an Activity it creates, or has an effect on an Entity. Some of
the core relationships between the aforementioned types are, an association relationship,
wasAssociatedWith, which describes a directed relationship from an Activity to an Agent;
wasAttributedTo describing a relationship for cases when a particular Entity is attributed
to an Agent, which means that an Agent has had an effect on an Entity; a generatedBy
relationship describing cases when en Entity is generated, created, or updated by a
specific Activity, and others.

Mapping the SCU construct and the actors in our system to PROV terms, we have
ICUs, SCUs, Customers, and the Task Manager and ICU Manager represented by Agents.
ICU and SCU profiles in which we store data for each ICU and the SCU respectively, are
represented by Entities. In addition, both task related requirements, as well as the actual
system-generated tasks identified with an id are also mapped to Entities. Activities in
our model are the following actions: task assignment, task delegation, successful task
execution, ICU profile update after each execution, and SCU adaptation based on events.
Figure 7.2 shows the graphical model of our SCU environment, the implementation of
which we discuss in the following section. A customer makes a request for a specific
project, and based on those requests, task specifications are generated by a task creation
activity associated with the ICU Manager. Activities related to tasks are collapsed in
our model, as all task-related activities, are associated with an ICU, an SCU, a software
agent. This is because of the reason that to extract valuable information we need to
have information about which ICU executed which task and to which SCU/team that

103

7. Provenance in Human Computation

ICU belonged to. The software agent is equipped with multiple task-to-ICU matching
algorithms, as well as scheduling algorithms, thus the task activities are associated to the
software agent through a plan, shown with the PROV relation hadPlan in Figure 7.2.

Figure 7.3 shows a more specific example. To specify, in an SCU provisioning
environment we assume that people register their profiles just as in crowdsourcing
environments. Thus, both ICUs, Alice and Bob, as agents would have engaged in
activities to create their profiles. After a certain point Alice realizes that she can not
execute the task assigned to her by a software agent on time because she is busy working
on other tasks. Thus, she decides to delegate this task to Bob. In this case we have an
Activity, Assignment for Task1 in the figure, which is associated with both Alice and a
software agent that assigned the task initially. Because the decision to delegate the task
is made by Alice, we have another Activity that we labeled Delegation and Re-assignment
for Task1, and which is associated with Alice (because the task is delegated from her),
Bob (because the task is delegated to him) and the software agent. The delegation
activity is associated with the software agent because it keeps track of tasks, ICU profiles,
monitors task executions,and includes scheduling mechanisms. We do not describe in
details the software architecture as this is not the goal of this work. Figure 7.3 shows
entities that show ICU profile characteristics after a certain time point when events occurs.
As SCUs are constructs that can be managed by software or humans we show in the
figure two cases. Alice in the figure has updated her profile at some point in time during
the SCU execution, e.g., she has added an additional skill, while Bob’s profile is updated
by a software agent, e.g., his trust score is raised because he accepted and executed
a delegated task. Figure 7.2 shows the graphical model of our SCU environment, the
implementation of which we discuss in the following section. Figure 7.4 provides a code
snippet of mapping SCU-related types to PROV terms, from results of our experiments
stored in a log-file, which we describe in the next section.

7.3 Experiments

7.3.1 Setup

We have implemented a Java-based prototype that is a simulated social-computing
environment. We have modeled an ICU with static properties such as Id and skill type,
and dynamic properties, some of which are descriptive e.g. cost per task, and others
that are mathematically defined and calculable. Thus, we designed metrics that we have
identified as relevant for ICUs, and that serve as key performance indicators for them as
dynamic properties. The most important metrics to mention here are: effort, productivity,
willingness, reliability, and performance trust, which is a weighted aggregate metric of
the aforementioned ones; social trust, which we define as a weighted aggregate of votes
from people that the worker has collaborated with, and socio-technical trust which is a
weighted average mean of the aforementioned performance-based trust and social-trust
metrics. For the definitions of the aforementioned metrics, we refer you to the previous
chapters. We modeled SCUs as lists of ICUs, which in turn have their own metrics. A

104

7.3. Experiments

Figure 7.2: A graphical provenance-model based on the PROV-O specification, focusing
on ICU task executions and profile updates.

Figure 7.3: A specific example focused on ICU task assignments and profile updates.

105

7. Provenance in Human Computation

Figure 7.4: Code snippet from defining Entities, Activities and Relationships.

task is designed with specific properties, such as the skill type required to execute it, the
cost for executing it, and the deadline to execute it.

7.3.2 Dataset

To test what type of provenance data can we store and how the visualization of this data
will help us interpret results in a social computing environment in an efficient way, we
implemented a specific task-execution and worker/ICU management mechanism. We
generated 200 ICUs with different skill types and costs per task, as well as random
initial values for the aforementioned metrics, all of them in the (0,1] interval. For a
faster algorithm run, instead of ranking ICUs for each task assignment, we ran a ranking
algorithm first, to rank all ICUs, regardless of their skill type, based on the weighted
values of three different metrics, given as an input: social trust, reputation and reliability.
For ranking we implemented an algorithm based on the Analytical Hierarchy Process
model (the description of which is out of the scope of this paper).

Next, we ran a task assignment and scheduling algorithm as in the following: we
generated a bag of tasks with 40-50 tasks and assigned them in a FIFO order to ICUs from
the ranked list, this time matching the skills of workers with those of the required ones for
each task. The ICUs selected in the initial assignment form an SCU. We configured the
algorithm and ran it three times to get different log files each time, with 10, 50 and 400
bags of tasks, each time sequentially assigning 40-50 tasks to ICUs, after each execution
of a bag-of-tasks.

Our scheduling algorithm was designed such that it allowed for elastic adaptation
of the initial SCU, such that tasks that reached a threshold in the queue of an ICU
were delegated to other ICUs. Delegated tasks were assigned either to ICUs already
within the SCU or to an ICU from the pool of ICUs from the ranked list, depending on a
willingness value of ICUs for executing a task and availability. The willingness value was
set randomly to 0 (not willing) or 1 (willing). ICUs that did not have any task assigned
in a run, were excluded from the SCU, and new ones to whom task were assigned were

106

7.3. Experiments

a) Checkpoint4

b) Checkpoint5

c) Checkpoint7

d) Checkpoint9

Figure 7.5: Tasks for ICU 16 and 22 at four selected checkpoints during one SCU
execution.

added to the SCU. Hence the number of ICUs in each run fluctuated, and with this we
updated the metrics, indicators of their performance and interactions, after each bag
of tasks that was assigned and executed by the collective/SCU. For clarity, we denote
the update of the properties of SCU members after each bag-of-task assignment, as a
checkpoint. Thus, a checkpoint points to one bag-of-tasks execution. We generated a log
file of the SCU execution, using the Apache log4j logging utility, storing metric values for
every SCU member for each checkpoint.

We generated three log files of the SCU executions, using the Apache log4j logging
utility, storing metric values for every SCU member for each checkpoint, for the three
runs, thus we have a log file with 10 checkpoints, a log file with 50 and another with 400
checkpoints.

7.3.3 Experiment types and Results

Provenance Visualization

Utilizing the log4j log file, we mapped ICUs, SCUs, Tasks, and events during the SCU
execution (e.g.,task assignment, delegation, ICU profile updates and SCU adaptation) to
provenance notation. We conducted the mapping using ProvToolbox [Mor], which allows
for creating PROV documents in Java. Thus, with ProvToolbox, we generated XML files
with provenance tags, as well as provenance graphs (svg files) that reflect provenance
types and relations from the mapping (as in Figure 7.2). Figure 7.10 illustrates an xml
output for one particular checkpoint regarding activities where an entity is an SCUs
profile storing SCU related metrics, while SCUs only with Id’s are mapped as agents.

We visualized provenance data in three contexts: a) the ICU context showing which
ICUs were included within a collective at specific time-points, as in the example shown in

107

7. Provenance in Human Computation

(a) ICUs across 10 checkpoints of an SCU run. (b) ICUs and tasks during the execution of one
bag-of-tasks.

Figure 7.6: Provenance details after a run of an SCU adaptation-algorithm

Figure 7.7: ICUs and tasks during the execution of one bag-of-tasks. The graph result of
checkpoint 7.

108

7.3. Experiments

a) SCU provenance data at checkpoint 3

b) SCU provenance data at checkpoint 6

Figure 7.8: Provenance graphs for an SCU after execution of bag-of-tasks at two different
checkpoints during run-time

a) Task (delegation) provenance data at checkpoint 6

b) Task (delegation) provenance data at checkpoint 8

Figure 7.9: Provenance graphs for an SCU after execution of bag-of-tasks at two different
checkpoints during run-time

109

7. Provenance in Human Computation

Figure 7.10: A sample xml file generated with ProvToolbox.

Figures 7.5, and 7.7; b) ‘the SCU context shown in Figure 7.8, which gives data about the
SCU, such as number of members of an SCU within a given checkpoint, and the values
of different performance and social metrics for the collective at each adaptation point,
as well as the events that brought to SCU adaptation, e.g., task deadline thresholds
or changes of an SLA requirement; c) the Task context, showing information regarding
delegation activities, and information about which ICUs the task was assigned to initially,
and to which ICU it was delegated to, which is shown in Figure 7.9. Looking at Figure
7.9, we can see that with provenance we can get information about which workers were
included within a collective at a certain time point, and which tasks were assigned and
delegated to which workers.

Looking at Figure 7.8, we can see that provenance can be utilized to show the values
for different metrics regarding a collective at a certain point during runtime, as well as
show events that happened at a specific point in time. For example, Figure 7.8 a) shows
provenance data for an SCU after it was adapted due to time-thresholds for specific tasks,
while Figure 7.8 b) shows provenance data regarding an SCU after it was adapted to to
changes of SLA values for specific parameters at runtime. The events are shown via the
blue rectangles which denote activities in the PROV model, for example in Figure 7.8
a) the activity is denoted as Adaptation_3_1_TimeThreshold, which marks the event
of the SCU1’s adaptation checkpoint 3 due to a time threshold, while in Figure 7.8 b)
as Adaptation_6_1_SLAChanges, which denotes the event of SCU1’s adaptation at
checkpoint 6 due to a change of an SLA parameter. These graphs are the concrete results
of our adaptation algorithm where we simulate two scenarios during a single run-time of
the same SCU, time-thresholds for tasks and changes of price to be payed for specific skills.
Figure 7.9 gives provenance visualization from the context of tasks. More specifically
we have chosen to track the delegated tasks at specific point in time, and see to which
workers were the delegated tasks initially assigned, denoted with A in the Activity types,
and to which workers were they delegated after they were not executed from the initially

110

7.3. Experiments

assigned workers; delegations are denoted with D in the Activity types in the graphs. For
example, in Figure 7.9 b, the Task with Id 4, was initially assigned to worker/ICU with
Id 5 and then delegated to ICU with Id 10. Our experiments show that provenance can
benefit social computing applications and systems, because it is a mechanism with which
valuable information can be extracted to make management mechanisms effective. This
information can help in constructing novel metrics. We inferred a few metrics from our
experiments and we describe them in the next section.

Figure 7.11: PROV Agents in our experiments inserted to Komadu

Komadu experiments

We utilized Komadu [SZP15], an open-source Java-based standalone tool for capturing
and visualizing provenance data, based on the W3C PROV standard, and developed
by researchers at Indiana Univeristy’1. Komadu uses Apache Axis2 as a SOAP Web
Services engine for implementing a provenance service. It was build after Karma, which
is a provenance capturing tool based on the aforementioned Open Provenance Model
(OPM). In addition to the fact that Komadu is based on PROV-O, while Karma on
OPM, Komadu has addressed several limitations of Karma, such as upscaling provenance
relationship types as well as enabling provenance data capturing from different sources
and applications as provenance data in Komadu does not need to be connected to a single
identifier like in Karma. Events in the form of notifications can be captured through
Komadu’s inject API, and data can be queried through its query API [SZP15]. We
deployed Komadu, with Tomcat 7 and MySQL 5.5 on a server of the t2.micro model2
from Amazon.

The experiment we conducted with Komadu consists in evaluating processing time
for provenance data-injection into Komadu. We performed a two-fold evaluation: a)
measuring processing time of injecting data for two different checkpoints, which means
two checkpoints with different number of provenance activities and, b) measuring the
processing time for injecting data from different log sizes, one with 50 checkpoints
and another with 2000. Figure 7.11 shows a screen-print from our experiments of how
ICUs/People as Agents appear in a db when modeled and inserted with Komadu.

1Komadu source code on github: https://github.com/Data-to-Insight-Center/komadu
2https://aws.amazon.com/ec2/instance-types/

111

7. Provenance in Human Computation

The method that we used for our evaluation is the following: we mapped the data
from our log files to PROV terms that match the way provenance data is inserted in a
db with Komadu. Then, we programmed methods for injecting the mapped data which
are read at runtime from the logs through the KomaduService to a db. Each injection is
treated as an event, and our events are the following activities: task assignment, task
delegation, and ICU profile metric updates.

For both log files we measured the processing time for each checkpoint, which includes
data injected to Komadu regarding the aforementioned provenance activities: task
assignments, delegations and ICU metric updates. As we have mentioned before, each
processing of a batch-of-tasks might include a certain number of delegations from one
ICU to another. In addition, because our scheduling algorithm adds or excludes ICUs
at runtime, the starting number of ICUs at the batch assignment and the end number
of ICUs at the end of a batch execution may be different. Consequently, the initial
number of assigned tasks, the number of delegated tasks, and metric updates at the end
of task-batch execution all contribute to the amount of data being injected into Komadu.

Examining the results of the processing time of data-injection about specific run of
a task-batch, which means data regarding specific checkpoints, the results showed that
the time is in the order of milliseconds. Table 7.1 shows the data-injection time from
the log file with a run of 50 task-batches and 50 checkpoints, for a few checkpoints that
we randomly chose to show. For the particular run, the results of which are shown in
Table 7.1 we used 20 threads to define the KomaduServiceStub, however we tried with
other thread numbers, and the results showed minuscule time differences between two
threadpool sizes.

Next, we compared the total time to process 50 and 400 checkpoints. In particular,
Table 7.2 shows a comparison of time considering the number of threads for 50 checkpoints,
while Table 7.3 shows a comparison of processing time of data injections to Komadu
with different threadpool sizes for a log file with 400 checkpoints. When considering
the threadpool sizes we can see that the average processing times per checkpoint in
both cases are similar. Moreover, comparing the total processing time for 50 and 400
checkpoints we can conclude that inserting even larger amount of data, 21780 activities
as opposed to 2664, brings an acceptable processing overhead considering the amount
of data. Hence, we conclude that provenance data and tools for supporting this type of
data, like Komadu might be useful for utilization in social computing considering the
variety and amount of data generated in social computing applications and scenarios.

7.4 Provenance-based Inferred Metrics for Social
Computing

1. Delegation-based Profile similarity.
For the sake of the discussion, in this section we chose to analyze two ICUs from
the the provenance logs of a specific run of our adaptation-algorithm, the ICU

112

7.4. Provenance-based Inferred Metrics for Social Computing

Table 7.1: Komadu injection processing time of specific log-data

Checkpoint after a task batch is exe-
cuted

checkpoint2 checkpoint12 checkpoint30 checkpoint49

Number of activities within a single
task-batch execution

69 70 76 55

Processing time in ms 240 112 515 46

Table 7.2: Komadu injection data for 50 checkpoints, and a total of 2664 activities treated
as events

Total
Time

Average injection time per checkpoint Threadpool size

6801ms 136.02ms 5

6412ms 128.24ms 20

Table 7.3: Komadu injection data for 400 checkpoints, and a total of 21780 activities
treated as events

Total
Time

Average injection time per checkpoint Threadpool size

61432ms 153.58ms 5

59983ms 149.95ms 20

with Id 16, and the one with Id 22. In our experiment, every time tasks needed
to be delegated from a particular ICU to another, the ICU to which the task was
delegated was included in the SCU, this means that both ICUs, the one from whom
the task was delegated and the one to whom it was delegated, do not provide
the same skill type only, but also that they are close with their reputation scores;
this is because we ranked ICUs based on their reputation scores initially, and
tasks are delegated to the reserve ICUs in a FIFO order. Hence, provenance-data
regarding delegations can be a good indicator for the fact that delegations can be
used in metrics that define profile similarity between two ICUs. Let us examine our
results in more details. Figure 7.5 presents the visualization of executed assigned
tasks as well as delegated and executed tasks for ICUs with Id 16 and 22, in four
separate checkpoints. Tasks were delegated from ICU 16 to ICU 22 during multiple
time points of the SCU execution, as follows: two tasks in the first and the fifth
checkpoint (Figure 7.5b)); three in the third checkpoint, the fourth (Figure 7.5a)),
and the seventh (Figure 7.5c)); one task in the eighth, ninth (Figure 7.5d)) and tenth
checkpoint; no delegated tasks in the second and sixth bag-of-tasks assignment.
Due to the provenance visualization, this data can be easily inferred without queries,

113

7. Provenance in Human Computation

which could be useful for business stakeholders. From the experiment results we
can deduct that ICUs with Id 16 and Id 22 have the same skill type, because tasks
from ICU Id 16 were only delegated to the ICU with Id 22. This also testifies for
the consistency of ICU 22 in the sense that ICU 22 was only invoked in the SCU
when some tasks from ICU 16 needed to be delegated. It means that ICU 22 was
successful in executing the tasks delegated to it, and thus was invoked multiple
times. Figure 7.6b shows the success rate of all ICUs at four checkpoints, which
also proves our deduction from the provenance graphs, that ICU 22 executed all
delegated tasks from ICU 16, as ICU 16 has a success rate that does not achieve a
value of 1 (a value of 1 indicates that all assigned tasks were successfully executed),
while ICU 22 has a success rate of 1 at each checkpoint.
Generalizing now, let us define d(v,u) denoting the interaction intensity between v
and u in the [0,1] range, defined by the number of delegation relations between v
and u across multiple checkpoints. If we denote the availability of ICUs with av, au
and aw with 0 if not available, and 1 if an ICU is available, and the reputation of all
three ICUs with rv, ru, rw, then we can consider the following relations to be valid
at one single checkpoint: a) if au aw are both 1, and the value of d(v,u) is within
the (0,1] range, while the value of d(v, w) is 0, then we can safely assume that the
reputation relation of,v, u, w to be rv > ru > rw, and b) if au = 0 and aw = 1, and
d(v,u) has some value from the (0,1] range, while the value of d(v, w) is 1, then
we can safely assume that the reputation score of u and w are close ru ≈ rw, in
addition of the validity of the rv > ru > rw relation, particularly when the worker
pool is large. These conclusions are intuitive if one knows how ICUs are ranked,
because w is ranked as the next appropriate worker after u. However, for analysts
who do not know the details behind the mechanisms of ICU selection, it can be
a valuable information. Moreover, this information is even more valuable when
the worker pool with which an SCU environment works is comprised of workers
registered on multiple platforms, and if analytics is conducted on Big-data.
Concretely, from our algorithm, we came to formulate e similarity metric based
on reputation and skill. As aforementioned, for each task, we have a ranked list of
reserve resources/workers with the appropriate skill, and they are ranked by their
reputation values in a descending order. So, we define a similarity metrics based
on reputation and skill-type, as in the following:

svu = ranku
m ∗ dvutv , (7.1)

where dvu denotes the number of delegated tasks from v to u, number of total
assigned tasks to v, and m is the total number of workers in the reserve list. The
rank value of the workers, starts with the value that represents the total number of
workers in the list and continues in a descending manner. The similarity metric
can have values in the range (0,1], where a higher value means more similar profiles
(similar reputation scores).
Hence, data-provenance regarding delegations can help in defining novel metrics for
ICUs, and we demonstrated this by arguing that profile similarity with regards to

114

7.5. Privacy Implications: A Discussion

two parameters, ie. skill-type and reputation, can be defined by having a detailed
overview of task-delegations.

2. Active time in the social computing collective.
The active time within a collective can be measured in two contexts: active time in
the context of communication and active time in terms of performance, because
high communication does not always indicate high-performance.

3. Time-based reciprocity.
Time-based reciprocity can be defined and calculated in two contexts as well,
interaction reciprocity and performance reciprocity. We can define interaction
reciprocity for a worker u, in respect to worker v as in the following:

Ru,v(τ) = σu,v(τ)
σv,u(τ) , (7.2)

where τ is a specific time period,σu,v(τ) represent number of replies from u to v,
while σv,u(τ) represents number of communication requests from v to u. If we want
to monitor reciprocity within discrete time intervals we assume that the frequency
of updates within each τ is the same. For the performance reciprocity, the same
definition applies, only the requests are platform automated requests for example,
request for approval of an SLA parameter change, e.g., a rutime request to work
on tasks with a different price, while the replies are acknowledgments from workers,
e.g., accepting changes at runtime.

4. Price per skill-type consistency. Provenance data can track price changes for a
particular skill, made by a worker as well as a customer. We can calculate the
standard deviation of costs per skill type for workers, for every invocation in an SCU
for a particular skill, over a defined period of time, and set a value of consistency
which is a pre-set value in the plus or minus range from the most frequent cost
value for an ICU for a specific skill. The variance can be defined as in the following,

C2
u,s(τ) =

∑
(C(u,s)−µ)2

m , (7.3)

where (C(u, s) is the cost of worker u for tasks with skill s in the time period τ ,
µ is the number of invocations of worker u with skill s at the period τ , while m
denotes the mean of cost per skill type within τ . Thus, the standard deviation
is

√
C2
u,s(τ). The price consistency of a worker for a particular skill then, can be

calculated with the help of a pre-set range of values [α, β] α, and β delimit the
variation from the standard deviation value. Hence, if the final value is within this
range the price of worker u, for a skill type s, is consistent over time τ , otherwise
the worker is not consistent regarding its own defined costs per skill type.

7.5 Privacy Implications: A Discussion
Current social computing systems in the industry all base their operations on sensitive
personal data for verification of worker and customer profiles; with provenance this

115

7. Provenance in Human Computation

sensitive data can be diversified and increased in volume, which we see as a serious
issue in these systems and a challenge to be addressed. Thus, provenance, is a double-
edge sword regarding privacy. It is by definition meta-data and meta-data can reveal
considerable sensitive information. We see it important to list a few crucial aspects that
we have identified regarding privacy issues that are induced from provenance-data in social
computing. In the following, we argue privacy implications from multiple perspectives.

• Participant context. From the context of system participants there are two perspec-
tives of privacy concerns: that of the workers and that of the customers. However,
the needs for privacy for both type of participants interleave. From the workers
perspective, they may not want information about customers, collaborators and
projects to be publicly known. Customers on the other hand, whether they are
individuals or organizations, in addition to sensitive personal information, may
not want details about their projects and produced artifacts be publicly known.
Provenance then is identified to be a major issue for privacy in the context of
produced-data and not only of data connected to people profiles (e.g.,[DKR+11]).
Thus, while provenance can help in identifying stakeholders of a project, the control
flow of a project, who worked on which tasks, and other data about a collaboration,
it can also be a point of risk. Some authors argue that provenance can help reduce
privacy issues by providing data that help in authorization and access control
mechanisms [CNB+12]. However, this approach tackles access issues and protection
against access risks, but there is another aspect of privacy that we advocate for,
which is: if a worker and/or a customer wishes not to be identified it is his basic
human right not to be, and this should be reflected in system design as well. On
the other hand, provenance can help to track where and how sensitive data has
flowed, for example by a trusted third-party and thus, provenance can be used for
privacy enforcement as well.

• Behavioral data context. As we have mentioned in Section 2 provenance can be
used for interaction data as well as for performance data, which social computing
systems use for different provisioning and management mechanisms. Consequently,
while workers and customers may know the information that they are giving away
while registering on platforms, they may not be aware about sensitive data that
is generated and collected in an automated way, as these are usually not made
transparent except in privacy policies. However, privacy policies are not as efficient
as people rarely read them, and they usually register to platforms without the
knowledge of how their sensitive data is collected and used.

• Infrastructure context. Large-scale crowdsourcing and inter-organizational collabo-
rations, may use different infrastructures, for example Cloud systems, as well as
a common decentralized provenance storage. In this case, sensitive data may be
stored and processed in locations outside the collaboration-participants’ physical
locations, data may flow through multiple providers and operation centers, and
this may allow certain participant parties to circumvent regulations and laws.

116

7.6. Related Work

To approach the aforementioned issues, it is crucial, that provenance-based systems and
in particular those including social computing, to provide mechanisms of transparency
with which both workers and customers are informed about what type of data is collected
and how it is used, to provide mechanisms of informed consent, and be accountable, which
means compliant to laws and regulations, and these are only a minimum of mechanisms
that should be considered.

7.6 Related Work
Markovic et al. in [MEC13] pose several research questions related to the utilization of
provenance in social computing, mainly focusing on the assessment of worker trust, and
selection of appropriate workers for tasks. In addition, by discussing a concrete scenario
of social computing, they also argument that some concepts, such as task delegations
and incentives are still problematic to express using Prov-DM [MM13]. A follow up work
by the same authors presented in [MEC15] describe an extension to PROV-O [LSM13]
and P-PLAN intended to benefit social computing scenarios. Data-provenance modeling
for group-centric collaborations is presented in [PNS11].

The work presented in [HEV+13] discusses a method for analyzing provenance graphs
based on provenance data for crowdsourcing, with which information regarding crowd-
sourcing activities can be assessed regarding the quality of work, through a trust metric.
The authors have utilized machine learning methods with crowdsourced data to ana-
lyze the dependencies and links that can be inferred from a topological investigation
of provenance graphs, such as number of nodes, edges, diameter, and build predictive
models. They applied the method to asses the trustworthiness of crowdsourced data in
a specific application built to crowdsource evacuation routes in emergency situations,
named CollabMap ([RHVS13]).

Packer et al., discuss provenance for CAS in [PDM14] and argue that provenance
data helps in making CAS more transparent and accountable, and also help in assessment
of users’ trust. The authors argue that provenance makes systems more accountable
as provenance data provides information about the use of data and decision-making
processes. The former, meaning the way user data is used by the system is also connected
to systems’ transparency, because users could be provided with a timely and detailed
view of which type of data provided by them was used by the system and how. Moreover,
provenance data may be utilized for enforcing privacy rules. The authors provide several
use cases where provenance can be beneficial, including cases where it may give enough
information so that the system users can be informed about the way their reputation is
calculated, making a similar justification for provenance data, to one of our justifications
in this work. Ways of how provenance can help in auditing compliance to privacy policies
in IoT systems are introduced in [PSP+17], some of which mechanisms can be utilized in
social computing as well.

Authors in [TBA16] have investigated whether existing provenance systems are
capable of handling large-size social-provenance data and provided their own decentralized

117

7. Provenance in Human Computation

architecture model that could better handle provenance-data as opposed to existing ones,
in terms of scalability, data quality and privacy concerns. Investigation on provenance
in group-centric collaboration is presented by authors in [PJN12], in which a model of
provenance focusing on collaborations based on the OPM notation is presented. The
work presented by authors in [BA17] discusses a large-scale synthetic social provenance
database, designed for social networks, and how that provenance data can be used to
define and calculate metrics such as credibility of a person. These type of databases can
be useful to motivate research of large scale databases for more complex social-computing
systems. A case where provenance data can be used in a specific domain, such as in
crowdsourced data analysis tasks is discussed in [WGS+13]. Another domain-based
example regarding provenance and related to geospatial data is given in [GGH14], where
the authors mention processes with human-in-the-loop. We mention the two latter works
as two of several existing works, which testify that provenance can also be used in
providing a better Quality of Result, in addition to enabling more efficient management
of task executions and resources/workers.

118

CHAPTER 8
Privacy in Human Computation

While there is a solid amount of work on building human computation systems and
mechanisms that support efficient management, such as task assignment and management
(e.g., routing and delegations), worker management, incentive and payment models for
workers online and quality assurance, little research has been conducted on the privacy
implications in these systems. Privacy, however, is a human right and as such these
users are also entitled to it. Article 12 of the Preamble of the Universal Declaration of
Human Rights states for example that "No one shall be subjected to arbitrary interference
with his privacy, family, home or correspondence, nor to attacks upon his honor and
reputation." The design of human computations systems as well as everything else on the
web, needs to be guided by privacy preserving principles.

The key contributions of this chapter are: 1) a discussion of why and how user data
is utilized in particular human computation systems, 2) an analysis of user privacy-
awareness on human computation platforms through the results of a user study that
we conducted with an online survey, and 3) recommendations for human computation
stakeholders, along with some research directions.

8.1 Personal Data on Human Computation Systems

8.1.1 Collected data

We investigated the collected data from some of the existing crowdsourcing/expert-
labor market platforms (by actually creating accounts), such as Amazon Mechanical
Turk, Microworkers, Freelancer, Upwork, PeoplePerHour, TopCoder and uTest. The
information required to build up a profile and/or verify a profile sees variations from
platform to platform. The following list provides some data required to build and verify
profiles generalized through platforms; not every platform requires everything on the list,
but everything on the list is required in various platforms.

119

8. Privacy in Human Computation

• Full mailing address - Sometimes even documents are required to prove address,
such as utility bills or bank statements.

• A government issued ID - Passport, ID card or Driving license.
• Photograph
• Code verification along with a user’s face on a photograph - On some platforms
workers need to send a photograph of themselves where they hold a piece of paper
with a code provided by a platform written on the paper.
• Educational experience - On some of the platforms filling out at least one educational

experience is mandatory.
• Job title - On some platforms filling out a job title is mandatory.
• Bank account information
• Data from mobile-sensing - Depending on the application domain, other sensitive
data may be collected at runtime while users are working on tasks or just wear-
ing a smart device. For example in mobile crowdsourcing applications, such as
crowd-sensing, location information, health information (that users share through
wearables to applications) and other data may be collected which can be used to
identify and profile a user.

• Device and connection data - Basic system fingerprinting such as IP address, browser
type and operating system.

The General Data Protection Regulation [Reg16] (with the enforcement on 18May 2018),
stipulates that personal data is "any information relating to an identified or identifiable
natural person (’data subject’)". Moreover, identification is the singling out of an
individual within a dataset [Par07], even if his or her name or other attributes that
we typically associate with an identity remain unknown. Consequently, most of the
aforementioned information can be used to identify a person and that means this data is
personal and thus should be kept private.

8.1.2 Reasons for collecting personal data

The General Data Protection Regulation (REGULATION (EU) 2016/679) [Reg16] defines
profiling as "any form of automated processing of personal data consisting of the use
of personal data to evaluate certain personal aspects relating to a natural person, in
particular to analyze or predict aspects concerning that natural person’s performance
at work, economic situation, health, personal preferences, interests, reliability, behavior,
location or movements". In Human Computation, the collection of user data and building
user profiles is usually not conducted for big-profit purposes (such as selling user profiles to
advertisers) but for designing and developing mechanisms for effective work-management
on human computation provisioning systems. In the following we discuss some of these
mechanisms.

120

8.1. Personal Data on Human Computation Systems

Task-Assignment and Formation of collectives

A number of existing works have presented (expert) discovery and ranking algorithms
for service-oriented architectures with human-provided services ([SD10], [DT12]), as well
as non-service oriented systems in which tasks assignment is based on qualifications.
Research in team formation in expert networks is also being investigated ([ABC+10],
[DD10]). These mechanisms are all based on logged and historical data about workers to
come up with the appropriate workers for specific tasks in individual-crowdsourced work
or specific collective-work.

Management Mechanisms

Managing individual and team-based worker performance in human computation is also
important for complex systems with automated processes even for the human-in-the-loop
coordination. Adaptation mechanisms in human computation within SOA for example,
are discussed in [SSPD11], and an adaptation mechanism for elastic collectives based on
a trust model is presented in [RTD15]. Algorithms that calculate worker’s performance
can be used within delegation mechanisms, where a task is delegated to another worker
that may or may not belong to the initial collective. Consequently, a new worker can
be added to an existing collective at run-time. Research on both task assignment and
adaptation algorithms that include measurement of worker performance is in big part
based on trust and reputation models. Some of these trust and reputation models
include not only metrics that can be measured automatically (such as task success-rate)
but also social trust, which mostly is defined and calculated as a trust-score that is given
to a worker by collaborators or acquaintances and/or by work-requesters/clients based
on their satisfaction by the results. Social trust is often subjective and in most cases
requires that the person rating a worker knows the worker personally, so in some trust
and reputation models worker identities are needed to be known. Hence, in some cases
reputation mechanisms are in conflict with privacy, and we need to find ways of bringing
these two concepts together and provide privacy aware reputation strategies.

Quality of Service

Keeping quality at a desired level also requires monitoring of workers. (see an example
of SLA based QoS monitoring for crowdsourcing in [KPSD11]).

Misbehavior prevention

Personal data is sometimes used in building mechanisms for preventing worker misbehav-
ior, such as Sybil attacks- cases in which workers can easily create multiple profiles and
make more gain by executing the same tasks multiple times.

121

8. Privacy in Human Computation

Incentive Mechanisms

Developing and applying appropriate incentive models for workers based on monetary
and non-monetary gains is also based on data collection, and sometimes personal data, for
example when reputation is used as an incentive. (See work on incentives and rewarding
mechanisms in social computing in [STD13].)

Payments

In most platforms that have implemented monetary incentives, user bank/credit account
is required so that workers can be paid. However, some platforms allow users to delete
this data after they withdraw the required amount from it (such as microworkers.com,
in the case of requesters/clients). This should be a standard practice for all data types
as well. A regulation example for this is the GDPR’s Right to erasure described in its
article 17, although we are on the opinion that human computation platforms should
consider the provisioning of mechanisms with which subjects would have the possibility
to directly modify, update, or erase data without making a request to the controller (the
owner of the crowdsourcing platforms), just like microworkers allows the deletion of bank
account information without requests.

All the aforementioned mechanisms require monitoring of workers. However, in
research frameworks and systems, no collection of personal data is mentioned explicitly,
and the privacy aspect is not tackled, except in specific research presented in Section 2.
On the other hand, almost all existing platforms in industry require users to share their
personal data. Thus, we advocate for all the aforementioned mechanisms to be considered
together with their privacy-related implications. In the next section we examine privacy
implications by analyzing a few risk-factors that we identified as most relevant.

8.2 Privacy Risks

User Privacy Policy Awareness

Users usually agree to Privacy Policies without actually reading them, and they do not
read them because they are too long or too complex to understand ([WAW15]). This
contributes to their use of platforms without being aware of what they are entitled to,
regardless of whether their privacy rights are violated or not.

Lack of Transparency in Privacy Policies

Very often, users are not given complete information about what is considered under
personal information, about how their personal data will be used, whether it will be
shared with third parties and for how long will this information be stored on a human
computation platform-provider’s servers or on the servers of their service-providers. Often,
the use of personal data is defined in policies in a vague way. Consider for example the
statement "we may share certain data...", using words such as "certain data" without

122

8.2. Privacy Risks

concretely defining what type of data the statement is referring to means getting a clear
consent by users to use whatever personal data of users that the provider owns. Many
privacy policies that we have read also contain phrases such as the following: "we may
share information with third parties for industry analysis, research and other similar
purposes"; the terms "similar purposes" give the providers the freedom to use personal
data in any purpose fitting their needs, without the explicit consent of the platform users.
In addition, consider this statement: "we may use your personal information from other
services and connect to your account information when necessary", this is clearly a way
to de-anonymize users even if the platform is designed to use pseudonyms, as combining
various data-sets (e.g., by email addresses) de-anonymizes users. Selling user profiles to
the ad industry is also a possibility, although many human computation platforms do not
have an ad-based business model. However, companies called data brokers continuously
collect data about people from multiple online (and even offline) sources and sell that
data to clients in various business domains. Data that they collect can be also retrieved
from websites with log-ins and visits, such as browser and device fingerprints. Because
privacy policies are not straightforward, people can not be sure whether data brokers are
not leveraging some data from human computation platforms as well.

Profiling

User information is collected through information that they share with platforms as well
as by automatically collecting data by tracking. Among other uses such as computing
reputation scores, this data may also be utilized to group people in different categories, by
various contexts (e.g., country of residence, gender). This may be used to set up rules for
task-assignment, and discriminate certain groups during task-assignment and rewarding.
As we mention in our study results, there are cases where workers from certain countries
are rewarded less than others for the same tasks. In addition, consider for example a real
danger through crowdsourced tasks for online-monitoring of certain locations with the
purpose of detecting and reporting criminal activities, or even a different setup, such as
identifying wanted offenders from a set of pictures that are posted in a crowdsourced
task online. If these platforms are profiling workers, criminals might find ways to identify
workers, and workers’ lives could be put at risk. Furthermore, if information from political
crises-response crowdsourcing sites1 about people reporting incidents in war-struck areas
fall into the wrong hands, it might also pose risks for the reporters. These may seem as
extreme examples, but serve well to prove privacy concerns. On the other hand, many
companies hide behind the term "anonymity", for example they do not require real names
and allow people to register with pseudonyms while collecting other personal data, in this
way wrongly convincing people that they actually work online without being identified.
For example, authors of [CS16] cite a study revealing that the combination of zip code,
gender and birth-date data had been individually unique for around 216 million US
citizens, and consequently citizens can be identified without any other additional data.
In the same work, authors also cite another study showing that four data points, such

1See for example: https://syriatracker.crowdmap.com/

123

8. Privacy in Human Computation

as four sets of time and location data could be used to uniquely identify people. Thus,
leaving out some data while collecting other type of data does not mean that anonymity
is achieved, and in most cases people are not transparently informed of this fact.

Lack of Control

In current systems, users do not control how their private information is used (whether it
is shared, sold or misused), and have no control over who accesses that information. They
have to be content with what they read on privacy policies (when they read them). They
are not given control to their own data, to update or delete their data when they want.
Moreover, stored information is sometimes not secured enough, rules and regulations
are not always respected, and data stored on foreign servers belonging to a different
jurisdiction than a person’s residence country (over which the user may not be given
a choice), can be misused (e.g., due to security breaches, unencrypted data, unethical
employees or security agencies).

Lack of Ownership

Users do not own their own data that they have shared with the platforms, rather
platform providers do. Similar to the risks in not being able to control data, not owning
data means intentional or unintentional sharing with third parties, access to user data by
unintended parties as well as transferring/selling user information to other parties and
monetizing people’s data, which sometimes can be done without users’ knowledge and
approval.

Lack of Security

Last but not the least, in addition to the aforementioned factors, security is of paramount
importance for protecting privacy. Data control and ownership do not have any effect on
privacy protection if user-information is unencrypted. Needless to say, security protocols
for securing internet connections and data encryption protocols should be standard
features that every human computation platform should support.

8.3 Study

8.3.1 Method: Survey Design and Distribution

We conducted a study to asses user privacy-awareness in human computation with an
online questionnaire, hosted on a server at Technische Universität Wien/TU Wien. We
asked participants a series of questions that we designed specifically to get their opinion
on their private data collected and utilized on the platforms, to get their knowledge on
privacy implications on these platforms as well as their concerns.

We disseminated our survey in two ways: 1) by sharing it with fellow researchers and
colleagues by email, and with acquaintances and friends on social networks by asking

124

8.3. Study

them to fill it in (if registered as users on these systems) or send the survey to people
that they know are using these systems as requesters or workers; and 2) by creating
a task/campaign at Mircoworkers (https://microworkers.com/) and a HIT batch on
Amazon MechanicalTurk, asking workers to fill in our survey (at a given link). We did
two rounds of the survey, as we came up with some more questions that we saw relevant
during our study. Thus, the first round of the survey had 20 questions, 16 of which
were designed to asses user privacy-awareness, and 4 were statistical questions to get
demographic data. We submitted this survey on Microworkers and to researchers and
freelancers through private communication, while the second round of the survey had 5
additional questions, and was conducted only on Amazon MechanicalTurk. Where we
have less participants for the newly added questions we mention it when discussing the
particular questions.

Microworkers has a design that allows requesters to select what user-base to chose
depending on worker country-information and makes payment recommendations according
to country-dependent ratings. We created four tasks/campaigns and asked users from
four different country-groups to fill in our survey. For the first three groups of workers,
we payed workers $0.42 per task, as by investigating other studies on these platforms
(that have used payments between $0.10 and $1) we concluded that this amount was
enough for people that are interested on the topic to accept the task and low enough to
discourage misbehavior by those who may want to fill in the survey without interest and
spam the results. In spite of recommendations for lower payment for a group of workers
coming from countries rated lower, we decided to pay workers of a lower rated group of
countries the same amount of $0.42 and not lower. However, our survey-task for a forth
group of workers residents of high rated countries was rejected for that amount as the
minimum payment was $1.00 per task for surveys such as ours, so we paid that amount
to get our survey completed by a fourth group, as we needed different demographics for
the sake of the study2. In this regard, we strongly encourage ethical payment methods
by crowdsourcing platforms and ethical payment behavior by work requesters/clients.
Some of these mechanisms could be, equal pay per task-type for all workers (regardless of
country ratings), or individual worker payments based on quality of results. Nevertheless,
this side-experiment allowed us to qualify the answers that were submitted in reply to
our survey, for example filling in optional questions that required more elaboration. In
this context, we noticed no difference in the answers of higher rated countries compared
to lower rated groups. In fact, some users that were paid less gave elaborated answers
while none of the higher paid participants did this. Workers on Amazon MTurk were
paid $1.

To filter submissions as well as to avoid spammers and malicious users who fill in
the survey without reading the questions and answers, we included a few questions that
helped us asses (to some level) the honesty of participant answers. One such "testing"
question was added to check a related "yes or no question", the testing question included

2Due to ethical principles, we do not reveal here which countries are rated lower or higher on
microworkers.com.

125

8. Privacy in Human Computation

Table 8.1: Demographics of participants

Education Percentage
Primary School 1.97%
High-School 20.6%
Undergraduate studies/BSc/BA 40.6%
MSc/MA/Specialty training 15.6%
Dr/PhD 6.86%
Postdoctoral researcher 1.4%
Other 12.7%
IT Knowledge Percentage
Expert/Professional 20%
Medium level (good IT skills but not
expert/professional)

59%

Knowledge to get around online 21%

Table 8.2: Most common collected data

Collected data % of users who
want to hide the

data
Name and Surname 24%
E-mail address 22%
Phone number 61%
Birthdate 26%
Photograph 54%
Location/Mailing
address

35%

Utility bills 53%
A government issued ID 68%
Bank account 54%
None of the above 1%

radio buttons with more elaborating statements to be chosen if the user answered with
"Yes" on the related question, and included a radio button with the statement "I answered
with "No" on the previous question" to be selected if a participant has answered with
"No" on the related question. In addition, we added a "Yes or No question" asking
survey participants if they have read our consent form for the survey and excluded
submissions of participants who answered with "No". A few participants had filled our
survey multiple times. We counted only one submission from these participants and
excluded all duplicates.

126

8.3. Study

8.3.2 Results and Analysis

Demographics

We had a total of 204 participants, the answers of three of which we excluded as a
consequence of their negative answers to the question with which we requested participant
consent for the survey (through reading our consent form). 105 participants were workers
from Microworkers, 78 from Amazon MTurk (engaged in the second round of our study),
whereas 21 were participants that we contacted by mail/social networks. Most of our
participants were residents of US, EU countries and India.

Table 8.1 shows the level of education and IT knowledge of our participants. Par-
ticipants with a PhD and Postdoc level of education were users of human computation
platforms as requesters of work (for research purposes).

We asked participants to fill in the names of up to three platforms that they use and
we got the following variety of platforms as answers: Microworkers, Amazon Mechan-
ical Turk, Upwork, InnoCentive, Elance, Guru, 99designs, CrowdFlower, clickworker,
RapidWorkers, ShortTask, Testbirds, cashcrate, fiverr, scribie, TranscribeMe, foulefactory,
ideaCONNECTION, and OneSpace. Most of our participants worked on two or three
platforms.

Privacy Awareness

We posed three type of questions assessing user privacy awareness and concerns: the first
was related to a) data collection, control and ownership of data; the second was related
to b)anonymity online and the third group of questions was related to c) regulations and
policies. In the following we discuss the results.

a)Data collection, Usage Concerns and Security Regarding data collection, we asked
participants to state their level of concern regarding the fact they they have to share
sensitive data to register and verify their accounts. The level of concern question was set
up as a 1-5 Likert scale. 19% of participants stated that they are somewhat concerned
with the information that they are obliged to share when they register on the platforms,
while 25% were not concerned at all. Table 8.3 gives a more detailed overview of the
answers regarding participant concerns over the collection of their personal data. In
addition, to get more detailed information, we listed some of the data types (mentioned
in Section 8.1) collected by platforms and asked participants to select which of the
given data type they would want to hide. They could chose multiple types. Most of
the participants answered that they would prefer hiding: a government issued ID
(68%), bank account information (54%) and phone numbers (61%). More details
regarding the results for this question are given in Table 8.2.

Next, we asked participants if they ever provide false information when registering
and creating their profiles and 17.7% reported that they do. Regarding the reasons for
providing false information, 19% reported that they do not feel comfortable revealing

127

8. Privacy in Human Computation

Table 8.3: Data concerns

Statements regarding data con-
cerns

Very Somewhat Neutral Not
con-

cerned

Not
con-

cerned
at all

Likert
score

How much are you concerned with
the personal information that you
are obliged to share so that you can
register on these platforms?

19% 8% 39% 9% 25% 2.78

How much are you concerned with
the personal information that you
need to share so as to build your
profile and verify your identity on
these platforms?

19% 22% 25% 12% 22% 2.83

Are you concerned that your infor-
mation will be misused (by the /plat-
form that you are registered with)?

6% 11% 23% 28% 32% 2.16

some specific information about them, and 3% reported that they provide some false
information in order to create secondary accounts.

Users’ knowledge on where their data is stored is important for assessing their
privacy awareness; hence, we asked participants whether they know and whether they
are concerned if their data is stored on platform providers’ own servers, or if platform-
providers utilize cloud services (in which case an agreement should exist between platform
providers and cloud providers for protecting user information and not sharing user data
with other parties), and if data is stored in a location with a different jurisdiction (in
which case different data protection regulations exist). Participants were given three
answer choices and they reported as follows, 32.29% said "I admit I have never thought
about these things and frankly I am not concerned.", 33.86% chose "I admit I have never
thought about these things but I became concerned now.", and 33.85% answered with "I
have thought about these things and am concerned."

Table 8.4 shows security-related statements that we added for the second round of
the survey and the replies from 78 participants recruited from Amazon MTurk.

b)Anonymity Anonymity is of course fundamentally different from privacy. Privacy
means that people may be identified online, but it should be their choice regarding how
much and in what way their data is shared and utilized. Nevertheless, the two concepts
are invariably related. Hence, we examined opinions on anonymity as well, and asked
participants what would be the reasons in the case they prefer to work anonymously.
Some workers that are working on more complex tasks (e.g., projects such as those
posted on 99designs, Freelancer) and not on micro-tasks stated that they would not

128

8.3. Study

Table 8.4: Security related survey statements

Survey statements regarding security I
strongly
agree

I agree Neutral I disagree I
strongly
disagree

Likert
score

Having in mind that not only my personal infor-
mation but also content that i produce or expect
as a result from engaging on a microwork plat-
form is sensitive, I expect the platform I perform
micro-work on, the prove on a regular basis (ev-
ery three months?) that it is secure, by having
an independent pen-test performed and have the
results published.

15.06% 24.68% 36.98% 9.59% 13.69% 3.18

"I would like to have the option to receive pay-
outs in a privacy-friendly cryptocurrency." Please
select a choice from 1 to 5, 1 indicating that you
are not concerned with secure and private pay-
outs, 5 indicating that you strongly agree with
the statement.

10.96% 20.55% 32.88% 10.95% 24.66% 2.82

prefer to work anonymously online, using statements such as "working anonymously is
not effective". Consequently, we assume that these workers do care about reputation as
reputation mechanisms bring more clients and work. However, some replied that they
would want to work anonymously in cases if they are working on some projects on which
they would not want to put their name on but they are well paid, and communication and
collaboration with clients is satisfactory. In addition, one participant answered that it
would be nice if users are provided with the option to work anonymously online whenever
they chose to (opt-in/opt-out).

On the other hand, most of the workers who work on micro-tasks answered that they
would want to work anonymously for several reasons: they do not want their name to
be associated to the type of work they do, to protect their banking information, they
do not want the companies with which they work full-time to know that they are doing
a side-job. The benefit of our survey was exactly in getting a variety of opinions and
concerns from individuals, apart from the statistics. We quote some answers stating
other contexts of concern for anonymity: "I would want to work anonymously so there
was no bias towards me based on my demographics and/ or social class. I also would
prefer to remain anonymous in case scammers entered the platform pretending to collect
data, but instead, they were going to participants homes etc.", "I like minimizing my
digital footprint as much as possible", "When doing microwork online, you do work for
various people, potentially over dozens of people a day. I’d rather not have my sensitive
information potentially available to all of them, when I’m forced to provide demographic
information for much of the work anyway", "I’d not want to have that information

129

8. Privacy in Human Computation

available for marketers or to be available to be sold. I’d not want other organizations to
be able to access such information and use it to send me ads or other materials", and
others. In addition, some answered that they would want to work anonymous because
they do not want their earnings to be reflected on their taxes. Related to the latter, one
participant stated that he uses foreign money transfer services, such as Payoneer, to
avoid taxes for online work.

Furthermore, some participants stated their concern of their information being leaked
to other parties. One particular participant stated that the reason he would want to work
anonymously is that he can not be certain by whom and how his private information will
be used, he added the statement "I want to control my "web" identity as i want".

Thus, we can conclude that workers doing complex tasks are more inclined to
identification than workers executing micro-tasks that are easy to execute. Lastly, an
interesting answer we encountered was: "I would want to protect my privacy", even
though the specific question was related to anonymity online. Consequently, participants
associated anonymity with privacy.

c)Regulations and Policies To asses participant engagement in privacy issues we went
a step further and asked them if they read privacy laws, directives and policies. Figure
8.1 provides their reports. Interestingly enough, more than 50% of participants reported
that they do read privacy policies when they register on platforms. However, around
40%participants reported that they do not read them. We take this result to be truthful
as the number of participants is small. However, we assume that this ratio is significantly
in favor of participants that do not read privacy policies because of complexity, as existing
research suggests (e.g., [Klu06], [WAW15], [MRKC09]).

In order to get participants’ opinion on platforms, research and regulations on privacy
we included a question with a five Likert-scale agreement levels to chose from, for a few
statements that we compiled. Most participants agreed that existing platform providers
need to be more transparent about how they use personal information and they also
agreed that research and industry should increase their efforts in providing mechanisms
that will enable people to control and even own their data. For every statement we also
asked participants if they are knowledgeable on the topics that the statements refer to or
not. In total 57% answered that they need more information on the topics, 38% answered
that they have knowledge on the topics and the rest did not answer. Detailed results are
given in Table 8.5.

The questions from the first round of the survey can be found in Appendix C.

8.4 Suggestions

8.4.1 Recommendations

For platform providers, an important privacy-respecting guide in storing personal data is
to only store that which is essential to the needs of the platform. With this, we mean

130

8.4. Suggestions

Figure 8.1: User reports on regulations

Table 8.5: Opinions on regulations, and approaches in research and industry

Survey statements I
strongly
agree

I agree Neutral I
somewhat
disagree

I disagree Likert
score

Human computation Companies/Plat-
forms should clearly state under which
country/state law they operate.

28.13% 41.67% 25% 2.6% 2.6% 3.9

Companies/Platforms than enable and
provide human computation should be
more transparent about how they use
my personal information

38.54% 29.67% 21.36% 7.31% 3.120 3.84

I am concerned about the privacy reg-
ulations/laws of the country in which i
reside and work.

15.1% 30.73% 31.25% 18.23% 4.69% 3.3

Research and industry should increase
their efforts in giving users more con-
trol over the use of their data.

30.73% 38.02% 19.79% 6.77% 4.69% 3.83

Research and industry should increase
their efforts in enabling tools and mech-
anisms that will enable users to own
their own data, in contrast to current
standards where companies own users’
data.

29.68% 33.85% 28.13% 4.17% 4.17% 3.81

131

8. Privacy in Human Computation

the concept of data minimization; if n data points are enough to perform the task for
which these points were collected, do not collect > n data points. In the most general
terms, according to Colesky et al., in [CHH16], there are two directions of strategies to
protect the privacy of clients: data oriented, and policy oriented. These two directions
lead to eight high level strategies that can be applied to the collection of data in ways
that respect the privacy of data subjects.

An example authentication mechanism of identity protection is Attribute Based
Credentials (ABC) [KKAH14]. ABC provides the client with a secure container for
specific attributes, such as "over 18" or "holds a PhD in computer science", to use for
specific cases, and the control over which attributes are shared is entirely in the control
of the user. The container is called an attribute-based credential [KKAH14]. The benefit
of the ABC mechanism, is in the fact that an attribute can not be tracked, because the
mechanism is based on zero-knowledge proofs; thus, each time that the same client needs
to prove the same attribute (e.g., birthdate ,age, citizenship) it can not be determined
whether the proofs of credential ownership for the same attribute came from the same
individual.

In addition, there are some well-known anonymization methods such as the k-
anonymity model, presented in [Swe02], and t-closeness described in [LLV07] that prevents
attribute disclosure, which are regularly mentioned as one of the methods of dealing
with sensitive data. However, these are also proven not to be reliable as sensitive data
could be easily inferred from one or two data-points. The author in [Owm] discusses
anonymization techniques (such as release-and-forget, access control, and audit trails) as
well as re-identification techniques. The author concludes that re-identification techniques
are much more solid that anonymization techniques, giving the examples of AOL and
Netflix [Sog07] re-identification cases from their publicly released anonymized data.

However, the aforementioned strategies do not solve all the practical problems, such
as payment methods. A person still has to provide at least some personal data in order
to receive a reward for his work. In this context, one could argue that cryptographic
currencies such as BitCoin could be used to pay rewards, but these too have been shown
not to be entirely anonymous [AKR+13]. In addition, there are other alternatives of
online services that offer means to transfer funds, such as CashU, and Perfect Money,
which could be used as a "Trusted Third Party" for transactions between a bank account
to them, and then transfers between the service itself, and the service and other services.
Although tracking with these services is more difficult, it is still possible, as there is a
specific party that still needs to know enough to be able to transfer funds.

One way of providing for giving control to users over their own data is the provi-
sioning of human computation through decentralized systems. (One channel type for
communication (and content creation) only could be provided with the communication
protocols such as ActivityPub, the Diaspora protocol, OStatus which are used for social
networking and microblogging platforms.) A recently published data-sharing protocol for
decentralized systems worth looking into is Dat [OMM].

132

8.4. Suggestions

As far as we know, no human-computation platform has implemented multiple privacy-
preserving technologies yet, still relying on cheaper, faster, and easier management
methods that (might) erode the privacy of clients.

The following section discusses a few possible research directions.

8.4.2 Research directions

Transparency with rules or SLAs

System designers, developers and business actors need to come up with more transparent
and direct ways of getting user consent (other than the current standard of publishing
privacy policies). An interesting open challenge that we will tackle in our future work is
our idea of enforcing user consent through Service Level Agreements (SLAs). Depending
on the type of (human) tasks and whether their execution can be monitored and measured,
introducing SLAs may come as appropriate as a mechanism to monitor, manage and
adapt human computation collectives.

In relation to the aforementioned SLA application, a possible research direction is
investigating the inclusion of privacy clauses (e.g., from privacy policies) in SLAs so that
users will be obligated to read them and give consent when negotiating SLAs. This could
be a two-way negotiation, employers could regulate personal data and content/artifact
privacy in relation to the workers as well as the system, and workers could regulate their
personal data in relation to employers, other workers and the system.

Privacy preserving workflows

Human-based computing in general and crowdsourcing in particular, in addition to issues
with personal information, have issues with sensitive artifacts and data submitted for tasks.
People who submit tasks may want to reveal only a part of the data. Thus, the design of
workflows that provide enough knowledge for workers to be able to execute tasks but do
not disclose the full context of requesters’ work/interest, is an open (domain-dependent)
research question (example work presented in [SFC+17].

Payment methods

When people work in socio-technical systems individually and do not belong to an
organization, even with the most efficient anonymization methods, e.g., on the assumption
that all worker data is private, the payment methods are still an open question as they
can be still used to identify a person.

Location

Let us assume a person consents to his/her location data being collected, e.g., in a
crowdsourced traffic management of a city. In this case, developers need to pay attention
for example to set some location checkpoints,which would not be used to infer sensitive

133

8. Privacy in Human Computation

information, such as for example religion (checkpoints near religious buildings), hospitals,
houses, and other institutions.

Evaluation methods

An interesting research challenge are also evaluation methods for software, i.e., evaluating
the included privacy-preserving mechanisms.

Raising people awareness about privacy

Methods and techniques for raising awareness on privacy should not be a question tackled
by experts working on social and legal areas only; it is crucial that computer science
researchers approach these challenges as they develop software and disseminate their
research. This chapter provides people opinions on privacy related issues for concrete
platforms, and also provides a discussion of possible mechanisms for preserving privacy,
and possible research challenges. Nevertheless, the last section is not an attempt to
provide an extensive list of tools, strategies and problems; the goal of this chapter is to
point to privacy challenges and provoke and motivate researchers of human computation
systems to tackle them. The next section, discusses selected related work.

8.5 Related Work

Smith et al. have studied individual privacy concerns in organizations and have identified
multiple dimensions of these concerns that they have presented in [SB96]. In that work,
the authors list four factors critical to consider when assessing user privacy concerns:
concern over data collection, errors in user data, unauthorized secondary use of user data
(e.g., when data is used for other purposes then stated), and improper access to user
data. Since then, a number of other models, frameworks of user privacy concerns have
been presented, (some building upon the work of Smith et al.) such as [MKA04]. On
the other hand, theories and models of how to control privacy and enforce privacy-aware
mechanisms are also present in existing literature. Authors in [MB09] present such a
privacy-control theory and discuss ways of its application in online environments.

Fischer-Hübner and Martucci in [FHM14] have inspected privacy implications for
Social Collective Intelligence Systems (SCIS) by presenting an overview of the Euro-
pean Data Protection Legal Framework and relating the privacy rules provided by this
framework with SCIS systems and mechanisms supported by these systems, such as user
profiling for reputation scores, incentive models, as well as data provenance. Reputation,
incentive models and data provenance are all listed as risks for user privacy as these
mechanisms are inherently designed to work with user profiling. However, the authors list
and discuss some of the available tools and technologies that can enable SCIS platform
providers to respect and preserve user privacy, mainly via pseudonyms and anonymity.
One example is by allowing users to use different pseudonyms for different roles, i.e.,
context-based pseudonyms that can be used only once per role (e.g., skill type) and thus

134

8.5. Related Work

prevent misbehavior by malicious users. In addition, the authors describe anonymous
credential protocols that can be used to create new credentials whenever a user wants,
with less or different certificate attributes, which cannot be linked to an original certifi-
cate by the verifier and the issuer. Moreover, Fischer-Hübner and Martucci also present
Privacy Policy Languages (such as PPL) with which platforms can make negotiations
and come up to an agreement with platform-users on how, by whom (and what) data can
be accessed, processed and logged.

Motahari et al. in [MMHJ07] have listed privacy threats in ubiquitous social com-
puting by underlining the social inference threats in social computing, where a user
can be identified for example through contextual information (e.g., location) or social
links. Authors in [GGF14] present a privacy model together with a framework for task-
recommendation in mobile crowdsourcing. The model is based on enabling workers to
share information (e.g., location) with a recommendation server by choosing how much
and what type of information they wish to share. Task recommendations are based
on the information shared by workers. However, authors conclude the obvious, namely
that achieving a high efficiency in task-recommendations means low level of privacy.
Another work that presents a privacy-aware framework is presented in [TGS14] by To
et al. The authors present a task-assignment algorithm that preserves location privacy
for mobile spatial-crowdsourcing tasks, that is, for tasks that require workers to be at
a specific location. Toch in [Toc14] investigates privacy preferences of users in mobile
context-aware applications through crowdsourcing and presents a method to calculate
user privacy tendencies. He suggests building distributed systems to tackle privacy risks
(with the computation of user privacy tendencies being executed on the client side).
Privacy preservation in decentralized systems is discussed in [BCKS13]. Privacy activists
also advocate for decentralization and zero-knowledge systems, Balkan for example has
written the Ethical Design Manifesto [Bal], which states: "Technology that respects
human rights is decentralised, peer-to-peer, zero-knowledge, end-to-end encrypted, free
and open source, interoperable, accessible, and sustainable.".

Langheinrich in [Lan01] discusses some Privacy by Design principles, focusing on
ubiquitous systems. He states that the Principle of Openness, or Notices, is an important
principle during data collection. Users have to be informed when they are being monitored.
In addition, Langheinrich discusses that consent should be required in a more flexible
way than the "you can use our services only if you consent to our terms/policy". Users
have to be able to use services while opting out of unwanted features.

135

CHAPTER 9
Conclusions

This thesis is the results of our investigation and work on metrics and metric models
for managing individual and collective human-based resources and services, as well as
run-time adaptation algorithms for human-based resource collectives that utilize them.
The models and mechanisms we describe are thought as mechanisms to be included
in human computation applications/platforms within socio-technical systems. Thus,
they are all intended to build better, more efficient, more complex and more ethical
adaptive platforms that would manage online collectives, beyond the mechanisms of
current existing platforms. After an investigation of current applications and systems,
such as crowdsourcing ones and online collaborative platforms, as well as existing research
work on managing collective intelligence, including task-assignment, worker selection,
incentives, rewarding and management mechanisms, I identified several research questions
which I addressed in this thesis. More specifically, this thesis contributed with the
following:

1. novel metrics that reflect the nature of people, both performance based metrics
that are monitored and calculable automatically and social metrics such as social
trust, which are subjective but are calculable through voting mechanisms

2. algorithms for collective-formation and elastic adaptation of collectives, and their
implementations as proof-of-concept experiments, which show how our metrics influ-
ence the adaptation of collectives at runtime and in turn how runtime adaptations
affect the update of individual and collective metrics

3. elastic negotiation(SLA)-based management process model
4. a provenance model and ways of utilizing provenance in social computing
5. a discussion of ethical and privacy issues in social computing platforms, based on a

survey we conducted on a crowdsourcing platform, and recommendations.

We believe that the utilization of the metrics and mechanisms presented can contribute
in the development of further models and mechanisms that will increase the productivity

137

9. Conclusions

of people online, their collaboration and thus the quality of the provided artifacts.
Our adaptation mechanisms advise for interactive management mechanisms between
all stakeholders, the customers, the platform/system and online workers (human-based
services) during task execution, in case of events and in case of requirement changes at
runtime by both customers and workers.

Several open research questions connected to this work are open for future investiga-
tions, some that we have identified are:

• Setting aside organizations with known employees that automate their processes
and outsource parts of them (e.g., enterprise crowdsourcing), there are open issues
regarding platforms that use pools of workers where their qualifications need to be
verified. Current qualification tests in crowdsourcing environments for example are
not solid enough, whereas in other platforms for more complex tasks (e.g., language
translation, web development), qualification mechanisms do not even exist and
qualified people that register online may not get tasks for a long time unless they
are in the few ones available. Thus, benchmarking is an open issue.

• The design of complex task so that their assignment and their result aggregations
can be easily automated is another question, which is mostly domain dependent.

• Privacy issues are crucial for platforms in human computation in general, particu-
larly for location tracking such as in smart-city applications, for payment methods,
and finding reliable ways to identify a single human resource from a pool of resources
without identifying him/her personally, which is important to avoid misbehavior
such as multiple account creation and system tricking by workers, etc. To generalize
it even more, researchers could think of questions raising ethical and legal issues.

• A very interesting open question is coming up with mechanisms that would allow
the management of both human-based services and software services in a similar
way for socially-enhanced applications, so that processes that include adaptation,
task assignment and delegations would be fully automated and complex tasks can
be partially executed by both types of resources.
Connected to the human-machine collaborations and mixed systems, the inclusion
of social collectives in systems that work with artificial intelligence and cognitive
computing is a compelling open area of research.

Finally, we advocate that research from every area in computer science should progress
with having the context of privacy in mind, as the way we build applications and systems
affect the direction in which our societies will further develop. Technology and society
are in an interminable process of mutual effect on their change and transformation, in
which process the construction of reality takes place; it is up to us to chose and build the
type of reality we want to live in, and what better than when progress is accompanied by
transparency, trust and consequently, autonomy.

138

Bibliography

[ABC+10] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis,
and Stefano Leonardi. Power in unity: forming teams in large-scale com-
munity systems. In CIKM, pages 599–608, 2010.

[ABC+12] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis,
and Stefano Leonardi. Online team formation in social networks. In Proceed-
ings of the 21st international conference on World Wide Web, WWW’12,
pages 839–848, New York,NY,USA, 2012. ACM.

[ACD+07] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu.
Web services agreement specification (ws-agreement). Open Grid Forum,
128, 2007.

[AIB+] Mohammad Allahbakhsh, Aleksandar Ignjatovic, Boualem Benatallah,
Seyed-Mehdi-Reza Beheshti, Elisa Bertino, and Norman Foo. Reputation
management in crowdsourcing systems. In CollaborateCom, pages 664–671.
IEEE.

[AKR+13] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer,
and Srdjan Capkun. Evaluating user privacy in bitcoin. In International
Conference on Financial Cryptography and Data Security, pages 34–51.
Springer, 2013.

[AKZ13] Aijun An, Mehdi Kargar, and Morteza Zihayat. Finding affordable and
collaborative teams from a network of experts. In Proceedings of the 13th
SIAM International Conference on Data Mining, May 2-4, 2013. Austin,
Texas, USA., pages 587–595, 2013.

[AMT05] Paolo Avesani, Paolo Massa, and Roberto Tiella. A trust-enhanced recom-
mender system application: Moleskiing. In Proceedings of the 2005 ACM
Symposium on Applied Computing, SAC ’05, pages 1589–1593, New York,
NY, USA, 2005. ACM.

[ARH00] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual
communities. In Proceedings of the 33rd Hawaii International Conference on

139

System Sciences-Volume 6 - Volume 6, HICSS ’00, pages 6007–, Washington,
DC, USA, 2000. IEEE Computer Society.

[BA17] Mohamad Jehad Baeth and Mehmet S. Aktas. A large scale synthetic social
provenance database. In Proceedings of the Ninth International Conference
on Advances in Databases, Knowledge, and Data Applications, DBKDA
2017, pages 16–22, 2017.

[Bal] Aral Balkan. Ethical design manifesto. Ind.ie. Online available:
https://ind.ie/ethical-design/. Last access: 22.07.2016.

[BBMK11] Michael S. Bernstein, Joel Brandt, Robert C. Miller, and David R. Karger.
Crowds in two seconds: enabling realtime crowd-powered interfaces. In
Proceedings of the 24th annual ACM symposium on User interface software
and technology, UIST ’11, pages 33–42, New York, NY, USA, 2011. ACM.

[BCBM12] Daniel W. Barowy, Charlie Curtsinger, Emery D. Berger, and Andrew
McGregor. Automan: A platform for integrating human-based and digital
computation. In Proceedings of the ACM International Conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA
’12, pages 639–654, New York, NY, USA, 2012. ACM.

[BCKS13] Sonja Buchegger, Jon Crowcroft, Balachander Krishnamurthy, and
Thorsten Strufe. Decentralized Systems for Privacy Preservation (Dagstuhl
Seminar 13062). Dagstuhl Reports, 3(2):22–44, 2013.

[BKMB12] Michael S. Bernstein, David R. Karger, Robert C. Miller, and Joel
Brandt. Analytic methods for optimizing realtime crowdsourcing. CoRR,
abs/1204.2995, 2012.

[BN16] Munmun Bhattacharya and Nashreen Nesa. An algorithm for predicting lo-
cal trust based on trust propagation in online social networks. International
Journal of Computer Applications, 156(7):8–15, Dec 2016.

[CAK13] X Cheng, A Azadegan, and Gwendolyn L. Kolfschoten. An evaluation
of trust development in group collaborations: A longitudinal case study.
volume 46 of Hawaii International Conference on System Science, pages
78–85. IEEE computer society press, 2013.

[CDG+12] Simon Caton, Christoph Dukat, Tilo Grenz, Christian Haas, Michaela
Pfadenhauer, and Christof Weinhardt. Foundations of trust: Contextu-
alising trust in social clouds. In 2012 Second International Conference
on Cloud and Green Computing, CGC 2012, Xiangtan, Hunan, China,
November 1-3, 2012, pages 424–429, 2012.

[CDS13] Meenal Chhabra, Sanmay Das, and Boleslaw Szymanski. Team formation in
social networks. In Erol Gelenbe and Ricardo Lent, editors, Computer and
Information Sciences III, pages 291–299, London, 2013. Springer London.

140

[CFMT09] V. Casola, A. R. Fasolino, N. Mazzocca, and P. Tramontana. An ahp-
based framework for quality and security evaluation. In Proceedings of the
2009 International Conference on Computational Science and Engineering
- Volume 03, CSE ’09, pages 405–411, Washington, DC, USA, 2009. IEEE
Computer Society.

[CGR+13] Cristina Cabanillas, José María García, Manuel Resinas, David Ruiz,
Jan Mendling, and Antonio Ruiz-Cortés. Priority-based human resource
allocation in business processes. In Samik Basu, Cesare Pautasso, Liang
Zhang, and Xiang Fu, editors, Service-Oriented Computing, pages 374–388,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[CHH16] Michael Colesky, Jaap-henk Hoepman, and Christiaan Hillen. A critical
analysis of privacy design strategies. In IWPE, San Jose, CA, 2016. IEEE.

[CNB+12] Yuan Cheng, Dang Nguyen, Khalid Bijon, Ram Krishnan, Jaehong Park,
and Ravi Sandhu. Towards provenance and risk-awareness in social com-
puting. In Proceedings of the First International Workshop on Secure and
Resilient Architectures and Systems, SRAS ’12, pages 25–30, New York,
NY, USA, 2012. ACM.

[Con13] Noshir Contractor. Some assembly required: leveraging web science to
understand and enable team assembly. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 371(1987), 2013.

[CS16] Wolfie Christl and Sarah Spiekermann. Networks of Control. Facultas, 1
edition, 2016.

[CTD15] Muhammad Z. C. Candra, Hong Linh Truong, and Schahram Dustdar.
Analyzing reliability in hybrid compute units. In IEEE Conference on Col-
laboration and Internet Computing, CIC 2015, Hangzhou, China, October
27-30, 2015, pages 150–159, 2015.

[DB11] Schahram Dustdar and Kamal Bhattacharya. The social compute unit.
IEEE Internet Computing, 15:64–69, May 2011.

[DD10] Christoph Dorn and Schahram Dustdar. Composing near-optimal ex-
pert teams: a trade-off between skills and connectivity. On the Move to
Meaningful Internet Systems: OTM 2010, pages 472–489, 2010.

[DGST11] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong Linh Truong.
Principles of elastic processes. IEEE Internet Computing, 15(5):66–71,
2011.

[DKR+11] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, Julia Stoyanovich, Val
Tannen, and Yi Chen. On provenance and privacy. In Proceedings of the

141

14th International Conference on Database Theory, ICDT ’11, pages 3–10,
New York, NY, USA, 2011. ACM.

[DSSD11] Christoph Dorn, Florian Skopik, Daniel Schall, and Schahram Dustdar.
Interaction mining and skill-dependent recommendations for multi-objective
team composition. Data Knowl. Eng., 70(10):866–891, October 2011.

[DT12] Schahram Dustdar and Hong Linh Truong. Virtualizing software and
humans for elastic processes in multiple clouds- a service management
perspective. IJNGC, 3(2), 2012.

[FC12] Rino Falcone and Cristiano Castelfranchi. Highlights on Practical Applica-
tions of Agents and Multi-Agent Systems: 10th International Conference on
Practical Applications of Agents and Multi-Agent Systems, chapter Trust
and Transitivity: How Trust-Transfer Works, pages 179–187. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[FHM14] Simone Fischer-Hübner and Leonardo A. Martucci. Social Collective In-
telligence: Combining the Powers of Humans and Machines to Build a
Smarter Society, chapter Privacy in Social Collective Intelligence Systems,
pages 105–124. Springer International Publishing, Cham, 2014.

[FTDC15] Pablo Fernandez, Hong Linh Truong, Schahram Dustdar, and Antonio Ruiz
Cortés. Programming elasticity and commitment in dynamic processes.
IEEE Internet Computing, 19(2):68–74, 2015.

[FZDHC11] Maryam Fazel-Zarandi, Hugh J. Devlin, Yun Huang, and Noshir Con-
tractor. Expert recommendation based on social drivers, social network
analysis, and semantic data representation. In Proceedings of the 2Nd
International Workshop on Information Heterogeneity and Fusion in Rec-
ommender Systems, HetRec ’11, pages 41–48, New York, NY, USA, 2011.
ACM.

[Gd05] Matthew E. Gaston and Marie desJardins. Agent-organized networks for
dynamic team formation. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05,
pages 230–237, New York, NY, USA, 2005. ACM.

[GGF14] Yanmin Gong, Yuanxiong Guo, and Yuguang Fang. A privacy-preserving
task recommendation framework for mobile crowdsourcing. In IEEE Global
Communications Conference, GLOBECOM 2014, Austin, TX, USA, De-
cember 8-12, 2014, pages 588–593, 2014.

[GGH14] Daniel Garijo, Yolanda Gil, and Andreas Harth. Challenges for provenance
analytics over geospatial data. In Provenance and Annotation of Data and
Processes - 5th International Provenance and Annotation Workshop, IPAW

142

2014, Cologne, Germany, June 9-13, 2014. Revised Selected Papers, pages
261–263, 2014.

[Gol05] Jennifer Ann Golbeck. Computing and Applying Trust in Web-based Social
Networks. PhD thesis, College Park, MD, USA, 2005. AAI3178583.

[Gol06] Jennifer Golbeck. Computing with trust: Definition, properties, and al-
gorithms. In Second International Conference on Security and Privacy in
Communication Networks and the Workshops, SecureComm 2006, Balti-
more, MD, Aug. 28 2006 - September 1, 2006, pages 1–7, 2006.

[Gri06] Nathan Griffiths. A fuzzy approach to reasoning with trust, distrust and
insufficient trust. In Matthias Klusch, Michael Rovatsos, and Terry R.
Payne, editors, Cooperative Information Agents X, pages 360–374, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[GRS05] Craig Gentry, Zulfikar Ramzan, and Stuart G. Stubblebine. Secure dis-
tributed human computation. In Proceedings 6th ACM Conference on
Electronic Commerce (EC-2005), Vancouver, BC, Canada, June 5-8, 2005,
pages 155–164, 2005.

[GW11] Virgil Gligor and Jeannette M. Wing. Towards a theory of trust in networks
of humans and computers. In Bruce Christianson, Bruno Crispo, James
Malcolm, and Frank Stajano, editors, Security Protocols XIX, pages 223–24,
isbn=, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[HC08] Henry Hexmoor and Rachil Chandran. Delegations and Trust. International
Journal of Computational Intelligence, Theory and Practice, 3(2):95–108,
2008.

[HEV+13] Trung Dong Huynh, Mark Ebden, Matteo Venanzi, Sarvapali D. Ramchurn,
Stephen J. Roberts, and Luc Moreau. Interpretation of crowdsourced
activities using provenance network analysis. In Proceedings of the First
AAAI Conference on Human Computation and Crowdsourcing, HCOMP
2013, November 7-9, 2013, Palm Springs, CA, USA, 2013.

[Hey13] Francis Heylighen. From Human Computation to the Global Brain: The
Self-Organization of Distributed Intelligence, pages 897–909. Springer New
York, New York, NY, 2013.

[ICK+10] Dave Ings, Luc Clément, Dieter König, Vinkesh Mehta, Ralf Mueller, Ravi
Rangaswamy, Michael Rowley, and Ivana Trickovic. Ws-bpel extension
for people (bpel4people) specification version 1.1. OASIS Committee
Specification, August 2010.

[ICK+12] Dave Ings, Luc Clément, Dieter König, Vinkesh Mehta, Ralf Mueller,
Ravi Rangaswamy, Michael Rowley, and Ivana Trickovic. Web services

143

human task (ws-humantask) specification version 1.1. OASIS Committee
Specification Draft 12 / Public Review Draft 05., July 2012.

[KA11] Mehdi Kargar and Aijun An. Discovering top-k teams of experts with-
/without a leader in social networks. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management,
CIKM ’11, pages 985–994, New York, NY, USA, 2011. ACM.

[KAK16] Ibrahim Kamel, Zaher Al Aghbari, and Kareem Kamel. Smartrecruiter: a
similarity-based team formation algorithm. IJBDI, 3(4):228–238, 2016.

[Kas08] M. Kasunic. A Data Specification for Software Project Performance Mea-
sures: Results of a Collaboration on Performance Measurement. Technical
report. Carnegie Mellon University, Software Engineering Institute, 2008.

[KCHO13] Evgeny Kaganer, Erran Carmel, Rudy Hirschheim, and Timothy Olsen.
Managing the human cloud. MITSloan Management Review, 54(2):23–32,
2013.

[Kea12] Michael Kearns. Experiments in social computation. Commun. ACM,
55(10):56–67, October 2012.

[KG07] Ugur Kuter and Jennifer Golbeck. Sunny: A new algorithm for trust
inference in social networks using probabilistic confidence models. In
Proceedings of the 22Nd National Conference on Artificial Intelligence -
Volume 2, AAAI’07, pages 1377–1382. AAAI Press, 2007.

[KG08] Sarah N. Keung and Nathan Griffiths. Trust in agent societies. chapter
Towards Improved Partner Selection Using Recommendations and Trust,
pages 43–64. Springer-Verlag, Berlin, Heidelberg, 2008.

[KG10] Sarah N. Lim Choi Keung and Nathan Griffiths. Trust and Reputation,
pages 189–224. Springer London, London, 2010.

[KHCK13] Malinda Kapuruge, Jun Han, Alan Colman, and Indika Kumara. Road4saas:
scalable business service-based saas applications. In Proceedings of the 25th
international conference on Advanced Information Systems Engineering,
CAiSE’13, pages 338–352, Berlin, Heidelberg, 2013. Springer-Verlag.

[KK08] Aniket Kittur and Robert E. Kraut. Harnessing the wisdom of crowds in
wikipedia: Quality through coordination. In Proceedings of the 2008 ACM
Conference on Computer Supported Cooperative Work, CSCW ’08, pages
37–46, New York, NY, USA, 2008. ACM.

[KKAH14] Merel Koning, Paulan Korenhof, Gergely Alpár, and Jaap-Henk Hoepman.
The abc of abc: an analysis of attribute-based credentials in the light of
data protection, privacy and identity, 2014.

144

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, September 1999.

[Klu06] Lars Kluver. ICT and Privacy in Europe. Experiences from technol-
ogy assessment of ICT and Privacy in seven different European coun-
tries. Final report October 16, 2006, European Parliamentary Tech-
nology Assessment network (EPTA). Wien, 2006. Online available:
http://epub.oeaw.ac.at/?arp=0x0013038d - Last access: 26.4.2016.

[KPSD11] Roman Khazankin, Harald Psaier, Daniel Schall, and Schahram Dustdar.
Qos-based task scheduling in crowdsourcing environments. In Proceedings of
the 9th international conference on Service-Oriented Computing, ICSOC’11,
pages 297–311, Berlin, Heidelberg, 2011. Springer-Verlag.

[KS11] Nicolas Kaufmann and Thimo Schulze. Worker motivation in crowdsourcing
and human computation. In AAAI workshop on human computation
(HCOMP), 8 August, San Francisco, USA. AAAI Press, 2011.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
eigentrust algorithm for reputation management in p2p networks. In
Proceedings of the 12th International Conference on World Wide Web,
WWW ’03, pages 640–651, New York, NY, USA, 2003. ACM.

[KZA08] Robert Kern, Christian Zirpins, and Sudhir Agarwal. Managing quality of
human-based eservices. In ICSOC Workshops, pages 304–309, 2008.

[Lan01] Marc Langheinrich. Privacy by Design — Principles of Privacy-Aware
Ubiquitous Systems, pages 273–291. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[Law11] Edith Law. Defining (Human) Computation. In Workshop on Crowdsourc-
ing and Human Computation, 2011.

[LCCM09] Cam Tu Phan Le, Frédéric Cuppens, Nora Cuppens, and Patrick Maillé.
Collaborative Computing: Networking, Applications and Worksharing:
4th International Conference, CollaborateCom 2008, Orlando, FL, USA,
November 13-16, 2008, Revised Selected Papers, chapter Evaluating the
Trustworthiness of Contributors in a Collaborative Environment, pages
451–460. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[LCGM10] Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. Ex-
ploring iterative and parallel human computation processes. In Proceedings
of the ACM SIGKDD Workshop on Human Computation, HCOMP ’10,
pages 68–76, New York, NY, USA, 2010. ACM.

[LKD+03] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard
Franck. Web service level agreement (wsla) language specification. IBM
Corporation, pages 815–824, 2003.

145

[LLT09] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of
experts in social networks. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’09, pages 467–476, New York, NY, USA, 2009. ACM.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In Rada Chirkova, Asuman
Dogac, M. Tamer Özsu, and Timos K. Sellis, editors, ICDE, pages 106–115.
IEEE Computer Society, 2007.

[LP13] L. J. Larson-Prior. Parallels in Neural and Human Communication Net-
works, pages 39–49. Springer New York, New York, NY, 2013.

[LSL15] Cheng-Te Li, Man-Kwan Shan, and Shou-De Lin. On team formation
with expertise query in collaborative social networks. Knowl. Inf. Syst.,
42(2):441–463, 2015.

[LSM13] Timothy Lebo, Satya Sahoo, and Deborah McGuinness. PROV-
O: The PROV ontology. W3C recommendation, W3C, April 2013.
http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[LZZ10] Juan Li, Zonghua Zhang, and Weiyi Zhang. Mobitrust: Trust management
system in mobile social computing. In CIT, pages 954–959. IEEE Computer
Society, 2010.

[Mar94] Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD
thesis, 1994.

[MB09] Maria Moloney and Frank Bannister. A privacy control theory for online
environments. In 42st Hawaii International International Conference on
Systems Science (HICSS-42 2009), Proceedings (CD-ROM and online), 5-8
January 2009, Waikoloa, Big Island, HI, USA, pages 1–10, 2009.

[MB12] Patrick Minder and Abraham Bernstein. Crowdlang: programming human
computation systems. Technical report, JAN 2012.

[MBO12] Nikolaos Mavridis, Thirimachos Bourlai, and Dimitri Ognibene. The
human-robot cloud: Situated collective intelligence on demand. In Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER),
2012 IEEE International Conference on, page 360–365. IEEE, IEEE, 2012.

[MCR12] A. Mazza, G. Chicco, and M. Rubino. Multi-objective distribution system
optimization assisted by analytic hierarchy process. In 2012 IEEE Interna-
tional Energy Conference and Exhibition (ENERGYCON), pages 393–400,
Sept 2012.

146

[MEC13] Milan Markovic, Peter Edwards, and David Corsar. Utilising Provenance
to Enhance Social Computation, pages 440–447. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[MEC15] Milan Markovic, Peter Edwards, and David Corsar. SC-PROV: A Prove-
nance Vocabulary for Social Computation, pages 285–287. Springer Inter-
national Publishing, Cham, 2015.

[MGMD+14] Carlos Müller, Antonio M. Gutiérrez, Octavio Martín-Díaz, Manuel Resinas,
Pablo Fernández, and Antonio Ruiz-Cortés. Towards a Formal Specification
of SLAs with Compensations, pages 295–312. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[MH11] W. Michalk and C. Haas. Incentives in service level agreement establishment
the case of economic and social aspects. In 2011 First International
Workshop on Requirements Engineering for Social Computing, pages 30–33,
Aug 2011.

[MKA04] Naresh K. Malhotra, Sung S. Kim, and James Agarwal. Internet users’
information privacy concerns (iuipc): The construct, the scale, and a causal
model. Info. Sys. Research, 15(4):336–355, December 2004.

[MKC+13] Andrew Mao, Ece Kamar, Yiling Chen, Eric Horvitz, Megan E. Schwamb,
Chris J. Lintott, and Arfon M. Smith. Volunteering versus work for pay:
Incentives and tradeoffs in crowdsourcing. In Björn Hartman and Eric
Horvitz, editors, HCOMP. AAAI, 2013.

[MKGD] Maria Maleshkova, Srdjan Komazec, Bostjan Grasic, and Ronald Denaux.
iservice: Human computation through semantic web services.

[MLJ+10] Luc Moreau, Ding Li, Futrelle Joe, Garijo Verdejo Daniel, Groth Paul,
Jewell Mike, Miles Simon, Missier Paolo, Pan Jeff, and Zhao Jun.
Open provenance model (opm) owl specification. Technical report, 2010.
http://openprovenance.org/model/opmo.

[MM13] Paolo Missier and Luc Moreau. PROV-dm: The PROV data model. W3C
recommendation, W3C, April 2013. http://www.w3.org/TR/2013/REC-
prov-dm-20130430/.

[MMDC+07] Carlos Müller, Octavio Martín-Díaz, Antonio Ruiz Cortés, Manuel Resinas,
and Pablo Fernandez. Improving temporal-awareness of ws-agreement. In
ICSOC, pages 193–206, 2007.

[MMH02] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of
trust and reputation for e-businesses. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS’02)-Volume
7 - Volume 7, HICSS ’02, pages 188–, Washington, DC, USA, 2002. IEEE
Computer Society.

147

[MMHJ07] Sara Motahari, Constantine Manikopoulos, Roxanne Hiltz, and Quentin
Jones. Seven privacy worries in ubiquitous social computing. In Proceedings
of the 3rd Symposium on Usable Privacy and Security, SOUPS ’07, pages
171–172, New York, NY, USA, 2007. ACM.

[Mor] Luc Moreau. Provtoolbox. java library to create and convert w3c
prov data model representations. http://lucmoreau.github.io/
ProvToolbox/. Last accessed: 22-4-2017.

[MRKC09] Aleecia M. McDonald, Robert W. Reeder, Patrick Gage Kelley, and Lor-
rie Faith Cranor. A Comparative Study of Online Privacy Policies and
Formats, pages 37–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[MW09] Winter Mason and Duncan J. Watts. Financial incentives and the "per-
formance of crowds". In Proceedings of the ACM SIGKDD Workshop on
Human Computation, HCOMP ’09, pages 77–85, New York, NY, USA,
2009. ACM.

[New10] Mark Newman. Networks: An Introduction. Oxford University Press, Inc.,
New York, NY, USA, 2010.

[OMM] Maxwell Ogden, Karissa Mckelvey, and Mathias Buus Madsen. Dis-
tributed dataset synchronization and versioning. https://github.com/
datprotocol/whitepaper/blob/master/dat-paper.pdf.

[Orm13] Levent V. Orman. Bayesian inference in trust networks. ACM Trans.
Management Inf. Syst., 4(2):7:1–7:21, 2013.

[Owm] Paul Owm. Broken promises of privacy: Responding to the surprising
failure of anonymization. UCLA Law Review, 57(5):1701–1777, August.

[Par07] Data Protection Working Party. Opinion 4/2007 on the concept of personal
data. Brussels, Belgium: European Commission, 2007.

[Par08] Lynne E. Parker. Distributed intelligence: Overview of the field and its
application in multi-robot systems. Journal of Physical Agents, pages 5–14,
2008.

[PDM14] Heather S. Packer, Laura Drăgan, and Luc Moreau. An Auditable Repu-
tation Service for Collective Adaptive Systems, pages 159–184. Springer
International Publishing, Cham, 2014.

[PJN12] Calton Pu, James Joshi, and Surya Nepal, editors. 8th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing, CollaborateCom 2012, Pittsburgh, PA, USA, October 14-17,
2012. ICST / IEEE, 2012.

148

http://lucmoreau.github.io/ProvToolbox/
http://lucmoreau.github.io/ProvToolbox/
https://github.com/datprotocol/whitepaper/blob/master/dat-paper.pdf
https://github.com/datprotocol/whitepaper/blob/master/dat-paper.pdf

[PJS+10] Harald Psaier, Lukasz Juszczyk, Florian Skopik, Daniel Schall, and
Schahram Dustdar. Runtime behavior monitoring and self-adaptation
in service-oriented systems. In Proceedings of the 2010 Fourth IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems, SASO
’10, pages 164–173, Washington,DC,USA, 2010. IEEEComputerSociety.

[PNS11] Jaehong Park, Dang Nguyen, and Ravi S. Sandhu. On data provenance
in group-centric secure collaboration. In 7th International Conference
on Collaborative Computing: Networking, Applications and Worksharing,
CollaborateCom 2011, Orlando, FL, USA, 15-18 October, 2011, pages
221–230, 2011.

[PP11] Aditya Parameswaran and Neoklis Polyzotis. Answering queries using
humans, algorithms and databases. In Conference on Inovative Data
Systems Research (CIDR 2011), pages 160–166, January 2011.

[PSO+16] Dragutin Petkovic, Marc Sosnick-Pérez, Kazunori Okada, Rainer Todten-
hoefer, Shihong Huang, Nidhi Miglani, and Arthur Vigil. Using the random
forest classifier to assess and predict student learning of software engineer-
ing teamwork. In 2016 IEEE Frontiers in Education Conference, FIE 2015,
Eire, PA, USA, October 12-15, 2016, pages 1–7, 2016.

[PSP+17] Thomas Pasquier, Jatinder Singh, Julia Powles, David Eyers, Margo Seltzer,
and Jean Bacon. Data provenance to audit compliance with privacy policy
in the internet of things. Personal and Ubiquitous Computing, Aug 2017.

[PSSD11] H. Psaier, F. Skopik, D. Schall, and S. Dustdar. Resource and agreement
management in dynamic crowdcomputing environments. In Enterprise
Distributed Object Computing Conference (EDOC), 2011 15th IEEE Inter-
national, pages 193–202, Aug 2011.

[QB11] Alexander J. Quinn and Benjamin B. Bederson. Human computation: A
survey and taxonomy of a growing field. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, pages
1403–1412, New York, NY, USA, 2011. ACM.

[RBAD17] M. Riveni, M. J. Baeth, M. S. Aktas, and S. Dustdar. Provenance in
social computing: A case study. In 2017 13th International Conference on
Semantics, Knowledge and Grids (SKG), pages 77–84, Aug 2017.

[Reg16] EU Regulation. Regulation (eu) 2016/679 of the european parliament and
of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/ec (general data protection regulation).
Official Journal of the EC, 119, 2016.

149

[RHVS13] Sarvapali D. Ramchurn, Trung Dong Huynh, Matteo Venanzi, and Bing
Shi. Collabmap: crowdsourcing maps for emergency planning. In Web
Science 2013 (co-located with ECRC), WebSci ’13, Paris, France, May 2-4,
2013, pages 326–335, 2013.

[RKK+11] Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim
Laredo, and Maja Vukovic. An assessment of intrinsic and extrinsic moti-
vation on task performance in crowdsourcing markets. In Lada A. Adamic,
Ricardo A. Baeza-Yates, and Scott Counts, editors, ICWSM. The AAAI
Press, 2011.

[RMM03] Javier Ignacio Carbó Rubiera, José M. Molina, and Jorge Dávila Muro.
Trust management through fuzzy reputation. Int. J. Cooperative Inf. Syst.,
12(1):135–155, 2003.

[RNAD] Mirela Riveni, Tien-Dung Nguyen, Mehmet S. Aktas, and Schahram Dust-
dar. Application of provenance in social computing: A case study. Con-
currency and Computation: Practice and Experience, page e4894. e4894
cpe.4894.

[RND17] Mirela Riveni, Tien-Dung Nguyen, and Schahram Dustdar. Sla-based man-
agement of human-based services in business processes for socio-technical
systems. In Business Process Management Workshops - BPM 2017 In-
ternational Workshops, Barcelona, Spain, September 10-11, 2017, Revised
Papers, pages 361–373, 2017.

[RTD12] Mirela Riveni, Hong Linh Truong, and Schahram Dustdar. A simulation
framework for socially enhanced applications. In Pilar Herrero, Hervé
Panetto, Robert Meersman, and Tharam S. Dillon, editors, OTM Work-
shops, volume 7567 of Lecture Notes in Computer Science, pages 544–553.
Springer, 2012.

[RTD14] Mirela Riveni, Hong Linh Truong, and Schahram Dustdar. On the elasticity
of social compute units. In Advanced Information Systems Engineering -
26th International Conference, CAiSE 2014, Thessaloniki, Greece, June
16-20, 2014. Proceedings, pages 364–378, 2014.

[RTD15] Mirela Riveni, Hong Linh Truong, and Schahram Dustdar. Trust-aware
elastic social compute units. In 2015 IEEE TrustCom/BigDataSE/ISPA,
Helsinki, Finland, August 20-22, 2015, Volume 1, pages 135–142, 2015.

[Sag12] A. B. Sagar. Modeling collaborative task execution in social networks. In
Vidyasagar Potdar and Debajyoti Mukhopadhyay, editors, CUBE, pages
664–669. ACM, 2012.

150

[SB96] Milberg Sandra J. Smith, H. Jeff and Sandra J. Burke. Information privacy:
Measuring individuals’ concerns about organizational practices. MIS Q.,
20(2):167–196, June 1996.

[Sch13a] Daniel Schall. Handbook of Human Computation, chapter Service Oriented
Protocols for Human Computation, pages 551–559. Springer New York,
New York, NY, 2013.

[Sch13b] Frank Schulz. Elasticity in service level agreements. In Systems, Man,
and Cybernetics (SMC), 2013 IEEE International Conference on, pages
4092–4097. IEEE, 2013.

[SD10] Daniel Schall and Schahram Dustdar. Social Informatics: Second Interna-
tional Conference, SocInfo 2010, Laxenburg, Austria, October 27-29, 2010.
Proceedings, chapter Dynamic Context-Sensitive PageRank for Expertise
Mining, pages 160–175. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[SDB10] Daniel Schall, Schahram Dustdar, and M. Brian Blake. Programming
human and software-based web services. IEEE Computer, 43(7):82–85,
2010.

[SDC15] Rick Salay, Fabiano Dalpiaz, and Marsha Chechik. Integrating crowd
intelligence into software. In Proceedings of the Second International
Workshop on CrowdSourcing in Software Engineering, CSI-SE ’15, pages
1–7, Piscataway, NJ, USA, 2015. IEEE Press.

[SFC+17] Saiganesh Swaminathan, Raymond Fok, Fanglin Chen, Ting-Hao (Kenneth)
Huang, Irene Lin, Rohan Jadvani, Walter S. Lasecki, and Jeffrey P. Bigham.
Wearmail: On-the-go access to information in your email with a privacy-
preserving human computation workflow. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology, UIST ’17,
pages 807–815, New York, NY, USA, 2017. ACM.

[SH10] Dafna Shahaf and Eric Horvitz. Generalized task markets for human
and machine computation. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI’10, pages 986–993. AAAI Press,
2010.

[SHS09] Osamuyimen Stewart, Juan M. Huerta, and Melissa Sader. Designing
crowdsourcing community for the enterprise. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, HCOMP ’09, pages 50–53,
New York, NY, USA, 2009. ACM.

[SJB+12] Bikram Sengupta, Anshu Jain, Kamal Bhattacharya, Hong Linh Truong,
and Schahram Dustdar. Who do you call? problem resolution through
social compute units. In Chengfei Liu, Heiko Ludwig, Farouk Toumani,

151

and Qi Yu, editors, ICSOC, volume 7636 of Lecture Notes in Computer
Science, pages 48–62. Springer, 2012.

[SKS12] Thimo Schulze, Simone Krug, and Martin Schader. Workers’ task choice
in crowdsourcing and human computation markets. In Proceedings of the
International Conference on Information Systems, ICIS 2012, Orlando,
Florida, USA, December 16-19, 2012, 2012.

[Sog07] Chris Soghoian. Aol, netflix and the end of open access to research data,
cnet news. http://news.cnet.com/8301-13739_3-9826608-46.
html, Nov., 30, 2007.

[SRTD14] Ognjen Scekic, Mirela Riveni, Hong-Linh Truong, and Schahram Dust-
dar. Social Interaction Analysis for Team Collaboration, pages 1807–1819.
Springer New York, New York, NY, 2014.

[SRTD17] Ognjen Scekic, Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar.
Social Interaction Analysis for Team Collaboration, pages 1–16. Springer
New York, New York, NY, 2017.

[SSD10a] Florian Skopik, Daniel Schall, and Schahram Dustdar. Modeling and
mining of dynamic trust in complex service-oriented systems. Inf. Syst.,
35(7):735–757, 2010.

[SSD10b] Florian Skopik, Daniel Schall, and Schahram Dustdar. Trustworthy interac-
tion balancing in mixed service-oriented systems. In Sung Y. Shin, Sascha
Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung,
editors, SAC, pages 799–806. ACM, 2010.

[SSPD11] Florian Skopik, Daniel Schall, Harald Psaier, and Schahram Dustdar.
Adaptive provisioning of human expertise in service-oriented systems. In
Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11,
pages 1568–1575, New York, NY, USA, 2011. ACM.

[STD08] Daniel Schall, Hong Linh Truong, and Schahram Dustdar. Unifying human
and software services in web-scale collaborations. IEEE Internet Computing,
12(3):62–68, 2008.

[STD13] Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar. Incentives and
rewarding in social computing. Commun. ACM, 56(6):72–82, June 2013.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[SZP15] Isuru Suriarachchi, Quan Zhou, and Beth Plale. Komadu: A capture
and visualization system for scientific data provenance. Journal of Open
Research Software, page p.e4., 3(1) 2015.

152

http://news.cnet.com/8301-13739_3-9826608-46.html
http://news.cnet.com/8301-13739_3-9826608-46.html

[TBA16] Yucel Tas, Mohamed Jehad Baeth, and Mehmet S. Aktas. An approach
to standalone provenance systems for big social provenance data. In 12th
International Conference on Semantics, Knowledge and Grids, SKG 2016,
Beijing, China, August 15-17, 2016, pages 9–16, 2016.

[TD09] Hong-Linh Truong and Schahram Dustdar. Transactions on Petri Nets and
Other Models of Concurrency II: Special Issue on Concurrency in Process-
Aware Information Systems, chapter Online Interaction Analysis Framework
for Ad-Hoc Collaborative Processes in SOA-Based Environments, pages
260–277. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[TDB12] Hong Linh Truong, Schahram Dustdar, and Kamal Bhattacharya. Pro-
gramming hybrid services in the cloud. In Chengfei Liu, Heiko Ludwig,
Farouk Toumani, and Qi Yu, editors, ICSOC, volume 7636 of Lecture Notes
in Computer Science, pages 96–110. Springer, 2012.

[TGS14] Hien To, Gabriel Ghinita, and Cyrus Shahabi. A framework for protecting
worker location privacy in spatial crowdsourcing. Proc. VLDB Endow.,
7(10):919–930, June 2014.

[Toc14] Eran Toch. Crowdsourcing privacy preferences in context-aware applica-
tions. Personal and Ubiquitous Computing, 18(1):129–141, 2014.

[TWH14] Wei-Tek Tsai, Wenjun Wu, and Michael N. Huhns. Cloud-based software
crowdsourcing. IEEE Internet Computing, 18(3):78–83, 2014.

[Urb13] J Urbano. A Situation-aware and Social Computational Trust Model. PhD
thesis, 2013.

[VA05] Luis Von Ahn. Human Computation. PhD thesis, Pittsburgh, PA, USA,
2005. AAI3205378.

[VLL10] Maja Vukovic, Mariana Lopez, and Jim Laredo. Peoplecloud for the globally
integrated enterprise. In Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops, pages 109–114. Springer Berlin Heidelberg, 2010.

[WAW15] Therese L Williams, Nitin Agarwal, and Rolf T Wigand. Protecting private
information: Current attitudes concerning privacy policies. 2015.

[WF05] Molly McLure Wasko and Samer Faraj. Why should i share? examining
social capital and knowledge contribution in electronic networks of practice.
MIS Q., 29(1):35–57, March 2005.

[WGS+13] Wesley Willett, Shiry Ginosar, Avital Steinitz, Björn Hartmann, and
Maneesh Agrawala. Identifying redundancy and exposing provenance in
crowdsourced data analysis. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2198–2206, December 2013.

153

[YKL11] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. A survey of crowd-
sourcing systems. In Privacy, Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social Computing (SocialCom),
2011 IEEE Third International Conference on, pages 766–773. IEEE, 2011.

[YRM08] H. Q. Yu and S. Reiff-Marganiec. A method for automated web service
selection. In 2008 IEEE Congress on Services - Part I, pages 513–520, July
2008.

[ZF11] Justin Zhan and Xing Fang. Trust maximization in social networks. In
John Salerno, ShanchiehJay Yang, Dana Nau, and Sun-Ki Chai, editors,
Social Computing, Behavioral-Cultural Modeling and Prediction, volume
6589 of Lecture Notes in Computer Science, pages 205–211. Springer Berlin
Heidelberg, 2011.

[ZKJG11] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, and Simon
Gibbs. Towards an elastic application model for augmenting the computing
capabilities of mobile devices with cloud computing. Mob. Netw. Appl.,
16(3):270–284, June 2011.

[ZMM00] Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collaborative
reputation mechanisms for electronic marketplaces. pages 371–388, 2000.

[ZSTD15] Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram
Dustdar. Service-Oriented Computing - ICSOC 2014 Workshops: WESOA;
SeMaPS, RMSOC, KASA, ISC, FOR-MOVES, CCSA and Satellite Events,
Paris, France, November 3-6, 2014, Revised Selected Papers, chapter Virtu-
alizing Communication for Hybrid and Diversity-Aware Collective Adaptive
Systems, pages 56–67. Springer International Publishing, Cham, 2015.

154

Appendix A

155

156

Appendix B

157

158

Appendix C

159

A2. Please enter your username on the platform you work/request work
on. If you are registered on multiple platforms you can enter your
username and the name of the platform (separated by a comma) on
each separate line.

Note: if you use a platform with a full name policy please write your
Name and Surname, if you have a username only, please enter only
your username (not your Name and Surname)..

We require this information for the purpose of avoiding survey
misuses, we are just going to check your answer against the platform
and not use the data you provide for anything else.

Username (or Name and Surname) and the corresponding platform name on
which you work/request work

Another username and platform name

A third username and platform name

A3. How much are you concerned with the personal information that you
are obliged to share so as to register on these platforms?

Not concerned

Somewhat concerned

Very concerned

A4. How much are you concerned with the personal information that you
need to share so as to create/build your profile and verify your identity
on these platforms?

Not concerned

Somewhat concerned

Very concerned

A5. Which of the following personal information would you prefer to
seclude/hide/not share with the platform that you use (please specify
if there is some other information that you are asked to provide and
would not want to share) .

Name and Surname

E-mail address

Phone number

Birthdate

Your photograph

Location information/(Home)Mailing address

Utility bills (sometimes used to verify address)

160

A government issued ID (Passport, Personal ID, Drivers license)

Bank account information

None of the above

Other

Other

A6. Are you concerned that your information will be misused (by the
/platform that you are registered with)?

I trust the platform

Somewhat concerned

Very concerned

A7. Have you ever been concerned about what storage the platforms that
you work on utilize for storing your personal data? For example, have
you ever thought about the following questions: do platforms store
data on their own servers; do they use Cloud providers to store your
data, in which case your data may be shared with a third-party; are
they storing data offshore, in which case different privacy protecting
laws exist etc.

I admit I have never thought about these things and frankly I am not concerned.

I admit I have never thought about these things but I became concerned now.

I have thought about these things and am concerned.

A8. Have you ever provided false information to one of these
services/platforms, when asked for personal information?

Yes

No

A9. If you have ever provided false information, why did you do so?

They required information I could not provide (*marked questions are sometimes a bad idea...)

I did not feel comfortable providing this information (Why do they always need a phone number...)

I did so to create an additional account

My answer was "No" on the previous question.

Other

Other

161

A10. If you have provided false information on these plaforms, please
mention one information type.

A11. If you would want to work anonymously online, what would be the
reasons for it? Please give a short answer. Leave it blank if not
working anonymously doesn't bother you.

A12. Please state your agreement with the following statements (by also
selecting your level of familiarity with the topics):

I strongly
agree I agree

I somewhat
agree I disagree

I do not
want to
answer

Companies/Platforms than enable and provide human computation
should be more transparent about how they use my personal

information.

Human computation Companies/Platforms should clearly state
under which country/state law they operate.

I am concerned about the privacy regulations/laws of the country
in which i reside and work.

Research and industry should increase their efforts in enabling
users to have more control over how their data is used.

Research and industry should increase their efforts in enabling
tools and mechanisms that will enable users to own their own data,
in contrast to current standards where companies own users' data.

I answered but
I need more
information
on the topic.

I answered being
knowledgeable
enough on the

topic.

Companies/Platforms than enable and provide human computation should be more transparent
about how they use my personal information.

Human computation Companies/Platforms should clearly state under which country/state law
they operate.

I am concerned about the privacy regulations/laws of the country in which i reside and work.

Research and industry should increase their efforts in enabling users to have more control over
how their data is used.

Research and industry should increase their efforts in enabling tools and mechanisms that will
enable users to own their own data, in contrast to current standards where companies own

users' data.

162

A13. Have you read the data protection law or an online privacy protection
law of the country in which you work or provide you services for (or
any other regulation for protecting online personal data)?

Yes

No

A14. Have you read the EU Data Protection Directive? Select "No answer"
if you do not live in the EU.

Yes

No

A15. Do you usually read the Privacy Policies on the platforms that you
register online?

Yes

No

A16. Have you read the consent form of this survey? If not please go to the
link provided under the survey title at the top of this page, read it and
then answer this question :).

Yes

No

Section B: The following questions are for statistical purpose only

B1. Please add your current country of residence.

B2. Please add your nationality/citizenship if different from above (do not
write your ethnic belonging!)

163

B3. Please select your highest level of education.

Primary School

High-School

Undergraduate studies/BSc/BA

MSc/MA/Specialty training

Dr/PhD

Postdoctoral researcher

Other

Other

B4. What would you say is your IT knowledge level and experience:

Expert/Professional

Medium level (good IT skills but not expert/professional)

Knowledge to get around online

Thank you for participating in our survey!

Powered by TCPDF (www.tcpdf.org)

164

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Social Compute Units Fundamentals and Motivation
	Social Compute Units: Basics

	Problem Statement and Research Questions
	Contributions
	Publications
	Publication List

	Thesis Structure

	State of The Art
	Human Computation: Categories and Definitions
	Social Compute Units

	Service Oriented Computing
	Human Provided-Services

	Frameworks, Models and Platforms
	Resource Management
	Metrics
	Resource Ranking and Selection Algorithms
	Individual Resource Selection
	Team/Collective Formation

	Runtime Resource Provisioning, Management and Adaptation Techniques
	Elasticity

	Incentive Mechanisms and Pricing
	Trust and Reputation
	Quality of Service and Service Level Agreements

	Elastic Social Compute Units: Provisioning and Management
	SCU Preliminaries
	ICU and SCU Definitions

	Motivation Scenario
	On the Elasticity of Social Compute Units
	Definition and Principles of Elasticity
	ICU/SCU Formal Notation
	Metrics: Notation and Definitions
	SCU Execution Model
	SCU States
	SCU in Execution
	Elasticity APIs

	Elastic SCU Provisioning Platform

	SCU Runtime Management: Elastic Adaptation Mechanisms
	Programming an Elasticity Strategy: A semi-automatic adaptation strategy with human-in-the-loop decision making
	Experiment: Executing an Elasticity Strategy
	Utilizing an Analytic Hierarchy Process (AHP) model for ranking of ICUs
	Implementation of Algorithmn 3.1 and results

	Related Work

	Trust in Social Computing: Metrics, Model and Algorithms
	Background and Motivation
	Trust for Social collectives
	Motivation Scenario and Challenges
	Observations and Challenges

	A Socio-Technical Trust Model for Social Compute Units
	Modeling Trusted Individual Compute Units
	Metrics: Notation and Definitions
	Socio-Technical Trust (STT) Model
	Context

	Modeling Trusted Social Compute Units

	Elastic Adaptation Strategies with Trust: Algorithms and Experiments
	Experiments

	Incentive Mechanisms with Trust
	Related Work
	Trust in Social Computing
	Agent-based Trust

	Team Formation
	Team Formation based on trust and multiple interaction types
	Problem Statement
	Model
	Expert role connected to different types of interaction links-Discussion

	Programming team formation
	Experiments
	Evaluation with synthetic data
	Evaluation with real data

	Related Work

	The Application of Service Level Agreements for Social Collectives
	Motivation Scenario
	Language translation
	On the need for SLAs supporting human computation

	Computational-Environment Setting
	Modeling SLAs for SCUs
	Human-centric properties and metrics
	Penalties
	Enforcing Privacy with SLAs
	Examples

	SLAs and Elasticity
	Programming SLA Parameter Changes at Runtime
	Implementation of a Proof of Concept prototype and Experiments

	RelatedWork

	Provenance in Human Computation
	Motivation
	Provenance data in social-computing management-mechanisms
	Individual Task-assignment and Formation of collectives/Social Compute Units
	Adaptation mechanisms for Social Compute Units
	Misbehavior prevention and False negatives in Misbehavior detection
	Incentive mechanisms
	Compensations

	Challenges

	SCU Environment and Provenance
	SCU Environment
	Modeling Provenance for SCUs

	Experiments
	Setup
	Dataset
	Experiment types and Results
	Provenance Visualization
	Komadu experiments

	Provenance-based Inferred Metrics for Social Computing
	Privacy Implications: A Discussion
	Related Work

	Privacy in Human Computation
	Personal Data on Human Computation Systems
	Collected data
	Reasons for collecting personal data
	Task-Assignment and Formation of collectives
	Management Mechanisms
	Quality of Service
	Misbehavior prevention
	Incentive Mechanisms
	Payments

	Privacy Risks
	User Privacy Policy Awareness
	Lack of Transparency in Privacy Policies
	Profiling
	Lack of Control
	Lack of Ownership
	Lack of Security

	Study
	Method: Survey Design and Distribution
	Results and Analysis
	Demographics
	Privacy Awareness

	Suggestions
	Recommendations
	Research directions
	Transparency with rules or SLAs
	Privacy preserving workflows
	Payment methods
	Location
	Evaluation methods
	Raising people awareness about privacy

	Related Work

	Conclusions
	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C

