
Governance of Cloud Computing
Infrastructures using Knowledge

Management
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

DI DI Michael Maurer
Matrikelnummer 0125473

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr. Schahram
Dustdar)

(Prof. Dr. Rizos Sakellariou)

Wien, 26.04.2012
(DI DI Michael Maurer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

DI DI Michael Maurer
Guglgasse 6/2/608, 1110 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Official words

The work in this thesis has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT08-018 and by COST-Action IC0804 on Energy Efficiency in Large Scale
Distributed Systems.

Motivation

After my second master studies I knew that I was able to learn about and understand the relevant
fields in mathematics and computer science. However, only learning about these fields felt no
longer enough. I wanted to go to the edge of knowledge and extend it – at least a tiny bit. That
is why I went for PhD. This “bit” that on my way I pushed the edge a little further is subsumed
in this thesis.

“Methodology”

After such a long journey, there are a lot of people I am thankful for. Among them are my advisor
Schahram Dustdar, who gave me the freedom, advice, and encouragement I needed to pursue
my thesis, and my project leader Ivona Brandic, who was always there to support me and helped
me to develop ideas and put me in contact with many interesting people. One of them was Rizos
Sakellariou, my second reviewer, who helped me through his constructive comments to realize
several research ideas. He made my stay at the University of Manchester a very pleasant and
fruitful research experience. Others were Jean-Marc Pierson, Georges Da Costa, and Damien
Borgetto, who I visited at the Institut de Recherche en Informatique de Toulouse (IRIT). During
this collaboration I could not only brush up my French and enjoy the French “art de vivre”, but
also learn how exciting, intriguing and fun research can be.

For the time I spent in Vienna I want to thank my colleagues at the Distributed Systems
Group, and foremost those working with me on my project: Vincent Chimaobi Emeakaroha,
who with me was the first to start on this project; Ivan Brešković, who made this group much
more interactive and lively; and Toni Mastelić and Dražen Lučanin, who brought new ideas and
a fresh breeze to the group.

Yet a different thank goes to my Scout group and the kids in my group, who give me a
different perspective on life apart from science and work, and help to balance it out.

Last but not least I am thankful for the steady support of my family and friends, all foremost
my mother Elisabeth Riegler, who has always encouraged me to pursue my interests, but also

iii

my sister Valerie Riegler and my brother Christian Löw for the endless chats we had and gaming
nights we spent together.

Michael Maurer

Abstract

Cloud computing has gained a lot of momentum in recent years. Its vision is to offer computing
power as a utility implying sheerly unlimited and instantly provisioned resources for customers.
However, there are a lot of obstacles towards these goals. This thesis tackles two of them related
to Service Level Agreements (SLAs): adaptive SLA mapping, and resource- and energy-efficient
SLA enactment.

A Cloud provider who wants to offer computing resources signs an SLA with the customer.
In this SLA the provider states the Quality of Service (QoS) she will guarantee, the price the
customer will have to pay, and the penalty the provider will have to pay in case she breaches
the QoS guarantees. The customer has his own SLA with the QoS guarantees he wants, and the
prices he is willing to pay. Matching these bids and asks is especially hard as non-standardized
varying definitions of computing resources in electronic markets cause a large variety of different
SLAs. Moreover, these SLAs are typically bound to internal business processes and, therefore,
cannot be altered easily.

In this thesis we use SLA templates and SLA mappings that allow providers and customers
to map parameters of their SLAs to each other without changing the original ones. From these
mappings we learn user preferences and are able to generate and adapt public SLA templates
that reflect the users’ needs and help to standardize SLAs. We present a cost-benefit analysis of
this approach and evaluate various learning and adaptation strategies.

Furthermore, after bids and asks have been matched and the SLA has been signed, the Cloud
provider has to keep up to her promises to avoid SLA penalties – despite all the dynamism
of workload changes. On the other hand, also under-utilization of resources and high energy
wastage are big cost factors in large-scale distributed systems. Consequently, a Cloud provider
aims at minimizing SLA violations, maximizing resource utilization, and minimizing energy
wastage. However, this is not straightforward as Cloud computing infrastructures consist of
many differently configurable elements as applications, virtual machines (VMs), physical ma-
chines (PMs), and also other Cloud providers, to which applications can be outsourced. This
leads to a plethora of possible reconfiguration and reallocation actions of these elements and the
resources they are assigned to. Many of the resulting problems are typically NP-hard.

This thesis uses autonomic computing and knowledge management to govern cloud com-
puting infrastructures. We find and structure possible reactive and proactive actions that prevent
SLA violations, increase resource utilization and lower energy usage. First, we focus on VM re-
source (re-)configuration and investigate several knowledge management (KM) techniques such
as case based reasoning, default logic, situation calculus, or a rule-based approach. We design
and implement a KM-technique agnostic simulation engine to evaluate the suitability of these

v

approaches. The rule-based approach is found most profitable in terms of the quality of the rec-
ommended actions, as well as its scalability. However, parameters were identified, on which the
performance of the rule-based approach largely depends. Therefore, a self-adapting rule-based
approach is introduced that autonomically adapts to changing workload volatility. Furthermore,
we tackle VM migrations and PM power management. We introduce migration models for VMs
and power management models for PMs, show that this management problem is an instance
of the NP-hard binary integer programming problem, and apply and evaluate several heuristics
reducing energy consumption. Doing this, it also proven that the VM (re-)configurations do not
only increase resource, but also energy efficiency. Finally, we show a possible extension of the
KM approach for Cloud federations.

Kurzfassung

Cloud Computing hat in den letzten Jahren reges Interesse erfahren. Die Vision von Cloud Com-
puting, Kunden Rechenleistung als Dienstleistung wie Wasser, Strom oder Gas anzubieten, im-
pliziert das Vorhandensein von schier unlimitierten und augenblicklich verfügbaren Rechenre-
sourcen. Jedoch gibt es noch viele Hindernisse auf dem Weg dieses Ziel zu erreichen. Diese
Dissertation nimmt zwei davon in Angriff, die im Bezug zu Service Level Agreements (deutsch
etwa Dienstgütevereinbarung, Abk. SLA) stehen: adaptive SLA Mappings (deutsch etwa SLA
Zuordnungen) und resource- und energieeffizientes SLA enactement (deutsch etwa das Einhal-
ten von SLAs).

Ein Anbieter von Cloud Computing, der seine Rechenresourcen anbieten möchte, unter-
zeichnet einen Vertrag, ein sogenanntes SLA, mit seinem Kunden. In diesem SLA spezifiziert
der Anbieter die Gütekriterien (englisch Quality of Service, Abk. QoS), die er einhalten möchte,
den Preis, den der Kunde bezahlen muss, sowie die Strafe, die der Anbieter bezahlen muss, falls
er die QoS-Garantien bricht. Der Kunde hat sein eigenes SLA mit QoS-Garantien, die er sucht,
und mit den Preisen, die er zu zahlen bereit ist. Das Zusammenbringen von Angebot und Nach-
frage ist speziell deshalb schwierig, weil nicht standardisierte, sich häufig ändernde Definitionen
von Rechenresourcen in elektronischen Märkten eine große Vielfalt an verschiedenen SLAs ver-
ursachen. Des Weiteren sind diese SLAs meistens in internen Geschäftsprozessen verankert und
können daher nicht leicht verändert werden.

Wir verwenden in dieser Dissertation SLA-Vorlagen (englisch SLA templates) und SLA
Mappings, die es Anbietern und Kunden erlauben sich Parameter ihrer SLAs gegenseitig zu-
zuordnen ohne die originalen SLAs verändern zu müssen. Von diesen Mappings lernen wir die
Präferenzen der Anwender. Dadurch sind wir in der Lage öffentliche SLA-Vorlagen zu generie-
ren und zu adaptieren, die die Anwenderpräferenzen widerspiegeln und die uns helfen SLAs zu
standardisieren. Wir präsentieren eine Kosten-Nutzenrechnung von diesem Ansatz und evaluie-
ren verschiedene Lern- und Adaptionsstrategien.

Nachdem sich Angebot und Nachfrage gefunden haben und das SLA unterzeichnet worden
ist, muss der Cloud Computing-Anbieter seine Versprechen trotz dynamischer Auslastungsver-
änderungen einhalten um SLA-Strafzahlungen zu vermeiden. Andererseits sind auch Resour-
ceunterauslastung und die dadurch entstehende Energieverschwendung große Kostenfaktoren
in großen verteilen Systemen (englisch large-scale distributed systems). Daher haben Cloud
Computing-Anbieter das Ziel SLA-Verletzungen zu minimieren, die Resourceauslatung zu ma-
ximieren und Energieverschwendung zu minimieren. Allerdings ist dies nicht einfach, da Cloud
Computing-Infrastrukturen aus vielen verschieden konfigurierbaren Elementen bestehen. Die-
se Elemente sind Applikationen, virtuelle Maschinen (VM), physische Maschinen (Server, Abk.

vii

PM) und andere Cloud-Anbieter, zu denen man Applikationen outsourcen kann. Dies führt zu ei-
ner unüberschaubaren Anzahl an möglichen Rekonfigurations- und Reallokationssaktionen von
diesen Elementen und den Resourcen, denen sie zugeordnet sind. Viele der entstehenden Pro-
bleme sind typischerweise NP-schwer.

Diese Dissertation benutzt Autonomic Computing und Wissensmanagement (englisch know-
ledge management, Abk. KM) um Cloud Computing-Infrastrukturen zu verwalten und zu steu-
ern. Wir finden und strukturieren mögliche reaktive und proaktive Aktionen, die SLA-Verle-
tzungen vermeiden, die Resourcenauslastung erhöhen und den Energieverbrauch reduzieren.
Zuerst konzentrieren wir uns auf die (Re-)konfiguration von VM-Resourcen und betrachten eini-
ge Wissensmanagementmethoden wie Case Based Reasoning (deutsch Fallbasiertes Schließen),
Default Logic, Situationskalkül (englisch situation calculus) und einen regelbasierten Ansatz.
Wir entwerfen und implementieren eine KM-agnostische Simulationsumgebung, mit der wir die
Eignung dieser Ansätze evaluieren. Der regelbasierte Ansatz schneidet am besten ab, sowohl
was die Qualität der empfohlenen Aktionen, als auch seine Skalierbarkeit (englisch scalability)
betrifft. Allerdings wurden auch Parameter identifiziert, die die Leistung des regelbasierten An-
satzes stark beeinflussen. Deswegen wurde ein selbstadaptiver regelbasierter Ansatz entwickelt,
der sich schwankender Auslastungsvolatilität (englisch workload volatility) autonom anpasst.
Weiters beschreiben wir Lösungen und Modelle für das Migrieren von VMs und das PM-Power-
Management. Wir zeigen, dass dieses Managementproblem eine Instanz des NP-schweren bina-
ry integer programming-Problems ist und evaluieren mehrere Heuristiken, die den Energiever-
brauch reduzieren. Dabei zeigen wir auch, dass die (Re-)konfigurationen der VMs nicht nur die
Resource-, sondern auch die Energieeffizienz steigern. Schließlich präsentieren wir eine mögli-
che Erweiterung der KM-Lösung für Cloud-Föderationen (englisch Cloud federations).

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Methodology . 3
1.3 Research Questions . 3
1.4 Scientific Contributions . 5
1.5 Organization of the Thesis . 6

2 Conceptual Model of Adaptive SLA Mapping and Autonomic SLA Enactment 9
2.1 Outline of the FoSII Project Architecture . 9
2.2 Autonomic Loop and Cloud Computing . 10
2.3 Escalation Levels – Structuring the Problem 14

3 SLA Generation and Adaptive SLA Mapping 19
3.1 Outline . 19
3.2 Use Case . 21
3.3 Public SLA Template Life Cycle . 22
3.4 Adaptation Methods . 23
3.5 Utility and Cost Model . 24
3.6 Simulation Environment . 26
3.7 Experimental Results and Analysis . 30

4 Self-adaptive and Resource-Efficient SLA Enactment for Cloud Computing In-
frastructures Using Knowledge Management 35
4.1 Methods of Knowledge Management for SLA Management 35
4.2 Speculative Approach . 45
4.3 Case Based Reasoning . 45
4.4 Rule-based Approach . 47
4.5 Self-adapting the Rule-based Approach . 51

5 Energy-efficient SLA Enactment in Cloud Computing Infrastructures 57
5.1 Formalization of the IaaS Management Problem 57
5.2 Formulation as a Binary Integer Programming Problem 59
5.3 Consequences of the NP-hardness . 63
5.4 Energy-Efficient SLA Enactment . 65

ix

6 Evaluation 71
6.1 Simulation Engine and Workload Generation 71
6.2 Performance Indicators . 73
6.3 Evaluation and Comparison of CBR and Rules 74
6.4 In-depth Evaluation of the Rule-based Approach Using Synthetic Data 78
6.5 Applying and Evaluating a Bioinformatics Workflow to the Rule-based Approach 81
6.6 Evaluation of the Self-adapting Rule-based Approach 85
6.7 Energy-efficient and SLA-Aware Management of IaaS Clouds 91

7 Knowledge Management for Cloud Federations 97
7.1 Federated Cloud Management Architecture 97
7.2 Self-adaptable Inter-Cloud Management Architecture 99

8 State of the Art 107
8.1 SLA Generation and Adaptive SLA Mapping 107
8.2 Resource-Efficient SLA Enactment . 109
8.3 Knowledge Management and Autonomic Computing in Clouds and Related Fields111
8.4 Self-Adaptive Algorithms for Cloud Computing Infrastructures 113
8.5 Energy-Efficient Cloud Computing Infrastructures 114
8.6 Cloud Federations . 115
8.7 Holistic Cloud Management Projects . 116

9 Conclusion 119

Bibliography 123

A Curriculum Vitae 141

x

Earlier Publications

Most work in this thesis has been published at conferences, in journals or as book chapters.
These core papers build the foundation of this thesis. They are listed here, but will generally not
be explicitly referenced again. Parts of these papers are contained in verbatim. Please refer to
Appendix A for a full publication list of the author of this thesis.

Refereed Publications in Conference Proceedings

1. Michael Maurer, Ivona Brandic, Rizos Sakellariou. Enacting SLAs in Clouds Using
Rules. Euro-Par 2011, Bordeaux, France, August 29 - September 2, 2011. [151]

2. Michael Maurer, Ivona Brandic and Rizos Sakellariou. Simulating Autonomic SLA En-
actment in Clouds using Case Based Reasoning. ServiceWave 2010, Ghent, Belgium,
December 13-15 2010. [150]

3. Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Jörn Altmann. Cost and Ben-
efit of the SLA Mapping Approach for Defining Standardized Goods in Cloud Comput-
ing Markets. International Conference on Utility and Cloud Computing (UCC 2010) in
conjunction with the International Conference on Advanced Computing (ICoAC 2010),
December 14-16, 2010, Chennai, India. [155]

4. Michael Maurer, Ivan Breskovic, Vincent C. Emeakaroha, Ivona Brandic. Revealing the
MAPE Loop for the Autonomic Management of Cloud Infrastructures. Workshop on
Management of Cloud Systems (MoCS 2011), in association with the IEEE Symposium
on Computers and Communications (ISCC 2011), 28 June 2011, Kerkyra (Corfu) Greece.
[148]

5. Vincent Chimaobi Emeakaroha*, Pawel Labaj*, Michael Maurer*, Ivona Brandic and
David P. Kreil. Optimizing Bioinformatics Workflows for Data Analysis Using Cloud
Management Techniques. The 6th Workshop on Workflows in Support of Large-Scale
Science (WORKS11), in conjunction with Supercomputing 2011, Seattle, November 12-
18, 2011. (* contributed equally) [80]

6. Michael Maurer, Ivona Brandic, Vincent C. Emeakaroha, Schahram Dustdar. Towards
Knowledge Management in Self-adaptable Clouds. IEEE 2010 Fourth International Work-
shop of Software Engineering for Adaptive Service-Oriented Systems (SEASS ’10), in
conjunction with ICWS 2010 and SCC 2010, Miami, Florida, USA, July 5-10, 2010. [149]

xi

7. Gabor Kecskemeti, Michael Maurer, Ivona Brandic, Attila Kertesz, Zsolt Nemeth and
Schahram Dustdar. Facilitating self-adaptable Inter-Cloud management. 20th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing PDP
2012. Munich, Germany, 15-17 February, 2012. [106]

8. Damien Borgetto*, Michael Maurer*, Georges Da Costa, Jean-Marc Pierson, and Ivona
Brandic. Energy-efficient and SLA-aware managament of iaas clouds. In Third interna-
tional conference on future energy systems (e-Energy 2012), Madrid, Spain, May 2012.
(accepted). (* contributed equally) [49]

9. Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Self-adaptive and resource effi-
cient SLA enactment for cloud computing infrastructures. In 5th International Confer-
ence on Cloud Computing (IEEE Cloud 2012) (submitted), Honolulu, HI, USA, June
2012. [153]

Refereed Publications in Journals

1. Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Joern Altmann. Cost-Benefit
Analysis of an SLA Mapping Approach for Defining Standardized Cloud Computing
Goods. Future Generation Computer Systems, 2011, doi:10.1016/j.future.2011.05.023.
[156]

2. Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting SLAs in Clouds using
Knowledge Management. Future Generation Computer Systems (submitted), 2012. [152]

Book Chapters

1. Michael Maurer, Vincent C. Emeakaroha, and Ivona Brandic. Economic analysis of the
SLA mapping approach for cloud computing goods. In Achieving Federated and Self-
Manageable Cloud Infrastructures: Theory and Practice. IGI Global, 2012. [154]

xii

CHAPTER 1
Introduction

Cloud computing is an emerging IT paradigm for large-scale distributed systems. Its vision is
to provide computing power as a utility, like gas, electricity or water [62]. According to the
U.S. National Institute of Standards and Technology (NIST), Cloud computing is “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider interac-
tion” [159]. This implies that computing power should be available to users at any time and at
the right amount they desire. It also implies that Cloud computing providers need to guarantee
specific non-functional requirements to the user, as response time, throughput, or storage. These
Quality of Service (QoS) goals are subsumed and specified in so-called Service Level Agree-
ments (SLAs), which also contain penalties the provider has to pay in case of violations of these
guarantees.

Providing computing power as a utility can be achieved by offering differing entities as a
service, such as software, platforms, or infrastructure. These different delivery models of Cloud
computing are therefore called software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS). Prominent Cloud providers are Google Mail [19], Google
Docs [18], or salesforce.com [10] for SaaS; Google App Engine [7], Windows Azure [9] for
Paas; and Amazon EC2 [3] for IaaS.

Cloud computing can also be classified into several deployment models, which are public,
private, hybrid and community Clouds. According to [159] public Clouds are “provisioned for
open use by the general public”, which may be enterprises, academic or governmental institu-
tions, or individuals. Data is stored in the datacenter of Cloud providers. Private Clouds are
run inside organizations. This deployment model is especially attractive for institutions which
already have computing infrastructures, but do not want to store their data in data centers, which
they cannot fully control. Community Clouds are “provisioned for exclusive use by a specific
community of consumers from organizations that have shared concerns”. Finally, hybrid Clouds
represent a combination of at least two distinct Cloud infrastructures that “remain unique en-
tities, but are bound together”, and can exchange data and applications among them. Cloud

1

federations [61] are a typical scenario for hybrid Clouds.
Cloud computing relies upon several state-of-the-art technologies. Among them are virtu-

alization [39], monitoring [37, 158], scheduling [132, 87], work on clusters and grids [59, 42],
theory of electronic markets [29], and optimization theory [129]. Despite the existence of these
technologies Armbrust et al. [35] list in their famous technical report “Above the Clouds: A
Berkeley View of Cloud Computing” top 10 obstacles hindering the adoption of Cloud comput-
ing making it the state-of-the art computing paradigm. These obstacles include the availability
of the service, data lock-in, data confidentiality and auditability, data transfer bottlenecks, per-
formance unpredictability, scalable storage, bugs in large distributed systems, and quick scaling.

In this thesis we will tackle quick scaling, and performance unpredictability by enacting
SLAs. Our work on SLA generation and adaptive SLA mapping also helps to mitigate data
lock-in, as this technique helps customers to change to Cloud providers using different SLAs.
Furthermore, we want to add two problems that have not been dealt with in [35]: resource and
energy efficiency. This is especially crucial, because ICT currently makes up for 2% of the
worldwide CO2 production [2,83]. Even in the state-of-the-art data centers, the massive amount
of physical machines, i.e., servers, leads to high power consumption and carbon footprint of the
data center, as well as high operation costs [103].

1.1 Problem Statement

Before a user can benefit from using a service offered by a Cloud provider, an SLA has to
be signed. An SLA comprises elements such as names of trading parties, names of SLA at-
tributes, measurement metrics, and attribute values [184]. Despite the existence of SLAs, buyers
and sellers of computing resources face the problem of varying definitions of computing re-
sources in Cloud computing markets. Computing resources are described through different non-
standardized attributes, e.g., CPU cores, execution time, inbound bandwidth, outbound band-
width, and processor type [182]. Sellers use them to describe their supply of resources. Buyers
use them to describe their demand for resources. As a consequence, a large variety of different
SLAs emerges. Even though buyers and sellers might have similar needs, a different description
of these needs impedes successful matchmaking between offers from sellers and requirements
from buyers. The probability to find such a match becomes even lower the more different re-
source types there are [184], and thus due to the non-standardization of Cloud computing goods
successful matchmaking becomes very unlikely. The probability of matching offers and re-
quirements is called market liquidity. Both Cloud computing providers and users have a high
incentive to increase this liquidity.

Eventually, after the SLA has been signed, the Cloud provider commits herself to enact it.
For the underlying infrastructure this means that it has to react to dynamic load changes, rang-
ing from peak performance to utilization gaps. This brings up two issues: on the one hand,
the management of a Cloud computing infrastructure has to guarantee the pre-established SLAs
despite all the dynamism of workload changes. The QoS goals contained in the SLAs are called
Service Level Objectives (SLOs). Informally, they can be stated as “storage should be at least
1000 GB”, “bandwidth should be at least 10 Mbit/s” or “response time should be less than 2 s”.
On the other hand, a Cloud provider aims at efficiently utilizing resources and reducing resource

2

wastage. Only allocating what is really needed is a crucial question to reducing wasted en-
ergy consumption. As stated above, energy consumption of a data center is a non negligible
part of expenses for data centers [103]. Thus, Cloud providers aim at concurrently achieving
the following conflicting goals: minimizing SLA violations, maximizing resource utilization,
and minimizing energy consumption. However, this is not straightforward as Cloud computing
infrastructures consist of many differently configurable elements such as applications, virtual
machines (VMs), physical machines (PMs), and also other Cloud providers, to which applica-
tions can be outsourced. This leads to a plethora of possible reconfiguration and reallocation
actions of these elements and the resources they are assigned to. Many of the resulting prob-
lems are typically NP-hard, and scalable heuristics have to be found that solve these problems
in an acceptably small amount of time. In more detail, dynamic resource allocation and energy
consumption has to be seen in the context of (i) the configuration of virtual machines, (ii) the
deployment of applications on virtual machines, (iii) the deployment of virtual machines on
physical machines, (iv) the power state (on/off/sleep) of physical machines, and (v) the possibil-
ity to outsource computation to other Cloud providers. The interplay of these different levels is
a crucial aspect of this research problem.

1.2 Methodology

This work is embedded in the Foundations of Self-governing ICT infrastructures (FoSII) project
[17]. The FoSII project aims at developing an infrastructure for autonomic SLA management
and enforcement. For managing SLAs and bridging the gap between differently defined SLAs,
we apply the method of SLA mappings in this thesis. SLA mapping has been first proposed and
implemented in [51]. It allows to define mappings, i.e., translations from one SLA document to
another one that uses different SLA parameter names. However, issuing these SLA mappings is
quite costly. Thus, we apply several learning strategies to generate public SLA templates that
reflect the users’ needs and help to reduce costs of generating SLA mappings.

Besides the already implemented monitoring framework [79] that takes care of monitor-
ing the state of the Cloud infrastructure and its applications, the knowledge management (KM)
system presented in this thesis represents another essential building block of the FoSII infras-
tructure. [52] proposes an approach to manage Cloud infrastructures by means of Autonomic
Computing, which in a control loop monitors (M) Cloud parameters, analyzes (A) them, plans
(P) actions and executes (E) them; the full cycle is known as MAPE [102]. According to [100]
a MAPE-K loop stores knowledge (K) required for decision-making in a knowledge base (KB)
that is accessed by the individual phases. We investigate several KM techniques and apply dif-
ferent heuristics to solve the resource allocation and resource management problems for energy-
efficient and resource-efficient SLA enactment.

1.3 Research Questions

The discussion in the previous sections raise the following five research questions.

3

Research question 1:
How can one define standardized Cloud computing SLAs?

Cloud providers and customers meet in Cloud markets, which are electronic markets that trade
Cloud computing goods. Since each of them uses their own definition of Cloud computing
resources, e.g., “CPU cores”, “Cores of one CPU”, or “Computing power”, there exist no stan-
dardized Cloud computing SLAs. This prevents customers from finding relevant providers, and
vice versa, and aids vendor or data lock-in.

Research question 2:
What are the possibilities and different levels of allocating resources and reactive actions to

prevent SLA violations in Cloud computing infrastructures?

There exist many configurable, tunable and manageable entities in Cloud computing infrastruc-
tures, which are heterogeneous applications, VMs, PMs, and other Cloud providers. The first
task is to identify means of adjusting these elements. The second task consists of structuring
the found adaptation actions into subproblems that form a consistent model of Cloud computing
infrastructures. Ideally, using a “divide and conquer” strategy, one should be able to solve these
subproblems sequentially without a high inter-dependability of found solutions.

Research question 3:
How can one autonomically and efficiently (in quality, energy and time) allocate and reallocate
resources for VMs and PMs in order to proactively prevent SLA violations? Consequently, how

can one increase energy efficiency in Cloud computing infrastructures?

The adoption of Cloud computing as a state-of-the-art computing paradigm hinges upon perceiv-
ing it as a reliable means of computing. This and fluctuating customers and workloads require
high-quality resource allocation and re-allocation solutions in a short amount of time for a large
and very large number of applications, VMs and PMs. As expenses on energy form a large
part of expenses of Cloud computing providers, an energy efficient implementation of the SLA
enactment is crucial for a future generation technology.

Research question 4:
What knowledge management technique, i.e., a technique of how stored information should be

used, is most suitable to be used in an autonomic control loop governing Cloud computing
infrastructures? How does it interact with the other phases of the autonomic control loop?

When extending the autonomic loop with knowledge management, it is important to determine
which technique is most appropriate to govern Cloud computing infrastructures. Related to
research question 3, a proposed technique should of course be highly scalable. It is judged by
the quality of the decisions it recommends. Furthermore, it has to be determined in what part
of the MAPE cycle the knowledge management technique should be employed, and when to
interact with it.

Research question 5:
How can the found approach be extended for the use of Cloud federations and hybrid Clouds?

4

Knowledge management will not only be of concern within a Cloud computing infrastructure,
but also among several collaborating Clouds. It should be analyzed, in which parts of a Cloud
federation knowledge management should be deployed, and how it could be utilized to achieve
similar goals for the whole federation as well as for individual Clouds.

1.4 Scientific Contributions

Following the research questions posed in Section 1.3, the following contributions to the state
of the art are shown in this thesis.

Contribution 1:
An adaptive SLA mapping approach has been introduced to bridge the gap between differently

defined SLAs, which, however, describe the same or similar Cloud computing goods.

A cost and benefit analysis of different methods for standardizing SLAs has been carried out.
The standardization is based on previous SLA mappings carried out by consumers on a Cloud
computing market. This contribution has been originally published in [155,156] and is presented
in Chapter 3.

Contribution 2:
Possible reallocation actions for applications running on a Cloud computing infrastructure
have been determined. They have been structured into so called escalation levels, into which

they have been placed according to their locality and complexity.

The hierarchical model allows for a sequential solution of the allocations and reallocation prob-
lems. However, some of the resulting subproblems are still NP-hard (cf. Contribution 3). This
contribution has been originally published in [151] and is presented in Section 2.3.

Contribution 3:
A self-adaptive rule-based KM approach for VM reconfiguration, VM-PM allocation and

reallocation, and PM power management has been designed, implemented, and evaluated.

The approach prevents almost all SLA violations, increases the utilization of all resources, and
attains both goals by a low number of VM reallocation actions. The approach is able to self-
adapt its most important parameters based on the workload of an application and on utility, and
is highly scalable. Using several heuristics for VM-PM allocation and PM power management,
and introducing energy models for VM migration, and PM power management, it is shown
via simulations that this approach can heavily reduce consumed energy by Cloud computing
infrastructures. This contribution has been originally published in [151,49,153] and is presented
in Sections 4.5, Chapter 5 and Sections 6.6, 6.7.

Contribution 4:
Several possible KM techniques to be used for Cloud computing infrastructures have been

studied. Two candidates have been designed, implemented and evaluated with the help of a KM
technique agnostic simulation engine developed and designed for this purpose.

5

In more detail, a preliminary analysis of the following KM techniques has been conducted: rules,
default logic, situation calculus, and case based reasoning. From this analysis, we have found
case based reasoning and a rule-based approach to be most promising. We designed, imple-
mented and evaluated both approaches. Especially the rule-based approach achieves low SLA
violations rates, high resource utilization, and achieves this by few time- and energy-consuming
reallocation actions. This contribution has been originally published in [149, 150, 151] and is
presented in Sections 4.1, 4.3, 4.4, and 6.3, 6.4, 6.5.

Contribution 5:
An extension of the rule-base approach for Cloud federations has been presented. It has been

shown how rules can be formulated to govern Cloud federations for meeting SLAs
resource-efficiently.

Three architectures have been proposed and analyzed for placing KM systems. A rule-based
system has been chosen as KM technique based on experience in Contributions 3-4. Additional
elements of the Cloud federation architecture have been formalized, and the feasibility of this
approach has been shown by pointing out possible sample rules. This contribution has been
originally published in [106] and is presented in Chapter 7.

1.5 Organization of the Thesis

The rest of this thesis is structured as follows.

• Chapter 2 gives necessary background information about the FoSII project, the adaptive
SLA mapping approach, autonomic computing and the different phases of its control loop.
Furthermore, it enumerates possible adaptation actions and structures them into so-called
escalation levels. This chapter is mostly based on work from [148].

• Chapter 3 presents the methodology of the adaptive SLA mapping approach and its eval-
uation. This chapter is based on [156].

• Chapter 4 deals with resource-efficient SLA enactment and knowledge management. It
compares different methods of knowledge management (based on [149]), and presents the
design and implementation of an approach using case based reasoning (based on [150])
and rules (based on [151]). Finally, it exposes an approach that self-adapts the rule-based
one (based on [153]).

• Chapter 5 tackles the energy efficiency aspect of the SLA enactment approaches. Section
5.4 is based on [49].

• Chapter 6 presents evaluation results for Chapters 4 and 5, and describes the developed
KM-technique agnostic simulation engine and the workload generation mechanisms. This
chapter is based on the evaluation results of [150, 151, 80, 153].

• Chapter 7 extends the knowledge management approach for the use of Cloud federations.
This chapter is based on [106].

6

• Chapter 8 describes the state of the art and presents the enhancements this thesis has made
to it.

• Chapter 9 concludes this thesis, talks about its limitations, gives a critical reflection and
an outlook into possible future work.

7

CHAPTER 2
Conceptual Model of Adaptive SLA

Mapping and Autonomic SLA
Enactment

This chapter highlights the foundations of this thesis. We explain autonomic computing, the
project architecture, and enumerate and structure reactive and proactive actions for SLA enact-
ment.

2.1 Outline of the FoSII Project Architecture

Cloud computing represents a novel paradigm for on-demand provisioning of ICT infrastruc-
tures, services, and applications. Thereby, resources are provisioned in predefined quality con-
sidering various functional and non-functional guarantees. Key concepts distinguishing Cloud
Computing from other paradigms for the realization of large-scale distributed systems include
(i) unlimited scalability of resources, (ii) sophisticated Service Level Agreement (SLA) man-
agement and generation, giving the customer guarantees on various non-functional aspects, and
(iii) extensive use of virtualization technologies [62]. Many of the key concepts cope with con-
tradicting goals, as, for example, unlimited scalability vs. energy efficiency. Scalability, i.e.,
providing the desired amount of resources at the right time, usually causes wastage of energy
due to idle states or standby modes of devices and infrastructures; they still consume energy,
although being unused. Autonomic Computing seems to be one of the promising solutions for
the management of Cloud infrastructures by optimizing various (and maybe contradicting) goals
as, for example, efficient resource usage, SLA management, virtualization and at the same time
minimizing human interaction with the system and energy consumption.

Autonomic systems require high-level guidance from humans, but autonomically decide
which steps need to be done to keep the system stable [109]. Such systems constantly adapt
themselves to changing environmental conditions. Similar to biological systems, e.g., human

9

body, autonomic systems maintain their state and adjust operations considering changing com-
ponents, workload, external conditions, hardware, and software failures. Autonomic comput-
ing has served as a promising concept for the infrastructure management in various areas, e.g.,
services, Grids, and SLA management [100, 174]. The autonomic control loop is known as
MAPE [102], where (M) stands for monitoring the managed elements, (A) for their analysis,
(P) for planning actions, and (E) for their execution. The MAPE-K loop stores knowledge (K)
required for decision-making in a knowledge base (KB).

However, existing autonomic frameworks, e.g., for Grids or SLA management, cannot easily
be applied to Cloud computing infrastructures due to various reasons. For example, due to the
virtualization layer, monitoring tools usually have to be configured on demand, distinguishing
application based monitoring and resource based monitoring [81]. Energy efficiency requires
novel techniques for the management of resources [150], while SLA generation requires ad-
vanced concepts for the management of the heterogeneous user base [155]. Thus, the traditional
MAPE loop has to be revealed and tailored to Cloud specific solutions.

In the Foundations of Self-Governing ICT Infrastructures (FoSII) project, we develop novel
techniques and methods for self-governing ICT infrastructures, and consequently apply the
developed infrastructures for self-managed Clouds [17]. One of the core research issues of
the FoSII project is the development of an appropriate autonomic loop suitable for the self-
management of Clouds. Thus, this thesis proposes an extended MAPE-K loop, called A-MAPE-
K, including an Adaptation phase added to the traditional MAPE-K phases. The adaptation
phase is necessary as a balance to the virtualization layer. During the Adaptation (A) phase,
Cloud infrastructures, as well as applications to be deployed on the Clouds, are tailored and
adapted. Moreover, we present novel concepts for the implementation of the Monitoring and
Knowledge Management phases considering virtualization overhead.

2.2 Autonomic Loop and Cloud Computing

This section explains the foundations of autonomic computing, and discusses a motivating sce-
nario for the development of the A-MAPE-K loop. Furthermore, it presents the SLA lifecycle,
which should be supported by the autonomic loop, and finally it discusses the conceptional de-
sign of the A-MAPE-K loop.

Autonomic Computing

The vision of Autonomic Computing was described in [111]. It presents the idea of a managed
element that is controlled by an autonomic manager in a MAPE loop. Furthermore, the authors
describe properties of self-management using autonomic computing, which are referred to as
self-* properties. These properties are:

self-configuration The configuration of managed elements follows high-level polices. Installing,
configuring and integrating systems should no longer be done manually.

10

Table 2.1: Sample SLA parameter objectives.

SLA Parameter Value

Incoming Bandwidth (IB) > 10 Mbit/s

Outgoing Bandwidth (OB) > 12 Mbit/s

Storage (St) > 1024 GB

Availability (Av) ≥ 99%

Clock speed (Cs) ≥ 1000 MHz

self-optimization The autonomic manager tries to ameliorate the managed elements constantly.
The autonomic manager tunes parameters automatically and adapts the managed elements
to current circumstances.

self-healing The autonomic manager automatically detects, diagnoses, and repairs problems of
their managed elements.

self-protection The autonomic manager defends against attacks, e.g., DDoS attacks, automati-
cally.

In [52] Brandic proposes to use principles of autonomic computing to manage Cloud ser-
vices. We will discuss an extension of this proposal to manage Cloud computing infrastructures
in the following.

Motivating Scenario

Table 2.1 depicts an SLA used to exemplify A-MAPE-K phases. We assume an IaaS scenario,
where SLAs specify guaranteed resources suitable for the application execution in a VM. The
column SLA Parameter defines typical Service Level Objectives (SLOs) including incoming
bandwidth (IB), outgoing bandwidth (OB), storage (St), availability (Av) and clock speed (Cs).
The column Value specifies a concrete value with the according relational operator. SLAs are
generated between the Cloud provider and user before the deployment of the application. The
following section will discuss the lifecycle necessary for the establishment and management of
SLAs between the user and the provider.

SLA Lifecycle

We assume a typical Cloud use case where potential Cloud users deploy applications in an IaaS
manner, as explained next. The service provider registers resources (i.e., VMs) to particular
databases containing public SLA templates. Thereafter, Cloud users can look up Cloud services
that they want to use for the deployment of applications. Similar to the provider, the Cloud
user also has an SLA template utilized for his private business processes. We assume that the
private SLA template cannot be changed, since it could also be part of some other local business
processes and has usually to comply with different legal and security guidelines. If matching

11

SLA templates are found, the SLA contract can be negotiated and established and the application
can be deployed and executed.

Once the applications are deployed, the execution should be done in an autonomic way,
minimizing user interactions with the system, optimizing energy consumption, and preventing
violations of established SLAs. Resource management requires adequate monitoring techniques,
which are used for application based SLA monitoring and deciding whether an SLA is violated
or not. This is, however, far from trivial. Furthermore, in order to prevent SLA violations,
knowledge management techniques are necessary. They are used to determine if applications can
be migrated and virtual machines (VMs) and physical machines (PMs) (re-)configured, migrated
or switched off/on on demand in order to prevent SLA violations.

A-MAPE-K Loop Design

This section presents how the aforementioned SLA lifecycle can be realized using the autonomic
loop. We distinguish between system set up time and application runtime. During system set
up time the applications and the infrastructure are tailored and adapted. Once the applications
are deployed, we consider monitoring, knowledge management and execution phases during the
application runtime. In this section, in particular, we focus on the adaptation, monitoring, and
knowledge management phases, as shown in Figure 2.1.

Planning

Analysis

Monitoring

Execution

In
fr

as
tr

u
ct

u
re

 R
es

ou
rc

esActuator

Sensor
RT

Sensor
Host

Knowledge .
.
.

A
p

p
.

1
A

p
p

.
n

Control loop

Knowledge access

Input sensor values

Output sensor values

Run time

System Set up

FOSII Infrastructure

Traditional MAPE-K
phases

A-MAPE-K Phases

Adaptation Phase

SLA
mapping

SLA template A

SLA template B

Adaptation

1

1

2
3 2 Monitoring Phase

3 Knowledge
Management Phase

Markets Markets Markets

Run-time

Host

Figure 2.1: FoSII Infrastructure Overview

12

Adaptation As shown in Figure 2.1, part 1, the adaptation phase comprises all necessary steps
to be done before successful deployment and start of the application. This includes SLA
contract establishment and tailoring of the monitoring systems for the particular applica-
tion. During this phase it has to be ensured that private templates of the provider and con-
sumers match publicly available templates. However, public and private templates may
differ. A typical mismatch between templates would be between different measurement
units of attributes, as, for example, for the SLO clock speed (see sample SLA parame-
ter objectives, Table 2.1), or missing attributes. Therefore, a mechanism is required for
the automatic adaptation between different templates. Adaptation can include handling of
missing SLA parameters, inconsistencies between attributes and translation between dif-
ferent attributes. More complex adaptations would include automatic service aggregation,
including third party services, if, for example, the clock speed attribute is completely miss-
ing in the public template, but required in the private template. A third party provider (e.g.,
a computer hardware reseller) could be integrated to deliver information about the clock
speed attribute. Possible machine-readable formulations of SLAs (expressed in XML) are
the WSLA [108] and the WS-Agreement [32] format.

Monitoring Clouds face the problem of SLA parameters required by an application usually
differing from the parameters measured by the monitoring tools. A typical application
based SLA parameter is system availability, as depicted in Table 2.1. Current monitoring
systems (e.g., ganglia [146]) facilitate monitoring only of low-level system resources,
such as system up time and down time. Thus, availability has to be calculated based
on those low-level metrics. To achieve that, the monitoring phase should comprise two
core components, namely a host monitor and a run-time monitor (see Figure 2.1, part 2).
The former is responsible for monitoring low-level resource metrics, e.g., system up time
and down time directly delivered by the measurement tools (e.g., ganglia), whereas the
latter is responsible for metric mapping, e.g., mapping of system up time and down time
to system availability and consequently for the monitoring of SLA agreements. Another
example for VM parameters retrieved by direct measurements would be free_disk or
packets_sent in comparison to the SLA parameters that we are more interested in:
storage and bandwidth. This is achieved by the highly scalable framework LoM2HiS [79].
The monitoring framework of the FoSII architecture is not part of this thesis. More detail
on it is also provided in [81].

Knowledge Management The term knowledge management in this thesis means intelligent us-
age of measured data from the monitoring phase for the decision making process to satisfy
SLAs while optimizing resource usage and consequently energy efficiency and minimiz-
ing user interactions with the system. In our approach, this includes not only decision
making out of current data, i.e., suggesting actions to be executed, but also improving the
quality of decisions by keeping track of the success or failure of previous decisions, i.e.,
learning. Since the KM system uses monitoring information and directly recommends ac-
tions to prevent SLA violations and improve energy efficiency, we combine analysis and
planning phases with the knowledge to the new Knowledge Management Phase (see part
3, Figure 2.1).

13

2.3 Escalation Levels – Structuring the Problem

This section presents a methodology of dividing the problem of resource-efficient and energy-
efficient SLA enactment in Cloud computing infrastructures into smaller subproblems using a
hierarchical approach. This section demonstrates which actions can be executed on what level
to achieve SLA adherence and efficient resource allocation for Cloud infrastructures.

In general, we can think of the following reallocation actions:

1. for individual applications:

a) Increase incoming bandwidth share by x%.

b) Decrease incoming bandwidth share by x%.

c) Increase outgoing bandwidth share by x%.

d) Decrease outgoing bandwidth share by x%.

e) Increase memory by x%.

f) Decrease memory by x%.

g) Add allocated storage by x%.

h) Remove allocated storage by x%.

i) Increase CPU share by x%.

j) Decrease CPU share by x%.

k) Outsource (move application) to other cloud.

l) Insource (accept application) from other cloud.

m) Migrate application to different VM.

2. for VMs:

a) Increase incoming bandwidth share by x%.

b) Decrease incoming bandwidth share by x%.

c) Increase outgoing bandwidth share by x%.

d) Decrease outgoing bandwidth share by x%.

e) Increase memory by x%.

f) Decrease memory by x%.

g) Add allocated storage by x%.

h) Remove allocated storage by x%.

i) Increase CPU share by x%.

j) Decrease CPU share by x%.

k) Outsource (move VM) to other cloud.

l) Insource (accept VM) from other cloud.

14

m) Migrate VM to different PM.

3. for physical machines (computing nodes):

a) Add x computing nodes

b) Remove x computing nodes

4. Do nothing.

These actions are then grouped into so called escalation levels that are defined in Table
2.2. The idea is that every problem that occurs should be solved on the lowest escalation level.
Only if this is not possible, the problem is tried to be solved on the next level, and again, if
this fails, on the next one, and so on. The levels are ordered in a way such that lower levels
offer faster and more local solutions than higher ones. Escalation level 0 is where no action
should be executed. It is important to know when to do nothing, since every reallocation action
is time- and energy consuming. In the following, however, we will consider the escalation
levels, where actions are executed. The first escalation level (“change VM configuration”) works
locally on a PM and tries to change the amount of storage or memory, e.g., that is allocated to
the VM from the PM resources. Then, migrating applications (escalation level 2) is more light-
weight than migrating VMs (escalation level 3) and turning PMs on/off (escalation level 4).
Already for escalation levels 2-4 the whole system state has to be taken into account to find an
optimal solution. The problem stemming from escalation level 3 alone can be formulated into a
Binary Integer Programming (BIP) problem, which is known to be NP-hard [105]. The proof is
presented in Section 5.2. The last escalation level has least locality and greatest complexity, since
the capacity of other Cloud infrastructures have to be taken into account, too, and negotiations
have to be started with them as well.

0. Do nothing.

1. Change VM configuration.

2. Migrate applications from one VM to another.

3. Migrate one VM from one PM to another or create new VM on appropriate PM.

4. Turn on / off PM.

5. Outsource to other Cloud provider.

Table 2.2: Escalation levels

Also the rule-based approach benefits from this hierarchical action level model, because it
provides a salience concept for contradicting rules. Without this concept it would be troublesome
to determine which of the actions, e.g., “Power on additional PM with extra-storage and migrate
VM to this PM”, “Increase storage for VM by 10%” or “Migrate application to another VM with
more storage” should be executed, if a certain threshold for allocated storage has been exceeded.

15

Figure 2.2 visualizes the escalation levels from Table 2.2 in the context of Infrastructure as a
Service (IaaS) before and after actions are executed. Figure 2.2a shows applications App1 and
App2 deployed on VM1 that is itself deployed on PM1, whereas App3 runs on VM2 running
on PM2. Figure 2.2b shows example actions for all five escalation levels. The legend numbers
correspond to the respective numbering of the escalation levels.

App 1 App 2 App 3

VM1 VM2

PM1 PM2

(a) Before action execution

App 1 App 2 App 3

VM1 VM2

PM1 PM2

(5)

PM3(4)

(3)

(2)

(1) (1)

(b) After action execution

Figure 2.2: Actions used in 5 escalation levels: before and after action execution

• Escalation level 1: At first, the autonomic manager tries to change the VM configuration.
Actions (1) show VM1 being up-sized and VM2 being down-sized.

• Escalation level 2: If the attempt to increase a certain resource for a VM in escalation
level 1 fails, because some resource cannot be increased anymore due to the constraints of
the PM hosting the VM, in level 2 the autonomic manager tries to migrate the application
to another larger VM that fulfills the required specifications from level 1. So if, e.g.,
provided storage needs to be increased from 500 to 800GB, but only 200 GB are available
on the respective VM, then the application has to be migrated to a VM that has at least the
same resources as the current one plus the remaining 100GB of storage. Action (2) shows
the re-deployment of App2 to VM2. Due to possible confinements of some applications to
certain VMs, e.g., a user deployed several applications that need to work together on one
VM, this escalation might be skipped in some scenarios.

• Escalation level 3: If there is no appropriate VM available in level 2, in level 3 the auto-
nomic manager tries to create a new VM on an appropriate PM or migrate the VM to a
PM that has enough available resources. Action (3) shows the re-deployment of VM2 to
PM1.

• Escalation level 4: Again, if there is no appropriate PM available in level 3, the autonomic
manager suggests turning on a new PM (or turning it off if the last VM was emigrated from
this PM) in level 4. Action (4) shows powering on a new PM (PM3).

• Escalation level 5: Finally, the last escalation level 5 tries to outsource the application
to another Cloud provider as explained, e.g., in the Reservoir project [185]. Action (5)
outsources App3 to another Cloud provider.

16

The proposed KM approaches in Chapter 4 will present a solution for escalation levels 0 and
1, whereas the solutions presented in Chapter 5 will present solutions for escalation levels 3 and
4. Finally, Chapter 7 presents a KM concept for escalation level 5. Thus, this thesis tackles all
the presented escalation levels except for escalation level 2. In Chapters 4-6 we will assume that
one application resides on exactly one VM. Under this assumption escalation level 2 becomes
obsolete, because VMs can be reconfigured (escalation level 1) or migrated (escalation level 3)
if necessary.

17

CHAPTER 3
SLA Generation and Adaptive SLA

Mapping

This chapter will describe the SLA mapping approach, the lifecycle of a public SLA template,
and three adaptation methods to change the public template. Furthermore, this chapter will
introduce a utility and a cost model to evaluate the adaptation approaches in an emulation envi-
ronment.

3.1 Outline

In order to facilitate SLA creation and SLA management, SLA templates have been introduced.
SLA templates represent popular SLA formats. They comprise elements such as names of trad-
ing parties, names of SLA attributes, measurement metrics, and attribute values [184].

Despite the existence of SLAs, buyers and sellers of computing resources face the problem
of varying definitions of computing resources in Cloud computing markets. Computing re-
sources are described through different non-standardized attributes, e.g., CPU cores, execution
time, inbound bandwidth, outbound bandwidth, and processor type [182]. Sellers use them to
describe their supply of resources. Buyers use them to describe their demand for resources. As
a consequence, a large variety of different SLAs exists in the market. The success of matching
offers from sellers and bids from buyers becomes very unlikely, i.e., the market liquidity (the
likelihood of matching offers and bids) becomes very low [184].

Approaches that tackle this plethora of SLA attributes include the use of standardized SLA
templates for a specific consumer base [3, 7], downloadable predefined provider-specific SLA
templates [4], and the use of ontologies [168, 75]. These approaches clearly define SLA tem-
plates and require users to agree a priori on predefined requirements. These SLA templates are
static meaning that they do not change nor adapt over time.

Consequently, the existing approaches for the specification of SLA templates cannot easily
deal with demand changes. Demand changes of users are caused through different factors (e.g.,

19

changing market conditions). For example, the emergence of multi-core architectures in com-
puting resources required the inclusion of the new attribute “number of cores”, which was not
present in an SLA template a couple of years ago. The existing approaches for the specification
of SLA templates involve heavy user-interactions to adapt existing SLA templates to demand
changes.

In this chapter, we apply adaptive SLA mapping, a new, semi-automatic approach that can
react to changing market conditions [184]. This approach adapts public SLA templates, which
are used in the Cloud market, based on SLA mappings. SLA mappings, which have been defined
by users based on their needs, bridge the differences between existing public SLA templates and
the private SLA template, i.e., the SLA template of the user. In our context private templates do
not necessarily imply that they are inaccessible to others, but the word “private” is used to differ-
entiate it from the “public” template of the (public) registry. So, all consumers’ and providers’
templates are called “private”, whereas the registry’s template is called “public”. Since a user
cannot easily change the private SLA template due to internal or legal organizational require-
ments, an SLA mapping is a convenient workaround.

Our adaptive SLA mapping approach can use different adaptation methods. The benefit of
using an adaptation method is decreased by some cost for the user. Costs are only incurred, if a
user has to define a new SLA mapping to a public SLA template due to its adaptation. Within
this chapter, we investigate these costs. In particular, we investigate how public SLA templates
can be adapted to the demand of Cloud users and how the costs and benefits differ with respect
to the public SLA template adaptation method used.

After introducing a reference adaption method for our analysis, we compare two additional
adaptation methods which differ in the heuristics applied. The heuristics have been introduced
in order to find a balance between the benefit of having a public SLA template that is identical to
most of the private SLA templates and the cost of creating new SLA mappings and new public
SLA templates. As the metrics for assessing the quality of the adaptation method, we define the
overall system net utility of all users. The net utility considers the benefit of having the same
attribute and attribute name in the public SLA template as in the private SLA template, as well
as the cost of defining a new SLA attribute mapping.

The benefits of the adaptive SLA mapping approach for market participants are threefold.
Firstly, traders can keep their private templates, which are required for other business processes.
Secondly, based on their submitted mappings of private SLA templates to public SLA templates,
they contribute to the evolution of the market’s public SLA templates, reflecting all traders’
needs. Thirdly, if a set of new products is introduced to the market, our approach can be applied
to find a set of new public SLA templates. All these benefits result in satisfied users, who
continue to use the market, therefore increasing liquidity in the Cloud market. However, these
benefits come with some cost for the user. Whenever a public SLA template has been adapted,
the users of this template have to re-define their SLA mappings.

The four contributions of this chapter are: (1) the definition of three adaptation methods for
adapting public SLA templates to the needs of users; (2) the investigation of conditions under
which SLA templates should be adapted; (3) the formalization of measures, i.e., utility and cost,
to assess SLA adaptations and SLA adaptation methods; and (4) the introduction of an emulation
approach for the defined use cases.

20

3.2 Use Case

This section presents a use case for adaptive SLA mapping.

Figure 3.1: Use case of SLA mapping.

At the beginning the registry administrator inserts the initial SLA templates into particular
databases (step 0, DBs of public SLA templates, Figure 3.1). As the next step, since resources
can be exposed as services using typical Cloud deployment technologies (i.e., SaaS/PaaS/IaaS),
we assume that the service provider of Figure 3.1 registers his resources, e.g., infrastructure,
software, platforms, to the mentioned databases (step 1, DBs of public SLA templates, Figure
3.1). If some differences between his resources, i.e., his private SLA templates, and the public
templates exist, the provider defines SLA mappings, which can transform the private template
into the public template and vice versa (step 2, Figure 3.1). Non-technical experts as, e.g.,
business experts, can easily create their mappings with Web Interfaces or DSLs to define SLA
mappings in the simple form “My private template parameter number of CPUs” translates to
“Public template parameter CPU cores”. Then, XSLTs can automatically be generated out of
this information. The generation and management of SLA mappings, which is performed with
VieSLAF, is explained in detail in [51].

In step 3 of Figure 3.1, Cloud users can look up Cloud services that they want to use in their
workflow. Looking for public templates (steps 1 and 3) is not affected (slowed down) by the
number of issued mappings to the public template, because users still look for the original public
template. The figure exemplifies a business process (i.e., workflow) for medical treatments [50].
It includes various interactions with human beings, e.g., the task of getting a second opinion on
a diagnosis, as well as an interaction with different infrastructure services. Some of these tasks,
e.g., the reconstruction of 2-dimensional SPECT images to 3-dimensional SPECT images, can
be outsourced to the Cloud [50]. Thereby, we assume that the private SLA template (representing
the task) cannot be changed, since it is also part of some other local business processes and has
to comply with different legal guidelines for electronic processing of medical data. Therefore,

21

in case the user decides to outsource a task and discovers differences between the private SLA
template and the public SLA template, the user defines an SLA mapping. In general, the SLA
mapping describes the differences between the two SLA templates (step 4). A typical mapping
is the mapping of an attribute name to another attribute name (e.g., number of CPUs to cores) or
the inclusion of a new SLA attribute (e.g., parallel programming models) into the SLA template.
Concerns like patient confidentiality can be enforced by the SLA compliance model proposed
in [53].

The public SLA templates are stored in searchable repositories using SQL and non-SQL-
based databases (e.g., HadoopDB). The SLA mappings, which have been provided by users and
providers to the registry administrator, are evaluated after certain time periods, in order to adapt
the public SLA templates to the needs of the users. Then, the adapted public SLA templates
replace the existing public SLA templates in the repository, constituting our novel approach of
adaptive SLA mapping.

The adaptation method, which adapts the public SLA templates, does this in a way such
that the new public SLA templates represent user needs better than the old SLA templates (step
5). The adaptation of attributes, attribute names, and attribute values cannot only replace SLA
templates but also create new versions and branches of public SLA templates (step 6). A new
branch of a public SLA template can be created, if specialization needs to be captured (e.g.,
a medical SLA template can be substituted by more specialized templates on medical imaging
and surgery support). The creation of new branches has been more thoroughly examined in
[54]. The definition of different versions of a particular public SLA template occurs, if different
attribute combinations in the templates are used. Figure 3.1 shows n template versions in the
bioinformatics domain.

3.3 Public SLA Template Life Cycle

To illustrate the life cycle of public SLA templates, Figure 3.2 shows a short example first.

A
B
C

A'
B'
C''

Iteration 2

A'
B'
C'

A''
B''
C''

A'
B'
C'' Iteration 1

Private SLA templates

user
b

user
c

user
a

Figure 3.2: SLA mapping process.

Initially, the SLA template registry only holds the initial public SLA template T0. In iteration
1, all users define mappings from their private templates to T0. Since the attribute names of the

22

public SLA template (A, B, C) and the attribute names of each user differ, all users have to create
3 attribute mappings. Based on these mappings, the new version T1 of the public template is
generated (according to the adaptation method used), containing the attribute names A’, B’, C”.

Since the public SLA template has changed, users need to change their mappings as well
(iteration 2). Consequently, user a only needs one attribute mapping, user b needs two attribute
mappings, and user c does not need to issue any attribute mapping, since the public template
is completely identical to her private template. This example shows how our adaptive SLA
mapping approach adapts a public SLA template to the needs of users. In addition to this, since
adapted public SLA templates represent the need of market participants, it is most likely that
new requests of users need less attribute mappings, reducing the cost for these users.

The formalized public SLA template life cycle, which consists of five steps, is shown in
Figure 3.3.

Step 1:
Initial

Template

Step 2:
Consumer
Mappings

Step 4:
Adapt Template
and Publish It

Step 5:
Final

Template

Step 3:
Learn

Consumer
Needs

Figure 3.3: Formalized public SLA template life cycle.

An initial template is created in the beginning of the life cycle (step 1, Figure 3.3). After-
wards, consumers perform SLA mappings to their private SLA templates (step 2). Based on
their needs, inferred from these mappings (step 3), and the predefined adaptation method, the
public SLA template is adapted (step 4). Assuming that the demand of market participants does
not change, a final template is generated (step 5). If the demand has changed during a fixed time
period (i.e., new tasks have to be executed or new users joined the marketplace), the process
continues with step 2. In practice, the time between two iterations could correspond to a time
period of one week, e.g., but can be set to any value depending on the volatility of the market.
During that time new SLA mappings are solicited from users (i.e., consumers and providers).

3.4 Adaptation Methods

This section introduces the utility and cost model for assessing SLA adaptation approaches.
The adaptation methods determine for every attribute name of the public SLA template sep-

arately, whether the current attribute name should be adapted or not. In this chapter, we investi-
gate three adaptation methods. The first adaptation method is the maximum method (which has
been applied in the example shown in Figure 3.2). The remaining two adaptation methods apply
heuristics, in order to find a balance between benefit and cost.

Maximum Method

Applying this method, the SLA attribute name, which has the highest number of attribute name
mappings, is selected (maximum candidate). The selected attribute name will become the next
attribute name of the next public SLA template.

23

Example: If we assume that all attribute names have the same count, this method would
select any of the four possible attribute names randomly. If a public SLA template already exists,
the method will choose the attribute name that is currently used in the public SLA template.

Threshold Method

In order to increase the requirements for selecting the maximum candidate, this method intro-
duces a threshold value. If an attribute name is used more than this threshold (which can be
adapted) and has the highest count, then this attribute name will be selected. If more than one
attribute name is above the threshold and they have the same count, the method proceeds as
described for the maximum method. If none is above the required threshold, then the method
sticks to the currently used attribute name. Note, throughout the examples in this chapter, we
fix the threshold to 60%. A smaller threshold makes this method more similar to the maximum
method. A threshold of 0% would make this method identical to the maximum method. A
greater threshold makes changes in the SLA attribute name more unlikely and very similar to
the static approach that does not change SLA templates at all.

Example: Assuming an example in which none of the attribute names has a mapping per-
centage above 60% and all counts are equal, the threshold method sticks to the attribute name
that is currently used in the public SLA template.

Maximum-Percentage-Change Method

This method is divided into two steps. In the first step, the attribute name is chosen according to
the maximum method.

In the second step, which comprises τ iterations, attribute names will be changed, only if
the percentage difference between the highest count attribute name and the currently selected
attribute name exceeds a threshold. The threshold σT is set to 15% within this chapter. A low
threshold leads to more mappings, whereas a high threshold leads on average to fewer mappings.
After τ iterations (e.g., τ = 10), the method re-starts with executing the first step. This allows
slighter changes to take effect.

Example: Let us suppose the mapping count resulted in attribute nameA′ having the highest
count. By applying the maximum method, A′ is selected. In the next iteration, the number of
mappings for each attribute name has changed. Attribute name A accounted for 10%, A′ for
28%, A′′ for 32%, and A′′′ for 30% of all mappings. Assuming a threshold of 15%, the chosen
attribute does not change. The percentage difference between attribute nameA′ and the attribute
name A′′ with the highest count is only 32/28− 1.0 = 14.3%.

3.5 Utility and Cost Model

Since the aim of this chapter is to assess the benefit and the cost of using the adaptive SLA
mapping approach for finding the optimal standardized goods in a Cloud market, we define a
utility and cost model. At its core, the model defines the utility function and the cost function.
The utility function and the cost function, which take attributes of the private SLA template of

24

the customer and the attributes of the public SLA template as input variables, help to quantify
the benefit and the cost.

The model assumes an increase in benefit, if an attribute (or attribute name or attribute
value) of both templates is identical. This is motivated by the fact that the Cloud resource
traded is identical to the need of the buyer (or, in the other case, the provisioned resource of the
provider) and, therefore, no inefficiency through resource over-provisioning occurs. The model
also captures the effort (i.e., cost) of changing an SLA mapping. The cost is only incurred, if the
user needs to change her SLA mapping because of a change in the public SLA template.

To formally introduce these functions, we introduce some definitions. The set of SLA at-
tributes is defined as Tvar. As an example, we set Tvar = {α, β}, where α represents Number
of Cores in one CPU and β represents Amount of CPU Time (Note, α and β could also represent
attribute values). All possible attribute names that a user can map to a π ∈ Tvar are denoted as
V ar(π). Within this example, we set V ar(α) = {A,A′ , A′′ , A′′′}, representing Var(“Number
of Cores in one CPU”) = {CPU Cores, Cores of CPU, Number of CPUCores, Cores}, and
V ar(β) = {B,B′ , B′′ , B′′′}.

Assuming a set of private SLA templates C = {c1, c2, . . . , cn} of customers, we can now
define the relationship of a specific SLA attribute to a specific attribute name of this SLA at-
tribute at a specific point in time (i.e., iteration) i ∈ N for an SLA template p, p ∈ C ∪{T} (i.e.,
private or public SLA template) as

SLAp,i : Tvar →
⋃

π∈Tvar

V ar(π). (3.1)

With respect to our example, we assume SLAT,0(α) = A and SLAT,0(β) = B as our initial
public template T at time 0 (i.e., iteration 0).

Based on these definitions and the utility function exemplified in [65], we define the utility
function u+

c,i and the cost function u−c,i for consumer c, attribute π ∈ Tvar, and iteration i ≥ 1
with W+ ≥W− ≥ 0 as

u+
c,i(π) =

{
W+, SLAc,i(π) = SLAT,i(π)
0, SLAc,i(π) 6= SLAT,i(π)

(3.2)

u−c,i(π) =

0, SLAc,i(π) = SLAT,i(π)
0, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) = SLAT,i(π)
W−, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) 6= SLAT,i(π)

(3.3)

The utility function states that a consumer c receives a utility of W+, if the name of the
attribute of the private SLA template matches the name of the public SLA template attribute,
and a utility of 0 otherwise.

In this context cost is defined as the negative utility for a consumer relating to the effort of
generating a new SLA mapping. The cost function states that a consumer has a cost of W−, if
the attribute names do not match and the public template attribute of the previous iteration has

25

been adapted to a new one. In this case, the consumer has to define a new attribute mapping,
as he cannot use the old one anymore. The cost of issuing a new mapping should be lower than
the utility of standardizing SLA attributes by achieving the same attribute names. This is why
W+ ≥W−. Here we set W+ = 1 and W− = 1/2.

In the other two cases, the consumer has no cost, since either the attribute names match or
the public template attribute name did not change since the previous iteration. That means he
does not need any new mapping. Thus, for attribute π, the consumer c at iteration i gets the net
utility

uoc,i(π) = u+
c,i(π)− u−c,i(π). (3.4)

The net utility for all attributes at iteration i for consumer c is defined as the sum of the net
utilities uoc,i(π):

uoc,i =
∑

π∈Tvar

uoc,i(π). (3.5)

In addition to this, the overall utility and overall cost (i.e., the utility and cost of all users C
and attributes π at iteration i) are defined as:

U+
i =

∑
c∈C

∑
π∈Tvar

u+
c,i(π) (3.6)

U−i =
∑
c∈C

∑
π∈Tvar

u−c,i(π) (3.7)

Consequently, the overall net utility at iteration i is defined as the difference between the
overall utilities minus the overall cost or as the sum of the net utility of all consumers c for all
attributes at iteration i:

Uoi = U+
i − U−i =

∑
c∈C

uoc,i. (3.8)

3.6 Simulation Environment

In order to evaluate the performance of the three adaptation methods with respect to the proposed
utility and cost model, we set up a simulation environment.

Testbed

For the simulation, we use a testbed that is composed of a scientific prototype (VieSLAF) [51]
and software that simulates SLA mappings of users. Figure 3.4 illustrates our emulation testbed.
The components that are drawn in white belong to VieSLAF. It comprises the knowledge base,
the middleware for managing SLA mappings provided by consumers and providers, and the
adaptation methods. The grey components indicate the components that simulate SLA mappings
of users.

A sample provider and a sample consumer are shown in the lower part of Figure 3.4.

26

Adaptation methods for
SLA templates:
- Maximum Method
- Threshold Method
- Maximum-Percentate-
 Change Method

Remote
SLA
template

Meta Negotiaiton
Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
SLA Mapping

Middleware

WSDL

API... ...

Remote
SLA
template

Data Model

Private SLA
template

Private SLA
template

Trans-
formation
rules:
XSLT,
XPath

Trans-
formation
rules:
XSLT,
XPath

Trans-
formation
Rules:
XSLT,
XPath

Trans-
formation
Rules:
XSLT,
XPath

meta
negotiatio
n document

meta
negotiatio
n document

Public
SLA
template

Knowledge Base

SLA Demand
Generation for Consumer

Consumer

Provider

Registry

VieSLAF

(1)(2)

(3)

(4)

(5)

Public
SLA
template

SLA Mapping
Middleware

SLA Supply
Generation for Provider

Figure 3.4: Adaptive SLA mapping architecture using VieSLAF.

The SLA mapping middleware, which follows a client-server design, facilitates the access
by the provider and the consumer to registries. It provides to users a GUI for browsing public
SLA templates. The SLA mapping middleware is based on different Windows Communication
Foundation (WCF) services, of which only a few are mentioned in the following paragraph.

The RegistryAdministrationService provides methods for the manipulation of the database.
This service requires administrator rights. An example for these methods is the creation of
template domains. Another service of the SLA mapping middleware is the SLAMappingSer-
vice, which is used for the management of SLA mappings by service consumers and service
providers (cf. (3) of Figure 3.4). Providers and consumers may also search for appropriate pub-
lic SLA templates through SLAQueryingService and define appropriate SLA mappings by using
the method createAttributeMapping. With each service request, it is also checked whether the
user has also specified any new SLA mappings. The SLA mappings (i.e., transformation rules)
are stored in the private database of the user and can be re-used by the user for her next SLA
mapping.

The knowledge base for storing the SLA templates in a predefined data model ((4) of Figure
3.4) is implemented as registries representing searchable repositories. Currently, we have im-
plemented an MS-SQL 2008 database with a Web service frontend. To handle scalability issues,
we intend to utilize non-SQL DBs (e.g., HadoopDB) with SQL-like frontends (e.g., Hive [197]).
SLA templates are stored in a canonical form, enabling the comparison of the XML-based SLA

27

templates. The registry methods are also implemented as WCF services and can be accessed
only with appropriate access rights. The access rights distinguish three access roles: consumer,
provider and registry administrator. The registry administrator may create new SLA templates.
A service consumer and a service provider may search for SLA templates and can submit their
SLA mappings.

Based on the submitted SLA mappings, public SLA templates are adapted by the registry
administrator, using one of the adaptation methods ((5) of Figure 3.4), introduced in section 3.4.

Simulation Parameter Settings

For the simulation, we define five scenarios on how often attribute names occur in private SLA
templates on average. In particular, each scenario defines an occurrence distribution of four
different SLA attribute names. Our observations indicate that four different SLA attribute names
seem to be a reasonable number, especially when referring to the example given in Section
3.5 with SLA attribute names CPU Cores, Cores of CPU, Number of CPUCores, and Cores.
Another example would be the four names Cost, Charge, Rate and Price for one SLA attribute.
With four attributes set, we can partition all possible and interesting (i.e., leading to a different
outcome in any of the adaptation methods) situations into exactly five different scenarios that
are defined as follows:

• Scenario a: All attribute name counts of an attribute are equal.

• Scenario b: The counts of three attribute names are equally large and larger than the
remaining one.

• Scenario c: Two attribute name counts are equally large and are larger than the other two,
which are equally large as well.

• Scenario d: One attribute name, which has been picked as the attribute name for the initial
setting, has a larger count than the counts of the remaining three attribute names, which
are equally large.

• Scenario e: One attribute name, which has not been picked as the attribute name for the
initial setting, has a larger count than the counts of remaining three attribute names, which
are equally large.

The actual values of each of the five scenarios are shown in Table 3.1. The four attribute
names chosen for this example are: A,A′, A′′, A′′′. The initial setting of attribute α is the
attribute name A.

As an example for the use of the scenarios, we take scenario c. If attribute α (Number of
Cores in one CPU) is distributed according to scenario c, then the four attribute names occur in
average as follows: 10% of the attribute names isA, 10% of the attribute names isA′, 40% of the
attribute names is A′′, and 40% of the attribute names is A′′′. However, as we intend to account
for slight changes in the demand for attribute names by users, we draw randomly the attribute
names according to the distribution given in Table 3.1 instead of generating the exact number of

28

Table 3.1: Average occurrence of attribute names in all scenarios.

Scenarios [%]
a b c d e

A 25 10 10 30.0 23.3
A’ 25 30 10 23.3 30.0
A” 25 30 40 23.3 23.3
A”’ 25 30 40 23.3 23.3

attribute names. Consequently, the actual counts of attribute names might vary compared to the
average values shown in Table 3.1. As an example, the attribute names generated according to
the distribution of scenario c might be 9%, 12%, 37%, and 42% instead of 10%, 10%, 40%, and
40%. This process of generation of attribute names is executed for each iteration.

Furthermore, another three simulation parameters are set. First, the number of iterations
is limited to 20. This number is chosen, because from iteration to iteration the consumer base
does not evolve (the consumers obey to the same distribution in every iteration, but the quite
low number of users reveals different random samples of the distributions). 20 iterations are
long enough to examine the natural market fluctuations, but more iterations would not reveal
any new information. At each iteration, 100 users perform SLA mappings to all SLA attributes.
The number is not set higher in order to mimic natural market fluctuations. At the end of an
iteration, a new public SLA template is generated, which is based on the adaptation method
and the SLA mappings of the user. As in our evaluation setting the market will not stabilize, a
final template as described in Figure 3.3 will not be achieved. For each of the three adaptation
methods we execute one separate simulation run. Moreover, the SLA template consists of five
SLA attributes, whose attribute names are distributed according to scenarios a-e, respectively.
This way, the results for utility and cost will be averaged values over all five scenarios. Table
3.2 summarizes these settings.

Table 3.2: Simulation parameter settings.

Simulation Parameter Value
Number of scenarios 5
Number of users (consumers & providers) 100
Number of SLA attributes per SLA template 5
Number of SLA attributes names per attribute 4
Number of adaptation methods applied 3
Number of iterations 20

29

3.7 Experimental Results and Analysis

Net Utilities of Adaptation Methods

Using our SLA mapping approach, the user benefits by having access to public SLA templates
that reflect the overall market demand (i.e., the demand of all users). This benefit of a user is
expressed by Equation (3.2). However, this benefit comes with the cost for defining new SLA
mappings whenever the public SLA template changed (Equation (3.3)).

Within this section, we investigate the cost for all users (Equation (3.7)), the utility of all
users (Equation (3.6)), and the net utility of all users (Equation (3.8)) with respect to three
adaptation methods. The net utility metric is used to decide which of the three investigated
adaptation methods is superior.

The first investigated adaption method is the maximum method. It is our reference method,
since it does not use any heuristics. The simulation results, which are shown in this section, have
been obtained from running the simulation with parameter settings as described in Section 3.6.

Figure 3.5 shows the resulting public SLA templates over the iterations. For every of the
five possible parameter attributes a line indicates which SLA parameter name has been chosen
for the specific iteration.

The advantage of the maximum method is that the public SLA template generated with
this method minimizes the differences to all private SLA templates of all users. This method,
however, requires many SLA mappings.

Figure 3.5: Public templates for the maximum method.

Figure 3.6 shows, as expected, that the maximum method generates a high utility, since
it achieves many matchings of attribute names of the public SLA template and the private SLA
templates. Its utility stays around its initial utility value of about 170 for each iteration. However,
as expected as well, it requires many new mappings and, thus, incurs high costs to the users.

30

Figure 3.6: Utility, cost, and net utility for the maximum method.

Consequently, the net utility is far lower than the utility.
In order to address this issue of high cost of the maximum method, we use heuristics in

the following two adaptation methods. The heuristics help to find a balance between the utility
of having a public SLA template, whose attribute names are identical to most of the attribute
names of the private SLA templates, and the cost of creating new SLA attribute mappings. The
first heuristics-based adaptation method, which we investigate, is the threshold method. The
simulation results are shown in Figures 3.7 and 3.8.

Figure 3.7: Public templates for the threshold method.

Figure 3.8 illustrates that the threshold method does not incur any cost to users at all, because
Figure 3.7 does not reveal any changes to the initially set parameter name at all. This is due to
the high threshold (i.e., a threshold of 60%), resulting in no changes of the public SLA template
attribute names. Nevertheless, the utility (and net utility) is not higher than the ones of the

31

Figure 3.8: Utility, cost, and net utility, for the threshold method.

maximum method, just more stable across the 20 iterations. Therefore, the threshold method
with a threshold of 60% could be considered the opposite strategy to the maximum method. That
means, the initial public SLA template does not get adapted at all. By lowering the threshold
parameter such that the threshold parameter for a few iterations is lower than the highest count
of an attribute name, it is expected that the net utility improves. If the threshold parameter is
lower than the minimum count of an attribute name in all iterations, then this method is identical
to the maximum method.

The maximum-percentage-change method is the second investigated heuristics-based adap-
tation method. The results are shown in Figures 3.9 and 3.10.

Figure 3.9: Public templates for the maximum-percentage-change method with τ = 10.

The simulation results show that in the first iteration and every tenth iteration (τ = 10) the
overall net utility decreases significantly due to the high amount of new SLA mappings needed

32

Figure 3.10: Utility, cost, and net utility for the maximum-percentage-change method with τ =
10.

(compare the same iteration within Figures 3.9 and 3.10). At these iterations, the cost of the SLA
mappings is very high, since this method chooses the attribute names with the maximum number
of counts (not considering the threshold of 15%). In the subsequent iterations, however, the cost
is low and, therefore, the overall net utility increases significantly. It achieves even higher values
than the other two methods.

Average Cost and Average Net Utility

Table 3.3 shows the average overall utility, average overall cost, and the average overall net
utility for all three adaptation methods. The averages are calculated over all iterations. The
maximum method has achieved the highest average overall utility. It satisfies the largest number
of users. However, since it also incurs the highest costs, it becomes the method with the lowest
average overall net utility.

Table 3.3: Overall utility, overall costs, and overall net utilities averaged across all iterations
(The best values are highlighted in bold).

Maximum Threshold Max.-Perc.-Change
avg. overall utility 171.9 99.5 166.6
avg. overall cost 91.3 0.0 39.95
avg. overall net utilities 80.6 99.5 126.65

The threshold method does slightly better with respect to the average net utility than the
maximum method. This is due to the zero cost. The threshold method (with a high threshold)
stays with the initial SLA attribute name for the public SLA template.

The best adaptation method with respect to the average overall net utility is the maximum-
percentage-change method. We observe that the average overall net utility is better than the ones
of the other two adaptation methods, although the average overall utility is not the highest among
the three adaptation methods. The reason is that the cost is low. The low cost is a result of the

33

fact that the SLA attribute names of the public SLA template are not changed frequently. They
are only changed in iterations kτ +1, k ∈ N0 (i.e., when the method behaves like the maximum
method) and whenever the threshold of 15% is exceeded.

Based on the result shown in this section, we can state that the adaptive SLA mapping
approach is a good way of generating standardized goods, which address the needs of the market.
To reduce the cost for creating SLA mappings frequently, the introduction of heuristics into the
adaptation methods is helpful. Results show that a significant reduction of costs can be achieved
while preserving the benefit of adapted public SLA templates.

34

CHAPTER 4
Self-adaptive and Resource-Efficient

SLA Enactment for Cloud Computing
Infrastructures Using Knowledge

Management

In this chapter we conduct a preliminary evaluation of knowledge management techniques suit-
able for Cloud computing infrastructures. From this preliminary evaluation we concentrate on
the two most promising techniques: case based reasoning and rules. We will design and im-
plement these approaches, and finally devise a methodology to self-adapt all crucial parameters
for the rule-based approach using a method based on utility and another one based on workload
volatility, i.e., the intensity of workload dynamism.

4.1 Methods of Knowledge Management for SLA Management

This section describes some well-known knowledge management methods and presents a pre-
liminary analysis for the use of SLA enactment in a Cloud infrastructure following a use case.

Use Case

This section defines a use case that will be utilized for the examination of the knowledge man-
agement methods. An example SLA is depicted in Table 2.1, from which we consider four
Service Level Objectives (SLOs) for this analysis: incoming bandwidth (IB), outgoing band-
width (OB), storage (St), and availability (Av). The corresponding SLO values are shown on
the right hand side in Table 2.1. In order to evaluate the knowledge management approaches
we describe the status of the system in terms of running physical machines (PMs) and a specific
application running under this SLA at three different time points t1, t2, t3. We assume that one

35

application is running on one virtual machine (VM), but one VM can run on (1,*) PMs, and on
one PM, there can run (1,*) VMs. Table 4.1 summarizes the system states we have measured.

IB OB St Av PMs
t1 12.0 20.0 1200 99.50 20
t2 14.0 18.5 1020 99.47 17
t3 20.0 25.0 1250 99.60 19

Table 4.1: Sample system states

Rule-based System

A rule-based system such as Jess [8] or Drools [15] contains rules in the “IF Condition THEN
Action” format, e.g.,

(1) IF IB < TT_IB THEN Add physical machine to VM.
(2) IF IB < TT_IB THEN Increase IB share by 5% for VM.
(3) IF Av < TT_Av THEN Add 2 comp. nodes to the cloud.
(4) IF Av < TT_Av THEN Outsource app. to other cloud.

Here we use threat thresholds (TTs) to trigger some action before an SLA is violated. There
are two drawbacks to this mechanism, though:

First, the question of how these TTs are obtained, has to be answered. They are very different
from one SLA parameter to another, e.g., for “SLO Storage > 1024 GB”, the TT could be
already at 1300 GB (127% of the original SLO), whereas for the SLO “IB > 10 Mbit/s” the TT
could be at 11 Mbit/s (110% of the original SLO), as one might say that reallocating bandwidth
shares is a lot quicker than reallocating storage. They can even differ a lot for the same parameter
in a different domain, e.g., the TT for availability in some medical domain, where human lives
can be at stake, must be much higher than for a 3D rendering service in the architectural domain.
A way to get around this would be to have the TTs specified in DSLs or to include them in the
SLA document. However, this would heavily depend on subjective estimations. Nevertheless,
it would be possible to find some experience values that make sense for the most common
parameters. Furthermore, it has to be specified whether these thresholds are derived from a
constant function of the parameter’s value, e.g., always add 5 units to the SLA parameter value,
from a linear one, e.g., always add 10% to the value, or even from an exponential or from any
other function. So to solve this in a universally valid way, one would have to find an appropriate
function for every SLA parameter in every domain.1

The second question is how to solve two contradicting rules. Consider rules (3) and (4)
depicted at the begining of this section. If availability for a certain service drops below the pre-
specified TT, should the rule engine rather add computing nodes or outsource an application, or
both? Using a salience concept to decide this, leads to a difficultly manageable load of rules.2 A
good examination of this problem can also be found in [109].

1This is actually what we do in Section 4.5.
2The introduced escalation levels (cf. Chapter 2) will help to mitigate this problem.

36

In our use case from Table 4.1, the rules (1) - (4) above, and with TTIB = 12.5 for incoming
bandwidth and TTAv = 99.48 for availability, the rule engine would fire rules 1 and/or 2 at time
t1; at t2 it would fire rules 3 and/or 4, and at t3 it would do nothing.

Default Logic

Default Logic [33] is a version of a rule-based system whose rules are no longer simple IF-
THEN Rules, but can be described as IF condition - and there are no reasons against it - THEN
action. We write such a rule as δ = φ:ψ1,...,ψn

χ , where φ represents the condition, and χ is the
action to execute, if the statements ψ1, . . . , ψn are consistent with the current assumptions we
hold of our system. A sample rule considering our case study can be written as

d1 =
IB < TTIB : IncreaseIBshare

IncreaseIBshare
. (4.1)

The rule means: If incoming bandwidth is smaller than its threat threshold, and if there is
no reason against increasing bandwidth share, then increase bandwidth share. Reasons against
could be that the bandwidth share is already at its maximum or that other (possibly more impor-
tant) services issued a request for an increase at the same time. Contrary to ordinary rules in a
rule-based system, it is easy for default rules to understand that resources cannot be increased
indefinitely. However, default logic does not offer a remedy against the issues of retrieving TTs
and dissolving contradicting rules.

Furthermore, default logic is especially used in fields with a lot of contradicting information.
For Cloud computing, however, we are rather interested in determining the reason of the current
measurement information, e.g., why current incoming bandwidth has decreased. For example,
we want to know whether the current bandwidth problem is caused by internal problems (e.g.,
too many service requests but too little resources provided), which the Cloud is capable of solv-
ing on its own, or by external factors (e.g., a DDoS attack), which cannot be influenced directly.
Thus, we are rather confronted with more incomplete information than with contradicting one.

Situation Calculus

Situation Calculus [135] describes the world we observe in states, the so called fluents, and
situations. Fluents are first-order logic formulae that can be true or false based on the situation
in which they are observed. Situations themselves are a finite series of actions. The situation
before any action has been performed - the starting point of the system - is called the initial
situation. The state of a situation s is the set of all fluents that are valid in s. Predefined actions
can advance situations to new ones in order to work towards achieving a pre-defined goal by
manipulating the fluents in this domain. For a world of three bricks that can be stacked upon
each other lying on a table, fluents are quite easy to find: First, a brick can be on the table or not.
Second, a brick can have another brick on it or not. Third, a brick x can lie on a brick y or not.
Two possible actions are: Stack brick x on brick y and unstack brick y, i.e., put brick y onto the
table. Now, a goal could be to have one pile of all three bricks in a specified order with an initial
situation of them being piled in the reverse order. In each state of a situation, different fluents

37

are true (e.g., brick x lies on brick y, brick y does not lie on brick x, brick z lies on the table),
and stacking or unstacking generates a new situation.

To map this analogy to Cloud Computing is not as easy. As far as fluents are concerned,
in a Cloud we have to consider the current value of each specific parameter, and whether the
respective SLO is fulfilled or not. Furthermore, all the states of the Cloud itself like number of
running virtual machines, number of physical machines available, etc., have to be modeled as
fluents as well. Fluents for a specific application could be the predicate has_value(SLAParameter
p, Value v) with v ∈ R3 meaning that the SLAParameter p holds the value v in the current
situation, and fulfills(SLO s) meaning that the specified application fulfills a certain SLO s. The
predicate has_value(SLAParameter p1, x) is valid for only one x ∈ R in a certain situation. The
possible actions are provided by our use case.

Since we always observe the Cloud with all its states as a whole, it can be very difficult to
derive exactly one action that could lead to an advancement of achieving a goal. The solution
could be to view applications isolated from each other and to have one overall view that only
takes into account some higher-level information like fulfillsSLA(Application app) meaning an
application fulfills all its current SLOs at the moment. A doable way of defining goals could be
to define utility functions that state the utility of a service fulfilling its SLA. Parameters of this
utility function can be the importance of the consumer and the penalty that has to be paid when
violating each SLO. The system then tries to find actions to maximize the utility.

Consider a Cloud servicing 100 applications with five SLA parameters each. This leads to
100∗(5+1) = 600 different fluents, like has_value(SLAParameter p1, x), has_value(SLAParameter
p2, y), etc., and fullfills(SLO s) for every application. Thus, the largest obstacles to this approach
are the large number of fluents and the immense search space for the possible actions as a result
thereof.

Case Based Reasoning

Case Based Reasoning is the process of solving problems based on past experience [27]. In
more detail, it tries to solve a case (a formatted instance of a problem) by looking for similar
cases from the past and reusing the solutions of these cases to solve the current one. In general,
a typical CBR cycle consists of the following phases assuming that a new case was just received:

1. Retrieve the most similar case or cases to the new one.

2. Reuse the information and knowledge in the similar case(s) to solve the problem.

3. Revise the proposed solution.

4. Retain the parts of this experience likely to be useful for future problem solving.

In step 4, the new case and the found solution is stored in the knowledge base. In the following
section, we will show how we adapt CBR to the needs of SLA enactment in the field of Cloud
computing.

3Instead of R one could consider using different sets with an only finite number of elements, as the set of floating
point numbers.

38

Rules	 to	
engage	
CBR	

Case	
Based	

Reasoning	

Measure	
results	

Trigger	
selected	
ac4on	

Measure-‐
ments	

DB1	 DB2	

Thresholds

Figure 4.1: The process of Case Based Reasoning

CBR Adapted to SLA Enactment

This section discusses the basic CBR model used for SLA enactment and some of its variations.
Following the diagram in Figure 4.1, the basic idea is to have rules stored in database 1

that engage the CBR system once a TT value has been reached for a specific SLA parameter.
The measurements are fed into the CBR system, surrounded by the frame, as a new case by
the monitoring component. Then, CBR prepared with some initial meaningful cases stored in
database 2, chooses the set of cases which are most similar to the new case by various means as
described in Section 4.1. From these cases we select the one with the highest utility measured
before. Now we trigger the action that was executed in the selected case. Finally, we measure
the result of this action in comparison to the initial case some time intervals later and store it with
the calculated utilities as a new case to CBR. Summing up, we have the following basic process
(cf. Figure 4.1): New Measurements arrive (Measurements)→ Check whether the TTs reached
for some parameter (Rules to engage CBR). If yes, choose a set of most similar cases in CBR
and from them choose the one with the highest utility (Case Based Reasoning)→ Execute action
of this case (Trigger 1 action)→ Calculate utility of this action by measuring results (Measure
results) → Store case in CBR (Feedback). Doing this, we can constantly learn new cases and
evaluate the usefulness of our triggered actions. By measuring the utility after more than one
time interval, CBR is also able to learn whether an action was carried out too late (when utilities
improved following the time intervals, but the improvement was too late in order to prevent an
SLA violation) or even unnecessary. Thus, the TTs, which tell us when to engage the CBR
mechanism, can be constantly ameliorated as well.

Further thoughts on the base concept lead to the following variations:

a) Instead of using rules with TTs, CBR continuously receives new cases by the measurement
device. Thus, CBR is not triggered due to TTs, but constantly active. This way we can get rid
of TTs, which is especially useful in the early stage when the system does not have historical
measurements.

b) As depicted in Figure 4.2, we divide the system status into (1) a manual phase, where we
create or adapt cases manually, (2) an active CBR phase as usual, and (3) a passive rule-
based phase, where we only do something, if the TT is attained, which we learned in the
active phase. When in phase 3, we also calculate utilities of our actions as in phase 2. If the

39

!

"#$!%&'()*!
+,-*.)%'(+/!0('1!234!

"5$!&.*%'(/6!%/7!
%7%8'(/6!&%-*-!
9%/:%;;<!

"=$!8%--()*!.*%&'(+/!0('1!
.:;*-!:-(/6!6*/*.%'*7!
'1.*%'!'1.*-1+;7-!!

'1.*%'!'1.*-1+;7-!
!

:'(;('*-!%.*!,*&+9(/6!'++!;+0!

Figure 4.2: Active and Passive phases in the CBR management

utilities get too low, depending on the severity, we either reactivate the active phase (phase
2) to learn new cases or even go into the manual phase (phase 1). When utilities ameliorate,
we finally go back to the passive phase (phase 3).

c) For simple parameters (parameters whose causes are easy to understand and model), we have
simple TTs and actions using rules instead of using CBR, which helps to relieve computing
resources.

Preliminary Implementation of CBR

This section describes implementation details of CBR and methods we used for learning and
reacting, as well as the utility measurements employed. The implementation follows variation
(a) of the previous section.

We implemented the testbed in Java, based on FreeCBR [6], a generic implementation of
step (1) of the list explaining CBR, i.e., “retrieving the most similar case or cases to the new
one”. As can be seen in Figure 4.3 a complete case consists of: (a) the id of the application
being concerned (i.e., instance ID) (line 2), (b) the initial case (measurements by the monitoring
component) consisting of the SLO values of the application and global Cloud information like
number of running virtual machines (lines 3 – 10), (c) the executed action (line 11), (d) the
resulting case (measured some time interval later as in (b) (lines 12 – 19), and (e) the resulting
utility (line 20).

To evaluate the actual utility a specific action helped in a specific case, we compare the
utility of the initial case to the utility of the resulting case. Let αold and αnew be the actual
values of some parameter α measured at the initial and the resulting case, respectively, and αT
the specified SLO value. We define the relative utility for a parameter α, whose SLO is α ≥ αT .
In case the SLO might be α ≤ αT , the definition has to be multiplied by -1. We define utility
u(α) for αT 6= 0 as

u(α) =
α− αT
αT

. (4.2)

40

1. (
2. (SLA, 1),
3. (
4. ((Incoming Bandwidth, 12.0),
5. (Outgoing Bandwidth, 20.0),
6. (Storage, 1200),
7. (Availability, 99.5),
8. (Running on PMs, 1)),
9. (Physical Machines, 20)
10.),
11. "Increase Incoming Bandwidth share by 5%",
12. (
13. ((Incoming Bandwidth, 12.6),
14. (Outgoing Bandwidth, 20.1),
15. (Storage, 1198),
16. (Availability, 99.5),
17. (Running on PMs, 1)),
18. (Physical Machines, 20)
19.),
20. 0.002
21.)

Figure 4.3: CBR case example

The gain in (or maybe loss of) utility from the initial to the resulting case for a parameter α can
be described as

u(αold, αnew) =
αnew − αT

αT
− αold − αT

αT
=
αnew − αold

αT
. (4.3)

As a next step we have to define the utility for parameters not stated in the SLA of the
application, like “running on PMs” or the global parameter “Physical Machines”. Considering
our use case we define that the fewer PMs the application runs on, the better it is, since this frees
up resources for other applications. The same is true for the impact of the number of running
physical machines. Shutting down every physical machine that is not needed to guarantee the
SLAs is seen as a positive effect on our utility. Thus, we also compare the number of running
PMs from the resulting to the initial case with u(PMsold, PMsnew) = PMsold−PMsnew

PMsold
. The

same principle is true for “running on PMs”.
We now derive the final utility by taking the average of the utilities u(αold, αnew) for all

SLA parameters α, of the utilities of running PMs, and of the global parameters. Of course, one
could also take into consideration building a weighted average. Generally speaking, there may
be more sophisticated methods to define utilities than this linear approach, but for simplicity we
decided to start with this one.

For our complete case depicted in Figure 4.3 and the SLA from our use case in Table 2.1,

41

the utility is thus calculated as follows:

u(case) =
(12.6−12.0

10.0 + 20.1−20.0
12.0 + 1198−1200

1024 + 99.5−99.5
99.0) + 1−1

1 + 20−20
20.0

6
≈ 0.011 (4.4)

The similarity of the cases is evaluated by the Euclidean distance, which for two cases takes the
square root of the sum of the squared differences of each of the parameters. Of course, as for the
utility, one could also weigh these parameters, which we chose to renounce for the beginning.

Furthermore, for the retrieval of similar cases, we implemented two methods. Each method
seeks some cases, from which it chooses the one with the highest utility. The first method,
which we call t-neighborhood method, looks for the case with the highest match percentage and
takes all cases into consideration that have a distance of t% to the case with the highest match
percentage. The second method, the clustering method, uses a k-means clustering algorithm [94]
to group the cases into k clusters, from which we choose the one that includes the case with the
highest match percentage. We try the clustering for several ks, and finally choose the k that has
the lowest variance among all clusters.

Preliminary Evaluation

In this section we compare the outcomes of the test case using CBR with what we had expected
a rational administrator to do. Thus, e.g., if storage for an application is extremely scarce, but
all other values are in normal range, we expect the administrator to add allocated storage by
the highest possible percentage – we will refer to this as the intensity of an action –, and not to
increase any other parameter, do nothing or even decrease storage.

After feeding the knowledge base with 9 different cases, we test it against the SLA defined
in our use case with 6 new cases and evaluate the results. The initial cases are displayed in Table
4.2, where each column holds one of the cases 1-9. The upper part of the Table (parameters with
subscript b), shows values as they were measured before any action took place. The row Action
indicates the triggered actions in the specific cases followed by the measured parameters after
the suggested action (parameters with subscript a). The Row Utility shows the utilities gained
by these actions.

The six test cases that are stored one after the other into the knowledge base are presented
in Table 4.3. The columns depict the cases 1-6, whereas the rows show the parameters at the
beginning of the CBR cycle.

The result, i.e., what action was triggered, can be seen in Tables 4.4 and 4.5 for the clustering
and the neighborhood method, respectively. In Table 4.4, the expected action column shows what
action one could expect to be triggered in the test case (the same column is valid for Table 4.5 and
is not repeated therein). The recommended action columns in Tables 4.4 and 4.5 define which
action was actually recommended by the CBR mechanism. The variance column of Table 4.4
gives us an insight on how compact these clusters are. A low variance signifies high coherence
(the points of one cluster have a small distance to each other), whereas high variance signifies
the opposite. Additionally, in Table 4.5, where we present results for t = 3% and t = 5%, we
show the number of cases in the t-neighborhood of the case with the highest match percentage.
This shows how large the set of cases was to choose the one with the highest utility. The more

42

1 2 3 4 5 6 7 8 9
IBb 15.0 11.0 10.5 15.0 15.0 15.0 15.0 15.0 15.0
OBb 20.0 20.0 20.0 13.0 12.5 20.0 20.0 20.0 20.0
Stb 1200 1200 1200 1200 1200 1050 1000 1000 1200
Avb 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.45 99.4
RPMsb 1 1 1 1 1 1 1 1 1
PMsb 20 20 20 20 20 20 20 20 20
Action Do

noth-
ing.

IBW
+ 5%

IBW
+
10%

OBW
+ 5%

OBW
+
10%

St +
5%

St +
10%

M +
5%

M +
10%

IBa 15.0 11.55 11.55 15.0 15.0 15.0 15.0 15.0 15.0
OBa 20.0 20.0 20.0 13.65 13.75 20.0 20.0 20.0 20.0
Sta 1200 1200 1200 1200 1200 1103 1100 1200 1200
Ava 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5
RPMsa 1 1 1 1 1 1 1 1 1
PMsa 20 20 20 20 20 20 20 20 20
Utility 0.0 0.009 0.0175 0.009 0.017 0.009 0.016 8.41 ·

10−5
1.68 ·
10−4

Table 4.2: Initial Cases for CBR

1 2 3 4 5 6
IB 15.0 11.0 10.5 15.0 20.0 10.0
OB 20.0 20.0 20.0 13.0 25.0 18.0
St 1200 1200 1200 1200 1250 1450
Av 99.5 99.5 99.5 99.5 99.6 99.5
RPMs 1 1 1 1 1 1
PMs 20 20 20 20 20 20

Table 4.3: Test cases for CBR

cases there are, the higher the chance to catch a case with a higher utility, but at the same time
the smaller the similarity is to the original one.

Based on the evaluation results presented in Table 4.4 and 4.5 we conclude that the actions
are pretty much the same for both algorithms and relate to the expected action. Only the in-
tensity of the action is always higher than one would expect to be necessary, because greater
improvements always have higher utility values (cf. Equation (4.3)). This could be ameliorated
by modifying the utility function to allow for more moderate actions to have higher utilities.
Nevertheless, the problematic SLA parameter, i.e., the parameter whose resources were scarce,
is always identified correctly. With the exception of case 5, which has excellent SLA param-
eter values and does not require any action to be executed, all methods recommend an action
to trigger except the neighborhood method for t = 3%. This is explained by the same argu-
ment why higher intensities have always been chosen: Doing more than is necessary always
achieves a higher utility than doing less or nothing. Thus, the value of doing nothing could also

43

Case Expected Action Recommended Action Variance
1 IBW + 5% IBW + 10% 23
2 OBW + 5% OBW +10% 18
3 St + 5% St + 10% 208
4 St + 10% St + 10% 14
5 None St + 10% 96
6 IBW + 10% IBW + 10% 40

Table 4.4: Evaluation results using the clustering algorithm

t = 5% t = 3%
Case Recomm. Action Cases in t-

neighborhood
Recomm. Action Cases in t-

neighborhood
1 IBW + 10% 2 IBW + 10% 2
2 OBW + 10% 4 OBW +10% 4
3 St + 10% 2 St + 10% 2
4 St + 10% 3 St + 10% 2
5 M + 5% 2 None 1
6 IBW + 10% 8 IBW + 10% 5

Table 4.5: Evaluation results using the neighborhood algorithm

be appreciated more in the definition of the utilities.

Preliminary Conclusion

In this section we discussed several approaches for knowledge management in self-adaptable
Clouds, which were rule-based systems, default logic, situation calculus, and case based reason-
ing. We adopted the case based reasoning (CBR) method for the interpretation of measurement
data with the goal of preventing SLA violations by triggering appropriate actions. Additionally,
we designed a CBR based mechanism for the automatic re-configuration or even avoidance of
threat thresholds topped with the introduction of general utility functions, which we were able
to design without any semantic knowledge of the SLA parameters.

Currently, the CBR approach has been evaluated only against one SLA. A big issue, how-
ever, is that concurring SLAs may prevent other applications from being executed, especially
if resources are scarce. Also, we have only used predefined SLA parameters, which could be
extended to generate user defined SLA parameters including the development of appropriate
DSLs. Furthermore, we want to validate this approach by generating an extensive simulation
model of a cloud environment over several time steps - using that, we will be able to evaluate
not only CBR, but also other knowledge management methods from a hands-on point of view.

Nevertheless, we provided a means of proactively gearing the cloud infrastructure against
SLA violations regardless of the SLA parameters in use. We have presented the proof of concept
for the realization of the CBR-based knowledge management systems for self-adaptable Clouds.

44

4.2 Speculative Approach

After the preliminary evaluation and conclusion, this section subsumes all the common assump-
tions for both approaches that will be presented next in more detail: CBR and the (self-adpating)
rule-based approach.

We assume that customers deploy applications on an IaaS Cloud infrastructure. SLOs are
defined within an SLA between the customer and the Cloud provider for every application.
Furthermore, there is a 1:1 relationship between applications and VMs. One VM runs on exactly
one PM, but one PM can host an arbitrary number of VMs with respect to supplied vs. demanded
resource capacities. After allocating VMs with an initial capacity (by estimating initial resource
demand) for every application, we continuously monitor actually used resources and re-allocate
resources according to these measurements.

Provided (1) Utilized (2) Agreed (3) Violation?
500 GB 400 GB ≥ 1000GB NO
500 GB 510 GB ≥ 1000GB YES
1000 GB 1010 GB ≥ 1000GB NO

Table 4.6: Cases of (non-) SLA violations using the example of storage

For tackling the resource allocation for VMs, we need to define how measured, provided
and agreed values interrelate, and what actually constitutes an SLA violation. An example is
provided in Table 1. At first, we deal with the measured value (1), which represents the amount
of a specific resource that is currently used by the customer. Second, there is the amount of
allocated resource (2) that can be used by the customer, i.e., that is allocated to the VM which
hosts the application. Third, there is the SLO agreed in the SLA (3). A violation therefore
occurs, if less is provided (2) than the customer utilizes (or wants to utilize) (1) with respect
to the limits set in the SLA (3). Considering Table 1 we can see that rows 1 and 3 do not
represent violations, whereas row 2 does represent an SLA violation. In order to save resources
we envision a speculative approach: Can we allocate less than agreed, but still more than used
in order not to violate an SLA? The most demanding questions are how much can we lower
the provisioning of a resource without risking an SLA violation. This heavily depends on the
characteristics of the workload of an application, especially its volatility.

4.3 Case Based Reasoning

After explaining CBR in Section 4.1 and taking the preliminary evaluation into account, three
issues have to be solved to better adapt CBR to our problem. First, it has to be decided how
to format an instance of the problem. Second, it has to be decided when two cases are similar.
Third, good reactions have to be distinguished from bad reactions.

As to the first problem we assume that each SLA has a unique identifier id and a collection
of SLOs. SLOs are predicates of the form

SLOid(xi, comp, πi) with comp ∈ {<,≤, >,≥,=}, (4.5)

45

where xi ∈ P represents the parameter name for i = 1, . . . , nid, πi the parameter goal, and
comp the appropriate comparison operator. Then, a CBR case c is defined as

c = (id,m1, p1,m2, p2, . . . ,mnid
, pnid

), (4.6)

where id represents the SLA id, and mi and pi the measured (m) and provided (p) value of the
SLA parameter xi, respectively.

To use the SLA parameters storage and incoming bandwidth for example, a typical use
case looks like this: SLA id = 1 with SLO1(“Storage”, ≥, 1000) and SLO1 (“Bandwidth”,
≥, 50.0). A corresponding case received by the measurement component is therefore written
as c = (1, 500, 700, 20.0, 30.0). A result case rc = (c−, ac, c+, utility) includes the initial
case c−, the executed action ac, the resulting case c+ measured some time interval later, which
corresponds to one iteration in the simulation engine, and the calculated utility described later.
In order to give the KB some knowledge about what to do in specific situations, several initial
cases are stored in the KB as described in [150] in more detail.

Secondly, to define similarity between two cases is not straightforward, because due to their
symmetric nature Euclidean distances, e.g., do not recognize the difference between over- and
under-provisioning. Following the principle of semantic similarity from [96] for the summation
part this leads to the following equation

d(c−, c+) = min(wid,
∣∣id− − id+

∣∣) +
∑
x∈P

wx

∣∣∣∣(p−x −m−x)− (p+
x −m+

x)
maxx −minx

∣∣∣∣ , (4.7)

where w = (wid, wx1 , . . . , wxn) is the weight vector; wid is the weight for non-identical SLAs;
wx is the weight, andmaxx andminx the maximum and minimum values of differences px−mx

for parameter x.
As far as the third issue is concerned, every action is evaluated by its impact on violations

and utilization. This way CBR is able to learn whether an action was appropriate for a specific
measurement or not. The utility of an action is calculated by comparing the initial case c− with
the resulting final case c+. The utility function is composed by a violation and a utilization term
weighed by the factor 0 ≤ α ≤ 1:

utility =
∑
x∈P

violation(x) + α · utilization(x) (4.8)

Higher values for α strengthen the utilization of resources, whereas lower values strengthen the
non-violation of SLA parameters. We further note that c(x) describes a case only with respect
to parameter x. E.g., we say that a violation has occurred in c(x), when in case c the parameter
x was violated.

We define the violation function for every parameter x as follows:

violation(x) =

1, No violation occurred in c+(x), but in c−(x)
1/2, No violation occurred in c+(x) and c−(x)
−1/2 Violation occurred in c+(x) and c−(x)
−1 Violation occurred in c+(x), but not in c−(x)

(4.9)

46

The utilization function is calculated by comparing the used resources to the provided
ones. We define the distance δ(x, y) = |x− y|, and utilization for every parameter as

utilization(x) =

1, δ(p−x ,m

−
x) > δ(p+

x , u
+
x)

−1, δ(p−x ,m
−
x) < δ(p+

x , u
+
x)

0, otherwise.

(4.10)

A utilization utility of 1 is retrieved if less over-provisioning of resources takes place in the final
case than in the initial one, and a utilization utility of −1 if more over-provisioning of resources
takes place in the final case than in the initial one.

The whole CBR process works as follows: Before the first iteration, we store the mentioned
initial cases consisting of an initial measurement, an action and a resulting measurement. Then,
when CBR receives a new measurement, this measurement is compared to all cases in the KB.
From the set of closest cases grouped by a clustering algorithm we choose the one with the
highest utility and execute exactly the same action as in the chosen case. Afterwards, this action,
the resulting measurement and the utility of the action is added to the initial measurement, and
stored as a complete case.

4.4 Rule-based Approach

Using the escalation levels presented in Section 2.3 we mitigate the problems pointed out in
Section 4.1 for a rule-based approach.

For the rule-based approach we first introduce several resource policy modes to reflect the
overall utilization of the system in the VM configuration rules. Dealing with SLA-bound re-
source management, where resource usage is paid for on a “pay-as-you-go” basis with SLOs
that guarantee a minimum capacity of these resources as described above, raises the question,
whether the Cloud provider should allow the consumer to use more resources than agreed. We
will refer to this behavior as over-consumption. Since the consumer will pay for every additional
resource, it should be in the Cloud provider’s interest to allow over-consumption as long as this
behavior does not endanger the SLAs of other consumers. Thus, Cloud providers should not
allow over-consumption when the resulting penalties they have to pay are higher than the ex-
pected revenue from over-consumption. To tackle this problem, we introduce five policy modes
for every resource that describe the interaction of the five escalation levels. As can be seen in
Table 4.7 the policy modes are green, green-orange, orange, orange-red and red. They range
from low utilization of the system with lots of free resources left (policy mode green) over a
scarce resource situation (policy mode orange) to an extremely tight resource situation (policy
mode red), where it is impossible to fulfill all SLAs to its full extent and decisions have to be
made which SLAs to deliberately break and which applications to outsource.

In order to know whether a resource r is in danger of under-provisioning or already is under-
provisioned, or whether it is over-provisioned, we calculate the current utilization utr = user

prr ×
100, where user and prr signify how much of a resource r was used and provided, respectively,
and divide the percentage range into three regions using the two “threat thresholds” TT rlow and
TT rhigh:

47

green Plenty of resources left. Over-consumption allowed.
green-orange Heavy over-consumption is forbidden. All applications that consume more than τ%

(threshold to be specified) of the agreed resource SLO are restrained to τ/2% over-
consumption

orange Resource is becoming scarce, but SLA demand can be fulfilled if no over-consumption
takes place. Thus, over-provisioning is forbidden.

orange-red Over-provisioning forbidden. Initiate outsourcing of some applications.
red Over-provisioning forbidden. SLA resource requirements of all consumers cannot be ful-

filled. If possible, a specific choice of applications is outsourced. If not enough, appli-
cations with higher reputation points or penalties are given priority over applications with
lower reputation points/penalties. SLAs of latter ones are deliberately broken to ensure
SLAs of former ones.

Table 4.7: Resource policy modes

• Region −1: Danger of under-provisioning, or under-provisioning (> TT rhigh)

• Region 0: Well provisioned (≤ TT rhigh and ≥ TT rlow)

• Region +1: Over-Provisioning (< TT rlow)

The idea of this rule-based design is that the ideal value that we call target value tv(r) for
utilization of a resource r is exactly in the center of region 0. So, if the utilization value after
some measurement leaves this region by using more (Region -1) or less resources (Region +1),
then we reset the utilization to the target value, i.e., we increase or decrease allocated resources
so that the utilization is again at

tv(r) =
TT rlow + TT rhigh

2
%.

As long as the utilization value stays in region 0, no action will be executed. E.g., for r =
storage, TT rlow = 60%, and TT rhigh = 80%, the target value would be tv(r) = 70%. Figure 4.4
shows the regions and measurements (expressed as utilization of a certain resource) at time steps
t1, t2, . . . , t6. At t1 the utilization of the resource is in Region −1, because it is in danger of a
violation. Thus, the KB recommends to increase the resource such that at the next iteration t2
the utilization is at the center of Region 0, which equals the target value. At time steps t3 and t4
utilization stays in the center region and consequently, no action is required. At t5, the resource
is under-utilized and so the KB recommends the decrease of the resource to tv(r), which is
attained at t6. Additionally, if over-provisioning is allowed in the current policy mode, then the
adjustment will always be executed as described regardless of what limit was agreed in the SLA.
On the other hand, if over-provisioning is not allowed in the current policy mode, then the rule
will allocate at most as much as agreed in the SLA (SLOr).

The concept of a rule increasing resource r is depicted in Figure 4.5. The rule executes if
the current utilization utr and the predicted utilization utrpredicted of the next iteration (cf. next
paragraph) both exceed TT rhigh (line 2). Depending on what policy level is active the rule either
sets the provided resource prr to the target value tv(r) for policy levels green and green-orange
(line 3) or to at most what was agreed in the SLA (SLOr) plus a certain percentage ε to account
for rounding errors when calculating the target value in policy levels orange, orange-red and red

48

0%

TT_low=60%

TT_high=80%

100%

Region -1

Region 0

Region +1

tv

t1 t2 t3 t4 t5 t6

Figure 4.4: Example behavior of actions at time intervals t1-t6

(line 5). A similar rule scheme for decreasing a resource can be seen in Figure 4.6. The main
difference is that it does not distinguish between policy modes and that it sets the provisioned
resource to at least a minimum value minPrr, which may be 0, that is needed to keep the
application alive (line 4). The rule is executed if the current utilization utr and the predicted
utilization utrpredicted of the next iteration both lie below TT rlow (line 2).

A large enough span between the thresholds TT rlow and TT rhigh helps to prevent oscillations
of repeatedly increasing and decreasing the same resource. However, to further reduce the risk
of oscillations, we suggest to calculate a prediction for the next value based on the latest mea-
surements. Thus, an action is only invoked when the current AND the predicted measurement
exceed the respective TT. So, especially when only one value exceeds the TT, no action is exe-
cuted.

1 IF
2 utr > TT rhigh AND utrpredicted > TT rhigh

3 THEN
4 Set prr to user

tv(r) for policy modes green, green-orange.

5 Set prr to min(user

tv(r) , SLO
r ∗ (1 + ε/100)) for policy modes orange, orange-red,

red.

Figure 4.5: Rule scheme for increasing a resource

1 IF
2 utr < TT rlow AND utrpredicted < TT rlow

3 THEN
4 Set prr to max(user

tv(r) ,minPr
r).

Figure 4.6: Rule scheme for decreasing a resource

The rules have been implemented using the Java rule engine Drools [15]. The Drools engine
sets up a knowledge session consisting of different rules and a working memory. Rules get

49

activated when specific elements are inserted into the working memory such that the conditional
“when” part evaluates to true. Activated rules are then triggered by the simulation engine. In
our case, the simulation engine inserts measurements and SLAs of applications into the working
memory. Different policy modes will load slightly modified rules into the Drools engine and thus
achieve a high adaptability of the KM system reacting to the general performance of the Cloud
infrastructure. As opposed to the CBR based approach in [150], the rule-based approach is able
to fire more than one action at the same iteration, which inherently increases the flexibility of the
system. Without loss of generality we can assume that one application runs on one VM (several
applications’ SLAs can be aggregated to form one VM SLA) and we assume the more interesting
case of policy modes orange, orange-red or red, where over-provisioning is not allowed.

Listing 4.1 shows the rule to increase parameter storage formulated in the Drools language
following the pattern presented in Figure 4.5. Line 1 defines the name of the rule that is split
into a condition part (when, lines 2-12) and an execution part (then, lines 13-17). Line 4 tries
to find the SLA of an application, stores its id into $slaID and the SLA into $slaApp.
Line 6 looks for a set of actions for this $slaID where no storage action has been added yet
(storage == false) in order to avoid contradicting actions for storage for one measure-
ment. Line 8 searches for a measurement for the appropriate VM (vmID == $slaID) that
has been inserted into working memory that is no prediction ($prediction == false)
and where the percentage of utilized storage exceeds TT rhigh, i.e.,

storage_utilized > storage_HighTT,

and stores used and provided values into $s_used and $s_provided, respectively. The
predicted measurement for the next iteration is handled similarly in line 10. Finally, line 12
checks whether provided storage is still below the agreed value in the SLA. This is done, because
in policy modes orange to red over-consumption is prohibited. The rules for policy modes
green and green-orange would omit this line. Now, if all these conditions are met, the rule gets
activated. When fired, line 15 calculates the new value for prr as explained in Figure 4.5. This
line (as line 12) would also be altered for policy modes green and green-orange. Line 17 then
modifies the action container $as and inserts the appropriate storage action with the value for
provided storage to be set. Other rules follow the same pattern as described here and in Figure
4.5 for rules increasing resource allocations and in Figure 4.6 for rules decreasing resource
allocations.

Listing 4.1: Rule “storage_increase”
1 r u l e " s t o r a g e _ i n c r e a s e "
2 when
3 / / Remember SLA i d o f a p p l i c a t i o n
4 $SLA_app : A p p l i c a t i o n ($ s l a I D : i d)
5 / / Look f o r s e t o f a c t i o n s t h a t has no s t o r a g e a c t i o n y e t
6 $as : A c t i o n s (s l a I D == $s la ID , s t o r a g e == f a l s e)
7 / / Look f o r measurement t h a t has h igh u t i l i z a t i o n o f s t o r a g e
8 $m : Measurement (p r e d i c t i o n == f a l s e , s t o r a g e _ u t i l i z e d > s torage_HighTT ,

vmID == $s la ID , $s_used : s t o r a g e _ u s e d , $ s _ p r o v i d e d : s t o r a g e _ p r o v i d e d)
9 / / Look f o r p r e d i c t e d measurement t h a t w i l l have h igh u t i l i z a t i o n o f s t o r a g e

10 $m_pred : Measurement (p r e d i c t i o n == true , s t o r a g e _ u t i l i z e d > s torage_HighTT
, vmID == $ s l a I D)

50

11 / / Check whe ther we p r o v i d e l e s s than SLO v a l u e
12 e v a l ($ s _ p r o v i d e d <= Double . va lueOf ($SLA_app . getThresholdByName (" s t o r a g e ")))
13 then
14 / / C a l c u l a t e t v
15 double newStorage = Math . min ($s_used / ((s to rage_HighTT + storage_LowTT) / 2) ,

Double . va lueOf (SLA_app . getThresholdByName (" s t o r a g e ")) ∗ (1+ eps / 1 0 0)) ;
16 / / Add s t o r a g e a c t i o n t o s e t o f a c t i o n s
17 modify ($as) addAc t ion (new S t o r a g e A c t i o n D i r e c t (newStorage , "GB")) ,

s e t S t o r a g e () ;
18 end

4.5 Self-adapting the Rule-based Approach

As will be seen in Section 6.4 the TTs of the rule-based approach have a high impact on its
performance. This section will explain how the autonomic adaptation and configuration of the
autonomic manager, i.e., the TT adaptation, works. We will describe two basically different
approaches: The first approach is based on changes within a cost function, whereas the second
one relies on changes in the workload.

Approaches based on the cost function

In this approach the autonomic adaptation of the TTs is based on the definition of the cost
function in [151]. The general idea is that if cost has increased for some time, TTs should be
adapted. If this is the case two different subproblems have to be solved:

1. Determine the most appropriate TT(s) to adapt.

2. Determine for how much the chosen TT(s) should be adapted.

The cost function sums up costs incurred while enacting an SLA on a VM. These costs
consist of SLA penalties, resource wastage, and the VM reconfiguration actions. The used cost
function is defined as

c(p, w, c) =
∑
r

pr(pr) + wr(wr) + ar(ar), (4.11)

where, for a certain resource r, pr(pr) : [0, 100]→ R+ defines the costs due to the penalties that
have to be paid according to the relative number of SLA violations (as compared to all possible
SLA violations) pr; wr(wr) : [0, 100] → R+ defines the costs due to unutilized resources wr;
and ar(ar) : [0, 100]→ R+ the costs due to the executed number of actions ar (as compared to
the number of all possible actions).

During the Analysis phase the KB does not only observe the cost for one resource r, which
naturally is defined as cr(p, w, c) = pr(pr) + wr(wr) + ar(ar), but also each individual com-
ponent pr, wr, and ar for each resource. If the cost has increased for a resource over a certain
period of time (called look-back horizon k and defined later in this section), the KB starts to
investigate which of the components caused this increase.

51

Subproblem 1 (Selecting TTs). To solve subproblem 1, at first the most problematic cost
factor has to be determined. From this, we can relate to a specific TT increase/decrease action.
To achieve this one can basically imagine two different methodologies: Either, the maximum
cost parameter of the current iteration, or the parameter with the maximum increase in the last k
iterations is chosen.

Since our cost function cr works by relative and not total costs, the first method would yield
the following problem: Suppose that no violation has occurred for 10 iterations. Thus, pr = 0
at iteration 10. At iteration 11, though, a violation occurs which makes pr = 1/11. In the
following iterations, where pr = 1/12, 1/13, 1/14, . . . (if no further violations occurs) pr could
be easily greater than wr and ar as violations are usually punished more severely than wastage or
actions. Thus, for these iterations the algorithm would always decide to act based on violations,
even though violations are not occurring any more in the same time.

Let pr,t signify the relative amount of violations at iteration t, and let wr,t ar,t be defined
similarly. Then, since an increase in, e.g., violations pr,t occurs iff pr,t is strongly monotonically
increasing, we choose to opt for the second methodology. According to a look-back horizon k
we calculate the difference between the current cost and the minimum cost of the last k iterations.
The maximum of these differences then points to the cost summand (arg) that needs attention:

arg max(pr,t − min
1≤j≤k

(pr,t−j),wr,t − min
1≤j≤k

(wr,t−j),

ar,t − min
1≤j≤k

(ar,t−j)). (4.12)

This results into three different cases, where either the p, w, or a terms yield the maximum.
(We omit cases where some arguments of the maximum function are equal. In such a case, the
order to choose the arg max is p over w over a. We prioritize like this, because we assume that
penalties incur higher costs than wastage, and wastage incurs higher costs than reconfiguration
actions.) We define three options which TT(s) to increase or decrease.

• Option A:

1. pr,t −min1≤j≤k(pr,t−j) is maximal: Decrease TT rhigh and TT rlow.

2. wr,t −min1≤j≤k(wr,t−j) is maximal: Increase TT rlow.

3. ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT rlow and increase TT rhigh.

• Option B:

1. pr,t −min1≤j≤k(pr,t−j) is maximal: Decrease TT rhigh and TT rlow.

2. wr,t −min1≤j≤k(wr,t−j) is maximal: Increase TT rhigh and TT rlow.

3. ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT rlow and increase TT rhigh.

• Option C:

1. pr,t −min1≤j≤k(pr,t−j) is maximal: Decrease TT rhigh.

2. wr,t −min1≤j≤k(wr,t−j) is maximal: Increase TT rlow.

52

3. ar,t −min1≤j≤k(ar,t−j) is maximal: Decrease TT rlow and increase TT rhigh.

The difference between options A and B is that if the w term causes the maximum, it will
increase both low and high TTs in option B, whereas it will only increase TTlow in option A.
The main feature of option C is that it only decreases TThigh (instead of also decreasing TTlow).
So option B and even more option A could be seen as more cautious as far penalties for SLA
violations are concerned than option C.

Moreover, we present a fourth methodology, option D, differing from the former three ones.
This methodology does not only consider the maximum cost summand increase, but handles all
cost parameters that show an increase, but only for the recent iteration. This may promise that
the actual situation of which parameter needs to be adapted is assessed more precisely. Thus,
one can distinguish seven different cases:

1. pr increased: Decrease TT rhigh.

2. wr increased: Increase TT rlow.

3. ar increased: Decrease TT rlow, increase TT rhigh.

4. pr and wr increased: Increase TT rlow, decrease TT rhigh.

5. pr and ar increased: Decrease TT rlow.

6. wr and ar increased: Increase TT rhigh.

7. pr and wr and ar increased: Choose the two factors with the highest increase and act
according to the cases 4-6.

Subproblem 2 (Adapting TTs). After subproblem 1 has been solved, for subproblem 2 it is
important to determine the value by how much the respective TT(s) should be moved. Again, one
could imagine several techniques to determine a good value for the TTs as case based reasoning
(adapting the approach as described in [150]), or using fixed or random increasing/decreasing
steps. Observing that for the TTs the following inequalities must hold

0% < TTlow < TThigh < 100%, (4.13)

we choose to use the following approach. If we need to decrease TTlow or increase TThigh, we
set it to a certain fraction 1/α < 1 of the distance from TTlow to 0, and from TThigh to 100,
respectively, expressed as

TT r,t+1
low = TT r,tlow −

TT r,tlow
α

(4.14)

TT r,t+1
high = TT r,thigh +

100− TT r,thigh
α

. (4.15)

53

(Superindex t indicates the time iteration for which the respective TT is valid. It is omitted, if not
relevant.) If we need to increase TTlow or decrease TThigh, we shrink the distance d between
TTlow and TThigh to d(α−1)

α by moving the TT in question towards the other, i.e.,

TT r,t+1
low = TT r,tlow +

TT r,thigh − TT
r,t
low

α
(4.16)

TT r,t+1
high = TT r,thigh −

TT r,thigh − TT
r,t
low

α
. (4.17)

This especially makes sure that Equation (4.13) also holds in this situation. When both TTlow
and TThigh are to be increased and decreased, respectively, simultaneously (cf. case 4 in option
D), we have to set α > 2 in order not to violate Equation (4.13).

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(a) TT example for option A

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(b) TT example for option B

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

0	 1	 2	 3	 4	 5	 6	 7	

%
	

itera(on	

TT_low	 TT_high	

(c) TT example for option C

Figure 4.7: TT examples for options A-C

Summarizing both subproblems, the graphs in Figure 4.7 show how the TTs behave for
the different options A-C according to the following scenario: All options start with TTlow =
50%, TThigh = 75%. At iteration 2 we encounter a maximum in penalties, at iteration 4 a
maximum in wastage and at iteration 6 a maximum in actions.

54

Approach Based on Workload Volatility

As an alternative to the cost function dependent approach, we investigate an approach depending
on the change in the workload, i.e., the workload volatility (WV).

We define workload volatility φ as the intensity of change in the measured workload traces
of a certain resource. We calculate this intensity as the percentage relating the current value of
the workload mr,t to the previous one mr,t−1, i.e.,

φr,t(mr,t,mr,t−1) = |(max(mr,t, rmin)
max(mr,t−1, rmin)

− 1) · 100|

for t ≥ 1 and rmin > 0. The variable rmin stands for the lower bound for a certain resource
stated in the Service Level Objective (SLO). E.g., we have rmin = 10 for the SLO “10GB ≤
storage ≤ 1000GB”. This amount will always be provided, even if an application uses less.
So measurements below this value should not influence the behavior of the system, neither
the classification into a WV class. To give an example for r = storage, let us assume that
mr,t = 20,mr,t−1 = 15. We would get φr,t(mr,t,mr,t−1) = 33.3̇%. If at the next iteration we
have mr,t+1 = 18, then φr,t+1(mr,t+1,mr,t) = 10%.

This is useful, because a problem inherent in options A-C is that the new parameter k to be
tuned is introduced. Its relevance to WV is the following: When WV is low, a long look-back
horizon is helpful, because a short one would trigger more TT adaptation situations, which in
reality are just insignificant changes in workload. On the opposite, when WV is high, changes
can get very fast very significant, and thus a short look-back horizon should be favored.

For this methodology, we introduce WV classes, into which we automatically categorize
workload on the fly. We define the following WV classes: LOW, MEDIUM, MEDIUM_HIGH,
and HIGH. Algorithm 4.1 dynamically decides to which WV class a specific workload trace
belongs. Dynamically means that the classification might change at every iteration, if the work-
load behavior changes significantly. Significant in this context means that the current value for
WV is compared to the recent behavior of the workload. Only if the maximum value for the WV
from recent and current behavior falls into a different category, the classification is altered. From
the second iteration on, the algorithm first calculates φ and determines the maximum value in
φQ, which is a queue of size φQ_maxsize (lines 2-7). The method addLast() adds the input
element as last element to the queue, whereas the method remove() removes the first element
of the queue. Lines 9-18 classify the workload according to the found maximum element of the
queue. An ε is added to this comparison in order to hinder small statistical outliers from altering
the classification outcome. Table 4.8 summarizes all constants used for the evaluation.

Based on this classification the following two options E and F alter their behavior accord-
ingly. Option E chooses a “good” set of TTs from a-priori evaluation for different WV classes.
This can be tested offline, and altered if specified in the SLA. E.g., for high-risk applications
both TTs could be lowered, whereas for energy-aware applications, the TTs could be increased
for all workloads. For our case, Table 4.9 shows the TTs for the mentioned volatility classes.
The values were chosen according to the definition of the WV classes in Section 6.1.

Also from a-priori experience, option F chooses the best option with its best k according to
the best result in the corresponding WV class. As will be seen in Section 6.6, the best results for
every WV class can be achieved by the options captured in the right-hand side of Table 4.9.

55

Input: r,mr,t,mr,t−1, φQr

Output: Workload volatility class
1: if t ≥ 1 then
2: {Calculate φ and determine maximum in φQr}
3: φQr.addLast(φr,t(mr,t,mr,t−1))
4: if φQr.size() > φQ_maxsize then
5: φQr.remove()
6: end if
7: φQrmax ← max(φQr)
8:

9: {Classify workload volatility}
10: if φQrmax ≤ LOW_THRESHOLD + ε then
11: return LOW
12: else if φQrmax ≤ MEDIUM_THRESHOLD + ε then
13: return MEDIUM
14: else if φQrmax ≤ MEDIUM_HIGH_THRESHOLD + ε then
15: return MEDIUM_HIGH
16: else if φQrmax ≤ HIGH_THRESHOLD + ε then
17: return HIGH
18: end if
19: end if
Algorithm 4.1: On-the-fly Classifying of Workload into its Workload Volatility Class

Parameter Value
LOW_THRESHOLD 10
MEDIUM_THRESHOLD 50
MEDIUM_HIGH_THRESHOLD 75
HIGH_THRESHOLD 100
φQ_maxsize 10
ε 4

Table 4.8: Parameters used for Algorithm 4.1

Option E) Option F)
WV TTlow TThigh Choose Option
LOW 70% 90% C), k = 5
MEDIUM 45% 70% A), k = 20
MEDIUM_HIGH 30% 60% A), k = 5
HIGH 20% 50% A), k = 2

Table 4.9: A-priori defined TTs and options based on workload volatility classes for options E)
and F)

56

CHAPTER 5
Energy-efficient SLA Enactment in

Cloud Computing Infrastructures

This chapter focuses on the energy-efficient aspect of SLA enactment for Cloud computing
infrastructures. It presents an energy model, as well as several heuristics, for VM migrations
and PM power management. The chapter also formulates and formalizes the IaaS management
problem and proves it to be an instance of the NP-hard binary integer programming problem.
It is shown that the NP-hardness is also of relevance for this instance in practice, as a standard
heuristic used to solve this problem cannot solve this specific instance in reasonable time even
for small Clouds.

5.1 Formalization of the IaaS Management Problem

This section formalizes the Cloud environment together with the IaaS management problem.
We define the set of virtual machines (VMs) as VM = {vm1, . . . , vmn} and the set of

physical machines (PMs) as PM = {pm1, . . . , pmm}. For the available resources Res =
{r1, . . . , rk} we define resource functions

rvml : VM → R≥0, (5.1)

rpml : PM → R≥0 (5.2)

describing the desired amount of resource l for VMs and the available amount of resource l for
PMs, respectively. Of course, for one resource l the range and the units the resource is measured
in have to be the same for rvml and rpml . For the set of resources we may consider, as in the chap-
ters before, Res = {storage, incoming bandwidth, outgoing bandwidth,CPU power,memory},
but this approach is not tied to these parameters in any way. The only assumption made is that
such resources can be required by a VM and provided by a PM.

For each time step t we know, whether a VM should be running (1) or not (0), defined by

on(t) : VM → {0, 1}. (5.3)

57

What we are looking for is an instance of the function

f (t) : VM → PM ∪ {∅},

f (t)(vm) =

{
pm ∈ PM if on(t)(vm) = 1,
∅ if on(t)(vm) = 0.

(5.4)

that maps each virtual machine to a physical machine or to the empty set, if it is not yet or no
longer deployed, at a specific point of time t. Furthermore, we want to reduce the overall costs,
i.e., energy consumption, of our Cloud environment. Thus, we define the cost function

c : PM → R (5.5)

that describes the energy consumed by a running PM. If we want to take the CPU frequency a PM
is running at into consideration, we can define the cost function as c : PM×Frequency class→
R, where the set of frequencies a PM is capable of running at is partitioned into some frequency
classes. This is important when we want to fine-tune our PMs, since a PM running at a lower
frequency class consumes less energy than a PM running at a higher one. In this thesis we will
omit this fine-tuning. When we know f (t), we can find all running PMs at time t by

PM
(t)
active = {pmj |∃i : pmj = f (t)(vmi)}. (5.6)

As already stated, we want to minimize energy costs,

minimize
∑

pmj∈PM
(t)
active

c(pmj), (5.7)

while complying to some resource constraints:

∀j ∈ {1, . . . ,m},∀l ∈ {1, . . . , k} :
∑

∀i:f(vmi)=pmj

rvml (vmi) ≤ rpml (pmj). (5.8)

Furthermore, we assume that f (t) is a total function. Thus, every VM is deployed on exactly
one PM or is shut down. Of course, the function is not injective, because a PM should be able
to host more than one VM.

As a next step, we want to integrate the costs of migrating VMs to different PMs or even
other clouds, and of booting PMs. As to the first part, we define the migration cost of a VM vm
from one PM pmold = f (t−1)(vm) to another pmnew = f (t)(vm) as

mc : VM × PM × PM → R≥0,

mc(vm, f (t−1)(vm), f (t)(vm)) 7→ x ∈ R≥0. (5.9)

Until further measurements are available, mc may be assumed a constant function yielding
an average value for VM migration. However, as soon as we consider migration from one cloud
to another, this function has to be updated.

As to the second part, we define the cost of booting a shut down PM as

58

bc : PM → R≥0. (5.10)

Finally, we can reformulate our target function as

minimize
∑

pmj∈PM
(t)
active

c(pmj) +

∑
∀i:f (t−1)(vmi)6=f (t)(vmi)

mc(vmi) +

∑
∀j:pmj /∈PM

(t−1)
active∧pmj∈PM

(t)
active

bc(pmj). (5.11)

We know the functions bc,mc, c, on(t), f (t−1). The last one directly implies PM (t−1)
active. For

t = 0 we assume on(0)(vm) = 0 ∀vm ∈ VM , implying f (0)(vm) = ∅ ∀vm ∈ VM and
PMactive = ∅.

Definition 1 (IaaS management problem). An IaaS management problem is the problem of de-
termining f (t) as in Equation (5.4) (implying PM (t)

active) subject to the target function (Equation
(5.11)) and to the constraints formulated by Equation (5.8).

As a further possibility one may want to relax Equation ((5.8)) for l = storage by introducing
a storage pool that can be used to satisfy storage needs of a VM that cannot be satisfied by one
PM.

5.2 Formulation as a Binary Integer Programming Problem

In order to solve the IaaS management problem with efficient standard algorithms, we want
to reformulate it as a Binary Integer Programming (BIP) problem. After this formulation we
can test the feasibility and scalability of this BIP problem instance by using the built-on MAT-
LAB algorithm bintprog [13] and a “hand-made” Matlab algorithm, where we integrated
more specific knowledge about this specific instance like infeasible solutions that should not be
evaluated. We provide the reader with comparisons of the two algorithms looking for optimal
solutions in terms of computation speed and give a limit of their capability to solve problems in
reasonable time.

A binary integer programming problem is stated as

min
x
fTx such that (5.12)

A · x ≤ b, (5.13)

Aeq · x = beq, (5.14)

x binary. (5.15)

59

Vector x is a binary vector, f in our case contains the cost function, and A, b, Aeq and beq
will be used for our constraints. Calling the MATLAB function bintprog(f,A,b,Aeq,beq)
will solve the BIP problem with a linear programming (LP)-based branch-and-bound algo-
rithm [13].

We now show the structure of the specified matrices and vectors for our IaaS management
problem. At first, we have to define which decision variables we are going to use. Our vector
x will consist of the m × n (of course binary) decision variables xji for i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m}, where xji signifies whether pmj hosts vmi. The following m variables yj
state whether pmj is turned on. Next, n variables mi state whether vmi was migrated from the
last iteration to the current one, and the m variables bj whether pmj was booted from the last
iteration to the current one. Together, this forms

x =

x11
...

xm1

x12
...

xm2
...
x1n

...
xmn
y1
...
ym
m1

...
mn

b1
...
bm

, (5.16)

an m× n+ 2m+ n dimensional column vector. Furthermore, the column vector f defines

60

the cost incurred by vector x.

f =

0m·n×1

c1
...
cm
mc1

...
mcn
bc1

...
bcm

, (5.17)

where ci = c(pmi), mcj = mc(vmj , _, _) and bci = bc(p,i) are defined in the sense of
Equation (5.11). The null vector 0m·n ignores the allocation of the xji’s in x, since the allocation
itself is not interesting when it comes to the cost the allocation produced.

The biggest part of this definition are the matrices A and Aeq. From the definition of vector
x, we know that they both have to havemn+2m+n columns. MatrixA states that the resource
demands for every vmj and every resource k is met and that VMs can only run on powered
on PMs. This gives mk + m rows. For the sake of notation, we write rpmlj as an abbreviation
for rpml (pmj), and rvmli as an abbreviation for rvml (vmi) as defined in Equation (5.8). At first,
we introduce the mk ×m-dimensional matrix Ri that accommodates the resource demands for
every resource for a specific vmi,

Ri =

rvm1i 0 · · · 0
...

...
...

rvmki 0 · · · 0
0 rvm1i · · · 0
...

...
...

0 rvmki · · · 0
. . .

0 0 · · · rvm1i
...

...
...

0 0 · · · rvmki

. (5.18)

Then, after defining En as the n-dimensional identity matrix, we can now define A as

A =
(
R1 R2 · · · Rn 0mk×m

0(mk+m)×(m+n)

Em Em · · · Em −n · Em

)
. (5.19)

61

The corresponding values for the m · k +m dimensional vector b are therefore

b =

rpm11
...

rpmk1
rpm12

...
rpmk2

...
rpm1m

...
rpmkm

0m×1

. (5.20)

Finally, we come to the matrix Aeq and its corresponding vector beq. They want to make
sure that every VM runs on exactly one PM and consider migrations and powering ups.

The n ×mn-dimensional block diagonal matrix Ê ensures that every VM runs on exactly
one PM and is formed by n m-dimensional row vectors of 1’s, abbreviated em = (1, 1, . . . , 1).
To see how this works, we will give the definition of beq right away. The first vector em in
Ê is multiplied by the first m x11, . . . xm1 of x resulting into 1, thus making sure that vm1 is
deployed on exactly one of the PMs pm1, . . . , pmm. This is done for all n VMs.

Ê =

em

em
. . .

em

beq =

eTneTn
0m

Next, we need to consider the allocations from the former iteration stored in xt−1

ji , and do
this by defining the n ×mn - dimensional matrix Xt−1. For the first iteration t = 1 we set all
x0
ji = 0. Here again, e.g., the first row xt−1

11 , . . . , xt−1
m1 is multiplied by the m decision variables

x11, . . . xm1 of x, which gives 1 if and only if vm1 will not be migrated. Additionally, as we
will see with the formulation of Aeq we set an identity matrix En after it to be multiplied by the
migration variables m1, . . . ,mn of x. The sum of both values have to equal 1, thus we conclude
that either the VM will not migrate (first summand) or it will migrate by setting the appropriate
mi = 1 (second summand).

Xt−1 =

x
t−1
11 · · · xt−1

m1 0 · · · 0
. . .

0 · · · 0 xt−1
1n · · · xt−1

mn

62

What remains to be defined are the “powered on” variables y1, . . . , ym, as well as the “boot-
ing” variables. To see this, we will give the complete definition of Aeq before.

Aeq =

 Ê 0n×2m+n

Xt−1 0n×m En 0n×m

0m×mn Y t−1 0m×n −Em

 (5.21)

Consequently, we define Y t−1 by the values yt−1
j that state whether pmj was powered on in

the previous time slot. The corresponding variables of vector x are y1, . . . , ym and b1, . . . , bm,
and the multiplication results into 0 for every corresponding row. For the first iteration t = 1
we set all y0

j = 0. The concept is similar to the migration variables described before. Either the
specific PM had already been powered on in the previous time slot or the corresponding booting
variable has to be set to 1, if it is turned on in the current time slot.

Y t−1 =

1− yt−1

1

1− yt−1
2

. . .
1− yt−1

m

Theorem 1. The IaaS management problem is an instance of the NP-hard binary integer pro-
gramming problem.

Proof. We show that we can reduce every instance of the IaaS management problem to a binary
integer programming problem that has been shown to be NP-hard by [105]. To do this reduction,
we simply define the necessary parameters A, Aeq, b, beq, f as in Equations (5.19), (5.21),
(5.20), (5.2), and (5.17), respectively. All entries of the mentioned matrices and vectors are
either pre-specified or determined by the IaaS management problem (Def. 1).

5.3 Consequences of the NP-hardness

As already stated in the beginning of this chapter we applied two algorithms to solve this prob-
lem. The first one, the Matlab bintprog algorithm takes the following input with all variables
f , A, b, Aeq, and beq as defined above. The variable x stores the solution to our problem.

options = optimset(’BranchStrategy’, ’mininfeas’,
’Diagnostics’, ’on’, ’Display’, ’final’,
’MaxRLPIter’, 7800000, ’TolRLPFun’, 1.0e-06);

[x, fval, exitflag, output] =
bintprog(sparse(f),sparse(A),b,sparse(Aeq),beq, [], options)

The function sparse(S) creates a sparse matrix out of matrix S. The sparse matrix is a
more compact writing for matrices that contain a lot of zeros, as it only stores non-zero entries
[14]. For the options we evaluate the two branching strategies mininfeas and maxinfeas. The
strategy mininfeas selects the “branch variable in the search tree with the minimum integer

63

infeasibility (the variable whose value is closest to 0 or 1, but not equal to 0 or 1)”, whereas
maxinfeas selects “the variable with the maximum integer infeasibility (the variable whose value
is closest to 0.5)”. Furthermore, we set MaxRLPIter = 7.8 · 106, which is “the maximum
number of iterations the LP-solver performs to solve the LP-relaxation problem at each node.”
Finally, TolRLPFun is set to 10−6, which is the “termination tolerance on the function value
of a linear programming relaxation problem” [13]. The shown code snippet just exemplifies one
iteration t. For the subsequent iteration t + 1 the parameters f , A, b, Aeq, and beq are updated
with the xt and the new demand of VMs, whose changes in demand stem from escalation level
1.

As to the second algorithm, which we call selected tries, we generate all mn possibilities
for allocating vmj on pmi. Thus, we omit such cases beforehand, where VMs are located on
multiple PMs, or on no PM at all. Then, we test all these possibilities and see, whether they
represent a valid solution, and if yes, which one achieves the best results. Of course, there are
still many invalid solutions tested (for validity), but the search space is still reduced to a certain
extent, namely from 2mn to mn.

As this problem has to be solved for at least more than 100 VMs and PMs and five resource
types in practice, we test the scalability of both algorithms. Runtime results are depicted in Table
5.1. We see that already for 6 VMs, 6 PMs and 3 resource types the LP-based algorithm takes
around a third of a minute. This would still be acceptable, but for 8 VM and 7 PMs the algorithm
does not finish within half an hour, and for 10 VMs, 9 PMs and 4 resource types the algorithm
does not terminate within 2 hours. For the selected tries algorithm, finding a solution for 7 VMs,
6 PMs and 3 resource types already takes more than two hours. This is why this algorithm was
not evaluated for larger instances.

n m k LP-based branch-and-bound algorithm Selected Tries
3 3 3 1.73s (mininfeas) - 0.81s (maxinfeas) 0.39s
5 3 5 0.56s (mininfeas) - 0.16s (maxinfeas) 0.05s
6 5 5 3.56s (mininfeas) - 21.72s (maxinfeas) 18.21s
6 6 2 21.99s (mininfeas) - 392.75s (maxinfeas) 182.79s
6 6 3 19.4s (mininfeas) - 402.91s (maxinfeas) 188.06s
6 6 5 0.85s (mininfeas) - 282.51s (maxinfeas) 184.14s
7 5 3 11.63s (mininfeas) - 58.06s (maxinfeas) 616.45s
7 6 3 37.14s (mininfeas) - 1244.5s (maxinfeas) 7523.61s
7 6 4 42.93s (mininfeas) n/a
8 7 3 > 1800s (mininfeas) n/a

10 9 4 > 7200s (mininfeas) n/a

Table 5.1: Runtimes for finding optimal solutions

Thus, we see that the NP-hardness of the BIP problem is also of great relevance in practice
for this problem instance.

64

5.4 Energy-Efficient SLA Enactment

In the following we will present several heuristics to solve the IaaS management problem in a
scalable manner combining it with work from Chapter 4. We use a multi-level approach based
on the escalation levels introduced in Section 2.3, where we subsume levels 0, 1, 3, and 4.
We sequentially work off these levels; levels 0 and 1 are processed by the rule-based approach
presented in Section 4.4. Processing levels 3 and 4 is explained in the following.

Energy Model

We find a very elegant way to relate the cost factors for energy c, migrations mc, and booting
PMs bc to a natural energy model. Thus, we achieve to relate these costs to realistic values gained
from our model and free ourselves from determining arbitrary values for the aforementioned
costs. We even enhance the model by incorporating costs for turning off PMs.

As far as our energy model is concerned, we define the energy consumption E of a PM j as

Ej = Ejmin + utCPU,j · (Ejmax − E
j
min), (5.22)

where Ejmin and Ejmax represent respectively the minimum and maximum energy consumption
of a certain PM j, and utCPU,j signifies the utilization of the CPU of PM j, with values between
0 and 1. Thus, in our model energy consumption only depends on CPU utilization, and we make
a linear interpolation of the PM’s energy consumption at idle state (Emin when utCPU = 0)
and when fully loaded (Emax when utCPU = 1). While this energy model might not be fully
realistic, it is corroborated by experiments in the literature such as [82, 41].

We assume that one VM resides on exactly one PM except when it is migrated, then it resides
on exactly two PMs. We consider a heterogeneous system, thus VMs and PMs with possibly
different amounts of resources, and PMs with different energy characteristics. Furthermore, we
assume that the amount of resources a VM is provided can be adapted from one iteration to the
next, and that PMs can be powered on and off. However, VM migrations and powering PMs
on and off is not considered “free of charge”, as far as energy is concerned. We define mi-
gration_time, startup_time and shutdown_time as the time (in iterations through the MAPE-K
cycle.) it takes a VM to migrate, and a PM to start up or shut down, respectively. Figure 5.1
shows how migrations are handled in our energy model. We do not simply add any arbitrary
value as a penalty for migrations, but we place the VMs on both PMs, the PM the VM is mi-
grating from and the PM it is migrating to, for migration_time iterations. Thus, the energy cost
of a migration is indirectly measured by occupying the resources of two PMs and thus increas-
ing CPU utilization of the other PM as well for a certain period of time. We similarly proceed
with the power management of PMs. We do not assume that powering on and off PMs happens
instantly, but takes some time as defined in startup_time and shutdown_time. This is shown in
Figures 5.2 and 5.3, respectively.

Figure 5.4 shows a possible configuration of a sample Cloud infrastructure at six time steps.
There are 2 PMs and 2 VMs at time step t, one PM is powered off. At t + 1, the CPU and
memory consumption of the VMs are increasing requiring the second PM to be powered on.
The machine is effectively powered on at t + 2 and can be used, so we begin the migration of

65

t t+1

VM	 1	 VM	 1	

PM1 PM1 PM2 PM2

VM	 1	 VM	 1	

PM1 PM2

Decision:
Migrate VM1 from
PM1 to PM2!

Figure 5.1: Concept for migrations with migration_time=1

t t+1 t+2

PM1 PM1

Decision:
Power on PM1!

not available for VMs,
but consuming full energy
level (Emax). Possibility to
allocate VMs to this PM
already.

Fully operational.

VM	 1	

Figure 5.2: Concept for powering on PMs with startup_time=1

t t+1 t+2

PM1 PM1

Decision:
Power off PM1!
Precondition: No VMs
are executing on PM1

not available for
VMs,
but consuming full
energy level (Emax)

PM1 powered off

Figure 5.3: Concept for powering off PMs with shutdown_time=1

VM 1 from PM 1 to PM 2. The migration will last for one time step. At t + 3 the migration
ended and we do not need to modify the system again. At t+ 4 the resource needs of VM 2 has
greatly decreased, making it possible to consolidate the system safely by beginning to migrate
VM 1 back from PM 2 to PM 1. At the last time step we can shut down PM 2, which is unused.

66

t	 t+1	

PM1	 	 	 	 	 	 	 	 PM2	
Powered	 off	

	 	 	 	 	 PM2	
Powering	 on	

PM1	

t+2	

PM2	
	

PM1	

t+3	

PM2	
	

PM1	 PM1	 PM2	
	

PM1	 	 	 	 	 	 PM2	
Powering	 off	

t+4	 t+5	

VM2
VM1

C
P
U

M
E
M

C
P
U

M
E
M

C
P
U

M
E
M

migration_time = 1
startup_time = 1
shutdown_time = 1

Figure 5.4: Configuration sample at six time steps

Power-Aware Reallocation: VM Migrations

In order to achieve power-aware allocation and reallocation of the VMs to the PMs, we im-
plemented several algorithms with different behaviors. For each algorithm we implemented a
first allocation version, which will do the initial mapping of the virtual machines to the physical
machines. We then implemented a reallocation algorithm that will output a mapping out of an
initial allocation, using the proposed VM migration model.

First Fit

The FIRSTFIT algorithm for the first allocation problem is the well-known mapping algorithm
that will allocate each VM to the first PM on which it fits. We, however, added a power-aware
component to the algorithm, as we will try to allocate first on the PM that will have the smallest
maximum power consumption which, as shown in [48] has proven to consume less energy.

When reallocating the VMs, the usual packing algorithms cannot be used, since we have to
take into account where the VMs were allocated at the previous timestep, and the fact that they
will consume resources on both source and destination PMs. The algorithm works in two steps.
First we pick the most loaded PM and we distribute half its load in a first fit fashion. Then we
pick the least loaded PM, and distribute all its load in a first fit fashion.

Round Robin

The ROUNDROBIN algorithm for the first allocation allocates one VM to each PM until no VM
is left to allocate. We added the same power-aware component as for the FIRSTFIT algorithm.

When reallocating the VMs, we first take the most loaded PM and spread its load on other
non empty PMs in a round robin fashion, then we take one VM on each PM and put it on an

67

empty PM. This reallocation algorithm, even if it does not perform well power-wise, will serve
as a baseline for other algorithms.

Monte Carlo

The MONTECARLO algorithm works on the basis of the well known Monte Carlo method,
which uses probabilistic techniques to compute a numerical value. In our case, we will do the
first allocation using the ROUNDROBIN algorithm, which allows us to have an evenly balanced
system, and that way converge faster to a good solution.

For the reallocation, the algorithm computes the cost of the current allocation using several
parameters in order to:

• increase the cost for each VM migrating.

• increase the cost for each overloaded PM.

• decrease the cost for each PM that is empty or will be empty.

Each parameters can be changed to modify the weight of the migrations, PM overloads and PM
powering down. In our tests, we will use the values 1 for the migrating VMs, 4 for the overloaded
PMs and−10 for a PM that will be empty. This means that if we take for instance a system with
3 PMs and 1 VM migrating from PM 1 to PM 2 we will get the cost : 1×1+4×0+(−10×2) =
−15. The algorithm then computes a random set of VM migrations, in order to get the new cost
of the reallocation. If the cost is lower, we keep the set of migrations. The algorithm repeats
these operations a fixed number of times, to emerge the best set of migrations to effect for the
next iteration.

Vector Packing

The VECTORPACKING algorithm tries for the first allocation to allocate each VM, beginning
with the VMs with the highest resource needs on the PMs with the lowest maximum power
consumption. It uses a vector packing technique that sorts the VMs according to their highest
resource need. It then allocates each VM picking it from the list that will counter the current
imbalance in the PM’s resource loads.

For the reallocation the algorithm consolidates the VMs as much as possible. It then load-
balances some VMs on the most loaded PMs that will not be empty in the future iterations. That
way, the algorithm aims to pack the VMs to a minimum number of PMs and then load balance
the VMs between those PMs.

PM Power Management

Eventually, actual power can only be saved when PMs are powered off. However, the question
of how many PMs should be powered off when in order not to risk future SLA violations is not
trivial. Thus, we designed the following powering off strategy: We consider all empty PMs at

68

the current iteration, i.e., all PMs that have no VMs running on them. We decide to switch off a
certain fraction 1

a of them, i.e.,

Number of PMs to switch off =
Number of empty PMs

a
.

This means that when the number of empty PMs stays constant, this technique turns off all but
one PMs in exponential manner. Thus, when n represents the (positive) number of empty PMs,
we want to know when there will be only 1 PM left. So we need to solve n ·a−t = 1 for t, which
results into t = − loga

1
n . Thus, d− loga

1
ne is the number of iterations it will take to power

off all (but one) PMs. This last PM is kept as a spare PM in order to serve sudden increases
in demand as a first resort. Consequently, this technique allows to power off all machines very
quickly in case of stable VMs, but always keeps a certain fraction powered on in case VM
resource needs start to increase again.

As far as powering on machines is concerned, we monitor average utilization for every re-
source on all PMs and define – similarly to the rule-based approach (cf. Section 4.4) – resource-
dependent threat thresholds. If any of these resources exceeds its TT, we power on as many PMs
such that the average resource utilization again falls below its TT.

In both cases, we always power on most energy-efficient PMs first, and power off least
energy-efficient PMs first.

69

CHAPTER 6
Evaluation

In this chapter we evaluate the presented approaches from Chapters 4 and 5 with several synthetic
and real-world workload data. For this purpose, we present a KM-agnostic simulation engine
that implements the autonomic control loop and simulates executed actions and evaluates their
quality responding to the workload data at stake.

6.1 Simulation Engine and Workload Generation

1: re
ce

iveMeasu
rement()

Planning
schedules execution

of actions

4: changed configuration

is reflected in KB

Execution
executes actions

Quality of recommended actions:
violations vs wastage vs actions

Analysis
queries for action

Monitoring
gathers and inserts
new measurement

Knowledge base

Act-
ions

Mea-
sure-
ment

Fed-
erated
Cloud

-CPU
-mem
- ...

2: recommendAction()

3: Actions
PMVMApp

-SLO1
-SLO2
- ...

SLA

decision mechanism

-CPU
-mem
- ...

-CPU
-mem
- ...

Figure 6.1: Simulation Engine implementing MAPE-K loop

71

The goal of the simulation engine is to evaluate the quality of a KM system with respect
to the number of SLA violations, the utilization of the resources and the number of required
reallocation actions. Furthermore, the simulation engine serves as an evaluation tool for any
KM technique in the field of Cloud Computing, as long as it can implement the two methods of
the KB management interface:

1. public void receiveMeasurement(int slaID, String[] provided,
String[] measurements, List<String> violations); and

2. public Actions recommendAction(int slaID);.

The parameter slaID describes the ID of the SLA that is tied to the specific VM, whose
provided and measured values are stored in the arrays provided and measurements, re-
spectively (cf. Section 4.2). The list violations contains all SLA parameters being violated
for the current measurements. The method receiveMeasurement inputs new data into the
KB, whereas the method recommendActions outputs an action specific to the current mea-
surement of the specified SLA. The simulation engine traverses all parts of the MAPE-K loop
as can be seen in Figure 6.1 and described in Section 2.1. The simulation engine is iteration-
based, meaning that in one iteration the MAPE-K loop is traversed exactly once. (In reality, one
iteration could last from some minutes to about an hour depending on the speed of the measure-
ments, the length of time the decision making takes, and the duration of the execution of the
actions, like for example migrating a resource intensive VM to another PM.) The Monitoring
component receives monitoring information from either synthetic or real-world workload from
the current iteration. It forwards the data into the Knowledge base (1). The Knowledge base con-
tains representations of all important objects in the Cloud and their characteristic information.
These objects are the running applications, the virtual machines, and the physical machines with
the current state of their CPU power, memory, storage, etc., the corresponding SLAs with their
SLOs, and information about other Clouds in the same federation. Furthermore, the KB also has
representations of the inserted measurements, and the available actions to execute (these have
to be pre-defined). Finally, the KB also contains a decision mechanism that interprets the state
of available objects in order to recommend a reconfiguration action. This mechanism can be
substituted by any KM technique; as already mentioned, we used CBR and a rule-based mech-
anism. The next step in the MAPE loop is the Analysis component, which queries the KB for
actions to recommend (for a specific SLA id) (2); these actions are then returned to the analysis
component (3). The Planning component schedules the suggested actions, and the Execution
component executes them. The changed state configuration of the Cloud objects are automat-
ically reflected in the KB (4). The Monitoring and the Execution components are simulated.
This means that the monitoring data is not measured on a real system during the simulation,
even though it handles input measured at a real system or synthetic workloads generated before-
hand. The Execution component updates the object representation of the manipulated objects
in the KB, but obviously does not actually manipulate real-world objects. The quality of the
decision making can ultimately be judged by the number of occurred SLA violations, resource
wastage and the number of needed reallocation actions.

72

To evaluate a great variety of workload data, one approach is to create them synthetically.
For this, we extended the workload generator as described in [150] to allow a categorization of
data volatility.

The workload generator is intended to generate very general workloads for IaaS platforms
dealing with slower developments as well as rapid changes. For one parameter, the workload
is generated as follows: The initial value of the workloads is randomly drawn from a Gaussian
distribution with µ = SLO

2 and σ = SLO
8 , where SLO represents the Service Level Objective

value agreed in the SLA. Then, an up- or down-trend is randomly drawn, as well as a duration of
this trend between a pre-defined number of iterations (for our evaluation this interval of iterations
equals [2, 6]), both with equal probability. For every iteration, as long as the trend lasts, the
current measured value is increased or decreased (depending on the trend) by a percentage evenly
drawn from the interval [iBegin, iEnd]. After the trend is over, a new trend is drawn and the
iterations continue as described before.

Clearly, the values for iBegin and iEnd determine the difficulty for handling the workload.
A workload that operates with low iBegin and iEnd values exhibits only very slight changes
and does, consequently, not need a lot of dynamic adaptations. Large iEnd values, on the
contrary, need the enforcement mechanisms to be very elastically tuned. For the evaluation
and comparison of CBR and the rule-based approach we defined a LOW_MEDIUM workload
volatility class with iEnd = 18%. For the further evaluation of the rule-based approach we
defined and tested LOW, MEDIUM, MEDIUM_HIGH and HIGH workload volatility classes
with iEnd = 10%, 50%, 75%, and 100%, respectively. As a minimum change we set iBegin =
2% for all classes.

6.2 Performance Indicators

The subsequent evaluations will be based on the following performance indicators: violations,
utilization, actions, resource allocation efficiency (RAE), costs, and time efficiency. Whereas
the first three and the last one are rather self-explanatory, costs and RAE need a little more
explanation. So violations and actions measure (in percentage) the amount of occurred viola-
tions/actions in relation to all possible violations/actions, and utilization the average utilization
over all iterations (and over all SLA parameters, if they are not shown explicitly). Time effi-
ciency measures the average time that is needed to handle one VM in one iteration. For resource
allocation efficiency we want to relate violations and utilization. The basic is idea is that RAE
should equal utilization (100% − w, where w stands for wastage, see below) if no violations
occur (p = 0%, where p stands for penalty, see below), equal 0 if the violation rate is at 100%,
and follow a linear decrease in between. Thus, we define

RAE =
(100− w)(100− p)

100
. (6.1)

A more general approach also taking into account the cost of actions represents the definition
of a generic cost function that maps SLA violations, resource wastage and the costs of executed
actions into a monetary unit, which we want to call Cloud EUR. The cost function is defined
by Eq. (4.11). We assume functions pr, wr and ar for this evaluation with pr(p) = 100p,

73

wr(w) = 5w, and ar(a) = a for all r. The intention behind choosing these functions is (i) to
impose very strict fines in order to proclaim SLA adherence as top priority, (ii) to weigh resource
wastage a little more than the cost of actions.

Except for the evaluation in Section 6.6 the cost function is not evaluated within the sim-
ulation engine. It is a value calculated after the simulation for comparison reasons. Thus, the
recommended actions do not depend on the specific functions we assumed. However, in the
self-adapting approach explained in Section 4.5 and evaluated in Section 6.6 the cost function is
incorporated into the KB in order to adjust and learn the TTs for every resource r.

6.3 Evaluation and Comparison of CBR and Rules

As the crucial parameters for CBR and the rule-based approach differ, we define scenarios for
both approaches separately, but still compare them to the aforementioned six performance indi-
cators.

As resources for IaaS one can use all parameters that can be adapted on a VM. For the
evaluation we chose to take the following parameters and SLOs for CBR: storage ≥ 1000GB,
incoming bandwidth ≥ 20 Mbit/s, and the following parameters and SLOs for the rule-based
approach: storage ≥ 1000GB, incoming bandwidth ≥ 20 Mbit/s, outgoing bandwidth ≥ 50
Mbit/s, memory ≥ 512 MB, and CPU power ≥ 100 MIPS (Million Instructions Per Second).

As far as CBR is concerned, its behavior differs by the α value in Equation (3.2) (setting
importance to avoiding violations or achieving high utilization), by the number of executed it-
erations, because of its inherent learning feature, and the initial cases. At the beginning, we
configure all 50 VMs exactly equally with 80% of the storage SLO value and 2/3 of the band-
width SLO value provided. Then, we execute 2, 5, 10 and 20 iterations with values for α being
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8. We omit values 0.2 and 0.4 in the evaluation because their
outcomes do not differ enough from the values shown, and all values > 0.5, because they reveal
unacceptable high SLA violation rates. Setting up the initial cases was done by choosing one
representative case for each action that could be triggered. For our evaluation the SLA param-
eters bandwidth and storage (even though not being tied to them in any way – we could have
also named them, e.g., memory and CPU time) were taken into consideration resulting into 9
possible actions “Increase/Decrease bandwidth by 10%/20%”, “Increase/Decrease storage by
10%/20%”, and “Do nothing”. Taking storage for example, we divide the range of distances
for storage St between measured and provided resources into five parts as depicted in Figure
6.2. We choose some reasonable threshold for every action as follows: If pSt − mSt = −10
then action “Increase Storage by 20%” as this already is a violation; if p−St −mSt = +50 then
action “Increase Storage by 10%” as resources are already scarce but not so problematic as in
the previous case; if pSt −mSt = +100 then action “Do nothing” as resources are neither very
over- nor under-provisioned; if pSt −mSt = +200 then action “Decrease Storage by 10%” as
now resources are over-provisioned; and we set action “Decrease Storage by 20%” when we are
over the latest threshold as then resources are extremely over-provisioned. We choose the values
for our initial cases from the center of the respective intervals. Ultimately, for the initial case for
the action, e.g., “Increase Storage by 20%” we take the just mentioned value for storage and the
“Do nothing” value for bandwidth. This leads to c = (id, 0,−10, 0, 7.5), and because only the

74

differences between the values matter, it is equivalent to, e.g., c = (id, 200, 190, 7.5, 15.0).

-�

-10 +50 +100 +200

x x x x x
︷ ︸︸ ︷︷ ︸︸ ︷

Figure 6.2: Choosing initial cases for CBR using the example of storage

As far as the rule-based approach is concerned, its behavior differs by the set threat thresh-
olds. Thus, we investigate low, middle and high values for TT rlow and TT rhigh (as defined in
Section 4.4), where TT rlow ∈ {30%, 50%, 70%} and TT rhigh ∈ {60%, 75%, 90%} for all re-
sources stated above. We combine the TTs to form eight different scenarios as depicted in Table
6.1. We execute 100 iterations with 500 applications, and set the “safety slack” ε = 5% (cf.
Listing 4.1).

Scenarios
1 2 3 4 5 6 7 8

TTlow 30% 30% 30% 50% 50% 50% 70% 70%
TThigh 60% 75% 90% 60% 75% 90% 75% 90%

Table 6.1: 8 Simulations Scenarios for TTlow and TThigh

Figure 6.3 presents the aforementioned performance indicators of CBR. The “No CBR” line
means that the autonomic manager is turned off, which implies that the configuration of the
VMs is left as set at the beginning, i.e., no adaptation actions due to changing demands are
executed. In Figure 6.3a we see that up to more than half of the violations can be avoided when
using α ∈ {0.1, 0.3} instead of no autonomic management. However, fewer SLA violations
result in lower resource utilization (cf. Figure 6.3b), as more resources have to be provided than
can actually be utilized. Reconfiguration actions as depicted in Figure 6.3c lie slightly below
or at 50%, except for “No CBR”, of course. Another point that can be observed is that after a
certain amount of iterations the quality of the recommended actions decreases. This is probably
due to the fact that the initial cases get more and more blurred when more cases are stored into
CBR, as all new cases are being learned and there is no distinction made between “interesting”
and “uninteresting” cases. Nevertheless, when we relate SLA violations and resource utilization
in terms of RAE, all CBR methods are generally better than the default method, especially
for α ∈ {0.3, 0.5} after five iterations. Yet, RAE decreases strictly monotonically for all α.
Furthermore, costs – relating violations, utilization and reconfiguration actions – can also be
reduced to half for α ∈ {0.1, 0.3}. However, there is a seemingly exponential increase in the
average execution time per VM (cf. Figure 6.3f) due to higher number of cases stored in the KB.

Summing up, the simulation shows that learning did take place (and cost some time) and that
CBR is able to recommend right actions for many cases, i.e., to correctly handle and interpret
the measurement information that is based on a random distribution not known to CBR.

Figure 6.4 shows the same evaluation for the rule-based approach evaluating the aforemen-
tioned eight scenarios. From Figure 6.4a we learn that in terms of SLA violations Scenario 1

75

0	
5	
10	
15	
20	
25	
30	
35	

2	 5	 10	 20	

V
io
la
&
on

s	
[%

]	

#	 Itera&ons	
Alpha=0.1	 Alpha=0.3	

Alpha=0.5	 No	 CBR	

(a) Violations

45	
50	
55	
60	
65	
70	
75	
80	
85	

2	 5	 10	 20	

U
"
liz
a"

on
	 [%

]	

#	 Itera"ons	

(b) Utilization

40%	

42%	

44%	

46%	

48%	

50%	

52%	

2	 5	 10	 20	

A
c#
on

s	
[%

]	

#	 Itera#ons	

(c) Actions

40	

45	

50	

55	

60	

65	

70	

75	

2	 5	 10	 20	

RA
E	

#	 Itera+ons	

(d) Resource allocation efficiency

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

2	 5	 10	 20	

Co
st
	 [C

lo
ud

	 €
]	

#	 Itera1ons	

(e) Cost

0	

50	

100	

150	

200	

250	

300	

0	 5	 10	 15	 20	

Ti
m
e	
[m

s]
	

#	 Itera.ons	

(f) Average execution time per VM

Figure 6.3: Evaluation of CBR with respect to SLA violations, utilization, actions, RAE, costs,
and scalability

achieves the best result, where only 0.0908% of all possible violations occur, and Scenario 8
yields the worst result, with a still very low violation rate of 1.2040%. In general, the higher
the values are for TThigh, the worse is the outcome. The best result achieved with CBR was
at 7.5%. Thus, the rule-based approach achieves an up to 82 times better performance with the
right TTs set, and still a 6 times better performance in the worst case.

Figure 6.4b shows resource utilization. We see that the combination of high TTlow and
high TThigh (Scenario 8) gives the best utilization (84.0%), whereas low values for TTlow and
TThigh lead to the worst utilization (62.0% in Scenario 1). Still, compared to CBR which scored
a maximum of 80.4% and a minimum of 51.8%, the rule-based approach generally achieves
better results.

The percentage of all executed actions as compared to all possible actions that could have
been executed is shown in Figure 6.4c. One observes that the greater the span between TTlow
and TThigh is, the fewer actions have to be executed. Most actions (60.8%) are executed for
Scenario 7 (span of only 5% between TT values), whereas least actions (5.5%) are executed for
Scenario 3 (span of 60% between TT values). CBR almost always recommended exactly one
(out of two possible) actions and hardly ever (in about 1% of the cases) recommended no action.

As violations are very low in general, the resource allocation efficiency is very similar to the
utilization. The best value can be achieved with Scenario 8 (84.0%), the worst with Scenario 1
(62.0%). CBR achieves a RAE of at most 69.7% (α = 0.5 at iteration 2), and at least 45.5%
(α = 0.1 at iteration 20).

76

Figure 6.3e shows the costs for each scenario using Equation (4.11) with the parameters
set in Section 6.2. The best trade-off between the three terms is achieved by Scenario 5 that
has medium values for TT rlow and TT rhigh. It has a very low violation rate of 0.0916%, a quite
elaborate utilization of 72.9%, but achieves this with only 19.8% of actions. Scenario 7 achieves
a better violation and utilization rate but at the cost of an action rate of 60.8%, and consequently
has higher costs. The lowest cost value for CBR is 923.0 Cloud EUR, the highest 2985.3 Cloud
EUR.

If the utility of the decision decreases for a certain time frame (as cost increases), the KB
could determine the cost summand in Equation (4.11) that contributes most to this decrease. For
any resource r, if the term is p, then decrease TT rhigh. If the term is w, then increase TT rlow.
Otherwise, if the term is c, then widen the span of TT rhigh and TT rlow, i.e., increase TT rhigh and
decrease TT rlow. This is one of the basic ideas for Section 4.5.

As far as time performance and scalability are concerned, the performance tests are very
encouraging. We executed 100 iterations from 100 to 3000 VMs. We performed every test twice
and calculated the average execution time as well as the average time it took for the simulation
engine to handle one VM. As shown in Figure 6.4f the execution time per VM stays quite
constant for up to 1500 VMs, and thus average execution time is about linear. For 3000 VMs, it
took 647s/100 = 6.47s for one iteration to treat all VMs. The high time consumption per VM
for 100 VMs in Figure 6.4f is due to the initialization of the rule knowledge base which takes
over-proportionally long for just a small number of VMs and does not weigh so much for more
VMs.

CBR took 240s for 50VMs and 20 iterations. Thus, CBR took 240s/20 = 12s for one
iteration to treat all VMs, which is twice as long as the rule-based approach takes, which even
has 60 times more VMs. However, CBR implements learning features, what the rule-based
approach currently does not, and could be sped up by choosing only specific cases to be stored
in the KB.

Summarizing, the rule-based approach highly outperforms CBR with respect to violations
(up to 82 times better results), actions, cost, and time performance. The rule-based approach
also achieves better “best case” and better “worst case” results for the remaining performance
indicators utilization and resource allocations efficiency. In more detail, 7 out of 8 scenarios were
better than the worst CBR value for utilization, whereas only one scenario was better than the
best CBR utilization value. Again, accumulating these results into cost, all rule-based scenarios
outperform CBR by a factor of at least 4 (worst rule-based scenario (236) compared to best CBR
result (923)), which to a large extent is due to the huge number of violations that the rule-based
approach is able to prevent and the high number of actions it can save.

Consequently, we consider the rule-based approach as the better technique to deal with VM
reconfiguration in Cloud Computing infrastructures, and we will focus the remaining part of this
article on a deeper investigation and understanding of the rule-based approach by evaluating it
with different classes of synthetic and real world workload.

77

0.0%	

0.2%	

0.4%	

0.6%	

0.8%	

1.0%	

1.2%	

1.4%	

1	 2	 3	 4	 5	 6	 7	 8	

V
io
la
&
on

s	
[%

]	

Scenario	

(a) Violations

50%	
55%	
60%	
65%	
70%	
75%	
80%	
85%	
90%	

1	 2	 3	 4	 5	 6	 7	 8	

U
"
liz
a"

on
	 [%

]	

Scenario	

(b) Utilization

0%	

20%	

40%	

60%	

80%	

1	 2	 3	 4	 5	 6	 7	 8	

A
c#
on

s	
[%

]	

Scenario	

(c) Actions

50	

55	

60	

65	

70	

75	

80	

85	

1	 2	 3	 4	 5	 6	 7	 8	

RA
E	

Scenario	

(d) Resource allocation efficiency

120	

140	

160	

180	

200	

220	

240	

1	 2	 3	 4	 5	 6	 7	 8	

Co
st
	 [C

lo
ud

	 €
]	

Scenario	

(e) Cost

0	

0.5	

1	

1.5	

2	

2.5	

0	 1000	 2000	 3000	

Ti
m
e	
[m

s]
	

VMs	

(f) Average execution time per VM

Figure 6.4: Violations, Utilization, Actions and Utility for Scenarios 1-8, Execution time for
Rule-based Approach

6.4 In-depth Evaluation of the Rule-based Approach Using
Synthetic Data

This section deals with the further investigation of the rule-based approach. We evaluated all
eight scenarios with different workload classes, namely LOW, MEDIUM, MEDIUM_HIGH,
and HIGH as defined in Subsection 6.1.

For the LOW workload volatility class (cf. Figure 6.5) one remarks that all violations can
be completely avoided for all TT scenarios. Lowest cost (107.7 Cloud EUR) is achieved with
Scenario 8, even though the amount of actions is quite high (23.8%), but the utilization (83.2%),
and therefore also RAE (83.2%), is highest.

The MEDIUM workload volatility class (cf. Figure 6.6) already runs into a lot more viola-
tions reaching a peak at 15.9% with Scenario 8, but still achieving a very good rate of 0.7% and
0.8% with Scenarios 1 and 4, respectively. Generally, reconfiguration actions are a lot higher,
too, with a minimum of 18.9% (Scenario 3), whereas the minimum for the LOW workload is
at 2.7% (Scenario 3). RAE differs quite apparently from utilization, and achieves its best rate
with Scenario 7 (69.4%), where utilization is (second highest) at 75.2% and violations are (third
highest) at 7.7%. Due to the many violations, costs are much higher and go up to 1746.4 Cloud
EUR. The best results stem from Scenario 1 with a cost of 294.8 Cloud EUR. The second best
scenario, Scenario 4 with a cost of 301.6 Cloud EUR, also achieves a similarly good violation

78

0%	

20%	

40%	

60%	

80%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	

V
io
la
&
on

s	
[%

]	

Scenario	

(a) Violations

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

1	 2	 3	 4	 5	 6	 7	 8	

U
"
liz
a"

on
	 [%

]	

Scenario	

(b) Utilization

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

1	 2	 3	 4	 5	 6	 7	 8	

A
c#
on

s	
[%

]	

Scenario	

(c) Actions

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

1	 2	 3	 4	 5	 6	 7	 8	

RA
E	

Scenario	

(d) Resource allocation effi-
ciency

0	

50	

100	

150	

200	

250	

1	 2	 3	 4	 5	 6	 7	 8	
Co

st
	 [C

lo
ud

	 €
]	

Scenario	

(e) Cost

Figure 6.5: Violations, Utilization, Actions, RAE and Cost for Scenarios 1-8 with LOW volatil-
ity workload

rate, but differs by a higher action rate (50.7% vs. 28.0%) and a lower utilization (60.0% vs.
65.9%).

As to the MEDIUM_HIGH workload volatility class (cf. Figure 6.7) the peak for violations
raises up to 22.1% (Scenario 8), but still achieves a very good minimum of 1.9% (Scenario 1),
which can be achieved with the third lowest amount of actions (38.2%). Generally, the graphs for
the MEDIUM_HIGH and HIGH workloads (cf. Figure 6.8) repeat the pattern of the MEDIUM
workloads just with higher amplitudes. Also, the lowest-cost scenario for these workloads is the
same, namely Scenario 1. However, the lowest-cost scenarios for LOW and LOW_MEDIUM
classes, namely Scenarios 1 and 8, respectively, differ quite significantly. Scenario 1 is a combi-
nation of two low TTs, Scenario 5 of two middle TTs, and Scenario 8 of two high TTs.

Summarizing we have seen that across all scenarios violations, actions and cost increase
from the LOW to the HIGH workload volatility classes. However, we have also seen that by
choosing the “right” TTs, the cost can be kept relatively small as compared to “wrong” TTs, or
the CBR outcome. E.g., for the HIGH workload class the best violation rate is at 4.1% (Scenario
1), whereas the worst violation rate is at 30.3% (Scenario 8). Consequently, it is crucial to
autonomically find good TTs according to the respective workload. This will be investigated in
Section 6.6.

79

0%	
2%	
4%	
6%	
8%	
10%	
12%	
14%	
16%	
18%	

1	 2	 3	 4	 5	 6	 7	 8	

V
io
la
&
on

s	
[%

]	

Scenario	

(a) Violations

50%	

55%	

60%	

65%	

70%	

75%	

80%	

1	 2	 3	 4	 5	 6	 7	 8	

U
"
liz
a"

on
	 [%

]	

Scenario	

(b) Utilization

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

1	 2	 3	 4	 5	 6	 7	 8	

A
c#
on

s	
[%

]	

Scenario	

(c) Actions

54	
56	
58	
60	
62	
64	
66	
68	
70	
72	

1	 2	 3	 4	 5	 6	 7	 8	

RA
E	

Scenario	

(d) Resource allocation effi-
ciency

0	

500	

1000	

1500	

2000	

1	 2	 3	 4	 5	 6	 7	 8	

Co
st
	 [C

lo
ud

	 €
]	

Scenario	

(e) Cost

Figure 6.6: Violations, Utilization, Actions, RAE and Cost for Scenarios 1-8 with MEDIUM
volatility workload

0,00%	

5,00%	

10,00%	

15,00%	

20,00%	

25,00%	

1	 2	 3	 4	 5	 6	 7	 8	

V
io
la
&
on

s	
[%

]	

Scenario	

(a) Violations

50%	

55%	

60%	

65%	

70%	

75%	

80%	

1	 2	 3	 4	 5	 6	 7	 8	

U
"
liz
a"

on
	 [%

]	

Scenario	

(b) Utilization

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

1	 2	 3	 4	 5	 6	 7	 8	

A
c#
on

s	
[%

]	

Scenario	

(c) Actions

55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	

1	 2	 3	 4	 5	 6	 7	 8	

RA
E	

Scenario	

(d) Resource allocation effi-
ciency

0	

500	

1000	

1500	

2000	

2500	

3000	

1	 2	 3	 4	 5	 6	 7	 8	

Co
st
	 [C

lo
ud

	 €
]	

Scenario	

(e) Cost

Figure 6.7: Violations, Utilization, Actions, RAE and Cost for Scenarios 1-8 with
MEDIUM_HIGH volatility workload

80

00%	

05%	

10%	

15%	

20%	

25%	

30%	

35%	

1	 2	 3	 4	 5	 6	 7	 8	

V
io
la
&
on

s	
[%

]	

Scenario	

(a) Violations

50,00%	

55,00%	

60,00%	

65,00%	

70,00%	

75,00%	

80,00%	

1	 2	 3	 4	 5	 6	 7	 8	

U
"
liz
a"

on
	 [%

]	

Scenario	

(b) Utilization

30%	

35%	

40%	

45%	

50%	

55%	

60%	

65%	

1	 2	 3	 4	 5	 6	 7	 8	

A
c#
on

s	
[%

]	

Scenario	

(c) Actions

46	
48	
50	
52	
54	
56	
58	
60	
62	

1	 2	 3	 4	 5	 6	 7	 8	

RA
E	

Scenario	

(d) Resource allocation effi-
ciency

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

1	 2	 3	 4	 5	 6	 7	 8	
Co

st
	 [C

lo
ud

	 €
]	

Scenario	

(e) Cost

Figure 6.8: Violations, Utilization, Actions, RAE and Cost for Scenarios 1-8 with HIGH volatil-
ity workload

6.5 Applying and Evaluating a Bioinformatics Workflow to the
Rule-based Approach

This section describes the adoption of a bionformatics workflow as a Cloud computing appli-
cation. We demonstrate by simulation that the rule-based approach can guarantee the resource
requirements in terms of CPU, memory and storage for the execution of the workflow in a
resource-efficient way.

As detailed in [187,192], bioinformatics workflows have gained a great need for large-scale
data analysis. Due to the fact that these scientific workflows are very resource intensive and can
take hours if not days to complete, provisioning them in an environment with fixed resources
leads to poor performance. On the one hand, the workflow might run out of resources and thus
may have to be restarted on a larger system. On the other hand, too much resources might be
provisioned in order not to take risks of a premature abort, which may cause a lot of resources
being wasted. Thus, Cloud computing infrastructures offer a promising way to host these sorts
of applications [161]. The monitoring data presented in this Section was gathered with the help
of the Cloud monitoring framework LoM2HiS [79]. Using LoM2HiS we measured utilized
resources of TopHat [198], a typical bioinformatics workflow application analyzing RNA-Seq
data [126], for a duration of about three hours [80].

In the following we shortly describe the bioinformatics workflow in more detail. We here
consider Next Generation Sequencing (NGS), a recently introduced high-throughput technology
for the identification of nucleotide molecules like RNA or DNA in biomedical samples. The

81

output of the sequencing process is a list of billions of character sequences called ‘reads’, each
typically holds up to 35-200 letters that represent the individual DNA bases determined. Lately,
this technology has also been used to identify and count the abundances of RNA molecules
that reflect new gene activity. We use the approach, called RNA-Seq, as a typical example of a
scientific workflow application in the field of bioinformatics.

At first, in the analysis of RNA-Seq data, the obtained sequences are aligned to the reference
genome. The aligner presented here, TopHat [198], consists of many sub-tasks, some of them
have to be executed sequentially, whereas others can run in parallel (Figure 6.9). These sub-tasks
can have different resource-demand characteristics: needing extensive computational power,
demanding high I/O access, or requiring extensive memory size.

Figure 6.9: Overview of the TopHat Aligning Approach

In Figure 6.9, the green boxes represent simplified sub-tasks of the workflow application,
whereas the blue boxes represent the data transfered between the sub-tasks. The first sub-task
aligns input reads to the given genome using the Bowtie program [127]. Unaligned reads are
then divided into shorter sub-sequences which are further aligned to the reference genome in
the next sub-task. If sub-sequences coming from the same read were aligned successfully to
the genome, that may indicate that this read was straddling a ‘gap’ in the gene, falling on a
so-called splice-junction. After verification of candidate reads falling on splice junctions, these
and the reads that were aligned in the first sub-task are combined to create an output with a
comprehensive list of localized alignments.

For the simulation we define the SLA shown in Table 6.2 for TopHat with the maximum
amount of available resources on the physical machine we are executing it. The physical machine
has a Linux/Ubuntu OS with a Intel Xeon(R) 3 GHz CPU, 2 cores, 9 GB of memory, and 19 GB

82

of storage. For CPU power, we convert CPU utilization into MIPS based on the assumption that
an Intel Xeon(R) 3 GHz processor delivers 10000 MIPS for 100% resource utilization of one
core, and linearly degrades with CPU utilization.

Service Level Objective (SLO) name SLO value
CPU Power ≥ 20000 MIPS

Memory ≥ 8192 MB
Storage ≥ 19456 MB

Table 6.2: TopHat SLA

In order to validate our approach, we make three simulations categories, where we set up and
manage our VMs differently: In the first category (Scenario 1) we assume a static configuration
with a fixed initial resource configuration of the VMs. Normally, when setting up such a testbed
as described in [80], an initial guess of possible resource consumption is done based on early
monitoring data. From this data on, we assume quite generous resource limits. The first ten
measurements of CPU, memory, and storage lie in the range of [140, 12500] MIPS, [172, 1154]
MB, [15.6,15.7] GB, respectively. So we initially configured our VM with 15000 MIPS, 4096
MB, and 17.1 GB, respectively. The second category subsumes several scenarios, where we
apply our autonomic management approach to the initial configuration in the first category. The
eight scenarios in this category depend on the chosen TTs. According to Table 6.1 we define
these scenarios as Scenario 2.1., 2.2, . . . , 2.8, respectively. As the third category (Scenario 3),
we consider a best case scenario, where we assume to have an oracle that predicts the maximal
resource consumption that we statically set our VM configuration to. Moreover, according to
the first measurements we decide to enforce a minimum of 1 MIPS CPU, 768 MB memory, and
1 GB storage.

As depicted in Figures 6.10a, 6.10b, and 6.10c one sees violations, utilization, as well as
the number of reconfiguration actions, respectively, for every parameter (together with an aver-
age value) in the different scenarios. Generally, the bars are naturally ordered beginning from
Scenario 1, over Scenarios 2.1, . . . , 2.8, ending with Scenario 3. The number of violations in
Scenario 1 reach 41.7% for CPU and memory, and 49.4% for storage, which leads to an average
of 44.3%. (For better visibility, these results have been excluded from Figure 6.10a.) Thus,
we experience violations in almost half of the cases. This is especially crucial for parameters
memory and storage, where program execution could fail, if it runs out of memory or storage,
whereas for a violation of the parameter CPU, we would “only” delay the successful termination
of the workflow.

With Scenarios 2.* we can reduce the SLA violations to a minimum. We completely avoid
violations for storage in all sub-scenarios, as well as for memory in all but one sub-scenarios.
Also CPU violations can be reduced to 0.6% for Sub-scenarios 2.1 and 2.4, and still achieve a
maximum SLA violation rate of 2.8% with Scenario 2.8. The average SLA violation rate can
be lowered to 0.2% in the best case. Scenario 3, of course, shows no violations. However, it is
unlikely to know the maximum resource consumption before workflow execution.

As to the utilization of the resources, it is clearly higher when a lot of violations occur, so

83

0,0%	

0,5%	

1,0%	

1,5%	

2,0%	

2,5%	

3,0%	

CPU	 	 Memory	 Storage	 Avg	

V
io
la
&
on

s	
[%

]	

Scenario	 2.1	 Scenario	 2.2	 Scenario	 2.3	 Scenario	 2.4	

Scenario	 2.5	 Scenario	 2.6	 Scenario	 2.7	 Scenario	 2.8	

(a) Violations

00%	

20%	

40%	

60%	

80%	

100%	

CPU	 	 Memory	 Storage	 Avg	

U
"
liz
a"

on
	 [%

]	

Scenario	 1	 Scenario	 2.1	 Scenario	 2.2	 Scenario	 2.3	 Scenario	 2.4	

Scenario	 2.5	 Scenario	 2.6	 Scenario	 2.7	 Scenario	 2.8	 Scenario	 3	

(b) Utilization

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

CPU	 	 Memory	 Storage	 Avg	

A
c#
on

s	
[%

]	

Scenario	 1	 Scenario	 2.1	 Scenario	 2.2	 Scenario	 2.3	 Scenario	 2.4	

Scenario	 2.5	 Scenario	 2.6	 Scenario	 2.7	 Scenario	 2.8	 Scenario	 3	

(c) Reconfiguration actions

Figure 6.10: Violations, Utilization and Reconfiguration actions for ten autonomic management
scenarios using bioinformatics workflow

135	
140	
145	
150	
155	
160	
165	
170	
175	
180	
185	

Sc
en
ar
io	
2.1
	

Sc
en
ar
io	
2.2
	

Sc
en
ar
io	
2.3
	

Sc
en
ar
io	
2.4
	

Sc
en
ar
io	
2.5
	

Sc
en
ar
io	
2.6
	

Sc
en
ar
io	
2.7
	

Sc
en
ar
io	
2.8
	

Sc
en
ar
io	
3	

Co
st
	 [C

lo
ud

	 €
]	

(a) Cost

40	
45	
50	
55	
60	
65	
70	
75	
80	
85	
90	

Sc
en
ar
io	
1	

Sc
en
ar
io	
2.1
	

Sc
en
ar
io	
2.2
	

Sc
en
ar
io	
2.3
	

Sc
en
ar
io	
2.4
	

Sc
en
ar
io	
2.5
	

Sc
en
ar
io	
2.6
	

Sc
en
ar
io	
2.7
	

Sc
en
ar
io	
2.8
	

Sc
en
ar
io	
3	

RA
E	

(b) Resource Allocation Efficiency

Figure 6.11: Resource Allocation Efficiency and Cost for ten autonomic management scenarios
using bioinformatics workflow

84

Scenario 1 naturally achieves high utilization. This is the case, because when a parameter is
violated, then the resource is already fully used up, but even more of the resource would be
needed to fulfill the needs. On the opposite, Scenario 3 naturally achieves low utilization, as a
lot of resources are over-provisioned. Scenarios 2.* achieve a good utilization that is on average
in between of the two extremes and ranges from 70.6% (Scenario 2.1) to 86.2% (Scenario 2.8).
Furthermore, we observe some exceptions to this “rule” when considering individual parame-
ters. So, e.g., for memory we achieve a utilization of 85.0 % with Scenario 2.8 or 80.0% with
Scenario 2.6, which is higher than the utilization in Scenario 1 (77.4%). The same is true for
CPU utilization rates of 85.5% as compared to 84.3 % for the Scenario 1 and 2.8, respectively.
Only for storage the utilization of all but one of the scenarios 2.*, which is at 85.9%, is smaller
than for Scenario 3 (90.1%).

A huge advantage of Scenarios 2.* is that they do not run into any crucial SLA violation
(except for Scenario 2.3) , but achieve a higher utilization as compared to Scenario 3. As to the
reallocation actions, of course, Scenario 1 and 3 do not execute any, but also for the autonomic
management in Scenarios 2.*, the amount of executed reallocation actions for most scenarios
stays below 10%. Only Scenario 2.7 executes actions in 19.8% of the cases on average of the
time. Five out of eight scenarios stay below 5% on average.

When it comes to the overall costs of the scenarios (cf. Figure 6.11a), all 2.* scenarios
approach the result achieved by the best case scenario 3. Scenario 1 sums up costs of 4493.6, and
has therefore been omitted in the figure. Furthermore, the lowest cost is achieved using Scenario
2.6, which is even lower than the cost for Scenario 3. This is possible, because Scenario 2.6
achieves a very good utilization and SLA violation rate with a very few number of reallocation
actions. Also resource allocation efficiency for Scenarios 2.* as shown in Figure 6.11b achieves
unambiguously better results than for Scenario 1 (RAE of 48.2%). Furthermore, all scenarios of
the second category achieve a better RAE than the RAE of Scenario 3 (69.3%).

Thus, we conclude that by using the suggested autonomic management technique, we can
avoid most costly SLA violations, and thus ensure workflow execution, together with a focus
on resource-efficient usage. All this can be achieved by a very low number of time- and energy
consuming VM reallocation actions for many of the autonomic management scenarios.

6.6 Evaluation of the Self-adapting Rule-based Approach

Evaluation of the Self-adapting Rule-based Approach Using Synthetic Data

In this subsection we evaluate the six options A-F presented in Section 4.5 using synthetic work-
load. As a quality measure, we will use the cost function defined by Equation (4.11) with
pr(p) = 100p,wr(w) = 5w, and ar(a) = a for all r, and for all adaptation options we set
α = 4 as used in Equations (4.14)-(4.17).

Every simulation run consists of 100 iterations. The SLA for the synthetic workloads is
presented in Table 6.3. Results of the simulation runs can be seen in Figures 6.12 - 6.14. In
all Subfigures 6.12-6.15(a) we present p, 100 − w, a for every simulation run. The specifics of
each run are explained below each group of three bars: At first the adaptation option is stated,
or “off”, if none is used. Adaptation options also show k where applicable. All autonomic

85

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Mbit/s ≤ incoming bandwidth ≤ 20 Mbit/s
1 Mbit/s ≤ outgoing bandwidth ≤ 50 Mbit/s
1 MIPS ≤ CPU power ≤ 100 MIPS
8 MB ≤ memory ≤ 512 MB

Table 6.3: SLA for synthetic workloads

TT experiments have been conducted with TTlow = 50% and TThigh = 75% initially set (we
will refer to this as the standard case), unless stated otherwise. This was chosen based on the
evaluation in [151], as this setting brought best results for a LOW_MEDIUM WV class with
iEnd = 18%. For compact notation a TT pair is written as [TTlow, TThigh]. In all Subfigures
6.12-6.15(b) we show the cost c(p, w, c) with the parameters as defined above.

The first three (group of) bars in Figure 6.12 represent static TT configurations evaluated
in [151]. The goal of the autonomic TT management is to achieve costs that are as low or lower
than the costs resulting from a static TT configuration. We see that the best static result in terms
of costs can be achieved setting TTs = [70%, 90%], and the cost for the standard case is 159.
This value is beaten (or attained) by evaluated options A for k ≤ 25, C for k = 2, 5 with the
standard TT pair, C for all evaluated k with the best (a-priori unknown) TT pair, and options E
and F. The best case is attained by options C with the best TT pair, and by option E.

For the MEDIUM WV class we deduce from Figure 6.13 that options A for k ≥ 15, E and
F beat the static TT scenario. On the contrary, option C achieves the worst results by far.

Due to space limitations, we omit the graphs of the MEDIUM_HIGH WV class, which are
quite similar to those of the HIGH WV class. Evaluation shows that all options except option C
beat the results from the standard case. Option E achieves the best result.

As far as the HIGH WV class is concerned (cf. Figure 6.14), all options beat the results from
the “standard case”. From these, again option C still achieves the worst results, and again option
E results into lowest costs.

Generally, autonomic adaptation works best for workloads with higher volatility and quite
acceptable for workloads with lower volatility. We also see that option C for k = 5 generally
achieves worst results except for low WV. This is explained by the fact as stated in Section 4.5
that option C is less cautious than other options with respect to SLA violations. These violations,
naturally, have a higher impact with higher WV. Option B for k = 5 achieves the worst result
for LOW WV, and only outperforms the standard case for MEDIUM_HIGH and HIGH WV
classes. Nevertheless, options E and F always outperform the standard case, and achieve best or
very good results, and there is always a k for option A such that it also outperforms the standard
case. The best cases for each WV class have been resembled in option F.

86

0	 0	 0	 0.5	 0.04	 0.036	 0.004	 0	 0.69	 0.54	 0.15	 0.07	 0.004	 0.03	 0.002	 0	 0.38	 0	 0.15	

70.4	
83.2	 81.1	 76.4	 73.7	 72.3	 71.1	 66.4	

76.9	 77.5	 76.7	 75	 71.1	
83.5	 83.3	 83.2	 76	 83	 76.7	

11.6	
23.8	 17.5	 16.3	 17.8	 17.2	 15	 9.9	 13.4	 13.1	 16.6	 18.3	 15	

25.6	 24.3	 23.8	
12.3	

23.8	
16.6	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

off
,	 [5
0%
,75
%]
	

off
,	 [7
0%
,90
%]
	

off
,	 [6
5%
,95
%]
	

A),
	 k=
5	

A),
	 k=
15
	

A),
	 k=
25
	

A),
	 k=
50
	

A),
	 k=
75
	

B),
	 k=
5	

C),
	 k=
2	

C),
	 k=
5	

C),
	 k=
10
	

C),
	 k=
50
	

C),
	 k=
50
,	 [7
0%
,90
%]
	

C),
	 k=
75
,	 [7
0%
,90
%]
	

C),
	 k=
10
0,	
[70
%,
90
%]
	

D)
	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

159	

108	 112	
149	 153	 159	 160	

178	
198	

180	
148	 150	 160	

111	 108	 107.7	

170	

109	
148	

0	

50	

100	

150	

200	

250	

off
,	 [5
0%
,75
%]
	

off
,	 [7
0%
,90
%]
	

off
,	 [6
5%
,95
%]
	

A),
	 k=
5	

A),
	 k=
15
	

A),
	 k=
25
	

A),
	 k=
50
	

A),
	 k=
75
	

B),
	 k=
5	

C),
	 k=
2	

C),
	 k=
5	

C),
	 k=
10
	

C),
	 k=
50
	

C),
	 k=
50
,	 [7
0%
,90
%]
	

C),
	 k=
75
,	 [7
0%
,90
%]
	

C),
	 k=
10
0,	
[70
%,
90
%]
	

D)
	 E)	 F)	

(b) Cost c(p, w, a)

Figure 6.12: Evaluation results for LOW workload volatility class

Evaluation of the Self-adapting Rule-based Approach Using Image Rendering
Software Workload

This and the next section will present the evaluation of two real-world workloads categories.
One important point to observe with these workloads is that they do no longer fall into the same
WV class for all the resources.

The SLA for the POV-Ray application, an image rendering software [1], is depicted in Table
6.4. As we have seen that in the previous subsection options E and F always outperform the
standard case, we chose only these options for further evaluation. As can be seen in Table 6.5
(AM describes whether the autonomic manager is turned on or off), we remark that for POV_F*
options E and F always outperform the standard case with partially big cost improvements up
to 48% (for POV_F9), while the better option is not clearly the one or the other. For POV_B*
workloads there is one case, where neither option outperforms the standard case, whereas in the
other cases either option E or option F outperform the standard case.

87

1.8	 1.68	 1.59	 1.58	 1.58	 1.56	 1.57	 1.58	 1.57	 1.8	 2.65	 5.39	 3.18	 1.41	 1.57	

69.9	 68.3	 67.2	 67	 67	 67	 66.9	 67	 66.9	 67.3	 66.9	
72.7	 69.4	 66	 67	

39.8	 39.4	 39.4	 39.7	 39.8	 39.9	 40.1	 40.3	 40.5	 41.5	
35	

51.9	

37.8	 36.7	 40.1	

0	
10	
20	
30	
40	
50	
60	
70	
80	

off
,	 [5
0%
,75
%]
	

A),
	 k=
50
	

A),
	 k=
25
	

A),
	 k=
22
	

A),
	 k=
21
	

A),
	 k=
20
	

A),
	 k=
19
	

A),
	 k=
18
	

A),
	 k=
15
	

A),
	 k=
5	

B),
	 k=
5	

C),
	 k=
5	 D)

	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

373	 366	 362.8	 362.6	 362.7	 361.3	 362.6	 363.2	 363	 384	
466	

727	

509	

347	 362	

0	

100	

200	

300	

400	

500	

600	

700	

800	

off
,	 [5
0%
,75
%]
	

A),
	 k=
50
	

A),
	 k=
25
	

A),
	 k=
22
	

A),
	 k=
21
	

A),
	 k=
20
	

A),
	 k=
19
	

A),
	 k=
18
	

A),
	 k=
15
	

A),
	 k=
5	

B),
	 k=
5	

C),
	 k=
5	 D)

	 E)	 F)	

(b) Cost c(p, w, a)

Figure 6.13: Evaluation results for MEDIUM workload volatility class

rmin SLA parameter rmax

1 GB ≤ storage ≤ 1000 GB
1 Kbit/s ≤ incoming bandwidth ≤ 80000 Kbit/s
1 Kbit/s ≤ outgoing bandwidth ≤ 8000 Kbit/s
1 MIPS ≤ CPU power ≤ 100000 MIPS
8 MB ≤ memory ≤ 512 MB

Table 6.4: PovRay SLA

88

p 100− w a c(p, w, c) WV AM Details
5.56 63.8 17.0 754 POVRAYF1 off [50%, 75%]
2.56 50.96 11.56 512 POVRAYF1 on A), 2step
3.0 56.34 14.2 533 POVRAYF1 on E)
3.0 53.44 11.7 544 POVRAYF1 on F)
1.45 72.1 12.3 297 POVRAYF2 off [50%, 75%]
0.68 69.6 9.4 229 POVRAYF2 on E)
1.13 70.5 15.5 275.8 POVRAYF2 off F)
1.34 72.0 7.7 282 POVRAYF3 off [50%, 75%]
1.12 71.7 7.8 261 POVRAYF3 on E)
0.45 68.9 6.5 207 POVRAYF3 on F)
1.56 71.7 9.3 306 POVRAYF4 off [50%, 75%]
0.89 71.4 8.2 240 POVRAYF4 on E)
0.89 66.3 5.4 263 POVRAYF4 on F)
1.89 72.1 10.8 339 POVRAYF5 off [50%, 75%]
0.89 69.9 9.3 249 POVRAYF5 on E)
1.0 69.8 14.1 265 POVRAYF5 on F)
3.02 72.4 13.2 453 POVRAYF6 off [50%, 75%]
0.89 68.5 10.8 258 POVRAYF6 on E)
1.56 69.9 16.5 324 POVRAYF6 on F)
2.78 72.5 12.4 428 POVRAYF7 off [50%, 75%]
0.89 69.0 10.3 254 POVRAYF7 on E)
1.56 70.1 16.2 321 POVRAYF7 on F)
3.44 72.4 14.0 496 POVRAYF8 off [50%, 75%]
1.0? 67.4 9.9 273 POVRAYF8 on E)
1.89 67.0 17.2 356 POVRAYF8 on F)
3.24 72.9 15.8 475 POVRAYF9 off [50%, 75%]
0.78 68.7 12.1 247 POVRAYF9 on E)
1.34 70.1 18.4 302 POVRAYF9 on F)
3.91 73.1 16.2 542 POVRAYF10 off [50%, 75%]
1.23 68.3 12.2 293 POVRAYF10 on E)
2.01 70.5 18.7 367 POVRAYF10 on F)
0.45 72.2 6.1 190 POVRAY_B1 off [50%, 75%]
0.44 73.0 6.0 186 POVRAY_B1 on E)
0.56 72.3 9.2 204 POVRAY_B1 on F)
0.11 71.2 10.1 161 POVRAY_B2 off [50%, 75%]
0.11 71.8 6.9 159 POVRAY_B2 on E)
0.22 72.5 10.8 171 POVRAY_B2 on F)
0.22 72.5 10.3 170 POVRAY_B3 off [50%, 75%]
0.45 71.8 8.8 194 POVRAY_B3 on E)
0.34 69.7 6.0 191 POVRAY_B3 on F)

Table 6.5: Measurement results for PovRay measurements

89

17.8	
5	 5.7	 5.98	

12.52	 7.71	 4.5	 5.15	

79	

56.5	 57.9	 57.9	
67.9	

62.3	 57.1	 56.8	 52.1	
44.8	 45.4	 44.6	

59.5	

45.2	 41.1	 44.9	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 B),	 k=5	 C),	 k=5	 D)	 E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

1978	

760	 827	 852	

1472	

1005	

703	 776	

0	

500	

1000	

1500	

2000	

2500	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 B),	 k=5	 C),	 k=5	 D)	 E)	 F)	

(b) Cost c(p, w, a)

Figure 6.14: Evaluation results for HIGH WV class

Evaluation of the Self-adapting Rule-based Approach Using a Bioinformatics
Workflow Workload

The SLA of the second workload, the bionformatics workflow, is defined as follows (similarly
as in Table 6.2): 1 MB≤ storage≤ 19456 MB, 1 MIPS≤ CPU Power ≤ 20000 MIPS, and 768
MB≤memory≤ 8192 MB. Figure 6.15 reveals that all evaluated autonomic options outperform
the standard case with option E achieving by far the best result. For option A we have also
experimented with varying k for different resources and could achieve the second best result
(tied with option F) by setting k = 10 for storage, k = 2 for CPU, and k = 5 for memory.

Concluding we find that for 11 out of 14 real-world workloads both options E and F of the
self-adaptive approach achieve better results than the static approach for at least 7% (workload
POV_F2) and at most 48% (workload POV_F9). From the remaining workloads, for two of
them (POV_B1 and POV_B2) only option E performs better, and for only one workload the
static approach outperforms both self-adaptive ones by 11% (POV_B3).

90

0.56	 0.56	 0.37	 0.37	 0.56	 0.37	 0.19	 0.37	

76.17	 77.1	 77.81	 75.93	 76.66	 78.25	 80.94	 78.25	

4.4	 3.7	 3.7	 4.3	 3.3	 4.1	 4.3	 4.1	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 A),	 k=15	 A),	 k_st=10,	
k_cpu=5,	
k_mem=2	

A),	 k_st=10,	
k_cpu=2,	
k_mem=5	

E)	 F)	

p	 100-‐w	 a	

(a) Violations p, utilization 100− w, actions a

179	
174	

152	
162	

176	

150	

118	

150	

100	

110	

120	

130	

140	

150	

160	

170	

180	

190	

off,	 [50%,
75%]	

A),	 k=2	 A),	 k=5	 A),	 k=15	 A),	 k_st=10,	
k_cpu=5,	
k_mem=2	

A),	 k_st=10,	
k_cpu=2,	
k_mem=5	

E)	 F)	

(b) Cost c(p, w, a)

Figure 6.15: Evaluation results for the bioinformatics workflow

6.7 Energy-efficient and SLA-Aware Management of IaaS Clouds

In this section we will evaluate the more holistic framework for VM reconfiguration, VM mi-
gration and PM power management. We divide the evaluation into four experiments. In the first
experiment we want to determine the energy gain VM reconfiguration brings alone. In the sec-
ond experiment we focus on the four different reallocation algorithms to see which one performs
best. In the third experiment we more deeply investigate some of the parameters for the two best
reallocation algorithms. Finally, with the fourth experiment we evaluate the scalability of the
algorithms.

We simulated 100 physical machines with 1.1GHz processors and 4GB memory, that con-
sume 20W at idle (Emin) and 100W when fully loaded (Emax). We used several different
workloads for the 100 VMs of the system, two synthetic ones and one based on real measure-
ments of a scientific bioinformatics workflow presented in [80]. For the synthetic workloads we
distinguish between LIGHT workload volatility, i.e., workload does not change a lot (up to 10%
from one iteration to the other), and the opposite MEDIUM_HEAVY (up to 50% from one itera-
tion to the other workload volatility. A more detailed description of the workload generation can
be found in [151]. We will abbreviate the bioinformatics workflow with BOKU. We evaluated
the algorithms with 100 iterations and the PM powering off strategy with a = 2, unless stated

91

otherwise.

Impact of VM Reconfiguration over Energy Consumption

We did the first set of runs to experiment on the effect of the VM reconfiguration handled by the
autonomic manager on the energy consumption of the system. In order to do so, we ran the four
algorithms with a fixed workload volatility class (here MEDIUM_HEAVY), and a fixed set of
TT pairs. We then compared to the same runs with the autonomic manager disabled. Evaluation
parameters can be found in Table 6.6.

Parameter Evaluated values
Tested workloads MEDIUM_HEAVY volatility
VM reconfiguration turned on/off
VM reconfiguration TT pairs [20%, 40%]
VM reallocation algorithms ROUNDROBIN, FIRSTFIT, MONTE-

CARLO, VECTORPACKING
ttcpu 0.8
ttmemory 0.8

Table 6.6: Evaluation input parameters for Experiment 1

(a) Energy consumption (b) SLA violations

Figure 6.16: Evaluation results for Experiment 1

Figure 6.16a shows the total energy consumption over the 100 time steps. We only plotted
one of the no reconfiguration results since all the 4 runs had the same energy consumption. The
reason was that since there was an over-provisioning at the first time step, the VM wouldn’t
change during the whole run. Adding the fact that VMs are provisioned for the CPU at a bit less
than the half of the PM’s capability, 2 VMs per PM were achieved by all algorithms since it was
the optimal initial mapping. We can however add to this the fact that the initial allocation makes
the PMs CPU resource loaded, and since our PMs have a low Emin compared to Emax the

92

energy consumption difference when disabling the VM reconfiguration is as big as it is. Thus,
VM reconfiguration tremendously reduces energy consumption up to 61.6% at the price of more
SLA violations as shown in Figure 6.16b.

Evaluation of VM Reallocation Algorithms

In order to evaluate the performance of the VM reallocation algorithms, we ran the simulations
for the 4 algorithms, with the VM reconfiguration turned on with one set of TT pairs. The eval-
uation was made for three different workloads: low and medium-high volatility of the resource
needs, and the bioinformatics workflow. Evaluation parameters are shown in Table 6.7.

Parameter Evaluated values
Tested workloads LIGHT, MEDIUM_HEAVY, BOKU
VM reconfiguration turned on
VM reconfiguration TT pairs [20%, 40%]
VM reallocation algorithms ROUNDROBIN, FIRSTFIT, MONTE-

CARLO, VECTORPACKING
ttcpu 0.8
ttmemory 0.8

Table 6.7: Evaluation input parameters for Experiment 2

Figure 6.17a shows the total energy consumption of the PMs over the 100 time steps for the 3
workloads. As the figure shows, for LIGHT volatility workloads, the MONTECARLO algorithm
performs the best, closely followed by VECTORPACKING and FIRSTFIT. The ROUNDROBIN

algorithms performs badly since it is consuming twice as much energy. If we look at the
MEDIUM_HEAVY volatility workload, we can see that the FIRSTFIT algorithm outperforms
all other algorithms energy-wise. Finally, for the BOKU workload, which stresses the resources
more than the two other workloads, the results are the same as for the LIGHT workload, only
with a generally much higher energy consumption.

The reason behind these differences is partially shown in Figure 6.17c, which shows the
average number of powered on PMs during the run. As we can see, the ROUNDROBIN will load
balance the VMs on every PMs, thus preventing the autonomic manager to shut down empty
PMs. The algorithm that performs the best, however, is the VECTORPACKING algorithm, since
it is designed to consolidate heavily the virtual machines, while load balancing if possible on the
hosts that remain powered on. We can also note that, except for FIRSTFIT and ROUNDROBIN,
the number of powered on PMs increases as the system resource consumption becomes more
volatile. This can be explained by the fact that the FIRSTFIT algorithm is less proactive than the
others, thus, as we will see in Figure 6.17b leads to some problems.

Figure 6.17b plots the SLA violation percentage of the cloud for each algorithms. Only the
LIGHT and MEDIUM_HEAVY workloads are plotted, since the BOKU workload is much less
volatile than the others and has an SLA violation rate of 0%. As we can see, the ROUNDROBIN

has the least violation percentage of all the algorithms, since it uses all the hosts, the small
amount of violations there is generated by the VM reconfiguration. The VECTORPACKING and
MONTECARLO algorithms are at around 4% and 8% of SLA violations. Last, the FIRSTFIT

93

algorithm which is performing better for the LIGHT volatility workload, performs poorly when
the volatility increases, since it goes up to over 16% SLA violations.

To examine the performance of the algorithms, we have to account for both the energy
consumption of the cloud, and the SLA violations that the reconfiguration of the VMs and the
PMs have induced. The perfect example is when looking at the FIRSTFIT algorithm for the
MEDIUM_HEAVY workload. For these parameters, the algorithm performs extremely well
energy-wise, outperforming smarter algorithms, but we can see that the setback is to have over
16% SLA violations. Looking at the global picture, we have a 60kW difference between the two
algorithms for a 8 point difference of SLA violations.

(a) Energy consumption of the algorithms under different
workloads

(b) SLA violation percentages of the VMs under different
workloads

(c) Average number of powered on machines

Figure 6.17: Evaluation results for Experiment 2

94

Evaluation of VM and PM Threat Thresholds

As the next evaluation step we decided to focus on the two threat threshold pairs we use: One for
PM power management (average CPU and memory utilization of all PMs), which we call PM-
TTs, and one for the VM reconfiguration (TTmin, TTmax) named VM-TTs. We evaluate them
on the two VM reallocation algorithms that achieved best results in previous allocations: MON-
TECARLO and VECTORPACKING. We analyzed three different PM-TTs [80%, 80%], [60%, 80%],
[60%, 60%] in the format [CPU,memory]. We used a case with a more cautious TT for CPU,
because this showed to be the resource which is usually fluctuating more quickly than memory.
For the VM-TTs we used the standard interval [50%, 75%] found in [151] to be a good general
setting additional to the very cautious setting of [20%, 40%] we used in the previous evaluation.
All the resulting scenarios are depicted in Table 6.8.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
PM-TTs =
[CPU,Memory]

[80%, 80%] [80%, 80%] [60%, 80%] [60%, 80%] [60%, 60%] [60%, 60%]

VM-TTs =
[TTlow, TThigh]

[20%, 40%] [50%, 75%] [20%, 40%] [50%, 75%] [20%, 40%] [50%, 75%]

Table 6.8: Scenarios for Experiment 3

(a) Energy consumption for varying VM and PM thresh-
olds

(b) SLA violations for varying VM and PM thresholds

Figure 6.18: Evaluation results for Experiment 3

As can be seen in Figures 6.18a and 6.18b the results show that MONTECARLO is almost
always better in terms of energy and violations. However, it takes much longer processing time
as presented in Section 6.7. For Scenarios 2, 4 and 6 the difference in favor of MONTECARLO

is extremely large as far as energy consumption is concerned. Not surprisingly, the scenarios,
where energy consumption is lowest has the highest number of SLA violations and vice versa.
Generally speaking, the even and the odd scenarios show similar behavior meaning the VM-TTs

95

have a higher impact on the outcome as compared to the PM-TTs. Moreover, lowering PM-
TTs increases energy consumption, but does not lower SLA violations in all cases. Finally, the
better results of MONTECARLO can also be explained when looking at the number of PMs that
were powered on or off. VECTORPACKING powers on at least as much (if not more) PMs as
MONTECARLO, and MONTECARLO also spends less energy on powering off again PMs that
were unnecessarily powered off by VECTORPACKING.

Scalability

Figure 6.19: Runtime of the algorithms for 100 VMs

Figure 6.19 shows the runtime of the reallocation algorithms for 100, 200, 400 and 800 VMs.
These runtimes contain both the VM reconfiguration decisions and the reallocation algorithm.
As we can see, the MONTECARLO algorithm is taking six time as much time to compute a
solution each time step at 100 VMs, as the others are computing in a reasonable time (around
half a second for 100 VMs with the reconfiguration overhead). The MONTECARLO algorithm,
even if it performs rather well, will not scale well for two reasons. The first is that it has to
compute lots of time the solution (100 in our tests), thus taking more and more time to compute.
The second reason is that with an increasing number of VMs and PMs, in order to achieve a near
optimal solution every time step, the algorithm has to increase its iteration number to increase
the chance of a good solution to emerge. If we increase the number of VMs and PMs without
increasing the number of iterations of the MONTECARLO, the quality of the results will become
more sporadic, and the average quality of the solution will decrease.

Figure 6.19 shows that the MONTECARLO algorithm is not scalable, unlike the other 3
for which the runtime seems to grow linearly to the VM number, and that it takes around an
acceptable 5 seconds to compute a solution for 800 VMs.

96

CHAPTER 7
Knowledge Management for Cloud

Federations

In this chapter we use an existing inter-Cloud architecture [107] and analyze a possible extension
with knowledge management. We formalize elements of the Cloud federation architecture, and
show the feasibility of this extension by pointing out concrete implementation samples.

7.1 Federated Cloud Management Architecture

Figure 7.1 shows the Federated Cloud Management (FCM) architecture (first introduced in
[143]), and its connections to the corresponding components that together represent an inter-
operable solution for establishing a federated cloud environment. Using this architecture, users
are able to execute services deployed on cloud infrastructures transparently, in an automated
way. Virtual appliances for all services should be stored in a generic repository called FCM
Repository, from which they are automatically replicated to the native repositories of the differ-
ent Infrastructure as a Service cloud providers.

Users are in direct contact with the Generic Meta-Broker Service (GMBS – [112]) that allows
requesting a service by describing the call with a WSDL, the operation to be called, and its pos-
sible input parameters. The GMBS is responsible of selecting a suitable cloud infrastructure for
the call, and submitting to a CloudBroker (CB) in contact with the selected infrastructure. Selec-
tion is based on static data gathered from the FCM Repository (e.g. service operations, WSDL,
appliance availability), and on dynamic information of special deployment metrics gathered by
the CloudBrokers (see Section 7.2). The role of GMBS is to manage autonomously the intercon-
nected cloud infrastructures with the help of the CloudBrokers by forming a cloud federation.

CloudBrokers are set up externally for each IaaS provider to process service calls and man-
age VMs in the particular cloud. Each CloudBroker [142] has its own queue for storing the
incoming service calls, and it manages one virtual machine queue for each virtual appliance
(VA). Virtual machine queues represent the resources that can currently serve a virtual appliance

97

Generic Meta Brokering Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit Submit
Lookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Figure 7.1: The original Federated Cloud Management architecture

specific service call. The main goal of the CloudBroker is to manage the virtual machine queues
according to their respective service demand. The default virtual machine scheduling is based
on the currently available requests in the queue, their historical execution times, and the number
of running VMs.

Virtual Machine Handlers are assigned to each virtual machine queue and process the VM
creation and destruction requests in the queue. Requests are translated and forwarded to the
underlying IaaS system. VM Handlers are infrastructure-specific and built on top of the public
interfaces of the underlying IaaS. Finally, the CloudBroker manages the incoming service call
queue by associating and dispatching calls to VMs created by the VM Handler.

As a background process, the architecture organizes virtual appliance distribution with the
Automatic Service Deployment (ASD) component [107]. This component minimizes pre-execution
service delivery time to reduce the apparent service execution time in highly dynamic service
environments. Service delivery is minimized by decomposing virtual appliances and replicating
them according to demand patterns, then rebuilding them on the IaaS system that will host the
future virtual machine. This chapter does not aim to further discuss the behavior of the ASD,
however it relies on its features that reduce virtual appliance replication time and transfer time
between the FCM and the native repositories.

98

7.2 Self-adaptable Inter-Cloud Management Architecture

This chapter offers two options to incorporate the concepts of knowledge management (KM)
systems into the Federated Cloud Management architecture: local and global. Local integration
is applied on a per deployed component basis, e.g. every CloudBroker utilizes a separate KM
system for its internal purposes. In contrast, global integration is based on a single KM system
that controls the autonomous behavior of the architectural components considering the available
information from the entire cloud federation. In this section first we discuss which integration
option is best to follow, then we introduce the extensions made to a KM system in order to
perform the integration.

Knowledge Management Integration Options

When local integration is applied, each knowledge manager can make fine-grained changes –
e.g., involving actions on non-public interfaces – on its controlled subsystem. First, the meta-
broker can select a different scheduling algorithm if necessitated by SLA violation predictions.
Next, the CloudBroker can apply a more aggressive VM termination strategy, if the greenness of
the architecture is more prioritized. Finally, if the storage requirements of the user are not valid
any more, the FCM repository removes unnecessarily decomposed packages (e.g. when the used
storage space approaches its SLA boundaries, the repository automatically reduces the occupied
storage). However, the locally made reactions to predicted SLA violations might conflict with
other system components not aware of the applied changes. These conflicts could cause new
SLA violation predictions in other subsystems, where new actions are required to maintain the
stability of the system. Consequently, local reactions could cause an autonomic chain reaction,
where a single SLA violation prediction might lead to an unstable system.

To avoid these chain reactions, we investigated global integration (presented in Figure 7.2)
that makes architecture-wide decisions from an external viewpoint. High-level integration is
supported by a monitoring solution – deployed next to each subcomponent in the system (GMBS,
the various CloudBrokers and repositories) – that determines system behavior in relation to the
settled SLA terms. Global KM integration aggregates the metrics received from the different
monitoring solutions, thus operates on the overall architecture and makes decisions consider-
ing the state of the entire system before changing one of its subsystems. However, adaptation
actions are restricted to use the public operations of the FCM architecture (e.g., new cloud se-
lection requests, new VM and call associations or repository rearrangements). Consequently,
the global integration exhausts adaptation actions earlier than the local one, because of metrics
aggregation and restricted interface use. For instance, if aggregated data hides the cause of a
possible future SLA violation, then global KM cannot act without user involvement.

In this chapter, we propose to use a hybrid KM system (revealed in Figure 7.3) combining
both global and local integration options. The hybrid system avoids the disadvantages of the
previous solutions by enabling global control over local decisions. In our system, local actions
can be preempted by the global KM system by propagating predicted changes in aggregated
metrics. Based on predicted changes, the global KM could stop the application of a locally
optimal action and prevent the autonomic chain reaction that would follow the local action. On
the other hand, if the global system does not stop the locally optimal action, then it enables the

99

Global Autonomous
ManagerGeneric Meta-Broker Service

Cloud
Broker

FCM
repository

Cloud
Broker

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

Figure 7.2: Global integration of the knowledge management system

execution of more fine-grained actions postponing adaptation action exhaustion.

Knowledge Management System Extensions

This subsection first lists the possible autonomic actions in our KM system, then it analyzes the
collected monitoring data that can indicate the need for autonomous behavior. Finally, based on
these indicators, we conclude with the rules triggering the adaptation in our FCM components.

Actions

Based on the affected components, the architecture applies four basic types of actions on un-
acceptable behavior. First, at the meta-brokering level, the system can organize a rescheduling
of several service calls. E.g., the autonomous manager could decide to reschedule a specific
amount of queued calls – c ∈ Qx, where c refers to the call, and Qx specifies the queue of the
CloudBroker for IaaS provider x. Consequently, to initiate rescheduling, the knowledge man-
ager specifies the amount of calls (Ncr) to be rescheduled and the source cloud (Cs) from which
the calls need to be removed. Afterwards, the meta-broker evaluates the new situation for the
removed calls, and schedules them to a different cloud, if possible.

Second, at the level of cloud brokering, the system could decide either to rearrange the VM
queues of different CloudBrokers, or alternatively to extend or shrink the VM queue of a specific
CloudBroker. VM queue rearrangement requires global KM integration in the system so it can
determine the effects of the queue rearrangement on multiple infrastructures. The autonomous
manager accomplishes rearrangement by destructing VMs of a particular virtual appliance in a

100

Global Autonomous
ManagerGeneric Meta-Broker Service

VMx

Native
repository

VMy

Native
repository

Submit SubmitLookup

re
pl

ic
at

e

Instantiate

In
st

an
tia

teCall Call

User

Submit

Knowledge
Management

System

Monitor Analyze

PlanExecute

KM

KM

KM
Cloud
Broker

KM
Cloud
Broker

FC
M

repository
Figure 7.3: Hybrid integration of the knowledge management system

Action Involved component Integration
Reschedule calls Meta-Broker Global

Rearrange VM queues CloudBroker Global
Extend/Shrink VM Queue CloudBroker Local

Rearrange VA storage FCM repository Global
Self-Instantiated Deployment Service instances Local

Table 7.1: Summary of Autonomous Actions

specific cloud and requesting new VMs in another one. Consequently, the autonomous manager
selects the virtual appliance (V Aarr) that has the most affected VMs. Then it identifies the
amount of virtual machines (Nvmtr) to be removed from the source cloud (Cs) and instantiated
in a more suitable one (Cd).

The queue rearrangement operations have their counterparts also in case of local KM inte-
gration. The VM queue extension and shrinking operations are local decisions that are supported
by energy efficiency related decisions. In case of queue shrinking, some of the virtual machines
controlled by local CloudBroker are destructed. However, under bigger loads, virtual machines
could be in the process of performing service calls. Therefore, the autonomous manager can
choose between the three VM destruction behaviors embedded into the CloudBrokers: (i) de-
stroy after call completed, (ii) destroy right after request and put the call back to the local service
call queue and finally, (iii) destroy right after request and notify the user about call abortion. As

101

a result, the autonomous manager specifies the number of VMs to extend (Nex) or shrink (Nshr)
the queue with and the destruction strategy (Sdest) to be used.

Third, on the level of the FCM repository, the autonomous manager can make the decision to
rearrange virtual appliance storage between native repositories. This decision requires the FCM
repository either to remove appliances from the native repositories, or to replicate its contents
to a new repository. Appliance removal is only feasible, if one of the following cases are met:
(i) the hosting cloud will no longer execute the VA, (ii) the hosting cloud can download the
VA from third party repositories or finally, (iii) the appliance itself was based on an extensible
appliance that is still present in the native repository of the hosting cloud. The objective of the
rearrangement is to reduce the storage costs in the federation at the expense of increased virtual
machine instantiation time for VMs of the removed appliances. Conclusively, the rearrangement
decision should involve the decision on the percentage (Nrepr) of the reduced or replicated
appliances that should participate in the rearrangement process.

Finally, when virtual appliances are built with embedded autonomous capabilities (internal
monitoring, KM system etc.), then virtual machines based on them are capable of self-initiated
deployment. If a service instance gets either overloaded or dysfunctional according to its internal
monitoring metrics, then the instance contacts the local CloudBroker to instantiate a new virtual
machine just like the instance is running in. In case of overloading, the new instance will also
be considered for new Call→VM associations. In case of dysfunctional instances, the system
creates a proxy service inside the original VM replacing the original service instance. This proxy
is then used to forward the requests towards the newly created instance until the current VM is
destructed.

Monitored Metrics

After analyzing the various autonomous actions that the KM system can exercise, we inves-
tigated the monitoring system and the possible metrics to be collected for the identification of
those cases when the architecture encounters unsatisfactory behavior. Currently, we monitor and
analyze the behavior of CloudBrokers, the FCM repository and individual service instances.

Since CloudBrokers represent the behavior of specific IaaS systems, most of the measure-
ments and decisions are made based on their behavior. All measurements are related to the
queues of the CloudBroker; therefore we summarize their queuing behavior. CloudBrokers of-
fer two types of queues: the call queue (Qx, where x identifies the specific CloudBroker that
handles the queue) and the VM queues (VMQx,y, where y identifies the specific service – or
appliance V Ay – the queued VMs are offering). The members of the call queue represent the
service calls that a CloudBroker needs to handle in the future (the queue is filled by the meta-
broker and emptied by the CloudBroker through associating a call with a specific VM). On the
other hand, VM queues are handled on a more complex way: they list the currently handled
VMs offering a specific service instance. Consequently, the CloudBrokers maintain VM queues
for all service instances separately. Entries in the VM queues are used to determine the state of
the VMs:

102

State : VM →

WAITING
INIT
RUNNING.AV AILABLE
RUNNING.ACQUIRED
CANCEL

(7.1)

• Waiting: the underlying cloud infrastructure does not have resources to fulfill this VM
request yet.

• Init: the VM handler started to create the VM but it has not started up completely yet.

• Running and available: the VM is available for use, the CloudBroker can associate calls
to these VMs only.

• Running and acquired: the VM is associated with a call and is processing it currently.

• For cancellation: the CloudBroker decided to remove the VM and stop hosting it in the
underlying infrastructure.

Based on these two queues the monitor collects the metrics listed in the following para-
graphs.

To support decisions for service call rescheduling, the system monitors the call queue length
for all available CloudBrokers for a specific service call s:

q(x, s) := {c ∈ Qx : (type(c) = s)}, (7.2)

where type(c) defines the kind of the service call c is targeting.
Call throughput measurement of available CloudBrokers is also designed to assist call reschedul-

ing:

throughput(x) :=
1

maxc∈Qx(waitingtime(c))
, (7.3)

where waitingtime(c) expresses the time in sec a service call has been waiting in the specific
Q.

We define the average waiting time of a service s by

awt(s,Qx) :=

∑
c∈q(x,s)waitingtime(c)

|q(x, s)|
, (7.4)

and the average waiting time of a queue by

awt(Qx) :=

∑
c∈Qx

waitingtime(c)
|Qx|

. (7.5)

To distinguish the CloudBrokers, where VM queue rearrangements could occur, we measure
the number of service instances that are offered by a particular infrastructure:

103

vms(x, s) :=
{
vm ∈ VMQx,s :

State(vm) = RUNNING.AV AILABLE

∨ State(vm) = RUNNING.ACQUIRED
}

(7.6)

The call/VM ratio for a specific service managed by a specific CloudBroker:

cvmratio(x, s) :=
|q(x, s)|
|vms(x, s)|

(7.7)

This ratio allows the global autonomous manager to plan VM queue rearrangements and
equalize the service call workload on the federated infrastructures. When applied with the local
KM system, this ratio allows the system to decide on extending and shrinking the VM queues of
particular services and balance the service instances managed by the local CloudBroker.

The load of the infrastructure managed by a specific CloudBroker:

load(x) :=
∑
∀s |vms(x, s)|∑
∀s |VMQx,s|

(7.8)

The load analysis is used for VM queue rearrangements in order to reduce the number of
waiting VMs in the federation. When applied locally, along with the call/vm ratio the load
analysis is utilized to determine when to extend or shrink the VM queues of various services. As
a result, CloudBrokers could locally reorganize their VM structures that better fit the current call
patterns.

To support the remaining autonomous actions, the FCM repository and individual service
instances are also monitored. First, the system monitors the accumulated storage costs of a
virtual appliance in all the repositories (r ∈ R) in the system (expressed in US dollars/day):

stcost(V As) :=
∑
∀r
locstcost(r, V As), (7.9)

where locstcost(r, V As) signifies the local storage cost at repository r for appliance V As (rep-
resenting a specific service referred as s). To better identify the possible appliance storage re-
arrangements the system also analyzes the usage rate of appliances in the different repositories
expressed in the number of times the VMs based on the appliance have changed status from
INIT to RUNNING.AV AILABLE in a single day (deployfreq(r, V As)).

Finally, individual services are monitored to support self-instantiated deployment. Here
we analyze the service availability (expressed as the % of time that the instance is available
for external service calls) of the specific service instance deployed in the same VM where the
monitoring system is running.

Basic Rules for Applying Actions

We decided to formulate the knowledge base (KB) as a rule-based system. Rules are of the
form “WHEN condition THEN action” and can be implemented e.g. using the Java rule engine

104

1 rule “Reschedule calls”
2 WHEN
3 Cs : Cloudbroker()
4 throughput(x) < mean(throughput(.)) + δ · std(throughput(.))
5 THEN
6 Cd := arg max throughput(.)
7 Ncr := equalizeQs(Cs, Cd)
8 calls := remove(Ncr, Cs); //removes last Ncr entries in QCs .
9 add(calls, Cd);

Figure 7.4: Rule for rescheduling calls

Drools [15]. We define several rules based on the previously defined measurements and actions,
and present them in Drools-related pseudo code. The working memory of the KM system, which
is the main class for using the rule engine at runtime, does not only consist of the specified rules,
but also of the objects whose knowledge has to be modeled, and that are currently active in the
Cloud federation (like a CloudBroker, the native repository, different queues, etc.). These objects
are typically modeled as Java classes, and thus referred to as CloudBroker(), NativeRepository(),
etc.

Figure 7.4 shows the rule for rescheduling service calls. Line 1 states the unique name the
rule can be identified with in the KB. This way, rules can be dynamically altered or replaced if
different global behavior due to changing high-level policies (i.e., changing from energy efficient
to SLA performant) is required. Lines 3-4 state the conditions that have to be fulfilled to trigger
the actions in lines 6-9. At first, we look for a CloudBroker Cs (line 3), whose throughput falls
below the average of all the queues’ throughputs (mean()) plus a multiple of their standard
deviation (std(), line 4). If such Cs is found, the rule is executed. We have to decide to which
Cloud Cd (line 6) to move Ncr service calls (line 7), and finally invoke the appropriate public
interface methods of the Cloud brokers at stake (lines 8-9). As Cd we choose the Cloud with
maximum throughput. The equalizeQs() method (line 7) tries to equal out the average waiting
times of the queues of Cs and Cd. It takes the last service call ŝ out of Qs, retrieves its average
waiting time awt(ŝ, Qs) and calculates the new estimated average waiting time for Qs and Qd
by awt(Qs) := awt(Qs) − awt(ŝ, Qs) and awt(Qd) := awt(Qd) + awt(ŝ, Qd), respectively.
Then it adds ŝ to Qd. It continues this procedure as long as awt(Qs) ≥ awt(Qd), and returns
the number of service calls that have been hypothetically added toQd. The rule could then either
really add the chosen calls to Cd as presented in line 9, or return them to the meta-broker

Figures 7.5 and 7.6 show possible rules for removing VAs from a Cloud’s native repository
due to high local or global costs, respectively. Both rules try to find a repository r and a VA V Ax
that have been inserted into the working memory of the rules engine (lines 3-4), and remove
the specified VA from the repository (line 8), when certain conditions hold. In Figure 7.5 the
removal action is executed when two conditions hold: First, the local storage cost of the VA at
the specified resource exceeds a certain threshold. The threshold is calculated as the average
local storage costs at all repositories for the same VA plus a multiple of its standard deviation.
Second, the deployment frequency of the VA at this repository falls below a certain threshold,

105

1 rule “Remove VA from native repository due to high local costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 locstcost(r, V Ax) > mean(locstcost(., V Ax)) + δ · std(locstcost(., V Ax))
6 deployfreq(r, V Ax) < mean(deployfreq(., V Ax))
7 THEN
8 remove(V Ax, r) //removes V Ax from native repository r

Figure 7.5: Rule for removing VA from native repository of a specific Cloud due to high local
costs

1 rule “Remove VA from native repository due to high global costs”
2 WHEN
3 r : NativeRepository()
4 V Ax : VirtualAppliance()
5 stcost(V Ax) > mean(stcost(.)) + δ · std(stcost(.))
6 rmin : arg min deployfreq(., V Ax)
7 THEN
8 remove(V Ax, rmin) //removes V Ax from native repository rmin

Figure 7.6: Rule for removing VA from native repository of a specific Cloud due to high global
costs

which is the mean deployment frequency of the VA at all repositories. In short, the VA is
instantiated less often than other VAs, but its cost is higher than for other VAs, so the VA should
be removed. Figure 7.6 takes a global perspective and checks whether the overall storage cost
for the VA exceeds a certain threshold (defined similarly as with Figure 7.5, line 5). Then, the
VA is removed from the repository that has the lowest deployment frequency (line 6).

The remaining rules can be specified according to the actions and measurements as explained
before. However, their specific parameters may have heavy impact on the overall performance
of the system. These parameters are to be learned by the KM system. In our future work, we
plan to evaluate the system performance with the extension of the simulation engine presented
in [150].

106

CHAPTER 8
State of the Art

This chapter follows in principal the organization of this thesis. In Section 8.1 we describe work
related to adaptive SLA mapping from Chapter 3. Sections 8.2, 8.3, and 8.4 describe related
work on resource-efficiency, knowledge management and self-adaptive algorithms, respectively
(cf. Chapter 4). Section 8.5 covers related work on energy efficiency from Chapter 5, and Section
8.6 focuses on Cloud federations from Chapter 7. Finally, Section 8.7 concludes with other
holistic Cloud management projects.

8.1 SLA Generation and Adaptive SLA Mapping

For putting our work on adaptive SLA mapping in context of the state of the art, we describe
Cloud resource management, Cloud marketplaces, and the existing work on SLA matching.

Cloud Resource Management

There is a large body of work about managing resource provisions, negotiations, and federation
of Cloud and Grid resources. An example is [67]. They designed an agent technology to address
the federation problems in Grids, i.e., resource selection and policy reconciliation. [186] pro-
pose a new abstraction layer for managing the life cycle of services. It allows automatic service
deployment and escalation depending on the service status. This abstraction layer can be posi-
tioned on top of different Cloud provider infrastructures, hence mitigating the potential lock-in
problem and allowing the transparent federation of Clouds for the execution of services. [87] in-
vestigate three novel heuristics for scheduling parallel applications on utility Grids, optimizing
the trade-off between time and cost constraints.

However, most of the related work on resource management considers resource provision
from the provider’s point of view and does not consider Cloud computing infrastructures in the
context of a marketplace.

107

Cloud Market

Currently, a large number of commercial Cloud providers have entered the utility computing
market, offering a number of different types of services. These services can be grouped into
three types: computing infrastructure services, which are pure computing resources on a pay-
per-use basis [183, 12, 5]; software services, which are computing resources in combination
with a software solution [7, 10]; and platform services, which allow customers to create their
own services in combination with the help of supporting services of the platform provider. The
first type of services, which is also called Infrastructure-as-a-Service (IaaS) consists of a virtual
machine, as in the case of Amazon’s EC2 service, or in the form of a computing cluster, as
done by Tsunamic Technologies. The number of different types of virtual machines offered by
a provider is low. For example, Amazon and EMC introduced only three derivations of their
basic resource type [3]. Examples for the second type of services, which are called Software-
as-a-Service (SaaS) are services offered by Google (Google Apps [7]) and Salesforce.com [10].
These companies provide access to software on pay-per-use basis. These SaaS solutions can
hardly be integrated with other solutions, because of their complexity. Examples for the third
kind of Cloud services, which are called Platform-as-a-Service (PaaS), are Sun N1 Grid [11],
force.com [10], and Microsoft Azure [9]. In this category, the focus lies on provisioning essen-
tial basic services that are needed by a large number of applications. These basic services can
be ordered on a pay-per-use basis. Although the goal of the PaaS service offerings is a seamless
integration with the users’ applications, standardization of interfaces is largely absent. Further-
more, big Cloud providers as the mentioned Azure or EC2 do not even provide their SLAs in a
standardized format, e.g., XML. If they want to participate in markets with higher liquidity, as
leveraged by our approach, they have to comply to the market rules and formalize their SLA tem-
plates in a machine-readable way. Nevertheless, the implementation of system resource markets
has been discussed in several projects [57, 165, 167]. [203] give an overview over information
systems for traded resources in Grid markets and [93] deal with economic models of Grid com-
puting markets. All in all, however, mentioned works either do not define the tradable goods,
work with very simplified definitions, or do not take market liquidity into account.

Service Level Agreement Matching

The main SLA matching mechanisms are based on OWL, DAML-S, or similar semantic tech-
nologies. [168] describe a framework for semantic matching of SLAs based on WSDL-S and
OWL. [91] describes another onotology-based approach based on OWL and SWRL. [75] present
a unified QoS ontology applicable to specific scenarios such as QoS-based Web services selec-
tion, QoS monitoring, and QoS adaptation. [34] present an autonomic Grid architecture with
mechanisms for dynamically reconfiguring service center infrastructures. It is exploited to ful-
fill varying QoS requirements. Besides those ontology-based mechanisms, [118] discuss au-
tonomous QoS management, using a proxy-like approach for defining QoS parameters that a
service has to maintain during its interaction with a specific customer. The implementation is
based on WS-Agreement, using predefined SLA templates. However, these templates cannot
consider changes in user needs, which is essential for creating successful markets, as shown in
our earlier work [184]. Additionally, several works on SLA management have been presented

108

in [58]. Besides, regardless of the type of the used approach, these approaches do not evaluate
and explain the benefit and costs through the introduction of SLA matching mechanisms.

In [209] Yarmolenko et al. make a case for increasing the expressiveness of SLAs. Doing
this, they can possibly also increase market liquidity, when it comes to matching asks and bids,
where a same understanding of the parameters has already been established. Our approach could
be seen as complimentary in the sense that it makes sure that their pre-condition holds.

8.2 Resource-Efficient SLA Enactment

Apart from adaptive SLA mappings and SLA generation, we have determined six different ways
to compare our work with other achievements in this area. Whereas this section compares our
work with other works dealing with SLA enactment and resource efficiency, Section 8.3 consid-
ers the area of knowledge management, Section 8.4 highlights self-adaptive approaches, Section
8.5 focuses on energy efficiency, Section 8.6 on Cloud federations, and Section 8.7 more gener-
ally relates the FoSII project to other projects in this field.

As to resource-efficient SLA enactment, most works aim at optimizing resource usage while
keeping QoS goals. However, we can identify six categories that present shortcomings of related
work in this area. In the following list we give examples of work falling into these categories. A
more detailed description of related work can be found thereafter.

(i) Work with no proactive SLA enactment [206]

(ii) Work related to Grid computing or SOA in general [170, 188, 208]

(iii) Work just tied to specific SLA parameters or use cases [115, 175, 46, 113, 179, 66]

(iv) Work without holistic view [213, 210, 160, 157]

(v) Work neglecting the overhead of reallocation actions [179]

(vi) Work without VM reconfiguration only considering static workloads [200, 47]

Several papers concentrate on specific subsystems of large-scale distributed systems, as
[115] on the performance of memory systems, or only deal with one or two specific SLA parame-
ters. Petrucci [175] or Bichler [46] investigate one general resource constraint and Khanna [113]
only focuses on response time and throughput. [66] describe in detail the process of how to
fulfill an SLA, which is limited to only one SLO and the analysis of this resource provision-
ing is closely tied to a special resource, i.e., CPU utilization. A lot of work under this as-
pect [170,188,208] has been carried out on Grids, which, however, have a different architecture
than Clouds. Related work in Grid computing uses job finishing and start times for scheduling.
This is not applicable in Cloud Computing, since Cloud applications do not necessarily have
start or finishing times, but run for an unspecified amount of time as web or database servers.

A quite similar approach to our concept is provided by the Sandpiper framework [206],
which offers black-box and gray-box resource management for VMs. Contrary to our approach,
though, it plans reactions just after violations have occurred. Also the VCONF model by Rao et
al. [179] has similar goals as presented in Section 1.1, but depends on specific parameters, can

109

only execute one action per iteration and neglects the energy consumption of executed actions.
Hoyer et al. [99] also undertake a speculative approach as in our work by overbooking PM
resources. They assign VMs to PMs that would exceed their maximum resource capacities,
because VMs hardly ever use all their assigned resources. Computing this allocation they also
take into consideration workload correlation of different VMs. Zhang et al. [213] optimize
revenue for a single Cloud provider by adapting the number of specific VM types that should
be available for auctioning as practiced on Amazon EC2 [3]. They also experiment with the
price for VM types and use model predictive control to find solutions [84]. However, none of
the presented papers use a KB for recording past actions and learning. Those, which do, are
presented in Section 8.3.

Other papers neglect VM reconfiguration or the dynamic nature of Cloud workloads. [210,
160] solely focus on VM migration and [157] on turning on and off physical machines, whereas
we also focus on VM re-configuration. Borgetto et al. [47] tackle the trade-off between consol-
idating VMs on PMs and turning off PMs on the one hand, and attaining SLOs for CPU and
memory on the other. However, the authors assume a static setting and do not consider dynami-
cally changing workloads. So, e.g., they do not take the number of migrations into account. Still-
well et al. [195] in a similar setting define the resource allocation problem for static workloads,
present the optimal solution for small instances and evaluate heuristics by simulations. Nathani
et al. [164], e.g., also deal with VM placement on PMs using scheduling techniques. [101] react
to changing workload demands by starting new VM instances; taking into account VM startup
time, they use prediction models to have VMs available already before the peak occurs. Rego
et al. [180] allocate VMs to PMs based on the CPU capacity. They take into account a vari-
ety of CPU types in a heterogeneous Cloud setting, and achieve the allocation by introducing a
novel representation of the processing capacity. Sugiki et al. [196] follow a resource allocation
approach for virtualization based on common resource allocation techniques used for operating
systems. Watson et al. [205] relate CPU allocation for a VM to the response time of an appli-
cation and create a probabilistic model to predict response time. Kephart et al. [109] argue for
avoiding a system based on action or goal policies, and opt for a utility-driven approach, where
they give a detailed view on how to derive utility functions. However, it would be interesting to
develop an automatic mapping of general SLAs to these utility functions, because as in [66], the
authors only deal with one SLA parameter, response time, and relate it to the number of servers
they use for satisfying a certain consumer load. Thus, the only actions to execute are shut down
server and start server. Muthusamy et al.’s vision [163] is quite similar to our goals, but set in
the more general field of Service Oriented Architectures (SOA). They present a methodology to
optimize workflow execution by reducing communication effort in terms of exchanged messages
between different servers. Their optimization routines are based on the declarative specification
of parameters in SLAs, and they also aim at attaining the SLAs by efficiently utilizing resources.

Complementary work to ours has been carried out by Verma et al. [201], who study the
impact VM reconfiguration and VM live migration have on application performance. They focus
on VM migration, where they predict its duration. A state of the art survey has been conducted by
[199], who compare application scalability that has been achieved by different approaches. As an
application may work with several VMs as a database server for instance, application scalability
also involves the relationship between several VMs. [186] propose a single controller for the

110

whole application that exploits user defined rules to add or remove certain VMs to achieve so
called elasticity. An elasticity controller has sensors that gather information of the infrastructure
and application performance, and actuators that use the API of an IaaS provider to change VM
configuration. Baladine et al. [38] deal with network scalability based on applications, and Lim
et al. [137] on elastic storage.

Resource allocation has also been observed in different Cloud settings. Distefano et al. [74]
bring together volunteer and Cloud computing and deal with the resource management thereof.
[144] built a resource manager based on the Nimbus toolkit [21]. This resource manager extends
a cluster by using public Cloud resources when necessary. Also [72] evaluated the costs and
benefits of such an approach. [145] also builds on Nimbus, and tries to increase utilization of
an IaaS Cloud in certain cases. The authors exploit the fact that private Cloud providers have to
keep the utilization of their infrastructure low such that they can provide computing power on-
demand and do not have to reject spontaneously incoming requests due to the lack of available
resources at a given moment. They propose to use the therefore unutilized resources by scientific
applications such as SETI@Home [31] or Folding@Home [128] that do not rely on on-demand
access, but are designed to opportunistically exploit available resources, whose usage can be
terminated at any time. [77] also target the underutilization of Clouds and focus on the response
time and latency of a service using load balancing in EC2 [3]. Sridharan et al. [194] focus on
virtual desktop clouds [116], but also use an allocation strategy that is based on cost-awareness
and utility. Pan et al. [172] present a toolkit, which allows users to build their own private Cloud
out of a cluster of PMs. Via a web interface, the user submits jobs, and the middleware allocates
VMs to execute the jobs. Our design of a Cloud can also handle applications that have no specific
end time, but run continuously on a Cloud infrastructure.

Summarizing we can say that there has been a great deal of work on the different escalation
levels, whereas VM configuration has not been observed yet, nor its combination with other
escalation levels.

8.3 Knowledge Management and Autonomic Computing in Clouds
and Related Fields

We devise this section into four areas: First, we present state-of-the-art KM techniques used in
Cloud computing, SLA management, and related fields. Second, we take a broader perspective
and have a look on KM techniques in general. Third, we point out advances in autonomic
computing in Clouds and related fields; and fourth, we discuss other simulation engines that
evaluate KM and autonomic computing techniques.

First, there has been work on KM of SLAs, especially rule-based systems. Paschke [174] et
al. look into a rule-based approach in combination with the logical formalism ContractLog [173].
This approach specifies rules to trigger after a violation has occurred, but it does not deal with
avoidance of SLA violations. A similar methodology has been taken by Kyas et al. [125], who
monitor SLAs and enforce penalties in case of violations. The SLAs have to be written in a
specific action-based formal language called CL, which allows to write conditional obligations,
permissions and prohibitions over actions. Hasselmeyer et al. [95] introduce a Conversion Fac-
tory, which on a design level combines the SLA, the system status, and the Business Level

111

Objectives to create Operational Level Agreements (OLAs), which govern system configura-
tion. Whereas the idea seems promising, there are no details on how to achieve these mappings
to OLAs. Others inspected the use of ontologies as KBs only at a conceptual level. [123, 122]
viewed the system in four layers (i.e., business, system, network and device) and broke down the
SLA into relevant information for each layer, which had the responsibility of allocating required
resources. Again, no details on how to achieve this have been given.

More similar to our approach presented in Section 4.4 Bahati et al. [36] also use policies,
i.e., rules, to achieve autonomic management. They provide a system architecture including
a KB and a learning component, and divide all possible states of the system into so called
regions, which they assign a certain benefit for being in this region. A bad region would be,
e.g., response time > 500 (too slow), a fair region would be response time < 100 (too fast,
consuming unnecessary resources), and a good region would be 100 ≤ response time ≤ 500.
With reward signals from the given metrics, the system learns whether different actions for one
state were good or not. Yet, the actions are not structured, but are mixed together into a single
rule, which makes the rules very hard to manage and to determine a salience concept behind
them. Nevertheless, we share the idea of defining “over-utilized”, “neutral” and “under-utilized”
regions. As in some previously mentioned papers, that work deals with only one SLA parameter
and a quite limited set of actions, and with violations and not with the avoidance thereof. Our
KM system allows to choose any arbitrary number of resource parameters that can be adjusted on
a VM. Moreover, our approach is more wholesome than related work and integrates the different
action levels that work has been carried out on.

In several papers Yousif et al. [114, 207] present autonomic resource management as far as
power consumption is concerned by using fuzzy logic containing IF-THEN rules, for instance.
In [68] Choi et al. use a learning module also based on CBR, but for VM migration decisions.
These decisions are based on CPU utilization and the standard deviation thereof after and before
the migration takes place. Cases are assumed to be the same when the current standard deviation
and the CPU utilization of the PM are the same. A migration is supposed to be useful if the
standard deviation of the CPU utilization after migration of the previous case is less than the
current CPU utilization. The authors store the mentioned data into data vectors that form a
so-called history matrix. Additionally to the CBR approach, there is also the approach of Case-
based planning (CBP) [69], which transforms an initial state into a goal state by applying actions.
CBP is very similar to Situation Calculus in its initial description – and due to the same reasons
as described in Section 4.1 we decided not to apply CBP for Cloud computing –, but it searches
for the actions to be applied in a different way. CBP uses past experience to see if a specific
action was helpful to advance the state towards the goal state or not. Berral et al. [44] use
machine learning techniques to schedule jobs on clusters in an energy-efficient way. With a
training data set they create a model which they use to predict the future performance of the jobs
and the energy consumption in the resulting allocations.

Second, [40,71] give a good overview of many different (semantic) knowledge management
methods and their applications. Presented methods include rules, default logic, case based rea-
soning, situation calculus, truth maintenance systems, logic programming, answer set planing
(e.g., SMODELS [166], DLV [134]), and agent-based systems. Those considered for usage
in the area of governing Cloud computing infrastructures have been presented in Section 4.1.

112

Eichner et al. [78] describe a KM approach in the broader field of software development in the
framework of the BREIN project [86], which aims at developing an intelligent grid infrastruc-
ture. Saripalli et al. [189] follow the path of predicting loads for SaaS platforms by cubic spline
interpolation. Bhoj et al. [45] present early work on the monitoring and management of SLAs
(not enactment, though) in distributed systems. They present tools and languages for formaliz-
ing SLAs. As SLA parameters they consider typical parameters like availability, response time,
throughput or utilization. Their work can be seen as preceding service-oriented architectures.
Dan et al. [70] use the WSLA standard [108] to describe a high level view and an architecture
for SaaS.

Third, Lee et al. [131] present workflow adaptation as an autonomic computing problem.
They separate the four phases of the MAPE cycle neatly and devise concrete actions for the
monitoring, analysis, and planning phases. For monitoring they use the progress of a service,
its data consumption rate, or the load on an execution node as performance indicators. These
indicators are then used in the analysis phase to determine potential problems as load imbalances,
or bottlenecks, as well as opportunities as free capacities, or underutilized execution nodes. In
the planning phase, actions are planned to be executed that mitigate the found problems or
opportunities in the previous phase. These actions include making a workflow complete more
quickly by increasing service parallelism or by rescheduling a service to a different execution
node, or to resort to faster data sources. However, problems in the analysis phase can trigger
not only one, but several different actions in the planning phase, and it is not clarified in what
manner to make the necessary decision-making for which action should be triggered. Similar to
this, [130] include a utility measurement into the autonomic cycle of the workflow adaptation to
trigger concrete actions. The utility is based on response time, or profit, where also execution
costs are taken into account. In the planning phase, the action is triggered that maximizes the
utility function. These calculations are based on a model that can estimate the response and
queue times that the examined actions would cause. More generally, [110] give an overview
of policies for autonomic computing. These policies are based on actions, goals, and utility
functions.

Fourth, CloudSim [63] is another toolkit for modeling a Cloud infrastructure to evaluate re-
source management strategies. The main difference to our simulation engine is that CloudSim
uses the concept of a Cloudlet, which is based on the former Gridlet used in GridSim [60]. A
Cloudlet assumes a certain start and finishing time of a job, which is very typical in a Grid envi-
ronment. However, applications in Cloud computing do not necessarily have a limited execution
time, but run steadily as web or database servers. This is reflected by our simulation engine.

8.4 Self-Adaptive Algorithms for Cloud Computing
Infrastructures

In this section we present state of the art particularly relevant to our work in Section 4.5.
Dutreilh et al. [76] investigate horizontal scaling, e.g., adding or removing VMs running an

application server by using a load balancer, using a threshold-based and a reinforcement learning
technique. However, the authors do not consider adapting the thresholds themselves via learn-
ing. Moreover, the authors determine problems with static thresholds as well as with determining

113

good tuning for the reinforcement algorithms. The authors also state the importance of under-
standing the workload variation, but do not present a method how to deal with it. Kalyvianaki
et al. [104] use Kalman filters for CPU resource provisioning for virtualized servers. They
self-adapt their approach using variances and covariances. Bu et al. [56] use a reinforcement
learning approach combined with the simplex algorithm to auto-configure virtual machines and
applications in a coordinated way. Padala et al. [171] develop self-tuning controllers for multi-
tier applications using control theory. Song et al. [193] use self-adaptation in the field of Cloud
federations. Their algorithm selects tasks and allocates them by finding a trade-off between SLA
adherence and resource utilization. This trade-off is represented by a parameter, which is opti-
mized using a similar principle as the bisection method. For the optimization, the benefit of a
specific threshold is estimated by simulation. This estimation is executed several times until an
adequate value is found.

[178] apply genetic algorithms for decision making and self-reconfiguration, but on the
network topology of remote data mirrors. Heinis et al. [97] experiment with self-configuring
thresholds, but tied to a workflow execution engine. Ghanbari et al. [89] also dynamically clas-
sify workload, but they use clustering techniques based on parameters such as response time or
throughput. Their model is intended rather for web servers than for general applications. Almost
the same authors in [88] investigate and compare control-theoretic and rule-based approaches to
achieve elasticity. For them elasticity means to add or remove resources such as application
server instances on the PaaS layer.

Summarizing, there are quite few works on self-adaptive algorithms for managing Cloud
computing infrastructures, and none of them self-adapts an approach for VM reconfiguration,
nor deals with the volatility of Cloud workloads.

8.5 Energy-Efficient Cloud Computing Infrastructures

In this section we describe work explicitly dealing with energy efficiency in Cloud computing
and compare it with our work in Chapter 5. There has been considerable work on energy effi-
ciency in ICT systems. Their common goal is to attain certain performance criteria for reducing
energy consumption. Many of these works, though, focus on different escalation levels (cf.
Section 2.3) alone, and do not combine them as in our approach.

E.g., [210, 160, 140] only focus on VM migration and [157] on turning on and off physical
machines. Our approach achieves a more holistic approach taking all these mentioned level
plus VM reconfiguration into account. Meng et al. [160] try to increase efficient resource usage
by provisioning multiple specific VMs together on a physical machine. [138, 98] reduce power
consumption by PM consolidation using several heuristics. Shi et al. [191] aim at attaining
SLAs with a given energy budget. They maximize profit by efficient virtual machine placement.
Wang et al. [204] inspect other aspects virtualization has on workloads performance besides VM
migration, namely the number of virtual CPUs per VM and their memory share of the PM. Goiri
et al. [90] present energy-aware scheduling of VMs on PMs. However, for migration they assume
just some arbitrary value, and they only consider jobs with a deadline instead of permanently
running applications. Voorsluys et al. [202] tackle the cost of live migration of virtual machines
regarding the response time of the services inside the VMs in order to match the response time

114

with the SLA requirements of the services. Liu et al. [139] also have studied live migration of
virtual machines in order to model the performance and energy consumption of the migration.
They show that migration is an I/O intensive application, and that it consumes energy on both
ends. The architectural framework proposed in [41] to achieve green clouds also achieves VM
reconfiguration, allocation and reallocation. They use a CPU power model to monitor the energy
consumption of the cloud. The algorithm they propose to achieve dynamic consolidation of the
VMs significantly reduces the global power consumption of their infrastructure. Their work,
however, differs from our approach in several points, the main points being the use of a different
VM migration model, the use of a reactive VM reconfiguration instead of reactive and proactive
one, and not taking into account time taken to power on and off hosts. Our research provides
a more wholesome approach than related work and integrates most of the different possible
escalation levels seen in the literature.

Some authors as Kalyvianaki [104] focus on optimizing a specific resource type such as
CPU usage, or only deal with homogeneous resources [115]. While most authors assume a
theoretical energy model behind their approaches, Yu [212] targets the more basic question of
how to effectively measure energy consumption in Cloud computing environments in a scalable
way. Additionally, Klingert et al. [117] take energy efficiency into account already when defining
SLAs. E.g., they specify that a job must not run during nighttime, since it could not be powered
by solar energy then.

Some works consider energy savings for very specific settings as [120] for parallel applica-
tions, [119] for multicore architectures, or [121] shared memory architectures. On the contrary,
in [141] the authors take a more holistic approach by also considering energy savings stemming
from more efficient cooling systems.

As to our formulation of the IaaS management problem as a binary integer programming
problem in Section 5.2, there are some works which also formulate similar problems as integer
programming problems. [177] uses it to formalize an allocation problem of scheduling periodic
tasks to a fixed number of processors. [136] uses it for VM migration (without PM power man-
agement) in Cloud environments. [64] uses stochastic integer programming for VM placement
for a fixed number of resources. To the best of our knowledge there is no formulation of the IaaS
management problem accounting for arbitrary resource types, VM migrations and their costs, as
well as PM power management and its cost in a heterogeneous computing environment into a
binary integer programming problem.

8.6 Cloud Federations

In this section we describe work related to our work presented in Chapter 7.
Bernstein et al. [43] define two use case scenarios that exemplify the problems faced by users

of multi-cloud systems. They define the case of VM mobility, where they identify networking,
specific cloud VM management interfaces and the lack of mobility interfaces as the three major
obstacles. They also discuss a storage interoperability and federation scenario, in which storage
provider replication policies are subject to change when a cloud provider initiates subcontract-
ing. However, they offer interoperability solutions only for low-level functionality of clouds that
are not focused on recent user demands, but on solutions for IaaS system operators.

115

Buyya et al. in [61] suggest a services provisioning environment called InterCloud, which
is Cloud federation oriented, just-in-time, opportunistic, and scalable. They envision utility-
oriented federated IaaS systems that are able to predict application service behavior for intel-
ligently down- and up-scaling infrastructures. They also present a market-oriented approach
to offer InterClouds including cloud exchanges and brokers that bring together producers and
consumers. Producers are offering domain specific enterprise Clouds that are connected and
managed within the federation with their Cloud Coordinator component. Finally, they have
implemented a CloudSim-based simulation that evaluates the performance of the federations
created using InterCloud technologies. Unfortunately, users face most federation-related issues
before the execution of their services, therefore the concept of InterClouds cannot be applied in
user scenarios our work is targeting.

Frincu et al. [85] study placing applications on nodes in a multi-cloud setting. They take all
nodes of federated Clouds into account for scheduling decisions, and they may place different
parts of the same application on different Clouds. In their approach the authors violate the
integrity of one Cloud, since their scheduler does not only decide to put an application into a
specific Cloud, but it also selects a VM for it to run on. Thus, this scenario is rather applicable
for only one Cloud or Clouds having the same owners or profit maximizing strategy.

Besides, none of the presented approaches in Section 8.3 investigated knowledge manage-
ment or the MAPE-K autonomic loop in Cloud federations.

8.7 Holistic Cloud Management Projects

Finally, we will relate the FoSII project to other Cloud management projects. As compared to,
e.g., SLA@SOI [26], the FoSII project in general is more specific on Cloud Computing aspects
like deployment, monitoring of resources and their translation into high level SLAs instead of
just working on high-level SLAs in general service-oriented architectures.

We will describe other related Cloud management projects in the following. The Reservoir
model [185] is a framework for Cloud computing with the conceptual addition of SLA manage-
ment. It states the need of dynamically adjusting resources (in addition to federating resources
from peer providers) in order to meet SLAs, but does not specify a way to do that. The ConPaaS
project [176] aims at providing scalable open-source software for providing PaaS. The project
provides a testbed to create VMs, on which web servers run that host Java servlets [162] or PHP
documents [22], or databases like Scalarix [25] or MapReduce [73]. The focus of the BREIN
project [86] has been laid on grids, and the GridEcon project [30] focuses on providing a mar-
ketplace for grid or cloud resources. The Consequence project [169] focuses on confidentiality
and privacy aspects of data exchange in distributed systems. They use decision-making by risk
assessment [124]. The SORMA project [167] developed a self-organizing resource management
system for efficient market allocation. StreamCloud [92] present a Cloud computing platform
which is specialized on processing large data streams in a scalable and resource-efficient way.
They use horizontal scaling and a parallelization technique that splits queries into subqueries
that can be allocated to different computing nodes.

Furthermore, there are other works that take a more general and holistic view on Cloud
computing. Sedaghat et al. [190] aim at unifying Cloud management. They present an archi-

116

tecture involving important management components that could be developed independently of
each other. These components include an admission controller, a VM placement engine, a data
placement engine, an elasticity engine, a fault tolerance controller, and an SLA management
engine. With this architecture the authors want to achieve a business level objective, which is
expressed as a utility function to maximize profit. Rimal et al. [181] present an early overview
on different Cloud deployment platforms and the utilized technologies. They evaluate the com-
puting architecture, load balancing and fault tolerance strategies, storage and security systems
of platforms like Flexiscale [16], Mosso, which has been rebranded to Rackspace Cloud [23],
Google App Engine [7], RightScale [24], or Azure [9]. Youseff et al. [211] work towards an
ontology of Cloud computing. They present five layers of Cloud, namely hardware, the software
kernel, the cloud software infrastructure, the cloud software environment and cloud applications,
and discuss their relations to each other. Lenk et al. [133] use a similar ontology and present a
corresponding stack architecture.

On the contrary, the FoSII project, and more specifically the work in this thesis are concerned
about governing Cloud computing infrastructures in terms of VM configuration, VM migration,
PM power management, and Cloud federations under the aspects of adaptive SLA generation
and autonomic SLA enactment, as well as resource and energy efficiency.

117

CHAPTER 9
Conclusion

In this thesis we have devised strategies for two important problem fields of Cloud comput-
ing related to Service Level Agreements (SLAs): SLA management and energy-efficient and
resource-efficient SLA enactment. In the following, we will summarize the achievements, limi-
tations, and future work of both areas separately.

We will start with SLA management. We have investigated cost, utility, and net utility of
the adaptive SLA mapping approach, in which market participants may define SLA mappings
for translating their private SLA templates to public SLA templates. Contrary to all other avail-
able SLA matching approaches, the adaptive SLA mapping approach facilitates the continuous
adaptation of public SLA templates based on market trends. However, the adaptation of SLA
mappings comes with a cost for users in the form of effort for generating new SLA mappings
to the adapted public SLA template. To calculate the cost and benefits of the SLA mapping ap-
proach, we utilized the SLA management framework VieSLAF and simulated different market
situations. Our findings show that the cost for SLA mappings can be reduced by introducing
heuristics into the adaptation methods for generating adapted public SLA templates. The meth-
ods show cost reduction and an increase in average overall net utility. The best-performing
adaptation method is the maximum-percentage-change method.

In recent work, Breskovic et al. [54, 55] have already carried out work that is based on this
one. They inspected whether intelligently determining different groups of users coming from
different domains can increase the overall net utility. Furthermore, they did not only take the
SLA parameter names into account, but also the different metrics they are measured with (e.g.,
storage measured in MB or GB, or response time measured completely differently for different
types of applications (also cf. [147])) and the values or intervals of the desired Service Level
Objectives.

For future work, we want to investigate other metrics (besides the quantity based mapping
count) for the adaptation methods. This could be the measured market liquidity after a new SLA
template gets introduced into the market. Additionally, it would be interesting to identify the
optimal number of different SLA templates to maximize overall net utility.

A limitation of this work is that it only considers SLA parameters, and not its values as

119

achieved in later work [55]. Furthermore, the simulation is based on a random group of users
drawn from a specific distribution for every iteration. It would have been interesting to effectuate
real-world case studies that test how many users would give up their proprietary SLA templates
to follow pre-selected ones. This could then affect the outcome of the various adaptation tech-
niques. Finally, the assumption of low market liquidity due to a plethora of different definitions
and namings of SLA parameters could be challenged, once a standardization of these parameters
has taken place.

As to SLA enactment, the first goal is to enact SLAs in a resource-efficient way. Auto-
nomically governing Cloud Computing infrastructures is the investigated method, whose goal
is to reduce SLA violations, increase resource utilization and achieve both by a low number of
reconfiguration actions.

In this thesis we have hierarchically structured all possible reallocation actions, and con-
ducted a study over several knowledge management techniques. We have then designed, imple-
mented, and evaluated the two most promising knowledge management techniques, Case Based
Reasoning and a rule-based approach to achieve the aforementioned goals for one reallocation
level, i.e., VM reconfiguration. After a comparison, we determined the rule-based approach to
outperform CBR with respect to violations and utilization, but also to time performance. Conse-
quently, we continued investigation of the rule-based approach with different synthetic workload
volatility classes. Furthermore, we applied the rule-based approach to a real-world use case eval-
uating a scientific workflow from the area of bioinformatics. We showed by simulation that the
rule-based approach can effectively guarantee the execution of a workload with unpredictably
large resource consumptions.

However, the presented methods still involve some user-interaction for parameter tuning.
Thus, we have devised several methodologies for autonomically adapting parameters of a Cloud
resource management framework on the level of VM reconfiguration. We presented two groups
of strategies: the first one is based on a cost function that reflects the goal of the approach.
The second strategy is based on classifying the workload into workload volatility classes. This
second strategy acts according to this classification by either applying the substrategy of pre-
configured parameters or the substrategy of applying the most appropriate strategy from the
first group. In most cases we have seen that strategies from the second group achieve better
results for both substrategies, and outperform the strategies not taking workload volatility into
account. Thus, we can deduce that workload volatility is an important aspect for governing
Cloud computing infrastructures. Corresponding research is still at its beginning.

For future work we want to prove the benefit regarding the energy consumption for the
self-adapting approach. We will be able to not only capture the improvement in costs of the
self-adaption, but also the reduction in energy consumption as compared to a non-self-adapting
approach. Furthermore, we plan to investigate if we can generalize the findings for autonom-
ically adapting approaches for other levels of governing Cloud computing infrastructures, e.g.,
VM migration or PM power management.

Furthermore, we have analyzed a possible extension of our approach to the last escalation
level, i.e., Cloud federations. Using the presented FCM architecture as the basis of our fur-
ther investigations, we analyzed different approaches to integrate the knowledge management
system within this architecture, and found a hybrid approach that incorporates fine-grained lo-

120

cal adaptation operations with options for high-level override. Then this research pinpointed
the adaptation actions and their possible effects on cloud federations. Finally, we established
metrics that could indicate possible SLA violations in federations, and defined rules that could
trigger adaptation actions in the case of predicted violations. Regarding future work, we plan
to investigate more the green aspects in the autonomous behavior of cloud federations. We also
aim at defining new rules for advanced action triggering and evaluating the applicability of case
based reasoning. Finally, we also plan to investigate the effects of the autonomous behavior on
the overall performance of the cloud federation on an experimental system.

Going now ultimately from resource efficiency to energy efficiency, we have presented a
management framework for governing Cloud Computing infrastructures to achieve two goals:
reduce energy consumption while keeping pre-defined Service Level Agreements. We have a
devised a multi-level action approach that breaks down the NP-hard resource allocation prob-
lem for Clouds. We have specialized on several views of the Cloud computing infrastructure,
i.e., VM reconfiguration, VM migration, and PM power management, in order to reduce the
problem’s complexity. In each of these views we have defined a subproblem and solved it us-
ing a wide variety of heuristics ranging from rules over random methods, i.e., Monte Carlo,
to vector packing algorithms. We have evaluated the sequential execution of these views. We
showed for the first time that the VM reconfiguration algorithm alone, which already succeeded
to minimize SLA violations and decrease resource wastage, also effectively saves up to 61.6%
of energy. Considering scalable algorithms, these energy savings can still be increased by up
to 37% in the best case and 11% in the worst case while keeping SLA violations at 0% for the
workload of a bioinformatics scientific workflow, below 4% for synthetic workloads with low
volatility for all VM migration algorithms, and below 8% for synthetic workloads with higher
volatility for the smarter VM migration algorithms.

For future work we plan to focus more on a possible heterogeneity of the systems, re-fining
the migration model, and integrating the framework into a real-world Cloud computing environ-
ment. Also other ongoing projects as HALEY that work on realizing a holistic energy-efficient
approach for the management of hybrid clouds [20] will be of interest for this work. Possibly in
the framework of the that project, a next step would be to move from simulation to a real Cloud
testbed, where real energy measurements could be made. Also the timeliness of the iteration-
based simulation would have to be investigated more deeply. Basing this work on simulation
only is probably the greatest limitation of this work. However, the implementation of the SLA
enactor on a real-world system requires a lot of computing nodes that are under full control of the
researchers. Nevertheless, a smaller prototype Cloud that shows the principal validation would
already be beneficial. Furthermore, this thesis does not cover escalation level 2, i.e., applica-
tion migration as it assumes that an application resides on exactly one VM, and one VM hosts
exactly one application. This assumption could be challenged for efficiency reasons. Allowing
more applications to reside on the same VM would reduce the overhead caused by the VMs and
their operating systems. However, security issues still have to be addressed. An application is
better isolated, of course, when it resides on a VM alone.

Another related field for future work is the autonomic generation of an IaaS SLA out of SaaS
or PaaS SLAs. Theoretically, SaaS or PaaS applications can be perfectly set up on top of IaaS
platforms. The crucial point is to extract an SLA for the IaaS parameters like bandwidth, storage,

121

CPU power and memory that fit to SaaS/PaaS parameters like response time. It is obvious that
response time directly relates to the mentioned IaaS parameters and user interaction. It is not
that obvious, however, how this translation should take place. E.g., does the SLO “response
time < 2 s” translate into “memory > 512 MB” and “CPU power > 8000 MIPS” or rather
“memory > 4096 MB” and “CPU power > 1000 MIPS”? Once the autonomic governance of
IaaS infrastructures is up and running, the autonomic translation of these SLAs will probably
leverage the usage and usability of IaaS even more.

122

Bibliography

[1] POV-Ray. http://www.povray.org/, 2012.

[2] Gartner estimates ICT industry accounts for 2 percent of global CO2 emissions.
http://www.gartner.com/it/page.jsp?id=503867, 2007.

[3] Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2/, 2010.

[4] Brein - business objective driven reliable and intelligent grids for real business.
http://www.eu-brein.com/, 2010.

[5] Emc atmos online. https://mgmt.atmosonline.com/, 2010.

[6] FreeCBR. http://freecbr.sourceforge.net/, 2010.

[7] Google app engine. http://code.google.com/appengine/, 2010.

[8] Jess. http://www.jess.org, 2010.

[9] Microsoft azure. http://www.microsoft.com/windowsazure/, 2010.

[10] Salesforce.com. http://www.salesforce.com, 2010.

[11] Sun grid. http://www.sun.com/service/sungrid/index.jsp, 2010.

[12] Tsunamic tech. inc. http://www.clusterondemand.com/, 2010.

[13] Documentation for matlab function bintprog. http://www.mathworks.de/help/toolbox/optim/ug/bintprog.html,
March 2012.

[14] Documentation for matlab function sparse. http://www.mathworks.de/help/techdoc/ref/sparse.html,
March 2012.

[15] Drools. http://www.drools.org, 2012.

[16] Flexiscale. http://www.flexiscale.com/, 2012.

[17] (FOSII) - Foundations of Self-governing ICT Infrastructures.
http://www.infosys.tuwien.ac.at/linksites/FOSII, March 2012.

[18] Google docs. https://docs.google.com/, 2012.

123

[19] Google mail. http://mail.google.com/, 2012.

[20] Hollistic energy-efficient approach for the management of hybrid clouds (HALEY).
http://www.infosys.tuwien.ac.at/linksites/haley/, March 2012.

[21] Nimbus. http://www.nimbusproject.org/, 2012.

[22] PHP. http://www.php.net/, 2012.

[23] Rackspace cloud. http://www.rackspace.com/cloud/, March 2012.

[24] Rightscale. http://www.rightscale.com/, 2012.

[25] Scalarix. http://www.onscale.de/scalarix.html, 2012.

[26] SLA@SOI. http://sla-at-soi.eu/, March 2012.

[27] Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. AI Communications, 7:39–59, 1994.

[28] Sheikh Iqbal Ahamed et al., editors. Proceedings of the 33rd Annual IEEE International
Computer Software and Applications Conference, COMPSAC 2009, Seattle, Washington,
USA, 20-24 July 2009. IEEE Computer Society, 2009.

[29] Rainer Alt and Stefan Klein. Twenty years of electronic markets research—looking back-
wards towards the future. Electronic Markets, 21(1):41–51, 2011.

[30] Jörn Altmann, Costas Courcoubetis, John Darlington, and Jeremy Cohen. Gridecon - the
economic-enhanced next-generation internet. In Jörn Altmann and Daniel Veit, editors,
GECON, volume 4685 of Lecture Notes in Computer Science, pages 188–193. Springer,
2007.

[31] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: an experiment in public-resource computing. Commun. ACM, 45:56–61,
November 2002.

[32] A Andrieux, K Czajkowski, A Dan, K Keahey, H Ludwig, J Pruyne, J Rofrano, S Tuecke,
and M Xu. Web services agreement specification (WS-agreement). Global Grid Forum,
31(GFD.107):1–47, 2007.

[33] Grigoris Antoniou. A tutorial on default logics. ACM Comput. Surv., 31(4):337–359,
1999.

[34] D. Ardagna, G. Giunta, N. Ingraa, R. Mirandola, and B. Pernici. Qos-driven web services
selection in autonomic grid environments. In International Conference on Grid Com-
puting, High Performance and Distributed Applications (GADA), Montpellier, France,
November 2006.

124

[35] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, February
2009.

[36] Raphael M. Bahati and Michael A. Bauer. Adapting to run-time changes in policies driv-
ing autonomic management. In ICAS ’08: Proceedings of the 4th Int. Conf. on Autonomic
and Autonomous Systems, Washington, DC, USA, 2008. IEEE Computer Society.

[37] Mark Baker and Garry Smith. Gridrm: A resource monitoring architecture for the grid. In
Proceedings of the Third International Workshop on Grid Computing, GRID ’02, pages
268–273, 2002.

[38] Ilia Baldine, Yufeng Xin, Daniel Evans, Chris Heerman, Jeff Chase, Varun Marupadi,
and Aydan Yumerefendi. The missing link: Putting the network in networked cloud
computing. In ICVCI09: International Conference on the Virtual Computing Initiative,
2009.

[39] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37(5):164–177, October 2003.

[40] Christoph Beierle and Gabriele Kern-Isberner. Methoden wissensbasierter Systeme.
Vieweg, 2006.

[41] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource allo-
cation heuristics for efficient management of data centers for cloud computing. Future
Generation Computer Systems, 28(5):755 – 768, 2012.

[42] Fran Berman, Anthony Hey, and Geoffrey Fox. Grid Computing: Making The Global
Infrastructure a Reality. John Wiley & Sons, April 2003.

[43] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. Blueprint for the
intercloud - protocols and formats for cloud computing interoperability. In Internet and
Web Applications and Services, 2009. ICIW ’09. Fourth International Conference on,
pages 328 –336, may 2009.

[44] Josep Ll. Berral, Íñigo Goiri, Ramón Nou, Ferran Julià, Jordi Guitart, Ricard Gavaldà, and
Jordi Torres. Towards energy-aware scheduling in data centers using machine learning.
In Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking, e-Energy ’10, pages 215–224, New York, NY, USA, 2010. ACM.

[45] P Bhoj, S Singhal, and S Chutani. SLA management in federated environments. Com-
puter Networks, 35(1):5 – 24, 2001. Selected Topics in Network and Systems Manage-
ment.

125

[46] Martin Bichler, Thomas Setzer, and Benjamin Speitkamp. Capacity Planning for Virtual-
ized Servers. Presented at Workshop on Information Technologies and Systems (WITS),
Milwaukee, Wisconsin, USA, 2006, 2006.

[47] Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc Pierson. Energy-
aware service allocation. Future Generation Computer Systems, 28(5):769 – 779, 2012.

[48] Damien Borgetto, Georges Da Costa, Jean-Marc Pierson, and Amal Sayah. Energy-Aware
Resource Allocation. In Proc. of the Energy Efficient Grids, Clouds and Clusters Work-
shop (E2GC2), page (electronic medium). IEEE, October 2009.

[49] Damien Borgetto, Michael Maurer, Georges Da Costa, Jean-Marc Pierson, and Ivona
Brandic. Energy-efficient and SLA-aware managament of IaaS clouds. In Third interna-
tional conference on future energy systems (e-Energy 2012), Madrid, Spain, May 2012.

[50] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt. Qos support for time-critical
grid workflow applications. In 1st IEEE International Conference on e-Science and Grid
Computing, Melbourne, Australia, December 2005.

[51] I. Brandic, D. Music, P. Leitner, and S. Dustdar. VieSLAF framework: Enabling adaptive
and versatile SLA-management. In GECON2009. In conjunction with Euro-Par 2009,
Delft, The Netherlands, August 2009.

[52] Ivona Brandic. Towards self-manageable cloud services. In Ahamed et al. [28], pages
128–133.

[53] Ivona Brandic, Tobias Anstett, David Schumm, Frank Leymann, Schahram Dustdar, and
Ralf Konrad. Compliant cloud computing (C3): Architecture and language support for
user-driven compliance management in clouds. In The 3rd International Conference on
Cloud Computing (IEEE Cloud 2010), Miami, FL, USA, July 2010.

[54] Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Jörn Alt-
mann. Towards autonomic market management in cloud computing infrastructures. In
International Conference on Cloud Computing and Services Science - CLOSER 2011,
Noordwijkerhout, the Netherlands, May 2011.

[55] Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Schahram
Dustdar. Cost-efficient utilization of public sla templates in autonomic cloud markets. In
4th IEEE International Conference on Utility and Cloud Computing (UCC 2011), Mel-
bourne, Australia, December 2011.

[56] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. A model-free learning approach for coordi-
nated configuration of virtual machines and appliances. In Modeling, Analysis Simulation
of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International
Symposium on, pages 12 –21, July 2011.

[57] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid architecture for service
oriented grid computing. In Parallel and Distributed Processing Symposium, 2001.

126

[58] R. Buyya and K. Bubendorfer. Market Oriented Grid and Utility Computing. John Wiley
& Sons, Inc, New Jersey, USA, 2008.

[59] Rajkumar Buyya. High Performance Cluster Computing: Architectures and Systems,
volume 1. Prentice Hall, Upper Saddle River, NJ, 1999.

[60] Rajkumar Buyya and Manzur Murshed. Gridsim: a toolkit for the modeling and simula-
tion of distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience, 14(13-15):1175–1220, 2002.

[61] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo Calheiros. Intercloud: Utility-oriented fed-
eration of cloud computing environments for scaling of application services. In Ching-
Hsien Hsu, Laurence Yang, Jong Park, and Sang-Soo Yeo, editors, Algorithms and Ar-
chitectures for Parallel Processing, volume 6081 of Lecture Notes in Computer Science,
pages 13–31. Springer Berlin / Heidelberg, 2010.

[62] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for de-
livering computing as the 5th utility. Future Generation Computer Systems, 25(6):599 –
616, 2009.

[63] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Ra-
jkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1):23–50, 2011.

[64] S. Chaisiri, Bu-Sung Lee, and D. Niyato. Optimal virtual machine placement across
multiple cloud providers. In Services Computing Conference, 2009. APSCC 2009. IEEE
Asia-Pacific, pages 103 –110, December 2009.

[65] J. Chen and B. Lu. An universal flexible utility function in grid economy. In IEEE
Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008.

[66] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, and Akhil Sahai. Translating service
level objectives to lower level policies for multi-tier services. Cluster Computing, 2008.

[67] Wai-Khuen Cheng, Boon-Yaik Ooi, and Huah-Yong Chan. Resource federation in grid
using automated intelligent agent negotiation. Future Generation Computer Systems,
26(8):1116–1126, October 2010.

[68] Hyung Won Choi, Hukeun Kwak, Andrew Sohn, and Kyusik Chung. Autonomous learn-
ing for efficient resource utilization of dynamic VM migration. In Proceedings of the
22nd annual international conference on Supercomputing, ICS ’08, pages 185–194, New
York, NY, USA, 2008. ACM.

[69] Michael T. Cox, Héctor Muñoz-Avila, and Ralph Bergmann. Case-based planning. The
Knowledge Engineering Review, 20(03):283–287, 2005.

127

[70] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web services on demand: WSLA-driven automated man-
agement. IBM Systems Journal, 43(1):136 –158, 2004.

[71] John Davies, editor. Semantic knowledge management. Springer, 2009.

[72] Marcos de Assunção, Alexandre di Costanzo, and Rajkumar Buyya. A cost-benefit anal-
ysis of using cloud computing to extend the capacity of clusters. Cluster Computing,
13:335–347, 2010. 10.1007/s10586-010-0131-x.

[73] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51:107–113, January 2008.

[74] Salvatore Distefano, Maria Fazio, and Antonio Puliafito. The cloud@home resource man-
agement system. Utility and Cloud Computing, IEEE Internatonal Conference on, 0:122–
129, 2011.

[75] G. Dobson and A. Sanchez-Macian. Towards unified QoS/SLA ontologies. In IEEE
Services Computing Workshops (SCW), pages 18–22, Chicago, Illinois, USA, 2006.

[76] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck. From data center resource
allocation to control theory and back. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 410 –417, July 2010.

[77] Dmytro Dyachuk and Ralph Deters. A solution to resource underutilization for web ser-
vices hosted in the cloud. In Robert Meersman, Tharam Dillon, and Pilar Herrero, editors,
On the Move to Meaningful Internet Systems: OTM 2009, volume 5870 of Lecture Notes
in Computer Science, pages 567–584. Springer Berlin / Heidelberg, 2009. 10.1007/978-
3-642-05148-7_42.

[78] Hannes Eichner, András Micsik, Máté Pataki, and Robert Woitsch. A use case of service-
based knowledge management for software development. In IFIP International Con-
ference on Research and Practical Issues of Enterprise Information Systems (Confenis),
October 2009.

[79] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low level metrics to high
level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and
SLA parameters in cloud environments. In The 2010 High Performance Computing and
Simulation Conference in conjunction with IWCMC 2010, Caen, France, 2010.

[80] Vincent C. Emeakaroha, Pawel Labaj, Michael Maurer, Ivona Brandic, and David P.
Kreil. Optimizing bioinformatics workflows for data analysis using cloud manage-
ment techniques. In The 6th Workshop on Workflows in Support of Large-Scale Science
(WORKS11), 2011.

[81] Vincent C. Emeakaroha, Marco A. S. Netto, Rodrigo N. Calheiros, Ivona Brandic, and
César A. F. De Rose. Desvi: An architecture for detecting SLA violations in cloud com-
puting infrastructures. In CloudComp 2010, Barcelona, Spain, October 2010.

128

[82] Xiaobo Fan, Wolf dietrich Weber, and Luiz André Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of ISCA, 2007.

[83] Gerhard Fettweis and Ernesto Zimmermann. ICT energy consumption – trends and chal-
lenges. In The 11th International Symposium on Wireless Personal Multimedia Commu-
nications (WPMC 2008), 2008.

[84] Rolf Findeisen, Frank Allgöwer, and Lorenz T. Biegler. Assessment and Future Directions
of Nonlinear Model Predictive Control. Springer-Verlag Berlin Heidelberg, 2007.

[85] Marc E. Frincu and Ciprian Craciun. Multi-objective meta-heuristics for scheduling ap-
plications with high availability requirements and cost constraints in multi-cloud envi-
ronments. In Utility and Cloud Computing, IEEE Internatonal Conference on, pages
267–274, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[86] Henar Muñoz Frutos and Ioannis Kotsiopoulos. Brein: Business objective driven reli-
able and intelligent grids for real business. International Journal of Interoperability in
Business Information Systems, 3(1), 2009.

[87] Saurabh Kumar Garg, Rajkumar Buyya, and Howard Jay Siegel. Time and cost trade-
off management for scheduling parallel applications on utility grids. Future Generation
Computer Systems, 26(8):1344–1355, October 2010.

[88] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai. Exploring alternative approaches to
implement an elasticity policy. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 716 –723, July 2011.

[89] Hamoun Ghanbari, Cornel Barna, Marin Litoiu, Murray Woodside, Tao Zheng, Johnny
Wong, and Gabriel Iszlai. Tracking adaptive performance models using dynamic cluster-
ing of user classes. SIGSOFT Softw. Eng. Notes, 36(5):179–188, September 2011.

[90] I. Goiri, F. Julià and, R. Nou, J.L. Berral, J. Guitart, and J. Torres. Energy-aware schedul-
ing in virtualized datacenters. In Cluster Computing (CLUSTER), 2010 IEEE Interna-
tional Conference on, pages 58 –67, September 2010.

[91] Les Green. Service level agreements: an ontological approach. In 8th international con-
ference on Electronic commerce: The new e-commerce: innovations for conquering cur-
rent barriers, obstacles and limitations to conducting successful business on the internet,
ICEC ’06, New York, NY, USA, 2006.

[92] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. Streamcloud: A
large scale data streaming system. In Distributed Computing Systems (ICDCS), 2010
IEEE 30th International Conference on, pages 126 –137, June 2010.

[93] Aminul Haque, Saadat M. Alhashmi, and Rajendran Parthiban. A survey of economic
models in grid computing. Future Generation Computer Systems, 2011.

129

[94] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Jour-
nal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[95] Peer Hasselmeyer, Bastian Koller, Lutz Schubert, and Philipp Wieder. Towards SLA-
supported resource management. In High Performance Computing and Communications,
pages 743–752. Springer, Berlin / Heidelberg, 2006.

[96] Mark Hefke. A framework for the successful introduction of KM using CBR and semantic
web technologies. Journal of Universal Computer Science, 10(6), 2004.

[97] Thomas Heinis and Cesare Pautasso. Automatic configuration of an autonomic controller:
An experimental study with zero-configuration policies. In Ahamed et al. [28], pages 67–
76.

[98] Yufan Ho, Pangfeng Liu, and Jan-Jan Wu. Server consolidation algorithms with bounded
migration cost and performance guarantees in cloud computing. In Utility and Cloud
Computing, IEEE Internatonal Conference on, pages 154–161, Los Alamitos, CA, USA,
2011. IEEE Computer Society.

[99] Marko Hoyer, Kiril Schröder, and Wolfgang Nebel. Statistical static capacity management
in virtualized data centers supporting fine grained QoS specification. In Proceedings of the
1st International Conference on Energy-Efficient Computing and Networking, e-Energy
’10, pages 51–60, New York, NY, USA, 2010. ACM.

[100] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing—degrees,
models, and applications. ACM Comput. Surv., 40(3):1–28, 2008.

[101] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation Computer Systems,
28(1):155 – 162, 2012.

[102] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin. A practical guide to the IBM
Autonomic Computing toolkit. IBM Redbooks, 2004.

[103] Peter Johnson and Tony Marker. Data center energy efficiency product profile. Technical
report, Equipment Energy Efficiency Program (E3) Energy Rating (A joint initiative of
Australian, State and Territory and New Zealand Governments), 2009.

[104] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Self-adaptive and
self-configured CPU resource provisioning for virtualized servers using Kalman filters.
In Proceedings of the 6th international conference on Autonomic computing, ICAC ’09,
pages 117–126, New York, NY, USA, 2009. ACM.

[105] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Complexity of Computer Computations: Proc. of a Symp.
on the Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

130

[106] Gabor Kecskemeti, Michael Maurer, Ivona Brandic, Attila Kertesz, Zsolt Nemeth, and
Schahram Dustdar. Facilitating self-adaptable inter-cloud management. In 20th Euromi-
cro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP 2012), Munich, Germany, February 2012.

[107] Gabor Kecskemeti, Gabor Terstyanszky, Peter Kacsuk, and Zsolt Neméth. An approach
for virtual appliance distribution for service deployment. Future Generation Computer
Systems, 27(3):280 – 289, 2011.

[108] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and monitoring
service level agreements for web services. Journal of Network and Systems Management,
11:57–81, 2003. 10.1023/A:1022445108617.

[109] Jeffrey O. Kephart and Rajarshi Das. Achieving self-management via utility functions.
IEEE Internet Computing, 2007.

[110] Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspective on au-
tonomic computing policies. In Fifth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, POLICY 2004, 2004.

[111] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41
– 50, January 2003.

[112] Attila Kertész and Péter Kacsuk. Gmbs: A new middleware service for making grids
interoperable. Future Generation Computer Systems, 26(4):542 – 553, 2010.

[113] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance management in
virtualized server environments. In Network Operations and Management Symposium,
2006. NOMS 2006. 10th IEEE/IFIP, pages 373–381, 2006.

[114] Bithika Khargharia, Salim Hariri, Ferenc Szidarovszky, Manal Houri, Hesham El-Rewini,
Samee Ullah Khan, Ishfaq Ahmad, and Mazin S. Yousif. Autonomic power & perfor-
mance management for large-scale data centers. In IPDPS, pages 1–8. IEEE, 2007.

[115] Bithika Khargharia, Salim Hariri, and Mazin S. Yousif. Autonomic power and perfor-
mance management for computing systems. Cluster Computing, 11(2):167–181, 2008.

[116] Won Kim. Cloud computing: Status and prognosis. Journal of Object Technology,
8(1):65–72, 2009.

[117] Sonja Klingert, Thomas Schulze, and Christian Bunse. Managing energy-efficiency by
utilizing GreenSLAs. In 2nd International Conference on Energy-Efficient Computing
and Networking 2011 (e-energy 2011), New York, NY, USA, 2011.

[118] B. Koller and L. Schubert. Towards autonomous SLA management using a proxy-like
approach. Multiagent Grid Systems, 3(3), 2007.

131

[119] V.A. Korthikanti and G. Agha. Analysis of parallel algorithms for energy conservation in
scalable multicore architectures. In Parallel Processing, 2009. ICPP ’09. International
Conference on, pages 212 –219, September 2009.

[120] V.A. Korthikanti and G. Agha. Avoiding energy wastage in parallel applications. In Green
Computing Conference, 2010 International, pages 149 –163, August 2010.

[121] Vijay Anand Korthikanti and Gul Agha. Towards optimizing energy costs of algorithms
for shared memory architectures. In Proceedings of the 22nd ACM symposium on Paral-
lelism in algorithms and architectures, SPAA ’10, pages 157–165, New York, NY, USA,
2010. ACM.

[122] Giannis Koumoutsos, Spyros Denazis, and Kleanthis Thramboulidis. SLA e-negotiations,
enforcement and management in an autonomic environment. Modelling Autonomic Com-
munications Environments, pages 120–125, 2008.

[123] Giannis Koumoutsos and Kleanthis Thramboulidis. Towards a knowledge-base for build-
ing complex, proactive and service-oriented e-negotiation systems. In MCETECH ’08:
Proceedings of the 2008 International MCETECH Conference on e-Technologies, pages
178–189, Washington, DC, USA, 2008. IEEE Computer Society.

[124] Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, and Artsiom Yautsiukhin.
Risk-aware usage decision making in highly dynamic systems. In International Confer-
ence on Internet Monitoring and Protection, pages 29–34, Los Alamitos, CA, USA, 2010.
IEEE Computer Society.

[125] Marcel Kyas, Cristian Prisacariu, and Gerardo Schneider. Run-time monitoring of elec-
tronic contracts. In Sungdeok Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Ma-
hesh Viswanathan, editors, Automated Technology for Verification and Analysis, volume
5311 of Lecture Notes in Computer Science, pages 397–407. Springer Berlin / Heidelberg,
2008. 10.1007/978-3-540-88387-6_34.

[126] Paweł P. Łabaj, German G. Leparc, Bryan E. Linggi, Lye Meng Markillie, H. Steven
Wiley, and David P. Kreil. Characterization and improvement of RNA-Seq precision in
quantitative transcript expression profiling. Bioinformatics, 27(13):i383–i391, 2011.

[127] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology,
10(3):R25, 2009.

[128] Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, and Vijay S. Pande. Fold-
ing@Home and Genome@Home: Using distributed computing to tackle previously in-
tractable problems in computational biology. Computational Genomics, 2002.

[129] Leon S. Lasdon. Optimization Theory for Large Systems. Dover Books on Mathematics.
Dover Publications, 2011.

132

[130] Kevin Lee, Norman W. Paton, Rizos Sakellariou, and Alvaro A. A. Fernandes. Utility
driven adaptive workflow execution. In Proceedings of the 2009 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 220–227,
Washington, DC, USA, 2009. IEEE Computer Society.

[131] Kevin Lee, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A. Fernandes. Workflow
adaptation as an autonomic computing problem. In Proceedings of the 2nd workshop on
Workflows in support of large-scale science, WORKS ’07, pages 29–34, New York, NY,
USA, 2007. ACM.

[132] Young Choon Lee, Chen Wang, Albert Y. Zomaya, and Bing Bing Zhou. Profit-driven
service request scheduling in clouds. In Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, pages 15 –24, May 2010.

[133] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s inside the cloud? an
architectural map of the cloud landscape. In Software Engineering Challenges of Cloud
Computing, 2009. CLOUD ’09. ICSE Workshop on, pages 23 –31, May 2009.

[134] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The dlv system for knowledge representation and reason-
ing. ACM Trans. Comput. Logic, 7:499–562, July 2006.

[135] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation calculus.
Electronic Transactions on Artificial Intelligence, 2:159–178, 1998.

[136] Wubin Li, J. Tordsson, and E. Elmroth. Modeling for dynamic cloud scheduling via
migration of virtual machines. In Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on, pages 163 –171, December 2011.

[137] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase. Automated control for elastic stor-
age. In Proceedings of the 7th international conference on Autonomic computing, ICAC
’10, pages 1–10, New York, NY, USA, 2010. ACM.

[138] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-efficient virtual machine provi-
sion algorithms for cloud systems. In Utility and Cloud Computing, IEEE Internatonal
Conference on, pages 81–88, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[139] Haikun Liu, Cheng-Zhong Xu, Hai Jin, Jiayu Gong, and Xiaofei Liao. Performance
and energy modeling for live migration of virtual machines. In Proceedings of the 20th
international symposium on High performance distributed computing, HPDC ’11, pages
171–182, New York, NY, USA, 2011. ACM.

[140] Liang Liu, Hao Wang, Xue Liu, Xing Jin, Wen Bo He, Qing Bo Wang, and Ying Chen.
Greencloud: a new architecture for green data center. In Proceedings of the 6th interna-
tional conference industry session on Autonomic computing and communications industry
session, ICAC-INDST ’09, pages 29–38, New York, NY, USA, 2009. ACM.

133

[141] Lu Liu, O. Masfary, and Jianxin Li. Evaluation of server virtualization technologies for
green IT. In Service Oriented System Engineering (SOSE), 2011 IEEE 6th International
Symposium on, pages 79 –84, December 2011.

[142] A.C. Marosi and P. Kacsuk. Workers in the clouds. In Parallel, Distributed and Network-
Based Processing (PDP), 2011 19th Euromicro International Conference on, pages 519
–526, February 2011.

[143] Attila Csaba Marosi, Gabor Kecskemeti, Attila Kertesz, and Peter Kacsuk. Fcm: an ar-
chitecture for integrating iaas cloud systems. In Proceedings of The Second International
Conference on Cloud Computing, GRIDs, and Virtualization, Rome, Italy, September
2011.

[144] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to elastically
extend site resources. In Proceedings of the 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 43–52, Washington,
DC, USA, 2010. IEEE Computer Society.

[145] Paul Marshall, Kate Keahey, and Tim Freeman. Improving utilization of infrastructure
clouds. In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID ’11, pages 205–214, Washington, DC, USA, 2011.
IEEE Computer Society.

[146] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia distributed monitoring system:
Design, implementation and experience. Parallel Computing, 30(7):817–840, 2004.

[147] Toni Mastelic, Vincent Emeakaroha, Michael Maurer, and Ivona Brandic. M4cloud -
generic application level monitoring for resource-shared cloud environments. In CLOSER
2012, 2nd International Conference on Cloud Computing and Services Science, Porto,
Portugal, April 2012.

[148] M. Maurer, I. Breskovic, V.C. Emeakaroha, and I. Brandic. Revealing the MAPE loop for
the autonomic management of cloud infrastructures. In Computers and Communications
(ISCC), 2011 IEEE Symposium on, pages 147 –152, July 2011.

[149] Michael Maurer, Ivona Brandic, Vincent C. Emeakaroha, and Schahram Dustdar. To-
wards knowledge management in self-adaptable clouds. In IEEE 2010 Fourth Interna-
tional Workshop of Software Engineering for Adaptive Service-Oriented Systems, Miami,
USA, 2010.

[150] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Simulating autonomic SLA en-
actment in clouds using case based reasoning. In ServiceWave 2010, Ghent, Belgium,
2010.

[151] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting SLAs in clouds using
rules. In Euro-Par 2011, Bordeaux, France, 2011.

134

[152] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Enacting SLAs in clouds using
knowledge management. Future Generation Computer Systems (submitted), 2012.

[153] Michael Maurer, Ivona Brandic, and Rizos Sakellariou. Self-adaptive and resource-
efficient SLA enactment for cloud computing infrastructures. In 5th International Con-
ference on Cloud Computing (IEEE Cloud 2012) (submitted), Honolulu, HI, USA, June
2012.

[154] Michael Maurer, Vincent C. Emeakaroha, and Ivona Brandic. Economic analysis of the
SLA mapping approach for cloud computing goods. In Achieving Federated and Self-
Manageable Cloud Infrastructures: Theory and Practice. IGI Global, 2012.

[155] Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Jörn Altmann. Cost and
benefit of the SLA mapping approach for defining standardized goods in cloud computing
markets. In International Conference on Utility and Cloud Computing (UCC 2010) in
conjunction with the International Conference on Advanced Computing (ICoAC 2010),
Chennai, India, December 2010.

[156] Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, and Jörn Altmann. Cost–benefit
analysis of an SLA mapping approach for defining standardized cloud computing goods.
Future Generation Computer Systems, 28(1):39 – 47, 2012.

[157] M. Mazzucco, D. Dyachuk, and R. Deters. Maximizing cloud providers’ revenues via
energy aware allocation policies. In CLOUD 2010, pages 131 –138, July 2010.

[158] R. Mehrotra, A. Dubey, S. Abdelwahed, and W. Monceaux. Large scale monitoring and
online analysis in a distributed virtualized environment. In Engineering of Autonomic and
Autonomous Systems (EASe), 2011 8th IEEE International Conference and Workshops
on, pages 1 –9, April 2011.

[159] Peter Mell and Timothy Grance. The NIST definition of cloud computing. Recommenda-
tions of the National Institue of Standards and Technology, (Special Publication 800-145),
September 2011.

[160] Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouillet, and Dimitrios
Pendarakis. Efficient resource provisioning in compute clouds via VM multiplexing. In
Proceeding of the 7th international conference on Autonomic computing, ICAC ’10, pages
11–20, New York, NY, USA, 2010. ACM.

[161] Nirav Merchant, John Hartman, Sonya Lowry, Andrew Lenards, David Lowenthal, and
Edwin Skidmore. Leveraging cloud infrastructure for life science research laboratories:
A generalized view. In International Workshop on Cloud Computing at OOPSLA09,
Orlando, USA, 2009.

[162] Karl Moss. Java Servlets. McGraw-Hill, Inc., New York, NY, USA, 2nd edition, 1999.

[163] Vinod Muthusamy and Hans-Arno Jacobsen. SLA-driven distributed application devel-
opment. In Ahamed et al. [28], pages 31–36.

135

[164] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based resource allocation
in iaas cloud. Future Generation Computer Systems, 28(1):94 – 103, 2012.

[165] D. Neumann, J. Stößer, and C. Weinhardt. Bridging the adoption gap – developing a
roadmap for trading in grids. Electronic Markets, 18(1):65–74, 2008.

[166] Ilkka Niemelä, Patrik Simons, and Tommi Syrjänen. Smodels: A system for answer set
programming. CoRR, cs.AI/0003033, 2000.

[167] Jens Nimis, Arun Anandasivam, Nikolay Borissov, Garry Smith, Dirk Neumann, Niklas
Wirström, Erel Rosenberg, and Matteo Villa. SORMA - business cases for an open grid
market: Concept and implementation. In Springer, editor, 5th international workshop on
Grid Economics and Business Models (GECON ’08), pages 173 – 184, 2008.

[168] N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour. Semantic ws-agreement partner
selection. In 15th International Conference on World Wide Web, WWW 2006, Edinburgh,
Scotland, UK, May 2006.

[169] A. Orlov. Project consequence. Science and Technology Magazine, 1:62–63, 2008.

[170] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnakumar. A multi-
agent infrastructure and a service level agreement negotiation protocol for robust schedul-
ing in grid computing. In Peter Sloot, Alfons Hoekstra, Thierry Priol, Alexander Reine-
feld, and Marian Bubak, editors, Advances in Grid Computing - EGC 2005, volume 3470
of Lecture Notes in Computer Science, pages 651–660. Springer Berlin / Heidelberg,
2005. 10.1007/11508380_66.

[171] Pradeep Padala, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Sing-
hal, Arif Merchant, and Kenneth Salem. Adaptive control of virtualized resources in
utility computing environments. In Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, EuroSys ’07, pages 289–302, New York,
NY, USA, 2007. ACM.

[172] Yi-Lun Pan, Chang-Hsing Wu, Hsi-En Yu, Hui-Shan Chen, and Weicheng Huang. Ezilla
toolkit - one click to build private cloud easily. In Utility and Cloud Computing, IEEE
Internatonal Conference on, pages 332–333, Los Alamitos, CA, USA, 2011. IEEE Com-
puter Society.

[173] A. Paschke, M. Bichler, and J Dietrich. Contractlog: An approach to rule based monitor-
ing and execution of service level agreements. In International Conference on Rules and
Rule Markup Languages for the Semantic Web, Galway, Ireland, 2005.

[174] Adrian Paschke and Martin Bichler. Knowledge representation concepts for automated
SLA management. Decision Support Systems, 46(1):187–205, 2008.

[175] Vinicius Petrucci, Orlando Loques, and Daniel Mossé. A dynamic optimization model
for power and performance management of virtualized clusters. In e-Energy ’10, pages
225–233, New York, NY, USA, 2010. ACM.

136

[176] Guillaume Pierre, Ismail El Helw, Corina Stratan, Ana Oprescu, Thilo Kielmann,
Thorsten Schütt, Matej Artač, and Aleş Černivec. Conpaas: an integrated runtime en-
vironment for elastic cloud applications. In Proceedings of the Middleware conference,
December 2011.

[177] L. Puente-Maury, P. Mejia-Alvarez, and L.E. Leyva-del Foyo. A binary integer linear
programming-based approach for solving the allocation problem in multiprocessor parti-
tioned scheduling. In Electrical Engineering Computing Science and Automatic Control
(CCE), 2011 8th International Conference on, pages 1 –6, oct. 2011.

[178] Andres J. Ramirez, David B. Knoester, Betty H.C. Cheng, and Philip K. McKinley. Ap-
plying genetic algorithms to decision making in autonomic computing systems. In Pro-
ceedings of the 6th international conference on Autonomic computing, ICAC ’09, pages
97–106, New York, NY, USA, 2009. ACM.

[179] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. Vconf: a rein-
forcement learning approach to virtual machines auto-configuration. In ICAC ’09, pages
137–146, New York, NY, USA, 2009. ACM.

[180] Paulo Antonio Leal Rego, Emanuel Ferreira Coutinho, Danielo Goncalves Gomes, and
Jose Neuman de Souza. FairCPU: Architecture for allocation of virtual machines using
processing features. In Utility and Cloud Computing, IEEE Internatonal Conference on,
pages 371–376, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[181] B.P. Rimal, Eunmi Choi, and I. Lumb. A taxonomy and survey of cloud computing
systems. In INC, IMS and IDC, 2009. NCM ’09. Fifth International Joint Conference on,
pages 44 –51, August 2009.

[182] M. Risch and J. Altmann. Enabling open cloud markets through WS-agreement exten-
sions. In Service Level Agreements in Grids Workshop, in conjunction with GRID 2009,
CoreGRID Springer Series, Banff, Canada 2009.

[183] M. Risch, J. Altmann, L. Guo, A. Fleming, and C. Courcoubetis. The gridecon platform:
A business scenario testbed for commercial cloud services. In 6th international Workshop
on Grid Economics and Business Models, Delft, The Netherlands, August 2009.

[184] Marcel Risch, Ivona Brandic, and Jörn Altmann. Using SLA mapping to increase mar-
ket liquidity. In NFPSLAM-SOC 2009 in conjunction with The 7th International Joint
Conference on Service Oriented Computing, Stockholm, Sweden, November 2009.

[185] Benny Rochwerger et al. The RESERVOIR model and architecture for open federated
cloud computing. IBM Journal of Research and Development, 53(4), 2009.

[186] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermin Galan, Javier Fontan, Ruben S.
Montero, and Ignacio M. Llorente. From infrastructure delivery to service management
in clouds. Future Generation Computer Systems, 26(8):1226–1240, October 2010.

137

[187] Paolo Romano. Automation of in-silico data analysis processes through workflow man-
agement systems. Briefings in Bioinformatics, 9(1):57–68, October 2007.

[188] Rizos Sakellariou and Viktor Yarmolenko. Job scheduling on the grid: Towards SLA-
based scheduling. In Lucio Grandinetti, editor, High Performance Computing and Grids
in Action, volume 16 of Advances in Parallel Computing, pages 207–222. IOS Press,
2008.

[189] Prasad Saripalli, G.V.R. Kiran, R. Ravi Shankar, Harish Narware, and Nitin Bindal. Load
prediction and hot spot detection models for autonomic cloud computing. In Utility and
Cloud Computing, IEEE Internatonal Conference on, pages 397–402, Los Alamitos, CA,
USA, 2011. IEEE Computer Society.

[190] M. Sedaghat, F. Hernandez, and E. Elmroth. Unifying cloud management: Towards over-
all governance of business level objectives. In Cluster, Cloud and Grid Computing (CC-
Grid), 2011 11th IEEE/ACM International Symposium on, pages 591 –597, May 2011.

[191] Weiming Shi and Bo Hong. Towards profitable virtual machine placement in the data
center. In Utility and Cloud Computing, IEEE Internatonal Conference on, pages 138–
145, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[192] Damian Smedley, Morris A. Swertz, Katy Wolstencroft, Glenn Proctor, Michael Zouber-
akis, Jonathan Bard, John M. Hancock, and Paul Schofield. Solutions for data integration
in functional genomics: a critical assessment and case study. Briefings in Bioinformatics,
9(6):532–544, September 2008.

[193] Biao Song, M.M. Hassan, and Eui nam Huh. A novel heuristic-based task selection and
allocation framework in dynamic collaborative cloud service platform. In Cloud Comput-
ing Technology and Science (CloudCom), 2010 IEEE Second International Conference
on, pages 360 –367, December 2010.

[194] Mukundan Sridharan, Prasad Calyam, Aishwarya Venkataraman, and Alex Berryman.
Defragmentation of resources in virtual desktop clouds for cost-aware utility-optimal al-
location. In Utility and Cloud Computing, IEEE International Conference on, pages
253–260, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[195] Mark Stillwell, David Schanzenbach, Frederic Vivien, and Henri Casanova. Resource
allocation algorithms for virtualized service hosting platforms. Journal of Parallel and
Distributed Computing, 70(9):962 – 974, 2010.

[196] Akiyoshi Sugiki and Kazuhiko Kato. An extensible cloud platform inspired by operating
systems. In Utility and Cloud Computing, IEEE International Conference on, pages 306–
311, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[197] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, et al. Hive - a warehousing solution over
a map-reduce framework. In VLDB, 2009.

138

[198] Cole Trapnell, Lior Pachter, and Steven L. Salzberg. Tophat: discovering splice junctions
with RNA-Seq. Bioinformatics, 25(9):1105–1111, 2009.

[199] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling ap-
plications in the cloud. SIGCOMM Comput. Commun. Rev., 41:45–52, 2011.

[200] Suresh Venugopal, Sravan Desikan, and Karthikeyan Ganesan. Effective migration of
enterprise applications in multicore cloud. In Utility and Cloud Computing, IEEE Inter-
natonal Conference on, pages 463–468, Los Alamitos, CA, USA, 2011. IEEE Computer
Society.

[201] A. Verma, G. Kumar, R. Koller, and A. Sen. CosMig: Modeling the impact of reconfigu-
ration in a cloud. In Modeling, Analysis Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International Symposium on, pages 3 –11, July
2011.

[202] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of
virtual machine live migration in clouds: A performance evaluation. In Proceedings of
the 1st International Conference on Cloud Computing, CloudCom ’09, pages 254–265,
Berlin, Heidelberg, 2009. Springer-Verlag.

[203] George A. Vouros, Andreas Papasalouros, Konstantinos Tzonas, Alexandros Valarakos,
Konstantinos Kotis, Jorge-Arnulfo Quiane-Ruiz, Philippe Lamarre, and Patrick Valduriez.
A semantic information system for services and traded resources in grid e-markets. Future
Generation Computer Systems, 26(7):916–933, July 2010.

[204] Qingling Wang and Carlos A. Varela. Impact of cloud computing virtualization strate-
gies on workloads’ performance. In Utility and Cloud Computing, IEEE Internatonal
Conference on, pages 130–137, Los Alamitos, CA, USA, 2011. IEEE Computer Society.

[205] Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin Arlitt, and Zhikui
Wang. Probabilistic performance modeling of virtualized resource allocation. In Pro-
ceedings of the 7th international conference on Autonomic computing, ICAC ’10, pages
99–108, New York, NY, USA, 2010. ACM.

[206] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. Sandpiper:
Black-box and gray-box resource management for virtual machines. Computer Networks,
53(17):2923 – 2938, 2009.

[207] Jing Xu, Ming Zhao, José Fortes, Robert Carpenter, and Mazin S. Yousif. Autonomic re-
source management in virtualized data centers using fuzzy logic-based approaches. Clus-
ter Computing, 11(3):213–227, 2008.

[208] V. Yarmolenko and R. Sakellariou. An evaluation of heuristics for SLA based parallel job
scheduling. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, page 8 pp., April 2006.

139

[209] Victor Yarmolenko and Rizos Sakellariou. Towards increased expressiveness in service
level agreements. Concurrency and Computation: Practice and Experience, 19:1975–
1990, 2007.

[210] Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti, and Y. Coady.
Dynamic resource allocation in computing clouds using distributed multiple criteria deci-
sion analysis. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on, pages 91–98, July 2010.

[211] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of cloud computing.
In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1 –10, November
2008.

[212] Yi Yu and Saleem Bhatti. Energy measurement for the cloud. In Parallel and Distributed
Processing with Applications, International Symposium on, pages 619–624, Los Alami-
tos, CA, USA, 2010. IEEE Computer Society.

[213] Qi Zhang, Quanyan Zhu, and Raouf Boutaba. Dynamic resource allocation for spot mar-
kets in cloud computing environments. In IEEE Internatonal Conference on Utility and
Cloud Computing, pages 178–185, Los Alamitos, CA, USA, 2011. IEEE Computer So-
ciety.

140

APPENDIX A
Curriculum Vitae

Michael Maurer

Personal Information

Date of birth May 26th, 1983
Place of birth Eisenstadt, Austria
Citizenship Austria
Phone +43-1-58801-18457
E-mail maurer@infosys.tuwien.ac.at
Web http://www.infosys.tuwien.ac.at/staff/maurer
Affiliation Vienna University of Technology

Distributed Systems Group
Argentinierstraße 8
A-1040 Wien, Austria

Education

08/2009 - ongoing PhD program in Computer Science at TU Vienna, Austria.
12/2007 - 04/ 2009 Master’s program Computational Intelligence at TU Vienna, Austria - graduation

with distinction.
08/2008 - 12/2008 Exchange semester for master’s program Computational Intelligence at City Col-

lege of New York in New York, NY, USA.
02/2008 - 06/2008 Exchange semester for master’s program Computational Intelligence at the Pavol

Jozef Šafárik University in Košice, Slovakia, with Slovak language intensive
course.

141

12/2007 European Business Competence* Licence (EBC*L).
10/2001 - 11/2007
(w/o 2002-2003)

Studies of Applied Mathematics (equivalent to MSc, with specialization in Com-
puter Science) at TU Vienna, Austria - graduation with distinction.

07/2002 - 09/2003 Social year (called Gedenkdienst) at the Fondation Auschwitz in Brussels, Bel-
gium.

06/2001 School leaving certificate (Matura) at grammar school BG&BRG Bruck/Leitha
with a paper in Mathematics dealing with game theory.

08/1999 - 12/1999 Exchange semester at the St. Johnsbury Academy in St. Johnsbury, VT, USA.
1993 - 2001 Grammar school BG&BRG Bruck/Leitha (emphasis on modern languages).
1991 - 2001 Music school (keyboard, piano) in Bruck/Leitha, Austria.

Professional Experience

08/2009 - ongoing Project assistant at TU Vienna, Distributed Systems Group.
03/2010 Short Term Scientific Mission (STSM) at the University of Manchester within

the COST Action IC 0804 “Energy efficiency in large scale distributed systems”.
02 - 03/2009 Advancing a database system to record and manage scouting reports within Aus-

trian professional soccer.
10/2007 - 02/2008 Team-development of a web-based administration tool at the grammar school

GRG 17 Geblergasse together with enhancements of the web application at the
GRG 21 Bertha von Suttner.

10/2005 - 01/2008 Tutor at the Institute of Information Systems at the TU Vienna for the courses
Data Modeling and Database Systems.

10/2006 - 02/2007 Team-development of a web-based management system for the grammar school
GRG 21 Bertha von Suttner in Vienna.

07/2002 - 09/2003 Administration of the computer network, web design, translation of letters be-
tween English, French and German, assistance in the library, writing reviews of
German and English books at the Fondation Auschwitz in Brussels, Belgium.

08/2001 Summer job at Denzel (Austrian car company).
1999 - 2007 Tutoring high-school students in English, mathematics, German and French.

Scholarships and Awards

08 - 12/2008 Joint-Study scholarship granted by TU Vienna for exchange semester at CCNY
in New York, USA.

02 - 06/2008 CEEPUS II Free Mover scholarship granted by ÖAD (Österr. Austauschdienst)
and SAIA (Slovak Academic Information Agency) for exchange semester at
UPJŠ in Košice, Slovakia.

10/2007 - 06/2008 TUtheTOP, the High Potential Program at the TU Vienna.
03/2007 ATHENS program in Warsaw, Poland. Course: Numerical Methods.
08/2005 Three-week Summer language course of Slovak at the SAS (Studia Academica

Slovaca) in Bratislava, Slovakia.

142

06/1999 Summer School of Lower Austria for Highly Talented Students in Physics and
Mathematics.

Scientific Activities
Projects
• FoSII - Foundations of Self-governing ICT Infrastructures funded by Vienna Science and Tech-

nology Fund (WWTF), ICT call 2008.

• HALEY - Holistic Energy Efficient Management of Hybrid Clouds, TU Vienna Science Award
2011.

Research Visits
• Short Term Scientific Mission (STSM), Increasing Energy Efficiency by Incorporating VM Re-

source Allocation and VM Placement on Clouds, COST Action IC0804 on Energy Efficient Large
Scale Distributed Systems, carried out at the Insitut de Recherche en Informatique de Toulouse
(IRIT), Université Paul Sabatier, Toulouse, France, from 14-March-2011 to 01-April-2011, in co-
operation with Damien Borgetto, Georges Da Costa and Jean-Marc Pierson.

• Short Term Scientific Mission (STSM), A step towards the incorporation of energy efficiency in
autonomic SLA management, COST Action IC0804 on Energy Efficient Large Scale Distributed
Systems, carried out at the University of Manchester, School of Computer Science, UK, from
08-March-2010 to 26-March-2010, in cooperation with Rizos Sakellariou.

Scientific Talks
• “Towards Energy-efficient Cloud Computing”. Vienna Scientific Cluster (VSC) workshop, Febru-

ary 27-28 2012, Hotel Wende, Neusiedl am See, Austria.

• “Achieving SLA-aware and energy-efficient management of IaaS Cloud Computing infrastruc-
tures”. Cost Action Meeting (IC0804 on Energy Efficient Large Scale Distributed Systems),
November 7-8 2011, International Hellenic University, Thessaloniki, Greece (invited).

• “Enacting SLAs in Clouds Using Rules”. Euro-Par 2011, Bordeaux, France, August 29 - Septem-
ber 2, 2011.

• “Energy Efficient Autonomic Management of Clouds”. Research visit at the Insitut de Recherche
en Informatique de Toulouse (IRIT), Université Paul Sabatier, Toulouse, France, March 18, 2011
(invited).

• “Simulating Autonomic SLA Enactment in Clouds using Case Based Reasoning”. ServiceWave
2010, Ghent, Belgium, December 13-15, 2010.

• “Towards Knowledge Management in Self-adaptable Clouds”. IEEE 2010 Fourth International
Workshop of Software Engineering for Adaptive Service-Oriented Systems (SEASS ’10), in con-
junction with ICWS 2010 and SCC 2010, Miami, Florida, USA, July 5-10, 2010.

• “Towards Knowledge Management in Clouds - Prevention of SLA Violations vs. Minimization of
Energy Consumption”. Cost Action Meeting (IC0804 on Energy Efficient Large Scale Distributed
Systems, Focus Group Green wired networks), June 10-11 2010, University of Lyon, Lyon, France.

143

Program Committee Member
• CLOUD COMPUTING 2012 - The Third International Conference on Cloud Computing, GRIDs,

and Virtualization, July 22-27, 2012, Nice, France.

Reviewer for Journals
• Business and Information Systems Engineering / Wirtschaftsinformatik (Gabler)

• Computing (Springer)

• Concurrency and Computation: Practice and Experience (Wiley)

• Future Generation Computer Systems (Elsevier)

• IEEE Transactions on Services Computing (IEEE Computer Society)

• Information Sciences (Elsevier)

• Journal of Systems and Software (Elsevier)

• Scientific Programming (IOS Press)

Reviewer for Conferences and Workshops
• HPCC 2012 - The 14th IEEE International Conference on High Performance Computing and Com-

munications

• IEEE ICWS 2012 - 19th International Conference on Web Services

• Euro-Par 2012 - International European Conference on Parallel and Distributed Computing

• SEAMS 2012 - 7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems

• WWW 2012 - World Wide Web Conference

• WORKS 2011 - The 6th Workshop on Workflows in Support of Large-Scale Science in conjunction
with SC 2011

• HPCC 2011 - 13th IEEE International Conference on High Performance Computing and Commu-
nications

• WoSS - 2nd Workshop on Software Services: Cloud Computing and Applications based on Soft-
ware Services

• GreenCom 2011 - The 2011 IEEE/ACM International Conference on Green Computing and Com-
munications

• ICSE 2011 - 33rd International Conference on Software Engineering

• CCGRID 2011 - The 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting

• UCC 2010 - 3rd International Conference on Utility and Cloud Computing

• CSE 2010 - The 13th IEEE International Conference on Computational Science and Engineering

• SEE 2010 - First International Workshop on Services, Energy and Ecosystem

• ICSOC 2010 - International Conference on Service Oriented Computing

• ICEBE 2010 - 7th IEEE International Conference on e-Business Engineering

144

• PDGC 2010 - 1st International Conference on Parallel, Distributed and Grid Computing

• IEEE ICSM 2010 - 26th IEEE International Conference on Software Maintenance

• SEFM 2010 - 8th IEEE International Conference on Software Engineering and Formal Methods

• IC3 - 3rd International Conference on Contemporary Computing

• IEEE ICWS 2010 - The 8th International Conference on Web Services

• IADIS International Conference WWW/INTERNET 2009

• SOCA ’09 - IEEE International Conference on Service-Oriented Computing and Applications

• WORKS 2009 - The 4th Workshop on Workflows in Support of Large-Scale Science In conjunc-
tion with SC 2009

Publications
Refereed Publications in Conference Proceedings

1. Damien Borgetto*, Michael Maurer*, Georges Da Costa, Jean-Marc Pierson, and Ivona Brandic.
Energy-efficient and SLA-aware managament of iaas clouds. In Third international conference
on future energy systems (e-Energy 2012), Madrid, Spain, May 2012. (accepted). (* contributed
equally)

2. Drazen Lucanin, Michael Maurer, Toni Mastelic, and Ivona Brandic. Energy Efficient Service
Delivery in Clouds in Compliance with the Kyoto Protocol. E2DC - 1st International Workshop
on Energy-Efficient Data Centers held in conjunction with e-Energy 2012 - Third International
Conference on Future Energy Systems, May 9-11 2012, Madrid, Spain. (accepted).

3. Toni Mastelic, Vincent Emeakaroha, Michael Maurer, Ivona Brandic. M4Cloud - Generic Appli-
cation Level Monitoring for Resource-Shared Cloud Environments. CLOSER 2012, 2nd Interna-
tional Conference on Cloud Computing and Services Science, April 18-21, 2012, Porto, Portugal.

4. Gabor Kecskemeti, Michael Maurer, Ivona Brandic, Attila Kertesz, Zsolt Nemeth and Schahram
Dustdar. Facilitating self-adaptable Inter-Cloud management. 20th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing PDP 2012. Munich, Germany,
15-17 February, 2012.

5. Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Schahram Dustdar.
Cost-Efficient Utilization of Public SLA Templates in Autonomic Cloud Markets. 4th IEEE In-
ternational Conference on Utility and Cloud Computing (UCC 2011), December 5-8, 2011, Mel-
bourne, Australia.

6. Vincent Chimaobi Emeakaroha*, Pawel Labaj*, Michael Maurer*, Ivona Brandic and David P.
Kreil. Optimizing Bioinformatics Workflows for Data Analysis Using Cloud Management Tech-
niques. The 6th Workshop on Workflows in Support of Large-Scale Science (WORKS11), in
conjunction with Supercomputing 2011, Seattle, November 12-18, 2011. (* contributed equally)

7. Michael Maurer, Ivona Brandic, Rizos Sakellariou. Enacting SLAs in Clouds Using Rules. Euro-
Par 2011, Bordeaux, France, August 29 - September 2, 2011.

145

8. Michael Maurer, Ivan Breskovic, Vincent C. Emeakaroha, Ivona Brandic. Revealing the MAPE
Loop for the Autonomic Management of Cloud Infrastructures. Workshop on Management of
Cloud Systems (MoCS 2011), in association with the IEEE Symposium on Computers and Com-
munications (ISCC 2011), 28 June 2011, Kerkyra (Corfu) Greece.

9. Ivan Breskovic, Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Jörn Altmann. Towards
Autonomic Market Management in Cloud Computing Infrastructures, International Conference on
Cloud Computing and Services Science - CLOSER 2011, 7-9 May, 2011 Noordwijkerhout, the
Netherlands.

10. Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Joern Altmann. Cost and Benefit of
the SLA Mapping Approach for Defining Standardized Goods in Cloud Computing Markets. In-
ternational Conference on Utility and Cloud Computing (UCC 2010) in conjunction with the In-
ternational Conference on Advanced Computing (ICoAC 2010), December 14-16, 2010, Chennai,
India.

11. Michael Maurer, Ivona Brandic and Rizos Sakellariou. Simulating Autonomic SLA Enactment
in Clouds using Case Based Reasoning. ServiceWave 2010, Ghent, Belgium, December 13-15
2010.

12. Vincent C. Emeakaroha, Michael Maurer, Ivona Brandic, Schahram Dustdar: FoSII - Founda-
tions of Self-Governing ICT Infrastructures. ERCIM NEWS, Number 83 (2010), October 2010,
p. 40 - 41.

13. Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Sandor Acs, Attila Kertész, Gábor
Kecskeméti, Schahram Dustdar. LAYSI: A Layered Approach for SLA-Violation Propagation
in Self-manageable Cloud Infrastructures. The First IEEE International Workshop on Emerging
Applications for Cloud Computing (CloudApp 2010), In conjunction with the 34th Annual IEEE
International Computer Software and Applications Conference Seoul, Korea, July 19-23 2010.

14. Michael Maurer, Ivona Brandic, Vincent C. Emeakaroha, Schahram Dustdar. Towards Knowl-
edge Management in Self-adaptable Clouds. IEEE 2010 Fourth International Workshop of Soft-
ware Engineering for Adaptive Service-Oriented Systems (SEASS ’10), in conjunction with ICWS
2010 and SCC 2010, Miami, Florida, USA, July 5-10, 2010.

15. Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Schahram Dustdar. Low Level Metrics
to High Level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and
SLA parameters in Cloud environments. The 2010 High Performance Computing and Simulation
Conference (HPCS 2010), in conjunction with The 6th International Wireless Communications
and Mobile Computing Conference (IWCMC 2010), June 28 - July 2, 2010, Caen, France.

Refereed Publications in Journals

1. Michael Maurer, Vincent C. Emeakaroha, Ivona Brandic, Joern Altmann. Cost-Benefit Analy-
sis of an SLA Mapping Approach for Defining Standardized Cloud Computing Goods. Future
Generation Computer Systems, 2011, doi:10.1016/j.future.2011.05.023.

2. Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Schahram Dustdar. SOA and QoS
Management for Cloud Computing. In: Cloud computing: methodology, system, and applications.
Editors: Lizhe Wang, Rajiv Ranjan, Jinjun Chen, Boualem Benatallah, CRC, Taylor & Francis
group, 2011.

3. Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Schahram Dustdar. Cloud Resource
Provisioning and SLA Enforcement Via LoM2HiS Framework, Concurrency and Computation:
Practice and Experience, 2011.

146

4. Vincent C. Emeakaroha, Michael Maurer, Ivona Brandic, Schahram Dustdar. FoSII - Foundations
of Self-Governing ICT Infrastructures. Special Theme: “Cloud Computing Platforms, Software,
and Applications”. ERCIM News No. 83 (October 2010).

Other Publications
1. Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Schahram Dustdar. Including Energy

Efficiency into Self-adaptable Cloud Services. Proceedings of the COST Action IC0804 on Energy
Efficiency in Large Scale Distributed Systems 1st Year, J. Pierson, H. Hlavacs (Ed.), COST Office,
2010, (invited), ISBN: 978-2-917490-10-5, p. 84 - 87.

2. Ivona Brandic, Michael Maurer, Rizos Sakellariou. Simulating Autonomic SLA Enactment in
Clouds using Case Based Reasoning, Proceedings of the COST Action IC0804 - 2nd Year, 2011,
p. 36 - 40.

3. Vincent C. Emeakaroha, Michael Maurer, Ivan Breskovic, Ivona Brandic. Time Shared VMs and
Monitoring of Time Shared VMs. Proceedings of the COST Action IC0804 on Energy Efficiency
in Large Scale Distributed Systems, 2nd Year, J. Pierson, H. Hlavacs (Ed.), COST Office, 2011, p.
47-51.

4. Michael Maurer, Ivona Brandic, Rizos Sakellariou. Enacting SLAs in Clouds Using Rules, Pro-
ceedings of the COST Action IC0804 on Energy Efficiency in Large Scale Distributed Systems,
2nd Year, J. Pierson, H. Hlavacs (Ed.), COST Office, 2011, p. 132-136.

5. Michael Maurer. Increasing Energy Efficiency by Incorporating VM Resource Allocation. In:
COST Action 804 Newsletter, Vol. 3, June 2011.

6. Michael Maurer. A step towards the incorporation of energy efficiency in autonomic SLA man-
agement. In: COST Action 804 Newsletter, Vol. 2, October 2010.

Books
1. Michael Maurer, Approval Voting - A characterization and compilation of advantages and draw-

backs in respect of other voting procedures, VDM Verlag Dr. Mueller, Saarbrücken, 2008.

Extra-curricular Activities

2004 - ongoing Team leader of junior scouts (children from 7-10 years) at the scouts group
Bruck/Leitha. Organization of weekly meetings, excursions and summer camps.

07/2010 Leadership and Soft Skills training (Wood Badge course, PPÖ).
12/2006 - 09/2007 Lead responsible for the organization and realization of a one-day international

event (100 years of Scouting – We celebrate) with participating Slovak, Hungar-
ian and Austrian Scouts in Bruck/Leitha.

2001 - 2005 Gedenkdienst. Study trips to Auschwitz and Theresienstadt; meeting survivors of
the Holocaust; civil service at the Fondation Auschwitz in Brussels; maintaining
and enhancing the club’s library in Vienna.

147

Hobbies and Special Interests
Scouts, Skiing, Snowboarding, Star Trek, Gedenkdienst, Traveling (by means of Interrail through Europe,
as well as USA, Japan, Libya), physics, astronomy, geocaching, history, foreign languages, playing the
piano.

148

	Introduction
	Problem Statement
	Methodology
	Research Questions
	Scientific Contributions
	Organization of the Thesis
	Conceptual Model of Adaptive SLA Mapping and Autonomic SLA Enactment
	Outline of the FoSII Project Architecture
	Autonomic Loop and Cloud Computing
	Escalation Levels – Structuring the Problem
	SLA Generation and Adaptive SLA Mapping
	Outline
	Use Case
	Public SLA Template Life Cycle
	Adaptation Methods
	Utility and Cost Model
	Simulation Environment
	Experimental Results and Analysis

	Self-adaptive and Resource-Efficient SLA Enactment for Cloud Computing Infrastructures Using Knowledge Management
	Methods of Knowledge Management for SLA Management
	Speculative Approach
	Case Based Reasoning
	Rule-based Approach
	Self-adapting the Rule-based Approach

	Energy-efficient SLA Enactment in Cloud Computing Infrastructures
	Formalization of the IaaS Management Problem
	Formulation as a Binary Integer Programming Problem
	Consequences of the NP-hardness
	Energy-Efficient SLA Enactment

	Evaluation
	Simulation Engine and Workload Generation
	Performance Indicators
	Evaluation and Comparison of CBR and Rules
	In-depth Evaluation of the Rule-based Approach Using Synthetic Data
	Applying and Evaluating a Bioinformatics Workflow to the Rule-based Approach
	Evaluation of the Self-adapting Rule-based Approach
	Energy-efficient and SLA-Aware Management of IaaS Clouds

	Knowledge Management for Cloud Federations
	Federated Cloud Management Architecture
	Self-adaptable Inter-Cloud Management Architecture

	State of the Art
	SLA Generation and Adaptive SLA Mapping
	Resource-Efficient SLA Enactment
	Knowledge Management and Autonomic Computing in Clouds and Related Fields
	Self-Adaptive Algorithms for Cloud Computing Infrastructures
	Energy-Efficient Cloud Computing Infrastructures
	Cloud Federations
	Holistic Cloud Management Projects

	Conclusion

	Bibliography
	Curriculum Vitae

