
Hybrid Human-Machine
Computing Systems

Provisioning, Monitoring, and Reliability Analysis

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Muhammad Zuhri Catur Candra
Registration Number 1028649

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Second advisor: Priv.Doz. Dr. Hong-Linh Truong

External reviewers:
Prof. Dr. Fabio Casati. University of Trento, Italy.
Prof. Dr. Harald Gall. University of Zurich, Switzerland.

Vienna, 28th April, 2016 Muhammad Zuhri Catur
Candra Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Declaration of Authorship

Muhammad Zuhri Catur Candra
Vienna, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 28th April, 2016 Muhammad Zuhri Catur
Candra

iii

Acknowledgements

All praise be to The Lord of the worlds, who has given us life, knowledge, and wisdom.
My first and foremost gratitude goes to my parents, for always giving me sincere and
unconditional supports, and to my family — my wife and my boys — who have made
my journey cheerful and lively.

I would like to express my gratitude to my advisors, Univ.Prof. Dr. Schahram
Dustdar and Priv.Doz. Dr. Hong-Linh Truong, for their guidance and supports to
achieve this work. Also, I would like to thank all my colleagues at the Distributed System
Group (DSG) for the fruitful discussions and collaboration, and especially to the DSG’s
secretaries, who always provide excellent supports.

Likewise, I am very thankful to the member of the Vienna PhD School of Informatics,
especially Prof. Hannes Werthner, Prof. Hans Tompits, and Ms. Clarissa Schmid, who
always assist me with any study-related issues and even many more, and to the students
of the PhD School, for their sharing and caring.

My special thanks are devoted to my colleagues at the Knowledge and Software
Engineering (KSE) Group, Bandung Institute of Technology, Indonesia, who have given
me supports and sincerely let me off for my duty to embark on this long journey; and to
my friends from Indonesia, especially at the Wapena club, who have made our life joyful
and meaningful in this wonderful city of Vienna.

Last but not least, I am grateful to have financial supports from the Vienna PhD
School of Informatics and the EU FP7 SmartSociety project.

v

Abstract

Modern advances of computing systems allow humans to participate not only as service
consumers but also as service providers, yielding the so-called human-based computation.
In this paradigm, some computational steps to solve a problem can be outsourced to
humans. Such an interweaving of humans and machines as compute units can be observed
in various computing systems, such as collective intelligence systems, Process-Aware
Information Systems (PAISs) with human tasks, and Cyber-Physical-Social Systems
(CPSSs). Even with the multitude realizations of such systems — herein we refer to as
Hybrid Human-Machine Computing System (HCS) — yet we still lack important building
blocks to develop an HCS, where humans and machines are both considered as first class
problem solvers from the ground up.

These building blocks should tackle issues arise from different phases of an HCS’
lifecycle, i.e., pre-runtime, runtime, and post-runtime. Each phase introduces unique
challenges, mainly due to the diversity of the involved compute units, which bring in
different characteristics and behaviors that need to be taken into consideration. This
thesis contributes to some important building blocks in managing HCSs’ lifecycle: the
provisioning of compute units, the monitoring of the running system, and the reliability
analysis of the task executions.

Our first contribution deals with the quality-aware provisioning of a group of compute
units, a so-called compute units collective, by discovering and composing compute units
obtained from various sources either on-premise or in the Cloud. We propose a novel
solution model for tackling the problem in the quality-aware provisioning of compute units
collectives, and employ some heuristic techniques to solve the problem. Our approach
allows service consumers to specify quality requirements, which contain constraints
and optimization objectives with respect to functional capabilities and non-functional
properties.

In our second contribution, we develop a monitoring framework for capturing and
analyzing runtime metrics occurring on various facets of HCSs. This framework is
developed based on metric models, which deals with diverse compute units. Our approach
also utilizes Quality of Data (QoD) to enable elastic monitoring catering different
monitoring needs.

While the reliability analysis for machine-based compute units has been widely
developed, the reliability analysis for HCSs has not been extensively studied. In our final
contribution, we present models and a framework for analyzing the reliability of compute
units collectives.

vii

Contents

Abstract vii

Contents ix

List of Figures xi

List of Tables xii

List of Algorithms xiii

1 Introduction 1
1.1 Overview . 1
1.2 Motivating Scenario . 2
1.3 Research Problems . 4
1.4 Contributions . 6
1.5 Scopes of Work . 8
1.6 Thesis Structure . 9

2 State of The Art 11
2.1 Hybrid Human-Machine Computing Systems 11
2.2 Related Work in Provisioning of Compute Units 18
2.3 Related Work in Monitoring Framework 19
2.4 Related Work in Reliability Analysis . 20
2.5 Chapter Summary . 21

3 Models 23
3.1 Architectural View . 23
3.2 Model of Compute Units Collectives . 26
3.3 Task Model . 30
3.4 Chapter Summary . 36

4 Runtime and Analytics Platform for Hybrid Computing Systems 37
4.1 Prototype Architecture . 37
4.2 Prototype Features . 40

ix

4.3 Chapter Summary . 42

5 Provisioning 45
5.1 Introduction . 45
5.2 Provisioning Framework . 46
5.3 Quality-Aware Collective Formation Problem 46
5.4 Formation Algorithms . 51
5.5 Runtime Re-Provisioning . 53
5.6 Evaluation . 54
5.7 Chapter Summary . 59

6 Monitoring 61
6.1 Introduction . 61
6.2 Metrics and Quality of Data . 62
6.3 Distributed Monitoring Framework . 69
6.4 Reasoning for Adaptation . 71
6.5 Evaluation . 73
6.6 Chapter Summary . 78

7 Reliability Analysis 81
7.1 Introduction . 81
7.2 Reliability Models . 82
7.3 Reliability Analysis Framework . 83
7.4 Evaluation . 88
7.5 Chapter Summary . 95

8 Conclusions and Future Work 97
8.1 Summary . 97
8.2 Research Questions Revisited . 98
8.3 Future Work . 100

A Prototype Documentation 103
A.1 Getting Started . 103
A.2 Simulation Mode . 105
A.3 Interactive Mode . 110

Bibliography 115

Glossary 129

List of Figures

1.1 Infrastructure Maintenance Scenario . 3

3.1 A System View on Coordinated HCSs . 24
3.2 Conceptual HCS Runtime Architecture . 25
3.3 Compute units collective Provisioning Overview 27
3.4 Task Meta Model . 31
3.5 Collective Dependency . 35

4.1 Prototype Architecture for Interactive Mode 39
4.2 Prototype Architecture for Simulation Mode 40

5.1 Compute Units Collective Provisioning Framework 47
5.2 An Example of Fuzzy Grade of Membership Functions 48
5.3 Construction Graph for Collective Formation Problem 50
5.4 Pruned Construction Graph for Re-provisioning 55
5.5 Sensitivity on objective weightings . 57
5.6 Influence of α and β . 58
5.7 Comparison on results of Ant Colony Optimization algorithm (ACO) variants 58

6.1 An Example of State Transitions for Human-based Tasks 64
6.2 Quality of Data in HCS Monitoring . 67
6.3 Monitoring Framework . 70
6.4 Monitoring Experiments Setup . 73
6.5 An Example of Processing and Correlating Streams 74
6.6 Correlated Utilization Metrics . 76
6.7 Quality of Data (QoD) Experiments . 78
6.8 Number of Messages in Quality-Aware Delivery 79
6.9 Number of Messages in Varying Data Rates 79

7.1 VSU’s Structure . 85
7.2 Collective Dependency for Reliability Structure 85
7.3 Reliability on task executions, R(k) . 91
7.4 Reliability on varying size of resources pools 93
7.5 Reliability on different compute units collective provisioning strategies 94

xi

List of Tables

2.1 Examples of Existing Hybrid Human-Machine Computing Systems 17

3.1 An example of a task specification . 33

5.1 Formation algorithms’ results and performance comparison 56

6.1 Metric Examples . 63

7.1 Reliability Analysis Experiment Scenarios . 91
7.2 Compute units collective cost and response times 95

xii

List of Algorithms

5.1 Ant-based Solver Algorithm . 54

6.1 Algoritm for QoD-Aware Data Delivery . 68

7.1 EST Generation Algorithm . 89

xiii

CHAPTER 1
Introduction

1.1 Overview
Humans traditionally employ computers to solve computational problems. However,
despite of significant advancements of computing technologies in the past decades,
computers still do not posses the basic conceptual intelligence that most humans take
for granted [1]. In this regard, human-based computation paradigm emerges to harness
the capability of human brains. In this paradigm, some computational steps to solve a
problem can be outsourced to humans, i.e., the computer asks humans to solve problems,
then collects, interprets, and integrates the solutions [2].

For this approach to work, typically so-called human tasks are modeled, instantiated,
and distributed to humans according to the problem domain. In this context, humans no
longer become merely computing service consumers. Instead, together with machines,
humans are also compute units, i.e., resources providing services capable of processing
input data into a more useful information in a (semi-)automated manner.

Examples of such human tasks include data processing tasks (e.g., collection [3],
filtering [4, 5], classification [6, 7], verification [8]), query answering (e.g., [9, 10]), pre-
diction (e.g., [11, 12]), and artifacts creation (e.g., [13, 14]). Furthermore, we have
also seen various sources of online human workers, such as crowdsourcing marketplaces,
e.g., [15, 16, 17], and social networks, e.g., [18, 19, 20, 21] being utilized as compute units.
Also, we have been witnessing the development of special-purposed collective systems,
which are utilized for harnessing human computation capabilities to work together with
software units, e.g., [22, 23]. These so-called collective intelligence systems [24] intertwine
humans and machines in Internet-scale, both as active problem solvers.

Moreover, advances in Cyber-Physical-Systems (CPSs), e.g., [25, 26], have enabled an
interconnection of the physical-world, which consists of smart-things in embedded systems,
and the cyber-world, which provides software-based computations. A natural advancement
of CPS in today highly connected social-world is the inclusion of human actors, hence
leading to the advent of Cyber-Physical-Social Systems (CPSSs), e.g., [27, 28].

1

We have also seen the manifestation of the human-machine integration in other
systems. For example, Process-Aware Information Systems (PAISs) with human tasks
integrate human-based and software-based services into processes, e.g., [29, 30]. Further
innovations, such as [31, 32], allow even more advance integration of humans as socially-
connected actors into business processes.

We refer to those systems as Hybrid Human-Machine Computing Systems (HCSs), i.e.,
systems employing humans and machines as compute units, where tasks are distributed
to humans and machines, and solutions from both humans and machines are collected,
interpreted and integrated. An HCS manages diverse types of compute units. In such
systems, we deal with the interweaving of human actors in the social-world, which we
call human-based compute units (e.g., people in social networks, and in collaboration
platforms), and machine-based compute units, which consist of compute units in the
cyber-world (e.g., software, cloud-based services, etc., namely software-based compute
units) and in the physical-world (e.g., sensors, actuators, gateways, etc., which we refer
to as thing-based compute units) [33].

In a hybrid human-machine collaboration, a group consisting of diverse compute
units is composed to execute a task requiring collaboration of humans and machines
given by a consumer process or application. We refer to such a group as a compute
units collective, which constitutes a construct for a flexible group of human-based and
machine-based compute units, which can be composed, deployed, executed, and dismissed
on-demand [34].

Despite of the myriad materializations of hybrid human-machine computation, yet
we still lack important building blocks to develop an HCS, where both, machines,
and humans are considered as first class citizens from the ground up. For example,
crowdsource-based applications typically focus on rather simple tasks with minimum
interactions [35]. Moreover, in typical collective intelligence systems, existing quality
control approaches traditionally rely on primitives and hard-wired techniques, which do
not allow consumers to customize the provisioning of compute units collectives based on
their specific requirements [36]. Meanwhile, the models of human interactions in business
processes, e.g., [29], still focus on rather self-contained human tasks, where only relatively
static role models are employed for selecting the right people [19]. Furthermore, although
Internet-scale collective intelligence systems are already managing global collectives,
typically they are able to support only coarse human-machine interactions, such as data
search [22].

1.2 Motivating Scenario

To motivate the importance of realizing the proposed building blocks for HCSs, we
discuss a scenario where an information system for infrastructure maintenance is utilized
in smart buildings or smart cities. The system can be employed, for example, by a
corporation for maintaining large building complexes, or by a government agency in a
city management setting. The maintenance is conducted by analyzing a possible facility
breakdown, as shown in Fig. 1.1. For this system to work, sensors are installed on the

2

Infrastructures

Infrastructure
Management

Platform

Human-Based
Computing

Platform

Dedicated Experts

Social-sensors

Sensing Collective

Provisioning
Coordinate

Compute Units
Sources

Sensors, Gateways, Services
in the IoT Cloud

Sensors N/W Data Analytic
Service

Incident
tickets

Resolution

Problem Solving
Collective

Citizens in the Cloud

Data flow

Figure 1.1: Infrastructure Maintenance Scenario

monitored facilities. These sensors capture events occurring on the facilities, which are
streamed through sensor networks to a data processing center running a data analytic
service.

In many cases, installing sensors on every facilities is not always feasible and adequate.
One traditional way to handle this issue is to send dedicated experts for regular inspections.
However, such approach can be in-effective for a large maintenance area. Therefore,
citizens are also engaged to provide the so-called social-sensor services for revealing issues
in places where hardware-based sensor systems or manual inspections are not feasible.
For places where citizen participations are high, we may no longer need to employ experts
for manual inspections. Hence, the provisioning of human-based compute units can be
made on-demand.

These units, i.e., hardware-based sensor systems (i.e., sensors, gateways, sensor
networks, and data analytic services), citizens as social sensors, and dedicated inspectors,
can be seen as a collective performing sensing tasks for detecting facility breakdowns.
When this sensing collective detects a (possible) breakdown, an incident ticket is generated,
which then handled by a collective of compute units for problem solving.

To coordinate the human-based compute units, i.e., citizens and dedicated experts, a
human-based computing platform, e.g., a crowdsourcing platform, can be employed. This
platform generates human-based tasks, such as data collections and assessments, and

3

disseminates the tasks to the participating human-based compute units according to their
availabilities and locations. The overall process flow is coordinated by the infrastructure
maintenance platform.

In this scenario, the compute units involved in the process can be provisioned from
different sources. For example, the human-based compute units can be provisioned from
dedicated sources of experts or from crowdsourcing marketplaces, and the compute units
for the data analytic service can be provisioned from the cloud.

1.3 Research Problems
Many problems encountered in the domain of hybrid human-machine computing arise
from the inherent fact that an HCS comprises diverse compute units, where each of them
introduces different characteristics, such as, qualities, and capabilities. Our work in this
thesis addresses some important issues in building an HCS, which considers different
characteristics of diverse compute units and various phases of an HCS’s lifecycle as
discussed in the following.

Each HCS may have different lifecycles depending on the problem domain and the
underlying compute units platform. In general, for executing tasks in an HCS, we need
to handle various facets of the system. For example, in the pre-runtime phase, we need to
deal with the task design, and the provisioning of the compute units required to execute
the task. In the runtime phase, issues such as task management, runtime monitoring,
and adaptation, become concerns. While in post-runtime phase, issues, such as, quality
analysis for future design improvements, are challenges that need to be dealt with. Our
work presented in this thesis addresses some critical aspects of the HCS’s lifecycle in
pre-runtime, runtime, and post-runtime phases. Particularly we propose methodologies
for the provisioning of compute units, the monitoring of the running compute units
collectives, and the reliability analysis of the HCSs.

Our research performed within the context of this thesis specifically deals with the
following research questions.

Research Question 1: How can we provide a collective of diverse compute units for
executing tasks in an HCS considering the consumer-defined requirements?

Provisioning compute units collectives in HCSs brings in inherent problems due to
the diversity of compute unit types involved. A compute units collectives provisioning
approach should consider the quality requirements, which represent functional capabilities
requirements as well as non-functional constraints. For example, in our infrastructure
maintenance scenario discussed in Section 1.2, the consumer, e.g., a smart city government
board, may specify that the social-sensing task should be executed by citizens with certain
qualifications [23], e.g., no previous false report history, and properties, e.g., living and
commuting in a particular location.

Traditionally, for machine-based compute units, consumers can specify precise require-
ments, such as minimum throughput, maximum delay, etc. However, for human-based

4

compute units, although we could measure some properties quite precisely, e.g., using
key performance indicators [37], in practice, it can be more useful and practical to have
a system that allows consumers to specify requirements in more flexible manner.

Compute units can be provisioned not only on-premise but also in the Cloud, such
as cloud-based software services, or crowdsourced workers. For example, the pool of
citizens as social-sensors in our infrastructure maintenance scenario can be provisioned
from a crowdsourcing platform. Provisioning compute units in the Cloud introduces
challenges, due to the huge search space for finding (semi-)optimal formation of compute
units collectives. Heuristic techniques should be developed for dealing with such search
space. Although various heuristics have been developed to deal with the Cloud-based
compositional problem [38], they need to be adopted to be applicable in the context
of HCS. Furthermore, to achieve a quality-aware provisioning, such heuristics must
be guided with quality optimizing preferences defined by the consumers. Moreover,
each provisioning strategies implemented using a particular algorithm may fit well for a
particular situation or a problem domain. Hence, a provisioning framework should be
made flexible so that it can support different strategies.

Research Question 2: How can an HCS with diverse subsystems and diverse metrics
models be effectively monitored?

The diversity of compute units in HCSs also introduces challenges for monitoring such
systems. For example, for monitoring the system in our infrastructure maintenance
scenario, we have to deal with diverse compute units, such as the sensors and gateways in
the physical-world, software-based data analytic services, as well as the people as social-
sensors. Existing monitoring systems traditionally deal with homogeneous compute units,
e.g., machine-based compute units monitor, such as software-based services monitoring
systems (e.g., [39, 40]), and infrastructure/platform monitoring systems (e.g., [41]). An
approach that takes such heterogeneity into account is required to effectively monitor
HCSs.

An HCS consists of subsystems, e.g., human-based computing systems, and machine-
based computing systems. Each subsystem in an HCS brings along various metrics,
which could have corresponding metrics from other subsystems albeit having different
definitions. For example, we could define the availability, utilization, and cost metrics for
humans; however, their interpretation and measurement differ from the corresponding
metrics for machine-based systems. To enable system-wide monitoring, we need models
and methods to relate the corresponding metrics and bring them together as a unified
metric.

Metrics from different subsystems of an HCS, although having related definitions, may
have different qualities. Furthermore, different monitoring clients may require different
qualities of monitoring data. The notion of Quality of Data (QoD), e.g., with respect to
the accuracy and timeliness [42], plays a crucial role in a system where electronic data
are ubiquitous. For example, a human-based client may prefer non-intrusive data (e.g.,
low data rate), while a software-based client may require much more frequent data.

5

Research Question 3: How to measure the reliability of an HCS, which consists not
only machine-based compute units but also human-based compute units?

Reliability is an important measure of a system representing its resilience to operate
as expected without unacceptable failures. Traditionally, the notion of reliability is
expressed as a function in a continuous time space. However, for human-based computing,
this approach is not suitable, since most human-based compute units do not operate
continuously. For compute units collectives, where human-based compute units are
involved, we need to model the reliability differently. For example, in our infrastructure
maintenance scenario, we should be able to model the reliability of the citizen sensing
capability in discrete time space, e.g., the probability of successful breakdown detection
by citizens in 100 actual breakdown events.

The reliability of a system depends largely on the inter-dependencies between its
elements. In the task executions within an HCS, the dependencies can be inferred
explicitly from the process model, e.g., a workflow, if it is available. However, in many
cases the collaboration inside a compute units collective can be more ad hoc. Hence, we
need a model to describe the dependency in a compute units collective in a more agile
and flexible way.

With the advent of the cloud computing, the provisioning of both, machine-based,
and human-based compute units can be made on-demand from a virtually large pool of
available compute units. In most cases, when a failure occurred on a running compute
unit, another compute unit can be selected from the pool to replace the faulty one. The
reliability analysis for cloud-based compute units collectives must take into account this
provisioning model.

1.4 Contributions
The contributions of our work center around providing essential building blocks of HCSs.
We focus on the following aspects of HCSs: (i) provisioning of compute units collectives, (ii)
monitoring diverse compute units and task executions, and (iii) analysis of the reliability
of the task executions. Firstly, we define models to abstract various HCSs with respect
to the architectural views, compute units collective models, and task models, which are
needed as conceptual foundations for building the main contributions. Furthermore, we
develop a platform based on this abstraction, and prototype our proposed frameworks on
this platform.

Our main contributions presented in this thesis address the aforementioned research
questions and are described as follows.

Provisioning Collectives of Compute Units Our contribution in this part is to
provide a flexible quality-aware compute units collectives provisioning framework, which
provides a formation of machine-based compute units and human-based compute units
obtained from diverse sources. This framework is flexible with respect to supporting
different formation strategies. We develop a set of algorithms, especially a heuristic

6

based on the Ant Colony Optimization (ACO) approach, for dealing with the multiob-
jective compute units collectives formation problem. It is also quality-aware, since it
takes the consumer-defined quality requirements into account. It deals with consumers’
requirements for both, functional capabilities, and non-functional constraints. Moreover,
it provides an approach to support strict and fuzzy quality requirements.

Monitoring Hybrid Human-Machine Computing Systems We contribute a
generic monitoring framework for HCSs, which captures and processes events and metrics
from diverse compute units. First, we present a metric model to handle metrics with
different semantics, and utilize the notion of Quality-of-Data for enabling more effective
and efficient monitoring in the context of diverse underlying systems. Based on those, we
propose a distributed monitoring framework for HCSs.

Reliability Analysis In this part we develop a framework for reliability analysis of
compute units collectives. We employ models to measure the reliability of individual
machine-based and human-based compute units. To deal with the analysis of a large
scale system, we introduce the notion of virtual standby units, which abstracts the
group of compute units that are available for participating in task executions. Based on
these models, we propose a framework for analyzing the reliability of task executions by
compute units collectives.

The main contributions of this thesis have been published at acknowledged interna-
tional conferences as follows:

1. Provisioning Quality-aware Social Compute Units in the Cloud,
Muhammad Z.C. Candra, Hong-Linh Truong and Schahram Dustdar,
The 11th International Conference on Service Oriented Computing (ICSOC 2013),
December 2-5, 2013, Berlin, Germany [43].

2. Analyzing Reliability in Hybrid Compute Units,
Muhammad Z.C. Candra, Hong-Linh Truong and Schahram Dustdar,
The 1st IEEE International Conference on Collaboration and Internet Computing
(CIC 2015), October 27 - October 30, 2015, Hangzhou, China [44].

3. On Monitoring Cyber-Physical-Social Systems,
Muhammad Z.C. Candra, Hong-Linh Truong and Schahram Dustdar,
(in submission).

Some work presented in this thesis are related to and have been partially funded by
Smart Society project supported by the European Comission under the 7th Framework
programme 1.

1http://www.smart-society-project.eu/

7

http://www.smart-society-project.eu/

Additionally, the following publications are partially used in this thesis, although
they are not directly related to the main contributions:

1. Modeling Elasticity Trade-Offs in Adaptive Mixed Systems,

Muhammad Z.C. Candra, Hong-Linh Truong and Schahram Dustdar,

The 22nd IEEE International WETICE Conference (WETICE 2013), Adaptive
Computing (and Agents) for Enhanced Collaboration (ACEC) track, June 17-20 ,
2013, Hammamet, Tunisia [45].

2. Virtualizing Software and Human for Elastic Hybrid Services,

Muhammad Z.C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong, and Schahram
Dustdar,

Advance Web Services, (c)Springer-Verlag, 2012 [46].

1.5 Scopes of Work

Computing systems comprising humans and machines as compute units cover a wide
spectrum with different characteristics. In Section 2.1, we discuss the landscape of the
state of the art hybrid human-machine computing. Our work presented in this thesis
focuses on HCSs with the following characteristics.

An HCS may consist of human-based compute units, software-based compute units,
and/or thing-based compute units. Our work is motivated by issues raised due to the
inclusion of human-based compute units in a computing system, such as discussed in
Section 1.3. Therefore, this thesis focuses on systems where human-based compute units
are involved. Systems focusing only on software-based compute units, and/or thing-based
compute units, e.g., [47], although applicable, are less relevant in this thesis.

Our work assumes the existence of a coordinator role in the system, which manages
tasks creation, distribution and execution in an automated manner. Depending on the
problem domain, such a coordinator can be manifested in different forms, such as a
process engine, an application middleware, etc. This excludes, for example, systems with
ad-hoc interactions, e.g., for online collaborative content creation [13], and crowdsourcing
systems where tasks are manually posted, and results are rather manually evaluated,
e.g., [48].

Furthermore, our work necessitates the feasibility for applying a formal task formula-
tion on the system, with respect to the multidimensional aspects of tasks, such as roles
and activities that compute units could take, quality constraints, and the dependencies
between task activities. Our main contributions presented in this thesis require such
information for controlling quality-aware provisioning of compute units, monitoring con-
strained metrics, and analyzing task dependency structures for reliability analysis. Such
a task formulation is discussed in Section 3.3.

8

1.6 Thesis Structure
The reminder of this thesis is organized as follows:

• Chapter 2 analyzes the state of the art related to our work. In the chapter, we
discuss the current landscape of hybrid human-machine computing, upon which we
lay out the scope of our work. Afterwards, we present related work with respect to
our main contributions, i.e., provisioning framework, monitoring framework, and
reliability analysis.

• Chapter 3 presents our architectural view on HCSs. This chapter also discusses the
compute units collectives model and the task model, which are used throughout
this thesis.

• Chapter 4 describes the prototype implementation of our models, which provides a
simulation testbed for evaluating HCSs’ building blocks.

• Chapter 5 focuses on our contribution in the domain of compute units provisioning.
We present quality-aware provisioning strategies based on some heuristic formation
algorithms. We evaluate our approach with respect to the comparison of different
provisioning strategies, and we study the sensitivity of the approach with respect
to different optimization objectives.

• Chapter 6 provides details of our contribution for HCS monitoring. We present
various metrics constructs to characterize HCSs and utilize the concept of Quality
of Data (QoD) to deal with the dynamics of HCSs. Based on these models, we
present a distributed monitoring and adaptation framework for HCSs. Furthermore,
we perform experiments to showcase the benefits of our framework.

• Chapter 7 discusses our contribution in the domain of reliability analysis for hybrid
human-machine computing. We discuss reliability models for individual compute
units and compute units collectives, and we present in detail the methodology to
measure the reliability of task executions performed by the provisioned compute
units collectives. Moreover, we exemplify our reliability analysis in a simulated
experiments and show how the reliability analysis is useful for improving system’s
components.

• Chapter 8 concludes this thesis and discusses future research directions in the
context of hybrid human-machine computing.

9

CHAPTER 2
State of The Art

In this chapter, we discuss the present state of the art in the area of human-machine
computing. Within the context of this area, we then discuss related work with respect to
our main contributions presented in this thesis, i.e., provisioning approaches, monitoring
frameworks, and reliability analysis techniques.

2.1 Hybrid Human-Machine Computing Systems
In Hybrid Human-Machine Computing Systems (HCSs), we deal with the interweaving
of human-based compute units in the social-world, thing-based compute units in the
physical-world, and software-based compute units in the cyber-world. In this section,
first, we discuss techniques for virtualizing human-based and thing-based compute units,
which enables the orchestration of these compute units together with software-based
compute units. Afterwards, we discuss the landscape of existing systems consisting of
diverse compute units.

2.1.1 Virtualizing Compute Units

Human capabilities have been incorporated into computing systems for solving complex
problems since several years. Still, it is very challenging to program human capabilities
due to limited techniques and tools [46]. One of the main challenges is to have similar level
of pragammability for human-based compute units as we traditionally have with software.
Traditionally, human computing platforms, such as Amazon Mechanical Turk [16] and
CrowdFlower [49], expose the capabilities of human-based services via a set of platform-
specific APIs. Such approach, albeit useful for programming human capabilities, still lack
necessary abstractions for developing general-purpose mixed human-machine applications.
Some techniques have been proposed to virtualize human capabilities for enabling a more
seamless integration of human-based compute units into application. AutoMan [50] is
an example of a human computing programming framework, which allows integrating

11

human capabilities into a standard programming language as ordinary function calls
intermixed freely with traditional software-based functions. Another platform providing
virtualization of human capabilities is Jabberwocky [51]. In Jabberwocky, machines
and people are both first class citizens. Furthermore, it allows combining human-based
compute units from different sources, and provides a high level domain-specific language
for task declaring, which is translated to a map-reduce pattern [52].

The aforementioned virtualization techniques focus on the task requester side, i.e.,
defining task requests utilizing human capabilities, and do not concentrate on virtual-
ization techniques on the service provider side, i.e., defining provided capabilities that
can be discovered and provisioned on-demand. The needs and challenges of harnessing
and orchestrating thousands of human brains, so-called crowd services, in real time
using standardized Web service interfaces have been highlighted in [53]. An approach
for describing and publishing Human-Provided Services (HPS) using traditional Web
services is proposed in [54]. Furthermore, teams of people could also be established
and provisioned under the service model, called Social Compute Unit (SCU) [55], which
enables the unification of human-based and software-based services with the introduction
of the virtualization layer [56].

In the physical-world, techniques for virtualizing capabilities of thing-based compute
units have also been developed. Recently, the concept of Sensing-and-Actuating-as-a-
Service (SAaaS) [57] and Sensor-as-a-Service (SenaaS) [58] emerge to allow the integration
of sensors, actuators, and stream data processing capabilities into a service-oriented
architecture. A framework called Sensor Service Framework (SSF) [59] is put forward to
provide device-neutral features and APIs for the sensor devices to be deployed as Web
services. In [60], a RESTful architecture is proposed to expose capabilities of smart things.
An Internet-of-Things virtualization framework is also presented in [58] to support sensor
event processing and reasoning for connected objects by providing a semantic overlay of
the underlying IoT cloud. A platform called servIoTicy [61] is developed as part of the
COMPOSE project [62], which provides a rich set of features to store and process data
through Web services, allowing objects, services and humans to access the information
produced by the physical-world connected to the platform.

We have provided detailed human-machine virtualization techniques in our previous
work presented in [46]. Our work presented in this thesis contributes the important
building blocks of HCSs consisting of the underlying subsystems (e.g., human-based and
machine-based subsystems), which provide compute units virtualization mechanisms.

2.1.2 Systems with Diverse Units

The intertwining of physical, cyber, and social worlds has been evolved in the past decade
from multiple directions. For example, the coupling of cyber and physical worlds has been
seen in systems known as Cyber-Physical Systems (CPSs), which then further Internet-
enabled by the advancement of Internet of Things (IoT). The next natural evolution of
CPS and IoT is the Cyber-Physical-Social Systems (CPSSs), which integrate the existing
social-world into the loop [63]. Furthermore, we have also seen the development of
collective intelligence systems as manifestations of the cyber-social world, which enhances

12

computing systems by harnessing the computational power of humans [24]. Recent
advancements in the cyber-social systems fuse the entities and characteristics of the
physical-world into actions, e.g., spatiotemporal behavior and interactions with physical-
world objects [64]. Meanwhile, recent developments of Process-Aware Information Systems
(PAISs), also allow the integration of people activities and physical-world entities into
process-based applications.

We discuss and exemplify such systems as follows.

Cyber-Physical-Social Systems

Cyber-Physical Systems (CPSs) consist of physical systems monitored, coordinated,
controlled, and integrated by a computing and communication core [47]. A representative
use-case of such CPS can be seen in a sport performance monitoring system, where athletes
and their trainers collaborate and use measurement devices and supportive software-based
analytic services to improve the performance of the athletes [25]. Other realizations
of CPS are evident in many fields, such as in disaster and emergency managements,
e.g., [26], healthcare, e.g., [65], and smart power grids, e.g., [66], to name a few.

With the dawn of the Internet of Things (IoT) technologies, such as IoT gateways
(e.g., [67]), smart Things (e.g., [68, 69]), and software-defined IoT systems (e.g., [70]), it
becomes possible to interconnect machines with smart embedded systems in Internet-scale,
hence enabling the integration of the Things and the Cloud services.

Recent developments of CPS intensively include human actors in a socially connected
world, which show the advent of Cyber-Physical-Social Systems (CPSSs). Hence, a CPSS
is a system orchestrating three subsystems: (i) the human-based systems, i.e., the social
system containing human actors and their interconnected devices/agents and/or social
platforms, (ii) the software-based systems, i.e., the cyber-world providing software-based
services including the underlying infrastructures and platforms, either on-premise or in
the Cloud, and (iii) the thing-based systems, i.e., the physical-world that including sensors,
actuators, gateways and the underlying infrastructures at the edge. Some examples of
such systems can be found in smart home scenarios, e.g., [27], manufacturing systems,
e.g., [28], and military command and control systems, e.g., [71].

Collective Intelligence

Collective intelligence has emerged as interconnected groups of people and computers,
collectively doing intelligent things [72]. Collective intelligence represents a class of
systems fusing cyber and social worlds. Furthermore, recent advancements of collective
intelligence blends the physical world into the ecosystem, hence yielding systems with
similar characteristics as in the aforementioned Cyber-Physical-Social Systems (CPSSs).

Notable examples of collective intelligence are the crowdsourcing platforms. According
to [31], existing crowdsourcing scenarios can be categorized into three types:

i) contest crowdsourcing uses a contest to obtain the best available solution for a
certain problem, such as in 99designs [48] and Threadless [73],

13

ii) task marketplace crowdsourcing is a type of platforms in which typically simple and
unrelated tasks are posted by clients, while registered workers will choose and solve
the tasks, e.g., CrowdFlower [49], and Amazon Mechanical Turk [16], and

iii) bid crowdsourcing is a platform where complex problems submitted by clients
and the best bid from professionals will be chosen to solve the problems, e.g.,
InnoCentive [74], and TopCoder [75].

Furthermore, frameworks, such as Automan [50], Jabberwocky [51], and Turkomatic [76],
enhance task marketplace crowdsourcing platforms so that more complex tasks and
workflows can be executed by the crowdsourcing workers.

Several crowdsourcing approaches focus on the enterprise environment. Some elabo-
rated lists of research agendas for enterprise crowdsourcing are presented in [77] and [78].
The distinction between public and enterprise crowdsourcing is discussed in [79], especially
what factors affect the sustainability of the project’s community. Some examples of
enterprise crowdsourcing solutions include CrowdEngineering [80] and PeopleCloud [81].
Moreover, some techniques have been proposed for utilizing social networks as workforce
sources for enterprises, e.g., [18, 19, 82].

Other types of collective intelligence can also be identified according to their genomes
[24], e.g., what gene (create or decide), who gene (crowd or hierarchy), and how gene
(e.g., collect, contest, or collaborate). An example of a collective intelligence genome is a
collection of artifacts created by a crowd, such as found in Wikipedia [13] and DBpedia [83].

Social sensor systems, where “humans as citizens in the ubiquitous Web acting as
sensors and sharing their observations and views using mobile devices and Web 2.0
services” [84], are examples of collective intelligence in the physical world. Numerous
research efforts have been done for achieving an effective social sensing in diverse problem
domains [85]. Some examples of social sensor systems are real time collective disaster
detection system, e.g., [86], citizen participation for data collection, selection, and
assessment, e.g., CrowdSC [23], and mixed IoT-citizen sensing in smart cities [87].

Furthermore, hybrid collective adaptive systems, e.g., [22], are also utilized as new
methodologies for solving complex problems that requires both human knowledge and
machine capabilities. Moreover, some efforts have also been done to leverage online
human collaboration technologies to enhance thing-based systems, e.g., [64].

Process-Aware Information Systems

A Process-Aware Information System (PAIS) is “a software system that manages and
executes operational processes involving people, applications, and/or information sources
on the basis of process models” [88]. Some examples of PAISs are workflow management
systems (WfMS), process-aware groupware, enterprise information systems, etc.

In one of the de facto standards for business process modeling, Web Services Business
Process Execution Language (BPEL) [30], people activities can be incorporated into
processes using the WS-BPEL extension for people (BPEL4People) [29]. BPEL4People
is based on WS-HumanTask [89], which defines the specification of human tasks, as well

14

as the programming interfaces and the protocol for advanced interaction with human
tasks. Another standard for specifying business process is Business Process Model and
Notation (BPMN). In BPMN 2.0 [90], human involvements in a process can be modeled
using two different types of tasks, the user task, which is executed and managed by a
business process engine, and the manual task, which represents an out-of-bound human
task not managed by any business process engine.

Those constructions of traditional human tasks allow us to integrate people as compute
units into processes. However, they still lack capabilities to exploit the computational
power of online collective intelligence platforms. Firstly, they do not have a built-in
support for discovering potentials assignees from non-organizational workforces. To this
end, some approaches have been proposed to crowdsource tasks to collective intelligence
platforms such as social networks, e.g., [19, 31, 91]. Secondly, these traditional process-
oriented human tasks are typically executed by individuals. Other works, e.g., [32], extend
traditional business processes to enable task executions by a group of socially-connected
people. Moreover, traditional human task models for business processes do not allow
the service providers, i.e., the humans who provide functionalities, to define and publish
their capabilities as in typical service-oriented systems. To this end, some solutions are
proposed, e.g., in [54, 53].

The integration of the physical-world into business processes has been gaining a lot of
interest in the past few years. This integration is made possible by the service-enablement
of smart things in IoT using various virtualization techniques as we have discussed
previously, e.g., [59, 60, 58]. To model IoT capabilities within processes, new notational
concepts need to be defined. A number of projects have been carried out to realize the so-
called IoT-aware processes [92]. For example, several works such as [93, 94, 95, 96], have
been proposed to model the integration of IoT entities into processes using well-known
process modeling notations such as BPMN.

Such IoT-aware processes introduce novel challenges. To deal with IoT entities, a
process needs to deal with unreliable data from unreliable compute units in a highly
distributed manner. Furthermore, unlike traditional processes, which are typically
deterministic, an IoT-aware process needs to be adaptive, where activities can be triggered
based on detected events, or based on events generated by real time sensor data analysis
[97].

2.1.3 Characterizing Existing Systems

To this point, we have discussed the present state of the art of systems engaging diverse
units in physical, cyber, and social worlds. Such a landscape represents a very broad
spectrum of diverse systems. To have a better understanding of the landscape of
hybrid human-machine computing, here we characterize some systems based on several
dimensions.

From the aforementioned works, we select 29 systems, which have not only proposed
conceptual and design principles, but also running and evaluated systems. We characterize
these systems according to the following dimensions:

15

i) Diversity indicates whether the system contains units from physical-, cyber-, or
social-worlds.

ii) Coordination shows whether the system is coordinated by an automated software
component, e.g., a middleware, to manage the creation, distribution, and execution
of tasks.

iii) Task Model represents the characteristic of the system having a well-defined task
model containing one or more of the following task aspects:

a) Task Request indicates whether tasks are requested explicitly by the consumers
(human or application consumers), or implicitly created, e.g., based on the
occurring events, or voluntary human actions.

b) Role shows the existence of the notion of role in the task model. This is
typically relevant, when the system employs a task model containing multiple
activities, each executed by a compute unit.

c) Quality Model indicates whether the task design and execution contains a
quality control mechanism, which can be defined by the consumer by the
notion of quality constraints (e.g., a Service Level Agreement), or specified by
the system designer, or manually monitored and imposed by the task requester
(i.e., results are manually reviewed).

d) Activity Dependency indicates whether activities inside a task have interde-
pendency to each others.

The summary of the characteristics of the aforementioned systems is shown in
Table 2.1. Here, we exclude systems that do not have a well-defined task model or a
similar construct.

Our work presented in this thesis focuses on dealing novel issues due to the incor-
poration of people in the social-world as compute units. Hence, our work focuses on
cyber-social and cyber-physical-social systems. Moreover, instead of presenting a new
breed of systems, our work deals with characteristics found in existing systems to lay out
foundations necessary to develop building blocks of hybrid human-machine computing
systems.

The purpose of this system characterization is not to provide a comprehensive survey
on hybrid human-machine computing. Instead, we seek to understand the relevance of
our main contributions in the context of a larger landscape. Based on the scope of our
work discussed in Section 1.5, we focus on systems, which (i) include humans as compute
units, (ii) are coordinated in an automated manner, and (iii) have a well-defined task
models consisting of roles, quality models, and/or activity dependencies.

Based on our scope of work, the examples of systems of our concern within the
presented landscape of hybrid human-machine computing are represented in grey-shaded
rows in Table 2.1. However, there are some exceptions where our main contributions
are partially less relevant to some systems according to their characteristics. First, our
reliability analysis framework presented in Chapter 7 depends largely on the activity

16

Physical Cyber Social Task
Request** Role Quality

Model***
Activity

Dependency

- BPEL4People, WS-HumanTask [29, 89] � � � Explicit � �

- BPMN 2.0 [90] � � � Explicit � �

- PeopleCloud [81] � � � Explicit consumer-driven
- Social Compute Unit (SCU) [32] � � � Explicit � consumer-driven �

- The Human-provided Services (HpS) [54] � � � Explicit consumer-driven

- Sensor Service Framework (SSF) [59] � � � Implicit � �

- WoT Architecture [60] � � � Implicit � �

- servIoTicy & COMPOSE [61, 62] � � � Implicit � �

- WSN extension for BPMN [93] � � � Explicit � �

- IoT and native services for BPMN [94] � � � Explicit � �

- BPMN-based WSN Application [95] � � � Implicit � �

- Amazon Mechanical Turk [16] � � � Explicit consumer-driven
- CrowdFlower [49] � � � Explicit consumer-driven

- Innocentive [74] � � Explicit manual
- TopCoder [75] � � Explicit manual

- 99designs [48] � � Explicit manual
- Threadless [73] � � Explicit manual

- Automan [50] � � � Explicit system-driven
- Jabberwocky [51] � � � Explicit � �

- Turkomatic [76] � � � Explicit � consumer-driven �

- Crowdsourcing for BPEL4People [19] � � � Explicit � consumer-driven �

- Tweetflow [91] � � � Explicit

- Wikipedia [13] � � Implicit � manual
- DBpedia [83] � � Implicit � manual

- CPSS for Smart Home [27] � � � � Implicit � consumer-driven �

- CPSS for Production Network [28] � � � � Implicit � consumer-driven �

- CPSS for Command and Control [71] � � � � Implicit � system-driven �

- Smart City sensing using IoT & citizen [87] � � � � Implicit � system-driven
- CrowdSC [23] � � � Explicit � system-driven �

Contest Crowdsourcing

Human Programming Platforms

Social Network as a Compute Unit

Diversity
Coordinated*

PROCESS-AWARE INFORMATION SYSTEM

Notes:
* Coordinated: there exists a coordinator role in the system (a software component), which manages tasks creation, distribution
 and/or execution in an automated manner.

Task Model

** Task Request:
 - Explicit: consumers (humans or applications) explicitly request tasks.

COLLECTIVE INTELLIGENCE

CYBER-PHYSICAL-SOCIAL SYSTEMS

RefsCategory / System Title

IoT-Aware Processes

Processes with HumanTasks

Artifact Creation Collaboration

Social Sensors

CPSS Applications

Task Marketplace Crowdsourcing

Bid Crowdsourcing

 - Implicit: no explicit requests from consumers, e.g., event-driven tasks, or voluntary actions.
*** Quality Model:
 - Consumer-driven: qualities are automatically controlled/enhanced based on consumer requirements
 - System-driven: qualities are automatically controlled/enhanced based on pre-defined system objectives

Table 2.1: Examples of Existing Hybrid Human-Machine Computing Systems

17

dependencies during task execution. Hence, systems without the notion of activity depen-
dencies are not relevant for our reliability analysis framework. Second, our provisioning
framework discussed in Chapter 5 is a quality-aware provisioning framework, which
honors the quality constraint specification. Although, the provisioning framework can
still operate without a set of specified quality requirements, systems that do not have
support for a quality model, or have only manual quality control, are not the focus of
interest of our provisioning framework.

In the following sections, we discuss some research gaps in the current state of the
art, and how our main contributions fill the gaps.

2.2 Related Work in Provisioning of Compute Units

Cloud-based Provisioning

In general, provisioning means the act or process of supplying or providing something [98].
In the context of Cloud-based computing, a provisioning process covers necessary activities
to provide requisite compute units for performing a computation in an automatic or
semi-automatic manner.

By that definition, a provisioning process for Cloud-based systems may encompass a
broad range of activities, such as services provisioning covering the whole service lifecycle,
including service construction, deployment, and operation (e.g., [99]), (virtual) machines
provisioning (e.g., [100]), and storage provisioning (e.g., [101]).

In the context of software-based services, such as in workflow and mashup technologies,
research on services composition has been going trough a long history with partially
success stories [102]. Service composition comprises all processes required to provide
added-value services from existing services [38]. These include, to name a few, notational
modeling, interaction protocol, service level agreement and quality of services, the
formation (i.e., selection) of compute units, deployment, and execution [38].

In IoT systems, provisioning activities include deploying IoT devices and the required
artifacts (e.g., libraries) to run an application on the devices, e.g., [103]. INOX [104], a
managed service platform for IoT, is proposed to provide IoT provisioning capabilities
such as a flexible service deployment and a technique for virtualizing edge devices.
Research on IoT discovery services has also gained interests. For example, in [105], a
technique for discovering IoT services based on semantic matchmaking is proposed.

Techniques for managing a pool of compute units are domain-specific. In our work,
the capabilities to discover, deploy, and managed the underlying compute units are
abstracted into the so-called compute unit manager (see Section 3.1.2), which is utilized
during the provisioning of compute units. Our contribution in the provisioning domain, as
presented in Chapter 5, focuses to tackle issues related to the formation of compute units
collectives, which incorporates both, machine-based compute units (i.e., software-based
compute units and thing-based compute units), and human-based compute units.

18

Formation of Compute Units Collectives

A compute units collective is a group of compute units selected and deployed on demand
for executing a requested task. Depending on the system and application domain, the
formation of compute units collectives may contain a mix of human-based compute units,
software-based compute units (e.g., software-based services), or thing-based compute
units (e.g., IoT services). Many algorithms have been proposed for constraint-satisfying
formation of compute units, especially in the context of Web service composition. Some
of these algorithms employ certain heuristics to perform optimized formation, such
as tabu search and simulated annealing [106], genetic algorithm [107], and integer
programming [108].

In the context of IoT systems, several techniques have been proposed for discovering
and selecting IoT devices or services, e.g., [109] and [110]. Unlike traditional service
composition approaches, which usually focus on the problems of functional composition
of services, IoT service platforms typically also focus on data processing scalability [61].

One of the contribution of our work is in the domain of human team formation
optimization. In the context of this social-world, some approaches for team formation
based on the fuzzy concept have been proposed, e.g., [111, 112]. Other works, such
as [113, 114, 115, 116], also take the social network of the team member candidates into
consideration.

Our work in the domain of formation of compute units collectives provides an
optimized selection of compute units to perform tasks according to a set of specified
requirements. Our work differs from the aforementioned works in the following aspects:
(i) we combine the formation of human-based and machine-based compute units, (ii)
we model optimization objectives in multiple dimensions, in particular, we exemplify
our formation optimization in four dimensions: functional capabilities, connectedness,
response time, and cost, (iii) we utilize the fuzzy concept to model the properties of
compute units, and (iv) we employ some heuristics, especially Ant Colony optimization
and greedy-based optimization, to form the compute units collective.

2.3 Related Work in Monitoring Framework

Monitoring Framework

Many techniques and tools for machine-based compute units have been developed for
monitoring on various layers [117]. Monitoring tools on traditional distributed systems,
i.e., grids and clusters, e.g., [118, 119], have been extended to cope with the Cloud
characteristics [117], e.g., [120, 121].

Unlike the machine-based counterpart, there are not so many works carried out for
monitoring the execution of human-based computing. The focus of existing research
in this area is to develop quality improving techniques, which are typically domain-
specific [36]. In PAIS with human tasks support, some tools, e.g., [122], are provided to
monitor human tasks and their execution states, and to allow administrators to perform
manual actions when necessary.

19

We position these related machine-based and human-based monitoring tools as the
underlying interfaces for capturing events and metrics to be used in our proposed
framework for a system-wide HCS monitoring, which allows creating more useful metrics
by enabling correlation of diverse metrics from the underlying events and metrics.

Characterizing HCS

Metrics in software-based systems, including the underlying infrastructures, have been
extensively studied, e.g., in [123, 124]. Although much less studied, metrics for people as
computing units have also been proposed, e.g., in [36]. In thing-based systems, many
works center around streams of metrics produced by the sensors (e.g., temperatures,
locations, etc.). However, not many works have been published to define the metrics
representing the qualities of the system itself. Some work, e.g., [125], propose metrics for
improving the quality of the thing-based systems.

Quality of Data (QoD) plays a crucial role, especially in systems such as HCSs, where
electronic data are ubiquitous. The majority of authors in the domain of QoD typically
consider QoD from a basic set of quality dimensions: accuracy, completeness, consistency,
and timeliness [126]. In our work, we apply the accuracy and timeliness (data rate and
freshness) dimensions of QoD to enable more efficient data delivery in HCS monitoring.

The notion of composable metrics have also been proposed, e.g., in [127, 128]. These
works focus on composable metrics in homogeneous systems. Our monitoring framework
presented in this thesis deals with correlating and composing metrics from thing-based,
software-based, and human-based systems.

2.4 Related Work in Reliability Analysis

Reliability of Human-Machine Computing

Quality controls have become one of the challenging obstacles in human-based computing,
especially in the advent of crowdsourcing model [36]. Many approaches have been
proposed to improve the reliability of human-based computing systems, especially with
respect to the quality of results, e.g., [129, 130, 131]. These works deal with the reliability-
improving approaches for simple tasks that can be assigned to individuals. Our reliability
analysis framework focuses on more complex tasks executed by a collective of humans
and machines, and how to measure the reliability of the task execution.

In the context of Process-Aware Information Systems (PAIS), where human tasks
can be included, several techniques have been proposed to measure quality properties,
especially reliability. In [132] and [133], the authors proposed a mathematical model
to compute the quality of services by applying reduction rules to a workflow until
an atomic task is obtained, and then the reliability is estimated based on formula
1− (successful executions/scheduled executions). Hence, this value only provides an
estimation of reliability for the next task execution, while our reliability analysis approach
provides a mechanism to estimate the reliability in a discrete time space. Furthermore,

20

our framework allows reliability analysis for machine-based and human-based compute
units obtained from a large pool of resources.

Several techniques for Human Reliability Analysis (HRA) have been developed in
other disciplines such as safety and ergonomic engineering using a probabilistic model,
e.g., [134], or using a cognitive theory, e.g., [135]. More advance approaches, e.g., [136],
propose techniques to measure human performance reliability in real-time and on-line
manner. Several works have also been conducted to formally model human behavior in
computing systems, e.g., [137]. In our proposed reliability analysis framework, we adopt
technique to measure the reliability of individual units on a task-basis using a failure
rate parameter. This parameter can be obtained from these HRA techniques.

Reliability of Large Scale Systems

Research on the reliability of large scale systems, such as grid systems, e.g., [138, 139],
and cloud services, e.g., [140, 141], has gained a lot of interest. These works proposed
some models to analyze the reliability of hardware and software systems and proposed
techniques to improve systems’ fault tolerance. Some algorithms have also been proposed
to solve non-trivial reliability equations as discussed in Section 7.3.2. However, to the
best of our knowledge, currently there are no published works that provide models for
the reliability analysis of hybrid human-machine systems as proposed in this thesis.

2.5 Chapter Summary
In this chapter, we presented the state of the art in the area of human-machine com-
puting. First, we presented the existing underlying virtualization techniques enabling
the computation by hybrid human-machine compute units. Afterwards, we discussed
the landscape of existing hybrid human-machine computing systems, such as found
in Cyber-Physical-Social Systems, Collective Intelligence Systems and Process-Aware
Information Systems with human tasks. Upon this landscape, we laid out the scope of
systems of our concern.

Furthermore, in this chapter we discussed some works related to the domain of our
main contributions, i.e., existing techniques for provisioning of compute units, existing
monitoring framework, and reliability analysis techniques.

21

CHAPTER 3
Models

Different manifestations of Hybrid Human-Machine Computing Systems (HCSs) have
different characteristics and application models. In this chapter, we present our models
on such systems with respect to the overall architectural view as well as the application
model. Our models presented in this chapter lay out a foundational abstraction, which is
used in the remainder of this thesis.

In this thesis, we focus on a class of HCSs employing a centralistic and task-oriented
approach, i.e., systems that have a role of orchestrators to control and manage the
distribution and execution of task requests. In the remainder of this thesis we simply
refer to HCS as this class of such system. Such a class can be found in coordinated
CPSSs, task-based collective intelligence systems, as well as in PAIS with human-based
tasks, as discussed in Section 2.1.3.

3.1 Architectural View
In this section, we present our view on the coordinated and task-oriented HCSs, and
present a conceptual runtime architecture containing necessary building blocks for such
HCSs.

3.1.1 System View on Coordinated HCSs

We envisage HCSs as systems virtualizing the capability of humans, software, and things,
as services [46]. As shown in Fig. 3.1, in such a system, an orchestrator coordinates the
assignment and distribution of software-, human-, and thing-based tasks to the available
and suitable services.

In such a system, while a consumer application is running, it instantiates tasks
for fulfilling certain functions in the application. The tasks are then submitted to
the orchestrator, so that the required compute units collective containing a mixed of
human-based, and machine-based compute units can be provisioned to execute the tasks.

23

Orchestrator

Consumer
Application

taskRequestReciever

e.g., HCS
Runtime
Middleware

<<subsystem>>
Human-based System

Agent Human

e.g., Web-based
or mobile Apps

provided-
services

<<subsystem>>
Software-based System

Software
Services
Provider

Machine

Database provided-
services

<<subsystem>>
Thing-based System

Gateway

Sensor

Actuator

provided-
services

Thing

Sensor
data

Sensor
data

Control
flow

Control
flow

Data
flow

Data
flow

Figure 3.1: A System View on Coordinated HCSs

In a complex system containing thing-based subsystems, IoT gateways may also
publish sensor data from the things through a sensor data bus (e.g., a messaging bus
using CoAP, MQTT, XMPP, etc.) to software-based compute units, or to human-based
compute units utilizing a human-friendly dashboard shown by a UI agent. In a typical
scenario, during the execution of the tasks, a human- or software-based service may
decide to make adjustments on the thing-based systems (e.g., sensor update rates) due to
the incoming sensor data events. Such adjustment requests can then be translated (e.g.,
by an orchestrator) into another thing-based task and sent to the corresponding machine.

We discuss the architecture of HCS runtime middleware, which plays the role as an
orchestrator in the following subsection.

3.1.2 Runtime Architecture of HCSs

Realizations of HCSs differ from one system to another. Here, we discuss a conceptual
runtime architecture, which comprises necessary building blocks for coordinated and
task-oriented HCSs as depicted in Fig. 3.2. This conceptual runtime architecture provides

24

collective
deployment

metrics/events
capturing

reconfiguration

Task
Requester

Task
Manager

Provisioning
Framework

provisioning
service Compute Unit

Manager

compute unit
discovery

Runtime
Environment

Compute Unit
Collective

Adaptation
Engine

Monitoring
Framework

re-provisioning
request

Reliability
Analysis

Analytic Framework

metrics
capturing

reliability
metrics

Compute Unit Pool

Monitoring Tool

Compute Unit

Human Software Thing

manage
task

service

Figure 3.2: Conceptual HCS Runtime Architecture

an understanding on how an HCS runs. Moreover, this conceptual runtime architecture
also portrays the position of our main contributions presented in this thesis in the overall
hybrid human-machine computing ecosystem. Furthermore, we use this architecture as a
foundation for our prototype implementation presented in Chapter 4.

In a task-oriented HCS, a runtime phase starts when a consumer (e.g., a client
application or a human client) sends an instance of a task request, which is then
scheduled for execution by a task manager. In a diverse system such as an HCS, the
scheduling technique is domain-specific, and is beyond the scope of this thesis.

When a task is ready for execution, a provisioning request is sent to the provisioning
framework, which then forms a compute units collective by selecting suitable compute
units discovered by a compute unit manager (details of the provisioning framework is
discussed in Chapter 5). Once the compute units collective is formed, it is then deployed
to the corresponding runtime environments, where the assigned compute units can execute
the task according to their roles (details of tasks and roles is in Section 3.3).

A compute unit manager is a component in an HCS capable of managing compute
units, either in the Cloud or on-premise. A compute units manager manages the profiles
of the compute units, e.g., their functional and non-functional properties. Examples
of such a compute units manager are application-specific, e.g., crowdsourcing platform
or a social network platform for human-based compute units, web service brokers for
software-based compute units, or IoT Cloud managers for thing-based compute units.

One of main functionalities of a compute units manager is to provide a discovery
service to find compute units suitable for a particular role for executing a task. More
formally, given a set of all compute units U , a set of requested capability functionalities,
Cpr, and a set of requested constraints, Cr, a discovery service returns suitable compute
units, U ′ = {ui|∀ui, ui ∈ U ∧ Sim(Cpui , Cpr) ∧ Comply(Pui , Cr)}, where Cpui is the set
of capabilities owned by ui, Pui is the non-functional properties of ui, Sim is a predicate
representing a similarity match, and Comply is a compliance checking function according

25

to compliant operators defined for Cr. An example of a capability similarity matching for
human-based compute units is provided in [142]. For machine-based compute units such
as software-based services, a semantic matchmaking based on the service description (i.e.,
input, behavior, and output) can be employed to decide the functionality matching [143].

Similar to the compute unit manager, runtime environments are also specific for
different application models and different types of compute units. For example, it can be
a collaboration platform (e.g., message-oriented such as email, or artifact-oriented such
as online file collaboration platform), or a workflow engine with support of human tasks
and sensor tasks, or a managed cyber-physical-social runtime platform.

During the lifetime of the tasks, the monitoring framework captures events and raw
metrics from the monitoring interfaces of running compute units and from the runtime
environments. These events and raw metrics may represent the behavior of a particular
compute unit, a particular compute units collective, or a particular task execution,
as well as the behavior of the overall system. The monitoring framework processes
these events and raw metrics to produce requested metrics, which provide insights for
the consumer to evaluate and improve system components. These metrics can also be
used by an adaptation engine to reason about actions, e.g., to re-provision one or more
failing compute unit or to reconfigure the runtime environments, which can be necessary
to achieve correct functioning of the system. We detail the monitoring framework in
Chapter 6.

During runtime or after runtime, we may need to perform some analytics to obtain
deeper comprehension of the system. In this thesis, we focus on analytics to obtain the
reliability metrics of the system, as one of the important quality metrics in HCSs. The
metrics required for reliability measurement are obtained from the monitoring framework,
and the resulting reliability metrics then can be fed back to the monitoring framework
for further processing, e.g., for adaptation. This reliability analysis for HCSs is discussed
in Chapter 7.

3.2 Model of Compute Units Collectives

We use the notion of compute units collective as an abstraction representing the composi-
tion of collaborative human-based and machine-based compute units that applications
need to execute a complex computing task. In today’s Internet-based computing land-
scape, such compute units collectives can be dynamically provisioned on-demand from
the Cloud or on-premise. Some examples of such compute units pools include (i) for
human-based compute units, task-based crowdsourcing platforms (e.g., in [15, 16, 17]),
collections of experts on social networks (e.g., in [18, 19, 20, 21]), and enterprise compute
units pools (e.g., in [144]), (ii) for software-based compute units, cloud-based software-
based services provisioning (e.g., [143]), and (iii) for thing-based compute units, the
emerging IoT Cloud systems (e.g., [68, 69, 70]).

In this section, we present a model describing the on-demand provisioning of compute
units collectives, and we discuss some compute units’ properties, which are necessary for
the execution of the requested tasks.

26

... ...

People Software-based & Thing-based Services

Discovery
Pool of units

Standby Units

Co
lle

ct
ive

La
ye

r

Composition

Act1

Act2
Act3

Act4

RoleA Req A
RoleB Req B

RoleC Req
C

Assignment

Ta
sk

La

ye
r

DynamicSetA
Req

A

DynamicSetB
Req

B

...

... ...

Req
C

StaticSetC

RoleC
Req

C

RoleB
Req

B

RoleA
Req

A

Un
it

La
ye

r

Static Units

Task execution (according to Collective Dependency)

Active Collective

Figure 3.3: Compute units collective Provisioning Overview

3.2.1 Compute Units Collectives Provisioning Model

In task-oriented HCSs, we deal with compute units collectives provisioned on-demand to
execute tasks. Here, we discuss a typical compute units collective provisioning model, as
shown in Fig. 3.3.

The requested task contains a set of required roles, Rolex, which need to be fulfilled
(see Section 3.3.1). Each roles execute certain activities for the task, Actx. For each
role, a set of requirements, Reqx, can be defined to guide the discovery and selection
of the compute units (see Section 3.3.2), e.g., the requirements may contain a set of
qualifications for discovering compute units. Qualified compute units are composed to
form a compute units collective to fulfill each roles defined in the task request.

Compute units qualified to perform a particular role are discovered from diverse
compute units pools. These discovered compute units may represent two types of compute
units groups: (i) a static set (i.e., pre-defined) of compute units, e.g., in the case of
in-house provisioning, or (ii) a dynamic set of standby compute units, which can be

27

assigned to a particular role on-demand, e.g., in the case of on-demand provisioning
such as cloud-based services provisioning or crowdsourced human-based compute units
provisioning.

3.2.2 Properties of Compute Units

Each compute unit has its own properties, which define the functional and non-functional
characteristics of the compute unit. These properties are important during the provision-
ing of compute units collectives so that we could discover and select only compute units
that meet requirement constraints. Furthermore, some properties of compute units may
also dynamically change from time to time representing useful metrics that needs to be
monitored.

Functional Capabilities

A functional capability (or a capability for short) of a compute unit represents its ability
to perform certain function. It can be, for example, a functional service provided by
a machine-based compute unit, e.g., a temperature sensing service, a software-based data
analytic service, etc, or a certain skill provided by a human-based compute unit, e.g., a
problem investigation skill, a content generation skill, etc.

A compute unit, u, has a set of capabilities, Cpu = {(cp1, x1), (cp2, x2), ...}. The
capability type, cpi, defines the kind of function that the compute unit has or is endowed
with, and xi represent its capability level. There are two types of capability level, a
boolean capability (i.e., it has or does not have the capability, in this case xi always equals
to 1, since we could simply omit non-existent capabilities) and a non-discrete capability
level, e.g., (0, 1], which defines a floating value representing the quality of the function.
Non-discrete capability level xi may be defined using different approaches. For example,
it can be calculated based on a qualification test or based on a statistical measurement
such as the acceptance rate [16].

Non-Functional Properties

A compute unit, u, may also has a set of non-functional properties, Pu = {(p1, x1), (p2, x2),
...}. The property type pi, defines the type of property that characterizes the unit such
as performance, cost, location, etc. The value of the property xi can be a static value,
e.g., string or numeric values, but it can also be a function of a certain parameter, e.g.,
the estimated response time for a particular task.

Although our contributions presented in this thesis are flexible and extensible with
respect to the reckoned compute units’ properties, here we discuss some important
properties, which are generally common for both human-based, and machine-based
compute units, and are used to exemplify our provisioning framework discussed in
Chapter 5.

28

Response Time For any compute unit u for executing a task t, a measured or
estimated response time can be provided, i.e., time : (u, t) 7→ R>0. An estimation of
response time can be affected by the job queuing and assignment model, such as based
on a maximum number of concurrent jobs (e.g., [16]), using a work queue approach
commonly found in workflow management systems (e.g., [145]), or using a project
scheduling approach considering the time availability of the candidates (e.g., [111]). The
response time of a compute units collective U to execute a task t, i.e., time(U , t), can be
defined as the time since the task t is requested until all the participating compute units
in U have completed their roles in the task. Hence, it depends on the execution sequence
of the task (see Section 3.3.4).

Cost Each compute unit u may specify its expected cost to perform a task t, which
is modeled as a function of the task, cost : (u, t) 7→ R>0. This function, for example,
can be based on the estimated computing duration and the hourly cost. The cost for
a compute units collective U to execute a task t can then be calculated based on the cost
aggregation of its members, e.g., cost(U , t) =

∑
u∈U cost(u, t).

Connectedness The success of a compute units collective also depends highly
on the connectedness of its constituent compute units. For example, in the context of
machine-based compute units, the network connectivity affects the performance, while
in human-based compute units, the social relationship, e.g., whether they have worked
together in the past, may also affect the performance of the group [144].

We define a connectedness graph as an ordered pair G = (U , E), where U represents
a pool of available compute units, and E represents a set of weighted undirected edges
between two different compute units in U . We define an edge e = {u1, u2} ∈ E as an
indication that u1 and u2 have certain relationship.

The type of relationship between compute units to be considered is domain specific.
As an illustrative example, in the context of human-based compute units, the weight of
the edge, weight(e), can be defined as an integer number that represents the number of
successful task completions, where both compute units have worked together, subtracted
by the number of unsuccessful task completions. This weighting approach allows us to
give penalty to, for example, malicious workers.

A compute units collective and its connectedness can be represented as a graph
G′ = (U ′, E ′), where U ′ ⊂ U , E ′ ⊂ E , so that E ′ is the maximum subset of E that connects
all compute units in U ′. Hence, for example, we can measure the connectedness of G′ as
the average weighted degree of all nodes:

conn(G′) =

∑
e∈E ′

2 · weight(e)

|U ′|
(3.1)

29

3.3 Task Model

Our work centers around tasks executed by compute units collectives. The task model
used in our work is motivated by some requirements, which are necessary for developing
our main contributions. More specifically, our provisioning framework (see Chapter 5),
monitoring framework (see Chapter 6), and reliability analysis framework (see Chapter 7),
require a task model with the following features:

• A task contains a set of (one or more) activities, which represent actions to be
performed by compute units with particular goals or deliverables.

• For distinguishing the function of each compute unit while performing activities
in the task, a set of roles should be defined and associated to each activities. The
provisioning framework fulfill the roles for performing activities by selecting suitable
compute units.

• A set of constraints, i.e., functional capabilities and non-functional requirements, is
required to govern the selection of compute units to be included in the assigned
compute units collective, and to monitor and control the quality of the task execution.
Such constraints could be specified in either task-level, or activity-/role-level.

• Furthermore, the selection of compute units could also be controlled by a set of
multi-dimensional objectives, e.g., cost-optimized vs time-optimized objectives,
which can be used to optimize the provisioning of compute units.

• The reliability analysis of a compute units collective requires an information on
the structure of the compute units collective with respect to the dependency of its
constituent compute units. Hence, the task model should provide the dependency
of compute units according to the activity they perform.

Hence, our task model is a 4-tuple, t = (A,R, C,O), where A is a set of activities, R is
a set of roles and their requirements, C is a set of constraints representing requirements on
the task-level, and O is a set of provisioning objectives. The structure of our task model
is described in the meta-model shown in Fig. 3.4. We discuss the constructs of activities,
roles, and constraints in the following subsections. The provisioning optimization objective
is discussed in Section 5.3. Furthermore, we discuss the dependencies of activities in
Section 3.3.4.

3.3.1 Task Structure

Tasks for different systems may have different structures and granularities. For example,
in a typical service-based composition, e.g., [29, 143], or in a microtask crowdsourcing
platform, e.g., [16], a task corresponds to a single activity executed by one compute unit.
However, in a collaborative landscape, e.g. [144, 14], a complex task may contain multiple
activities executed by multiple compute units in a collaborative work.

30

Task

Activity

Role

Constraint

Functional
Requirement

Non-Functional
Requirement

1

1..*

1 1

1..*0..*

1
10..*

1..*
1..*

0..*

Provisioning
Objective

1
0..*

Figure 3.4: Task Meta Model

Here, we employ a role-based task model, where we could define a set of roles,
R, for executing a task. A task also contains a set of activities, A, where each ac-
tivity must be executed by one or more roles. The activities are defined as A =
{(a1, {r1

1, r
1
2, ...}), (a2, {r2

1, r
2
2, ...}), ...}, where ∀r

j
i , r

j
i ∈ R, and ai is the definition of the

activity, e.g., including the title, description, goals, deliverables, etc., which is domain-
specific.

Each role in the task is fulfilled by a compute unit. In some circumstances, e.g., for
improving fault tolerance, multiple redundant compute units may also be assigned to a
single role. Furthermore, for each role, we could also define functional and non-functional
requirements.

The roles of the task, R, is a set of roles containing their description and requirements,
and C is a set of constraints representing non-functional requirements on the task-level,
which both are discussed in the following subsection.

3.3.2 Task Requirement

We envisage an HCS, which allows consumers to specify their requirements that represent
constraints for the compute units collectives provisioning and task execution. The task
requirements defines the functional requirements, i.e., the capabilities required to perform
a role in the task, as well the non-functional requirements.

Fuzzy Quality Requirement

In the context of human-based computing, due to the imprecise nature of human work,
defining a precise constraint can be troublesome for consumers. Here, we propose to
model quality requirements using fuzzy concept [146, 147]. For example, instead of saying
“I need an electrical engineer with a problem solving qualification ≥ 0.75”, the consumer
could say “I need an electrical engineer with a good problem solving skill”. For a given
fuzzy quality q (e.g., q = good), we could measure the fuzzy grade of membership of
a compute unit using the function µq : R≥0 → [0..1]. This fuzzy quality concept can be
applied to any functional and non-functional requirements when necessary depending

31

on the problem domain. Although fuzzy quality requirement can be applied to any
non-discrete properties, in our work, we exemplify this fuzzy concept mainly to model the
consumer requirements with respect to the capabilities and connectedness. The technique
we use to utilize the fuzzy concept for provisioning compute units collectives is discussed
in Section 5.3.1.

Functional Capability Requirement

A task contains one or more roles, which must be fulfilled to run activities defined to
accomplish the task. For each role, the consumer defines a set of required capabilities.
Our provisioning framework provisions a compute units collective for the task, where
each member of the compute units collective with the required capabilities assigned to a
role in the task.

More formally, a task t consists of a set of roles R = {(r1, Cpr1 , Cr1), (r2, Cpr2 , Cr2), ...}.
Here, ri is the description of the role, e.g., title, presentation, etc., and Cpri = {(cp1, q1),
(cp2, q2), ...} defines a set of required capabilities to perform role ri, where cpi defines
the type of function that the role requires, and the required capability quality qi = 1,
for boolean capabilities, or qi = (0, 1], for non-discrete capabilities (see Section 3.2.2).
Furthermore, a non-discrete capability quality can also be defined using the fuzzy qualities,
e.g., qi = fair|good|very_good.
Cri and C define the constraints representing non-functional requirements for role ri

and for task-level, respectively, as follows.

Non-Functional Requirement

Non-functional requirements define constraints, to which the compute units collective
provisioning and the task execution must comply. Non-functional constraints can be
applied on a role-level (i.e., Cri defines constraints for role ri), which limits the selection
of a compute unit for the role, and on a task-level (i.e., C defines constraints for the task),
which controls the overall compute units collective provisioning and task execution. A
set of constraints, Cri or C, is defined as {(p1, op1, q1), (p2, op2, q2), ...}, where pi is the
required property type, opi is a constraint compliant operator such as less than, more
than, equals to, between, etc, and qi is a constraining quality value(s), again, either qi = 1,
or qi = (0, 1], or qi = fair|good|very_good.

Examples of non-functional requirements on a role-level include, but not limited to,
the individual cost, the location, and also the availability of the compute unit. Another
example of a non-functional requirement typically found for human-based compute units
is the success rate, which can be measured from the history of previous task assignments.

A task-level requirement defines a constraint against an aggregated property of the
compute units collective while executing the task. For example, we could define a cost
limit constraint, which limits the sum of costs imposed by every participating compute
units, i.e., given a task t with cost limit costLimit, the selected compute units collective
members U ′ = {u1, u2, ..., un}, must satisfy

∑
u∈U cost(u, t) ≤ costLimit.

32

ACTIVITIES:

- Human-based data collection
- Human-based data assessment
- Hardware sensing Hardware sensor, Sensor communication provider
- Stream analytics
ROLES:

Functional Capabilities Non-Functional Contraints
- Data collector (human) all participating citizens location = y
- Data assessor (human) good assessment skill location = y

good acceptance rate
- Hardware sensor (machine) sensor for object x location = y
- Sensor communication provider (machine) sensor network for object x location = y
- Stream analyzers (machine) software-based stream

analytics service
response time < z
availability > 99.9%

Stream analyzers

TASK:
Description: Detecting facility breakdown, for object x , in location y
Task-Level Non-Functional Contraints:
- deadline: breakdown must be detected within 1 hour

Associated Roles
Data collector
Data assesor

Table 3.1: An example of a task specification

A deadline constraint is also a common non-functional requirement, which define
the maximum time all participating compute units must complete their roles. The final
completion time of a task also depends on the execution sequence of the activities (see
Section 3.3.4). For example, if all the activities within the task are executed fully in
parallel, given a task t with a deadline constraint deadline, the provisioned compute
units collective, U ′ = {u1, u2, ..., un}, must satisfy maxu∈U time(u, t) ≤ deadline.

Furthermore, a connectedness constraint is also an example of task-level non-functional
requirement, which defines how well the participating compute units should be intercon-
nected to each others. We can also use a fuzzy linguistic variable to define a connectedness
constraint, e.g., the consumer may say “I want to have a compute units collective with
fair connectedness”.

3.3.3 Task Sample

To illustrate our task model, Table 3.1 shows an example of a task specification with
its roles, activities, and functional and non-functional requirements. We do not aim
to propose a new formal visual or textual representation of a task. Instead, our task
model serves as an abstraction to be used in building necessary building blocks for
HCSs. For example, in our provisioning framework (Chapter 5) and reliability analysis
framework (Chapter 7), we use mathematical models based on the task model presented
in this section to develop our algorithms and frameworks. Furthermore, in our prototype
implementation (Chapter 4), we use JSON notation to realize this task model.

33

3.3.4 Collective Dependency

The execution of tasks by compute units collectives may employ different patterns, which
represent activity sequences, depending on the problem domain and on the runtime
systems. Some examples of such patterns include (i) single unit, where a compute unit
executes individually on different tasks, (ii) pipeline, where the members of a compute
units collective execute the task sequentially one after another, (iii) parallel, where the
task is split into subtasks, assigned to compute units collective’s members, and the
results are merged back after they finish (e.g., in [76]), (iv) fault-tolerant, where the task
execution is made redundant and the result is selected from the aggregation of the results
(e.g., in [148]), and (iv) shared artifacts, where the members of compute units collectives
works collaboratively over some objects shared among all compute units collective’s
members (e.g., in [149]).

One of the effect of these patterns to the compute units collective provisioning is
that each pattern may require different ways to measure the compute units collective’s
properties. For example, given a task t, and a compute units collective U = {u1, u2, ..., un},
the response time of the pipeline pattern may be defined as

∑
u∈U time(u, t), while the

response time of the parallel pattern may be defined as maxu∈U time(u, t), where time(u, t)
is the time required by the compute unit u to execute the task t.

Here, we introduce a more robust model, the collective dependency model, to describe
the execution of tasks by compute units collectives. We are motivated by the understand-
ing that members of a compute units collective depend on each others in order to execute
the task effectively. In particular, this model features the following traits:

i) it allows defining dependencies between activities,

ii) it defines the association of activities to the required roles,

iii) it defines which sources of compute units can be assigned to roles, and

iv) it allows the definition of alternative executions, i.e., alternative dependencies
between activities, and alternative assignments of different compute units sources
to roles.

When running a particular task, each constituent compute unit participates in a
certain role by executing the assigned activity. Our model is based on the dependencies
among compute units while performing activities to define the interrelationships between
these compute units.

Each activity in a task provides a deliverable that can be consumed by other activities.
Hence, each activity depends on all of its dependencies so that it can be successfully
accomplished. Furthermore, we also introduce alternate activity dependencies, where
an activity can be accomplished after at least n of its dependencies have provided the
required deliverables.

In this collective dependency model, we define an activity dependency graph as an
acyclic graph Gdep = (A, E), where A is the set of activities executed by the compute
units collective, and E is the set of dependencies between activities in A. Furthermore,

34

Hardware
Sensing

Stream
Analytics

Collecting
Data

Assessing
Data

Coordinating
People Sensors

Infrastructure
Management

(1)

(1)(1)

Activity Dependency

Realization, i.e., assignment
(n) Alternate Dependency/Assignment

Role
Collector

Citizens
in the Cloud

Role
Assessor

Inspectors

Role
Comm.
Provider

Sensor
Network

Role
Sensor

Sensor
Devices

Role
Stream

Analyzer

Stream
Analytic
Server

Role
Human Comp.

Platform

Human
Computing

Server

Role
Infrastructure

Manager

Infrastructure
Management

Plaform

Role-Activity Association

Figure 3.5: Collective Dependency

for each activity we define the role(s) associated to the activity, and for each role we
define possible source(s) for the compute unit assignments, which can be a Cloud of
compute units, or an on-premise compute units pool. Sources of compute units may
represent either a fixed static set of compute units, or a group of compute units which
are dynamically discovered and selected (see Section 3.2.1). Similar to alternate activity
dependencies, alternate assignment sources can also be defined, where at least m assigned
compute units from different sources must successfully perform the role.

The mechanism to obtain the collective dependency for a particular system is domain-
specific. The application designer can define the collective dependency from the ground
up, but it can also more practically be implied from the application design. For example,
in a process-based application, such dependency can be inferred from the workflow. In a
crowsdource-based application, the dependency can be deduced from the relationships
between the microtasks, e.g., [76].

Returning to our previous scenario in infrastructure maintenance, in Fig. 3.5 we show
an example of a collective dependency for detecting facility breakdown as well as the
associated roles and possible sources of units assignments.

35

3.4 Chapter Summary
This chapter presents our models, which describe the characteristics of an HCS for
executing tasks. First, we discussed architectural models of an HCS, which represent a
coordination view and a runtime view of the system. Second, we defined the notion of
compute units collectives representing groups of compute units assigned to execute tasks.
Afterwards, we presented task models, which define the structure and the requirements
of a task, as well as the dependency between activities within a task. These models lay
out a foundation abstraction used in this thesis.

36

CHAPTER 4
Runtime and Analytics Platform
for Hybrid Computing Systems

We have developed a platform, namely Runtime and Analytics for Hybrid Computing
Systems (RAHYMS), as a prototype of our proposed architecture and models. This
platform is open-source and available on GitHub1.

The platform serves as a proof-of-concept to showcase a realization of a quality-aware
and reliable HCS. Particularly, the platform is useful for (i) providing a tool for HCSs
management, where the involved stakeholders could model, execute, and evaluate different
system components and behaviors, (ii) providing a simulation testbed for evaluating HCS’
building blocks.

This platform can be operated in two modes, i.e., (i) interactive mode, where compute
units, tasks, and compute units collectives can be managed interactively, either program-
matically trough provided APIs or manually using a web-based UI, and (ii) simulation
mode, where compute units and tasks are generated and simulated based on used-defined
configurations.

In the subsequent chapters, we use this platform to evaluate our proposed provisioning
framework (Section 5.6), monitoring framework (Section 6.5), and reliability analysis
framework (Section 7.4).

4.1 Prototype Architecture
We developed our platform based on the conceptual HCS runtime architecture discussed
in Section 3.1.2. We realized the architecture by building runtime components using Java
for both, interactive, and simulation modes. The main components of the architecture,
discussed in Section 3.1.2, are reused for both interactive, and simulation modes. The
prototype architecture for interactive mode is shown in Fig. 4.1, while the prototype

1https://github.com/tuwiendsg/RAHYMS

37

https://github.com/tuwiendsg/RAHYMS

architecture for the simulation mode is depicted in Fig. 4.2. Here, the main components
are shown as white boxes, while the components for interactive and simulation modes
are shown as blue and green boxes, respectively.

Main Components

As a proof-of-concept, a task manager is implemented using a simple round-robin scheduler.
The compute unit manager is developed to maintain the profiles of the compute units
(i.e., their functional and non-functional properties and connectedness).

A runtime environment is created to manage the compute units collectives provisioned
by the HCS. In a real-world implementation, such a runtime environment may also include
features such as a collaboration platform, which enables exchanges of information among
compute units in a running compute units collective.

The provisioning framework, the monitoring framework, and the reliability analysis
framework are the main contribution of this thesis and discussed in Chapter 5, 6, and 7
respectively. The monitoring framework adopts an event-based approach (see Section 6.3)
and is implemented using Esper2 complex event processing (CEP) engine. And the
adaptation engine utilized by the monitoring framework (see Section 6.4) is developed
based on Drools rule engine3.

Interactive Components

In the interactive mode, the task management, the unit management, as well as to the
compute units collective management capabilities are exposed through REST APIs (refer
to Appendix A.3.1 for more detail) developed using Jetty server4 and Apache CXF
framework5. A consumer application can interact with the platform through these APIs
programmatically.

Additionally, we expose these capabilities on a web-based UI, developed using An-
gularJS framework6, as a playground for the consumers. The sending of the tasks to
compute units is achieved using SmartCom framework [150], which enables virtualized
communication among diverse types of compute units.

Simulation Components

For the simulation mode, we developed a discrete-event simulation platform based
on GridSim framework [151], which allows the execution of runtime components in a

2http://esper.codehaus.org
3http://www.drools.org/
4http://www.eclipse.org/jetty/
5https://cxf.apache.org/
6https://angularjs.org/

38

http://esper.codehaus.org
http://www.drools.org/
http://www.eclipse.org/jetty/
https://cxf.apache.org/
https://angularjs.org/

Service API Manager

Consumer
Application

Task
Manager

Provisioning
Framework

Compute Unit
Manager

Runtime
Environment

Compute Unit
Collective

Monitoring Framework

Adaptation
Engine

Reliability Analysis
Framework

Compute Unit Pool

Monitoring Tool

Compute Unit

Human Software Thing

Drool Rule
Engine

Esper CEP Engine

Monitoring
Agents

Sm
ar

tC
om

Task Mgmt.
Service

Task
requests

Unit Pool
Service

manage
units

Register,
modify,
delete units

Apache CXF Jetty Server

Human
Consumer

Web UI

Angular JS

RAHYMS
Services

REST
APIs

Figure 4.1: Prototype Architecture for Interactive Mode

simulated distributed environment. For this to work, we create GridSim adapters for each
runtime components, i.e., the task manager, the provisioning framework, the compute
unit manager, as well as all instances of compute units, so that they are running as
parallel entities in a simulated grid-like setup.

Furthermore, our monitoring framework consists of monitoring agents, which retrieved
events and metrics from other monitoring agents (refer to Section 6.3 for details). In the
simulation mode, GridSim adapters are also attached to each monitoring agents.

The execution of the simulation is governed by configurations specified by the consumer
(see Appendix A.2 for more detail). Prior to the simulation, the simulated cloud of
compute units is populated with compute units generated based on the configuration.
Afterwards, tasks are generated according to configuration. The compute units collectives
are then provisioned to execute the tasks. The simulation terminates when all configured

39

Simulation
Consumer

Task
Manager

Provisioning
Framework

Compute Unit
Manager

Runtime
Environment

Compute Unit
Collective

Monitoring Framework

Adaptation
Engine

Reliability Analysis
Framework

Compute Unit Pool (Simulated)

Monitoring Tool

Compute Unit

Human Software ThingGS. Adp. GS. Adp. GS. Adp.

Drool Rule
Engine

Esper CEP Engine

Monitoring
Agents

GS. Adp.

GridSim Framework

GS. Adp.

GS. Adp.

Simulation
Manager

Task
Generator

Unit
Generator

control

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

co
nt

ro
l

Generate
simulated
task requests

Generate
simulated
compute units

Configure
simulation

manage
units

Figure 4.2: Prototype Architecture for Simulation Mode

tasks have been generated, and all the provisioned compute units collectives have finished
executing the tasks.

4.2 Prototype Features

In this section, we highlight some key features of our platform, especially related to
the main components, as well as the task modeling, unit management, execution trace,
and simulation configuration. The simulation configuration feature is specific for the
simulation mode, while others are for both interactive and simulation mode.

40

Task Modeling

Our platform allows consumers to model tasks with respect to the functional, and non-
functional requirements, as well as the collective dependencies of the task as discussed in
Section 3.3. The task model can be specified using APIs, for the interactive mode, or
using the task generator configuration for the simulation mode.

Furthermore, to make task requests simpler for repetitive requests with similar model,
we also allow task requests defined using only simple attributes, e.g., tag and severity
attributes. Upon receiving such requests, our platform expands the request to a full-fledge
task model, which already defined beforehand.

Unit Management

Our platform supports the management of both human-based and machine-based (software
and things) compute units, which allow creating, retrieving, deleting, and modifying
compute units with respect to their functional capabilities (i.e., services and skills provided
by the compute unit), their non-functional properties, as well as their connectedness.
These properties can be defined and stored internally in our platform, or retrieved from
external platforms (e.g., from a crowdsoucing platform for human-based compute units)
through available APIs. The unit management also features the capability to discovery
compute units using filters, e.g., based on the functional capabilities of the compute unit.

Provisioning

Our platform provides various strategies for the provisioning of compute units collectives.
Several formation algorithms are discussed in Section 5.4, e.g., greedy approach, and
optimized formations using Ant Colony Optimization. Further formation strategies can
be implemented and plugged into the platform. Details on these provisioning strategies
are discussed in Section 5.3.

Monitoring and Adaptation

Our platform allows the creation of monitoring agents based on a JSON configuration.
Some types of agents have been implemented according to the types of metrics they
provide: agents that retrieve raw metrics via APIs, agents that process state-based
events, and agents that process composite and correlated metrics using Esper Processing
Language (EPL)7.

Furthermore, we also implemented a type of monitoring agent capable of retrieving
and replaying raw metrics from an available event log in CSV format. The implementation
of monitoring agents also includes an adaptation engine, which can be utilized to perform
adaptation actions when necessary (see Section 6.4). For each agent, a set of adaptation
rules defined using Drools language can be provided.

7http://www.espertech.com/esper/release-5.2.0/esper-reference/html/epl_
clauses.html

41

http://www.espertech.com/esper/release-5.2.0/esper-reference/html/epl_clauses.html
http://www.espertech.com/esper/release-5.2.0/esper-reference/html/epl_clauses.html

Reliability Analysis

Our platform provides a tool for performing reliability analysis on the running compute
units collectives. The measurement of compute units collectives’ reliability is performed
based on the task model and the metrics of the running compute units. Reliability
measurement is performed on each task execution, to allow studying how reliability
metrics dynamically change over time. This is particularly useful in simulation mode, to
understand how different task and provisioning models affect the reliability of the task
execution. Details on the reliability analysis are presented in Chapter 7.

Execution Trace

Our platform is able to generate traces of the running system with respect to the task
execution data, the compute units collective formation algorithm data, the monitoring
data, and the reliability data. These traces are useful for further analysis, as well as
generating insightful graphs. For example, the traces of the execution time of the compute
units collective formation algorithms can be useful for comparing the performance of
various algorithms.

Simulation Configuration

In the simulation mode, our platform can be configured using JSON configurations,
which allow different scenarios to be simulated. These configurations can be specified
to govern the generation of the simulated cloud of compute units with properties that
are statistically distributed, e.g., to resemble a crowdsourcing marketplace or a social
network for human-based compute units.

Furthermore, configurations for the tasks generator allow customization of the task
requests, e.g., to define roles and collective dependencies. They can also be used to define
statistically distributed functional and non-functional requirements of the tasks. During
the formation of the compute units collectives for executing the task, these requirements
will be matched with the properties of the generated compute units.

Details of these configurations is available in Appendix A.2. We include some pre-
configured scenarios in the above-mentioned GitHub repository.

4.3 Chapter Summary

In this chapter, we presented a prototype implementation of a hybrid human-machine
computing platform, namely RAHYMS – Runtime and Analytics for Hybrid Computing
Systems.

This platform is designed based on the runtime model discussed in Section 3.1.2. The
platform can be executed in two modes: interactive, and simulation mode. The interactive
mode allows consumers to submit task requests to be executed by a provisioned compute
units collective. The simulation mode, allow consumers to simulate a pool of compute
units and a series of task requests with customizable configurations. This platform

42

provides a proof-of-concept as well as a simulation testbed for our main contributions of
this thesis, i.e., the provisioning, monitoring framework, and reliability analysis framework,
as discussed in the following sections.

43

CHAPTER 5
Provisioning

5.1 Introduction

Recently, we have been seeing on-demand online compute units provisioning models being
applied not only to machine-based compute units, but also to human-based compute
units. Unlike the machine-based compute units counterpart, quality control remains a
major issue in provisioning human-based compute units. Current approaches for quality
control are traditionally relies on simple and hard-wired techniques, which do not allow
consumers to customize based on their specific requirements [36].

Our contribution presented in this chapter focuses on Research Question 1: “How can
we provide a collective of diverse compute units for executing tasks in a Hybrid Human-
Machine Computing System (HCS) considering the consumer-defined requirements?”.
This contribution provides a flexible and quality-aware compute units collectives provi-
sioning framework, which honors consumer-defined quality requirements, using compute
units obtained either on-premise or from the Cloud, such as crowdsourcing marketplaces
(for human-based compute units), Web service cloud (for software-based compute units),
or IoT cloud (for thing-based compute units). In particular, our work presented in
this Chapter provides a flexible provisioning framework, which allows using different
formation techniques, and we present solution models which demonstrate the formation
techniques for the framework. Specifically, we develop some algorithms, one of them
based on the Ant Colony Optimization algorithm (ACO) approach, for dealing with the
multiobjective quality-aware compute units collective formation problem. Moreover, our
technique employs fuzzy concepts to deal with uncertain properties and requirements.

The proposed provisioning framework is particularly useful for, e.g., (i) providing
a provisioning tool for the compute units collective management, which integrates the
involved parties in the compute units collectives ecosystem, and (ii) providing a simulation
testbed for studying various quality control technique for provisioning compute units
collectives. To illustrate the usefulness of our framework, we study the feasibility of the

45

results using the ACO approach and compare with other simpler and common approaches,
e.g., greedy and first-come-first-served strategies, using simulated experiments.

5.2 Provisioning Framework

Here, we extend the HCS runtime architecture presented in Section 3.1.2 and provide
details of the provisioning framework. The core of our provisioning framework is the
provisioning middleware, which connects the provisioning clients (e.g., the task manager,
and the adaptation engine, see Section 4.1), the compute unit manager, the runtime
environment, and the formation engine, as depicted in Figure 5.1. A scenario for a compute
units collective provisioning starts when a provisioning client sends a provisioning request
to the provisioning middleware. This request contains the consumer-defined functional
and non-functional quality requirements for the task, such as the required capabilities of
the compute units collective members, as well as their non-functional requirements, e.g.,
connectedness, maximum response time, and total cost.

The provisioning middleware discovers available and suitable compute units using a
discovery service provided by the compute unit manager, which maintains the properties
of the compute units from various compute unit clouds. This compute unit manager
can also encapsulate different APIs provided by different compute unit clouds into a
unified API. This compute unit manager also enables the provisioning of a compute units
collective using different types of compute units from different clouds.

The formation engine is responsible for controlling the quality of the compute units
collective formation. A quality-aware provisioning strategy is a strategy to control the
formation of compute units collectives, which takes the consumer requirements and the
properties of the discovered compute units into consideration. There are two types of
quality-aware provisioning strategies covering two phases of the task’ life cycle: pre-
runtime and runtime. At pre-runtime, the quality-aware provisioning strategy governs the
compute units collective formation. During runtime, a dynamic adaptation technique is
employed to guarantee the required quality, which could trigger a re-provisioning request
to replace one or more members of a running compute units collective.

A quality-aware provisioning strategy is implemented using an algorithm and executed
by the formation engine. To process a task, the provisioning middleware requests the
formation engine to form the compute units collective. Then, the formation engine
invokes the algorithm to perform the formation. Upon receiving this formation, the
provisioning middleware instantiate this compute units collective and deploy it to the
runtime environment.

5.3 Quality-Aware Collective Formation Problem

Here, firstly we focus on pre-runtime quality-aware provisioning strategies, which deal
with the formation of compute units collective prior to runtime. Later, we extend these
strategies to support re-provisioning during task execution.

46

Provisioning Framework .

Formation Engine
Algorithms

Provisioning
Client

Provisioning
Middleware

Compute Unit
Manager

Runtime
Environment

Compute Unit
Collective

manage

2: discover
units

3: run formation

4: deploy
collective

Compute Unit Pools

Compute Unit

Human Software Thing

Figure 5.1: Compute Units Collective Provisioning Framework

We use the compute unit model and the task model as discussed in Section 3.2 and
Section 3.3. Here, we summarize the notations of the models to be used throughout this
chapter. A source of compute units contains a set of compute units, U = {u1, u2, ..., un},
where ∀u ∈ U a set of functional capabilities, Cpu = {(cp1, x1), (cp2, x2), ...}, can be
defined. Each compute unit u also has a set of non-functional properties, Pu =
{(p1, x1), (p2, x2), ...}, where pi is a property type and xi is its value.

A task is a tuple, t = (A,R, C), where A is a set of activities and their associated
roles, A = {(a1, {r1

1, r
1
2, ...}), (a2, {r2

1, r
2
2, ...}), ...}, ∀r

j
i , r

j
i ∈ R, and R is a set of roles,

R = {(r1, Cpr1 , Cr1), (r2, Cpr2 , Cr2), ...}, where ri is the description of the role, and Cpri is
functional capability of the role, i.e., Cpri = {(cp1, q1), (cp2, q2), ...}, where cpi represents a
capability type, and qi represents the required capability quality (i.e., qi = 1, or qi = (0, 1],
or qi = fair|good|very_good for fuzzy requirements). The task-level constraints C and
role-level constraints Cri is defined as a set of tuples {(p1, op1, q1), (p2, op2, q2), ...}, where
pi is a property type, opi is a constraining (e.g., comparison) operator, and qi is a
constraining value(s).

Furthermore, for the purpose of provisioning optimization, the task t may also contain
a consumer-defined provisioning objective, O, which represents the weighting factors that
a quality-aware provisioning strategy must take into account to optimize the properties of

47

q = poor

1.000.00

µ q
(x

)

Numerical quality value, x

1.00

0.00

q = fair q = good q = very good

Figure 5.2: An Example of Fuzzy Grade of Membership Functions

the formed compute units collectives. Without loss of generality, we focus on the weighting
factors O = (wcp, wcn, wtime, wcost), where wcp, wcn, wtime, wcost are the weighting factors
for the functional capabilities, connectedness, response time, and cost, respectively, as
discussed in Section 3.2.2.

We formulate the compute units collective formation problem, which takes the quality
requirements from the consumer into consideration, and propose some algorithms to
solve it. Given a set of compute units, U , which are connected in a graph G = (U , E),
and a task request t = (A,R, C,O), we define the compute units collective formation
problem as a problem of finding U ′ ⊂ U as members of a compute units collective for
executing task t which optimizes the properties of U ′ according to weighting factors O for
fulfilling all roles ri ∈ R, subjects to task-level constraints C and all role-level constraints
Cri . In the following we discuss some building blocks required to solve the compute units
collective formation problem.

5.3.1 Measuring Fuzzy Qualities

As discussed in Section 3.3.2, we employ fuzzy concept [146] to model capabilities for
executing jobs and connectedness of the formed compute units collectives. Given a
numerical quality value x of a functional or non-functional property of a compute unit
(e.g., capability level, connectedness, etc), we could measure the grade of membership
of the value for a given fuzzy quality q (e.g., poor, fair, good) using the function
µq(x) : R≥0 → [0..1]. An example of grade of membership function is the trapezoidal
membership function [112], where the grade of membership function for each fuzzy
quality resembles a trapezoid shape. Fig. 5.2 shows an example of a set of grade of
membership functions adopted from the trapezoidal membership function.

A task contains a set of roles R, where for each ri ∈ R, we have a set of required
capabilities Cpri = {(cp1, q1), (cp2, q2), ...}. In the case where fuzzy quality values are
used for qi, the formation engine attempts to find a set of compute units U ′ = {u1, u2, ...},
which maximizes Mri(ui) ∀ri ∈ R. Mri represents the aggregated grade of membership
on the intersection of the fuzzy sets of all required fuzzy qualities in the role, i.e., given
Cpri = {(cp1, q1), (cp2, q2), ...}, we define

48

Mri(u) = ∧(cpk,qk)∈Cpri{µqk
(xuk)}, (5.1)

where µqk
is a grade of membership function for quality qk, and xuk is the numerical

capability level of compute unit u for capability type cpk. Here, we use the min operation
as the interpretation of fuzzy set intersection [147]. For non-fuzzy capability requirements,
the formation engine could simply try to maximize

∑
xuk .

Similarly, for the connectedness requirement, given a connectedness quality qconn
(e.g., poor, fair, or good connectedness), the formation engine composes a compute units
collective U ′ = {u1, u2, ...} with a connectedness graph G′ = (U ′, E ′), which maximizes
µqconn(conn(G′)), where conn(G′) is given by Equation 3.1.

5.3.2 Construction Graph

We approach the above defined compute units collective formation problem as a graph
path finding problem. Given a set of compute units U = {u1, u2, ...} and a set of required
roles R = {r1, r2, ...}, the solution space is formulated using a construction graph, i.e.,
an acyclic directed graph, where each node represent a solution component as shown in
Fig. 5.3. A solution component, sci,k is a tuple (ri, uk), which represent an assignment of
role ri to compute unit uk, where ri ∈ R and uk ∈ U . Directed edges are created from
sci,k to scj,k, for all uk ∈ U , where ∀(i, j), 1 ≤ i < j ≤ |R|. Additionally, we add two
sentinel nodes, sc0 and scF , as start- and end-nodes respectively, where sc0 has outgoing
edges to all sc1,k and scF has incoming edges from all sc|R|,k, for all uk ∈ U . Hence, the
compute units collective formation problem is a path finding problem from sc0 to scF .

A solution of the problem S, i.e., a path from sc0 to scF , represents a set of assignments
for each role in R. For example, a path sc0 → sc1,a → sc2,b → ... → scm,n → scF
represents a set of assignments S = {(r1, ua), (r2, ub), ..., (rm, un)}.

In our provisioning framework, the compute unit manager maintains a set of connected
compute units G = (U , E) obtained from various compute unit sources. The goal of an
algorithm for solving the formation problem is to find an optimized solution S in the
search space R×U . Due to the size of U obtained from compute unit clouds, this search
space can be extremely huge. Therefore, we filter out non-feasible solution components
based on the feasibility of each compute unit for each role. The filtering can be done
using the discovery service provided by the compute units manager based on the required
capabilities Cpri and non-functional constraints Cri for each role ri.

However, this filtering does not guarantee a full feasibility of complete assignments
on all jobs. To guide our heuristic algorithms for selecting assignments towards a feasible
solution while optimizing the objective, we define two algorithm control mechanisms:
the local fitness which represents the fitness of an assignment relative to other possible
assignments for the same role, and the objective value of a solution which represents the
fitness of a complete solution. The formulation of these mechanisms is stimulated by the
necessity to measure the heuristic factors and solution quality in ACO approaches[152].
However, as we show in Section 5.4, these mechanisms can also be used by other heuristics,
e.g., greedy approaches.

49

sc0

sc1,1 = (r1,u1) sc1,2 = (r1,u2) sc1,n = (r1,un)...

sc2,1 = (r2,u1) sc2,2 = (r2,u2) sc2,n = (r2,un)...

scm,1 = (rm,u1) scm,2 = (rm,u2) scm,n = (rm,un)...

scF

Role r1 :

Role r2 :

Role rm :
...

sc3,1 = (r3,u1) sc3,2 = (r3,u2) sc3,n = (r3,un)...Role r3 :

Figure 5.3: Construction Graph for Collective Formation Problem

5.3.3 Local Fitness

The local fitness of an assignment is defined based on partially selected assignment,
starting form an empty set of assignments when the algorithm begins. Given a task t
with the objective weighting factors O = (wcp, wcn, wtime, wcost), a set of selected partial
assignments up to role number i− 1, Si−1, that already contains a set of compute units
Ui−1, and a set of possible assignments for the subsequent role ri, SPi (i.e., after a
filtering is performed), the local fitness λ for an assignment (i.e., a solution component)
sci,j = (ri, uj), sci,j ∈ SPi , is defined as

λ(sci,j ∪ Si−1) = λcp · wcp + λcn · wcn + λtime · wtime + λcost · wcost
wcp + wcn + wtime + wcost

(5.2)

where λcp, λcn, λtime, and λcost respectively represent the local fitness with respect to
the capability, connectedness, time, and cost, which are given by

50

λcp(sci,j ∪ Si−1) = Mri(uj),

λcn(sci,j ∪ Si−1) = conn(uj ∪ Ui−1)− conn(Ui−1)
γconn + conn(uj ∪ Ui−1)− conn(Ui−1) ,

λtime(sci,j ∪ Si−1) = γtime
γtime + time(uj ∪ Ui−1, t)− time(Ui−1, t)

,

λcost(sci,j ∪ Si−1) = γcost
γcost + cost(uj , t)

,

where Mri is the aggregated grade of membership function for role ri defined in Eq. 5.1,
conn is a connectedness function such as defined in Eq. 3.1, time is a response time
estimation function such as discussed in Section 3.2.2, and γ∗ is an adjustable parameter,
e.g., we can use the consumer-defined costLimit as γcost, and deadline as γtime. Note
that these local fitness values are normalized, i.e., λ : SP 7→ [0..1].

5.3.4 Objective Value of Solution

For each solution A, i.e., a complete set of assignments for all roles in R, we could measure
the normalized objective value returned by the function f : SD 7→ [0..1], SD = R× U .
Given an objective weighting factors O = (wcp, wcn, wtime, wcost), the objective function
f(S) for S = {(r1, u1), (r2, u2), ...}, is defined as follows:

f(S) = 1− fcp(S) · wcp + fcn(S) · wcn + ftime(S) · wtime + fcost(S) · wcost
wcp + wcn + wtime + wcost

, (5.3)

where
fcp(S) = ∧(ri,ui)∈S{Mri(ui)},
fcn(S) = µqconn(US),

ftime(S) = γtime
γtime + time(US , t)

, and

fcost(S) = γcost
γcost +

∑
ui∈US

cost(ui, t)
.

US is the set of compute units in assignments S, i.e., for any S = {(r1, u1), (r2, r2), ...,
(rn, un)}, US = {u1, u2, ..., un}. For fcp(S), we again apply min function as the in-
terpretation of intersection operation ∧. The fuzzy grade of membership function for
connectedness, µqconn , has been discussed in Section 5.3.1, and γ∗ constants uses the same
values as in local fitness calculation. The function time(US , t) returns the aggregated
response time of all compute units in US discussed in Section 3.2.2. The goal of a compute
units collective formation algorithm is to minimize f(S).

5.4 Formation Algorithms
We have established the building blocks required for solving the compute units collective
formation problem. Here, we present some algorithms to solve the compute units collective

51

formation problem.

Simple Algorithms We present two simple algorithms that can be used to find a
solution of the compute units collective formation problem based on the First Come
First Selected algorithm (FCFS) and the greedy approach.

FCFS Approach This approach resembles the approach traditionally used in task-
based crowdsourcing model: the first compute unit who ’bids’ wins the task. Assuming
that a standby compute unit is interested in taking a task, we select the first earliest
available compute unit for each job. In the case where there are some compute units
with the same earliest availability, we pick one randomly. Such approach is also typically
used in a round-robin scheduling strategy of machine-based compute units.

Greedy Approach Initially we construct a solution by selecting assignments for
each job that has the highest local fitness value. Afterwards, we gradually improve
the solution by changing an assignment at a time. Improvement is done by randomly
selecting a job, and randomly selecting another compute unit for that job. If the new
assignment improve the objective value of the solution, we replace the associated old
assignment with this new better one. This procedure is repeated until a certain number
of maximum cycle is reached. The greedy approach makes a locally optimized choice for
each job at a time with a hope to approximate the global optimal solution.

Ant Colony Optimization Ant Colony Optimization algorithm (ACO) is a meta-
heuristic inspired by the foraging behavior of some ant species[152]. In the ACO technique,
artificial ants tour from one node to another node in the solution space until a certain
goal is achieved. The tour is guided by the pheromone trails, which are deposited by
the ants to mark the favorable path. The nodes visited in a complete tour represent
a solution. Once all ants have finished a tour, the process is repeated for a specified
number of cycles or until a certain condition is met. The best solution of all cycles is
selected as the solution of the problem.

An ant starts a tour on the construction graph from sc0, then travels to the next nodes
(r1, ui), ... (rn, un) until reaches scF , hence all roles ri ∈ R are assigned. Each node has
a probability to be selected determined by the pheromone trails and the heuristic factor
of the node.

Several variants of ACO algorithms have been proposed. Here, we develop our
algorithm based on three variants: the original Ant System algorithm (AS) [153],
MAX -MIN Ant System algorithm (MMAS) [154], and Ant Colony System algorithm
(ACS) [155]. Generally, the ACO approach is depicted in Algorithm 5.1.

When traveling through the nodes, at each move i, an ant k constructs a partial
solution Ski consisting all visited nodes for roles 1 to i. When ant k has moved i − 1

52

times, the probability it moves to another node (ri, uj) is given by

pki,j =

(τi,j)α · (ηi,j)β∑

(ri,uw)∈SP ′
i

(
(τi,w)α · (ηi,w)β

) if (ri, uj) ∈ SP
′

i ,

0 otherwise,
(5.4)

where SP ′
i = SPi − Ski−1, i.e. the set of possible assignments for role ri containing only

compute units that are not yet included in Ski−1; τi,j is the pheromone value of the node
(ri, uj) at the current cycle; and ηi,j = λ(sci,j ∪ Ski−1) is the heuristic factor as defined in
Equation 5.2. The relative importance of pheromone and heuristic factor are determined
by parameter α and β. ACS variant uses a modified transition rule, i.e., pseudorandom
proportional rule as shown in [155].

At the end of each cycles, pheromone trails on all nodes are updated. At each cycle t,
given the number of ants nAnts, the basic pheromone update formula for a node (ri, uj),
which is proposed by the original AS variant [153], is given by

τi,j(t) = (1− ρ) · τi,j(t− 1) +
nAnts∑
k=1

∆τki,j , (5.5)

where ρ ∈ (0..1] is the pheromone evaporation coefficient, and ∆τki,j is the quantity of
pheromone laid by ant k on the node (ri, uj), which is given by

∆τki,j =
{

Q/f(Sk) if (ri, uj) ∈ Sk ∧ Sk is feasible,
0 otherwise, (5.6)

where Sk is the solution found by ant k and Q is an adjustable parameter. Sk is feasible
if it does not violate any task-level constraints C (see Section 3.2). Note that up to
this point, we have already filtered out component solutions for each role ri that violate
role-level constraints Cri (see Section 5.3.2). Here, we exclude solutions that violate one
or more task-level constraints so that only feasible solutions are promoted by the ants.
The pheromone update for MMAS and ACS variant has the same principle but different
formula as presented in [154] and [155].

5.5 Runtime Re-Provisioning
So far, we have discussed to quality-aware compute units collectives formation problem
prior to runtime. During runtime, one or more currently assigned compute units may
need to be replaced, e.g., due to an adaptation request 6.4. In this case, a re-provisioning
request is sent to provisioning middleware. The provisioning strategies discussed above
needs to be adjusted to handle a re-provisioning request.

Given a set of roles R, a re-provisioning request is a request for fulfilling a subset of
roles R′ ⊂ R. We approach such re-provisioning request by modeling the solution space
using a pruned construction graph. For each unchanged roles ri, i.e., ri ∈ R∧ ri /∈ R′, we

53

Algorithm 5.1: Ant-based Solver Algorithm
1 initialize graph and pheromone trails
2 repeat
3 Aants ← ∅
4 for i = 0 to nAnts do
5 A ← find a tour for anti
6 Aants ← Aants ∪ A
7 end
8 update pheromone trails
9 until ∃A ∈ Aants f(A) = 0 or is stagnant or max cycles reached

remove all the possible solution components, except the one with previously provisioned
compute units.

For example, let us take a look again at the construction graph for finding a set of
optimized assignments as shown in Fig. 5.3. Consider we have provisioned the compute
units collective with S = {(r1, uα), (r2, uβ), (r3, uγ), ..., (rl, uλ), (rm, uµ)}. During runtime,
a re-provisioning request for role R′ = r2, rm arrives. For handling the request, we create
again the construction graph as before, but this time for all ri /∈ r2, rm, we only add the
previously provisioned compute units, i.e., {(r1, uα), (r3, uγ), ..., (rl, uλ)}. Such a pruned
construction graph is shown in Fig. 5.4.

Once we have the (pruned) construction graph for the re-provisioning request, we
employ again the same constructs and algorithms described previously for the regular
construction graph.

5.6 Evaluation

In this section, we present our experiments to evaluate our provisioning technique using
our prototype platform presented in Chapter 4. Our platform allows different provisioning
strategies to be implemented into the provisioning framework. Here, we implemented
various quality-aware provisioning strategies discussed in Section 5.3, i.e., first-come-first-
selected (FCFS) approach, greedy approach, and ACO-based approaches. Here, our goal
is to study the dynamic of the provisioning system with respect to various provisioning
strategies. For this purpose, we generate a simulated pool of compute units, and send
simulated task requests to the provisioning middleware.

In our experiments, we focus on the following aspects of the compute units collective
provisioning: (i) we study our quality-aware provisioning strategies based on the three
aforementioned algorithms and analyze the performance and result, and (ii) we study
the ACO approach to have an insight of (a) the effect of different algorithm parameters
(b) the performance and result of the three different ACO variants.

54

sc0

sc1,2 = (r1,uα)

sc2,1 = (r2,u1) sc2,2 = (r2,u2) sc2,n = (r2,un)...

scm,1 = (rm,u1) scm,2 = (rm,u2) scm,n = (rm,un)...

scF

Role r1 :

Role r2 :

Role rm :

...

sc3,2 = (r3,uγ)Role r3 :

scl,2 = (rl,uλ)Role rl :

Figure 5.4: Pruned Construction Graph for Re-provisioning

Experiments Setup

Our prototype compute unit manager maintains a work queue for each compute unit.
Each compute unit can only execute a single job at a particular time. We experiment
with parallel pattern (see Section 3.2), where subtasks, i.e., jobs, are assigned to the
compute units collective members and executed in parallel. We generate 500 compute
units on our simulated pool. We define 10 types of functional capabilities, and each
compute unit is randomly endowed with these capabilities. The consumer application
generates task request with random parameters. Each job in a task has a set of functional
capabilities requirements with the required fuzzy quality uniformly distributed over four
fuzzy quality levels: poor, fair, good, and very good. In this experiment, we use the fuzzy
grade of membership functions adopted from [112] as shown in Fig. 5.2, which support
over-qualification when assigning compute units collective members. Over-qualification
in a fuzzy quality evaluation allows selecting a compute unit with a higher fuzzy quality,
e.g., selecting a good compute unit for a fair quality requirement.

55

Algo
Average

Objective
Values (f)

Average
Capability
Levels (fcp)

Average
Response

Times
Violation Algorithm

Time

FCFS 0.4501 0.0810 6.06 4% 0.9117 ms
Greedy 0.3468 0.2130 11.87 0% 0.1219 s
AS 0.3147 0.3228 10.90 0% 6.6565 s

Table 5.1: Formation algorithms’ results and performance comparison

Experiment 1 - Comparing Quality-aware Provisioning Strategies

To study our quality-aware provisioning strategies, we configure our consumer application
to randomly generate and submit 100 task requests. We repeat the same setup three
times to test the formation engine configured using the three implemented algorithms:
the FCFS algorithm, the greedy algorithm, and the original variant of Ant System (AS)
algorithm.

Table 5.1 shows a comparison of average results from all task requests. The AS
algorithm outperforms the others with respect to the aggregated objective, i.e., minimizing
f(A). The AS algorithm also provides compute units collective formation with better
capability levels. However, as expected, the FCFS algorithm gives the fastest running
time. But considering the nature of human tasks, few seconds running times of the AS
algorithm and the greedy algorithm are reasonable. This fast performance is not without
cost, since the FCFS algorithm concludes a solution too fast considering the response
time only, it results in some constraint violations. Fortunately, due the filtering of the
search space (see Section 5.3.2), violations on capability constraints do not occur.

Experiment 2 - Objective-based Quality Control

We are also interested in studying the quality control behavior with respect to the
objective weightings, O = (wcp, wcn, wtime, wcost), as defined by the consumer. Figure 5.5
shows results of our experiment using task requests with varying objective weightings
and compute units collective size. On each experiment shown on the sub-figures, we vary
one weight from 0.5 to 8 and fix the others. The results show that the AS algorithm
honors the consumer defined weights better compared to the other two. The sensitivity
of the FCFS algorithm is flat on all cases, because it does not consider the objective
weightings during the formation. The sensitivity levels of the cost weight wcost of the
greedy algorithm and the AS algorithm are similar, due to the fact that the local fitness
value for cost λcost contributes linearly to the objective value of the cost fcost. For the
connectedness sensitivity, the AS algorithm cannot be seen clearly outperforms the greedy
algorithm, because the formed compute units collective almost reach the upper limit of
fcn, i.e., 1.

56

0.5 1 2 4 8
0.00

0.10

0.20

0.30

0.40

0.50

wcp

fcp AS
Greedy
FCFS

(a) Capability: fcp vs wcp

0.5 1 2 4 8
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

wcn

fcn AS
Greedy
FCFS

(b) Connectedness: fcn vs wcn

0.5 1 2 4 8
10

14

18

22

wcost

Σ
co

st

AS
Greedy
FCFS

(c)
∑

vi∈VA
cost(vi, t) vs wcost

0.5 1 2 4 8
0

5

10

15

20

25

30

wtime

re
sp
on
se
Ti
m
e

AS
Greedy
FCFS

(d) responseT ime(VA, t) vs wtime

Figure 5.5: Sensitivity on objective weightings

Experiment 3 - Comparing ACO Approaches

Knowing that the AS algorithm provides better results in many aspects, we carry out
further experiments to understand the behavior of our ACO approach. First, we study
the effect of the ACO parameters to the performance and to the quality of the resulted
compute units collective formation. In our experiment, we use the AS variant and fix
the pheromone evaporation factor low, ρ = 0.01. If ρ is set too high, it will cause the
pheromone trails to be negligible too fast. Then, we vary the relative importance of
pheromone and heuristic factor, α and β. Figure 5.6a shows how different α and β
yield different results with respect to the average aggregated objective value of the best
compute units collectives formed. Furthermore, we run the experiments for 8 ants in
2000 cycles and see whether a stagnant behavior occurs as shown in Figure 5.6b. A cycle
is said to be stagnant when all ants result in the same compute units collective formation;
hence, causing the exploration of the search space to stop. Our experiments show that
the combination of α = 0.2 and β = 1 gives best results.

Furthermore, we extend the experiment further using the same α and β parameters
to the other two ACO variants. We are interested in finding out which ACO variants give
faster conclusion to a good compute units collective formation. We run the experiment
using 8 ants and 10000 cycles as shown in Figure 5.7. The result shows that the MMAS
variant gives better compute units collective formations (less objective values) in less
number of cycles than the others.

57

2 3 4 5 6 7 8 9 10
0.40

0.45

0.50

0.55

0.60

0.65

Collective	Size

Av
er
ag
e	
(f

)

α=1,	β	=	1

α=1,	β	=	2

α=0.5,	β	=	1

α=0.5,	β	=	2

α=0.2,	β	=	1

α=0.2,	β	=	2

(a) Objective values average

2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Collective	Size

%
	S
ta
gn
an
t

α=1,	β	=	1

α=1,	β	=	2

α=0.5,	β	=	1

α=0.5,	β	=	2

α=0.2,	β	=	1

α=0.2,	β	=	2

(b) Stagnant behavior

Figure 5.6: Influence of α and β

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.45

0.5

0.55

0.6

0.65

Ant Sytem
Min-Max Ant System
Ant Colony System

Cycles

A
ve

ra
g

e
 b

e
st

 o
b

je
ct

iv
e

 v
a

lu
e

s

Figure 5.7: Comparison on results of ACO variants

58

5.7 Chapter Summary
In this chapter, we presented our approach for the provisioning of compute units collectives
according to the functional and non-functional quality requirements from the consumers.
We proposed some algorithms for finding optimized formations of compute units collectives
considering both, consumer-defined quality requirements, and properties of the discovered
compute units.

Different quality-aware provisioning strategies implemented by different algorithms
cater different needs. In our experiments setup, we showed an ACO based algorithm
provides better results in some aspects. However, there is no “one size fits all” strategy.
For example, the FCFS approach may be preferable in some circumstances where the
response time is the most important factor and the consumer only cares about capability
constraints, which happens in typical microtask crowdsourcing systems. The usefulness
of our framework is therefore also to support multiple strategies.

59

CHAPTER 6
Monitoring

6.1 Introduction

Monitoring and analyzing metrics in Hybrid Human-Machine Computing Systems (HCSs)
are inevitable steps to improve the quality of task executions. Monitoring tools provide
insights to plan, manage, and adapt the systems to fulfill quality requirements.

However, the diversity of involved compute units in HCSs introduces challenges
for monitoring such systems. Existing monitoring systems traditionally deal with ho-
mogeneous compute units, for example, infrastructure/platform monitoring systems
(e.g., [118, 119]), software-based services monitoring systems (e.g., [39, 156]), and IoT
monitoring systems (e.g., [157]). Moreover, different types of compute units have different
lifecycles, which require different measurement techniques, monitoring cycles and events.
Different types of compute units may also have similar metrics, but different semantics
interpretation, which needs to be correlated. Furthermore, monitoring HCSs require us
to interface the underlying diverse resources as well as the application platforms. To the
best of our knowledge, currently no monitoring system exists that deals with thing-based,
software-based, and human-based compute units in an integrated manner.

Our contribution presented in this chapter addresses Research Question 2: “How can
an HCS with diverse metrics models and diverse subsystems be effectively monitored?”.
Our goal is to provide a generic monitoring framework for HCSs, which captures and
processes metrics from diverse compute units, e.g., sensors, actuators, gateways, software
services, and human-based compute units. In this contribution, particularly (i) we
propose metric models to handle metrics with different semantics that are necessary for
characterizing behaviors of compute units in various HCSs, (ii) we bring into effect the
notion of Quality of Data (QoD) for monitoring data enabling effective monitoring in
HCSs, and (iii) we propose a framework and implement a prototype of a monitoring
system for HCSs.

61

6.2 Metrics and Quality of Data

A monitoring system centers around metrics, which need to be captured, analyzed, and
delivered to the clients. Existing metric constructs in monitoring systems need to be
extended in order to engage with the dynamics of HCSs. Furthermore, the concept of
Quality of Data (QoD) can be leveraged to deal with the problem of different metrics
qualities, as well as different monitoring requirements in HCSs. In this section, we discuss
various metric suitable for HCSs, how to measure them, and the application of QoDs in
HCS monitoring.

6.2.1 Metrics

Useful Metrics for HCSs

Metrics of an HCS may contain aggregation of metrics from machine-based compute units
(i.e., from the thing-based, and software-based systems) and human-based compute units.
Metrics traditionally found for machine-based compute units may have the equivalent for
human-based compute units with similar meaning. In Table 6.1 we show some metrics
and some possible definitions of the metrics for machine-based and human-based compute
units as well as the aggregation definition for HCSs, where u is a compute unit and t is a
task. Other definitions may also be employed according to the problem domain.

Metric Measurement

To capture the dynamics of an HCS, we define four classes of metrics, namely raw metrics,
composite metrics, state metrics, and correlation metrics. The first two classes of metrics
are commonly found in monitoring system, e.g., [127, 156]. However, due to the diversity
of HCSs, we introduce the state metrics and correlation metrics.

Raw metrics are metrics that capture information from the underlying resources.
These metrics can be collected using different means depending on the underlying
monitors. For example, typical raw metrics from a cloud service can be obtained using
an exposed API. Generally, raw metrics can be obtained in two manners, by pulling
periodically, or by using a publish-subscribe approach. Similarly, to the typical machine-
based computing platforms, in human-based computing platforms, some raw metrics may
be directly provided by the platform (e.g., acceptance rates and locations of human-based
compute units in a crowdsourcing marketplace).

Composite metrics can be defined using an arithmetic expression, an aggregate
function, or a custom composite function of other metrics. For example, the utilization
of a thing-based system containing a set of sensors can be measured by aggregating the
number of sensors actively sending streams of data in a particular time frame, e.g., using
moving average aggregation on a sliding window.

62

Metrics Machine-based
Definitions

Human-based
Definitions

HCS Aggregation Description

Util(u) CPUUsage(u) Active(u)
maxActive

∑
∀u∈U Util(u)
|U|

Util(u) = utilization of unit u,
Active(u) = the total duration
of active time in the past 24
hours of unit u,
maxActive = threshold for
maximum active time per hu-
man unit,
U = the set of units in the HCS

RT (t, u) FT (t, u)−AT (t, u) FT (t, u)−AT (t, u) max
∀u∈U

FT (t, u)− min
∀u∈U

AT (t, u)
RT (t, u) = response time for
task t by unit u,
FT = finish time,
AT = assignment time

Cost(t, u) CostT (u) ·RT (t, u) CostA(t, u)
∑
∀u∈U Cost(t, u)

Cost(t, u) = cost for executing
task t by unit u,
CostT = cost per time unit,
CostA = cost per task assign-
ment

Table 6.1: Metric Examples

63

������� ���	
	�� ��	�

������

������ ������ ������

������

������ ��	���
�����

��!�"��

#		�$��

������

%�&�� ���&��

Figure 6.1: An Example of State Transitions for Human-based Tasks

State metrics define measurements related to the state transitions during runtime.
In typical human-task and process-based systems, we often deal with the underlying
monitoring tools that are capable of capturing events representing transitions from one
runtime state to another, e.g., [122]. We use state metrics for capturing metrics related
to the state transitions, such as how many times a compute unit enters a particular state,
how long a compute unit stays in a state for a particular time window, and so on. Consider,
for example, a human-based task running on a process-based system [29]. On a particular
process instance, the human-based task may be transient from one state to another, such
as shown in Fig. 6.1. Using a finite-state automata model, we can then define some
primitives for a given entity e (e.g., a compute unit or a task) and a state s. For example,
we could define primitives time(e, s), count(e, s), duration(e, s), which present the last
timestamp e enters s, the number of times e enters s, and the total duration of e staying
in s respectively. We can also extend these primitives to perform the measurement on a
particular time window, e.g., the last 24 hours. Furthermore, a composite metric can
then be defined using these primitives, e.g., time(t, F inished)− time(t, Created) defines
the response time of task t.

Correlation metrics allow computing together metrics with different semantics from
different sources. We support this type of metrics to tackle the problem of combining
together metrics from diverse compute units. To correlate diverse metrics we need to
specify three things: the sources of metrics or events that we want to correlate, the
normalization function that should be applied so that the source metrics have uniform
semantics before we combine them together, and the aggregation function to calculate
the value of the new correlated metric.

Complex Metric Samples

To demonstrate these metric classes, consider how we can measure the utilization metrics
of the system in infrastructure maintenance scenario discussed in Section 1.2. For example,
on the thing-based and software-based systems, the utilization of sensor i, SensorUtil(i),

64

and the utilization of machine j running a data analytic service, MachineUtil(j), can
be obtained using raw metrics, typically using a certain API exposed by the platform.

However, for human-based systems, the utilization measurement can be more compli-
cated. First of all, we have to define what utilization means for human-based compute
units. In the case of humans, there is no notion of CPU usage as traditionally found
for software-based systems. Without loss of generality, let us, for example, define the
utilization of a human-based compute unit as the time the human-based compute unit
spent for executing all assigned tasks in a given time window w. Hence, using the
state metrics, we can the measure the utilization of human-based compute unit k as
HumanUtil(k) = duration(k,Running,w).

Often we need to monitor system-wide correlated metrics instead of metrics for a
particular human-based compute unit. For example, it can be necessary to see the overall
average utilization from all the three subsystems (i.e., the human-based, software-based,
and thing-based systems). Or we can monitor the top-k units with the highest utilization,
regardless they are thing-based, software-based, or human-based compute units, so that
to identify bottlenecks. To obtain such metrics, we need to combine together SensorUtil,
MachineUtil, and HumanUtil metrics, and resolve any semantics differences among
them. This is where our correlation metric model becomes practical. Firstly, we could
normalize the HumanUtil metric so that it has the same value range and it has an
acceptable similar meaning compared to the SensorUtil and MachineUtil metrics. One
reasonable normalization of the human utilization against the machine utilization is to
set a maximum threshold of working time that a human-based compute unit may work in
the past 24 hours, that is HumanUtil′(k) = duration(k,Running, 24hours)/max. This
definition surely is not the sole definition of human utilization, different definitions may
be applied according to the problem domain.

6.2.2 Quality of Data

Collecting and processing monitoring data on cloud-based large scale systems introduces
an inherent problem, that is, a huge number of monitoring data lead to high network
utilization and heavy data processing. On the contrary, the human-based computing
counterpart is typically running in a much slower pace due to longer life-cycles, e.g.,
assignments to a single human-based compute unit may take place in the order of minutes,
hours, or even days.

We apply the concept of Quality of Data (QoD) [126] allowing monitoring clients to
specify the monitoring requirements as a trade-off for resources usages or costs. Such
QoD-aware monitoring solves the above-mentioned problems in two ways: (i) it allows
the monitoring clients or providers to request or produce monitoring data on a lower
quality level to reduce costs, and (ii) it allows interweaving monitoring data on different
subsystems having different QoD into similar QoD, hence it becomes reasonable to
correlate metrics from those subsystems. We discuss the interpretation of QoD in the
context of HCS monitoring and some use-cases of such QoD as follows.

65

QoD Interpretation for HCS Monitoring

We focus on three QoD measures, namely accuracy, freshness, and data rate (or rate for
short) as defined in the following paragraphs and illustrated in Fig.6.2.

Data Rate The data rate of a monitoring data, Rate(d), represents the frequency on
which the monitoring agent should report the data. Many techniques can be used to
obtain data on any particular time point, e.g., to use last actual retained data or to
use moving average values. When the real data has a lower data rate, the monitoring
agent may perform techniques, e.g., an interpolation technique, for estimating the data
in-between.

Accuracy The accuracy of monitoring data is derived from the difference between the
true value of the data with the value last reported to the client, i.e., given a data, d, the
accuracy of the data is defined as Acr(d) = |v(d′)− v(d)|, where v(d) is the actual value
of d and v(d′) is its last reported value.

Freshness The freshness of monitoring data defines the timing skew between the true
timestamp of the data and the timestamp when the data is reported, i.e., it is defined
as Frs(d) = t(d′)− t(d), where t(d) is the actual timestamp of d and t(d′) is the report
timestamp.

More formally, given a QoD requirement, Q = (RR, RA, RF), where RR is a data
rate requirement, RA is an accuracy requirement, and RF is a freshness requirement, the
monitoring tool must deliver a set of reported data I from the actual set of data J , that
fulfills the following constraints:

∀d′ ∈ I,∀d ∈ J , t(d′i−1) < t(dj) ≤ t(d′i) =⇒(
t(d′i)− t(d′i−1) ≤ RR ∧

|v(d′i)− v(dj)| ≤ RA ∧

t(d′i)− t(dj) ≤ RF
)
, (6.1)

where t(d) is the time when the data d is sent, and v(d) is the value of the data d.

QoD-aware Monitoring Usages

The usages of QoD-aware monitoring can be seen from two perspectives. First, from the
perspective of a monitoring provider, QoD-aware monitoring helps to increase efficiency
on resource usage, e.g., data bandwidth. Second, it allows a monitoring client to define
more precisely the quality of data they need.

Consider, for example, a human client who wants to monitor system utilization, but
she/he does not want the monitoring reports to be intrusive. Hence, she/he may want to
request utilization data for one hour intervals. However, she/he does not want to miss

66

True values

Reported values

t

v

a

l

u

e

s

(a) Accuracy

True values

Reported values

t

v

a

l

u

e

s

(b) Freshness

True values

Reported values

t

v

a

l

u

e

s

(c) Data Rate

Figure 6.2: Quality of Data in HCS Monitoring

rapid changes on the system utilization. Hence, she/he puts in a data quality requirement
that the accuracy of the data she/he receives should not be more than 0.10 points. In
this case, the monitoring system delivers the data on (maximum) an hourly rate, but
also makes sure that the last reported data does not differ more than 0.10 points from
the real value.

QoD-Aware Data Delivery

Based on QoD requirements, a monitoring provider may provide a QoD-aware data
delivery by optimizing monitoring resources while still fulfilling the constraints as described
in Eq. 6.1. There are many ways to achieve such QoD-aware data delivery, e.g., depending
on the optimization objective. We present an example of such QoD-aware data delivery
algorithm (see Algorithm 6.1), which minimizes the number of messages (i.e., the number
of sent monitoring data), while still honoring the QoD requirements. This algorithm
defers the sending of data, retain it, and calculate the right time to send the data
according to the data rate, RR, accuracy, RA, and freshness, RF , requirements. Here,
the receive function is executed when a monitoring consumer (see Section 6.3) receives
data, and the send function sends data to the subscriber.

67

Algorithm 6.1: Algoritm for QoD-Aware Data Delivery
Input: QoD requirements, Q = (RR, RA, RF)

1 Procedure receive(data) /* invoked when consumer receives data */
2 retain(data, MaxRetained)
3 if RA is set then
4 if |data− lastSentData| > RA then
5 send(data)
6 SCHEDULER.cancelPreviousWorker()
7 return
8 end
9 end

1111
12 if RF is set then
13 if not dataChanged ∧ data 6= lastSentData then
14 dataChanged← True
15 nextWakeT ime← now +RF
16 SCHEDULER.cancelPreviousWorker()
17 SCHEDULER.wakeMeAt(nextWakeT ime)

18 end
19 end
2121
22 if RR is set then
23 if nextWakeT ime > now +RR then
24 nextWakeT ime← now +RR
25 SCHEDULER.cancelPreviousWorker()
26 SCHEDULER.wakeMeAt(nextWakeT ime)

27 end
28 end
29 end
3131
32 Procedure wake()
33 data← estimateFromRetainedData() send(data)
34 if rate is set then
35 nextWakeT ime← now + rate
36 SCHEDULER.wakeMeAt(nextWakeT ime)

37 end
38 end

68

6.3 Distributed Monitoring Framework
Our monitoring framework consists mainly of monitoring agents (or agents for short),
which provide events and metrics for other monitoring agents, as shown in Fig. 6.3 (here,
a metric is a type of event, in the remainder of this chapter we use them interchangeably).
Such a distributed and recursive nature of the monitoring agents structure allows our
framework to scale according to the scale of the HCS.

Our framework adopts an event-based approach using the publish/subscribe pattern.
Each agent publishes topics that contain metric values for other agents. Each agent can
either subscribe to certain topics from other agents, or retrieve metrics from their own
adapters connecting to the underlying monitoring tools. Eventually, a client application
(or a client, for short) can then consume metrics from one or more agents and use it in
the application logic. Fig. 6.3 also represents an example of agents topology.

In the following subsections we discuss the construct of monitoring agents and the
communication protocol between those monitoring agents, as well as some technical
considerations for agents’ implementation.

6.3.1 Monitoring Agent

A monitoring agent is a software component containing a monitoring producer (MP),
which produces events and metrics according to the context it monitors. Inputs of a
monitoring agent come from one or more monitoring adapters (MA), which retrieve
events and metrics from the underlying resources or application monitors, and/or one or
more monitoring consumers (MC), which consume events from other agents.

The monitoring adapter (MA) component of an agent, adapts events and metrics
captured from a specific monitoring tool provided by the application or resource platform.
An MA may retrieve metrics through an underlying protocol provided by the monitoring
tool. For example, the presence events of a human-based service can be provided using
XMPP. Other publish/subscribe protocols, such as AMQP and MQTT may also be used
for retrieving metrics from software-based or thing-based systems. Other underlying
platforms may also utilize other techniques to propagate metrics such as using polling
techniques, e.g., [120], or multicast techniques, e.g., [119]. Hence, the implementation
of MA is platform-specific, and is beyond the scope of our work. Moreover, instead of
implementing an MA for an underlying monitoring tool, an agent may also consume
metrics provided by another agent by implementing a monitoring consumer (MC).

Note that the proposed construct of monitoring agents is a conceptual abstraction. On
the practical level, multiple agents can be implemented either on a single physical node
(e.g., an agent may consume its own metrics to produce more complex metrics), or on
multiple nodes. In the case where agents are distributed, they need to communicate each
others. The communication protocol between MCs and MPs is discussed in Section 6.3.2.

A proposed implementation model of an agent is shown in the bottom-right inset of
Fig. 6.3. Here, an agent is implemented using a complex event processor to process event
streams retrieved via an MC. A straightforward raw metric can publish directly from the
incoming event stream. For composite and correlation metrics, an associated event query

69

Agent

Monitoring
Consumer

Metrics List

Monitoring Producer

Event
Queries

Complex Event
Processor

State
Automata

e.g.,
XMPP

e.g.,
AMQP

e.g.,
MQTT

Message Broker(s)

Agent
MA MP

Agent
MC MP ...

M
on

ito
rin

g
To

ol
M

on
ito

rin
g

To
ol

M
on

ito
rin

g
To

ol
Agent

MA MP

Agent
MC MP

Agent
MA MP

Agent
MC MP

Agent
MC MP

...

Client

...

events stream

topic, value

Metric Def. Topic

raw
metrics

composite and
correlation

metrics

state
metrics

...

MA Monitoring Adapter

MC Monitoring Consumer

MP Monitoring Producer

Underlying Monitoring Interface

Underlying Monitoring Protocol

Publish / Subscribe metric values

Actual message exchanges
via broker(s)

(all other agents,
omitted for readability)

MC

Figure 6.3: Monitoring Framework

can be utilized, e.g., aggregating an incoming event stream using an aggregate function,
or combining multiple event streams using a composite expression, or normalizing and
correlating multiple event streams. State automata can be employed to listen to state
events from the stream and to produce state-based metrics. Each of these produced
metric streams are then published by the MP under a specified topic. Proposed models
for implementing QoD are discussed in the following subsection.

70

6.3.2 Protocol and Quality-Aware Delivery

There are currently a multitude of protocols supporting the publish/subscribe pattern.
Our proposed framework focuses on the abstraction for dealing with monitoring entities
involved in an HCS. Hence, the realization of such an abstraction may use available
protocols.

A typical implementation of such publish/subscribe protocols decouples publishers
and subscribers by employing a message broker (or a cluster of brokers), which has the
logic for routing message exchanges between publishers and subscribers. To the best of
our knowledge, currently there are no protocols that have out-of-the-box support for a
dynamic message exchange routing which allows one topic to be delivered to multiple
subscribers having different quality requirements with respect to the data rate, accuracy,
or freshness. However, the implementation of the QoD-aware data delivery may extend
available subscription message format, when possible; and then use the custom exchange
routing to implement the QoD-aware data delivery algorithm.

The implementation of such QoD-aware data delivery can be done on two sides, i.e
on the broker side or on the client (agent) side. Implementing QoD-aware delivery on
the broker side is only possible for protocol that supports custom exchange routing,
for example on an AMQP-based implementation (e.g., RabbitMQ). For a protocol
that does not allow a custom exchange routing, e.g., MQTT, the QoD-aware delivery
implementation is only feasible on the agent side.

In agent-side QoD-aware delivery, the publisher must know which subscribers are
listening to topics with the required QoD, so that the publisher knows exactly to whom
and when messages should be sent. Hence, the agent-side QoD-aware delivery breaks one
of the original goals of the publish/subscribe pattern, i.e., the decoupling of publishers and
subscribers. Moreover, the broker-side QoD-aware delivery puts all the QoD processing
logic on the broker, hence making the implementation of agents simpler. However, the
agent-side QoD-aware delivery allows more optimized metrics publication, because it
allows more granular control on when a publisher should publish a metric, instead of
publishing on every produced metric values.

6.4 Reasoning for Adaptation

The purposes of a monitoring framework are manifold. For example, a monitoring
framework is useful to provide inputs for ad-hoc analytics and decision supports to
obtain meaningful insights, e.g., [158], or to provide metrics for operational dashboard,
e.g., [159].

Another useful and widespread use of a monitoring framework is in autonomic com-
puting. In autonomic systems with intelligent monitor-analyze-plan-execute control loop,
a monitoring framework delivers the monitor function, which provides the mechanisms
that collect, aggregate, filter and report details, e.g., metrics, collected from a managed
resource [160].

71

To enable autonomic adaptation in HCSs, e.g., for adapting the composition of a
running compute units collective (see Section 5.5), an adaptation engine can be developed
using a reasoning engine, and implement the aforementioned monitoring consumer
interface to receive metrics from our monitoring framework. Once the metrics of concern
are defined, a set of rules can be defined to reason about actions to be performed when
certain conditions are occurred.

For this adaptation reasoning to function, metrics need to be augmented with meta-
data, which represent the objects that own the metrics, e.g., task id, compute unit
id, etc. During the lifecycle of the tasks, the adaptation engine continuously asserts
facts representing metrics and their metadata to the reasoning engine according to the
incoming events and metrics streams subscribed by the monitoring consumer. When a
certain rule condition is met, the reasoning engine executes the adaptation actions.

Adaptation rules can be used to make decisions and invoke actions exposed by the
compute units manager and the runtime environment. For example, an adaptation
rule may decide to invoke an escalated action when a service level objective (SLO) is
violated. Some rules may also be employed to apply changes on the property of the
running compute units collectives due to certain conditions, such as imposing rewards
and punishments to assigned human-based compute units. Furthermore, adaptation
rules may also decide to adapt the formation of the running compute units collective,
such as scaling-out (e.g., adding more experts to troubleshoot an issue), scaling-in (e.g.,
reducing the number of sensors), or swapping a compute unit with another one (e.g.,
replacing a malicious worker), etc. Such formation adaptation can be executed by making
a re-provisioning request as described in Section 5.5.

The implementation of an adaptation engine varies depending on the technologies,
e.g., the reasoning engine, that are being used. An example prototype implementation
of an adaptation engine using Drools rule engine is presented in Chapter 4. In such
implementation, the monitoring consumer subscribed to metric topics required by the
consumer-defined rules written in Drools language. During runtime, for each retrieved
metric, a Metric object containing the metric’s value, topic name, and metadata is sent to
the Drools’ fact-base. A collection of useful actions, e.g., for invoking remote Web services
provided by the compute units manager and the runtime environment, are collected in
Action class. Listing 6.1 shows an example of a rule for replacing human-based compute
units that has more than 12 hours of continuous activity. The HumanActiveDuration topic
represents a utilization metric of a human-based compute unit as defined in Listing 6.2
in Section 6.5.

1 /* @subsribeTo: HumanActiveDuration */
2 rule "ReplaceHumanUnit"
3 when
4 metric : Metric(topic="HumanActiveDuration", value > 12*3600, unit.type="human")
5 then
6 Action.invokeService("/reprovision", metric.collective.id, metric.unit.id);
7 end

Listing 6.1: An example of Drools rule for MaxUtilV iolated

72

Sensors Gateways

Incident
ticketsThing-based system Data analytic services Human-based

system

Machine-Based Monitoring Interface Human-Based
Monitoring Interface

Monitoring Setup

Resolution

...
(0 ~ 500 active sensors) (4 ~ 10 VMs)

...
(~ 190 people)

Adapter Agent Adapter Agent

State-Based Agent

Correlator Agent

Aggregator Agent

Client Client Client ...

Figure 6.4: Monitoring Experiments Setup

6.5 Evaluation

To exemplify and evaluate our approach, we run experiments using our prototype
platform presented in Chapter 4. In our platform, we employ Esper1 as the complex event
processors, and the evaluated metrics are translated into Esper event processing language
(EPL). For the QoD processing, we implemented both, broker-based, and agent-based
approaches.

We run experiments based on the infrastructure maintenance scenario discussed in
Section 1.2. However, as shown in Fig.6.4, here we focus on the monitored metrics for
sensors, which emit sensor data from an infrastructure, data analytic services, which
analyze streams of sensor data, and dedicated human experts, who handle occurring
incident tickets.

Experiments Setup To demonstrate the diversity of the underlying systems we
monitor, we setup experiments employing monitoring data from a thing-based and
software-based system, as well as a human-based system. We use data from a realistic
Machine-to-Machine (M2M) DaaS, which processes information originating from several
different types of data sensors (e.g., temperature, atmospheric pressure, or pollution).
This M2M DaaS is comprised of processing and data services executed using an elastic
cloud service framework, ADVISE [161]. The datasets of this experiment are available

1http://esper.codehaus.org

73

...
Event Streams:
Human Activities

...
...Metric Streams:

CPU Usages and
Numbers of

Active Sensors

... ...

state-based
event processing

Active Duration
Metric Streams

... Correlated Utilization
Metric Streams

Union normalize
(value = active_duration/24h, window = 24h)

normalize
(value1 = CPU_Usage/100, window = lastEvent)

(value2 = Avg Active Sensors / MAX, window = 5mins)

Aggregated Utilization Metrics
(e.g., average, top-k, median,

25th percentile, 75th percentile, etc)

Figure 6.5: An Example of Processing and Correlating Streams

online2. During the execution we injected events that create incidents, which should be
further investigated by human-based compute units. Based on a real incident management
system, we simulate the composition and execution of the so-called social compute unit
(SCU), which contains a group of experts that can be composed and dissolved on-
demand [144]. The proprietary dataset of this incident management system is obtained
from our industry partner, which contains a distribution of the human tasks occurrence
according to real historical data, as well as the composition of the group of people
performing each task, and the duration of the task execution.

For evaluation purposes, we created adapters for the underlying monitoring tools
capable of retrieving and replaying the recorded monitoring data from the aforemen-
tioned setup. We implemented generic classes of monitoring agents, namely state-based
agent, correlator agent, aggregator agent, and client agent. Together with a messaging
broker, these agents are then incorporated as grid entities in our platform using GridSim
framework (see Section4.1).

Experiment 1 - Retrieving Complex Metrics Traditional monitoring systems
typically deal with homogeneous systems, where correlating similar metrics with different
semantics from different subsystems is difficult. In our first experiment, we demonstrate
the capability of our framework for capturing complex metrics derived from the correlation
of metrics of different subsystems. Here we use the utilization metrics as discussed in
Section 6.2.1. The utilization of human-based compute units is derived from their active
hours during the last 24 hours. The utilization of the software-based system is obtained

2https://github.com/tuwiendsg/ADVISE/tree/master/data/M2MApp

74

from the CPU usages of the machines running the software-based services. On the
thing-based system, we capture the snapshots of the numbers of active sensors at any
particular time. These three different metrics are then correlated, i.e., normalized and
combined into one metric stream, so that further unified operations becomes possible.
We then applied stream data aggregation operation (median and percentiles) to obtain
new aggregated utilization metrics, which represent the behavior of the overall system.

1 <metric name="HumanActivity">
2 <type>raw</type>
3 <interface>http://example.com/human/activity</interface>
4 </metric>
5 <metric name="HumanActiveDuration">
6 <type>state</type>
7 <transitions>
8 [state transitions, omitted for brevity]
9 </transitions>

10 <expression>duration(STATE_ACTIVE)</expression>
11 </metric>
12 <metric name="CPUUsage">
13 <type>raw</type>
14 <interface>http://example.com/machine/cpu_usage
15 </interface>
16 </metric>
17 <metric name="NumberOfActiveSensors">
18 <type>raw</type>
19 <interface>http://example.com/sensor/active_count</interface>
20 </metric>
21 <metric name="CorrelatedUtilization">
22 <type>composite</type>
23 <union>
24 <source>
25 <metric>HumanActiveDuration</metric>
26 <window>24 hours</window>
27 <normalize>value / 86400</normalize>
28 </source>
29 <source>
30 <metric>CPUUsage</metric>
31 <window>1</window>
32 <normalize>value / 100</normalize>
33 </source>
34 <source>
35 <metric>NumberOfActiveSensors</metric>
36 <window>5 minutes</window>
37 <normalize>avg(value) / MAX_SENSORS</normalize>
38 </source>
39 </union>
40 </metric>
41 <metric name="MedianOfSystemUtilization">
42 <type>composite</type>
43 <expression>median(CorrelatedUtilization)</expression>
44 </metric>

Listing 6.2: XML Definition for Correlating Utilization Metrics

An XML definition of such correlated utilization metric is shown in Listing 6.2. Such
a metric definition is then transformed into EPL and deployed into a complex event
processor. Fig. 6.5 illustrates how the metrics and events streams are processed by the
agents. We deploy the metric processors into our prototype implementation running the

75

0

8

16

24

0 50 100 150 200 250

Ac
tiv
e	
Ti
m
e

(h
)

Time	(h)

Average	Active	Time

(a) Human-Based Units Utilization (average active time in the last 24 hours)

0
20
40
60
80
100

0 50 100 150 200 250

CP
U
	U
sa
ge

(%
)

Time	(h)

Average	CPU	Usage

(b) Software-Based System Utilization (average CPU usages on all data collection and processing
machines)

0
100
200
300
400
500

0 50 100 150 200 250

N
um

be
r	o

f
Ac
tiv
e	
Se
ns
or
s

Time	(h)

Number	of	Active	Sensors

(c) Thing-Based System Utilization (the number of active sensors)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

U
til
iza

tio
n

Time	(h)

Median 25th	Percentile 75th	Percentile

(d) Hybrid Human-Machine Computing System Utilization

Figure 6.6: Correlated Utilization Metrics

76

aforementioned infrastructure maintenance scenario and capture the resulted metrics as
shown in Fig. 6.6. The streams of CPU usage and active sensors’ metrics are fluctuated
much rapidly as shown in Fig. 6.6b and Fig. 6.6c, while the active time of human-based
compute units are more steady (Fig. 6.6a). We remove the data captured from the first
24 hours to avoid the effect of incomplete initial collection of human-based compute units
activities. The outcome of the correlated utilization metrics shown in Fig. 6.6d.

Experiment 2 - Non-intrusive Monitoring using QoD In HCS monitoring, dif-
ferent monitoring clients may require different data qualities. In this experiment, we
would like to show the benefits of QoD-aware data delivery provided by our framework,
especially for the monitoring clients with respect to the intrusiveness of the data. We
deploy two monitoring clients that subscribe for CPU usage metrics. The first client
subscribes without QoD requirements, while the second one emulates a human-based
client, who wants only to receive updates on every 12 hours, while still requiring data
accuracy of 10 points.

Here we use again a similar setup as in the first experiment, and apply the algorithm
for QoD-aware data delivery shown in Algorithm 6.1 on the message broker. The
estimation of the QoD-aware data is using moving average to calculate the data value
on a particular point. As can be seen in Fig. 6.7, the data received by the second client
is much more sparse than the first one, as it requests to receive data on every 12 hours
basis. However, on the events where the metric fluctuates very rapidly (i.e., more than
the requested 10 points before the 12 hours duration dues), the clients receives more
data.

Experiment 3 - Comparing Implementations of QoD-aware Data Delivery
As discussed in Section 6.2.2, QoD-aware data delivery can be implemented either on the
broker-side or on the agent-side. In this experiment, we want to compare both approaches,
and study the costs and benefits, especially from the perspective of monitoring providers.
Here we experiment using similar setup as in Experiment 1, and apply the QoD-aware
data delivery algorithm on either the broker or the agents and evaluate the results based
on the number of messages, which represent the monitoring overhead for the overall
system. The messages are counted and classified in two classes, the published messages
(i.e., messages sent out by agents to the broker), and fan-out messages (i.e., message sent
out by the broker to consumers).

First, we run the experiments using varying number of clients, i.e., 20, 40, and 60
clients, each with varying QoD requirements. As shown in Fig. 6.9, the broker-based
quality-aware delivery is more efficient compared to the agent-based counterpart with
respect to the number of total messages. This is due to the fact that the number of
published messages on the broker-based quality-aware delivery is constant regardless
the number of clients; while on the agent-based quality-aware delivery, the published
messages are addressed to each clients with particular QoD requirements.

However, the agent-based quality-aware delivery can be more efficient than the
broker-based one on different setups. Here, we setup again the experiments with 10

77

30
40
50
60
70
80

0 50 100 150 200 250

Av
g	
CP
U
	U
sa
ge

(%
)

Time	(h)

(a) CPU Usages without QoD

30
40
50
60
70
80

0 50 100 150 200 250

Av
g	
CP
U
	U
sa
ge

(%
)

Time	(h)

(b) CPU Usages with QoD (rate = 12h, accuracy = 10.0)

Figure 6.7: Quality of Data (QoD) Experiments

clients. We run several sets of experiments with these clients, each set with different
data rates requirements as shown in Fig. 6.9. Here we can see that the agent-based
quality-aware delivery is more efficient in low data rate requirements, because the number
of its published messages becomes lower than the number of published messages in the
broker-based counterparts. The cross points of these two approaches represent the data
rates that are roughly equal to the mean original data rate (i.e., the data rate of messages
sent out by agents if there is no QoD requirements).

6.6 Chapter Summary
In this chapter, we presented our framework for monitoring an HCS considering the
characteristics of the underlying subsystems. We proposed four classes of metrics to model
both simple metrics, and complex metrics. Especially, the construct of correlation metric
is used to tackle the problem of combining together metrics with different semantics from
diverse compute units. Moreover, we applied the concept of Quality of Data (QoD) to
cater custom monitoring requirements, which represent a trade-off between data quality
and monitoring cost.

Our experiments showed the effectiveness of our monitoring framework to capture
complex metrics. Furthermore, we showed benefits for both, monitoring clients, and
providers, in applying QoD-aware data delivery on HCS monitoring.

78

published	messages

fanned-out	messages

10 50 90 13
0

17
0

21
0

25
0

hours

60	Clients

published	messages

fanned-out	messages

10 50 90 13
0

17
0

21
0

25
0

hours

40	Clients

published	messages

fanned-out	messages

0

2000

4000

6000

8000

10000

12000

10 50 90 13
0

17
0

21
0

25
0

N
um

be
r	o

f	m
es
sa
ge
s

hours

20	Clients

(a) Agent-based Quality-aware Delivery

published	messages

fanned-out	messages

0

2000

4000

6000

8000

10000

12000

10 50 90 13
0

17
0

21
0

25
0

N
um

be
r	o

f	m
es
sa
ge
s

hours

20	Clients

published	messages

fanned-out	messages

10 50 90 13
0

17
0

21
0

25
0

hours

40	Clients

published	messages

fanned-out	messages

10 50 90 13
0

17
0

21
0

25
0

hours

60	Clients

(b) Broker-based Quality-aware Delivery

Figure 6.8: Number of Messages in Quality-Aware Delivery

Agent-based QoD (total messages)
Broker-based QoD (published messages)

Broker-based QoD (total messages)

Broker-based QoD (fanned-out messages)
Agent-based QoD (fanned-out messages)
Agent-based QoD (published messages)

30,000	

300,000	

10	 100	 1,000	 10,000	

N
um

be
r	o

f	M
es
sa
ge
s

QoD	Data	Rates

Figure 6.9: Number of Messages in Varying Data Rates

79

CHAPTER 7
Reliability Analysis

7.1 Introduction
Reliability is one of the important quality measures of a system. In a traditional machine-
only computation, reliability is typically defined as the ability of a system to function
correctly over a specified period, mostly under predefined conditions [162]. However, in the
context where human-based compute units are involved, i.e., in Hybrid Human-Machine
Computing Systems (HCSs), the reliability property is used with different quantifications
and interpretations, e.g., the reliability property can be interpreted as (i) the probability
of human errors so that such errors can be mitigated to obtain a high level of safety
environment [134, 135], e.g., in healthcare, and transportation sector, (ii) the ratio of
successful task executions in a workflow or a business process, e.g., [132, 133], or (iii) the
quality of results or contents, e.g., [36, 163, 131].

In HCSs, we are interested in understanding the reliability of the provisioned compute
units collectives to execute tasks. However, analyzing the reliability of compute units
collectives introduces many challenges. The diversity of the compute units and their
individual reliability models brings forth different failure characteristics that must be
taken into account when measuring the reliability. The complexity of the structure of the
compute units collective and the large scale of the involved compute units also contribute
to the complexity of the reliability analysis.

Our contribution presented in this chapter answers Research Question 3: “How to
measure the reliability of an HCS, which consists not only machine-based compute units
but also human-based compute units?”. The salient contributions of this chapter is to
propose a framework for compute units collectives reliability analysis, which takes into
account individual compute units’ reliability model and the compute units collective’s
structure. We adopt models to measure the reliability of individual machine-based and
human-based compute units, and introduce a model that can be used for describing
the complex structure of compute units collectives, i.e., the collective dependency model
discussed in Section 3.3.4. Furthermore, to deal with the large scale of the cloud-based

81

landscape, we introduce the notion of virtual standby units abstracting the group of
compute units available from the pool of computing resources. These models are then
utilized to perform the reliability analysis.

A set of tools for modeling and analyzing the reliability of compute units collectives
is useful, e.g., (i) for application designers to design, evaluate, and improve application
components for executing tasks, (ii) for resource platform providers to deliver more reliable
machine-based and human-based compute units such as by providing a reliability-aware
discovery and composition service, and (iii) for task owners to tune the task specification
to achieve the required reliability.

7.2 Reliability Models

In machine-based computation, failures are typically caused by natural- or design-
faults [162]. However, for human compute units the nature of the faults is different.
Humans are prone to execution error [134]. When a human performs a task, it is natural
he/she performs an error, which leads to failure. Also, same tasks executed by the same
worker on different times may give different results.

In general, reliability models can be categorized into black box and white box
models [162]. For human-based compute units, it is complex to model the internal
functioning of a human work using a white box model. Black box models, such as based
on interpolation or parameter estimation using historical data, can be used for predicting
the individual reliability. Various influencing factors, such as trust, skills, connectedness
of the compute units collectives, as well as past success rates, may affect the reliability of
individuals. However, problems may arise for a new compute unit with no historical data.
To this issue we point to approaches for predicting reliability based on similarity such as
found in [164]. Our work presented in this chapter focuses on the issues of the reliability
analysis for mix human-machine collectives using black-box models with a priori known
factors.

7.2.1 Reliability of Individual Units

Reliability of machine-based compute units Measuring the reliability of machine-
based compute units is a well-researched problem [165, 166, 167]. Generally, it can be
summarized as follows. Let T be a continuous random variable that represents the time
elapsed until the first failure occurs. And let f(t) be the probability density function of
T , and F (t) be the cumulative distribution function of T . Traditionally, F (t) represents
the unreliability of the system, i.e., the probability that the system fails at least once in
time interval [0, t]. The reliability, R(t), of the compute unit is the complement of F (t),
i.e., R(t) = 1− F (t) [165].

Reliability of human-based compute units In human-based tasks, we typically
do not deal with the exact time when a particular human-based compute units fails,
instead we are more interested in whether a particular task execution is likely successful.

82

Furthermore, in the execution of human-based tasks, the active execution time of the
human-based compute units is not continuous, i.e., people may take a break, eat, and
sleep. Therefore, in our model, we approach the reliability of human-based compute
units using a discrete time space.

Let K be a discrete random variable which represents the number of consecutive
successful task executions by a particular human-based compute units until a first failure
occurs. Let f(k) be the probability density function of K which also represents the
probability of the first failure occurs at k-th task execution. Let F (k) be the cumulative
distribution function of K. F (k) represents the unreliability of the human-based compute
unit, i.e., the probability that the compute unit fails at least once in execution [1, k].
The reliability, R(k), defines the reliability of the human-based compute units for the
execution of all k tasks. Hence, we have

f(k) = Pr(K = k)
= Pr{taskk fails | task1, task2, ...taskk−1 succeed}. (7.1)

Depending on the problem domain and the underlying human-computing systems,
different discrete distributions can then be employed to define f(k). Note that the
distribution parameters of such failure probability may also dynamically change from
time to time, e.g., due to the human skill evolution [168]. To exemplify this model, in our
experiments described in Section 7.4, we approach f(k) using a geometric distribution
with non-dynamic parameters.

This model extends models proposed in human reliability analysis and task quality
measurement techniques, e.g., [131, 132, 133, 134, 135], where the reliability property,
e.g., with respect to the failure/success probability, can be taken for granted. However,
instead of using only a single value of failure/success probability for the next human task
execution, our model allows the estimation of the reliability as a cumulative probability
of failure/success within a set of consecutive task executions. Hence, together with the
traditional reliability measurement of machine-based compute units we could derive the
reliability of compute units collectives in a discrete time space.

7.2.2 Reliability of Compute Units Collective

We define the reliability of a compute units collective as the reliability of the task execution
performed by the compute units collective, i.e., the probability that the compute units
collective successfully execute tasks. As discussed in the following section, the reliability
of a compute units collective to execute a task depends on the reliability of the individual
compute units that are potentially assigned and the structure of the compute units
collective represented by the collective dependency.

7.3 Reliability Analysis Framework
Here we present a framework that provides features to evaluate the reliability of compute
units collectives. The goal of our framework is to measure the reliability of the HCS

83

consisting compute units collective instances to execute tasks. More specifically, given a
set of k consecutive tasks T = {t1, t2, ..., tk}, we measure the reliability of all compute
units collectives provisioned by the HCS to execute ti ∈ T . This framework takes the
following as inputs: the profiles of the compute units [36] to determine their individual
reliability (Section 7.2.1), and the collective dependency of the task type (Section 3.5).
Our proposed analysis approach yields the reliability of compute units collectives provided
by the HCS to execute a particular task type.

7.3.1 Reliability Structure of Compute Units Collective

We revisit the compute units collective provisioning view shown in Fig. 3.3, Section3.2,
where a compute units collective structure is made up of roles fulfilled by selected compute
units according to the task requirement. The member compute units of a role can be
fulfilled either (i) from a static set of compute units (e.g., as in Role Stream Analyzer, Role
Human Computing Platform, Role Infrastructure Manager, and Role Communication
Provider shown in Fig. 3.5) or (ii) from a dynamic set of compute units (e.g., as in Role
Collector, Role Assessor, and Role Sensors also shown in Fig. 3.5).

For the dynamic set of compute units, one of the main challenges in a cloud-based
compute units collective provisioning is to deal with large numbers of available compute
units. For example, the number of people participating in a crowdsourcing platform
can be very large (e.g., in a smart city). However, since compute units collectives are
task-oriented and provisioned on-demand, we can abstract these large pools of compute
units that will likely be included in the assembled compute units collective. We call
these sets of compute units as Virtual Standby Units (VSUs). Hence, a VSU is a subset
of the compute units pool consisting compute units qualified to perform a particular
role. A VSU consists of a set of active compute units assigned to execute the task, and
a pool of qualified standby compute units, as shown in Fig. 7.1. During runtime, a
detection-and-reconfiguration component monitor the active compute units to detect
any failure, and when a failure occur, the active compute units can be reconfigured by
replacing the faulty compute unit with the one from the pool of standby compute units.

With this approach, only compute units qualified for providing resources required
for the task’s roles are considered for analysis. However, the construction of VSUs
should consider not only static profiles, but also the dynamic changes of functional
and non-functional properties of the compute units. For example, in our infrastructure
maintenance scenario, we may want to analyze the reliability of the facility sensing
capability against a particular building at a particular time slot; therefore, we can utilize
the participants properties such as time availability and location history to decide whether
he/she should be included in the VSU for that particular task.

Given a set of all compute units U , the VSU for t is a subset of U , i.e., V SUt ⊂ U . The
members of V SUt can be retrieved using the discovery service provided by the compute
units manager considering the properties of the compute units (see Section 3.1.2).

On the task level, the reliability structure of a compute units collective depends
on its collective dependency model, which has been presented in Section 3.3.4). For
the shake of readability, in Fig. 7.2, we show again the collective dependency model of

84

Active (in Collective)

Standby

RoleA

VSUA
...

D
et

ec
ti

on
 a

nd
 R

ec
o

nf
ig

ur
at

io
n

C
om

p
on

en
t

- detect failure
- reconfigure

- select

Figure 7.1: VSU’s Structure

Hardware
Sensing

Stream
Analytics

Collecting
Data

Assessing
Data

Coordinating
People Sensors

Infrastructure
Management

(1)

(1)(1)

Activity Dependency

Realization, i.e., assignment
(n) Alternate Dependency/Assignment

Role Collector

Citizens
in the Cloud

Role Assessor

Inspectors

Role Comm. Provider

Sensor
Network

Role Sensor

Sensor
Devices

Role Stream Analyzer

Stream
Analytic
Server

Role Human Comp. Platform

Human
Computing

Server

Role Infrastructure Mgr.

Infrastructure
Management

Plaform

Role-Activity Association

VSUSe

VSUCzAssesVSUCzColl VSUInColl VSUInAsses

SN SAS HCP IMP

Figure 7.2: Collective Dependency for Reliability Structure

85

our infrastructure scenario, previously shown in Fig. 3.5, with additional labeling for
the static set of units and the VSUs for each roles. Here, the sensors (Se), citizens
(Cz), and inspectors (In) are constituted as VSUs, and both citizens and inspectors
may provide services for collector (Coll) and assessor (Asses) roles, hence we have the
following VSUs: V SUSe, V SUCollCz , V SUAssesCz , V SUCollIn , V SUAssesIn . Furthermore, the
Infrastructure Management Platform (IMP), the Stream Analytic Server (SAS), the
Human-based Computing Platform (HCP), and Sensors Network (SN) are static sets of
compute units.

7.3.2 Reliability Calculation

We employ the following procedures to estimate the reliability of compute units collectives:

1. We calculate the reliability of individual compute units based on their profiles.

2. We determine the reliability for each group of compute units potentially assigned
for a particular role.

3. We calculate the reliability of the executions of task instances for a particular task
type based on the reliability of the group of compute units assigned for each task
roles.

The first procedure has been discussed in Section 7.2.1. In the following we discuss
the last two procedures in detail.

Reliability of Role Assignments

The reliability for each role assignments in a compute units collective is defined according
to the reliability of the set of compute units that can be assigned for the role. Compute
units assigned to a particular role can be either from a static set of compute units, or
from a VSU. We discuss the reliability of the sets of compute units according to these
two types of assignments as follows.

a) Reliability of static sets of compute units A static set of compute units
may employ only a single compute unit (simplex), or a certain basic structure such as the
parallel structure, where we distribute a task in parallel and expect at least one compute
unit returns a result, or the series structure, where we expect all assigned compute units
provide results correctly. A more complex structure can also be formed from these basic
structures. A static set of compute units may also employ a static redundancy for masking
faults. One of well-known approaches for a static redundancy is the M-of-N redundancy,
which consists of N compute units and requires at least M of them to function properly.
For example, in human-based computing, this M-of-N redundancy can be in the form of
assignments of the same task role to N people, where we expect at leastM people provide
the correct result reliably. The calculation of the reliability of such static structures is
well known and can be found in [167].

86

b) Reliability of VSUs When a role of a task is fulfilled using potential compute
units from an VSU, it resembles the structure of a set of active compute units accompanied
by standby spare compute units, as shown in Fig. 7.1. If any of the active compute units
fails, a standby compute unit is activated for a replacement. This resilience approach is
traditionally called hybrid redundancy (or simply dynamic redundancy when only a single
compute unit is active), where we dynamically detect (or predict) faults and reconfigure
the structure of the running compute units collective to correct (or anticipate) the faults.
In this case, we also need to take the reliability of the detection and reconfiguration
component into account.

If the active compute units from an VSU are assembled to use M-of-N redundancy
approach, we would need at least M compute units to function properly. Let L be
the number of standby spare compute units, the reliability of the VSU is given by the
probability that at least M compute units out of L+N compute units are functioning
correctly. Hence, given the reliability of the detection and reconfiguration component
RDR and the uniform reliability of each compute units Ru the reliability of an VSU is
given by

RV SU = RDR ·
L+N∑
i=M

(
L+N

i

)
Riu (1−Ru)L+N−i .

For non-uniform Ru, an analytical probability calculation based on each individual
compute unit reliability can be performed.

Reliability of Task Executions

When a compute units collective is assembled, its assigned compute units constitute
a configuration that fulfills a set of required dependencies as defined by the task’s
collective dependency model (see Section 3.3.4). Due to the flexibility of compute units
collectives, i.e., defined by alternate dependencies and alternate assignments in the
collective dependency model, different compute units collective configurations may be
composed for different task instances. We use the concept of execution spanning tree
(EST) to identify various possible compute units collective configurations for a particular
task type.

We define that an EST contains the inter-dependent static sets of compute units
and/or VSUs such that its vertices (the static sets of compute units/the VSUs) are
capable to execute a set of required c-activities defined in the collective dependency
model. That is, given a collective dependency graph Gdep = (A, E) and static sets of
compute units/VSUs V, we can have an EST T = (V ′, E ′), where V ′ ⊆ V and E ′ is the
dependency of V ′ according to E , such that V ′ and E ′ encompass one possible alternative
dependency set in Gdep.

To obtain ESTs, we could derive the dependencies between the compute units from
the collective dependency. Algorithm 7.1 presents a procedure to transform a collective
dependency into a set of ESTs. For example, given a collective dependency model shown
in Fig. 7.2, we can obtain a set of possible ESTs as follows:

• IMP, SAS, V SUSe, SN

87

• IMP,HCP, V SUCollCz , V SUAssesCz

• IMP,HCP, V SUCollCz , V SUAssesIn

• IMP,HCP, V SUCollIn , V SUAssesCz

• IMP,HCP, V SUCollIn , V SUAssesIn

For a compute units collective to execute a task reliably, at least one EST must
successfully accomplish the task. The failures of all possible ESTs result to the failure of
the compute units collective to execute the task. Therefore, given a task t and its set of
EST Tt, we can define the reliability to execute the task t, Rt, as the probably of having
at least one EST of T t working properly:

Rt = Pr{∃EST,EST ∈ T t ∧ EST works properly}.

Let Ei be the event that ESTi ∈ T t operates properly, then the reliability to execute the
task t is given by

Rt = Pr

|T t|⋃
i=1

Ei

 . (7.2)

The calculation of probability of such events should consider the fact that Ei may
be correlated, i.e., the inclusion of VSUs in ESTs are not exclusive. Several works, e.g.,
[169, 138], propose some techniques to calculate such probability.

7.4 Evaluation
In the following, we apply our model by exemplifying some reliability analyses on different
scenarios. Our goal here is to show how our model can be used to measure the reliability
of task executions, Rtask, and how we can get insights from the reliability analysis. In
our experiments, we need to study the reliability of the systems with various different
configurations with respect to the different numbers of compute units and their properties.
Therefore, we use simulated pools of compute units, as well as simulated task requests.
The purpose of this experiment is not to model a true-to-life scenario. However, we want
to show how our tool can be used to model and tune different scenarios, and how the
reliability analysis can be used as a feedback for improvements. Here, we use again our
prototype platform presented in Chapter 4, to simulate various behaviors of an HCS and
study their reliability.

In our experiments, we use the infrastructure maintenance scenario as depicted in
Fig. 1.1 and Fig. 3.5. We define the task in our experiments as the task for sensing
facility breakdown. Each instantiation of a task is implicitly associated with an occurring
breakdown event. A task execution is said to be successful when the breakdown is
correctly detected. Here, a reliability analysis is very important and useful for improving
the reliability of the system. For example, we can identify which section of the city
or building complex has unreliable sensing capability; therefore, we can schedule and

88

Algorithm 7.1: EST Generation Algorithm
1 Function generateEST(dependencyGraph)
2 ESTList← ∅
3 foreach root ∈ dependencyGraph.getRoots() do
4 est← generate(root)
5 ESTList← combine(ESTList, est)
6 end
7 return ESTList

8 end
1010
11 Function generate(node)
12 ESTList← node.generateResourcesEST ()
13 foreach branch ∈ node.getBranches() do
14 if branch.isAlternating() then
15 childESTList← ∅
16 foreach altNode ∈ branch.getAltNodes() do
17 alternateEST ← generate(altNode)
18 childESTList.add(alternateEST)
19 end
20 else
21 branchNone← branch.getNode()
22 childESTList← generate(branchNone)
23 end
24 ESTList← combine(ESTList, childESTList)
25 end
26 return ESTList

27 end
2929
30 Function combine(list1, list2)
31 if list1 = ∅ then
32 return list2
33 else if list2 = ∅ then
34 return list2
35 else
36 resultList← ∅
37 foreach s1 ∈ list1 do
38 foreach s2 ∈ list2 do
39 resultList.add(s1 + s2)
40 end
41 end
42 return resultList

43 end
44 end

89

dispatch dedicated inspectors more frequently on that particular section, or recruit more
citizens to increase the reliability of the sensing capability.

Without loss of generality, in these experiments we model the probability of failed
executions of each individual compute unit in discrete time space using the geometric
distribution. Let p be the failure probability of executions by an individual compute unit.
Assuming that p is constant and independent of the execution time, we could have

f(k) = (1− p)k−1p , and
F (k) = 1− (1− p)k , therefore
R(k) = (1− p)k.

(7.3)

An estimation of the distribution parameter p can be derived from the task execution
data of each individual compute units. For a known compute unit u, let e = e1, e2, ..., en
be a set of result execution samples. The value of ei may be a binary, 1 for a successful
execution and 0 for a failure execution, or a floating number [0..1], which represents the
result quality of the execution. The distribution parameter p of compute unit u can be
estimated by

p̂u = 1−
∑n
i=1 ei
n

. (7.4)

Experiments Setup Assuming the Infrastructure Management Platform (IMP), the
Stream Analytic Server (SAS), the Human-based Computing Platform (HCP), and
Sensors Network (SN) are static sets of compute units (Fig. 3.5), we focus our experiments
on studying the variability of VSUs configuration of machine-based sensors, as-well-as
human citizens, and human inspectors in fulfilling sensor, collector, and assessor roles.
Citizens and inspectors may be assigned to the collector and assessor role, while machine-
based sensors are assigned to fulfill the sensor role. Each machine-based compute unit
(i.e., a sensor) has a randomly generated continuous failure rate λ, and the reliability
at a particular time t is given by R(t) = e−λt [165]. Each human-based compute unit
(i.e., a citizen or an inspector) has a randomly generated probability of failure p, and
the reliability at a particular execution k can be measured using Equation 7.3. The way
how the properties of compute units can be configured is discussed in Section 4.2 and
Appendix A.2.

We perform three sets of experiments to study different aspects of reliability in
compute units collectives with different configurations as shown in Table 7.1. These
experiments are discussed as follows.

Experiment 1 - Reliability Changes over Time In this experiment, we study how
the reliability of the task executions changes over time. We generate a fix number of
compute units and generate statistically distributed failure probabilities and failure rates
for each compute units as shown in Table 7.1. We employ fix reliability configurations: for
citizens, when they are assigned to a task, at least 2 of 3 assigned citizens must be working
properly; for inspectors and sensors, we require only one working compute unit. We
simulate the detection and reconfiguration of faulty compute units using software-based

90

����

����

����

����

����

����

����

��	�

��
�

����

����

� ����� ����� ����� ����� ����� ����� 	����
���� ����� ������

�

�

�

�

�

�

����� ��������������� �������������� ������������

������� � !���" ������ ��#������" �������������"

Figure 7.3: Reliability on task executions, R(k)

Scenarios Goals: to study Configurations Variants
Exp. 1 reliability changes

over time or
executions

Ncitizens = 200
Ninspectors = 10
Nsensors = 50
p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001

k = [1..10000]

Exp. 2 effect of
different sizes of
compute unit pools
on reliability

p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001
k = 2500

Ncitizens = [0..300]
Ninspectors = [0..20]
Nsensors = [0..250]

Exp. 3 effect of
different compute
units collective
provisioning strate-
gies on reliability

Ncitizens = 200
Ninspectors = 10
Nsensors = 50
p̄citizens = 0.3
p̄inspectors = 0.05
λ̄sensors = 0.02
λDR = 0.001
k = 2500

strategies:
- uniform distribution
- fastest response
- greedy (cost optimized)

Table 7.1: Reliability Analysis Experiment Scenarios

91

components with a failure rate λDR = 0.001. We generate 10,000 tasks with a task rate
of 30 tasks per time unit. For each task instance, members of the VSUs are then assigned
and activated for executing the task.

During the experiment we measure the average reliability of individual compute units,
as well as the reliability of VSUs and the aggregated reliability of the task executions,
Rtask (given by equation 7.2), as shown in Fig. 7.3. The reliability of VSUs are affected by
the number of compute units as well as the reliability of each compute units. RV SUcollectors
is higher than RV SUassessors because in our experiments the number of generated compute
units qualified for doing data collection task is around 50% more than the the number of
data assessment qualified compute units. Furthermore, the average reliability of sensor
compute units is calculated as a function of t; hence, the slope of its reliability is also
affected by the task rate, here (as well as in other experiments) we use t = k

30 , i.e., 30
tasks per time unit.

The reliability of VSUs are significantly higher than the average reliability of individual
compute units, since VSUs employ dynamic/hybrid redundancy. The reliability of any
computing systems always decreases over time. However, the decrement slope of an
VSU is not as steep as its individual compute units. On low k value, the reliability
of the whole system and VSUs are mainly affected by RDR. In fact, in this setup if
we simulate a perfect detection and reconfiguration component, i.e., λDR = 0, we will
have Rtask ' 1 until k ≈ 1000. And Rtask will drop below the average reliability of all
individual compute units when λDR > 0.0058.

Therefore, to design reliable compute units collectives, we posit that the application
designer should pay attention not only to the reliability of individual compute units, but
also consider the structure of standby compute units, e.g., how they can be effectively
discovered, and also the size of the available standby compute units. Furthermore, it
is also important to design a highly reliable detection and reconfiguration component,
otherwise the redundancy structure of the standby compute units will render useless.

Experiment 2 - Effect of Different Sizes of Unit Pools Compute units in compute
units collectives may come from different pools of compute units with varying quality
and sizes. Our next experiments study how Rtask is affected by the size of compute
units pools. Such experiments may assist the resource platform providers to decide
whether adding more resources is beneficial to improve the reliability of the compute
units collectives.

We use the same values of p and λ, and employ the similar reliability configurations
as the previous experiments. We experiment with 2500 generated tasks, i.e., k = 2500.
Fig. 7.4 depicts how Rtask changes with the varying number of citizens, inspectors, and
sensors.

In these figures we can see that Rtask values have upper limits due to the fact that
other compute unit types (as well as other static components) are not being improved.
By studying these Rtask, we could recognize the sweet spots on which adding more
compute units could effectively increase Rtask. For example, the increment of the number
of citizens between 80 to 220 on our setup effectively improve Rtask, while adding more

92

����

����

����

����

����

� �� ��� ��� ��� ��� 	��

�

��������	�
������

(a) Reliability on varying number of citizens

����

����

����

����

����

� � � � � 	� 	� 	� 	� 	� ��

�
�

��������	�
��������

(b) Reliability on varying number of inspectors

����

����

����

����

����

����

� �� ��� ��� ��� ���

�
�

��������	�
��
��

(c) Reliability on varying number of sensors

Figure 7.4: Reliability on varying size of resources pools

citizen compute units beyond 220 is fruitless. Hence, the importance of adding more
compute units to increase the reliability (e.g., recruiting more citizens) must be balanced
out with the recruitment cost.

As shown on Fig. 7.4a and Fig. 7.4b, the effect on Rtask is greatly determined by the
failure rate or failure probability. We require less additional recruitments of inspectors
to improve the reliability due to p̄inspectors � p̄citizens. However, the structure of the
corresponding VSUs also impacts the changes of Rtask. In our setup, the role of the
dedicated inspectors in V SUcollectors and V SUassessors can also be replaced by citizens.
Hence, we don’t need many inspectors additions, compared to sensors additions, to
improve Rtask.

93

����

����

����

����

����

����

� ��� ���� ���� ���� ���� 	��� 	��� ���� ���� ����

�
��
�

�

��������������������

����������������

������������� !����

Figure 7.5: Reliability on different compute units collective provisioning strategies

Experiment 3 - Effect of Different Provisioning Strategies Different HCSs
may employ different strategies for the provisioning of compute units collectives (see
Section 5.3), which eventually affect the reliability of the compute units collectives as well
as their non-functional properties. Here we experiment with three provisioning strategies:
(i) the uniform distribution strategy, where the tasks are uniformly assigned to qualified
compute units, (ii) the fastest response strategy, where the tasks are assigned to the
qualified compute units that provide the fastest response times (e.g., depending on the
compute unit’s job queue and performance rating), and (iii) the greedy strategy, where we
employ a greedy optimization algorithm, see Section 5.4, to minimize the execution cost
of the compute units collective. The performance rating and the execution cost of each
individual compute unit are statistically distributed during compute units generation
based on the generator configurations (refer to Section 4.2 and Appendix A.2 for the
simulation configuration).

We use similar configurations as in the first experiment with 5000 tasks. As we can see
on Fig. 7.5, the reliability of the fastest response strategy and the greedy (cost-optimized)
strategy are similar. However, we observe that the reliability of the uniform distribution
strategy is lower than the other two, especially on higher k. This is due to the fact
that the fastest response strategy and the greedy (cost-optimized) strategy tend to select
a particular set of compute units with better performance rating and cheaper cost,
respectively; hence, they yield more standby compute units with less utilization. On
the individual level, a compute unit with less utilization has a higher reliability for the
next assigned task, i.e., for each compute unit i, Ri(ki) > Ri(ki + x), ∀x ∈ R | x > 0.
Therefore, the reliability of the VSUs will also be higher, and consequently that yields
higher compute units collective reliability.

Furthermore, different compute units collective provisioning strategies also result
different non-functional properties of the formed compute units collective. In Table 7.2,
we show the average cost and response time of the compute units collectives obtained
from the three strategies. Here, the cost is defined as the sum of the execution cost of
all members compute units in each compute units collective, while the response time is
defined as the duration since the task is assigned to the deployed compute units collective
until all members compute units of the compute units collective finish their roles. In these
experiments, the greedy (cost-optimized) strategy provides 16.70% and 8.35% cheaper

94

Compute units collective Provisioning Strategies avg(cost) avg(response times)
Uniform distribution 7.20 13.585
Fastest response 7.92 11.775
Greedy (cost-optimized) 6.60 12.276

Table 7.2: Compute units collective cost and response times

compute units collectives compared to the fastest response strategy and to the uniform
distribution strategy respectively. For the response time, the compute units collectives
provided by the fastest response strategy perform the tasks 13.32% and 4.08% faster
compared to the compute units collectives provided by the uniform distribution strategy
and the greedy (cost-optimized) strategy respectively.

7.5 Chapter Summary
In this chapter, we presented our framework for analyzing the reliability of compute units
collectives for executing tasks in an HCS. We discussed reliability models for individual
compute units in the context of task-based executions. Using these models, together with
the collective dependency model described in Section 3.3.4, we presented a step-by-step
approach for measuring the reliability of a running compute units collective.

Our experiments showed how our reliability analysis technique can be used to obtain
insights for improving system’s reliability by analyzing different configurations of the
HCS. Furthermore, each problem domain has its own requirements with respect to the
non-functional properties. Reliability analysis with different compute units collective
provisioning strategies help application designers to decide the desirable trade-offs between
the reliability and other non-functional properties gained by certain provisioning strategies
in a particular problem domain.

95

CHAPTER 8
Conclusions and Future Work

This last chapter summarizes the results of our work in Section 8.1. Then we revisit
again research questions formulated in Section 1.3 and discuss how our work address
those issues. Finally, Section 8.3 highlights an outlook for the future research in the
context of hybrid human-machine computing.

8.1 Summary

Our work focuses on three important aspects of Hybrid Human-Machine Computing
Systems (HCSs): (i) the provisioning of compute units collectives, (ii) the monitoring of
a running system, and (iii) the analysis of reliability of task executions by the provisioned
compute units collectives. First, in Chapter 3, we presented our architectural view of
HCSs and defined models for HCSs that operate based on requested tasks. We developed
a platform presented in Chapter 4 based on these models, and prototyped our provisioning,
monitoring, and reliability analysis frameworks on this platform.

In Chapter 5, we presented our framework for the quality-aware provisioning of
compute units collectives using diverse types and sources of compute units. Our framework
contains a provisioning middleware, which controls the provisioning processes, and
executes formation engines containing algorithms for quality-aware formation of compute
units collectives. We proposed some algorithms for finding optimized formations of
compute units collectives considering both, consumer-defined quality requirements, and
properties of the discovered compute units. We conducted experiments to study the
characteristics of different algorithms, which could be utilized to cater different system
needs. In the experiments, we also studied the sensitivity of the formation algorithms
with respect to the consumer-defined quality optimization objectives.

We presented, in Chapter 6, our approach for monitoring HCSs, which consist
of human-based, software-based, and thing-based subsystems. We tackled challenges
dealing with heterogeneous events and metrics emitted by those diverse subsystems.

97

Moreover, we used Quality of Data (QoD) concept to enable more efficient monitoring of
HCSs according to the consumer’s requirements. We ran monitoring experiments using
monitoring data derived from real world scenarios. Our experiments demonstrated that
our monitoring framework is useful to model and measure complex metrics from a running
HCS. Furthermore, we showed benefits for both, monitoring clients, and providers, in
applying QoD-aware data delivery on HCS monitoring.

In Chapter 7, we presented our approach to analyze the reliability of compute units
collectives that consists of human- and machine-based compute units to execute tasks.
Our framework is capable to deal with the reliability measurement of compute units
collectives, which are dynamically provisioned on-demand using various strategies from
large-scale human and machine compute units pools. We first discussed models for
measuring the reliability of individual compute units on a task basis. Then we presented
the underlying models of compute units collectives. Based on these models we proposed
a framework to measure the reliability of compute units collectives. We exemplified
our reliability analysis approach in a simulated infrastructure maintenance scenarios.
The results of our experiments showed that our framework is beneficial to measure
the reliability of the compute units collectives and to obtain insights for improving the
collective’s quality.

8.2 Research Questions Revisited

In this section, we revisit again our formulated research questions and issues related to
the questions. We outline how our main contributions address those issues and what are
the limitations.

Research Question 1: How can we provide a collective of diverse compute units for
executing tasks in an HCS considering the consumer-defined requirements?

A provisioning framework for compute units collectives should consider the consumer-
defined quality requirements, which represent functional capabilities requirements as well
as non-functional constraints. We modeled the functional and non-functional requirements
of a task request in Section 3.3, and developed a strategy, as discussed in Section 5.2,
for fulfilling the roles required to execute the task while honoring the requirements. For
dealing with non-precise requirements, we employed the concept of fuzzy logic, and
optimized the role fulfillment using fuzzy grade membership functions and operations as
presented in Section 5.3.1.

Our provisioning framework presented in Section 5.2 allows us to employ different
compute units collectives formation algorithms. The formation approach can be used
to provision compute units collectives prior to runtime, or to re-provision a running
compute units collective due to, e.g., adaptation, as discussed in Section 5.5. For finding
(semi-)optimal formation of compute units collectives in a huge search space, we developed
heuristics based on greedy and Ant Colony Optimization approaches as presented in
Section 5.4.

98

The heuristic algorithms are controlled by consumer-defined quality optimizing prefer-
ences with respect to the functional capability, connectedness, response time, and cost of
the compute units. However, the heuristic constructs, e.g., the local fitness and objective
value of a solution, can be extended to include more properties.

Research Question 2: How can an HCS with diverse metrics models and diverse
subsystems be effectively monitored?

An HCS involves diverse types of compute units and different communication technologies,
which have to be taken into account by the monitoring system. An approach to deal with
such heterogeneity is required to effectively monitor HCSs. We proposed a multi-tier
monitoring framework to deal with such heterogeneity, as discussed in Section 6.3.

An HCS consists of different subsystems, each brings along various metrics, which
could have corresponding metrics from other subsystems with different semantics. In Sec-
tion 6.2.1, we introduced different classes of metric measurement to relate corresponding
metrics from different subsystems and bring them together as a unified metric to enable
system-wide monitoring.

These related metrics from different subsystems of an HCS may have different qualities.
Furthermore, different monitoring clients may also require different qualities of monitoring
data. In Section 6.2.2, we brought along the concepts of Quality-of-Data and applied
them in the context of HCS monitoring.

There are many countless use-cases of a monitoring framework, from design improve-
ment to operation, and post-evaluation of the systems. In our presented framework, we
exemplified a rather limited adaptation engine to showcase how monitoring data can be
used for improving a running collective. Interested readers may refer to other work, such
as [170, 171], for more comprehensive intelligent adaptive systems.

Research Question 3: How to measure the reliability of an HCS, which consists not
only machine-based compute units but also human-based compute units?

Traditional reliability measurement for machine-based compute units is expressed as a
function in a continuous time space. Such approach is not suitable for human-based
computing, because most human-based compute units do not operate continuously. In
Section 7.2.1, we modeled the reliability of individual human-based compute units on a
task basis and apply it to measure the reliability of mixed compute units collectives.

Inter-dependencies between system’s elements greatly affect the reliability of the
system. We modeled the dependency of a running compute units collective using the
collective dependency model described in Section 3.3.4. Such model can be developed
from the ground up, or inferred from the process model, e.g., a workflow. We then
applied this model and proposed a framework for analyzing the reliability of compute
units collectives in Section 7.3.

The provisioning of machine-based and human-based compute units can be made
on-demand from a virtually large pool of available compute units. Typically, redundancy

99

structures can be employed so that when a failure occurred on a running compute unit,
another compute unit can be selected to replace. The reliability analysis for cloud-based
compute units collectives must take into account this provisioning model. We discussed
this reliability structure in Section 7.3.1 using the notion of virtual standby units, and
propose a mechanism to analyze the reliability of such structures.

Our proposed reliability analysis approach centers around a task model, hence, yielding
the reliability of compute units collectives provided by the system to execute a particular
task type. We retained the aggregation analysis to measure the overall system reliability
for various task types as a future work.

8.3 Future Work

Our work presented in this thesis is part of our ongoing research in the field of hybrid
human-machine computing. While this thesis furnished solutions for important issues,
there are still a plentiful of compelling challenges in this domain. Here we list some of
interesting issues for future work.

• Harnessing the full computational power of the online collective intelligence into
enterprise ecosystems is a challenging task. Many efforts have been done to address
this challenge, e.g., [81, 32]. However, still we lack a capability to seamlessly
integrate collective intelligence systems into executable business processes. To
obtain such process, we would need novel composition notations and interaction
protocols, which consider various aspects of collective intelligence, such as collective
structures, quality improving techniques, e.g., qualification, redundancy, reviewing,
etc., privacy, security, data provenance, and so on.

• Our approaches centers around the structure of compute units collectives modeled
using a role-based task model and a collective dependency. This implies that our
approaches are suitable for systems with collectives that have known structures.
Dealing with unstructured collectives is a challenging task. In such unstructured
collectives, issues such as ad-hoc activities, non-deterministic processes, quality
requirements modeling, etc., may arise and require further research.

• Reliability is only one, yet important, quality measure for dependable hybrid
human-machine computing. Future work includes modeling and measuring various
dependability metrics such as availability, performance, performability, and quality
of results in the context of HCSs.

• In our monitoring framework, we present metric models allowing the correlation of
different metrics, e.g., from machine-based compute units to human-based compute
units. Many researches have been conducted to define metrics for human, such as
key performance indicators in human resources management, e.g., [172]. However,
research on human metrics related to the computational power of human still
need further exploration. Several basic definitions of human-based metrics have

100

been proposed, e.g., [36, 173]. Still, we lack a comprehensive study for metrics of
human-based computing.

101

APPENDIX A
Prototype Documentation

This appendix provides a documentation of our platform Runtime and Analytics for
Hybrid Computing Systems (RAHYMS). This platform is a prototype of our proposed
architecture, models, and frameworks. The platform serves as a proof-of-concept to
showcase a realization of quality-aware and reliable Hybrid Human-Machine Computing
Systems (HCSs).

In this appendix, first we describe how to get started with the platform. Afterwards,
we discuss details of the operation of the platform in the simulation-mode, i.e., how to
configure the simulation, and in the interactive-mode, i.e., how to use the Application
Programming Interfaces (APIs).

A.1 Getting Started

A.1.1 Overview

This prototype is available as an open-source project, and can be cloned from a GitHub
repository https://github.com/tuwiendsg/RAHYMS.

The project is developed using Java SDK 1.7, and can be built and deployed using
maven. The root project is named hcu (stands for hybrid compute units). The hcu project
contains the following sub-projects in their respective directories:

• hcu-cloud-manager contains a component to manage compute units including
their functional capabilities and non-functional properties, a generator to populate
the pool of compute units and to generate task requests in simulation-mode, and a
compute unit discovery service. This sub-project also contains tool for calculating
the reliability of the individual compute units as well as compute units collectives
based on the property of the managed compute units.

103

https://github.com/tuwiendsg/RAHYMS

• hcu-common contains utilities required by the platform, such as the models for
compute units and tasks, interfaces to connect different component in the HCS,
fuzzy libraries, configuration reader utilities, and tracer utilities.

• hcu-composer contains models and library for the formation engine to provision
the compute units collectives.

• hcu-external-lib contains some adapted external libraries, i.e., GridSim and
JSON for Java.

• hcu-monitor contains the code for the monitoring framework of HCS. It contains
utilities, e.g., to create and deploy monitoring agents, to define, publish, and
subscribe metrics, and also a Drools-based rule engine.

• hcu-rest contains a Jetty-based Web server for running the interactive-mode. It
creates three HTTP services: one service runs the REST API server, one service
provides the Web user interface, and another one provides a REST API playground
developed using Swagger.

• hcu-simulation contains code for running a simulation using GridSim frame-
work.

Additionally, the smartcom project is also available in the root as a tool for virtual-
izing communication with compute units. This project is adopted from the smartcom
repository available online 1.

A.1.2 Building

For each root project and sub-projects, a maven configuration is provided to allow easy
building and importing to an IDE for Java language. Before building the hcu project,
we first need to build the required smartcom project. To build everything, run the
following maven commands from the root directory of the repository:

1 $ cd smartcom
2 $ mvn install
3 $ cd ../hcu
4 $ mvn install

The jar files should now have been created by maven in each projects under the
target directories. Particularly, two jar files
hcu/hcu-simulation/target/hcu-simulation-0.0.1-SNAPSHOT.jar, and
hcu/hcu-rest/target/hcu-rest-0.0.1-SNAPSHOT.jar
contain main classes for running the program in simulation- and interactive-mode respec-
tively.

1https://github.com/tuwiendsg/SmartCom

104

https://github.com/tuwiendsg/SmartCom

A.2 Simulation Mode
To run the program in simulation-mode, from the root of the repository simply execute

1 $ java -jar hcu/hcu-simulation/target/hcu-simulation-0.0.1-SNAPSHOT.jar <config-file>

where the <config-file> argument is the path of the main configuration file.
To execute the program within an IDE, run the main class

at.ac.tuwien.dsg.hcu.simulation.RunSimulation
inside the hcu-simulation project with the <config-file> as the execution argu-
ment.

The main simulation configuration file <config-file> is a java properties file
containing references to other configuration files specifying a simulation scenario, a com-
poser (i.e., the formation engine) configuration, a tracer configuration, and a monitoring
configuration. Listing A.1 shows an example of the main simulation configuration.

1 scenario_config = scenarios/samples/infrastucture-maintenance/scenario.json
2 composer_config = config/composer.properties
3 tracer_config = config/tracer.json
4 monitor_config = config/monitor.json # optional

Listing A.1: An Example of Main Simulation Configuration

We discuss the content of each configuration as follows.

A.2.1 Scenario Configuration

Our simulation of an HCS consists of two phases:

i) Initiation Phase is a phase where compute units are generated with configurable
initial properties.

ii) Execution Phase is a phase where tasks are generated, and for each task a compute
units collective is created to execute the task. The execution phase consists of
cycles. In every cycle, the task generator configurations are processed to generate
tasks. After a configured number of cycles have passed, the task generation stops,
and simulation is finished once all the remaining running tasks are completed.

A simulation scenario mainly has two purposes: it defines how the compute units
are generated during the initiation phase, and it defines the generation of task requests
during the execution phase. A configuration of a simulation scenario is a json file. An
example of a simulation scenario configuration is shown in Listing A.2.

1 {
2 "title":"Infrastucture Breakdown Sensing",
3 "numberOfCycles":100,
4 "waitBetweenCycle":1, I delay (in simulation time unit) between each cycle
5 "service_generator":{
6 "basedir":"service-generator/",
7 "files":[
8 "inspector-generator.json",
9 "citizen-generator.json",

105

10 "sensor-generator.json"
11]
12 },
13 "task_generator":{
14 "basedir":"task-generator/",
15 "files":[
16 "machine-sensing-task-generator.json",
17 "human-sensing-task-generator.json",
18 "mixed-sensing-task-generator.json"
19]
20 }
21 }

Listing A.2: An Example of Scenario Configuration

Compute Units Generator Configuration

The service_generator element in the simulation configuration defines the list
configuration for generating compute units together with their provided services (i.e.,
functional capabilities) and their properties. The basedir specifies the directory in
which the compute units generator locates the specified files list. In Listing A.3, we
exemplify a compute units generator configuration annotated to describe the purpose of
the configuration. This example shows a generation of citizens as compute units.

1 {
2 "seed":1001, I random number generator seed
3 "numberOfElements":200, I number of compute units generated
4 "namePrefix":"Citizen",
5 "connection":{
6 "probabilityToConnect":0.4, I probabiity of a compute unit connected to others
7 "weight":<distribution-config>
8 },
9 "services":[I the functional services provided by each generated compute unit

10 {
11 "functionality":"DataCollection",
12 "probabilityToHave":0.7, I probability the compute unit has this

functionality
13 "properties":[I functionality-specific properties
14 <property-config>,
15 ...
16]
17 },
18 ...
19],
20 "commonProperties":[I non-functional properties
21 <property-config>,
22 ...
23]
24 }

Listing A.3: An Example of Compute Units Generator Configuration

The <distribution-config> defines how a value should be populated with a random
number generator, while the <property-config> specifies how each property is defined.
They are defined in Listing A.4 and Listing A.4 respectively.

1 <distribution-config> ::=

106

2 {
3 "class":"<distribution-class-name>",
4 "params":[...],
5 "sampleMethod":"..."
6 "mapping":{ I optional
7 "0":"<mapped-value-0>",
8 "1":"<mapped-value-1>",
9 ...

10 }
11 }

Listing A.4: Distribution Configuration

The <distribution-class-name> is the random number generator class which will be
used to generate the random values. It can be any of distribution classes available from
Apache Common Math package org.apache.commons.math3.distribution2.

Other distribution classes can also be used by specifying a fully-classified class name.
The params entry specifies the parameters required the instantiate the distribution
class, for example, NormalDistribution class can be instantiated using a constructor
with three numbers, e.g., [0.30, 0.10, 1.0E − 9], which define mean, standard deviation
and inverse cumulative distribution accuracy respectively. The sampleMethod is a
zero-argument method that should be invoked for getting the random values, the default
is sample for the Apache Common’s distribution classes. The optional mapping entry
defines a mapping from an integer number distribution to a certain value, e.g., a string
value.

1 <property-config> ::=
2 {
3 "name":"<property-name>", I e.g., “location”, “cost”, etc.
4 "probabilityToHave":1.0, I probability the compute unit has this property
5 "type":"<property-type>", I can be “metric”, “skill”, or “static”
6 "value":<distribution-config> I required for other than “metric” types
7 "interfaceClass":"<property-type>" I required for “metric” type
8 }

Listing A.5: Property Configuration

A property can be of three types: metric property, which defines a property whose
value can be retrieved externally, skill property, which defines the functional capability
of a human-based compute units, and static is for all other properties (note that
despite of the name, the static property value can still be modified by calling the
property’s setter method during runtime). For metric property, the interfaceClass
entry defines the class implementing MetricInterface that provides the value of the
property.

Task Generator Configuration

The task_generator element in the simulation configuration defines the list config-
uration for generating tasks at each cycle during the execution phase. The way how

2https://commons.apache.org/proper/commons-math/apidocs/org/apache/
commons/math3/distribution/package-summary.html

107

https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/package-summary.html
https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/distribution/package-summary.html

basedir and files list work is the same as in the compute units generator configuration.
Listing A.6 exemplifies an annotated task generator configuration.

1 {
2 "seed": 1001, I random number generator seed
3 "taskTypes": [I list of task types that should be generated
4 {
5 "name": "HumanSensingTask",
6 "description": "An explanation of the task",
7 "tasksOccurance": {*\textit{<distribution-config>}*}, I number of tasks

generated at each cycle
8 "load": {<distribution-config>}, I to simulate how long the task will be

executed by a unit
9 "roles": [I list of roles for the task

10 {
11 "functionality": "DataCollection", I a functional requirement for

the role
12 "probabilityToHave": 1.0, I probability the role has this

functional requirement
13 "relativeLoadRatio": 1.0, I effective load = relative load *task

load
14 "dependsOn": ["...", ...], I a list of role functionality that

this role depends on (collective dependency)
15 "specification": [I role-level non-functional constraints
16 <specification-config>,
17 ...
18]
19 },
20 ...
21],
22 "specification": [I task-level non-functional constraints
23 <specification-config>,
24 ...
25]
26 },
27 ... I multiple task types can be defined
28]
29 }

Listing A.6: An Example of Task Generator Configuration

The <distribution-config> is similar to the one used in the compute units generator
configuration. The <specification-config> defines non-functional constraints as specified
in Listing A.7.

1 <specification-config> ::=
2 {
3 "name":"<property-name>", I e.g., “location”, “cost”, etc.
4 "probabilityToHave":1.0, I probability the requirement has this constraint
5 "type":"<property-type>", I can be “metric”, “skill”, or “static”
6 "value":"<distribution-config>",
7 "comparator": "<comparator-class>"
8 }

Listing A.7: A Specification of Non-Functional Constraints

The <comparator-class> is a fully-qualified name of a class implementing the
java.util.Comparator interface. Several comparator classes are provided in
at.ac.tuwien.dsg.hcu.common.sla.comparator package:
StringComparator, NumericAscendingComparator,
NumericDescendingComparator, and FuzzyComparator.

108

A.2.2 Formation Engine Configuration

A formation engine configuration is a java properties file specifying the algorithm used by
the formation engine, and the parameters required by the algorithms. Listing A.8 shows
a snippet example of composer configuration. Currently, available formation algorithms
are

• FairDistribution algorithm, which distributes tasks uniformly to all qualified
compute units,

• PriorityDistribution algorithm, which distributes tasks based on the pri-
ority of each compute unit specified in assignment_priority property, e.g.,
a compute unit with priority equals to 2 has twice probability to be assigned to
tasks compared to compute units with priority equals to 1,

• EarliestResponse algorithm, which assigns tasks to compute units with the
earliest estimated response time (e.g., the first come first serve strategy),

• GreedyBestFitness algorithm is a greedy heuristic strategy, which processes
each task role iteratively, and for each role a compute unit with the best local
fitness value is selected,

• GreedyHillClimbing algorithm finds an initial solution similarly as the Greedy
BestFitness algorithm, and refines the solution further using a hill climbing
technique, the number of cycles for hill climbing is specified using
maximum_number_of_cycles parameter,

• ACOAlgorithm algorithms, which find the best solution using Ant Colony Op-
timization. Currently the following variants of ACO algorithms are supported:
AntSystemAlgorithm, MinMaxAntSystemAlgorithm, and
AntColonySystemAlgorithm. ACO algorithms have many configurable param-
eters. An example of complete composer configuration including all the parameters
can be found in config/composer.properties inside the hcu-composer
project.

1 algorithm = ACOAlgorithm
2 aco_variant = AntSystemAlgorithm
3 #aco_variant = MinMaxAntSystemAlgorithm
4 #aco_variant = AntColonySystemAlgorithm
5
6 #algorithm = FairDistribution
7 #algorithm = PriorityDistribution
8 #algorithm = EarliestResponse
9 #algorithm = GreedyBestVisibility

10 #algorithm = GreedyLocalSearch

Listing A.8: An Example of Formation Engine Configuration

109

A.2.3 Tracer Configuration

The tracer configuration is a json file, which specifies the location of trace files (in CSV
format) generated during runtime. There are two default tracers, named reliability
and composer tracers, which are used by the formation engine and reliability analysis
engine, respectively, for generating the traces of compute units collectives formation
created and the reliability measurement for each task execution.

1 [
2 {
3 "name": "composer",
4 "file_prefix": "traces/composer/composer-sample-",
5 "class": "at.ac.tuwien.dsg.hcu.composer.ComposerTracer"
6 },
7 {
8 "name": "reliability",
9 "file_prefix": "traces/reliability/reliability-sample-",

10 "class": "at.ac.tuwien.dsg.hcu.cloud.metric.helper.ReliabilityTracer"
11 }
12]

Listing A.9: An Example of Tracer Configuration

A custom tracer can be created by creating a new class extending
at.ac.tuwien.dsg.hcu.util.Tracer, and adding a new corresponding entry in
the tracer configuration. The new tracer can be invoked anywhere within the program
by calling Tracer.getTracer("<tracer-name>").

A.3 Interactive Mode

The following command can be executed to run the program in interactive-mode:
1 $ java -jar hcu/hcu-rest/target/hcu-rest-0.0.1-SNAPSHOT.jar <config-file>

where the <config-file> argument is the path of the main configuration file.
Within an IDE, the interactive-mode can be started by running the main class

at.ac.tuwien.dsg.hcu.rest.RunRestServer
inside the hcu-rest project with the <config-file> as the execution argument.

The main configuration file for interactive-mode contains HTTP server configuration,
as well as the composer configuration for the formation engine. Note that currently we
do not yet support monitoring and reliability analysis in interactive-mode.

Listing A.10 shows an example of configuration for interactive mode. The forma-
tion engine configuration defined in composer_config has the same format as the
composer_config in the simulation-mode.

1 SERVER_PORT = 8080
2 SERVER_HOST = localhost
3 REST_CONTEXT_PATH = rest
4 WEBUI_CONTEXT_PATH = web-ui
5 SWAGGER_CONTEXT_PATH = rest-ui
6
7 composer_config = config/composer.properties

110

Listing A.10: An Example of Configuration for Interactive-Mode

Once, the program is started in interactive-mode, the Jetty-based HTTP server is
started and listening on the port specified in the configuration. Afterwards, the services
can be accessed from

• http://<SERVER_HOST>:<SERVER_PORT>/<REST_CONTEXT_PATH> for the
RESTful Application Programming Interfaces (APIs),

• http://<SERVER_HOST>:<SERVER_PORT>/<WEBUI_CONTEXT_PATH> for the
Web User Interface, and additionally

• http://<SERVER_HOST>:<SERVER_PORT>/<SWAGGER_CONTEXT_PATH> for
the REST API playground based on Swagger.

Note that current prototype implementation of the interactive-mode does not expose
full capabilities of the underlying models and framework as found in the simulation-mode.
We discuss the APIs provided by our platform as follows.

A.3.1 Application Programming Interface

The Application Programming Interfaces (API) provided by the platform is a RESTful
API, which provides CRUD (create, read, update, delete) operations on four entities:
unit, task, collective, and task_rule.

Below is a list of applicable information for all APIs:

Request URL prefix
http://<SERVER_HOST>:<SERVER_PORT>/<REST_CONTEXT_PATH>/api
default: http://localhost:8080/rest/api

POST and PUT parameters encoding (in the request body)
application/x-www-form-urlencoded

HTTP response codes
200: Successful
201: Created successfully
404: Error, entity not found
409: Error, entity already exists

Response body encoding
application/json

The unit and task entities and their API operations are described as follows.
Documentation of API operations for other entities can be viewed online from the
Swagger API playground provided by the platform. When an API excepts a URL
parameter, it is shown here inside curly brackets. Actual request should not include the
brackets in the URL.

111

Operations on unit

a) GET /unit I List all units
Response body on success:

[
{
"name": "...",
"email": "...",
"rest": "...",
"services": [
"...", ...

],
...

},
...

]

Note:
– rest is the REST service URL for software-based compute units
– services is a list of functional capabilities provided by the compute units

b) GET /unit/{email} I Find a unit by email
Response body on success:
{
"name": "...",
"email": "...",
"rest": "...",
"services": [
"...", ...
],
"elementId": 1

}

Note: refer to note for GET /unit

c) POST /unit I Create a new unit
Parameters:

– email (string)
– name (string)
– rest (string, optional)
– services_provided (string): a comma separated string containing a list of

functional capabilities provided by the compute unit, e.g., “DataCollection,
DataAssessment”.

d) PUT /unit/{email} I Update an existing unit specified by email
Parameters:

– email (string)
– name (string, optional)
– rest (string, optional)
– services_provided (string): a comma separated string containing a list

of functional capabilities provided by the compute unit
Response body on success: refer to response body for POST /unit

112

e) DELETE /unit/{email} I Delete an existing unit specified by email
Response body on success: None

Operations on task

In this API, we simplify the task entity model. Each task request has tag (e.g., a
category) and severity (e.g., ‘NOTICE’, ‘WARNING’, ‘CRITICAL’, ‘ALERT’, or
‘EMERGENCY’) properties. When the task request is processed, it is expanded using
task_rule to a more complete task specification containing the functional capabilities
(i.e., services) required to execute the tasks. Here, one service corresponds to one task
role. Currently, we do not support updating and deleting a task, because the task is
immediately assigned to and executed by the provisioned compute units collectives.

a) GET /task I List all tasks
Response body on success:

[
{

"id": 1,
"name": "...",
"content": "...",
"severity": "...",
"tag": "...",
"timeCreated": "...",
"collectiveId": 1

},
...

]

Note:
– id is an auto-generated id of the task
– collectiveId is the id of the compute units collective provisioned to execute
the task

b) GET /task/{id} I Find a task by id
Response body on success:

{
"id": 1,
"name": "...",
"content": "...",
"severity": "...",
"tag": "...",
"timeCreated": "...",
"collectiveId": 1

}

Note: refer to note for GET /task

c) POST /task I Submit a new task request
Parameters:

– name (string): Task’s name
– content (string): Task’s content description
– tag (string): Task’s tag, e.g., a category

113

– severity (SeverityLevel) = [‘NOTICE’, ‘WARNING’, ‘CRITICAL’, ‘ALERT’,
or ‘EMERGENCY’]: Task’s severity

114

Bibliography

[1] Luis Von Ahn. Human computation. In Design Automation Conference, 2009.
DAC’09. 46th ACM/IEEE, pages 418–419. IEEE, 2009.

[2] Wikipedia. Human-based computation - wikipedia. Website, February 2016.
https://en.wikipedia.org/wiki/Human-based_computation.

[3] Hyunjung Park and Jennifer Widom. Crowdfill: Collecting structured data from
the crowd. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 577–588. ACM, 2014.

[4] Aditya Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta, Neoklis
Polyzotis, and Jennifer Widom. Optimal crowd-powered rating and filtering
algorithms. Proceedings Very Large Data Bases (VLDB), 2014.

[5] CrowdFlower. Crowdflower content moderation. Website, February 2016. http:
//www.crowdflower.com/type-content-moderation.

[6] Sharoda A Paul, Lichan Hong, and Ed H Chi. What is a question? crowdsourcing
tweet categorization. CHI 2011, 2011.

[7] Ryan G Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowd-
clustering. In Advances in neural information processing systems, pages 558–566,
2011.

[8] Victor Naroditskiy, Iyad Rahwan, Manuel Cebrian, and Nicholas R Jennings.
Verification in referral-based crowdsourcing. PloS one, 7(10):e45924, 2012.

[9] Quora. Quora. Website, February 2016. http://www.quora.com/.

[10] Yahoo! Yahoo! answers. Website, February 2016. https://answers.yahoo.
com/.

[11] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee, Michael
Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, et al. Predicting protein
structures with a multiplayer online game. Nature, 466(7307):756–760, 2010.

[12] Justin Wolfers and Eric Zitzewitz. Prediction markets. Technical report, National
Bureau of Economic Research, 2004.

115

https://en.wikipedia.org/wiki/Human-based_computation
http://www.crowdflower.com/type-content-moderation
http://www.crowdflower.com/type-content-moderation
http://www.quora.com/
https://answers.yahoo.com/
https://answers.yahoo.com/

[13] Wikipedia. Wikipedia. Website, February 2016. http://www.wikipedia.org/.

[14] Wenjun Wu, Wei-Tek Tsai, and Wei Li. Creative software crowdsourcing: from
components and algorithm development to project concept formations. International
Journal of Creative Computing, 1(1):57–91, 2013.

[15] Anhai Doan, Raghu Ramakrishnan, and Alon Y Halevy. Crowdsourcing systems
on the world-wide web. Communications of the ACM, 54(4):86–96, 2011.

[16] Amazon. Amazon mechanical turk. Website, February 2016. http://www.mturk.
com/.

[17] Cloudcrowd. Website, 2013. http://www.cloudcrowd.com/.

[18] John G Breslin, Alexandre Passant, and Stefan Decker. Social web applications in
enterprise. In The Social Semantic Web, pages 251–267. Springer, 2009.

[19] Daniel Schall, Benjamin Satzger, and Harald Psaier. Crowdsourcing tasks to social
networks in bpel4people. World Wide Web, pages 1–32, 2012.

[20] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux. Pick-a-
crowd: tell me what you like, and i’ll tell you what to do. In Proceedings of the
22nd international conference on World Wide Web, pages 367–374. International
World Wide Web Conferences Steering Committee, 2013.

[21] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and
Stefano Leonardi. Online team formation in social networks. In Proceedings of the
21st international conference on World Wide Web, pages 839–848. ACM, 2012.

[22] F. Giunchiglia, V. Maltese, S. Anderson, and D. Miorandi. Towards hybrid and
diversity-aware collective adaptive systems. 2013.

[23] Karim Benouaret, Raman Valliyur-Ramalingam, and François Charoy. Crowdsc:
Building smart cities with large-scale citizen participation. Internet Computing,
IEEE, 17(6):57–63, 2013.

[24] Thomas W Malone, Robert Laubacher, and Chrysanthos Dellarocas. The collective
intelligence genome. IEEE Engineering Management Review, 38(3):38, 2010.

[25] U-test, industrial case studies. Website, February 2016. http://www.u-test.
eu/use-cases/.

[26] Eric Simmon, Kyoung-Sook Kim, Eswaran Subrahmanian, Ryong Lee, Frederic
de Vaulx, Yohei Murakami, Koji Zettsu, and Ram D Sriram. A vision of cyber-
physical cloud computing for smart networked systems. NIST, Aug, 2013.

[27] Alexander Smirnov, Alexey Kashevnik, and Andrew Ponomarev. Multi-level
self-organization in cyber-physical-social systems: Smart home cleaning scenario.
Procedia CIRP, 30:329–334, 2015.

116

http://www.wikipedia.org/
http://www.mturk.com/
http://www.mturk.com/
http://www.cloudcrowd.com/
http://www.u-test.eu/use-cases/
http://www.u-test.eu/use-cases/

[28] Enzo Morosini Frazzon, Jens Hartmann, Thomas Makuschewitz, and Bernd Scholz-
Reiter. Towards socio-cyber-physical systems in production networks. Procedia
CIRP, 7:49–54, 2013.

[29] Ashish Agrawal, Mike Amend, Manoj Das, Mark Ford, Chris Keller, Matthias
Kloppmann, Dieter König, Frank Leymann, et al. WS-BPEL extension for people
(BPEL4People). V1. 0, 2007.

[30] D. Jordan et al. Web Services business Process Execution Language (WS-BPEL)
2.0. OASIS Standard, 11, 2007.

[31] Gioacchino La Vecchia and Antonio Cisternino. Collaborative workforce, busi-
ness process crowdsourcing as an alternative of bpo. In Current Trends in Web
Engineering, pages 425–430. Springer, 2010.

[32] Bikram Sengupta, Anshu Jain, Kamal Bhattacharya, Hong-Linh Truong, and
Schahram Dustdar. Collective problem solving using social compute units. Inter-
national Journal of Cooperative Information Systems, 22(04):1341002, 2013.

[33] Hong-Linh Truong and Schahram Dustdar. Context-aware programming for hybrid
and diversity-aware collective adaptive systems. In Business Process Management
Workshops, pages 145–157. Springer, 2014.

[34] Hong-Linh Truong, Hoa Khanh Dam, Aditya Ghose, and Schahram Dustdar.
Augmenting complex problem solving with hybrid compute units. In Service-
Oriented Computing–ICSOC 2013 Workshops, pages 95–110. Springer, 2014.

[35] Panagiotis G Ipeirotis and John J Horton. The need for standardization in crowd-
sourcing. In Proceedings of the workshop on crowdsourcing and human computation
at CHI, 2011.

[36] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza
Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. Quality control in crowd-
sourcing systems: Issues and directions. IEEE Internet Computing, 17(2):76–81,
2013.

[37] David Parmenter. Key performance indicators: developing, implementing, and
using winning KPIs. John Wiley & Sons, 2015.

[38] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web service
composition: A survey of techniques and tools. ACM Computing Surveys (CSUR),
48(3):33, 2015.

[39] Julien Lesbegueries, Amira Ben Hamida, Nicolas Salatgé, Sarah Zribi, and Jean-
Pierre Lorré. Multilevel event-based monitoring framework for the petals enterprise
service bus: industry article. In Proceedings of the 6th ACM International Confer-
ence on Distributed Event-Based Systems, pages 48–57. ACM, 2012.

117

[40] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed
services. In Proceedings of the 2nd international conference on Service oriented
computing, pages 193–202. ACM, 2004.

[41] Shirlei Aparecida De Chaves, Rafael Brundo Uriarte, and Carlos Becker Westphall.
Toward an architecture for monitoring private clouds. Communications Magazine,
IEEE, 49(12):130–137, 2011.

[42] Monica Scannapieco, Paolo Missier, and Carlo Batini. Data quality at a glance.
Datenbank-Spektrum, 14:6–14, 2005.

[43] Muhammad ZC Candra, Hong-Linh Truong, and Schahram Dustdar. Provisioning
quality-aware social compute units in the cloud. In Service-Oriented Computing,
pages 313–327. Springer, 2013.

[44] Muhammad ZC Candra, Hong-Linh Truong, and Schahram Dustdar. Analyzing
reliability in hybrid compute units. In Collaboration and Internet Computing, 2015
IEEE 1st International Conference on. IEEE, 2013.

[45] Muhammad ZC Candra, Hong-Linh Truong, and Schahram Dustdar. Modeling
elasticity trade-offs in adaptive mixed systems. In Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE), 2013 IEEE 22nd International
Conference on, pages 21–26. IEEE, 2013.

[46] Muhammad ZC Candra, Rostyslav Zabolotnyi, Hong-Linh Truong, and Schahram
Dustdar. Virtualizing software and human for elastic hybrid services. In Advanced
Web Services, pages 431–453. Springer, 2014.

[47] Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-
physical systems: the next computing revolution. In Proceedings of the 47th Design
Automation Conference, pages 731–736. ACM, 2010.

[48] Logo design, web design and more. design done differently | 99designs. Website,
2012. http://www.99designs.com/.

[49] Crowdflower. Website, February 2016. http://crowdflower.com/.

[50] Daniel W Barowy, Charlie Curtsinger, Emery D Berger, and Andrew McGregor.
Automan: A platform for integrating human-based and digital computation. ACM
SIGPLAN Notices, 47(10):639–654, 2012.

[51] Salman Ahmad, Alexis Battle, Zahan Malkani, and Sepander Kamvar. The jabber-
wocky programming environment for structured social computing. In Proceedings
of the 24th annual ACM symposium on User interface software and technology,
pages 53–64. ACM, 2011.

[52] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

118

http://www.99designs.com/
http://crowdflower.com/

[53] Brian Blake. Crowd services: Human intelligence + web services. IEEE Internet
Computing, 19(3):4–6, 2015.

[54] D. Schall, H.L. Truong, and S. Dustdar. The human-provided services framework.
In 10th IEEE Conference on E-Commerce Technology, pages 149–156. IEEE, 2008.

[55] S. Dustdar and K. Bhattacharya. The social compute unit. Internet Computing,
IEEE, 15(3):64–69, 2011.

[56] Schahram Dustdar and Hong-Linh Truong. Virtualizing software and humans for
elastic processes in multiple clouds–a service management perspective. International
Journal of Next-Generation Computing (IJNGC), 2012.

[57] Salvatore Distefano, Giovanni Merlino, and Antonio Puliafito. Sensing and actuation
as a service: A new development for clouds. In Network Computing and Applications
(NCA), 2012 11th IEEE International Symposium on, pages 272–275. IEEE, 2012.

[58] Sarfraz Alam, Mohammad MR Chowdhury, and Josef Noll. Senaas: An event-
driven sensor virtualization approach for internet of things cloud. In Networked
Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE International
Conference on, pages 1–6. IEEE, 2010.

[59] Masahide Nakamura, Shuhei Matsuo, Shinsuke Matsumoto, Hiroyuki Sakamoto,
and Hiroshi Igaki. Application framework for efficient development of sensor as
a service for home network system. In Services Computing (SCC), 2011 IEEE
International Conference on, pages 576–583. IEEE, 2011.

[60] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented architecture
for the web of things. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010.

[61] Juan Luis Pérez and David Carrera. Performance characterization of the servioticy
api: an iot-as-a-service data management platform. In Big Data Computing Service
and Applications (BigDataService), 2015 IEEE First International Conference on,
pages 62–71. IEEE, 2015.

[62] Benny Mandler, Fabio Antonelli, Robert Kleinfeld, Carlos Pedrinaci, Diego Carrera,
Alessio Gugliotta, Daniel Schreckling, Iacopo Carreras, Dave Raggett, Marc Pous,
et al. Compose–a journey from the internet of things to the internet of services. In
Advanced Information Networking and Applications Workshops (WAINA), 2013
27th International Conference on, pages 1217–1222. IEEE, 2013.

[63] Amit Sheth, Pramod Anantharam, and Cory Henson. Physical-cyber-social com-
puting: An early 21st century approach. Intelligent Systems, IEEE, 28(1):78–82,
2013.

[64] Michael Blackstock, Rodger Lea, and Adrian Friday. Uniting online social networks
with places and things. In Proceedings of the Second International Workshop on
Web of Things, page 5. ACM, 2011.

119

[65] Soegijardjo Soegijoko. A brief review on existing cyber-physical systems for health-
care applications and their prospective national developments. In Instrumentation,
Communications, Information Technology, and Biomedical Engineering (ICICI-
BME), 2013 3rd International Conference on, pages 2–2. IEEE, 2013.

[66] Siddhartha Kumar Khaitan and James D McCalley. Cyber physical system approach
for design of power grids: A survey. In Power and Energy Society General Meeting
(PES), 2013 IEEE, pages 1–5. IEEE, 2013.

[67] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. Iot gateway:
Bridgingwireless sensor networks into internet of things. In Embedded and Ubiquitous
Computing (EUC), 2010 IEEE/IFIP 8th International Conference on, pages 347–
352. IEEE, 2010.

[68] Project brillo. Website, February 2016. https://developers.google.com/
brillo/.

[69] Windows iot. Website, February 2016. https://dev.windows.com/en-us/
iot.

[70] Stefan Nastic, Sanjin Sehic, Duc-Hung Le, Hong-Linh Truong, and Schahram
Dustdar. Provisioning software-defined iot cloud systems. In Future Internet of
Things and Cloud (FiCloud), 2014 International Conference on, pages 288–295.
IEEE, 2014.

[71] Zhong Liu, Dong-sheng Yang, Ding Wen, Wei-ming Zhang, and Wenji Mao. Cyber-
physical-social systems for command and control. IEEE Intelligent Systems, (4):92–
96, 2011.

[72] Thomas W Malone and Michael S Bernstein. Handbook of Collective Intelligence.
2015.

[73] Threadless graphic t-shirt designs: cool funny t-shirts weekly! tees designed by the
community. Website, February 2016. http://www.threadless.com/.

[74] Home | innocentive. Website, February 2016. http://www.innocentive.com/.

[75] Topcoder, inc. | home of the world’s largest development community. Website,
February 2016. http://www.topcoder.com.

[76] Anand P Kulkarni, Matthew Can, and Bjoern Hartmann. Turkomatic: automatic
recursive task and workflow design for mechanical turk. In CHI’11 Extended
Abstracts on Human Factors in Computing Systems, pages 2053–2058. ACM, 2011.

[77] D.C. Brabham. Crowdsourcing as a model for problem solving. Convergence: The
International Journal of Research into New Media Technologies, 14(1):75, 2008.

120

https://developers.google.com/brillo/
https://developers.google.com/brillo/
https://dev.windows.com/en-us/iot
https://dev.windows.com/en-us/iot
http://www.threadless.com/
http://www.innocentive.com/
http://www.topcoder.com

[78] M. Vukovic and C. Bartolini. Towards a research agenda for enterprise crowd-
sourcing. Leveraging Applications of Formal Methods, Verification, and Validation,
pages 425–434, 2010.

[79] Osamuyimen Stewart, Juan M Huerta, and Melissa Sader. Designing crowdsourcing
community for the enterprise. In Proceedings of the ACM SIGKDD Workshop on
Human Computation, pages 50–53. ACM, 2009.

[80] Crowdengineering - crowdsourcing customer service. Website, 2012. http://www.
crowdengineering.com/.

[81] Maja Vukovic, Mariana Lopez, and Jim Laredo. Peoplecloud for the globally
integrated enterprise. In Service-Oriented Computing. ICSOC/ServiceWave 2009
Workshops, pages 109–114. Springer, 2010.

[82] Charles Petrie. Plenty of room outside the firm [peering]. Internet Computing,
IEEE, 14(1):92–96, 2010.

[83] DBpedia. Dbpedia. Website, April 2016. http://wiki.dbpedia.org/.

[84] Amit Sheth. Citizen sensing, social signals, and enriching human experience. IEEE
Internet Computing, (4):87–92, 2009.

[85] Bin Guo, Zhu Wang, Zhiwen Yu, Yu Wang, Neil Y Yen, Runhe Huang, and
Xingshe Zhou. Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm. ACM Computing Surveys (CSUR), 48(1):7,
2015.

[86] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter
users: real-time event detection by social sensors. In Proceedings of the 19th
international conference on World wide web, pages 851–860. ACM, 2010.

[87] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, and Marimuthu Palaniswami. An
information framework for creating a smart city through internet of things. Internet
of Things Journal, IEEE, 1(2):112–121, 2014.

[88] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofstede. Process-aware
information systems: bridging people and software through process technology. John
Wiley & Sons, 2005.

[89] A. Agrawal et al. Web Services Human Task (WS-HumanTask), version 1.0. 2007.

[90] Object Management Group (OMG). Business process model and notation 2.0.
2011.

[91] Martin Treiber, Daniel Schall, Schahram Dustdar, and Christian Scherling. Tweet-
flows: flexible workflows with twitter. In Proceedings of the 3rd international
workshop on Principles of engineering service-oriented systems, pages 1–7. ACM,
2011.

121

http://www.crowdengineering.com/
http://www.crowdengineering.com/
http://wiki.dbpedia.org/

[92] Hsiao-Hsien Chiu and Ming-Shi Wang. A study of iot-aware business process
modeling. International Journal of Modeling and Optimization, 3(3):238, 2013.

[93] Stefano Tranquillini, Patrik Spieß, Florian Daniel, Stamatis Karnouskos, Fabio
Casati, Nina Oertel, Luca Mottola, Felix Jonathan Oppermann, Gian Pietro Picco,
Kay Römer, et al. Process-based design and integration of wireless sensor network
applications. In Business Process Management, pages 134–149. Springer, 2012.

[94] Sonja Meyer, Andreas Ruppen, and Carsten Magerkurth. Internet of things-aware
process modeling: integrating iot devices as business process resources. In Advanced
Information Systems Engineering, pages 84–98. Springer, 2013.

[95] Alexandru Caracaş and Alexander Bernauer. Compiling business process models
for sensor networks. In Distributed Computing in Sensor Systems and Workshops
(DCOSS), 2011 International Conference on, pages 1–8. IEEE, 2011.

[96] Patrik Spiess, H Vogt, and H Jutting. Integrating sensor networks with business
processes. In Real-World Sensor Networks Workshop at ACM MobiSys, 2006.

[97] Stephan Haller and Carsten Magerkurth. The real-time enterprise: Iot-enabled
business processes. In IETF IAB Workshop on Interconnecting Smart Objects with
the Internet. Citeseer, 2011.

[98] Merriam-Webster. Definition of provision by merriam-webster.
http://www.merriam-webster.com/dictionary/provision.

[99] Ana Juan Ferrer, Francisco Hernández, Johan Tordsson, Erik Elmroth, Ahmed Ali-
Eldin, Csilla Zsigri, RaüL Sirvent, Jordi Guitart, Rosa M Badia, Karim Djemame,
et al. Optimis: A holistic approach to cloud service provisioning. Future Generation
Computer Systems, 28(1):66–77, 2012.

[100] Rodrigo N Calheiros, Rajiv Ranjan, and Rajkumar Buyya. Virtual machine provi-
sioning based on analytical performance and qos in cloud computing environments.
In Parallel Processing (ICPP), 2011 International Conference on, pages 295–304.
IEEE, 2011.

[101] Sankaran Sivathanu, Ling Liu, Mei Yiduo, and Xing Pu. Storage management in
virtualized cloud environment. In Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pages 204–211. IEEE, 2010.

[102] Fabio Casati. Promises and failures of research in dynamic service composition.
In Seminal Contributions to Information Systems Engineering, pages 235–239.
Springer, 2013.

[103] Michael Vogler, Johannes Schleicher, Christian Inzinger, Stefan Nastic, Sanjin Sehic,
and Schahram Dustdar. Leonore–large-scale provisioning of resource-constrained
iot deployments. In Service-Oriented System Engineering (SOSE), 2015 IEEE
Symposium on, pages 78–87. IEEE, 2015.

122

[104] Stuart Clayman and Alex Galis. Inox: A managed service platform for inter-
connected smart objects. In Proceedings of the workshop on Internet of Things and
Service Platforms, page 2. ACM, 2011.

[105] Gilbert Cassar, Payam Barnaghi, Wei Wang, and Klaus Moessner. A hybrid
semantic matchmaker for iot services. In Green Computing and Communications
(GreenCom), 2012 IEEE International Conference on, pages 210–216. IEEE, 2012.

[106] Jong Myoung Ko, Chang Ouk Kim, and Ick-Hyun Kwon. Quality-of-service oriented
web service composition algorithm and planning architecture. Journal of Systems
and Software, 81(11):2079–2090, 2008.

[107] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani.
An approach for qos-aware service composition based on genetic algorithms. In
Proceedings of the 7th annual conference on Genetic and evolutionary computation,
pages 1069–1075. ACM, 2005.

[108] Rainer Berbner, Michael Spahn, Nicolas Repp, Oliver Heckmann, and Ralf Stein-
metz. Heuristics for qos-aware web service composition. In Web Services, 2006.
ICWS’06. International Conference on, pages 72–82. IEEE, 2006.

[109] Safina Showkat Ara, Zia Ush Shamszaman, and Ilyoung Chong. Web-of-objects
based user-centric semantic service composition methodology in the internet of
things. International Journal of Distributed Sensor Networks, 2014, 2014.

[110] Thiago Teixeira, Sara Hachem, Valérie Issarny, and Nikolaos Georgantas. Service
oriented middleware for the internet of things: a perspective. In Towards a Service-
Based Internet, pages 220–229. Springer, 2011.

[111] Adil Baykasoglu, Turkay Dereli, and Sena Das. Project team selection using
fuzzy optimization approach. Cybernetics and Systems: An International Journal,
38(2):155–185, 2007.

[112] D Strnad and N Guid. A fuzzy-genetic decision support system for project team
formation. Applied Soft Computing, 10(4):1178–1187, 2010.

[113] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. Towards realistic
team formation in social networks based on densest subgraphs. In Proceedings of the
22nd international conference on World Wide Web, pages 1077–1088. International
World Wide Web Conferences Steering Committee, 2013.

[114] Mehdi Kargar, Aijun An, and Morteza Zihayat. Efficient bi-objective team formation
in social networks. In Machine Learning and Knowledge Discovery in Databases,
pages 483–498. Springer, 2012.

[115] Michelle Cheatham and Kevin Cleereman. Application of social network analysis
to collaborative team formation. In Proceedings of the International Symposium on

123

Collaborative Technologies and Systems, pages 306–311. IEEE Computer Society,
2006.

[116] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in
social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 467–476. ACM, 2009.

[117] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. Cloud
monitoring: A survey. Computer Networks, 57(9):2093–2115, 2013.

[118] Nagios. Nagios - the industry standard in it infrastructure monitoring. Website,
February 2016. http://www.nagios.org/.

[119] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[120] Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, and Schahram Dustdar.
Mela: elasticity analytics for cloud services. International Journal of Big Data
Intelligence, 2(1):45–62, 2015.

[121] Marcio Barbosa de Carvalho and Lisandro Zambenedetti Granville. Incorporating
virtualization awareness in service monitoring systems. In Integrated Network
Management (IM), 2011 IFIP/IEEE International Symposium on, pages 297–304.
IEEE, 2011.

[122] IBM. Monitoring and administering human tasks with websphere business monitor.
Website, April 2009. http://www.ibm.com/developerworks/websphere/
library/techarticles/0904_xing/0904_xing.html.

[123] Felix Freiling, Irene Eusgeld, and Ralf Reussner. Dependability metrics. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 2008.

[124] Íñigo Goiri, Ferran Julià, J Oriol Fitó, Mario Macías, and Jordi Guitart. Resource-
level qos metric for cpu-based guarantees in cloud providers. In Economics of
Grids, Clouds, Systems, and Services, pages 34–47. Springer, 2010.

[125] Karthik Lakshmanan, Dionisio De Niz, Ragunathan Rajkumar, and Gines Moreno.
Resource allocation in distributed mixed-criticality cyber-physical systems. In
Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference
on, pages 169–178. IEEE, 2010.

[126] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. Method-
ologies for data quality assessment and improvement. ACM Computing Surveys
(CSUR), 41(3):16, 2009.

124

http://www.nagios.org/
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_xing/0904_xing.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0904_xing/0904_xing.html

[127] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and moni-
toring service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[128] Chrysostomos Zeginis, Konstantina Konsolaki, Kyriakos Kritikos, and Dimitris
Plexousakis. Ecmaf: an event-based cross-layer service monitoring and adaptation
framework. In Service-Oriented Computing-ICSOC 2011 Workshops, pages 147–161.
Springer, 2012.

[129] L.R. Varshney, A. Vempaty, and P.K. Varshney. Assuring privacy and reliability in
crowdsourcing with coding. In ITA Workshop, pages 1–6. IEEE, 2014.

[130] Roi Blanco, Harry Halpin, Daniel M Herzig, Peter Mika, Jeffrey Pound, Henry S
Thompson, and Thanh Tran Duc. Repeatable and reliable search system evalua-
tion using crowdsourcing. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 923–932.
ACM, 2011.

[131] Shih-Wen Huang and Wai-Tat Fu. Enhancing reliability using peer consistency
evaluation in human computation. In CSCW ’13, pages 639–648. ACM, 2013.

[132] Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut.
Quality of service for workflows and web service processes. Web Semantics, 1(3):281–
308, 2004.

[133] Paolo Bocciarelli, Andrea D’Ambrogio, Andrea Giglio, and Emiliano Paglia.
Simulation-based performance and reliability analysis of business processes. In
Proceedings of the 2014 Winter Simulation Conference, pages 3012–3023. IEEE
Press, 2014.

[134] JC Williams. Heart–a proposed method for assessing and reducing human error. In
9th Advances in Reliability Technology Symposium, University of Bradford, 1986.

[135] E. Hollnagel. Cognitive reliability and error analysis method (CREAM). Elsevier
Science, 1998.

[136] William J Kolarik, Jeffrey C Woldstad, Susan Lu, and Huitian Lu. Human
performance reliability: on-line assessment using fuzzy logic. IIE transactions,
36(5):457–467, 2004.

[137] R Rukšėnas, Jonathan Back, Paul Curzon, and Ann Blandford. Formal modelling
of salience and cognitive load. Electronic Notes in Theoretical Computer Science,
208:57–75, 2008.

[138] Y.S. Dai, M. Xie, and X. Wang. A heuristic algorithm for reliability modeling and
analysis of grid systems. Systems, Man and Cybernetics, 37(2):189–200, 2007.

125

[139] S. Guo, H.Z. Huang, Z. Wang, and M. Xie. Grid service reliability modeling and
optimal task scheduling considering fault recovery. Reliability, 60(1):263–274, 2011.

[140] Thanadech Thanakornworakij, Raja F Nassar, Chokchai Leangsuksun, and Mihaela
Păun. A reliability model for cloud computing for high performance computing
applications. In Euro-Par 2012: Parallel Processing Workshops, pages 474–483.
Springer, 2012.

[141] N. Yadav, V.B. Singh, and M. Kumari. Generalized reliability model for cloud
computing. International Journal of Computer Applications, 88(14):13–16, 2014.

[142] M. Maybury, R. D’Amore, and D. House. Expert finding for collaborative virtual
environments. Communications of the ACM, 44(12):55–56, 2001.

[143] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition.
International journal of web and grid services, 1(1):1–30, 2005.

[144] Bikram Sengupta, Anshu Jain, Kamal Bhattacharya, Hong-Linh Truong, and
Schahram Dustdar. Who do you call? problem resolution through social compute
units. In Service-Oriented Computing, pages 48–62. Springer, 2012.

[145] Li-jie Jin, Fabio Casati, Mehmet Sayal, and Ming-Chien Shan. Load balancing
in distributed workflow management system. In Proceedings of the 2001 ACM
symposium on Applied computing, pages 522–530. ACM, 2001.

[146] Lotfi Asker Zadeh. The concept of a linguistic variable and its application to
approximate reasoning - I. Information sciences, 8(3):199–249, 1975.

[147] Richard E Bellman and Lotfi Asker Zadeh. Decision-making in a fuzzy environment.
Management science, 17(4):B–141, 1970.

[148] L.R. Varshney. Privacy and reliability in crowdsourcing service delivery. In SRII
Global Conference (SRII), 2012 Annual, pages 55–60. IEEE, 2012.

[149] Frank Spillers and Daniel Loewus-Deitch. Temporal attributes of shared artifacts
in collaborative task environments. 2003.

[150] Philipp Zeppezauer, Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar.
Virtualizing communication for hybrid and diversity-aware collective adaptive
systems. In 10th International Workshop on Engineering Service-Oriented Applica-
tions (WESOA ’14), 12th International Conference on Service Oriented Computing,
Paris, France, 2014.

[151] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid computing.
Concurrency and computation: practice and experience, 14(13-15):1175–1220, 2002.

126

[152] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
Computational Intelligence Magazine, IEEE, 1(4):28–39, 2006.

[153] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization
by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26(1):29–41, 1996.

[154] Thomas Stutzle and Holger HHH Hoos. Max-min ant system. Future generations
computer systems, 16(8):889–914, 2000.

[155] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary Computation,
IEEE Transactions on, 1(1):53–66, Apr 1997.

[156] Adrian Mos, Carlos Pedrinaci, Guillermo Alvaro Rey, Jose Manuel Gomez, Dong
Liu, Guillaume Vaudaux-Ruth, and Samuel Quaireau. Multi-level monitoring and
analysis of web-scale service based applications. In Service-Oriented Computing.
ICSOC/ServiceWave 2009 Workshops, pages 269–282. Springer, 2010.

[157] S. Frischbier, E. Turan, M. Gesmann, A. Margara, D. Eyers, P. Eugster, P. Piet-
zuch, and A. Buchmann. Effective runtime monitoring of distributed event-based
enterprise systems with asia. In Service-Oriented Computing and Applications
(SOCA), 2014 IEEE 7th International Conference on, pages 41–48. IEEE, 2014.

[158] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud
computing: current state and future opportunities. In Proceedings of the 14th
International Conference on Extending Database Technology, pages 530–533. ACM,
2011.

[159] Ali Benssam, Jean Berger, Abdeslem Boukhtouta, Mourad Debbabi, Sujoy Ray, and
Abderrazak Sahi. What middleware for network centric operations? Knowledge-
Based Systems, 20(3):255–265, 2007.

[160] J Kephart, J Kephart, D Chess, Craig Boutilier, Rajarshi Das, Jeffrey O Kephart,
and William E Walsh. An architectural blueprint for autonomic computing. IBM
White paper, 2003.

[161] Georgiana Copil, Demetris Trihinas, Hong-Linh Truong, Daniel Moldovan, George
Pallis, Schahram Dustdar, and Marios Dikaiakos. Advise–a framework for evaluating
cloud service elasticity behavior. In Service-Oriented Computing, pages 275–290.
Springer Berlin Heidelberg, 2014.

[162] Irene Eusgeld, Felix Freiling, and Ralf H Reussner. Dependability Metrics, volume
4909. Springer, 2008.

[163] P.G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon mechanical
turk. In Proceedings of the ACM SIGKDD workshop on human computation, pages
64–67. ACM, 2010.

127

[164] Zibin Zheng and Michael R Lyu. Collaborative reliability prediction of service-
oriented systems. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1, pages 35–44. ACM, 2010.

[165] I. Eusgeld, B. Fechner, F. Salfner, M. Walter, and P. Limbourg. Hardware reliability.
Dependability metrics, pages 59–103, 2008.

[166] I. Eusgeld, F. Fraikin, M. Rohr, F. Salfner, and U. Wappler. Software reliability.
Dependability metrics, pages 104–125, 2008.

[167] I. Koren and C.M. Krishna. Fault-tolerant systems. Morgan Kaufmann, 2010.

[168] Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dustdar. Stimulating
skill evolution in market-based crowdsourcing. In Business Process Management,
pages 66–82. Springer, 2011.

[169] X. Zang, H. Sun, and K.S. Trivedi. A bdd-based algorithm for reliability analysis
of phased-mission systems. Reliability, IEEE Transactions on, 48(1):50–60, 1999.

[170] J. Whittle, P. Sawyer, N. Bencomo, B.H.C. Cheng, and J.M. Bruel. Relax: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In Requirements
Engineering Conference, 2009. RE’09. 17th IEEE International, pages 79–88. IEEE,
2009.

[171] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya. Self-
healing systems-survey and synthesis. Decision Support Systems, 42(4):2164–2185,
2007.

[172] Iveta Gabcanova. Human resources key performance indicators. Journal of Com-
petitiveness, 4(1), 2012.

[173] Mirela Riveni, Hong-Linh Truong, and Schahram Dustdar. On the elasticity of
social compute units. In Advanced Information Systems Engineering, pages 364–378.
Springer, 2014.

128

Glossary

compute unit is a resource providing services capable of processing input data into a
more useful information in a (semi-)automated manner.

human-based compute unit is a human actor acting as a compute unit.

machine-based compute unit is a non-human compute unit, i.e., a software-based
compute unit or a thing-based compute unit.

software-based compute unit is a compute unit providing software-based services,
including software applications, and (virtual-)machines.

thing-based compute unit is a compute unit interacting directly with physical entities,
i.e., sensors, actuators, and their gateways.

compute units collective is a construct for a flexible group of human-based and/or
machine-based compute units, which can be composed, deployed, and dismissed
on-demand for executing tasks.

Hybrid Human-Machine Computing System (HCS) is a system employing hu-
mans and machines as compute units, where tasks are distributed to humans and
machines, and solutions from both humans and machines are collected, interpreted
and integrated.

task is an abstraction of a set of activities and their requirements to be executed by
a compute units collective.

activity is an actual piece of work need to be undertaken by a compute unit within
the context of a task. A task contains a set of activities, i.e., an activity can be
considered as a sub-task.

role is an association of a compute unit and the activity that he/she/it undertakes
within a task.

129

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Overview
	Motivating Scenario
	Research Problems
	Contributions
	Scopes of Work
	Thesis Structure

	State of The Art
	Hybrid Human-Machine Computing Systems
	Related Work in Provisioning of Compute Units
	Related Work in Monitoring Framework
	Related Work in Reliability Analysis
	Chapter Summary

	Models
	Architectural View
	Model of Compute Units Collectives
	Task Model
	Chapter Summary

	Runtime and Analytics Platform for Hybrid Computing Systems
	Prototype Architecture
	Prototype Features
	Chapter Summary

	Provisioning
	Introduction
	Provisioning Framework
	Quality-Aware Collective Formation Problem
	Formation Algorithms
	Runtime Re-Provisioning
	Evaluation
	Chapter Summary

	Monitoring
	Introduction
	Metrics and Quality of Data
	Distributed Monitoring Framework
	Reasoning for Adaptation
	Evaluation
	Chapter Summary

	Reliability Analysis
	Introduction
	Reliability Models
	Reliability Analysis Framework
	Evaluation
	Chapter Summary

	Conclusions and Future Work
	Summary
	Research Questions Revisited
	Future Work

	Prototype Documentation
	Getting Started
	Simulation Mode
	Interactive Mode

	Bibliography
	Glossary

