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Kurzfassung

Im Laufe der letzten Jahre konnte ein konstantes Wachstum von Datenströmen beobachtet
werden. Bisher waren diese Datenströme in der Regel primär im Betrieb von sozialen
Netzwerken, in der Finanzindustrie oder in der Medizintechnik zu finden. Durch die
zunehmende Verbreitung des Internets der Dinge existieren heute jedoch Sensor-basierte
Datenquellen in vielen verschiedenen Anwendungsbereichen. Diese Datenquellen liefern
volatile Datenströme, welche jedoch von aktuellen Datenverarbeitungssystemen nicht
effizient verarbeitet werden können, da diese nur für konstante Datenströme konzipiert
wurden. Des Weiteren sind neue Benutzergruppen mit den bestehenden Systemen oft
überfordert, da diese in erster Linie für Experten entwickelt wurden. Aus diesem Grund ist
es notwendig, die Architektur von etablierten Datenverarbeitungslösungen zu überdenken,
um dem verteilten Aspekt des Internets der Dinge gerecht zu werden und neue Ansätze
für die Erstellung von benutzerfreundlichen Anwendungen zur Datenstromverarbeitung
zu entwickeln.

Daher wird in dieser Dissertation das VISP-Ökosystem präsentiert, welches sowohl die
Bedürfnisse neuer Benutzergruppen als auch die verteilte Struktur des Internets der Dinge
berücksichtigt. In diesem Zusammenhang wurde auch eine neue Konfigurationssprache
für Anwendungen zur Datenstromverarbeitung geschaffen, da viele nicht-funktionale
Anforderungen von bestehenden Konfigurationssprachen nur eingeschränkt unterstützt
werden. Zusätzlich zu den Grundfunktionalitäten für die Erstellung und Ausführung
von Anwendungen zur Datenstromverarbeitung wurden zwei Ansätze entwickelt, um die
benötigten IT-Ressourcen elastisch an die sich ändernden Anforderungen anpassen zu
können. Der erste Ansatz basiert auf einer kontinuierlichen Analyse von verschiedenen
Kennzahlen, welche bei Bedarf eine Veränderung der Ressourcenkonfiguration veranlasst.
Der zweite Ansatz ist eine Verfeinerung des ersten Ansatzes, da dieser neben den Kennzah-
len auch zusätzliche Faktoren wie die Mietvereinbarungen für Ressourcen berücksichtigt
und daher in vielen Fällen unnötige Anpassungen vermeidet. Beide Ansätze wurden auf
Basis verschiedener Szenarien evaluiert und ermöglichen eine Kostenreduktion ohne die
Verarbeitungsgeschwindigkeit zu beeinträchtigen.
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Abstract

In the last couple of years, we have observed a trend towards an ever-growing number
and volume of data streams. Up to now, these data streams were mainly originating
from social media services running in the cloud but today the emergence of the Internet
of Things (IoT) also contributes to the growth of data streams. Besides the growth of
the data volume, the IoT also introduces several new challenges, like the geographically
distributed locations of IoT-devices, i.e., data sources and processing capabilities, as well
as a differentiation of the user base who uses Stream Processing Applications (SPAs).
Previously, SPAs were only used by data stream processing experts to process large
data volume primarily for social media, medical or financial purposes in a centralized
setting. However, the emergence of the IoT allows a larger user base, like companies from
the manufacturing domain or even individual users, to process data streams to extract
valuable insights. To address these challenges, it is required to evolve the system design
of today’s stream processing engines and create an ecosystem for data stream processing,
which considers all aspects of designing and operating SPAs.

Therefore, we introduce the VISP Ecosystem in this thesis, which provides a holistic
approach for creating SPAs and propose novel concepts to operate SPAs in a distributed
environment. To improve the creation of SPAs, we present a novel description language
for SPAs that supports distributed deployments as well as several non-functional aspects
for SPAs that are not considered in today’s approaches. In addition to the fundamental
aspects of designing and operating SPAs, we also introduce two resource provisioning
approaches. These two approaches use the resource elasticity provided by the cloud
computing paradigm to reduce the operational cost for running SPAs under volatile data
volume. The first resource provisioning approach is threshold-based approach and can
find the optimal resource configuration depending on the current data volume for the
SPA. This dynamic resource provisioning approach allows this approach to outperform
established fixed resource provisioning strategies regarding cost efficiency. The second
approach represents an evolution of the first approach by considering additional external
aspects like the billing time units to avoid any unnecessary operational overhead for
updating the resource configuration. According to our evaluation, we can see that our
second approach outperforms the first one for most real-world scenarios and allows for
an even more cost-efficient operation of SPAs while ensuring the timely processing of
data streams.
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CHAPTER 1
Introduction

The rise of the Internet of Things (IoT), a new paradigm where devices are equipped to
communicate with each other, leads to more and more IoT devices in the industry as
well as the private sector [8], [9]. Most of these IoT devices offer data streams that can
be used to extract information about their surrounding environment, like the weather, or
their internal state like the production progress for manufacturing machines. This data
extraction is conducted by Stream Processing Applications (SPAs) that are composed
of different operators which perform dedicated tasks, such as data filtering or data
aggregation [10]. The composition of these operators is defined by a topology which
connects the operators based on a directed acyclic graph that represents the data flow
through the SPA. To run an SPA, the topology needs to be operated by an Stream
Processing Engine (SPE). An SPE provides a runtime environment for SPAs which is in
charge of two major tasks. The first task is to provide enough computational resources
for the operators that perform the data processing and the second task is to ensure the
data flow among the operators based on the topology.

The first SPEs [11]–[13] emerged from database systems over a decade ago to process
constant data streams on single computers or computer clusters. These SPEs were
designed to extract information from data streams, but the high popularity of social
networks introduced a new challenge for SPEs. This new challenge was the huge data
volume of data streams which lead to a redesign of the first SPEs to address this
shortcoming [14]–[16] This redesign built on top of the principles of cloud computing
enabling a high degree of parallel data processing on virtually unlimited resources [17], [18].
While these SPEs represent the current state-of-the-art, the rise of the IoT introduces
additional challenges for SPEs. These challenges originate from the distributed locations
of IoT devices as well as the growing user base for SPAs which is discussed in detail in
Section 1.1. To address these challenges, we propose to evolve the concept of data stream
processing again and create a holistic ecosystem around SPEs.

1



1. Introduction
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Figure 1.1: Vienna Stream Processing Ecosystem

By introducing the VIenna ecosystem for Stream Processing (VISP) as shown in Figure 1.1,
we provide an ecosystem which allows designing and operating SPAs as well as optimizing
their data throughput at run time. This ecosystem is built around a novel SPE, the VISP
Runtime and other supporting components like the VISP Marketplace whose components
are presented in detail in Chapter 5.

1.1 Problem Statement
Up to now, data stream processing is mainly used for social networks [14], [19] or in the
financial domain [10]. Nevertheless, due to the continuous rise of the IoT, data stream
processing becomes also relevant for other domains. These other domains range from
factory owners monitoring the health and productivity of their manufacturing machines
based on sensor data up to individual private user. Today, numerous private users operate
IoT devices, like health monitors [20] or weather stations [21], to collect information
about themselves or their environment. To cater for this growing user base, the focus of
data stream processing needs to be revised to consider the novel challenges that stem
from the rise of the IoT.

The first challenge is the geographic distribution of different data sources, i.e., sensors
mounted on IoT devices, which are often far away from computational resources [22].
This requires the data streams to be transferred either to rather small and expensive
local private clouds or to centralized public clouds for processing [23]. After the data is
processed, it has to be delivered to the designated receiver, which can be in the proximity
of the data source, e.g., actuators for the IoT device, or at an arbitrary geographic
location, e.g., a system operator who wants to monitor the status of manufacturing
machines on a mobile device. Nowadays, SPEs are only designed to operate in one
location and cannot manage the data flow and processing across different geographic
locations.

2



1.1. Problem Statement

Therefore, SPA operators tackle this challenge by either deploying multiple SPE instances
close to the data sources on private clouds or by deploying one centralized SPE on
a public cloud [22], [24]. Both approaches exhibit major problems: The centralized
approach exposes a low network-efficiency as well as a high latency because the data
needs to be transferred to the SPE over the network, i.e., the Internet, before it can
be processed [25]. The distributed approach promises low latency but requires high
setup cost by establishing the communication among different SPEs running in different
geographic locations. Furthermore, SPEs often need to deal with resource constraints
like limited computational resources in a specific location due to the deployment on a
computer cluster instead of an cloud. This challenge calls for a novel approach for data
stream processing, which integrates the different geographic locations and provides a
transparent user interface for managing and controlling SPAs in a similar manner as it is
the case for SPEs running in only one location.

The second challenge for SPEs considers the economic aspects of data processing. Al-
though SPEs are highly efficient regarding data processing, they struggle with volatile
data volume over time [1]. Most SPEs operate on a fixed amount of computational
resources and cannot adapt to changes of the data volume at run time [2]. One solution
for this issue is the over-provisioning of computational resources so that the SPE can
process any volume of incoming data while complying with given Service Level Agree-
ments (SLAs) [26]. Although this approach ensures a high level of SLA compliance, it
is not cost-efficient because the provisioned computational resources are not used most
of the time. A more economically feasible approach is under-provisioning, where an
SPE is only equipped with computational resources to cover most of the incoming data
volume. However, in the case of under-provisioning, the SPE may violate given SLAs
for high volume scenarios because the data cannot be processed in time. A potential
solution approach to this challenge is to elastically provision computational resources on
demand based on the data volume emitted by the data sources. This approach allows to
update the amount of computational resources at run time. Furthermore, this results
in low operational costs compared to the over-provisioning approach and a better SLA
compliance than the under-provisioning approach.

The third challenge considers the usability of SPEs. Until now, SPAs are only used by
experts who are both able to create SPAs as well as administrate SPEs. Due to the
continuous expansion of IoT devices, this user base is going to grow and it is required
to introduce an abstraction for the predominating code-based representation of SPAs
towards a flexible, extensible and easy readable description of topologies. Furthermore,
it is also necessary to evolve the current design process, where each SPA is implemented
from scratch to a reuse-oriented one similar to the library ecosystem used in software
engineering [27]. In addition it is required to enable the use of SPEs in a Platform as a
Service (PaaS) manner, which does not require any expert knowledge to operate SPAs.

The three above-mentioned challenges cannot be addressed with currently existing SPEs
and require a novel system design for SPEs as well as a holistic data stream processing
ecosystem.

3



1. Introduction

1.2 Research Questions

The motivation for this thesis is based on the challenges presented in Section 1.1 and
formulated as the following research questions.

Research Question I
How can geographically distributed data streams be processed efficiently?

The rise of the IoT results in more and more geographically distributed IoT devices, whose
data streams are processed by SPAs running on SPEs in centralized clouds or secluded on
private clouds next to the data sources. This data processing deployment is a result of the
system design of today’s SPEs that are designed to run in only one geographic location.
Since the current predominant system design for SPEs exhibits major drawbacks, as
discussed in Section 1.1, it is required to come up with a new system design for SPEs.
Such a new system design must be able to deal with the geographic distribution of data
streams as well as of computational resources. Therefore, it is required to design a novel
generation of SPEs which enable a network-efficient data flow for the data streams while
ensuring a transparent management of the distributed geographic locations for operating
SPAs.

Research Question II
How can stream processing applications be described to allow a distributed
deployment model and respect service level objectives?

Based on the distributed runtime environment provided by novel SPEs, it is also required
to consider the different geographic locations for SPAs. Up to now, SPAs are only
designed to run in one specific geographic location and their design only considers the
choreography of the individual operators. When we operate SPAs on a distributed SPE,
it is required to consider the geographic location of fixed entities like sensors on IoT
devices. Furthermore, there may also be legal restrictions to transfer privacy-sensitive
data outside of legal jurisdictions or even just outside a company’s premises that host the
data source. In addition, it is also required to explicitly model Service Level Objectives
(SLOs) for SPAs. Any distributed system introduces higher data transfer times among
the individual system components compared to a centralized deployment which needs to
be considered for the operation of SPAs. To address this lack of description functionalities
for SPAs, it is required to investigate how already established notions for describing SPAs
can be extended to cater for the new challenges introduced by distributed SPEs.
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Research Question III
How can stream processing applications be optimally executed on computa-
tional resources?

Besides the geographic distribution aspect, it is also necessary to consider the economical
aspect of operating SPAs. For this aspect, it is crucial to minimize the computational
resources that are used by SPAs to reduce the operational cost. However, it is also
required to comply with predefined SLOs, e.g., the maximum processing duration, to
avoid penalty cost for delayed processing. While this compliance is rather simple for a
constant data volume, it is challenging for changing data volume, e.g., a varying number
of active manufacturing machines through the course of the day. At the moment, the
most common approach is an over-provisioning approach, where the SPE has enough
computational resources at its hand that can be assigned to the SPAs to handle any
data volume provided by the data sources. Although this approach allows a high SLA
compliance, it results in unnecessary high resource cost. Therefore, it is required to
adopt elastic provisioning approaches and investigate how these approaches can reduce
the operational cost without causing penalty cost for delayed processing.

1.3 Scientific Contributions

Contribution I
A system design for a holistic stream processing ecosystem in distributed
environments

The constant rise of IoT devices leads to numerous unbound data streams in different
geographic locations. These data streams can be hardly processed in a network-efficient
manner, due to the centralized architecture of today’s SPEs. To address this shortcoming,
we analyze how SPAs are designed and operated with today’s SPEs. Based on this
analysis and the challenges presented in Section 1.1, we revise the concept on how SPAs
are designed or operated today and introduce the VISP Ecosystem. The VISP Ecosystem
features not only a novel SPE, the VISP Runtime, which is capable of processing data
streams across distributed runtime environments, but also presents a novel approach
on how SPAs are designed. This novel approach is a decomposition of SPAs into self-
contained operators, which can be used as building blocks. These building blocks can be
shared among different SPAs to reduce the implementation effort compared to today’s
model, where each SPA is implemented from scratch. The details for this contribution
are presented in Chapter 5 and Contribution I was originally presented in [3].
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Contribution II
An approach to define quality of service- and location-specific aspects for
stream processing applications

While Contribution I introduces a new ecosystem for designing and operating SPAs,
it is also required to revise the notation for topologies that define the structure of
SPAs. Until now, existing notations for topologies only consider centralized runtime
environments which do not require any deployment location constraints because there
is only one possible deployment location. Nevertheless, due to the new possibilities
provided by the VISP Ecosystem, it is required to extend existing notations. To address
this issue, we extend the Stream Processing Language (SPL), which was introduced
for IBM System S [28] and serves as a commonly used notation for SPAs. Our novel
notation, the Vienna Topology Description Language (VTDL), also considers different
deployment locations and computational resource preferences as well as deployment
restrictions. In addition, we also introduce a fine-granular definition model for SLOs,
which provides the foundation for any resource optimization and scaling activities as
presented by Contribution III. The details for this contribution are presented in Chapter 6
and Contribution II was originally presented in [7].

Contribution III
A cost-efficient resource provisioning approach for stream processing applica-
tions

The first two contributions provide the foundation for designing and operating SPAs in
a distributed environment. However, in today’s industry, there is also a constant cost
pressure, which needs to be addressed. In terms of data stream processing, the two most
prominent cost factors are the cost for computational resources and potential penalty
cost, if the data processing does not meet predefined SLOs as defined by given SLAs.
In order to solve this issue, we design two different resource provisioning approaches.
These approaches are not only in charge of providing an initial deployment of the SPA,
but also to update the resource configuration at run time to comply with the processing
requirements of the SPA. To evaluate the applicability of the resource provisioning
approaches under varying data volume, we implement them within the VISP Runtime
and conduct comprehensive experiments within a single location as well as in a distributed
environment. The details for this contribution are presented in Chapter 7 and Chapter 8
and Contribution III was originally presented in [2], [6].
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1.4 Organization of this Thesis
The remainder of this thesis is structured as follows.

Chapter 2 provides background information on fundamental concepts used in this
thesis like data stream processing, resource provisioning and the IoT.

Chapter 3 discusses the related work to the contributions presented in Section 1.3.

Chapter 4 presents our motivational scenario which is used throughout the thesis to
motivate the requirements and evaluate the contributions.

Chapter 5 presents the requirements and the system design for the VISP Ecosystem.

Chapter 6 introduces the VTDL, a novel notation for describing SPAs.

Chapter 7 presents an threshold-based resource provisioning approach for SPAs.

Chapter 8 introduces a novel resource provisioning approach for SPAs, which focusses
on a high resource usage for cloud resources.

Chapter 9 concludes the thesis by summarizing the contributions and providing an
outlook to future research challenges.
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CHAPTER 2
Background

In this chapter, we introduce three basic concepts that are used in this thesis. First, we
discuss the terminology for data stream processing. Then, we present the most common
resource provisioning approaches, provide a short introduction to the IoT and highlight
why the IoT poses new challenges for data stream processing.

2.1 Data Stream Processing

The goal of data stream processing is to process live data without any delay to extract
information for users. The domain of data stream processing has been established in the
course of the last 15 years as discussed in Section 3.2 and the data stream processing
community has established a terminology which is presented in this section [29].

In terms of data stream processing, there are two different viewpoints that are used
within this thesis: a user-oriented and an operational one whose concepts and terms are
visualized in Figure 2.1. The user-oriented viewpoint (shown in normal font in Figure 2.1)
describes the overall task of data stream processing as it is perceived by users who
are only interested in the result, i.e., the extracted information. For a user, a Stream
Processing Application is in charge of extracting information from Data Streams. Such an
SPA is a black box from the user’s point of view that is in charge of a specific task, e.g.,
monitoring manufacturing machines. The SPAs are supplied with data streams, which
are composed of a continuous sequence of Data Items. These data items contain the raw
information, e.g., sensor data, which needs to be processed by the SPA to extract insights.
The data items are generated by Data Sources, which can either be physical devices, e.g.,
sensors mounted on IoT devices, or external software services, like online news portals.
After processing the data items, the results are provided as a continuous stream of data
items to data sinks, which can either be users who monitor IoT devices, arbitrary software
services or other IoT devices that use the information for further activities.
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Figure 2.1: Exemplary Stream Processing Scenario

Besides the user-oriented viewpoint, there is also an operational one, which describes
the implementation of the actual information extraction functionality shown in italic
font in Figure 2.1. SPAs are typically managed by a Stream Processing Engine that is
in charge of handling the data streams and providing enough computational resources
for Operators to process the data. Each SPA is composed of arbitrarily many operators
whereas each performs a specific task, such as data filtering or data aggregation [10]. The
composition of the operators is defined by a Topology which describes the flow of data
streams between the individual operators. This topology is represented by a directed
acyclic graph that is designed individually for each SPA at design time. Whenever the
SPA is started, this topology serves as a blueprint which lists all operators that need to
be instantiated on computational resources and instructs the SPE on how to wire the
individual operators to achieve the desired functionality of the SPA.

2.2 Resource Provisioning

Resource provisioning, i.e., the provisioning of computational resources for software-based
services, is one of the most important domains for operating software systems because
software systems like SPAs cannot be executed without any computational resources.
The literature distinguishes between two fundamental approaches, namely fixed resource
provisioning and elastic resource provisioning [30], which are discussed in detail in the
remainder of this section.

2.2.1 Fixed Resource Provisioning

The fixed resource provisioning approach represents a very simple and therefore the most
common resource provisioning approach until the emergence of the cloud computing
paradigm [30]. For this approach, the computational resources are provisioned upfront
based on arbitrary estimations. After the software system is started, i.e., at run time,
these computational resources do not change. This approach is a perfect solution for
software systems that deal with a constant load, e.g., data volume, which can be estimated
beforehand, e.g., based on historic data.
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Nevertheless, systems with a fixed resource provisioning configuration can face challenges
when the load for the software system changes. These load changes can occur due to
predictable changes, e.g., day and night cycles [31], [32] or due to peak scenarios, which
are triggered by extraordinary events like elections or catastrophes that can result in
very high loads for a short time span [33].

To ensure a high Quality of Service (QoS), system providers can be pessimistic when
calculating the resource requirements for a software system and plan significantly more
resources than the system requires in an average case scenario [34]. This approach is
called over-provisioning and is shown in Figure 2.2a. It shows that the provisioned
computational resources are enough to process any data volume in the shown timeframe
without any negative impact to the QoS. Although this approach allows for a high QoS,
the resource usage of the computational resources is rather low because a large part
of the computational resources is not used for most of the time. Due to the fact that
provisioned computational resources need to be paid regardless of their actual usage, the
over-provisioning approach is economically very inefficient and results in unnecessary
high operational cost.

To reduce the operational cost, some system providers pursue a more optimistic approach
and only provision computational resources to cover most data volume scenarios [34].
This approach is called under-provisioning and can be seen in Figure 2.2b. Although
the under-provisioning approach is sufficient for most data volume, there are some data
volume peaks that cannot be dealt with. This results in a lower QoS compared to
the over-provisioning approach. Since this approach anticipates situations where the
data processing needs to be postponed or data needs to be discarded due to the lack
of computational resources, the literature already provides several strategies to actively
manage these situations, i.e., to apply load shedding [35]–[37]. The simplest strategy is
to apply a First-In, First-Out (FIFO) approach, where all data has the same priority
and data peaks result in a delay because some data items need to be buffered before
they can be processed. Although the FIFO strategy is the fairest approach, it is often
more efficient from a users’ point of view to apply more sophisticated load shedding
strategies, like prioritizing specific data items or processing only the most recent data
items to ensure a timely information extraction of the data streams [37].

2.2.2 Elastic Resource Provisioning

Due to the fact that fixed resource provisioning exhibits several disadvantages like
the inefficient resource usage or low QoS, the cloud computing paradigm has been
introduced [30]. This paradigm builds on the concept of pooling computational resources,
like processing capabilities, storage, networks or applications [38], which can then be
used by different stakeholders on-demand depending on their actual need and return the
resources to the pool when they are not required anymore. This approach is called elastic
resource provisioning because it can change the resource configuration at run time to
closely couple the computational resources to the data volume as shown in Figure 2.2c.
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Figure 2.2: Resource Provisioning Approaches

The pooling of computational resources within one company leads to the creation of
private clouds, where different software systems can use the computational resources from
a common resource pool according to their demand – as long as the resources are not
already used by other software systems [30]. This approach enables system providers to
apply an under-provisioning strategy when starting the system and change the resources
on demand when more resources are needed to cover peak loads. Therefore, this elastic
approach allows for a better cost structure because resources are only provisioned
when they are needed to maintain a high level of QoS [34]. Although the pooling of
computational resources within a private cloud allows software systems to comply with
most data volume, there may be some events where even these private clouds are not
sufficient to process the data without any delay. To cover these scenarios as well, it is
required to extend the scope of the pooled resources and pool computational resource
among different companies within public or community clouds [38]. These public and
community clouds have the same characteristics as private clouds. However due to the
fact that they pool more computational resources, they can provide practically unlimited
resources for individual software systems. This almost unlimited resource access allows
software systems to process any incoming data volume without any delay or data loss
and achieve a high QoS at a reasonable cost structure.

2.3 Internet of Things
The Internet of Things is an emerging concept which connects different physical objects
with the core of the Internet and therefore represents an extension to today’s perception
of the Internet according to Shelby [39] that is visualized in Figure 2.3. The core of the
Internet is represented by a composition of backbones, routers, and servers that change
very seldom and provide the core functionality of the Internet by connecting different
stakeholders and providing content all over the world. This Core Internet is accessed
and used by the Fringe Internet that consists of personal computers, smartphones, and
laptops [39]. Therefore, the Fringe Internet can be considered as an additional layer on
top of the Core Internet which is volatile in terms of its structure, since its users follow a
day and night cycle [31] and only connect to the Core Internet when they want to use it.
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Figure 2.3: Onion Ring Model for the Internet of Things (adapted from [39])

In the past, this Fringe Internet layer has also been used as a proxy to share the data
of physical devices that could not be directly connected to the Internet due to a lack
of suitable network adapters [39]. Nevertheless, due to the technological advances in
decreasing the size of the network adapters, it is nowadays also possible to connect these
physical devices directly to the Internet and promote them to IoT devices. These IoT
devices form an additional layer on top of the Fringe Internet, the Internet of Things
and are capable of autonomously participating in the Internet.

Although IoT devices can be found in almost any domain, there are four core application
domains for the IoT [8]: smart environments (building or industrial automation), trans-
portation and logistics, personal sensors and healthcare. These core domains are the
main drivers for the realization of the IoT and according to an analysis by Gartner [9],
it is assumed that up to 8.4 billion IoT devices are used in 2017, which indicates a
growth of 30% compared to 2016. Similar to the Fringe Internet, the IoT also exhibits a
very distributed and volatile character in terms of their geographical locations, because
the IoT devices may be weather sensors in remote locations or GPS-tracker on moving
vehicles that constantly report their current location [40]. This volatile structure of the
IoT as well as the lack for fixed geographic locations pose high challenges to systems
which process their data since these processing systems, e.g., SPAs need to be constantly
updated either in terms of their structure due to changing data sources or in terms of
their deployment due to the changing locations of the IoT devices.
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CHAPTER 3
Related Work

In this chapter, we present the relevant related work for this thesis, which covers the
domains of ecosystems for the IoT, elastic SPEs, resource provisioning approaches for
SPAs and topology definition approaches for SPAs.

3.1 Ecosystems for the Internet of Things

Due to the increased spread of IoT devices, the number of IoT ecosystems grew in
the last couple of years both in the academic and commercial domain [41], [42]. The
goal of these IoT-ecosystems is to integrate IoT devices and provide their data for
further processing [43]–[45] as well as to integrate existing SPEs to enable an efficient
data processing. Besides the integration of IoT devices and SPEs, there are also first
approaches towards building marketplaces to share data and operators among users.
Munjin and Morin [46] propose a marketplace, which can be used to connect to IoT
devices with external systems, like SPEs. This approach focuses on the connection and
integration of IoT devices and does not consider any further data processing or information
extraction mechanism. Akpinar et al. [47] propose the ThingStore concept that extends
the portfolio of the marketplace by also considering SPAs to process the data as well as
raw data provided by IoT devices. This approach follows similar design principles as
the VISP Marketplace (see Section 5.3.1) and allows users to create complex SPAs for
the IoT. In addition to the operator-oriented marketplaces, there is also the MARSA
ecosystem presented by Tien-Dung et al. [48] which focuses only on the monetization
of data provided by IoT devices. MARSA allows data providers to offer their data to
different users. These users can either integrate the data into their SPAs or refine the
data filtering to resell the improved data again on the MARSA marketplace. Although
MARSA only focusses on the monetization of data, it is so far the only IoT-related
marketplace that supports different business models, ranging from one time payments to
subscription models.
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Table 3.1: Ecosystems for the Internet of Things
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Besides the different proposals from the academic domain, there are also already several
commercial ones. Table 3.1 lists the most relevant commercial ones and compares their
capabilities to ThingsStore [47] as well as the VISP Ecosystem, which is introduced in
Section 5.3. The Groovestreams [49] ecosystem provides a simple cloud-based runtime
environment that allows users to upload data streams and analyze them with a set of
operators that are provided by Groovestreams. On top of the default functionality to use
single operators for data analysis, this ecosystem also provides the capabilities to combine
different operators in a linear topology by chaining them. A similar feature set is provided
by the IFTTT ecosystem [50] that focuses on the integration of external data providers
and SPAs hosted on external service providers. Therefore, this ecosystem provides an
extensive marketplace of external SPAs and data sources to be combined by a dedicated
topology builder that is provided by IFTTT. This topology builder automatically includes
any data transformations between the external SPAs to create a smooth user experience
for domain experts that are only focussed on the overall information extraction task and
do not care about the concrete implementation. Besides the data processing and operator
integration functionality, there is also the ThingWorx [51] platform, which focusses on
integrating the data provided by IoT devices with external data processing solutions.

In addition to the dedicated IoT-based ecosystems, the three major cloud service providers
also provide services to process data originating from IoT devices: Amazon Web Services
IoT [52], Google Cloud Dataflow [53] and Microsoft Stream Analytics [54]. While
Amazon already provides a large toolkit of different services tailored to process IoT-based
data, the other two providers only offer generic data stream processing capabilities.
These ecosystems require dedicated data integration solutions like ThingWorx or Apache
Edgent [55]. In contrast to the other ecosystems which operate on a Software as a Service
(SaaS)-basis, Apache Edgent is a software library that can be installed anywhere to
integrate IoT devices from the edge of the network with cloud-based data processing
solution as those presented above.
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When comparing these different ecosystems for processing IoT-based data, it can be seen
that no ecosystem besides the VISP Ecosystem provides a holistic approach to create
SPAs, which is suitable to address the challenge presented in Section 1.1. Although the
major cloud service providers already offer reliable data stream processing capabilities,
they only provide limited support for users to create new SPAs. This aspect has been
addressed by specialized providers like Groovestreams or IFTTT, which implement the
concept of operator reuse among different SPAs and provide marketplaces to share the
operators. This also applies to the user support for designing topologies. While the
major cloud providers only provide a code-based topology definition approach for SPAs,
IFTTT provides an easy to use Web-based user interface. This interface allows users to
design topologies by simply chaining different operators together while all other providers
require the user to provide concrete implementation details for the SPA. Finally, most
ecosystems focus on a centralized cloud-based solution approach and do not consider the
particularities of privacy-sensitive data, which renders them infeasible for most business
scenarios [56].

3.2 Elastic Stream Processing Engines
The roots for data stream processing can be found in the domain of databases. Although
databases are a perfect solution for storing and processing static data, they are too
inefficient to process continuous data streams without any delay [29]. This challenge lead
to the development of the first SPE called Aurora [11] and its successor Borealis [12].
While Aurora is designed in a monolithic manner, Borealis already considers a distributed
deployment on a cluster system. This distributed deployment allows to increase the
overall fault tolerance for the SPE and to provide a higher performance due to the parallel
data processing [57]. Since Borealis has been designed before the emergence of the cloud
computing paradigm [38], it is only able to operate on a fixed set of computational
resources and needs to apply load-shedding mechanisms to cope with changing data
volume [35]. The same also applies for other pioneering SPEs like STREAM [58] or the
first versions of IBM System S [13].

Besides these pioneering SPEs, there are also several more recent SPEs that leverage
cloud resources to process huge amounts of data almost instantly [59]–[62]. The usage
of cloud resources for SPEs has first been proposed by Ishii and Suzumura [63]. Their
system design supports an elastic resource provisioning strategy based on cloud resources
to cope with changing data volume. This approach results in a cost-efficient data
stream processing solution which renders less operational cost compared to a fixed over-
provisioning approach. While Ishii and Suzumura rely on a hybrid cloud model, there
are also several cloud-based SPEs that are designed to run on a single homogenous cloud.
The most prominent representatives are Apache Storm [17], Apache Spark [18], Apache
Samza [16], Apache Flink [64], and Heron [14].
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Table 3.2: Elastic Stream Processing Engines
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These SPEs are motivated by the Big Data domain and are designed to efficiently
process huge amounts of data in parallel without any delay. Nevertheless, these SPEs
hardly support any topology changes and each modification of a topology or the resource
configuration for the SPA triggers a complete redeployment of to the SPA which is not
feasible for IoT-based environments as discussed in Section 2.3. To resolve this challenge,
Cardellini et al. [65] propose an extension to Apache Storm. This extension implements
an adaptive scheduler that can reorganize the topology deployment of the SPA at run
time to allow for an elastic resource provisioning strategy for each operator individually.

Besides this academic approach, there are also other projects like Spring Cloud Data
Flow [66], which also picks up the concept of elastic resources for each operator to
enable fine granular resource provisioning strategies. The downside of these SPEs is
that they only support stateless SPAs [67]. In order to also support stateful stream
processing operators, it is required to implement synchronization strategies among all
replicas of each operator. To solve this problem, some preliminary work has already
been presented: Fernandez et al. [68] propose to implement a checkpointing mechanism
whose snapshots are distributed among all replicas of the same operator to synchronize
the state. Gedik et al. [69] propose the usage of a shared storage, e.g., a key-value
store, to synchronize the state among multiple operators. The major advantage of this
external shared storage is that it can be integrated into any SPE without changing
the fundamental system design of the SPE in contrast to the checkpointing mechanism
proposed by Fernandez et al. In addition to the fundamental challenges of designing
an elastic SPE that supports stateful SPAs, there are also several challenges on how to
implement cost-efficient resource provisioning strategies for SPAs [26]. These challenges
have received a lot of attention in recent years and Section 3.3 provides a detailed
discussion on this topic.

When we compare the above mentioned SPEs based on Table 3.2, we can see that all
SPEs already support a distributed runtime. This distributed runtime can be either on a
fixed resource cluster, like for Borealis, on cloud resources, like the stream processing
infrastructures by Google and Amazon, or can be completely dynamic, like the distributed
Apache Storm extension proposed by Cardellini et al. [65].
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Some of these SPEs are also capable of running on more than one cloud across different
geographic locations. This feature enables the SPEs to operate on hybrid clouds, where the
majority of the data is processed within a private cloud but it is also possible to cover peak
loads with computational resources from external public clouds. For the two major cloud
service providers Google and Amazon, there are no concrete publications on how they
handle the resource provisioning across different clouds, but there is evidence that they
also integrate different computational resource pools to provide their services to users [70].
Furthermore, there are also several SPEs which can update their resource provisioning
configuration at run time like Spring Cloud Dataflow or the services by Amazon and
Google. Nevertheless, they hardly provide any optimized resource provisioning algorithms
to minimize the operations cost for SPAs. However, there are already several proposals
for cost-efficient resource provisioning approaches on top of the SPEs listed in Table 3.2
as presented in the next section.

3.3 Resource Provisioning Approaches for Stream
Processing Applications

Alongside the emergence of the cloud computing paradigm [30], several research groups
have started to propose different resource provisioning approaches to leverage the resource
elasticity of the cloud. In the area of data stream processing, most early publications
focus on an optimal resource configuration only when deploying a topology and do
not consider any updates at run time, e.g., Setty et al. [71] for pub/sub systems or
Florescu et al. [72] for database systems. The next step towards resource elasticity
was proposed by Lim et al. [73], who proposed to redeploy complete SPAs whenever
the data volume, i.e., resource requirements, change. Although this approach already
supports resource elasticity for SPAs, it is required to refine this approach to only consider
individual operators instead of the complete SPA. This individual handling of operators is
addressed by Schneider et al. [74], who propose the individual parallelization of operators
within IBM System S. Because this first approach only considers stateless operators, the
authors complements their approach in a succeeding publication to also consider the
replication of stateful operators [69].

Besides the elasticity extension to IBM System S, there are also several extensions to
Apache Storm, which replace the default scheduler with custom implementations to
optimize the parallelization of operators as well as the placement thereof on different com-
putational resources. Two of these approaches have been presented by Aniello et al. [75]
and Xu et al. [76] who introduce threshold-based custom schedulers that can update the
topology deployment at run time, depending on the incoming data volume. Although any
replication of a specific operator provides additional processing capabilities, it has to be
noted that any reconfiguration of the topology deployment has a negative impact on the
processing performance. To minimize these reconfigurations, Stela [77] introduces new
performance indicators to focus on the actual throughput of the SPA and to eliminate
all unnecessary reconfigurations.
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To extend the rather static aspect of the threshold-based scaling approaches [75], [76],
Heinze et al. [78] propose a threshold-based resource optimization whose thresholds are
updated on a regular basis according to an online learning mechanism. This allows the
resource optimization approach to refine the otherwise fixed thresholds to improve the
resource usage based on actual monitoring data. The SEEP SPE [68], also proposes a
threshold-based replication mechanism but in contrast to the already discussed approaches,
SEEP focuses on stateful operators and employs a dedicated fault tolerance mechanism.

In addition to the threshold-based replication approaches, there are also some works that
optimize specific aspects for operating SPAs. One of these aspects is the partitioning
of data to optimize the data flow among the operators, especially for stateful operators.
The Streamcloud [79] SPE proposes a mechanism to partition the incoming data to
distribute it efficiently among the different replicas of one operator type. De Matteis
and Mencagli [80] present a predictive approach to minimize the latency of the SPAs
and improve the energy efficiency of the SPEs. This approach allows to reduce the
reconfigurations of the topology to reduce the overall management effort for the SPA.

The last notable approach for optimizing the topology enactment on cloud resources
is to optimize the deployment of operators according to their specific processing tasks.
Hanna et al. [81] consider different types of Virtual Machines (VMs), e.g., with an
emphasis on CPU or GPU, and optimize the deployment based on the suitability of these
machines to conduct specific operations, e.g., matrix multiplications are significantly
faster when executed on the GPU instead of the CPU.

3.4 Topology Definition Approaches

The large number of established SPEs results in a large variety of different topology
definition approaches that require SPAs to be designed for each SPE individually. To
address this incompatibility issue, the Apache Beam project has been initiated [82]. This
project introduces the abstract Beam Model based on the Dataflow model [83] that can
be directly translated into concrete instructions for different SPEs, like Apache Spark [18]
or Apache Flink [64]. However, Apache Beam only supports a small set of features for
SPAs because it is an abstraction layer for other topology definition approaches and
therefore can only support the least common denominator among these SPEs.

Besides Apache Beam, there are also several native topology definition approaches for
SPEs as shown in Table 3.3. This table lists several topology definition approaches
besides the VTDL, which is introduced in Chapter 6 and analyzes them whether they
support any advanced features for SPAs besides composing the individual operators to
form an SPA, like deployment preferences or QoS-related aspects.

One of the most important topology definition approaches is the SPL, which has been
proposed by Hirzel et al. [84] for IBM System S. The SPL has already been proposed
several years ago and only considered the composition of operators.
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Table 3.3: Topology Definition Approaches
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Deployment Preferences X (X)
QoS Aspects X (X) (X)
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Semantic Annotation X X
Runtime Modification X (X) (X)
Data Transfer Aspects X

In recent years, the SPL has been revised and now also supports the placement of
operators on specific computational resources within one IBM System S instance [28].
However, the SPL does neither support topologies across different IBM System S instances
nor considers any QoS-related or fault tolerance-related instructions. Another approach
for defining the topology of SPAs, the Continuous Query Language (CQL), has been
presented by Arasu et al. [85]. The CQL follows the design principles of the Structured
Query Language (SQL), which allows users to create new SPAs based on a SQL-like
syntax without considering any SPE-related aspects. The downside of this approach is
that the CQL only focuses on filtering data streams and therefore does not support any
complex features for SPAs. Furthermore, the CQL is not widely supported by SPEs.
To address this issue, Soule et al. [86] proposed an intermediate language called River,
which allows running CQL-based SPAs on IBM System S. This abstraction layer follows
a similar approach as the Apache Beam project and also supports the integration of
StreamIt [87], a programmatic topology definition approach for IBM System S.

Although abstract topology definition approaches like SPL or CQL have been around
for several years, the majority of today’s established SPEs only supports a code-based
topology definition approach. This is mainly due to the fact that code-based approaches
can be directly run on SPEs while abstract approaches need an additional layer that
translates the topology definition into concrete composition and wireing instructions.
For the analysis of the related work, we focus on Apache Storm [17] and Apache Spark
Streaming [18] as representatives for established SPEs. Nevertheless their feature set is
similar for other SPEs like Apache Apex [88], Apache Flink [64], and to some extent also
Apache Kafka [89]. These established SPEs already consider basic QoS-related aspects
and can redistribute computational resources at run time, but none of them supports any
structural changes to topologies, like the replacement of a specific operator, at run time.
Within the Apache Storm ecosystem, there is also the Flux project [90], which provides
an abstraction layer for SPAs for Apache Storm. This abstraction layer follows similar
design principles as the SPL and allows users to create SPAs with hardly any knowledge
on data stream processing.
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CHAPTER 4
Motivating Scenario

In this chapter, we present a motivating scenario from the manufacturing domain and
provide high-level requirements that guide through the remainder of this thesis.

4.1 Monitoring of Manufacturing Machines

One of the most prominent scenarios for the rise of the IoT is the manufacturing domain,
where more and more manufacturing machines are equipped with sensors that generate
data streams. These data streams can be used to extract vital information about the
health or the production progress of the machines. For our motivational scenario, we
consider a monitoring SPA, which transforms raw sensor data into an human-readable
report. The task and structure of this SPA is based on a real world scenario, which
was analyzed in the course of the EU H2020 project on Cloud-based Rapid Elastic
Manufacturing (CREMA) [91]. First, we present the topology of this monitoring SPA as
well as the tasks of the individual operators and second, we discuss the deployment for
this SPA.

4.1.1 Design of the Monitoring Stream Processing Application

Figure 4.1 provides an overview of the topology of the monitoring SPA on the right hand
side, which is composed of nine different stream processing operator types (O1 – O9) to
process the data originating from three different data sources (S1, S2, and S3). Each
of the operator types performs a dedicated operation to transform the raw data from
manufacturing machines step-by-step into value-added and human-readable information.
The information provided by the data sources is used to monitor three different aspects:
the availability of the manufacturing machines, the temperature to avoid overheating
and the Overall Equipment Effectiveness (OEE), a commonly used Key Performance
Indicator (KPI) to evaluate the efficiency of manufacturing machines [92].
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Figure 4.1: Motivating Stream Processing Application

For this motivational scenario, there are two different types of data sources. The first type
of data sources are sensors, i.e., S1 and S3, which emit machine-readable data and can
be directly accessed via an Application Programming Interface (API). The second data
source type, i.e., S2, is a video feed, which scans a display of the manufacturing machines
because the production information is not directly accessible via an API. To extract the
information from this video stream, it is required to apply additional preprocessing to
transform the data into machine-readable data.

The Availability Sensor (S1) emits the current status, i.e., available, defect or
planned downtime, of the manufacturing machine every two seconds. This information
is filtered by the Filter Availability (O1) operator, which generates warnings for each
new defect incident of a specific manufacturing machine. The warning is then forwarded
to the Inform User (O9) operator that notifies the human supervisor. All other status
reports are discarded, since they only signal intended behavior which does not require
any action by the supervisor.
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The second data type is the Production Data (S2), which is obtained by a video stream,
i.e., an image taken every ten seconds. This image contains different production-related
information, such as the amount of produced goods, and needs further processing, e.g.,
by Optical Character Recognition (OCR), to extract machine-readable information. The
Parse and Distribute Data (O3) operator parses the image and distributes the information
to three operators (O4, O5, and O6) that calculate the different components of the OEE
value. These individual components are then united by the Calculate OEE (O7) operator
and the calculated OEE value is forwarded to the Generate Report (O8) operator, which
generates a report every minute. This report aggregates the information of all monitored
machines and is forwarded to the Inform User (O9) operator where it can be accessed by
the human supervisor.

The Temperature Sensor (S3) emits the temperature twice every second. This information
is processed by theMonitor Temperature (O6) operator, which triggers a warning whenever
the temperature exceeds a predefined threshold to avoid overheating. This warning is also
forwarded for each new incident to the Inform User (O9) operator to inform the human
supervisor about potentially problematic situations of the manufacturing machines.

4.1.2 Deployment of the Monitoring Stream Processing Application

For the deployment of the monitoring SPA, we consider two different scenarios. The
first scenario is a centralized one, which represents the state-of-the art deployment for
SPAs running on SPEs. For this scenario, all sensors and operators are located in one
geographic location on a common set of computational resources. Although this scenario
is straight forward in terms of handling the data flow and assigning computational
resources, it does not consider the requirements for organizations operating plants in
different locations. Therefore, we also consider a distributed execution environment
across three different geographic locations as shown on the left hand side in Figure 4.1
The first geographic location is the manufacturing plant, which is located in Sweden.
This manufacturing plant hosts the manufacturing machines as well as the sensors that
generate the data streams. Two of these data streams are already filtered by operators
O1 and O2 that are running in a private cloud on the premises of the manufacturing
plant. The data originating from the third data source (S2) is directly forwarded to a
public cloud in Germany that provides massive computational resources. The operators
in this public cloud are in charge of transforming the image data into machine-readable
text as well as calculating the OEE of the manufacturing machines. The individual OEE
values are then aggregated in a report which is sent to an operator maintained by an
external service provider who is in charge of forwarding the information to the human
supervisor.
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4.2 Identified Requirements
In order to create a holistic data stream processing ecosystem, which is capable of
addressing the challenges originating from the rise of the IoT, we identify four high-level
requirements that will serve as guidelines throughout this thesis:

1. We need to design an SPE that is capable of processing data streams originating
from different geographic locations in a network-efficient manner.

2. We need to design a model for topologies, which allows to describe deployment
constraints for SPAs running in distributed environments.

3. We need to identify suitable SLOs to assess the performance of SPAs and design
suitable mechanisms to model SLAs for topologies.

4. We need to design suitable resource provisioning and scaling approaches to minimize
the operational cost for SPAs both in centralized and distributed deployments.

26



CHAPTER 5
A System Design for Stream

Processing Ecosystems

In this chapter, we analyze the previously introduced motivational scenario and present
the requirements for a stream processing ecosystem. Based on these requirements we then
propose the system design for the VISP Ecosystem whose core components are the VISP
Runtime and the VISP Marketplace. To evaluate the feasibility of the VISP Ecosystem,
we also provide a use case evaluation for designing and operating SPAs. The main focus
of this use case evaluation is to analyze the efforts which are required for an user to
design and operate an SPA in a distributed environment.

5.1 Overview
In recent years, not only the number of IoT devices, but also their application areas
increased dramatically. While the first IoT devices were only considered as technolog-
ical proofs of concept, they are constantly evolving to become suitable for day-to-day
application scenarios. Up to now, most IoT devices are only used in point-to-point
scenarios, where the sensor data of IoT devices is only processed by one software service,
e.g., adaptive lighting based on the current content on a TV screen. Nevertheless, it is
necessary to take the communication and data processing capabilities to the next level by
integrating heterogeneous IoT devices with multiple software services [93]. Therefore it is
required to design appropriate ecosystems that allow for easy integration of IoT devices
with software services in order to realize SPAs. Currently, there are already several IoT
platforms available that support the integration of IoT devices. Nevertheless, most of
these platforms have deficiencies such as missing support for heterogeneous IoT devices
and open challenges concerning the privacy of the processed data [41].
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In addition, state-of-the-art IoT platforms do not sufficiently support complex SPAs and
do not provide means for reusing stream processing operators. Traditional providers of
most IoT platforms are IoT device manufacturers with the primary goal of processing
sensor data of their IoT devices. Therefore, they do not support any complex SPAs that
allow integrating heterogeneous IoT devices. When it comes to creating complex SPAs,
these IoT platforms are only suitable for preprocessing data, i.e., transforming raw sensor
data into a machine-readable format. For all other processing steps, it is inevitable to
fall back to established SPEs like Apache Storm [17] or Apache Spark [18]. Although
these established SPEs excel at processing streaming data, they only provide very basic
mechanism in terms of resource elasticity or reconfiguration at run time.

Since complex SPAs often integrate IoT devices that are situated at different geographic
locations, it is in many cases necessary to already perform operations, such as data
filtering, close to the data source. This distributed deployment reduces the amount of
data that has to be transferred among the different geographic locations and supports
real-time data processing [94]. Nevertheless, an overlay, i.e., an user interface, which
handles the complexity of the distributed deployment transparently for an SPA user is
vital [95]. It is also essential to provide a graphical user interface that is easy to use for
visualizing and designing topologies that represent the structure of SPAs [96].

Furthermore, it is required to devise strategies to reuse already existing building blocks,
i.e., stream processing operators, for future topologies to reduce the workload of creating
SPAs. To address the deficiencies of state-of-the-art IoT platforms, especially in terms of
data stream processing, we propose the VISP Ecosystem. In this chapter, we present the
system system design of the VISP Ecosystem and discuss its capabilities by evaluating a
real-world industry scenario.

The remainder of this chapter is structured as follows: Based on the motivational scenario
presented in Chapter 4, we discuss the challenges for realizing SPAs in Section 5.2.
In Section 5.3 we present the system design and implementation details of the VISP
Ecosystem. We evaluate the feasibility of the VISP Ecosystem based on a use case
evaluation in Section 5.4, discuss the evaluation regarding the identified challenges in
Section 5.5, and summarize the chapter in Section 5.6.

5.2 Challenges
In addition to the challenges presented by Mineraud et al. [41], e.g., the support of
heterogeneous devices, data ownership or data fusion, we have identified three further
research challenges for designing and operating SPAs, like the one described in the
motivational scenario.
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5.2.1 Distributed Deployment

Since some operators require low latency, they need to be deployed close to the data
source, e.g., on edge resources [94]. Although edge resources allow for a better response
time due to the lack of the data transfer over the Internet, edge-based computational
resources are more expensive than typical cloud-based resources, due to the economy of
scale [97], [98]. Therefore, it is required that the VISP Ecosystem supports distributed
deployment and migration strategies, to migrate operators among different deployment
locations [79].

5.2.2 Ease of Designing Stream Processing Applications

In order to establish IoT ecosystems, i.e., holistic toolchains that enable users to easily
integrate IoT devices and extract information of the data streams provided by these
IoT devices, it is essential to minimize the entry barriers for new users. Such entry
barriers can be found when designing, deploying, and operating SPAs. At design time,
it is required to provide an easy to use toolkit, which enables domain experts to design
SPAs. The same also applies at deploy and run time. Here it is required that the runtime
environment covers all aspects from obtaining external dependencies, i.e., the concrete
implementation for the operators, for ensuring the compliance with predefined SLOs by
obtaining enough computational resources for the operation. Therefore, it is also required
to design mechanisms, which enable the reconfiguration of a SPA at run time to eliminate
downtimes when the topology or the deployment of an SPA needs to be updated.

5.2.3 Reuse of Operators

To minimize the required effort for implementing SPAs, it is desirable to reuse already
existing components similarly to the library usage for generic software development [99].
The data stream processing domain is predestined to decompose topologies into single
operators and use them as building blocks. These building blocks serve as the foundation
for a data stream processing ecosystem for the IoT, where all participants of the ecosystem
can share their operators. Based on the motivational scenario, we have identified three
different data stream processing operator categories with different potentials for reuse.

Pre-built operators Operators of this category may be already implemented and
available to be integrated into SPAs. These operators may be either free of charge,
e.g., transformation operators, which are provided by the producers of the IoT devices,
or generic operators. Generic operators, like filters, may be provided by third party
developers and may be obtained by paying a one-time fee to the operator developer.
Pre-built operators have the same characteristics as software libraries since they are
integrated into the SPA and the user has full control over these operators including their
SLA compliance that can be controlled by provisioning enough computational resources.
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External operators The second type of operators is represented by external services
that can only be integrated on a SaaS basis. For this kind of operators, the user cannot
control any aspected related to the QoS. Furthermore, these operators typically imply a
pay-per-use policy, where the provider of the operator charges the user for each data item
processed. The main reason for providing operators in a SaaS manner is that the owner
may not able to give away the code or even the binary of these operators either due to
business-related reasons or due to legal aspects. Typical examples for such operators are
analysis algorithms, e.g., the interpretation of OEE values, where the owner does not
want to reveal the intellectual property of the algorithm.

Domain specific operators The last type of operators represents operators with
unique business logic for specific SPAs, like the Generate Report operator in our motiva-
tional scenario. Due to their uniqueness, they are not available upfront and need to be
implemented by the designer of the SPA.

5.3 System Design
In order to address the challenges as discussed in Section 5.2, we propose the VISP
Ecosystem. This ecosystem consists of two major components: the VISP Marketplace and
the VISP Runtime, as depicted in Figure 5.1. The VISP Marketplace aims at creating a
repository of operators for SPAs to minimize the required effort for the user to design a
SPA. The VISP Runtime complements the VISP Marketplace, by providing a runtime
environment to execute the previously designed SPAs. In the remainder of this section,
we are going to present the system design as well as its underlying design rationales.

5.3.1 VISP Marketplace

The VISP Marketplace is the first place to go for users who want to design SPAs. It
provides four core functionalities: the Operator Registry, the Operator Distribution, the
Topology Builder and the Monetization component.

The Operator Registry provides the graphical user interface, where any user who wants
to create an SPA can browse for data stream processing operators. User can also submit
custom operators to the VISP Marketplace to either integrate them into their SPAs or to
be integrated by other SPAs. When submitting a new operator to the Operator Registry,
it is required to provide an Operator Image (see Section 5.3.2), which can be instantiated
by the VISP Runtime. The user also needs to provide a semantic annotation to define all
possible input as well as output data types for this operator and to provide details on its
monetization model. This Operator Image and the respective metadata are then stored
in the Operator Registry, where it can be accessed by the VISP Runtime by means of the
Operator Distribution component.
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Figure 5.1: VISP Ecosystem

Based on the Operator Registry, the VISP Marketplace also offers a Topology Builder,
which represents a graphical toolkit for designing SPAs. The Topology Builder provides a
graphical user interface that allows users to create topologies by dragging operators from
the Operator Registry to a digital drawing board, where they can wire the operators to
realize the planned SPAs. The Operator Registry offers custom and external operators,
as well as data sources and data sinks. Each operator has different characteristics, like
QoS metrics or deployment restrictions, which are discussed in detail in Section 6.4.
These characteristics can be defined for each operator based on a context menu in the
Topology Builder.

Besides the basic design functionality, the Topology Builder also provides a context-
aware search, where the user can search the Operator Registry based on the semantic
annotations for a suitable successor for the currently selected operator on the digital
drawing board. As soon as the topology is designed, the user can then export the topology
based on the VTDL (see Chapter 6) to be deployed on the VISP Runtime. The goal of
the Topology Builder is to allow domain experts to create SPAs for different use case
scenarios.

The last component of the VISP Marketplace is the Monetization component. This
Monetization component takes care of billing aspects for operators. Currently three
different business models are supported: For the first business model, the Monetization
component charges the user once for the usage of an operator and the user can then use
the operator for an unlimited timespan and unlimited amount of operations.
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This model can only be applied to pre-built operators. The second business model
implements a time restricted model, where the user can lease an operator for a specific
timespan. As soon as this time span is over, the user is required to lease the operator
again or the data processing operation cannot be performed anymore. The last business
model implements a pay-per-use model, where the user has to pay for each operation
carried out by an operator. While the first model allows for an SPA deployment on a
secluded location without any connection to the Internet, the other two models require a
regular connection to the VISP Marketplace to either check the validity of the rented
operators as well as to report the performed operations for billing purposes. These
three models represent the most common business models for an IoT-based data stream
processing topology, but we expect more elaborate business models in the future [100].

5.3.2 Operator Images

Operator Images represent building blocks, i.e., concrete implementations of operators,
for stream processing topologies. These Operator Images are instantiated by the VISP
Runtime to create Operator Instances that process data. Since Operator Images can be
contributed by individual developers, we identified several requirements which need to
be met to use operators within the VISP Runtime.

First of all, we do not restrict the Operator Image implementation to any programming
language, as long as the Operator Image can be packaged within a container, i.e., a
Docker Container [101]. This common format is required to enable the deployment for
the VISP Runtime, since a Docker Container already provides a pre-configured execution
environment.

In addition, the Operator Image needs to implement several functionalities. The most
important functionality is the Processing Logic. The Processing Logic represents the
functionality of the stream processing operator. This functionality ranges from simple
filters over SQL-like aggregations to complex business logic [10]. Some operators can
also include complex software systems, such as Business Process Management Systems
(BPMS) or machine learning-based decision systems, to conduct the desired operations.
Besides the actual processing, the Operator Image also needs to implement a functionality
to subscribe to data sources, i.e., preceding operators, as well as to publish the processed
functionality.

In order to ease the implementation for operator developers, VISP already provides
several APIs to access the Shared Data for synchronization among Operator Instances
as well as the Messaging infrastructure, which are both part of the VISP Runtime.
Nevertheless, it is also possible to access the Messaging infrastructure directly, either by
using the AMQP [102] or the MQTT [103] protocol. For the Shared Data, it is required
to either use the APIs or send queries directly for the Redis data structure store [104].

To ensure an SLA-compliant execution of the data processing, it is required to obtain
metrics from each running Operator Instance, like CPU or memory usage as well as
network I/O.
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These metrics are gathered within the Monitoring component of the VISP Runtime in a
configurable interval by means of the Messaging infrastructure. VISP already provides
a monitoring framework that can be integrated into the Operator Images without any
further implementation required. Nevertheless, it is also possible to implement a custom
monitoring infrastructure as long as it implements the same API as the provided one.

Besides the QoS monitoring, it is also required to establish a failure propagation mecha-
nism. Since Operator Instances are running autonomously on computational resources, it
is necessary to aggregate failure reports at a central location. Therefore, each Operator
needs to implement a failure reporting component that collects all exceptions and forwards
them to the Monitoring component of the VISP Runtime by means of the Messaging
infrastructure.

In order to configure an Operator Instance at startup, they also have to implement a
Configuration API. This Configuration API allows the Operator Provisioning component
to configure the location of the Shared Data as well as the information about the data
origin and the destination of the processed information in the Messaging infrastructure.
In addition, the Configuration API may also be used to configure further functionalities
of the Operator Instances, e.g., by defining thresholds or filter criteria.

5.3.3 VISP Runtime

The VISP Runtime enables the user to operate SPAs and has been designed, to be either
deployed on a public cloud, e.g., on Amazon EC2 [105], or on computational resources
within the user’s premises on a OpenStack-based private cloud [106]. Therefore, the VISP
Runtime is provided as a pre-built package, i.e., a VM image, which can be deployed
on computational resources. After providing the credentials for the VISP Marketplace
and computational resources for the operators, the VISP Runtime is ready to be used.
Nevertheless, it is also possible to deploy single components of the VISP Runtime on
different hosts if required.

Furthermore, it is also possible to deploy several instances of the VISP Runtime at
different geographic locations, e.g., on edge resources, and use them to realize a distributed
execution environment for SPAs. This is often necessary to reduce the latency between
the data provider and the data processing operators. The deployment as well as the
communication among the individual VISP Runtimes does not require any interaction or
configuration by the user, since the distributed deployment is already considered in the
fundamental design of the VISP Runtime. The communication among these individual
VISP Runtimes is conducted by the Runtime Synchronization component. Besides
the overall replication mechanism of the VISP Runtime, it is also possible to replicate
individual components on clusters, e.g., the Messaging infrastructure or the Shared
Data, within one instance of the VISP Runtime to cope with high system load. The
VISP Runtime considers four aspects: Configuration, Operator Instance Management,
Elasticity, and Communication, which are discussed in the remainder of this section.
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Configuration

The Topology Configuration component is responsible for importing the VTDL-based
topology description from the Topology Builder and for propagating the configuration to
other VISP Runtime instances by means of the Runtime Synchronization component. The
synchronization procedure is discussed in detail in Section 6.5. After the synchronization,
the VISP Runtime configures the Messaging infrastructure and fetches the Operator
Images from the VISP Marketplace, as described in Section 5.3.4.

In order to ease the communication between the Topology Builder and the VISP Runtime,
we designed the VTDL. This description language builds on the concepts of the SPL
description language [84] and is presented in detail in Chapter 6.

Operator Instance Management

The Operator Provisioning component takes care of deploying Operator Instances on
computational resources, monitoring their availability, and aggregating runtime exceptions.
Since the VISP Runtime deploys Operator Instances on computational resources, it is
required to obtain sufficient cloud resources, which is carried out by the Infrastructure
Management component. This component is able to lease computational resources from
public clouds, e.g., Amazon EC2 [105], or private clouds, e.g., OpenStack [106], and
provides a suitable runtime environment for the Operator Instances. As soon as the
computational resources are obtained, the Operator Provisioning component is able
to deploy respectively un-deploy Operator Instances on these computational resources,
whereas the deployment decisions are generated by the Operator Replication or Operator
Placement components. For each operator, there is, at least, one, but up to arbitrary many,
Operator Instances running at the same time. However, there may also be redundant
Operator Instances for a specific operator to cope with high system loads.

Besides the resource provisioning and deployment mechanism (see Section 6.4), the
Operator Instance Management also takes care of monitoring the availability of all
Operator Instances and aggregating failure reports. TheMonitoring component constantly
checks if all Operator Instances are available and capable of processing data. Whenever
a downtime or failure of an Operator Instance is recorded, this component triggers a
new instantiation for the affected operator or applies more complex failure compensation
mechanism based on the reasoning of the Failure Compensation Component. In addition,
the Monitoring component also aggregates all exceptions reported by the Operator
Instances, and informs the SPA user about these failures. Optionally, it is also possible
to inform the developer of the operator by generating an error report, including the input
data, information about the current state in the Shared Data, and a complete failure log
output.
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Elasticity

The Elasticity aspect of the VISP Runtime takes care of the SLA compliance for the SPA
operation. Therefore, the Monitoring component records three performance indicators.
The first performance indicator is based on the individual Operator Instances, which
continuously report their performance metrics, i.e., CPU and memory usage. On the
one hand, a high system usage is an indicator that the current processing capabilities
are not sufficient and it is required to add additional Operator Instances to cope with
the system load. On the other hand, a low system usage can indicate the possibility to
remove one replicated Operator Instance for a specific operator to reduce the overall cost
of computational resources.

The second indicator is the system load on the Messaging infrastructure. Since the
Messaging infrastructure not only connects the individual operators, but also acts as a
short term buffer, the size of all currently buffered messages can suggest either upscaling
or downscaling actions. The third indicator is observed by an introspection of the indi-
vidual messages on the Messaging infrastructure. Here the Monitoring component selects
individual messages in a configurable interval and identifies the processing duration of
these messages based on the processing timestamp within the message. Whenever a
message waits longer to be processed than defined by the operator, it may be required
to add additional Operator Instances for this specific operator. Since the Monitoring
component only observes the performance indicators of the VISP Runtime and the indi-
vidual Operator Instances, the Operator Replication component analyzes the performance
indicators and decides then whether to scale up or down based on the SLOs provided for
each operator. A more detailed discussion on different scaling approaches can be found
in Chapter 7 and Chapter 8.

Communication

Within VISP, there are three different communication layers: first, the communication
within the SPA, second, the synchronization among multiple Operator Instances for one
operator and third the communication among different VISP Runtimes. The Messaging
infrastructure provides a message broker for realizing the communication within the SPA.
While most established SPEs rely on a tight-coupled communication among the different
operators, the Messaging infrastructure for VISP allows for loose coupling, which can
be reconfigured at run time. These reconfiguration capabilities eliminate downtimes or
SPA redeployments, whenever an updated SPA is deployed, which is not possible for
established SPEs as discussed in Section 3.2. Another advantage of this loose coupling
strategy is the possibility to deploy a single SPA across different VISP Runtime instances.
For the communication within the Messaging infrastructure, we require each message to
contain a header to define the target operator of the message and a timestamp, stating
when the last processing activity was performed, alongside any arbitrary payload in the
message body. Finally, the Messaging infrastructure also supports a short time buffer
for messages that is required to compensate short communication outtakes or store the
messages until enough processing capabilities, i.e., Operator Instances, are available.
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Figure 5.2: Deployment Process for a Stream Processing Application

For the synchronization among multiple Operator Instances for one operator, VISP relies
on a shared key-value storage system, as suggested by Gedik et al. [69]. This eases
the operator instance management of the topology, because this mechanism allows to
easily add and remove Operator Instances at run time to adapt to the system load.
Finally, each VISP Runtime implements a dedicated REST-based API, which allows
the communication among different VISP Runtimes, e.g., to forward the topologies of
distributed SPAs.

5.3.4 Topology Creation

Each creation of an SPA follows a specific workflow as depicted in Figure 5.2. At the
beginning, the SPA user, i.e., a domain expert, designs the topology of the SPA by means
of the Topology Builder located in the VISP Marketplace. This topology design only
requires domain knowledge for the SPA and can be carried out by dragging suitable
operators to a digital drawing board and wiring them. When the topology design is
finished, the user exports the topology by storing the topology in a file, based on the
VTDL (see Chapter 6).

The user then uploads the file to an arbitrary VISP Runtime, which is also the last task
where the SPA user is involved. All other tasks are conducted automatically by the VISP
Runtimes. The uploaded file is analyzed by the Topology Configuration component to
identify changes compared to previous topologies and whether it is required to deploy
any Operator Images on other VISP Runtime instances. After the analysis phase is
finished, the Runtime Synchronization component forwards the deployment decision
to all affected VISP Runtime instances. Further details on this analysis and topology
distribution phase are discussed in detail in Section 6.5. Each affected VISP Runtime
then obtains the required Operator Images from the Operator Registry and performs
optional billing operations for the operator by using the Monetization component of the
VISP Marketplace. As soon as all Operator Images are obtained, one Operator Instance
is deployed for each operator on computational resources which are provided by the
Infrastructure Management component. Finally, the Topology Configuration component
triggers all required modifications to the Messaging infrastructure and the SPA is ready
to process the data streams.
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Figure 5.3: System Design of the VISP Runtime

5.3.5 Deployment of a VISP Runtime on Cloud Resources

Although it is possible to operate a VISP Runtime and its associated Operator Instances
on fixed computational resources, a cloud-based environment is the natural choice for the
VISP Ecosystem to leverage the necessary resource elasticity for volatile loads. Figure 5.3
shows an exemplary deployment of a VISP Runtime using the FMC notation [107].
The figure shows the deployment of one exemplary VISP Runtime in the center, which
is connected to arbitrary many other VISP Runtimes, data sources or human actors,
who receive the processed data. Besides these interactions, each VISP Runtime also
depends on the computational resources for running Operator Instances and the Operator
Repository to obtain Operator Images.

When an SPA is deployed within the VISP Ecosystem on computational resources, it
processes data emitted by data sources (on the left-hand side of Figure 5.3), to extract
information for users, as shown on the right-hand side of Figure 5.3. The SPA can be
deployed across multiple VISP Runtimes, which are self-contained regarding managing
the data flow, resource provisioning and data processing. This allows the integration of
VISP Runtimes as data sources as well as data sinks to realize a distributed execution
environment for SPAs. The data to be processed is provided by data sources or preceding
VISP Runtimes that push the data to the Messaging infrastructure of the VISP Runtime
shown in the center of Figure 5.3.
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The actual data processing is conducted by operators which are running on computational
resources, i.e., VMs, which can be hosted both on private or public clouds. Whenever
an SPA is deployed, each required operator is obtained from the Operator Repository
which is hosted in a centralized location that has to be accessible for all VISP Runtimes.
As soon as all Operator Instances are started, they fetch the data from the Messaging
infrastructure, process it and return the results to the Messaging infrastructure. These
results are then either fetched from succeeding operators within the same VISP Runtime
or forwarded to other VISP Runtimes in a different geographic location. The remaining
components of the VISP Runtime are in charge of provisioning enough computational
resources, monitoring the state of the Operator Instances or replicating operators to deal
with a high data volume.

5.3.6 VISP Implementation

The implementation of the VISP Ecosystem is built on top of established technologies
and libraries in the domain of cloud computing and an established container technology
stack. The source code is available on Github under the Apache 2.0 license [108]. For the
implementation of the different components of the VISP Ecosystem, we rely on the Spring
Cloud software stack [109]. This software stack provides several libraries to implement
distributed systems which require a reliable communication as well as failure detection
and failure mitigation mechanism. The Messaging infrastructure for the VISP Runtime,
is provided by RabbitMQ [110] to realize a reliable communication and Redis [104] for
an efficient Shared Data storage. We selected these two established software solutions
due to their efficient data processing design and the possibility to create clusters to deal
with high loads.

To lower the entry barrier for third-party developers who contribute custom operators,
we decided to rely on the Docker tool stack for packaging Operator Images as well as
for the backend for the VISP Marketplace. The VISP Marketplace builds on top of the
Docker Registry [101] to provide the Operator Registry as well as an efficient and easy
to use foundation for the Operator Distribution. This technology decision allows us
furthermore to deploy the Operator Instances either on a private OpenStack instance, as
currently supported by the VISP Runtime, or on commercial Docker Container Hosting
services [111]. Besides the deployment-related aspects, the Docker tool stack also provides
a basic monitoring infrastructure which is used to monitor the resource consumption
of the Operator Instances. In contrast to established SPEs, our data processing model
does not require a specific programming language or API usage to realize SPAs. As long
as the Operator Images provide the basic set of features as described in Section 5.3.2,
the operator developers are able to use any technology stack to implement the data
processing functionality. This technology stack can differ based on the concrete stream
processing functionality of the operator. For simple functionalities, such as filtering data,
it may be sufficient to implement a custom solution whereas more complex ones, like the
aggregation of data, may be built based on established SPEs, such as Apache Storm, to
use already existing stream processing capabilities provided by these SPEs.
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5.4 Use Case Evaluation
To discuss the feasibility and the usability of the system design for the VISP, we conduct
a use case evaluation based on the motivational scenario described in Chapter 4. For
the evaluation, we consider multiple identical manufacturing machines located in four
manufacturing plants, whose data is ultimately sent to a human supervisor as depicted
in Figure 5.4. Here, the configuration steps for a new SPA are visualized by the dashed
arrows, while the data flow based on the SPA is shown by the solid arrows.

In the following paragraphs we discuss the whole process of realizing a new SPA. The first
step for creating a new SPA is to analyze the use case, i.e., the monitoring scenario, and to
identify its required functionality. Based on this requirement analysis, the SPA user then
checks the Operator Registry to identify already available operators. For our scenario, we
assume that the Operator Registry already offers several operators: The source operators
and the transformation operator are already provided by the manufacturing machine
producer free of charge because the producer may want to support the integration of
their manufacturing machines. The filter operators and the OEE-related operators are
also available on the VISP Marketplace. Since these operators are provided by third
party developers, it is required to pay one time fees to integrate them in topologies.
Furthermore, the Inform User operator is also available as an external operator. The
only missing operator is the domain-specific one: the Generate Report operator.
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This remaining operator needs to be implemented by the user based on the APIs provided
by the VISP Ecosystem as described in Section 5.3.2. As soon as this Operator Image is
implemented, there are two possibilities to make it available for the Topology Builder.
The first approach is to upload the operator, i.e., the Operator Image, to the Operator
Registry and make it either publicly available for other users or flag them as private.
Either way, they can be used to design the monitoring SPA and are also available for the
deployment on VISP Runtime instances. The second approach is to create an operator
stub, which only contains the metadata of the operator. This stub is then uploaded
to the Operator Registry to allow the designing the monitoring SPA in the Topology
Builder. Nevertheless, the Operator Images need to be deployed manually to the VISP
Runtime instances to operate the SPA. While the first approach is the recommended one,
it is sometimes necessary to keep the Operator Images within the companies premises’ to
ensure the secrecy of data processing algorithms. When all operators are available in the
Operator Registry, the user can start to design the topology for the SPA by means of the
Topology Builder. Simultaneously to the topology design, the user needs to deploy the
VISP Runtimes. Therefore, the user instantiates the pre-packaged VM image, containing
all VISP Runtime components, on cloud resources for the centralized data processing
as well as three times on computational resources within the factories premises’. After
instantiating these VISP Runtimes, the user needs to provide the credentials for the
VISP Marketplace and the computational resources for the Operator Instances as well as
the location of other VISP Runtime instances. After completing the topology design, the
user uploads the topology for the SPA to the VISP Runtime located in Sweden. There
the Topology Configuration component analyzes the topology and forwards the relevant
information to all other affected VISP Runtimes. All affected VISP Runtimes then obtain
the required Operator Images from the VISP Marketplace, perform billing operations,
and wire the operators as described in Section 5.3.4. This concludes the design time and
deploy time aspects of the system and the SPA is ready to process data as visualized
in the graphical user interface of the VISP Runtimes (see Figure 5.5). The runtime
aspects of the predictive maintenance topology do not require any user interactions. The
VISP Runtime takes care of deploying sufficient replicas for Operator Instances by using
different elasticity approaches that will be introduced in Chapter 7 and 8, to handle the
potentially volatile data input and, therefore, enable elastic SPAs. The VISP Runtime
also provides several tools, which support the operational aspects for expert users to
debug SPAs or operators, like the Failure Management component that represents a
single point to obtain all failures from the otherwise hardly accessible Operator Instances.

5.5 Discussion
The use case evaluation shows that the VISP Ecosystem resolves the challenges identified
by us based on the motivational scenario (see Section 5.2) as well as those identified by
Mineraud et al. [41], like the support of application developers or the need for dedicated
IoT marketplaces.
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Figure 5.5: Deployed Topology Shown in the Web UI of a VISP Runtime

First, the modular system design for SPAs based on individual source operators and
transformation operators allow integrating heterogenous IoT devices as well as already
existing SPEs. Whenever a user wants to integrate a new IoT device, into the VISP
Ecosystem, it is required to implement one dedicated source operator. The implementation
of this source operator should typically be done by the IoT device manufacturer, since
the manufacturer has the required knowledge to transform the often binary data, into a
textual representation. Although, each new IoT device requires a specific data handling
approach, and therefore a custom source operator implementation, our system design
only requires one operator, which can be reused by all other SPAs. Second, the VISP
Ecosystem facilitates a privacy-sensitive data processing approach. State-of-the-art IoT
platforms, like Groovestreams [49], ThingWorx [51] or the cloud computing infrastructures
by Amazon [52], Microsoft [54] or Google [53], require the data to be uploaded to a public
cloud. The VISP Ecosystem can be deployed either on a public cloud, like the other
IoT platforms, but it can be also deployed on a private cloud or on fixed computational
resources due to its self contained system design. This privacy-preserving deployment
allows the data to be processed within the premises of the company and to maintain the
control over the data at all times. Due to the flexible deployment possibilities of the VISP
Ecosystem, this privacy-sensitive approach can be applied to the whole SPA, or only to
parts of the SPA, which is currently not supported by established SPEs. The distributed
deployment capabilities do not only improve the granularity of privacy control for data
processing, but also enable the benefits of different computational resource types, like
the real-time processing capabilities on edge resources close to the IoT devices or the
more cost-efficient, but slower, processing capabilities in a centralized cloud [94].
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Next to supporting the distributed deployment approach, the VISP Ecosystem also
explicitly addresses the challenges of user support and operator reuse. In order to address
the user support, the VISP Ecosystem provides the Operator Registry as a graphical user
interface and the Topology Builder to enable an easy topology design for SPAs. This
enables domain experts to design SPAs and can therefore help to raise the acceptance rate
for the VISP Ecosystem. Furthermore, the VISP Ecosystem also supports the exchange
of operators among all SPA users since the Operator Images represent self-contained
operators that can be executed on any VISP Runtime. The Operator Images also require
only a minimal set of requirements, e.g., subscribing to the Messaging infrastructure,
when they are implemented. These minimal requirements lower the entry barrier for
potential users of the VISP Ecosystem, since it allows users to quickly package already
existing stream processing implementations and participate in the VISP Ecosystem.

Our use case evaluation, as well as further feasibility tests of our prototype, show that the
VISP Ecosystem addresses all challenges that we have identified based on our motivational
scenario. In addition, the modular system design of VISP allows to realize a distributed
deployment of the individual Operator Instances, based on their SLAs, but also for the
core components of the VISP Runtimes to provide a scalable backend infrastructure. We
can also see, that our topology design approach for SPAs allows a better usability in
contrast to established SPEs. Due to the fact that each established SPE requires the
usage of a specific API to implement the SPA, each new SPA needs to be implemented
from scratch, including the operators, which results in high (re-)implementation efforts
if the user wants to switch SPEs. Our approach addresses this problem by applying
the VTDL to design an API agnostic topology for SPAs, which is then executed by
individual operators that can be reused across different SPAs. Besides the decreased
implementation effort for future SPAs, our approach also supports the monetization of
operators for operator developers. This monetization aspects are vital for attracting
operator developers to realize a vivid ecosystem. VISP currently supports several business
models for operators, but it also allows the integration of additional ones in the future,
like bundling strategies for IoT devices or the monetization of the provided data by the
sensors of IoT devices.

5.6 Summary
In this chapter, we present an holistic approach for realizing elastic data stream processing
topologies for the IoT. We propose the VISP Ecosystem that supports the user at design
time by reusing existing components for SPAs and by providing a graphical user interface
for creating new SPAs. These SPAs can then be deployed in any VISP Runtime,
which automatically propagates required configuration settings to other VISP Runtimes,
autonomously provisions computational resources, and wires the operators for the SPA.
The VISP Runtime also takes care of using sufficient computational resources to comply
with given SLAs at any time. In conclusion, we can say that the above-mentioned
contributions lower the entry barriers for users to participate in the VISP Ecosystem
dramatically and allow domain experts to design and operate SPAs easily and efficiently.
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CHAPTER 6
Describing Distributed Stream

Processing Applications

In this chapter, we analyze the structural and organizational requirements for SPAs that
are running in distributed environments. Based on this requirements analysis we extend
the SPL, an established topology description language which was introduced for IBM
System S and introduce the Vienna Topology Description Language (VTDL). The VTDL
addresses the deficits for state-of-the art topology description languages and serves as a
topology description model for SPAs that considers distributed deployments as well as
a fine granular QoS model. In order to evaluate the feasibility of using the VTDL, we
provide a reference implementation of the VTDL within the VISP Ecosystem. Based on
this implementation we evaluate different deployment scenarios and show that the usage
of features enabled by the VTDL reduces the time required for deploying and updating
SPAs in distributed environments by up to a factor of 18 times.

6.1 Overview
Up to now, most SPEs do not consider the geographic location of IoT devices and
cloud-based computational resources that are used to run SPEs [24]. Due to the lack
of distributed runtime environments, it was not required to consider this distribution
aspect for designing and operating SPAs. Therefore, there are hardly any topology
description approaches that address this aspect as discussed in Section 3.4. Besides
the geographic distribution aspects, the topologies of today’s SPAs are often subject
to change [112]. The changes are mostly triggered by operational aspects at run time,
e.g., due to reconfigurations of operators, like adding other Operator Instances. These
reconfigurations can occur due to QoS-related aspects, like changes in the underlying
computational infrastructure, e.g., adding or removing computational resources [113], or
due to changes in the incoming workload which require the replication of operators.
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In addition to these operational changes, there are also other reasons to update the
topologies of SPAs. These reasons range from updates for single operators, e.g., to
fix software bugs, to organizational changes, like the addition of new data sources and
consumers, e.g., sensors and users, or new legal restrictions that enforce the processing of
data within a distinct geographic area [114].

To improve the description of SPAs and to enable their deployment in geographically
distributed environments, we first identify the required features for next-generation SPEs,
like the VISP Ecosystem. Then, we present the VTDL, which extends the concepts of
the SPL [28] to support the required features identified during our analysis. Additionally,
we have integrated the VTDL into the VISP Ecosystem [108] to provide a reference
implementation. For this implementation we have furthermore designed a protocol which
allows the use of the features enabled by the VTDL, like the isolated operator updates
while continuing the data processing in the unaffected part of the SPA or automatic
topology updates across multiple geographic locations.

The remainder of this chapter is structured as follows: First, we refine the motivational
scenario from Chapter 4 to model different deployment possibilities as well as external
events which can trigger changes for the topology of an SPA in Section 6.2. Based on the
motivational scenario, we identify several features that are essential for next-generation
SPEs in Section 6.3. In Section 6.4, we then introduce the VTDL and in Section 6.5 we
discuss the requirements for an SPE to support the VTDL. Finally, Section 6.6 presents
the evaluation of VTDL as well as a discussion thereof and Section 6.7 concludes the
chapter.

6.2 Extended Motivational Scenario

6.2.1 Topology Structure and Deployment Scenarios

For this scenario, we refine the motivational scenario presented in Chapter 4 to consider
the data flow and deployment possibilities among different geographic locations as
visualized in Figure 6.1. Besides the production facilities in the United Kingdom, Sweden,
and Spain visualized in Figure 4.1, we also consider a production facility in Germany
that has the same geographic location as the data center. Each production facility hosts
a different amount of manufacturing machines which are equipped with sensors. The goal
of the monitoring SPA is to collect the information from all four production facilities
and combine them in a report, which is then provided to the human supervisor alongside
any temperature- or failure-related alerts from the manufacturing machines. Although
the topology is identical for all four production facilities, there are different deployment
possibilities that result in different data flows within the SPA, as shown in Figure 6.1.
The first deployment scenario is to split the topology into two parts and deploy all metric
calculation operators near the data source, e.g., on a private cloud, as done for the
plants in the United Kingdom and in Spain. Due to the high amount of data from the
manufacturing machines, it is reasonable to preprocess the data next to the data source
and only transfer the filtered data over the Internet.
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Figure 6.1: Motivational Scenario

For the second deployment scenario, we consider the production facility in Sweden,
which only hosts the filter operators locally and forwards all other data to the private
cloud located at the production facility in the United Kingdom. This common usage
of computational resources requires only little computational resources for the plant in
Sweden, relatively low network cost due to the small number of machines, and little
geographic distance as well as a higher usage of the private cloud in the United Kingdom.
After calculating the metrics on computational resources close to the data sources, the
results are then sent to the data center in Germany, which hosts all other operators of
the SPA.

Finally, the last deployment scenario can be found for the production facility in Germany.
For this scenario, all operators are located within the data center which is in the same
geographic location as the production facility. This geographic co-location avoids any
data transfer from the manufacturing machines over the Internet and is therefore the
most network-efficient solution.
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6.2.2 Topology Changes

While the topology in Figure 6.1 may appear rather fixed at first sight, there can be
several events which require an update to the deployment of the SPA. These events can
occur at any point in time at run time, which requires bot the SPA as well as the SPE to
be flexible throughout the whole operation of the SPA.

The first event (E1 in Figure 6.1) is a communication outage. In our scenario, the
manufacturing machines in the United Kingdom and Sweden use the same computational
infrastructure in the United Kingdom to calculate the OEE. This setup is feasible as long
as the network connection between these two production facilities is intact. However,
whenever there is a communication outage, the SPA needs to be reconfigured to continue
data processing. Based on the geographic location, it is possible to reroute the raw data
to Germany to compensate the communication outtake and resume data processing. The
alternative data flow is visualized by the dashed line in Figure 6.1.

The second event (E2) represents a volume reduction for the SPA. Occasionally, manu-
facturing machines have downtimes and the full data processing capacities of the SPE
are not required anymore. Whenever the full processing capabilities are not required
anymore, it is feasible to release computational cloud resources and reroute the data to
reduce the total operational cost. For E2, several manufacturing machines are switched
off in Spain and similar to the previous event it is possible to reroute the raw production
data to Germany for processing.

While the first two events are triggered by operational aspects, it may also be required to
replace individual operators due to organizational reasons. For the third event (E3), we
consider a software update for the Generate Report operator (O8). This software update
fixes an internal flaw of the operator implementation, but the overall functionality of the
operator, i.e., the input and output data structure, remains the same. For this update, it
should not be required to redeploy the whole topology for the SPA, as required for most
of the established SPEs, like Apache Storm or Apache Spark. The SPE should only need
to buffer the incoming traffic for a short period of time until the new Generate Report
operator is in place and can continue with its operations.

6.3 Features for Next-generation Stream Processing
Engines

Based on the extended motivational scenario, we identify some basic and six next-
generation features that are not available in today’s SPEs (see Section 3.4). The main
difference between the basic features and the next-generation features is that the basic
features are already mostly covered by existing topology description languages, such as
SPL [28] or CQL [85].
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6.3.1 Basic Features

The primary feature of any topology description approach is to define how data sources,
operators, and information consumers, are connected to realize a SPA. Stream processing
topologies are usually represented as directed acyclic graphs [28], where vertices represent
the operators and edges represent the data streams between the operators. A data source
feeds data into the topology and has no incoming data streams. Hence, each topology
requires one or arbitrary many data sources. The data provided by the sources is then
processed by one or more operators. Operators execute user-defined code, whether it is
a simple operation (e.g., filtering, aggregation) or a more complex one (e.g., regression,
classification) [10]. Operators can obtain data from arbitrarily many vertices, i.e., data
sources or other operators, and emit new data to other vertices, i.e., other operators or
data sinks. Data sinks or consumers represent the endpoints of an SPA since they only
consume data, i.e., only have incoming edges and each SPA needs at least one data sink.

6.3.2 Next-generation Features

Deployment Preferences (F1) The most important feature for geographically dis-
tributed SPAs is deployment preferences for individual operators [22]. While this is not
relevant for SPAs in a single location, it becomes crucial for geographically distributed
ones. Each operator needs to be able to provide a set of admissible deployment locations
where it can operate and satisfy real-world constraints. These constraints mainly affect
data sources, e.g., a temperature sensor or a camera, which are mounted on a fixed
location and cannot be relocated. Additionally, it may also be prohibited to transfer
specific data, e.g., medical data, to certain locations like public clouds [114], which also
limits the deployment of some operators.

QoS Compliance (F2) Although QoS compliance is commonly used for software
services such as SPAs [67], it is, to the best of our knowledge, not considered by state-of-
the-art SPEs on an operator level. While the application-level QoS compliance may be
sufficient for most users, research for microservices has shown that a more fine-grained
approach, i.e., on an operator level, allows to identify bottlenecks [115]. Based on such
a bottleneck analysis, resource provisioning algorithms can achieve lower costs by only
scaling specific operators instead of the whole SPA. Furthermore, an operator-level QoS
compliance also allows the integration of external operators on a SaaS basis into SPAs.

Fault Tolerance (F3) To compensate operator failures or hardware failures, it is
imperative that SPEs are capable of applying automatic failure compensation mechanisms.
Nowadays, SPEs already provide basic fault tolerance mechanisms, like the automatic
restart of operators whenever they fail [116]. Nevertheless, it is required to also support
more sophisticated fault tolerance mechanisms, like deploying an updated topology for
SPAs to reroute the traffic (as required for event E1). This feature builds on top of the
QoS compliance feature (F2), which allows the SPE to detect operator failures, e.g.,
based on a high latency, or infrastructure outages.
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Operator Composability (F4) To ensure the compatibility among the operators, it
is required to provide basic semantic annotations, regarding incoming as well as outgoing
data types as already proposed for the streaming data itself [117]. These semantic
annotations can be used to check whether operators are compatible and in a further step
to also apply an automatic semantic operator selection. This would allow the user to only
provide an abstract description for the operator task, and the SPE can autonomously
create the topology, which reduces the users’ workload for creating SPAs. This feature
is already available for other domains like sensor networks [118], but is still missing for
SPAs running on SPEs.

Topology Modifications at Run Time (F5) The need for topology modifications
at run time, as required for the third compensation mechanism (E3) in the motivational
scenario, has also been identified in the literature [119], [120]. Stream processing topologies
are often deployed for long-term data processing, which makes it hard to apply minimal
updates, such as bug fixes for individual operators, without redeploying the whole SPA.
Therefore, the SPE needs the possibility to pause the data flow for individual operators,
to apply the update. As long as the operator composability (F4) does not render any
inconsistencies, it is sufficient to only pause the processing for the operator that needs to
be updated. This allows to update SPAs with software updates or enable fine-grained
failure compensation measures.

Different Data Transfer Modes (F6) Due to the geographically distributed deploy-
ment, it is required that some operators are connected via the Internet instead of a local
connection, which is common for centralized SPE deployments. The network connection
of the Internet may result in a high communication overhead because each data item is
sent individually, which is only efficient in local settings. To mitigate this communication
overhead, it is often more efficient to create so-called microbatches, i.e., to aggregate
multiple data items and send them as a single group (or batch) over the Internet. This
reduces not only the communication overhead and network load, but also the performance
of the data processing [83].

6.4 VTDL – Vienna Topology Description Language

The goal of the VTDL is to support both the basic features, as already present for
existing topology description approaches, as well as the next-generation features that
we have identified in the previous section. We have chosen the SPL [28], which was
initially developed for IBM System S as a starting point, since it already provides some
of the identified features compared to other description approaches (see Section 3.4). The
description of the SPA topology is provided through a VTDL file, which contains a list
of the operators, their roles, and attributes, as well as their information on how they are
connected.
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Listing 6.1: Excerpt of a Topology Description
$temperature = Source() {

concreteLocation : ":::::ffff:8083:c001/cpu",
type : "temperatureSensor",
outputFormat : "temperature"

}

$monitor = Operator($temperature) {
allowedLocations : *,
poolPreferences : "cpu gpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "temperature",
type : "monitorTemperature",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5",
compensation : "mailto:admin@tuwien.ac.at"

}

$informUser = Operator($availability, $report, $monitor) {
allowedLocations : ":::::ffff:8083:c001"

":::::ffff:8083:c002",
inputFormat : "alert, report",
type : "informUser",
outputFormat : "message",
queueLength : "200",
protocol : "microbatch/50items",
compensation : "deploy:www.visp.io/backup.vtdl"

}

$user = Sink($informUser) {
concreteLocation : ":::::ffff:8083:c002/general",
inputFormat : "message",
type : "user"

}

In the VTDL, each vertex of a topology is identified by a textual identifier, which is
prefixed with a $ character, as presented in Listing 6.1. Directly after the identifier, the
role of the vertex is indicated, namely Source(), Operator(), or Sink(); the latter two
roles need to take at least one operator identifier as the input parameter, to describe
the data flows between the operators. When the operator needs to receive data from
several upcoming sources, their identifiers are specified in a comma-separated list, e.g.,
$availability, $report, $monitor. In addition to the structural definition, each vertex
is assigned a set of key-value pairs, as listed in Table 6.1, which includes attributes of
interest for the deployment time and run time management. These key-value pairs can
be categorized into three categories: required attributes, attributes with default values,
and optional attributes.

The most important attribute is the type of the vertex, which describes the functionality
of the operator, whose concrete implementation is resolved by the SPE. The second most
important attribute of the VTDL is the location aspect of the operator as required for F1.
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Table 6.1: Operator Attributes

Attribute Values Default Description
type string – Operator logic

allowedLocations IP+ – Possible locations
poolPreferences string+ general Hardware preferences

concreteLocation IP/poolIdentifier* – Preselected location
inputFormat string+ – Accepted inputs

outputFormat string – Data output format
responseTime numerical 5s Response time
queueLength numerical 100 Buffered items

stateful {true | false} true Operator statefulness
replicationAllowed {true | false} false Operator replication

protocol {stream | stream Processing mode
microbatch:<X>items |
microbatch:<X>ms }

compensation {redeploySingle | none Failure recovery mode
redeployTopology |
deploy:<URL> |
mailto:<email> |

none}

Each location is identified by an Internet Protocol (IP) address (the allowedLocations
attribute), which defines the concrete location of the SPE, data source or sink and is
a must have attribute. The default value is *, which does not restrict the deployment
locations. Nevertheless, it is also possible to restrict the locations by providing a list of
allowed ones.

Furthermore, each geographic location may have different resource types available, e.g.,
resources with specific hardware aspects, like solid state drives, high-performance CPUs
or GPUs. VTDL assumes that these resources are handled as resource pools, e.g., a
resource pool with high-performance CPUs, and the SPA designer can indicate deployment
preferences by providing a list of poolPreferences. This allows the SPE to deploy the
operators according to their resource preferences if the specific hardware is available. If
the specific hardware is not available, the SPE will use any resource that is available.
The concreteLocations value is composed of an IP and the pool identifier. This attribute
needs to be provided at design time for data sources and sinks since they are fixed. For
operators, this attribute is optional, but it can be used to indicate concrete deployment
instructions. All other concrete locations are selected at deployment time, as discussed
in Section 6.5. Later at run time, this concrete location can be updated if necessary
to improve the performance of the SPA, e.g., to recover from a failure or to meet QoS
requirements.
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Besides the type attribute, the VTDL also features several attributes for the semantic
description of operators to enable composability checks (F4) or automatic semantic
operator selections. Due to the fact that these composability checks are not essential
for the data processing, these attributes are optional. These composability checks are
represented by the outputFormat attribute that defines the semantic type of the data,
which is forwarded to succeeding vertices for each source and operator, and the counterpart
is inputFormat, which is used by all operators and sinks.

The next category of attributes considers the QoS aspects of the operator (F2). Up to now,
the VTDL considers the responseTime for one processing operation and the queueLength,
which measures the amount of data items waiting for processing. Nevertheless, there are
also other QoS aspects like the maximum CPU or memory usage for a particular operator,
which could be easily added as attributes for the operators. To inform the execution
framework regarding the operator behavior at run time, VTDL comprises three more
attributes: stateful, replicationAllowed, and protocol. The stateful attribute describes
whether the operator is stateful, i.e., computes the output data using the incoming data
together with an internal state information. This attribute is required to indicate the
effort required to migrate operators, because it is easy to relocate stateless operators, but
it requires extra effort to migrate the state for stateful ones [68]. The replicationAllowed
attribute describes whether multiple instances of the same operator can be executed
concurrently by the SPE, whereas the SPE needs to take care of the concrete partitioning
scheme of the data. Both operational attributes stateful and replicationAllowed are
optional. To apply a conservative approach to preserve the application integrity, we
recommend to assume by default each operator as stateful and with no replication allowed.
Next, the protocol attribute (F6) allows for defining the data transmission type (see the
informUser operator in Listing 6.1). It can take two types: stream, which is the default
option, and microbatch, which requires collecting data in groups (i.e., batches) before
applying the operator function. For the latter option, the batch size for the microbatch
is provided by either the number of items for the microbatch, as shown in Listing 6.1 or
by the time in milliseconds, e.g., 100 ms, for sliding intervals. The default setting for
this attribute is the individual transmission and it only needs to be set to enforce the
microbatch transmission.

The final attribute is the compensation attribute (F3), which describes the failure
compensation mechanism in case one operator becomes unavailable. Currently, VTDL
supports four different failure compensation mechanisms, as shown in Listing 6.1. The
first compensation mechanism scope is motivated by the literature [121] and is identified
by the keyword redeploySingle: it requires to deploy a new instance of the faulty operator,
to cache the incoming data during the new instance startup time, and finally to replay
the cached data. The second compensation mechanism, identified by redeployTopology,
requires restarting the whole SPA, thus resulting in a possible loss of currently cached
and processed data. This potential data loss is also the case for the third compensation
mechanism, which allows to deploy an alternative topology when a failure of the current
one occurs (as required for E1).

51



6. Describing Distributed Stream Processing Applications

Processing in place / No topology in place

No compensation required for failure

Processing stopped

Compensation 
required for 

failure

Managing VISP Runtime All involved VISP Runtimes
All involved VISP Runtimes 
synchronized by managing 
VISP Runtime

(S
1)

 R
ec

ei
ve

 n
ew

 
to

po
lo

gy

(S
2)

 C
he

ck
 in

te
gr

ity
 fo

r 
ne

w
 to

po
lo

gy

(S
3)

 T
op

ol
og

y 
gr

ou
nd

in
g

(S
4)

 D
is

tri
bu

te
 n

ew
 

to
po

lo
gy

(S
5)

 C
he

ck
 th

at
 n

o 
up

da
te

 is
 in

 p
la

ce

(S
6)

 In
iti

at
e 

up
da

te

(S
7)

 D
is

tri
bu

te
 u

pd
at

e 
op

er
at

io
ns

(S
8)

 V
al

id
at

e 
re

so
ur

ce
 

av
ai

la
bi

lit
y

(S
9)

 S
to

p 
pr

oc
es

si
ng

 o
f 

in
vo

lv
ed

 o
pe

ra
to

rs

(S
10

) U
pd

at
e 

m
es

sa
ge

 
in

fra
st

ru
ct

ur
e 

(S
11

) A
pp

ly
 o

pe
ra

to
r 

up
da

te
s

(S
12

) C
he

ck
 in

te
gr

ity

(S
13

) C
on

tin
ue

 
pr

oc
es

si
ng

Figure 6.2: Topology Update Procedure

The option deploy:<URL> specifies this compensation mechanism, where the Uniform
Resource Locator (URL) indicates the location of an alternative topology that is deployed
as a replacement for the existing one. The last two options are strictly speaking not a
compensation mechanism, because they only allow the SPE to notify a user via email,
i.e., mailto:<email-address>, or to simply ignore the failure indicated by none.

6.5 Management for the VTDL

To enact topologies, which are defined based on the VTDL, SPEs are required not only
to parse the incoming topology definitions but also to apply topology modifications at
run time (F5). Therefore, we are going to discuss the required capabilities for SPEs
based on the reference update procedure implemented for the VISP Runtimes and shown
in Figure 6.2. The overall update procedure consists of 13 steps (S1 – S13), which are
conducted by a managing VISP Runtime, i.e., the VISP Runtime that first receives the
new topology description as well as all other involved VISP Runtimes, which are affected
by the topology instantiation or update. Each new topology operation, including its
initial deployment, is triggered by the upload of a VTDL file to any VISP Runtime (S1).
This VISP Runtime is then promoted to be the managing VISP Runtime and checks
the composability of the topology (S2) based on semantic annotations provided by the
VTDL file. Then, the managing VISP Runtime evaluates if each operator is already
assigned a concrete location. If this is not the case, the managing VISP Runtime assigns
concrete locations based on the available locations in the topology grounding step (S3);
this location is selected based on the allowed locations. The VISP Ecosystem currently
supports two grounding approaches, i.e., selecting the first suitable location for a given
pool preference for an operator or selecting a random location based on the available
ones.
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After the preparation phase, the VISP Runtime informs all other involved VISP Runtimes
of the update. To apply only one update at a time, the VISP Runtime checks that no
other updates are in place. Therefore, the managing VISP Runtime starts a synchronized
query, asking for the status of the other VISP Runtimes (S5). If no other updates are in
place, it initializes the update (S6): Each of the involved VISP Runtimes is blocked for
other updates, and the managing VISP Runtime distributes the updates to all involved
VISP Runtimes. The concrete number of updates depends on the actual changes for
the SPA and is derived by comparing the currently deployed topology with the new one
and by generating an update command for each change between the topologies. The
update sets either consist of creation commands for new operators, deletion commands
for operators which are not required anymore, or reconfiguration commands for the
messaging infrastructure if a data flow is redirected. When there is no topology available,
the set of update commands comprise of the whole topology. But in most cases, there
are only small changes for existing topologies which result in partial updates. After all
required update commands are distributed to the affected VISP Runtimes, they evaluate
whether the update is feasible based on the locally available computational resources. If
this is the case, the managing VISP Runtime is informed of the successful update checks;
otherwise, an exception is raised (S8). Up to this step (S8), no changes have been applied
to any already running operators, which allows a stop of the topology update operation
without any compensation mechanism required. The first actual changes are applied in
the next step (S9), which triggers a processing stop for all affected operators. This marks
a major distinction in contrast to other SPEs, which need to terminate the complete
SPA before applying any new or updated topologies and therefore suffer downtimes. The
VTDL approach allows the SPE to continue the data processing for all operators that
are not affected by the update. After stopping the data processing, each involved VISP
Runtime applies the updates to its messaging infrastructure (S10), removes obsolete
operators and instantiates new ones (S11). These two steps represent the only critical
steps, where manual compensations may be required if any reconfiguration fails. As
soon as all update commands have been executed, all VISP Runtimes apply another
composability check to ensure that the topology is enacted as intended (S12) and, if this
check does not raise any issues, the processing is continued for all operators (S13).

6.6 Evaluation

6.6.1 Evaluation Scenarios

To evaluate the VTDL and the reduced management overhead for applying updates, we
conduct a case study consisting of several scenarios based on the motivational scenario.
These scenarios are evaluated regarding duration as well as required user interactions
against a baseline approach. The baseline approach represents the state-of-the-art for
most established SPEs and does not support partial updates. In contrast to the VTDL
approach, the baseline approach also does not supports SPAs across multiple geographic
locations which requires the user to upload the topology for each geographic location.
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1. New Topology in one Location For the first scenario, we assume a topology de-
ployment for a single location. This scenario represents the state-of-the-art for established
SPEs and requires no update activities for other SPEs.

2. New Topology across four Locations The second scenario represents an initial
deployment for the motivational scenario. Here, the VTDL approach is only required to
upload the topology to one VISP Runtime in one location, whereas the baseline approach
requires to upload a subset of the topology to all involved locations one after another.
The first and the second scenario consider both the messaging infrastructure configuration
as well as the operator instantiation for the SPA.

3. Network Disruption (E1) For the network disruption scenario, the VTDL
approach can rely on the automatic failure detection and compensation of VISP Runtimes
to detect network disruptions between two regions and to reconfigure the data flow based
on a given alternative topology. This feature is not available for other SPEs and therefore,
the evaluation of the baseline approach for this scenario is not possible.

4. Resource Reconfiguration (E2) The resource reconfiguration scenario evaluates
the time to reconfigure the data flow between a sensor and an operator for the VTDL
approach. This reconfiguration only requires an update for the messaging infrastructure,
since the operators are already running in the target location. For the baseline approach,
it is required to upload a new topology for all the affected regions, which also requires
the deployment of new operators.

5. Single Operator Update (E3) The last scenario evaluates the time required to
update a single operator. For this scenario, it is sufficient for the VTDL approach to only
update the specific operator, whereas the baseline approach requires the redeployment of
the complete topology for the affected location.

6.6.2 Evaluation Setup

To conduct the evaluation, we set up four VISP Runtimes, which represent the individual
locations of the motivational scenario, on an OpenStack-based private cloud [106] and on
three regions of Amazon EC2 [105] to simulate the different geographic regions.

The interactions are conducted by Selenium scripts [122] to eliminate any human-based
delays for the evaluation. Each task of these Selenium scripts, e.g., opening a Webpage,
uploading a VTDL file or removing an enacted topology, is counted as an individual
interaction whereas the duration is assessed by the total runtime of the Selenium script
for the complete scenario.
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Table 6.2: Evaluation Results

VTDL Approach Baseline Approach
duration (ms) interactions duration (ms) interactions

1. New Topology 54977.33 3 54977.33 3
in one Location (σ = 982.03) (σ = 982.03)
2. New Topology 40953.67 3 68098.00 12
across four Locations (σ = 431.03) (σ = 1701.86)
3. Network 7532.67 0 - -
Disruption (E1) (σ = 1921.05)
4. Resource 3301.33 3 54056.33 8
Reconfiguration (E2) (σ = 281.56) (σ = 1554.08)
5. Single 5688.67 3 35623.33 4
Operator Update (E3) (σ = 363.53) (σ = 1169.39)

6.6.3 Results and Discussion

To eliminate any potential corruption, e.g., side effects by other cloud users, due to the
evaluation in a cloud environment, each scenario was executed three times based on
the VTDL files which can be found in Appendix A. Table 7.2 shows the average results
alongside with the standard deviations of the individual measurements. For the first
scenario, there is no difference between the VTDL approach and the baseline approach,
because both approaches follow the same instructions. Each topology update requires
three interactions: opening the Web-based user interfaces, selecting the desired VTDL
file in a file chooser, and initiating the update procedure by clicking on a button. The
overall scenario takes about 55 seconds, which is mainly due to the instantiation of a
Docker Container for each operator. The Docker Images are already available for all
scenarios to avoid any network-related delays for downloading the Docker Images.

The first difference between the VTDL approach and the baseline approach can be
seen in the second scenario, where the topology is deployed across four locations. The
VISP Runtime is capable of deploying the topology to multiple locations in parallel
which results in a shorter duration compared to the first scenario, although the update
instructions need to be propagated over the network. For the baseline approach, it is
required to upload the individual parts of the topology one after another to the individual
SPEs to ensure the correct data flow wiring among the different regions. This sequential
approach requires significantly more interactions, i.e., four times as much, than for the
VTDL approach, which results in an about 40% faster topology instantiation. Hereby,
the majority of the deployment time can also be attributed to the startup duration of
the Docker Container.

The first event scenario (E1) can only be evaluated for the VTDL approach, because
other SPEs do not support any sophisticated failure compensation on an operator level.
For this scenario, we have selected the deploy option as compensation, which obtains a
new VTDL file from a predefined location and applies the update.
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Here, it is sufficient to reroute the traffic from Sweden to Germany, which results in a
low duration between the event and the topology update. The event is detected by the
Monitoring infrastructure of the VISP Runtime, which evaluates the availability and
connectivity among the individual operators every ten seconds. The detection of the
outtake takes on average 5 seconds, but in the worst case this can take up to 10 seconds,
depending on the cycle of the monitoring interval. These changing detection times
result in different compensation durations, which is also indicated by the high standard
deviation for this scenario. This scenario also does not require any user interactions since
the failure compensation is conducted autonomously by the VISP Runtimes.

The next scenario (E2) describes an active resource configuration within the topology,
which leads to a shorter average duration as for E1. For the VTDL approach, it is
sufficient to only reroute the data flow between the sensor and the operator, whereas
the baseline approach requires the removal and redeployment of two sub-topologies,
i.e., for Spain and Germany, which results in an update duration of almost 54 seconds.
That is about 18 times as long as for the VTDL approach. The baseline approach also
requires five interactions more than the VTDL approach, because it requires two topology
removals and two topology uploads.

The last scenario (E3) requires the removal and update of the topology within one VISP
Runtime for the baseline approach compared to the update of a single operator. For the
new instantiation, all operators are newly deployed which results in a six times higher
duration compared to the VTDL approach, where only one operator is removed and the
updated one is deployed again.

The evaluation of the VTDL approach against the baseline approach that is used for
established SPEs shows that the VTDL-based approach can reduce both the duration
for applying changes to a topology as well as the required manual interactions.

6.7 Summary
Within this chapter, we have motivated the need for a new topology description approach
by discussing the features for distributed SPAs and next-generation SPEs. Based on
these features we have developed and introduced the VTDL, which extends the SPL with
the required features to support distributed SPAs as well as fine granular QoS constraints
for operators. Besides the abstract notion of the VTDL, we also presented a concrete
management mechanism, which is required to use the features of the VTDL within
SPEs. This management mechanism has been evaluated based on five scenarios and the
evaluation shows that the VTDL approach has a significantly lower update duration
for updating topologies compared to traditional approaches. Finally, the evaluation
also shows that the VTDL enables new possibilities for SPAs, like automatic failure
compensation.

56



CHAPTER 7
Resource Elasticity for Stream

Processing Applications

In this chapter, we present a threshold-based resource provisioning algorithm for SPAs
running on SPEs in a distributed environment. Therefore, we introduce a model to
formulate and optimize the resource provisioning for individual operators of an SPA
based on SLOs as well as resource restrictions. To evaluate our optimization approach,
we design a new SPA for monitoring rides of a taxi fleet and deploy the SPA across
six different geographic locations. The evaluation shows that our optimization model is
able to reduce the cost by 20% with only minimal effects on the QoS compared to an
over-provisioning baseline. Besides the cost reduction in contrast to an over-provisioning
scenario, the evaluation also indicates an QoS improvement of 72% compared to an
under-provisioning baseline.

7.1 Overview

One of the most important challenges for SPEs arises from the large volatile data, which
have been first observed for social networks [17]. In order to cope with this challenge,
most system providers applied a fixed-resource provisioning scenario, whereas neither an
over-provisioning scenario nor an under-provisioning scenario is an optimal solution as
discussed in Section 2.2.1. To address this issue, we propose to apply an elastic resource
provisioning approach and update the resource configuration at run time depending on the
actual data volume for the SPA. Therefore we introduce an elastic resource provisioning
model for data stream processing in Section 7.2. This model is then evaluated based on a
testbed-driven evaluation presented in Section 7.3 which is then discussed in Section 7.4.
To conclude this chapter, we finally summarize the results in Section 7.5.
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7.2 Elastic Resource Provisioning Model

The VISP Runtime supports elastic resource provisioning for each operator of an SPA
based on monitoring information as discussed in Section 5.3.3. The aim of our elastic
resource provisioning strategy is to minimize the cost for computational resources,
i.e., VMs, while being compliant with given SLAs that require a near real-time data
processing. This cost optimization is based on leasing Operator Instances that are
required to guarantee near real-time processing capabilities. In addition it is reasonable
to use the leased resources in the most efficient manner according to their Billing Time
Unit (BTU). A BTU defines the minimum leasing duration for computational resources,
e.g., VMs, and often amounts to one hour like on Amazon EC2 [105]. The concept of
the BTU means that the user has to pay for each started hour, regardless of how many
minutes the VM is used. Because of the BTU, the repeated leasing and releasing of VMs
may result in even higher cost than an over-provisioning scenario [123], because releasing
a VM before the end of the BTU results in a waste of resources.

For the optimization model at hand, we consider the optimization of one specific operator,
which is used within an SPA. This operator is represented by at least one but up to
arbitrary many Operator Instances depending on the data volume that need to be
processed. Each of these replicated Operator Instances is running on a dedicated VM
and all Operator Instances are running independently from each other.

To realize elastic resource provisioning, we define an optimization problem, which consists
of the objective function given in (7.1) and nine constraints given in (7.2)–(7.9).

In our optimization problem, we use the decision variable ri to denote one particular
Operator Instance out of the set of all Operator Instances R. The variable RU indicates
the set of all currently running Operator Instances. The current CPU of an Operator
Instance load is given by cri , its current leasing duration is defined by ldri , and we denote
the load of the incoming queue for this specific operator as qin.

min
∑
p∈P

pi +
∑
p∈P

piBT U + u ·N + d ·N (7.1)

The objective function (7.1), which is subject to minimization, comprises four terms. In
the first term, we compute the total leasing cost by summing up the assigned values for all
Operator Instances for a specific operator. These values can either take the value 1 when
currently leased or the value 0 when not leased, as defined by (7.8). The second term
sums up the remaining leasing time for each Operator Instance, which has already been
paid according to its BTU, as defined by (7.6). This term ensures that those Operator
Instances with the smallest remaining usage duration are released first. The remaining
two decision variables u (upscaling) and d (downscaling) indicate the required scaling
procedures. A value of 1 indicates a required scaling procedure and the default value of 0
indicates that no scaling procedure is required.
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∑
r∈RU

cri

RU
< CPUmax + u (7.2)

qin < Qmax + u ·N (7.3)

(7.2) represents the constraint which triggers an upscaling procedure, whenever the
average CPU usage of all running Operator Instances exceeds the CPUmax threshold.
The second upscaling constraint, defined by (7.3), represents the upscaling decisions based
on the load of the incoming queue qin. As soon as the load qin exceeds the threshold
of Qmax, the variable u becomes 1 and triggers an upscaling operation procedure. The
variable N was introduced to decouple the values of u and d from the values of Qmax

and qin. Therefore, it needs to be an arbitrary large number, which must be larger than
any possible value for qin.

∑
r∈RU

cri

RU
> CPUmin − d (7.4)

qin > Qmin − d ·N (7.5)

(7.4) and (7.5) represent the constraints for downscaling procedures. These constraints
work in a similar manner as those for the upscaling operations, but consider the lower
thresholds Qmin for the incoming queue and CPUmin for the average CPU usage.

riBT U =


ldri % BTU

BTU , if ri = 1
0 , else

(7.6)

(7.6) defines the remaining usage duration for a specific Operator Instance, while respecting
the BTU. The result of this constraint is the remaining and already paid usage leasing
duration in minutes, while ldri represents the time for which the specific Operator Instance
is already running.

∑
r∈R

ri ≥ 1 (7.7)

(7.7) ensures that there is at least one Operator Instance running for a specific operator.

ri, u, d ∈ {0, 1}; 0 ≤ cri , riBT U , CPUmax, CPUmin ≤ 1 (7.8)

R,RU , ldri , Qmax, Qmin ∈ N0 (7.9)

(7.8) and (7.9) define the possible values for the variables.
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Figure 7.1: Evaluation Scenario

7.3 Evaluation

7.3.1 Evaluation Scenario

In the following paragraphs, we provide a motivational SPA from the transportation
domain.

In this scenario, the provider of a worldwide operating taxi fleet wants to analyze the
rides of its taxis to optimize the operational planning in real-time. The taxi provider
maintains several taxi fleets in different cities across the world, whereas the operational
and analytics center is located in Europe.

To realize a recommendation system for increasing the taxi usage rate as depicted in
Figure 7.1, it is required to process the constant stream of location information from the
taxis to extract metrics such as the average speed or distance of each single ride. These
metrics are then analyzed to obtain optimization measures. However, before this can
happen, several preprocessing activities are needed, e.g., the speed calculation between
two geographic locations and an aggregation of all recorded locations for a single ride
to derive the distance. Each processing step, i.e., an operator, is depicted as a single
entity in Figure 7.1 whereas the monitor operator is only used to calculate the processing
duration for a single data item.

Figure 7.1 also considers two different types of data flow connections among operators,
which are depicted by fine respectively bold arrows. A fine arrow represents operations,
where the operator emits the same volume of data as it receives. Bold arrows represent
aggregation operations, which aggregate the streaming data over a given time window
and emit fewer data after processing compared to the incoming data.

Since the taxis emit a new location information every second, it is necessary to process the
data as close as possible next to the data providers, i.e., taxis, to reduce the data transfer
duration between the data sources and the stream processing operators. Furthermore,
there are also other limitations for the deployment of the operators, e.g., the Analysis
operator must only be deployed within a private cloud on the premises of the taxi operator
to protect the intellectual property of the algorithm.
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For the concrete implementation we consider the following operators:

Speed: This operator calculates the movement speed between the last known location and
the current location and forwards the speed information to the Average Speed operator.

Average Speed: This operator aggregates all individual speed information and calculates
the average speed. This operator forwards only one item for each ride to the Analysis
operator.

Aggregation: This operator aggregates all location information and forwards them as a
single item to the Distance operator.

Distance: This operator calculates the total distance of the ride, based on the individual
location information and forwards the distance information to the Analysis operator.

Analysis: The Analysis operator receives the average speed as well as the distance and
compiles a report to be forwarded to the Monitor.

Monitor: The Monitor receives all individual location information as well as the report
from the Analysis operator and logs the arrival times of these items. This operator then
calculates the total time, which is required to create the report for a specific ride, after
the last location information was submitted to the SPA.

7.3.2 Evaluation Configuration

Streaming Data

For our evaluation, we selected 75 rides from the T-drive trajectory data sample [124],
which provides GPS-based trajectories within Beijing. Each of these rides consists of
multiple location recordings with a timestamp and a unique identifier for each ride.
This allows us to replay the rides over a given time span to create a data stream. The
streaming data exposes changing data rates, since the rides were recorded across the
course of a week and require a reconfiguration of processing capabilities of the SPE to
process the data in near real-time. For our evaluation, we replayed the data according to
the actual timely sequence of events within 110 minutes for each evaluation run. The
streaming data is provided to the Speed, Aggregation, and Monitor operators at the
same time and each of these operators processes the data according to their internal
implementation.

Thresholds

For our evaluation, we chose the following concrete values for the elastic resource
provisioning strategy: First, we enabled the VISP Runtime to allocate a maximum
amount (R) of 50 VMs for each operator, whereas the BTU for each VM is 60 minutes
based on the pricing model of Amazon EC2 [105]. The scaling thresholds for the incoming
queue are set to 5 for scaling down (Qmin) and 150 for scaling up (Qmax), respectively
90% (CPUmax) and 10% (CPUmin) for the thresholds for the average CPU usage of the
Operator Instances.
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Baselines

To evaluate the elasticity aspects of the VISP Runtimes, we selected two baselines. These
two baselines represent an under-provisioning as well as an over-provisioning scenario
with a fixed amount of Operator Instances, as listed in Table 7.1. These fixed resource
baselines represent the deployment approach for current state-of-the-art SPEs. Each
operator has an individual amount of Operator Instances, due to different workloads
within the SPA as well as the complexity of the stream processing operator. The baseline
configuration has been selected based on the minimal respectively maximal usage within
the elastic scenario based on our resource provisioning strategy.

Testbed

The evaluation was carried out within Amazon EC2 as well as a private OpenStack-based
cloud. The selection of the Amazon EC2 regions is based on the evaluation scenario, as
one can see in Figure 7.1 indicated by the flags. The Speed and Aggregation operators
are deployed in the Singapore and the Sydney region of Amazon EC2 respectively.
Furthermore, the Average Speed operator is deployed in the Tokyo region, the Distance
operator is deployed in the Ireland region, and the Monitor operator is hosted in the
Oregon region. Finally, the Analysis operator is deployed on a private OpenStack-based
cloud within Europe. In terms of size, we use t2.micro instances for the Operator
Instances on Amazon EC2 as well as on the private OpenStack-based cloud.

Metrics

To assess the functionality as well as the total cost for our evaluation scenario, we define
different metrics. Since the VISP Ecosystem aims not only at providing a distributed
runtime environment for SPAs, but also at reducing the total operational cost by applying
elastic provisioning strategies, we have assessed the Cost for Operator Instances. This
metric aggregates the number of Operator Instances for all operators for the SPA
throughout the whole evaluation run, where one Operator Instance amounts for one cost
unit for each minute running. Furthermore, we assess the Total Makespan in Seconds,
which represents the time span between the first location recorded by the Monitor
operator until the last report is recorded. This allows us to assess the overall stream
processing performance.

The Average Duration for the Report Generation in Seconds describes the duration which
passes between the last location information of a single ride and the issuing of the report.
This metric allows us to assess the real-time processing capabilities of the VISP Runtime.
Based on the previous metric we also assess the QoS, i.e., Total Delays, by applying a
SLA to the report generation process. We assume that the report needs to be finished
within 60 seconds after the last location is recorded, i.e., the Average Duration for the
Report Generation in Seconds has to be lower than 60. This further results in the SLA
Adherence that describes how many delays were recorded in relation to the total amount
of rides.
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Table 7.1: Resource Setup - Number of VMs per Operator
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Under-provisioning 5 6 2 1 1 1
Over-provisioning 8 10 3 1 1 1

Table 7.2: Evaluation Results

Elastic Over- Under-
Provisioning Provisioning Provisioning

Number of Total Rides 75 75 75
Number of Location Information Items 50742 50742 50742
Cost for Operator Instances 2160.66 2664 1856

(σ = 13.61) (σ = 0.00) (σ = 0.00)
Total Makespan in Seconds 6653 6655 6975

(σ = 9.60) (σ = 0.00) (σ = 1.00)
Average Duration for the 77 35 355
Report Generation in Seconds (σ = 10.69) (σ = 0.00) (σ = 0.57)
Total Number of Delays 21 0 75

(σ = 5.29) (σ = 0.00) (σ = 0.00)
SLA Adherence in % 28.00 100.00 0.00

(σ = 7.40) (σ = 0.00) (σ = 0.00)

7.4 Discussion

To evaluate our approach, each provisioning scenario was executed three times over the
course of two days. This was done to reduce the risk of any corruption of the results,
which may occur due to different system loads as well as communication channels among
the different regions in Amazon EC2 and the OpenStack-based cloud.

Table 7.2 lists the average values for all three evaluation runs alongside with the standard
deviation σ. Figure 7.2 presents the number of Operator Instances across the evaluation
alongside with the incoming rate of streaming data. While Figure 7.2 presents the
resource usage of all operators combined, Figure 7.3 presents the resource usage as well as
the load of the incoming queue for the Speed Operator Node for the elastic provisioning
scenario. In both figures, the horizontal axis represents the time in minutes.
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Figure 7.2: Resource Usage

The vertical axis represents the total number of Operator Instances on the left side
and the amount of incoming streaming data, as well as the buffered streaming data for
Figure 7.3 on the right side.

The evaluation shows that the system behavior follows a predictable outcome as required
by Stonebraker [125]. This outcome is derived from the low standard deviations across
the different evaluation runs, despite the fact that the evaluation was carried out in a
cloud environment.

Furthermore, the evaluation also shows the relation between the amount of computational
resources, i.e., Operator Instances, and the total makespan. The under-provisioning
scenario exposes the longest makespan, while the total makespan for the over-provisioning
and the elastic provisioning scenarios are almost the same. This additional required time
can be explained by a shortage of Operator Instances in the under-provisioning scenario
compared to the over-provisioning one. In comparison, the elastic provisioning scenario
only requires 15% more resources than the under-provisioning scenario, while performing
as fast as the over-provisioning one. This fact can be attributed to the elastic scaling
mechanism, which only allocates additional Operator Instances when they are required.
This can be also observed in Figure 7.2, which represents the total amount of Operator
Instances over time. Figure 7.3 provides an even better representation of the relation
between the streaming data rates and the amount of Operator Instances. Each time the
streaming data rates rise, the amount of Operator Instances also increases to cope with
the increased system load.

Since our approach applies a threshold-based scaling approach, it takes some time, i.e.,
60-200 seconds, for the VISP Runtime to fully adapt to the increased system load. This
delay is caused by reasoning the resource provisioning as well as the setup time of the
Operator Instances, i.e., system startup of the VM.
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Figure 7.3: Resource Usage of the Speed Operator Node

Although the resource provisioning represents an optimization problem, its solution
amounts only for a small fraction of the overall delay due to the typically small number
of operators for an SPA. This can be observed in Figure 7.3 around minute 7, where
the incoming queue buffers the streaming data, until our approach updates the number
of available Operator Instances to the changing streaming data rates. Nevertheless, it
takes our approach only twice as long to issue a report compared to the over-provisioning
scenario, whereas the under-provisioning scenario requires ten times as much time. This
observation is also supported by the total delay as well as the SLA adherence metric
shown in Table 7.2, where we can see that the over-provisioning scenario has no issues
with complying with the applied SLAs. Notably, the elastic provisioning scenario has
an SLA adherence rate of 28%, although the report generation took on average only
17 seconds longer than required by the SLA. In the under-provisioning scenario, we can
observe an SLA adherence of 0%, i.e., no report was issued in time, which is consistent
with the other observations.

Our evaluation shows that our elasticity mechanism allows for a cost-efficient realization
of an SPA, while being compliant with given SLAs.

7.5 Summary
Within this chapter, we have introduced a resource elasticity mechanism to deal with
changing rates of streaming data. This allows us to operate SPAs in a cost-efficient
manner due to a flexible adoption of Operator Instances at run time within the VISP
Ecosystem. Furthermore, we have shown in a testbed-based evaluation that our approach
yields a cost reduction compared to an over-provisioning scenario and a SLA compliance
improvement compared to an under-provisioning scenario.
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CHAPTER 8
Cost-efficient Data Stream

Processing

In this chapter we present a novel resource provisioning approach with a specific focus on
the efficient use of computational resources. This approach assigns new computational
resources on demand to operators whenever an increase of the data volume requires
additional processing capabilities. Besides the on-demand upscaling capabilities, our
approach also optimizes the releasing of computational resources whenever suitable and
economically feasible. In contrast to the rather coarse granular resource allocation approach
presented in the previous chapter, this approach applies a more fine grained one to obtain
a higher resource usage which results in lower operational cost. To evaluate our approach,
we implemented this approach within the VISP Ecosystem and conduced a series of
evaluations with different data volume patterns based on our motivational scenario. These
evaluations show that our approach allows us to improve the SLA compliance by up to
25% and a reduction for the operational cost of up to 36% in contrast to a threshold based
one.

8.1 Overview
Due to the high data volatility provided by IoT devices, it is essential that today’s
SPEs adopt elastic resource provisioning strategies, as has already been discussed in
the previous chapter. Up to now, most elastic provisioning approaches only consider
VMs as the smallest entity for leasing and releasing of computational resources. This
approach is feasible for private clouds, where the main objective of resource provisioning
is resource-efficiency without considering any billing aspects or BTUs. To address this
shortcoming, this chapter considers an additional resource abstraction layer on top of
VMs, to allow for more fine-grained elastic provisioning strategies with the goal to ensure
cost-efficient usage of the leased resources while respecting given SLAs.
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This additional layer is realized by applying the recent trend towards containerized
software components, i.e., containerized operators [126]. The containerization provides
several advantages regarding deployment and management of computational resources.
Besides the smaller granularity compared to VMs, containerized operators also allow
for a faster adaption of the SPA on already running computational resources [127]. An
additional layer of containers also enables reusing already paid computational resources,
i.e., resources can be utilized for the full BTU [127].

Today, frameworks like Apache Mesos [128], Apache YARN [129], Kubernetes [130]
or Docker Swarm [101] provide the functionality to deploy containerized applications
on computational resources. These frameworks rely on simple principles like random
deployment, bin-packing, or equal distribution to deploy containers across multiple hosts.
Although these approaches work well for most use cases, the resource usage for the
underlying VMs in terms of their BTUs can be improved as we are going to show in the
remainder of this chapter.

Therefore, we propose an elastic resource provisioning approach which ensures an SLA-
compliant enactment of SPAs while maximizing the resource usage of computational
resources and thus minimizing the operational cost, i.e., cost for computational resources
and penalty cost for delayed processing. The results of our evaluation show that our
approach achieves a cost reduction of about 12% compared to already existing approaches
while maintaining the same level of QoS.

The remainder of this chapter is structured as follows: First, we discuss the enactment
scenario for the SPA given in the motivational scenario and derive several requirements
for an optimization approach in Section 8.2. Based on these requirements we then provide
the problem definition for the optimization problem in Section 8.3, which leads to our
optimization approach presented in Section 8.4. In Section 8.5, we describe our evaluation
setup and in Section 8.6, we present the evaluation results and their discussion before we
summarize the chapter in Section 8.7.

8.2 Enactment Scenario and Requirements

8.2.1 Enactment Scenario

For the enactment scenario in this chapter, we consider a deployment of the motivational
SPA (see Chapter 4) in one geographic location. During the enactment, the operators
need to deal with streaming data from a varying amount of manufacturing machines, as
shown in Figure 8.1 at the bottom. This varying data volume requires the SPA to adapt
its processing capabilities on-demand, i.e., the number of Operator Instances for specific
operators, which are hosted on an arbitrary amount of hosts, e.g., H1 – H4 in Figure 8.1,
to comply with the SLAs. The SPE aims at minimizing the needed number of hosts by
using an optimal deployment, since each host amounts for additional cost.
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Figure 8.1: Enactment Scenario

The enactment of our motivational scenario is partitioned into different stages, with a
varying number of running manufacturing machines in each stage. At the beginning of
Stage 1, each operator is deployed once across the two hosts H1 and H2. Since the data
volume increases after some time, the SPA needs to update the processing capabilities by
deploying replicas of the operators O1, O2 and O6 in Stage 2. These Operator Instances
are hosted on a new host H3 because the two already existing hosts cannot cope with
the additional Operator Instances. In Stage 3, the data volume increases again, the
SPE needs to create further Operator Instances to comply with the SLAs. Although the
second replication of operator O1 is feasible on the currently available resources, the SPE
is required to lease a new host for the additional Operator Instances of types O3, O4,
O5, and O9.

At the end of Stage 3, H1 and H2 meet the end of their BTUs. Therefore, the SPE
evaluates whether some of the replicated operators can be removed again without violating
the SLAs. Due to the decreasing data volume after Stage 3, the system can remove (O1,
O3, O4, and O5) or migrate (O2) some of the Operator Instances to other hosts. This
leads to the situation that no Operator Instances are running on host H1 at the end of
its BTU and the SPE can release H1, while host H2 needs to be leased for another BTU.

8.2.2 Requirements

Based on the enactment scenario, we have identified several requirements which need to
be addressed by the optimization approach.
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SLA Compliance The first requirement is SLA compliance in terms of maximum
processing duration, for data that is processed by the SPA. This compliance is the overall
goal that needs to be met, regardless of the actual incoming data rate.

Cost Efficiency The second requirement is the cost efficiency for the enactment. This
requirement asks for a high system usage of leased computational resources and an
efficient usage of cloud resources, especially regarding their BTU.

Optimization Efficiency The optimization efficiency requirement can be split into two
different aspects. The first aspect is the solution of the optimization problem presented
in Section 8.3. Because this optimization problem is NP-hard (see Section 8.3.2), it
is required to devise heuristics to achieve a time- and resource-efficient optimization
approach. The second aspect is that the optimization needs to minimize the number
of reconfigurations, e.g., scaling operations, for the SPA because each reconfiguration
activity has a negative performance impact on the data processing capabilities.

8.3 Problem Definition

8.3.1 System Model and Notation

The system model is used to describe the system state of the individual operators that
form the SPA as well as the used computational resources. The individual operators
are represented by O = {1, . . . , o#}, where o ∈ O represents a specific operator. Each
operator o is assigned with minimal resource requirements ocpu and omemory which need to
be met to instantiate an operator on any host. At run time, each operator is represented
by at least one, but up to arbitrary many Operator Instances, which are described by
the set I = {1, . . . , i#}, whereas each itype is assigned to a particular operator o ∈ O.

This set of Operator Instances I is running on arbitrarily many hosts that are represented
by the set H = {1, . . . , h#}, whereas each host hosts a subset of I. Each of these hosts is
furthermore assigned with a set of attributes. The attributes hcpu and hmemory represent
the overall computational resources of the host, and the attributes hcpu∗ and hmemory∗
represent the remaining computational resources at run time. The attributes hcpu∗ and
hmemory∗ are decreased for every Operator Instance i on the specific host h and can be
used to determine if it is possible to deploy an additional Operator Instance on this
particular host h. The attribute hcost represents the cost for the host, which needs to
be paid for each BTU. The attribute hBT U∗ represents the remaining, already paid,
BTU time. To represent the different startup times between cached and non-cached
Operator Images, each host furthermore denotes a set of images himg. This set contains
all Operator Images o ∈ O, which are cached on this particular host. Each operator is
assigned a specific image, whose identifier is identical to the name of the operator.
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Besides the fundamental operator attributes for instantiating operators, there is also a
set of attributes which is used to ensure the SLA compliance for data processing. Each
operator is assigned with an estimated data processing duration oslo that represents the
time to process one data item and pass it on to the following operator according to the
topology of the SPA. The oslo value is recorded in an optimal processing scenario, where
no data item needs to be queued for processing. Since the SLO oslo only presents the
expected processing duration, we also denote the actual processing duration for each
operator od and the amount of data items oqueue that are queued for a particular operator
for processing.

In addition to the current od, the system model also considers previous processing
durations. Here, we consider for each operator o the last N processing durations od

denoted as od1 to odN
, whereas each of the values gets updated after a new recording

of the od, i.e., od1 obtains the value of od and od2 obtains the value of od1 , etc. If the
actual processing duration od takes longer than the SLO oslo, penalty cost P accrue to
compensate for the violated SLAs each time a violation v ∈ V occurs.

Furthermore, we denote two operational attributes for each operator. The attribute
o# represents all current instances, i.e., the sum of all instances of the operator o, and
the attribute os represents all already executed scaling operations, both upscaling and
downscaling, for a specific operator. Last, we also denote the current incoming amount
of data items as DR.

8.3.2 Optimization Problem

Based on the identified requirements in Section 8.2.2, we can formulate an optimization
problem as shown in Equation 8.1. The goal of this optimization problem is to minimize
the cost for the topology enactment while maintaining given SLOs. This equation is
composed of four different terms, which are designed to cover the different requirements.
The first term represents the cost for all currently leased hosts by multiplying the number
of all currently leased hosts with the cost for a single host. The second and third term
are designed to maximize the resource usage on all currently leased hosts regarding the
CPU and memory. The last term ensures the SLA compliance of the deployment, due to
the penalty cost, which accrue for each SLO violation.

Min h# · hcost

+
∑

h∈H hcpu −
∑

i∈I∩itype=o ocpu∑
h∈H hcpu

+
∑

h∈H omemory −
∑

i∈I∩itype=o omemory∑
h∈H hmemory

+
∑
v∈V

v · P

(8.1)
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Although the solution of this optimization problem provides an optimal solution for a
cost-efficient deployment, it is not feasible to rely on the solution of this problem due to
its complexity. To define the complex nature of this problem, we are going to provide a
reduction to an unbounded knapsack problem [131], which is known to be NP-hard.

Definition of Knapsack Problem The unbounded knapsack problem assumes a
knapsack, whose weight capacity is bounded by a maximum capacity of C and a set of
artifacts A. Each of these artifacts a is assigned with a specific weight aw > 0 as well as
a specific value av > 0 and can be placed an arbitrary amount of times in the knapsack.
The goal is to find a set A′ of items, where

∑
a∈A aw ≤ C and

∑
a∈A av is maximized.

NP-Hardness of the Optimization Problem For our reduction, we assume a
specific instance of our optimization problem. For this specific instance, we assume that
the number of hosts is fixed and that each operator has the same memory requirements
omemory. Furthermore, we define the value of the specific operator by the amount of
data items oqueue that are queued for a specific operator, i.e., the more items need to
be processed, the higher is the value for creating an Operator Instance for this specific
operator.

Based on this specific instance of the optimization problem, we can build an instance
of the unbounded knapsack problem, where the maximum capacity C is defined by the
maximum amount of CPU resources on all available hosts

∑
h∈H hcpu, the weight aw of

the artifacts a is defined by the CPU requirements ocpu of one operator and the value
av of the artifact is defined by the number of items waiting on the queue oqueue for the
specific operator.

Due to the fact that a specific instance of our optimization problem can be formulated
as a knapsack problem, we can conclude that our optimization problem is also NP-hard.
This concludes that there is no known solution approach which can obtain an optimal
solution in polynomial time. Since this conclusion conflicts with the third requirement
given in Section 8.2.2, we decided to realize a heuristic-based optimization approach,
which can be solved in polynomial time.

8.4 Optimization Approach

The overall goal of our optimization approach is to minimize the cost for computational
resources and maximize the usage of already leased VMs while being compliant to given
SLAs. Therefore, we apply an on-demand approach with an emphasis on reducing
the deployment and configuration overhead, i.e., instantiating and removing additional
Operator Instances, as well as minimizing the computational resources required for finding
an optimal deployment configuration. Due to our emphasis on the BTUs of VMs, we call
our approach BTU-based approach in the remainder of this chapter.
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Figure 8.2: Upscaling Procedure for a Specific Operator

8.4.1 Ensure Sufficient Processing Capabilities

To avoid penalty cost, our approach continuously evaluates the SLA compliance of
the stream processing topology. Whenever the individual processing duration od of a
particular operator o exceeds or threatens to exceed the maximum allowed processing
duration oslo according to the Upscaling Algorithm as shown in Algorithm 1, the upscaling
procedure for the specific operator is triggered. This upscaling procedure consists of
several steps, as depicted in Figure 8.2. The first task is to evaluate if any of the currently
running hosts offers enough computational resources to host the additional instance of
the specific operator. Therefore, we apply the Host Selection Algorithm, as described
in Algorithm 2, for every currently running host to obtain a utility value for the host.
Assuming that there is at least one host with a positive utility value, the host with the
best utility value is selected to deploy the new Operator Instance, and the upscaling
procedure is finished. When no host with a positive utility value is available, i.e., no
host offers enough computational resources to instantiate a new instance for the required
operator, there are two possibilities to obtain the required computational resources. The
first possibility is to scale down existing operators when they are not required anymore.
We therefore apply the Operator Selection Algorithm, as described in Algorithm 3 and
discussed in Section 8.4.3. If there is any operator that can be scaled down, an Operator
Instance of this operator will be scaled down to free computational resources for the
upscaling operation. When there are no operators which can be scaled down, i.e., all
operators are needed for SLA-compliant data stream processing, the second possibility is
applied where the SPE leases a new host. As soon as the resources are either provided by
scaling down another operator or the new host is running, the SPE deploys the required
Operator Instance and finishes the upscaling procedure.

8.4.2 Optimize Resource Usage

To minimize the operational cost, the optimization approach aims at using the leased
resources as efficient as possible. This means that the SPE uses all paid resources until
the end of their BTUs and evaluates shortly before, i.e., within the last 5% of the BTU,
whether a host needs to be leased for another BTU, i.e., the resources are still required,
or if the host can be released again.
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Figure 8.3: Downscaling Procedure for a Host

To release hosts, as shown in Figure 8.3, all Operator Instances running on the designated
host which is targeted to be shut down, need to be either released or migrated to other
hosts. This releasing procedure consists of three phases. The first phase is a simulation
phase, where the optimization approach creates a downscaling plan to evaluate whether
the downscaling and migration is actually feasible. Hereby, the optimization approach
applies the Operator Selection Algorithm (Algorithm 3) for all operators, which have
running instances on this host and obtain their utility value. If any of the operators has
a positive utility value, all Operator Instances (up to 20% of all Operator Instances for
the specific operator) running on this host are marked to be released. The 20%-threshold
for the Operator Instances is in place to avoid any major reconfigurations for a single
operator, since it may be the case that all Operator Instances for the operator are running
on this host and after the downscaling there would be not sufficient Operator Instances
left which would trigger again the upscaling procedure.

For those Operator Instances which cannot be shut down, the procedure simulates whether
they can be migrated to other hosts. This simulation uses the upscaling procedure for
operators, as described in Section 8.4.1. The only difference is that the host which is
targeted to be shut down, is omitted as a suitable target host. If the simulation renders
no feasible downscaling plan, the host is leased for another BTU and the downscaling
procedure is finished.

In case there is a downscaling plan, the operators are released in the second phase and if
any migration is required, the upscaling procedure for operators is triggered based on the
simulation in phase three. When all Operator Instances are successfully removed (scaled
down or migrated), the shut down of the host is initialized. In the unlikely event that
the downscaling plan could not be executed, i.e., the Operator Instance migrations fail,
the host also needs to be leased for another BTU.
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8.4.3 Algorithms

To realize our BTU-based provisioning approach, we have devised three algorithms, which
are discussed in detail in this section. These three algorithms realize individual tasks
for the upscaling and downscaling procedures as shown in Figure 8.2 and Figure 8.3.
Algorithm 1 ensures the SLA compliance of the individual operators on a regular basis
by interpreting the monitoring information provided by the VISP Runtime. The other
two algorithms are only triggered if a new Operator Instance needs to be started or when
there is a shortage of free computational resources. These two algorithms analyze the
SLA compliance and resource usage on demand at specific points in time and identify
the most suitable host for upscaling (Algorithm 2) or potential operators, which can
be scaled down (Algorithm 3). Although these algorithms do not represent the core
functionality of the resource provisioning approach, they are still essential to identify
required upscaling operations and choose the optimal degree of parallelism per operator
whereas the overall cost-reduction and reconfiguration is represented by the downscaling
procedure shown in Figure 8.3. The remainder of this section discusses the structure and
rationale of these three algorithms in detail.

The Upscaling Algorithm as listed in Algorithm 1 is used to evaluate whether any operator
needs to be scaled up. This algorithm is executed on a regular basis for each operator o
and either returns 0, if the current stream processing capabilities are enough to comply
with the SLAs, or 1 if the operator needs to be scaled up. Therefore, this algorithm
considers, on the one hand, the current processing duration of the operator (Line 2)
and, on the other hand, the trend of the previous processing durations. For the trend
prediction, we apply a simple linear regression for the last N observations, based on the
linear least squares estimator (Lines 5 – 9). If the current duration od or the predicted
duration is higher than the SLO oslo, we consider the operator to be scaled up (Line 10).

Before we trigger the upscaling operation, we apply an additional check if the upscaling
operation is actually required. The SPA may retrieve short-term data volume peaks,
e.g., due to short network disruptions. These peaks would not require any additional
computational resources, because they would be dealt with after a short time with
the already available processing capabilities. Nevertheless, the upscaling algorithm
would trigger the upscaling procedure, because it would detect the processing delay.
Therefore, the algorithm also considers the current load of data items oqueue before
scaling up by checking whether the amount of queued items for processing exceeds a
specific scalingThreshold (Lines 16 – 18).

Algorithm 2, i.e., the Host Selection Algorithm, is used to rank all currently leased hosts
according to their suitability to host a new Operator Instance of a particular operator o.
Therefore, the algorithm evaluates for each host h whether a new instance of the required
operator o could be hosted on that specific host at all. Here, the algorithm considers
both, the CPU and memory requirements, and derives the maximum amount of instances
that can be hosted. If this value is less than 1, i.e., there are no resources left for a single
additional Operator Instance, the function returns a negative value.
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Algorithm 1 Upscaling Algorithm
1: function upTrigger(o,N)
2: if od > oslo then
3: upscaling = 1
4: end if
5: observationMean = 1

N ∗
∑N

i=1 i

6: durationMean = 1
N ∗

∑N
i=1 odi

7: β =
∑N

i=1(i−observationMean)∗(odi
∗durationMean)∑N

i=1(i−observationMean)2

8: α = durationMean− β ∗ observationMean
9: predictedDuration = α+ β ∗ (N + 1)

10: if predictedDuration > oslo then
11: upscaling = 1
12: end if
13: if upscaling = 0 then
14: return 0
15: end if
16: if oqueue > scalingThreshold then
17: return 1
18: end if
19: return 0
20: end function

The first check evaluates the feasibility of deploying a new Operator Instance on the
host (Lines 2 – 5). In a second stage, this algorithm evaluates the suitability of this
host. Here the algorithm simulates the resource usage of the host, assuming the Operator
Instance would be deployed on the host. The overall goal is an equal distribution of CPU
and memory usage across all hosts, to avoid situations where hosts maximize their CPU
usage, but hardly use any memory and vice versa. Therefore, the algorithm calculates
the difference between the normalized CPU usage and memory usage, whereas a lower
value represents a better ratio between CPU and memory and therefore a better fit
(Lines 6 – 9). Besides the equal distribution of memory and CPU on the individual
hosts, we also want to distribute the operators equally among all currently leased hosts.
The assigned CPU ocpu and memory omemory attributes only represent the resources
which are guaranteed for the operators. This allows operators to also use currently
unused resources of the hosts based on the first-come, first-serve principle. To maximize
the usage, we aim for an equal distribution of the unassigned resources, i.e., hcpu∗ and
hmemory∗, which can be used by the operators to cover short-term data volume peaks
without any reconfigurations required. This aspect is covered by dividing the difference
value by the feasibility value to prefer those hosts which are least used (Line 9). Last,
we also consider the deployment time aspect for a particular operator. Here, we prefer
those hosts which have already a cached copy of the Operator Image.
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While such Operator Images may be rather small for SPEs which operate on a process or
thread level, like Apache Storm, these images can reach up to 100 MB for containerized
operators. Therefore, a download from the external repository of these Operator Images
requires some time. In order to distinguish hosts which have a cached copy of the
Operator Image from those hosts that do not have a cached copy of the Operator Image,
we multiply the suitability with a constant factor CF to create two different groups of
hosts for the overall selection (Lines 10 – 12). For this constant factor, we recommend
to use the value 0.01 which was also used in the remainder of our work. The value 0.01
was chosen to clearly distinguish these two groups, since the actual suitability values
are always in the range of 0 to 1 based on the structure of the algorithm. Each of these
groups maintains their resource-based ordering, but we prioritize those hosts that provide
a faster startup time due to the cached image, i.e., the group with lower values. The
result of this algorithm is either a negative value for a host, i.e., the host can run the
new Operator Instance, or a positive value, whereas the lowest value among several hosts
shows the best suitability.

Algorithm 2 Host Selection Algorithm
1: function up(h, o)
2: feasibilityThreshold = min((hcpu∗/ocpu), (hmemory∗/omemory))
3: if feasibilityThreshold < 1 then
4: return -1
5: end if
6: remainingCPU = hcpu∗ − ocpu

7: remainingMemory = hmemory∗ − omemory

8: difference = | remainingCPU
hcpu

− remainingMemory
hmemory

|
9: suitability = difference

feasibilityThreshold
10: if s ∈ himg then
11: suitability = suitability * CF
12: end if
13: return suitability
14: end function

Algorithm 3, i.e., the Operator Selection Algorithm, is used to select operators which
can be scaled down without violating the SLOs. Therefore, this algorithm considers
several static as well as run time aspects of the operators. The goal of the algorithm is
to obtain a value which describes the suitability of a particular operator to be scaled
down. Whenever the value is negative, the operator must not be scaled down, i.e., all
Operator Instances for this operator are required to fulfill the SLO.

First, the algorithm ensures that there is at least one Operator Instance for the given
operator (Lines 2 – 4). Second, the function considers the amount of all currently running
instances for the specific operator and normalizes it to obtain a value between 0 and 1
(Line 5). This normalization is carried out based on the maximum respectively minimum
amount of instances for all operators.
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This value represents the aspect that it is better to scale down an operator with numerous
Operator Instances because the scale down operation removes a smaller percentage of
processing power compared to an operator with fewer Operator Instances.

Furthermore, we also consider the SLA compliance of the particular operator. Here,
we consider the actual compliance for the processing duration and multiply it with the
penalty cost as a weighting factor (Line 6). Since the penalty cost for the violation of a
single data item is typically lower than 1, we add 1 to the penalty cost P . Whenever the
processing duration od takes longer than the SLO oslo, the delay value will be less than 1,
but when there is any delay, the delay value can become arbitrarily high. The next value
for consideration is the relative amount of scaling operations (both up and down) in
contrast to all scaling operations (Line 7). Here, we penalize previous scaling operations
because we want to avoid any oscillating effects, i.e., multiple up- and downscaling
operations for a specific operator. The last factor is the queueLoad. In the course of our
evaluations, we have seen that the algorithm may take a long time to recover after a load
peak, i.e., release obsolete Operator Instances as soon as the data is processed. This can
be observed when the SPE is confronted with a massive data spike followed by a small
data volume for some time. For this scenario, the heuristic discourages any downscaling
operation due to the delay factor, which may be high due to the delayed processing of the
data spike. To resolve this shortcoming, we introduce the queueLoad factor QL, which
encourages the downscaling of an operator, as soon as no data items are waiting in the
incoming queue oqueue (Lines 8 – 12). For QL we recommend the use of the value 100
to clearly indicate that the operator can be scaled down, regardless of the other values
which are in the range of 0 – 1 for the instances and scalings value or significantly lower
than 100 for the delay value. This value was selected based on a number of preliminary
experiments prior to the actual evaluation where the data processing never took longer
than 50 times the given SLO oslo.

Algorithm 3 Operator Selection Algorithm
1: function down(o)
2: if o# < 2 then
3: return -1
4: end if
5: instances = o#−min(o#∈O)

max(o#∈O)−min(o#∈O)
6: delay = od

oslo
* (1 + P )

7: scalings = os∑
os∈O

os

8: if oqueue < 1 then
9: queueLoad = QL

10: else
11: queueLoad = 0
12: end if
13: return 1 + W1 * instances + W2 * queueLoad − W3 * delay − W4 * scalings
14: end function
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Finally, we join the distinct aspects to obtain the overall utility value. While the number
of instances and queueLoad represent a positive aspect to scale down an operator, all other
aspects discourage a scaling operation. The instances and scalings value are normalized
between 0 and 1 whereas the scalings value can exceed 1 if the data processing is delayed.
Therefore, we introduce optional weights W1,W2,W3, and W4 for the different aspects.
However, the default value for each of these weights is 1 to treat all aspects with the
same significance. The result is the utility value, which describes the suitability of the
particular operator to be scaled down, whereas a higher value suggests a better suitability
(Line 13).

8.5 Evaluation

8.5.1 Evaluation Setup

For our evaluation, we revisit the motivational scenario (see Chapter 4) and discuss the
concrete implementation of this SPA.

Sensors

First, we are going to discuss the sensors which emit the data items for our SPA. In this
SPA, we consider three different sensors, as listed in Table 8.1. Each of these sensors
generates a data item with a particular structure, which can be only processed by a
dedicated operator, e.g., O1 for sensor S1. Due to the different structure, the size of the
data items also differs. The first and the last sensor (S1 and S3) encode the information
in plain text. This results in rather small data items with a size of 90 to 95 Bytes. The
second sensor encodes the information with an image and is therefore much larger, i.e.,
around 12500 Bytes.

Stream Processing Operators

The second important implementation aspect for the SPA are the operators. Each of
these operators performs a specific task with specific resource requirements and specific
processing durations. Table 8.2 lists all operators which are used for the evaluation
and each operator is assigned a number of different performance as well as resource
metrics. The resource metrics represent mean values across several SPA executions.

Table 8.1: Sensors

Emission Rate / min Size (Bytes)
Availability Sensor (S1) 5 95
Production Data (S2) 1 12500

Temperature Sensor (S3) 10 90
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Table 8.2: Stream Processing Operators

Processing CPU Memory Storage Outgoing
Duration (ms) Shares (MB) (MB) State Ratio

O1 600 131 524 68 X 50:1
O2 600 65 440 68 X 100:1
O3 1500 660 452 89 1:3
O4 750 100 430 68 1:1
O5 750 83 502 68 X 1:1
O6 750 77 527 68 X 1:1
O7 700 46 464 68 X 3:1
O8 1300 47 452 70 X 300:1
O9 500 74 466 68 1:0

The processing duration represents the average times which are required to process one
specific data item as well as the time the data item is processed within the messaging
infrastructure between the previous operator and the one in focus. The CPU metric
represents the amounts of shares which are required by the operator when executed on a
single core VM. The memory value represents the mean memory usage. This memory
value accumulates the actual used memory by the Operator Instances and the currently
used file cache, which results in a rather high value compared to the actual size of the
Operator Image. The CPU metric and the memory metric are determined based on
long-term recordings, whereas the stated values in the table are calculated by adding both
the absolute maximum and the average value of all observations for a specific operator
and dividing this value by 2. For the processing duration, we have conducted several
preliminary evaluations, where the SPA is processing constant data volume in a fixed
over-provisioning scenario to avoid any waiting durations for the recordings.

For the storage operator, we have three different sizes. Due to the fact that the majority
of the processing operators only implement processing logic, the size of the images is the
same. The only two exceptions are the Generate Report (O8) image, which also contains
a PDF generation library and the Parse and Distribute Data (O3) Operator Image, which
also contains the Tesseract binary [132], which is required to parse the images. Each of
the stateful operators, as indicated in the table, can store and retrieve data from the
shared state to synchronize the data among different data items and different instances
of one operator. The outgoing ratio describes whether a particular operator consumes
more data items than it emits, e.g., O7 combines three data items before it emits a
combined one, or whether it emits more data items than it receives, e.g., O3 distributes
the production information to three other operators.
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For our scenario, we have implemented nine different operators [108] as Spring Boot [133]
applications, which are discussed in detail in the remainder of this section.

Filter Availability (O1) Each manufacturing machine can have three different avail-
ability types: available, planned downtime, and defect. While the first two types represent
intended behavior, the last type signals a defect and should be propagated to a human
operator. This operator issues a warning for each new defect notification and filters all
other data items.

Monitor Temperature (O2) The Monitor Temperature operator filters all tempera-
tures below a predefined threshold and issues a notification to the human operator for
each new temperature violation.

Parse and Distribute Data (O3) The Parse and Distribute Data operator is designed
to receive an image with encoded production data and parse this image to extract the
information. For our implementation, we use the Tesseract OCR Engine [132] to parse the
image and then the Spring Boot-based application [133] forwards the machine-readable
production data to the downstream operators.

Calculate Performance (O4) The Calculate Performance operator calculates the
performance of the last reporting cycle, i.e., the time between two production data
emissions. The actual performance is derived by the formula shown in Equation 8.2.

performance = producedItems · idealProductionT ime
reportingCycle

(8.2)

Calculate Availability (O5) The Calculate Availability operator represents the over-
all availability of the manufacturing machine from the beginning of the production cycle,
e.g., the start of the evaluation. The availability is defined by the formula shown in
Equation 8.3.

availability = totalT ime− scheduledDowntime− unscheduledDowntime
totalT ime

(8.3)

Calculate Quality (O6) The Calculate Quality operator represents the ratio between
all produced goods against defect goods from the beginning of the production cycle. The
quality is defined by the formula shown in Equation 8.4.

quality = totalProducedGoods− totalDefectiveGoods
totalProducedGoods

(8.4)
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Figure 8.4: Deployment for the Evaluation Scenario

Calculate OEE (O7) The Calculate OEE operator synchronizes the upstream opera-
tions based on the timestamp of the initial data item and calculates the overall OEE
value according to the formula in Equation 8.5.

oee = availability · performance · quality (8.5)

Generate Report (O8) The Generate Report operator aggregates multiple OEE
values and generates a PDF report. This report is then forwarded to the user for further
manual inspection.

Inform User (O9) The Inform User operator forwards the notifications to a human
user. In our evaluation scenario, this operator implementation only serves as a monitoring
endpoint and all incoming data items are discarded at this operator.

8.5.2 Evaluation Deployment

For our evaluation, we make use of the VISP Testbed [4], which is a toolkit of different
evaluation utilities that support repeatable evaluation runs. The most notable component
of this toolkit is the VISP Data Provider, which allows simulating an arbitrary amount
of data sources. Furthermore, the Data Provider also allows defining different arrival
patterns (see Section 8.5.5) to evaluate the adaptation possibilities of the VISP Runtime,
in particular of its scaling mechanisms. The evaluation runs are carried out in a private
cloud running OpenStack [106], whereas the components are deployed on different VMs,
as depicted in Figure 8.4. The most relevant VM for our evaluation is the Infrastructure
VM, which hosts the VISP Runtime as well as all other relevant services, like the Message
Infrastructure, i.e., RabbitMQ [110], the Shared State, i.e., Redis [104] and the Data
Storage, i.e., a MySQL [134] database. For the topology enactment, the VISP Runtime
leases (and releases) an arbitrary amount of VMs, i.e., Dockerhost VMs, on the private
OpenStack-based cloud at run time. These Dockerhost VMs are used to run the Operator
Instances, which take care of the actual data processing. The Operator Images, which
are required to run the Operator Instances, are hosted on an external service, i.e.,
Dockerhub [135]. Finally, the Data Provider VM is in charge of simulating the data
streams from the sensors, as described in Section 8.5.1.
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8.5.3 Evaluation Configuration

For the scalingThreshold in Algorithm 1, we use the value 50. This value was selected
to be high enough to allow for minimal hardware disturbances, e.g., moving data from
memory to the hard drive, but low enough to react to small changes of the data volume.
The concrete value was identified on a number of preliminary experiments, evaluating
different thresholds in the range of 10 to 1000 items, whereas the threshold 50 was
identified as the most suitable value for our purpose. Regarding the individual weights
W1−W4 used in Algorithm 3, we use the default value of 1 to evaluate the base design
of our BTU-based provisioning approach without any specific emphasis on either the
number of instances, scaling operations, queue load or the processing delay.

Besides the configuration aspects for Algorithms 1 and 3, there are also several other
configuration aspects for the VISP Runtime. We chose a monitoring timespan of 15
seconds, i.e., the queue load and resource usage of the system is recorded every 15 seconds.
The resource provisioning interval is set to 60 seconds. This interval has been selected
to update the resource configuration for the SPA as well as SPE in short time intervals
while ensuring enough time to download Operator Images from the external repository
within one resource provisioning interval.

Regarding the BTU, we make use of three different BTU durations. The first duration is
60 minutes (BTU60), which used to be the predominant BTU on Amazon EC2 [105].
The second duration is 10 minutes (BTU10), which represented the minimal BTU for
the Google Compute Engine [136] and the last duration is 30 minutes (BTU30), which
has been selected to present a middle ground between the other two. Furthermore, we
assume a linear pricing model for the BTUs, i.e., one leasing duration for the BTU10
model results in 1 cost, one leasing duration for the BTU30 model results in 3 cost and
the leasing duration for the BTU60 model results in 6 cost. For each data item which is
delayed, we accrue 0.0001 penalty cost, i.e., 10000 delayed items render the same cost
as leasing a VM for 10 minutes. These penalty cost have been chosen to impose little
cost for delayed processing compared to penalty cost in other domains, e.g., for business
processes [137]. Also, preliminary experiments have shown that higher penalty cost,
e.g., 0.001 or 0.01, would render unreasonable high penalty cost compared to the actual
resource cost even for a high SLA compliance. Finally, each Dockerhost VM has the
same computational resources with 4 virtual CPU cores and 7 GB RAM.

8.5.4 Baseline

To evaluate our BTU-based provisioning approach, we have selected a threshold-based
baseline provisioning approach. The baseline implements a commonly used provisioning
approach which already achieves very good results in terms of cost reduction against an
over-provisioning scenario as shown in Chapter 7. The baseline approach considers only
the amount of data items waiting on the incoming queue for processing as a scaling trigger.
As soon as the variable oqueue exceeds an upper threshold according to Algorithm 1, the
SPE triggers an upscaling operation for this operator.
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The same applies when oqueue falls below a lower threshold, i.e., 1, the SPE triggers one
downscaling action of an operator. Besides the single upscaling trigger, our threshold-
based approach triggers the upscaling operation a second time if oqueue surpasses a second
upper threshold of 250 data items waiting for processing. Regarding the leasing of VMs,
we apply an on-demand approach, where the SPE leases a new VM as soon as all currently
used VMs are fully utilized and releases a VM, as soon as the last operator instance on
that VM is terminated.

8.5.5 Data Arrival Pattern

For our evaluation, we have selected four different arrival patterns which simulate different
load scenarios for the SPA by submitting varying data volume to the SPA. The first arrival
pattern has three different data volume levels, which are changed stepwise, so that the
resulting arrival pattern could be approximated to a sinus curve, as shown in Figure 8.5a.
These three different volume levels simulate different amounts of manufacturing machines
ranging from two to eight machines that emit different amounts of data items, as shown
in Table 8.1. To speed up the evaluation, we simulate the real-time data emissions shown
in Table 8.1 every 480 milliseconds. This enables us to simulate 500 real-time minutes
within only four minutes in the course of our evaluation and therefore increases the load
on the SPA and as a consequence also on the SPE. In addition this also results in a
volume level change every four minutes.

The second arrival pattern has only two levels, i.e., the lowest and the highest of the
first pattern, which confronts the SPA with more drastic volume changes, as shown in
Figure 8.5b. Due to the fact that we only apply two different levels, the state changes
are twice as long as for the first pattern, i.e., eight minutes.

The third and the fourth pattern represent random walks as defined by Equation 8.6,
whereas R represents a random number between 0 and 1. This random walk is initialized
with machine = 4 and we have selected two random walk patterns which stay between
one and eight machines. The results of this random walk can be seen in in Figure 8.5c
for the first random walk and in Figure 8.5d for the second one. Due to the random
characteristic of the pattern generation, this pattern exhibits more changes of the data
volume in short time compared to the first two data arrival patterns.

machinen =


machinen−1 − 1 R < 0.4
machinen−1 0.4 ≤ R ≥ 0.6
machinen−1 + 1 R > 0.6

(8.6)

All four patterns are continuously generated by the VISP Data Provider [108] throughout
the whole evaluation duration of 120 minutes.
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(a) Stepwise Pattern
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(b) 2-level Pattern
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(c) Random Walk Pattern 1
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(d) Random Walk Pattern 2

Figure 8.5: Data Arrival Patterns

8.5.6 Metrics

To compare the evaluation results for both the BTU-based and the threshold-based
resource provisioning approaches, we have selected several metrics to describe both the
overall cost as well as the SLA compliance. After each evaluation run, these metrics
are extracted by the VISP Reporting Utility [108]. The most important metric is Paid
BTUs, which describes the total cost for data processing. This value comprises all VM
Upscaling and VM Prolonging operations, which either lease new VMs or extend the
leasing for another BTU for existing ones. The VM Downscaling sums up all downscaling
operations, which are conducted before the end of the BTU.

The next set of metrics describes the SLA compliance of the SPA. Each operator is assigned
a specific processing duration which describes the processing duration in a constant over-
provisioning scenario. Due to the changing data volume in our evaluation scenarios, it is
often the case that the system suffers for a short time from under-provisioning, which
results in longer processing durations. To assess the overall compliance of the processing
durations, we define three different SLA compliance levels. The first compliance level
requires real-time processing capabilities, and states the share of data items that are
produced within the given processing duration.
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The second level applies a near real-time requirement, which is defined by processing
durations that take at most twice as long as the defined processing duration, and the third
level applies a relaxed strategy, which means that the data items need to be processed
within at most five times the stated processing duration. These SLA metrics are obtained
from the processing duration of the data items, which are recorded by the operators.
To reduce the overall monitoring overhead, we only measure the processing duration of
every tenth data item. Nevertheless, preliminary evaluations with other intervals, e.g.,
every data item or every third data item have shown a similar metric reliability. This
similar reliability can be explained due to the fact that observing every tenth data item
still yields about 20-40 performance readings/second (depending on the data volume).
Therefore it is save to assume that these metrics cover all scaling decisions of the SPE
because all other activities, e.g., spawning a new operator instance takes 5-10 seconds
or leasing a new VM takes about 30-60 seconds. The Time To Adapt metric states
the arithmetic mean duration, which is required until the delayed processing for an
operator is back to real-time processing. The last metrics describe the scaling operations
of Operator Instances. Here we consider Upscaling, Downscaling as well as Migration
operations among different hosts.

8.6 Results and Discussion

For our evaluation we consider four different provisioning approaches. The first approach
is the BTU-agnostic threshold-based approach while the other three approaches are BTU-
based approaches with three different BTU configurations as discussed in Section 8.5.2.
To obtain reliable numbers, we have conducted three evaluation runs for each provisioning
approach and data arrival pattern, which results in 48 evaluation runs. These evaluations
have been executed over the time span of four weeks on a private OpenStack-based cloud.

The discussion of our evaluation is divided in four subsections based on the four data
arrival patterns. Each subsection features a table which lists the average numbers of the
three evaluation runs alongside with their standard deviations. Hereby it must be noted
that the evaluations for the threshold-based approach have been conducted once, which
results in only one compliance scenario. The actual cost depending on the BTU have
been calculated after the evaluation, depending on the actual leasing duration of the VM.
Additionally, we also provide a figure which represents the resource configurations of
the Operator Instances and VMs over the course of the evaluation for each data arrival
pattern.

For the discussion we are going to analyze the differences between the BTU-based and
the threshold-based approach in detail only for the stepwise data arrival pattern because
this arrival pattern allows us to isolate specific aspects of the BTU-based approach.
Nevertheless, our evaluations show that the overall trend regarding the SLA compliance
and total cost is the same for all four data arrival patterns. For the other arrival patterns
we only highlight specific aspects of the individual patterns and refer for all other effects
to the discussion of the stepwise data arrival pattern.
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Table 8.3: Evaluation Results for Stepwise Scenario

BTU-based Threshold-based
BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time 49% 52% 53% 40%
Compliance (σ = 1%) (σ = 1 %) (σ = 1%) (σ = 1%)

Near Real-time 85% 90% 93% 67%
Compliance (σ = 2% ) (σ = 1%) (σ = 1%) (σ = 1%)

Relaxed 89% 93% 95% 71%
Compliance (σ = 1% ) (σ = 1%) (σ = 1%) (σ = 1%)

Resource 72.33 92.00 98.00 58.00 79.00 120.00
Cost (σ = 3.79) (σ = 1.73) (σ = 3.84) (σ = 1.73) (σ = 4.58) (σ = 6.00)

Real-time 158.91 173.39 174.69 151.83 172.83 213.83
Total Cost (σ = 0.82) (σ = 0.68) (σ = 4.25) (σ = 1.95) (σ = 4.93) (σ = 6.45)

Near Real-time 96.85 108.24 108.88 109.59 130.59 171.59
Total Cost (σ = 0.39) (σ = 0.50) (σ = 3.17) (σ = 1.77) (σ = 4.73) (σ = 6.35)

Relaxed 90.96 103.03 105.41 102.97 123.97 164.97
Total Cost (σ = 1.84) (σ = 1.04) (σ = 2.91) (σ = 1.57) (σ = 4.49) (σ = 6.12)

8.6.1 Stepwise Data Arrival Pattern

For the stepwise pattern, we can see that the overall SLA compliance is higher for the
BTU-based approach for all three SLA compliance scenarios as shown in Table 8.3.
This compliance benefit ranges from 9% for the BTU10 configuration in the real-time
compliance scenario, up to 24% in the relaxed compliance scenario for the BTU60
configuration. The SLA compliance gain can be explained due to the downscaling
strategy of the BTU-based approach in contrast to the on-demand one for the threshold-
based approach. The threshold-based approach only considers the amount of data items
that need to be processed by each operator for the scaling decisions, which can be observed
in Figure 8.6d. This figure shows that the line for the Operator Instances follows the data
volume very closely with a short delay. The delay is due to the fact that the threshold-
based approach can only react to the changes of the data volume. On closer inspection,
one can also identify smaller increases after the downscaling phase, e.g., around minutes
40, 55 or 70. These smaller bumps indicate that the downscaling approach was too eager
and the SPE has to compensate it by scaling up again. Throughout this time span, i.e.,
between the detection of a lack of processing capabilities and the successful upscaling
for the operator, the SPA is very likely to violate the SLA compliance, especially in the
real-time scenario.

The BTU-based approach does not exhibit such a strongly coupled relationship between
the Operator Instances and the data volume. While the upscaling trigger is the same for
both scenarios, there are clear differences in the downscaling behavior. The BTU-based
approach only considers downscaling activities briefly before the end of a BTU.
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(a) BTU-based (BTU10)
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(b) BTU-based (BTU30)
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(c) BTU-based (BTU60)
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Figure 8.6: Stepwise Pattern

This can be seen around minutes 20 or 40 for the BTU10 scenario, around minute 30
for the BTU30 scenario and around minute 60 for the BTU60 scenario in Figures 8.6b
and 8.6c. The result of this lazy downscaling strategy is a decrease of scaling activities,
especially for the BTU30 and BTU60 scenario. This decrease in scaling activities results
in a better SLA compliance since the SPA already has the processing capabilities for
future data volume peaks as this is the case for the stepwise data arrival pattern. This
results in high SLA compliance values of over 90% for the BTU30 and BTU60 scenarios.
It also needs to be noted that the lack of active downscaling activities does not increase
the cost for computational resources since these resources have already been paid at the
beginning of their BTU.

The BTU-based downscaling operations are often triggered at suitable times, e.g., around
minutes 20 and 38 for the BTU10 configuration or minute 70 for the BTU30 configuration,
where the downscaling activities do not impact the SLA compliance. Nevertheless, there
are also points in time when the BTU of a VM coincides with a peak of the data volume,
e.g., at minute 30 for the BTU30 configuration.
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In these situations, the BTU-based approach will initialize the downscaling procedure
to release a VM shortly before the end of its BTU. In the specific case around minute
30 for the BTU30 scenario, the downscaling procedure is successful because monitoring
does not report any delays for processing based on Algorithm 3 and the VM is triggered
to be shut down. But in the next reasoning cycle, the SPE realizes the lack of processing
capabilities and leases another VM to compensate the resource requirements. Although
these non-efficient scaling operations result in a measurable overhead as well as an SLA
compliance reduction, the BTU-based approach still achieves a better SLA compliance
than the threshold-based approach.

Furthermore, it can be seen that the amount of scaling activities for the Operator
Instances is inverse to the length of the BTU. For the BTU10 configuration, it can
be observed in Figure 8.6a that the level of scaling activities is similar to those of the
threshold-based scenario. This results in a rather low SLA compliance, but for the
BTU30 and especially the BTU60 there are less downscaling events, i.e., BTU ends,
which reduces the need to scale up again to comply with future data volume peaks.

Besides the SLA compliance, we also consider the operational cost for data processing.
These cost are composed of the resource cost, i.e., the cost for leasing VMs and the
penalty cost, which accrue for delayed data processing. In Table 8.3, it can be seen that
the resource cost for the BTU10 and BTU30 configuration are higher than the ones for the
threshold-based ones. These higher cost can be explained due to the defensive approach
of releasing VMs for the BTU-based approach, which often results in leasing the VM for
another BTU based on Algorithm 3. For the BTU60 configuration, the resource cost are
around 19% lower than those for the threshold-based configuration. Although the BTU60
configuration uses more computational resources, as shown in Figure 8.6c, the overall
cost are lower, because the threshold-based approach releases the VMs often prematurely
before the end of their BTU, which results in a waste of already paid resources.

When we consider only the resource cost, we can see that the BTU-based approach only
outperforms the threshold-based approach for the BTU60 configuration. Nevertheless,
this situation changes when we also consider the penalty cost, i.e., 1 cost for 10000
delayed items. After adding the penalty cost and analyzing the total cost for the different
compliance scenarios, we can see that only the real-time total cost for the BTU10
configuration is higher than the threshold-based approach. All other scenarios result in
slightly less cost for the BTU30 configuration in the real-time scenario and up to a 36%
cost-reduction for the near real-time one for the BTU60 configuration.

8.6.2 2-level Data Arrival Pattern

The 2-level data arrival pattern exhibits the same trend for the SLA compliance and
cost as the stepwise data arrival pattern as shown in Table 8.4. When we analyze the
Figures 8.7a, 8.7b, 8.7c and 8.7d, we can also see a similar scaling behavior compared to
the stepwise data arrival pattern. Nevertheless, there is one notable effect for the BTU60
configuration in Figure 8.7c.
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(c) BTU-based (BTU60)
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Figure 8.7: 2-level Pattern

The BTU-based provisioning approach tends to start more and more Operator Instances
throughout the evaluation run. We can see that after minute 20, when the SPE has enough
processing capabilities, the upscaling trigger requests new Operator Instances from time
to time to cope with the data volume. These upscaling operations are most likely due to
minor external events, e.g., short network delays induced by other applications running
on the same physical hardware, which cause the SPA to require additional processing
capabilities. The result of this slow increase of Operator Instances over time is that the
SPA is likely to have more processing capabilities than it actually needs. Nevertheless, at
the end of the BTU of a VM, the necessity of these processing capabilities is evaluated,
and for example in the BTU60 configuration, the Operator Instances are cut back around
minute 60. After a short recalibration phase between minutes 65 and 75, the SPE follows
the same pattern again until the resources are cut back again around minute 120. This
mechanism allows the SPE to use the already leased resources, i.e., no additional VMs
are leased from minute 80 until 120, to achieve a high resource usage.
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Table 8.4: Evaluation Results for 2-level Scenario

BTU-based Threshold-based
BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time 48% 50% 55% 40%
Compliance (σ = 1%) (σ = 1%) (σ = 1%) (σ = 2%)

Near Real-Time 84% 88% 93% 68%
Compliance (σ = 2%) (σ = 0%) (σ = 2%) (σ = 2%)

Relaxed 88% 91% 95% 72%
Compliance (σ = 2%) (σ = 0%) (σ = 1%) (σ = 2%)

Resource 82.33 96.00 104.00 66.00 86.00 122.00
Cost (σ = 5.13) (σ = 7.94) (σ = 6.93) (σ = 0.00) (σ = 1.73) (σ = 3.46)

Real-time 169.17 177.62 175.90 157.88 177.88 213.88
Total Cost (σ = 6.83) (σ = 6.82) (σ = 4.77) (σ = 2.64) (σ = 4.17) (σ = 4.16)

Near Real-time 108.35 155.43 114.50 114.62 134.62 170.62
Total Cost (σ = 6.74) (σ = 8.18) (σ = 6.28) (σ = 3.21) (σ = 4.19) (σ = 2.94)

Relaxed 102.37 110.62 111.73 108.83 128.83 164.83
Total Cost (σ = 6.74) (σ = 8.18) (σ = 6.28) (σ = 2.40) (σ = 3.37) (σ = 2.59)

8.6.3 Random Walk 1 Data Arrival Pattern

Based on the numbers in Table 8.5, we can see that the random walk 1 data arrival
pattern follows the same trend for the SLA compliance as well as total cost as the stepwise
data arrival pattern. At closer inspection we can see that the SLA compliance is very
similar with a difference of less than 3%. This aspect shows that the baseline as well as
the BTU-based provisioning approach have similar characteristics for the simple data
arrival pattern, like the stepwise or 2-level one, as well as random ones.

Based on Figures 8.8a, 8.8b, 8.8c and 8.8d, we can identify one notable difference between
the BTU-based and the threshold-based resource provisioning approach. While the
Operator Instance curve and the data volume curve are well-aligned for the threshold-
based and the BTU10 configuration, we can identify a clear gap for the BTU30 in
Figure 8.8b and especially for the BTU60 configuration (Figure 8.8c). For the latter
two configurations, the Operator Instance curve remains high although the data volume
decreases over time. This behavior can be explained due to the optimal resource usage of
the already paid resources, which enables the BTU30 and BTU60 configuration to keep
the running Operator Instances without any additional cost. Although this behavior
may seem to be a waste of resources at first sight due to the deviation of the actual data
volume and the Operator Instances, it becomes beneficial for the SPA in terms of SLA
compliance when the volume rises again, e.g., around minutes 85 or 120.
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(b) BTU-based (BTU30)
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(c) BTU-based (BTU60)
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Figure 8.8: Randomwalk Pattern 1

8.6.4 Random Walk 2 Data Arrival Pattern

The numerical results in terms of the SLA compliance and total cost follow the same
trends as for the stepwise data arrival pattern, based on the numbers in Table 8.6. For
this data arrival pattern also only the BTU10 configuration requires more cost than the
threshold-based baseline for the real-time scenario. All other configurations and scenarios
result in lower cost than the baseline. When we analyze the graphical representation of
Figures 8.9a, 8.9b, 8.9c and 8.9d for the random walk 2, the most prominent difference in
contrast to the random walk 1 is the even better alignment of the Operator Instance and
data volume curves. This is due to the fact that the data volume is rising after minute
40, and the already paid resources can be actively used for data processing instead of
only serving as free backup processing capabilities. Furthermore, it can be seen that
the BTU-based approach requires less scaling activities between minute 60 and 120
in contrast to the threshold-based approach in Figure 8.9d. This is again due to the
lazy release characteristics of the BTU-based approach, which result in a higher SLA
compliance compared to the threshold-based approach.
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Table 8.5: Evaluation Results for Random Walk 1

BTU-based Threshold-based
BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time 49% 52% 54% 39%
Compliance (σ = 1%) (σ = 2%) (σ = 0%) (σ = 0%)

Near Real-time 85% 90% 93% 66%
Compliance (σ = 2%) (σ = 3%) (σ = 0%) (σ = 1%)

Relaxed 89% 93% 95% 71%
Compliance (σ = 2%) (σ = 2%) (σ = 1%) (σ = 1%)

Resource 69.33 95.00 110.00 61.33 86.00 128.00
Cost (σ = 3.51) (σ = 1.73) (σ = 3.46) (σ = 1.53) (σ = 1.73) (σ = 6.93)

Real-time 158.19 176.94 185.95 158.68 183.35 225.35
Total Cost (σ = 4.99) (σ = 4.70) (σ = 3.40) (σ = 1.54) (σ = 1.40) (σ = 6.56)

Near Real-time 94.44 111.43 121.61 115.55 140.22 182.22
Total Cost (σ = 6.14) (σ = 5.65) (σ = 2.89) (σ = 1.14) (σ = 1.77) (σ = 6.88)

Relaxed 88.11 106.67 117.91 107.54 132.21 174.21
Total Cost (σ = 5.86) (σ = 4.69) (σ = 3.16) (σ = 1.47) (σ = 2.14) (σ = 7.25)

Table 8.6: Evaluation Results for Random Walk 2

BTU-based Threshold-based
BTU10 BTU30 BTU60 BTU10 BTU30 BTU60

Real-time 49% 51% 53% 41%
Compliance (σ = 2%) (σ = 1%) (σ = 0%) (σ = 1%)

Near Real-time 87% 90% 92% 70%
Compliance (σ = 2%) (σ = 1%) (σ = 1%) (σ = 1%)

Relaxed 90% 94% 95% 75%
Compliance (σ = 2%) (σ = 1%) (σ = 0%) (σ = 75%)

Resource 74.00 90.00 106.00 59.67 82.00 118.00
Cost (σ = 6.08) (σ = 0.00) (σ = 3.46) (σ = 4.04) (σ = 9.17) (σ = 9.17)

Real-time 172.67 184.03 195.73 164.18 187.41 223.41
Total Cost (σ = 5.35) (σ = 0.99) (σ = 3.33) (σ = 3.84) (σ = 9.88) (σ = 9.88)

Near Real-time 100.17 108.91 120.59 113.41 135.98 171.98
Total Cost (σ = 6.65) (σ = 2.47) (σ = 3.59) (σ = 3.47) (σ = 9.93) (σ = 9.93)

Relaxed 92.67 101.96 115.67 104,43 127.19 163.19
Total Cost (σ = 7.15) (σ = 1.61) (σ = 3.48) (σ = 2.49) (σ = 8.29) (σ = 8.29)
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(c) BTU-based (BTU60)
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Figure 8.9: Randomwalk Pattern 2

8.6.5 Evaluation Conclusion

When we compare the evaluation results of the four different data arrival patterns, we
can see that they all share the same trend. Regarding the SLA compliance, we can see
that the BTU-based approach achieves a better SLA compliance for all configurations
for all compliance scenarios. Furthermore, the SLA values are roughly the same (with
a maximum difference of 3%) across all data arrival patterns despite their different
characteristics. For the total cost, we can observe that only the BTU10 configuration
for the real-time scenario results in higher cost in contrast to the baseline. All other
configurations and scenarios for the BTU-based approach exhibit a cost reduction. In
addition, it must be noted that the resource cost are always lower for the BTU60
configuration than for the threshold-based approach.
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We can also observe that the compliance for real-time data processing on cloud in-
frastructures is rather low, i.e., around 40% for the baseline and around 50%-55% for
the BTU-based approach. This is mainly due to the fact that cloud environments are
often influenced by other applications running on the same physical hardware. This can
result in minor data transmissions or processing delays that have a severe impact on the
SLA compliance. Nevertheless, we can see that for the near real-time and relaxed time
scenarios, the SLA compliance ranges from 84% to 95% for the BTU-based approach,
which meets the requirements of our motivational scenario discussed in Section 8.2.2.

8.6.6 Threats to Applicability

Although the presented system model builds on top of real-world observations, it cannot
be guaranteed that all external aspects are adequately considered in our system model
which may result in a non-optimal performance in real-world deployments. However we
consider this risk as rather small, since we conducted our evaluations in a cloud-based
testbed which already considers external influences by other applications running on the
same physical hardware. To consider such external effects for the evaluation, we executed
each evaluation scenario and configuration three times on different days (including the
weekend) to cover different usage scenarios on the OpenStack-based cloud due to other
stakeholders on the same physical hardware.

8.7 Summary
Within this chapter, we have discussed the most important requirements for optimizing
data stream processing in volatile environments. Based on these requirements, we
developed a system model for which we have presented a BTU-based optimization
approach. This optimization approach has been evaluated based on four different data
arrival pattern against a threshold-based approach, which was introduced in Chapter 7,
which already provides a significant cost reduction compared to an only threshold-based
one as presented in the previous Chapter 7. Furthermore, the evaluation shows that the
BTU-based approach results in a better SLA compliance which also achieves a better
overall cost structure compared to the threshold-based approach.
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CHAPTER 9
Conclusions

In this final chapter, we summarize the contributions of this thesis and revisit our research
questions formulated in Section 1.2 to put our contributions in perspective. Finally, we
also present future research directions to conclude this thesis.

9.1 Summary of Contributions
Within this thesis, we introduce and combine several novel concepts that are required
to create a data stream processing ecosystem with an emphasis on the cost-efficient
operation of SPAs in distributed environments. To achieve this goal, this thesis takes
a holistic viewpoint to address the challenges that have been introduced in Section 1.1
from different angles ranging from a novel system design for SPEs over an extensible
topology definition approach for SPAs to cost-efficient resource provisioning strategies.
Each of these angles addresses a specific challenge and these three major contributions
combined form the foundation for the VISP Ecosystem.

First, we propose the creation of an ecosystem for data stream processing to improve
the usability and efficiency of creating and operating SPAs by combining the established
concept of SPEs with operator marketplaces. Based on a literature survey, we then
identify that established SPEs often cannot cope with challenges originating from the IoT.
These challenges mainly consider the geographic distributed locations of data sources
and computational resources that process the data, but also the volatile data volume
that change due to external events [32]. To address this shortcoming, we introduce the
VISP Runtime, which represents a novel system design for SPEs. The VISP Runtime
builds on top of cloud computing techniques that allow the SPE to react on-demand to
the volatile data volume in contrast to established SPEs that are hardly able to change
the resource configuration for SPAs at run time. In addition, the VISP Runtime also
supports the autonomous coordination among individual VISP Runtime instances in
different geographic locations based on a dedicated coordination protocol.
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This allows users to deploy SPAs in a network-efficient manner by using only a single
user interface to manage the operational aspects of SPAs as they are operated with
today’s centralized SPEs. The main outcome of this contribution is not only the
proposed system design for the VISP Runtime but also a reference implementation
thereof. This reference implementation serves two major tasks: On the one hand, it
allows the validation of our requirements towards the VISP Ecosystem, and on the
other hand, it serves as a customizable platform to implement and evaluate further
aspects within this thesis, but also for related research projects, e.g., the Master theses
by Hiessl [138] and Knasmüller [139].

Second, we introduce a novel topology definition approach for SPAs that facilitates the
design for SPAs in distributed environments as well as the description of non-functional
operational aspects like SLAs. Up to now, most topology definition approaches only
consider a centralized runtime environment that does not support any aspects of a
distributed deployment. Furthermore, most SPEs manage the SPAs based on a best-
effort principle for all operators of an SPA and do not enable SPA users to apply
non-functional requirements, like SLAs on an operator level. To address this issue,
we have identified several non-functional requirements for SPAs based on a literature
survey. These requirements are integrated into the established SPL to create the VTDL,
which has been introduced within this thesis. In addition, we also design and implement
several coordination mechanisms to support the VTDL within the VISP Runtime and
conducted several experiments to evaluate both the feasibility as well as the reduced
management overhead by using the VTDL in contrast to other established topology
definition approaches.

The third major contribution focuses on the cost-efficiency of operating SPAs that are
exposed to volatile data volume. To address this aspect, we leverage the resource elasticity
of cloud-based computational resources. Therefore, we propose two dynamic resource
provisioning approaches that update the resource configuration of individual operators
on demand, depending on different KPIs, like resource usage or SLA compliance. To
minimize the operational cost, we create an optimization model that represents the
topology of the SPA, all available computational resources, and the KPIs. This model is
then optimized based on one of the two proposed resource provisioning approaches and
this optimized model can be applied to update the resource configuration of the SPA
in a recurring interval. In order to evaluate our approaches, we have also created the
VISP Testbed, which allows us to compare our approaches against baseline approaches
provided by the literature. The results of our evaluation show that both approaches are
capable of reducing the operational costs while guaranteeing a high level of QoS.

These three major contributions provide the foundation for the VISP Ecosystem and
ensure that SPAs can be operated in a cost-efficient manner. All of the above-mentioned
implementations, like the VISP Runtime, the reference implementation for the VTDL
as well as the reference implementations for both resource provisioning approaches are
available as open source [108] and have been evaluated rigorously based on different
scenarios from the manufacturing domain.
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9.2 Research Questions Revisited

In Section 1.2, we have introduced three research questions, which guide the work in
this thesis. Therefore, we are going to revisit these research questions in this section,
to summarize how these questions have been answered within this thesis and outline
possible limitations of our work.

Research Question I
How can geographically distributed data streams be processed efficiently?

We have addressed this question in Chapter 5 by introducing the VISP Runtime as a novel
system design for SPEs. Up to now, SPEs often only support a centralized deployment.
This however renders these SPEs very inefficient in terms of data processing of data
streams originating from different geographic locations because all the data needs to be
transferred to a single location and this data transfer poses a high load on the network.
The VISP Runtime uses a distributed deployment of multiple instances in different
geographic locations to partition the load across several geographic regions and to reduce
the load to a single location. The first notable improvement of the VISP Runtime in
contrast to established other SPEs, is a dedicated communication protocol, which allows
the VISP Runtime instances to synchronize the state among them autonomously. The
second notable enhancement is that the VISP Runtime is capable of updating both the
resource configuration as well as the reconfiguration of the topology of an SPA at run
time. This reconfiguration feature allows the SPE to react on any changes of the data
streams to improve the overall data throughput and therefore also the efficiency of the
data processing. These reconfigurations can either consider the spawning of additional
replicas for a specific operator, which is possible due to its cloud-native design or the
relocation of specific operators to other geographic locations to reduce the load.

Research Question II
How can stream processing applications be described to allow a distributed
deployment model and respect service level objectives?

We have addressed this question in Chapter 6 by introducing VTDL, a novel topology
definition approach for SPAs. This topology definition approach represents an evolution
of established ones that only focus on the deployment of SPAs in a single geographic
location and a best-effort approach for assigning computational resources to operators.

Before designing the system model for our approach, we identified several functional as
well as non-functional aspects of designing and operating SPAs from the literature and
combined them to form the system model of our approach.
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This model has then been implemented based on the established SPL topology definition
approach to become the VTDL. The VTDL allows users to describe functional as well
as non-functional aspects for SPAs, like the structure of SPAs, the explicit distributed
deployment, or SLOs on an abstract level. Nevertheless, it must be noted that the
sole description of those aspects for SPAs is not sufficient because they also need to
be supported by SPEs that interpret these instructions and apply them accordingly.
Therefore, we have integrated a reference implementation for the VTDL into the VISP
Runtime to evaluate the system model of the VTDL. Although our contributions provided
in this thesis answer this research question, it would also be interesting how and especially
which aspects of the VTDL model can be integrated into other established SPEs.

Research Question III
How can stream processing applications be optimally executed on computa-
tional resources?

We have addressed this question in Chapter 7 and Chapter 8 by proposing two novel
resource provisioning approaches to optimize the execution of SPAs. In order to develop
these approaches, we have first identified different KPIs that indicate the need for a
reconfiguration of the computational resources for SPAs or individual operators. These
KPIs can either describe internal aspects, like an increased CPU load or the number of
data items waiting on the messaging infrastructure, or external ones, like the end of an
BTU or the failure of an Operator Instance. Based on these KPIs, we have then devised
two resource provisioning approaches to optimize the resource usage of computational
resources and therefore minimize the operational cost for running SPAs. The first approach
(introduced in Chapter 7) represents a basic approach, which updates the resource
configuration whenever a specific KPI reaches a predefined threshold. Although this
approach reduces the overall need for computational resources, it also introduces a number
of reconfiguration tasks for the SPEs which in turn require additional computational
resources. These reconfigurations have been addressed by the second approach (introduced
in Chapter 8), which evaluates whether the suggested reconfigurations actually improve
the optimal execution of SPAs significantly or only achieve very minimal resource
optimizations. This approach therefore only applies those reconfigurations that are
essential to achieving a better resource usage and as a result reduces the management
overhead for SPEs compared to the first approach. Nevertheless, it must be noted that
both approaches improve the usage of computational resources dramatically in contrast
to fixed provisioning strategies, which represent the state-of-the-art for established SPEs.
Our work has improved the resource usage within a single geographical location. We also
identified that the migration of specific operators within a distributed deployment could
also reduce the overall resource usage and lead to an optimal execution of SPAs. This
aspect has been addressed by Hiessl [138], who proposes an optimization approach which
also relocates individual operators if required across different VISP Runtime instances.
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9.3 Future Work

In this thesis, we introduced the foundation for establishing a cost-efficient data stream
processing ecosystem. However, in the course of our thesis we have also identified several
aspects which could be optimized. In the remainder of this section, we therefore outline
several open challenges and discuss possible future research areas.

Optimal Deployment of Operators across Different Geographic Locations
One of the most promising research directions is an extension of the third research
question, namely the optimal resource provisioning of SPAs on computational resources.
In this thesis, we focus on the resource optimization within one geographic location and
hence only achieved local optimas. However, it would be desirable to design optimization
approaches that find a global optimum across all geographic locations. In close collabora-
tion with this thesis, there have already been some advances in this direction. Hiessl [138]
proposes an iterative global optimization approach, which constantly evaluates basic
KPIs like data throughput to calculate an optimal deployment for SPAs and to trigger
operator migrations if required. This approach has been implemented within the VISP
Ecosystem and indicates that such a global optimization approach could improve the
data processing efficiency even further. Nevertheless, there still are several aspects that
need to be investigated for future approaches, like the structure of the topologies, e.g.,
the critical path within topologies, or potential negative side-effects of scaling or migra-
tion operations. Furthermore, it would also be desirable to implement more resource
provisioning approaches from the literature that can be used as baselines for the VISP
Testbed and promote it to a benchmarking infrastructure for future approaches.

Development of Complex KPIs One of the most important aspects for operating
and especially optimizing the operation of SPAs are KPIs that can be used by both
resource optimization as well as failure compensation mechanisms. Up to now, the VISP
Runtime relies on basic KPIs, like resource usage, throughput or SLA compliance for
individual operators. Although these KPIs cover most of the operational aspects, there
still are some edge cases where these basic KPIs may be misleading. Therefore, it is
required to investigate towards the combination of simple KPIs, e.g., resource usage in
relation to the data item throughput, as already proposed for cloud-based services by
Moldovan et al [140]. These KPIs can then be used by optimization approaches to maybe
obtain even better optimization plans than those proposed in this thesis.

Business Models for IoT Marketplaces Another promising research direction is
the investigation towards feasible business models for both IoT-based data as well as
operators to improve the monetization on the VISP Marketplace. Although there is
already some preliminary work for the monetization of data by Tien-Dung et al. [48] as
well as by Biasion [141] for arbitrary services for the IoT, there still are several open
research challenges. Here, the most important challenge is to model the volatile structure
and network effects of IoT-based environments [142] to derive sustainable business models.
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Complex Failure Compensation Strategies for SPAs Up to now, the VISP Run-
time and the VTDL only consider rather basic failure compensation strategies, like
re-deploying single Operator Instances or redeploying the complete SPA. Although these
approaches are sufficient for reestablishing the functionality of SPAs after incidents, they
still require some time for recovery which results in processing delays. Therefore, it is
essential to investigate towards more sophisticated compensation strategies, like the one
presented by Knasmüller [139] who proposes the usage of the circuit-breaker pattern for
SPAs. This approach already reduces the compensation time within the VISP Ecosystem
but there are still several open research challenges like the investigation towards reliable
failure indicators to apply predictive compensation measures.

Data Privacy and Data Ownership The last important challenge is the consid-
eration of data ownership and data privacy aspects in distributed stream processing
systems [143]. Although the distributed nature of individual VISP Runtimes in contrast
to a single centralized SPE already allows to filter or preprocess data, e.g., anonymize,
within the jurisdiction of the data source, there are still several open research challenges.
The most important challenge is to design solid anonymization strategies that ensure the
privacy of the data without rendering the data useless. While this challenge is universal
for all software systems, it is necessary to also optimize these strategies in terms of data
throughput to facilitate a data processing without delay.
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Acronyms

API Application Programming Interface.

BPMS Business Process Management Systems.

BTU Billing Time Unit.

CQL Continuous Query Language.

CREMA Cloud-based Rapid Elastic Manufacturing.

FIFO First-In, First-Out.

IoT Internet of Things.

IP Internet Protocol.

KPI Key Performance Indicator.

OCR Optical Character Recognition.

OEE Overall Equipment Effectiveness.

PaaS Platform as a Service.

QoS Quality of Service.

SaaS Software as a Service.

SLA Service Level Agreement.

SLO Service Level Objective.

SPA Stream Processing Application.

SPE Stream Processing Engine.
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Acronyms

SPL Stream Processing Language.

SQL Structured Query Language.

URL Uniform Resource Locator.

VISP VIenna ecosystem for Stream Processing.

VM Virtual Machine.

VTDL Vienna Topology Description Language.
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APPENDIX A
VTDL-based Description for the
Stream Processing Application

$availabilityUK = Source() {
concreteLocation : ":::::ffff:8083:c001/general",
type : "availabilitySensor",
outputFormat : "availability"

}

$filterAvailabilityUK = Operator($availabilityUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "availability",
type : "filterAvailability",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$productiondataUK = Source() {
concreteLocation : ":::::ffff:8083:c001/general",
type : "productivitySensor",
outputFormat : "productivityImage"

}

$parsedataUK = Operator($productiondataUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "gpu",
concreteLocation : ":::::ffff:8083:c001/gpu",
inputFormat : "productivityImage",
type : "parsedata",
outputFormat : "productivityData",
stateful : "false",
replicationAllowed : "true",
responseTime : "1.5"

}
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$performanceUK = Operator($parsedataUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "productivityData",
type : "performanceCalculation",
outputFormat : "performanceMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$availabilityoeeUK = Operator($parsedataUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "productivityData",
type : "availabilityCalculation",
outputFormat : "availabilityMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$qualityUK = Operator($parsedataUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "productivityData",
type : "qualityCalculation",
outputFormat : "qualityMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$oeeUK = Operator($performanceUK, $availabilityoeeUK, $qualityUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "performanceMetrics, availabilityMetrics, qualityMetrics",
type : "oeeCalculation",
outputFormat : "oeeMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$reportUK = Operator($oeeMetrics) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "oeeMetrics",
type : "reportgeneration",
outputFormat : "report",
stateful : "true",
replicationAllowed : "false",
responseTime : "2.5"

}
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$temperatureUK = Source() {
concreteLocation : ":::::ffff:8083:c001/general",
type : "temperatureSensor",
outputFormat : "temperature"

}

$monitorTemperatureUK = Operator($temperatureUK) {
allowedLocations : ":::::ffff:8083:c001",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c001/cpu",
inputFormat : "temperature",
type : "monitorTemperature",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$availabilitySE = Source() {
concreteLocation : ":::::ffff:8083:c002/general",
type : "availabilitySensor",
outputFormat : "availability"

}

$filterAvailabilitySE = Operator($availabilitySE) {
allowedLocations : ":::::ffff:8083:c002",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c002/cpu",
inputFormat : "availability",
type : "filterAvailability",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$temperatureES = Source() {
concreteLocation : ":::::ffff:8083:c003/general",
type : "temperatureSensor",
outputFormat : "temperature"

}

$monitorTemperatureSE = Operator($temperatureSE) {
allowedLocations : ":::::ffff:8083:c002",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c002/cpu",
inputFormat : "temperature",
type : "monitorTemperature",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$availabilityES = Source() {
concreteLocation : ":::::ffff:8083:c003/general",
type : "availabilitySensor",
outputFormat : "availability"

}
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$filterAvailabilityES = Operator($availabilityES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "availability",
type : "filterAvailability",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$productiondataES = Source() {
concreteLocation : ":::::ffff:8083:c003/general",
type : "productivitySensor",
outputFormat : "productivityImage"

}

$parsedataES = Operator($productiondataES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "gpu",
concreteLocation : ":::::ffff:8083:c003/gpu",
inputFormat : "productivityImage",
type : "parsedata",
outputFormat : "productivityData",
stateful : "false",
replicationAllowed : "true",
responseTime : "1.5"

}

$performanceES = Operator($parsedataES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "productivityData",
type : "performanceCalculation",
outputFormat : "performanceMetrics",
stateful : "true",
replicationAllowed : "false"

}

$availabilityoeeES = Operator($parsedataES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "productivityData",
type : "availabilityCalculation",
outputFormat : "availabilityMetrics",
stateful : "true",
replicationAllowed : "false"

}

$qualityES = Operator($parsedataES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "productivityData",
type : "qualityCalculation",
outputFormat : "qualityMetrics",
stateful : "true",
replicationAllowed : "false"

}
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$oeeES = Operator($performanceES, $availabilityoeeES, $qualityES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "performanceMetrics, availabilityMetrics, qualityMetrics",
type : "oeeCalculation",
outputFormat : "oeeMetrics",
stateful : "true",
replicationAllowed : "false"

}

$temperatureES = Source() {
concreteLocation : ":::::ffff:8083:c003/general",
type : "temperatureSensor",
outputFormat : "temperature"

}

$monitorTemperatureES = Operator($temperatureES) {
allowedLocations : ":::::ffff:8083:c003",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c003/cpu",
inputFormat : "temperature",
type : "monitorTemperature",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$availabilityDE = Source() {
concreteLocation : ":::::ffff:8083:c004/general",
type : "availabilitySensor",
outputFormat : "availability"

}

$filterAvailabilityDE = Operator($availabilityDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "availability",
type : "filterAvailability",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true"

}

$productiondataDE = Source() {
concreteLocation : ":::::ffff:8083:c004/general",
type : "productivitySensor",
outputFormat : "productivityImage"

}

$parsedataDE = Operator($productiondataDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "gpu",
concreteLocation : ":::::ffff:8083:c004/gpu",
inputFormat : "productivityImage",
type : "parsedata",
outputFormat : "productivityData",
stateful : "false",
replicationAllowed : "true"

}
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$performanceDE = Operator($parsedataDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "productivityData",
type : "performanceCalculation",
outputFormat : "performanceMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$availabilityoeeDE = Operator($parsedataDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "productivityData",
type : "availabilityCalculation",
outputFormat : "availabilityMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$qualityDE = Operator($parsedataDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "productivityData",
type : "qualityCalculation",
outputFormat : "qualityMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$oeeDE = Operator($performanceDE, $availabilityoeeDE, $qualityDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "performanceMetrics, availabilityMetrics, qualityMetrics",
type : "oeeCalculation",
outputFormat : "oeeMetrics",
stateful : "true",
replicationAllowed : "false",
responseTime : "0.5"

}

$reportDE = Operator($oeeUK, $oeeES, $oeeDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "oeeMetrics",
type : "reportgeneration",
outputFormat : "report",
stateful : "true",
replicationAllowed : "false",
responseTime : "2.5"

}
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$temperatureDE = Source() {
concreteLocation : ":::::ffff:8083:c004/general",
type : "temperatureSensor",
outputFormat : "temperature"

}

$monitorTemperatureDE = Operator($temperatureDE) {
allowedLocations : ":::::ffff:8083:c004",
poolPreferences : "cpu",
concreteLocation : ":::::ffff:8083:c004/cpu",
inputFormat : "temperature",
type : "monitorTemperature",
outputFormat : "alert",
stateful : "false",
replicationAllowed : "true",
responseTime : "0.5"

}

$informUser = Operator($filterAvailabilityUK, $filterAvailabilitySE,
$filterAvailabilityES, $filterAvailabilityDE, $temperatureUK,
$temperatureSE, $temperatureES, $reportDE) {

allowedLocations : ":::::ffff:8083:c004",
concreteLocation : ":::::ffff:8083:c004/general",
inputFormat : "alert, report",
type : "informUser",
outputFormat : "message",
queueLength : "200"

}

$user = Sink($informUser) {
concreteLocation : ":::::ffff:8083:c004/general",
inputFormat : "message",
type : "user"

}
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