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Kurzfassung

Blockchain, eine revolutionäre Distributed-Ledger-Technologie (DLT), hat in den letzten
Jahren große Aufmerksamkeit erregt. Durch den Einsatz kryptografischer Techniken ge-
währleistet die Blockchain die Unveränderbarkeit, Rückverfolgbarkeit, robuste Sicherheit
und den Datenschutz von Daten. Sie arbeitet als dezentralisiertes System und schützt so
vor Angriffen mit einem einzigen Fehler. Da jedoch das Datenvolumen aufgrund der zuneh-
menden Verbreitung von IoT-Geräten weiter ansteigt, steht das Blockchain-Ökosystem
vor Herausforderungen. Ein Hauptproblem liegt in der Skalierbarkeit. Die Transaktions-
verarbeitungskapazität der Blockchain bleibt deutlich hinter der zentralisierter Systeme
zurück. Als Reaktion auf diese Herausforderung haben Forscher verschiedene Strategien
entwickelt, um die Skalierbarkeit der Blockchain zu verbessern. Ein vielversprechender
Ansatz ist die Verwendung einer Datenstruktur in Form eines gerichteten azyklischen
Graphen (Directed Acyclic Graph, DAG) im Gegensatz zu der herkömmlichen linearen
Kettenstruktur. IOTA, eine bekannte Blockchain, die auf dem DAG-Modell aufbaut,
verwendet eine Datenstruktur, die als “Tangle” bekannt ist. Diese innovative Struktur
verwendet einen Markov Chain Monte Carlo (MCMC) Random Walk Algorithmus, um
neue Transaktionen an das Tangle anzuhängen. Theoretisch sollte ein höheres Volumen an
Transaktionen, die dem Tangle zugeordnet werden, zu einer verbesserten Transaktionsrate
pro Sekunde (TPS) führen. In der Praxis ergeben sich jedoch mehrere Herausforderun-
gen. Es gibt keinen allgemeingültigen Algorithmus für die Transaktionsauswahl, und
das tatsächliche Verhalten und die Struktur des Gewirrs bleiben schwer fassbar. Der
MCMC-Algorithmus führt einen einflussreichen Random-Walk-Gewichtungsfaktor ein,
der sich auf die Sicherheit und Skalierbarkeit des IOTA-Wirrwarrs auswirkt. Ein größerer
Gewichtungsfaktor kann die Sicherheit erhöhen, aber zu mehr unbestätigten Transaktio-
nen führen, während ein kleinerer Faktor unbestätigte Transaktionen reduzieren, aber die
Sicherheit beeinträchtigen kann. Das Erreichen einer hohen TPS unter realen Bedingun-
gen erweist sich als ein schwieriges Unterfangen. Während die Blockchain-Technologie
ein transformatives Potenzial bietet, stellt die Lösung des Problems der Skalierbarkeit
in der Praxis, insbesondere im Kontext von DAG-basierten Systemen wie IOTA, eine
komplexe und vielschichtige Herausforderung dar.

In dieser Arbeit führen wir eine umfassende Analyse und dynamische Modellerstellung
des realen IOTA-Wirrwarrs durch. Darüber hinaus führen wir eine sichere und skalier-
bare TSA ein und entwickeln einen leichtgewichtigen Authentifizierungsmechanismus,
der in IOTA verwurzelt ist. Unsere übergreifenden Ziele umfassen: (i) die Enthüllung
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der topologischen Attribute, der Leistungsmetriken und des Generierungsmodells des
tatsächlichen IOTA-Tangles, (ii) die Entwicklung eines Algorithmus zur Spitzenauswahl,
der auf die einzigartigen Eigenschaften von DAG-basierten Blockchains zugeschnitten ist,
und (iii) die Entwicklung einer IoT-Anwendung, die auf dem IOTA-Framework basiert.
Unsere Erkundungsreise beginnt mit dem Abruf der authentischen Knäueldatenbank.
Wenn wir diese Merkmale mit denen eines simulierten Gewirrs vergleichen, stellen wir
erhebliche Unterschiede fest. Darüber hinaus machen wir uns auf die Suche nach größerer
Präzision bei der Abbildung der in-degree-Verteilung und der Darstellung der sich entwi-
ckelnden Tangle-Topologie innerhalb des IOTA-Bereichs. Die Anwendung verschiedener
Long-Tail-Verteilungen zeigt, dass die double Pareto Lognormal (dPLN)-Verteilung ihre
Konkurrenten in Bezug auf die Anpassungsgenauigkeit übertrifft. Die in-degree-Verteilung
zeigt, dass die Mehrheit der Transaktionen nur eine Genehmigung erhält, was auf eine
inhärente Fragilität der Topologie mit einer Fülle von Blowball-Strukturen hinweist. Im
folgenden Abschnitt unserer Arbeit konzentrieren wir uns auf die Optimierung der Tip
Selection Algorithm (TSA) für DAG-basierte Blockchains. Ein besonderer Schwerpunkt
liegt auf der Bewältigung realer Herausforderungen, mit denen IOTA konfrontiert ist.
Wir beginnen mit einem schnellen TSA, das auf die Ankunft von Burst-Transaktionen
in DAG-basierten Blockchains zugeschnitten ist. Dieser neuartige Ansatz vermeidet den
gewichteten Random-Walk-Prozess und berechnet die Wahrscheinlichkeitsverteilung für
die Spitzenauswahl im Voraus, was die Auswahlaufgabe erheblich beschleunigt. Anschlie-
ßend erweitern wir diesen Algorithmus zu einer sicheren und skalierbaren Variante. Nach
der Berechnung der Tipp-Auswahlwahrscheinlichkeiten identifizieren und wählen wir
abnormale Tipps anhand vordefinierter Schwellenwerte aus und fügen anschließend neue
Transaktionen nach dem Zufallsprinzip hinzu. Der von uns vorgeschlagene Algorithmus
zur Auswahl von Tipps befasst sich mit zwei kritischen Aspekten: (i) Stärkung des Gewirrs
gegen den Einfluss unregelmäßiger Strukturen und (ii) Stabilisierung und Minimierung
der Anzahl unbestätigter Transaktionen. Schließlich gipfelt die Arbeit in der Entwicklung
eines leichtgewichtigen Authentifizierungsmechanismus auf Basis von Proximity, der für
domänenübergreifende IoT-Geräte zugeschnitten ist und auf der IOTA-Plattform basiert.
IOTA dient als Repository für die bei der Authentifizierung verwendeten Zertifikate.
Wir untermauern die Machbarkeit unseres Vorschlags durch die Implementierung eines
kompakten internen Prototypsystems.



Abstract

Blockchain, a revolutionary distributed ledger technology (DLT), has garnered significant
attention in recent years. Leveraging cryptographic techniques, blockchain ensures
the immutability, traceability robust security, and privacy of data. It operates as a
decentralized system, thereby safeguarding against single-point failure attacks. However,
as the volume of data, continues to surge due to the proliferation of Internet of Things
(IoT) devices, the blockchain ecosystem faces challenges. A key issue lies in scalability.
Blockchain’s transaction processing capacity significantly lags behind centralized systems.
In response to this challenge, researchers have devised various strategies to enhance
blockchain scalability. One promising approach involves adopting a Directed Acyclic
Graph (DAG) data structure, as opposed to the conventional linear chain structure.
IOTA, a renowned blockchain built on the DAG model, employs a data structure known
as the “tangle”. This innovative structure employs a Markov Chain Monte Carlo (MCMC)
random walk algorithm to attach new transactions to the tangle. Theoretically, a higher
volume of transactions attached to the tangle should result in improved Transaction per
Seconds (TPS). In practice, however, several challenges emerge. There is no universally
prescribed transaction selection algorithm, and the true behavior and structure of the
tangle remain elusive. The MCMC algorithm introduces an influential random walk
weight factor, impacting the security and scalability of the IOTA tangle. A larger weight
factor may enhance security but lead to more unconfirmed transactions, while a smaller
factor may reduce unconfirmed transactions but compromise security. Achieving high
TPS under real-world conditions proves to be a formidable undertaking. As a result,
while blockchain technology offers transformative potential, addressing the scalability
issue in a practical setting, especially within the context of DAG-based systems like
IOTA, presents a complex and multifaceted challenge.

In this thesis, we undertake a comprehensive analysis and dynamic model generation of
the real IOTA tangle. Additionally, we introduce a secure, and scalable TSA and devise
a lightweight authentication mechanism rooted in IOTA. Our overarching objectives
encompass: (i) unveiling the topological attributes, performance metrics, and generation
model of the actual IOTA tangle, (ii) crafting a tip selection algorithm tailored to the
unique characteristics of DAG-based blockchains, and (iii) designing an IoT application
underpinned by the IOTA framework. Our exploratory journey begins with the retrieval
of the authentic tangle database. By comparing these characteristics with those of a
simulated tangle, we discern substantial differences. Furthermore, we embark on a quest
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for greater precision in mapping the in-degree distribution and charting the evolving
tangle topology within the IOTA realm. The application of various long-tail distributions
reveals that the double Pareto Lognormal (dPLN) distribution surpasses its peers in terms
of fitting accuracy. The in-degree distribution unveils that the majority of transactions
garner just one approval, signifying inherent fragility in the topology with a profusion of
blowballing structures. In the subsequent segment of our thesis, we shift our focus towards
optimizing the Tip Selection Algorithm (TSA) for DAG-based blockchains. A particular
emphasis lies in addressing real-world challenges faced by IOTA. We inaugurate with a
swift TSA tailored for burst transaction arrivals in DAG-based blockchains. This novel
approach avoids the weighted random walk process and precomputes the tip selection
probability distribution, dramatically expediting the selection task. We then extend this
algorithm into a secure and scalable variant. After calculating tip selection probabilities,
we identify and select abnormal tips based on predefined thresholds and subsequently
attach new transactions randomly. Our proposed tip selection algorithm tackles two
critical issues: (i) fortifying the tangle against the influence of irregular structures and (ii)
stabilizing and minimizing the count of unconfirmed transactions. In the end, the thesis
culminates with the design of a lightweight proximity-based authentication mechanism
tailored for cross-domain IoT devices, underpinned by the IOTA platform. IOTA serves
as the repository for certificates employed during authentication. We substantiate the
feasibility of our proposal through the implementation of a compact in-house prototype
system.
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CHAPTER 1
Introduction

Blockchain, a pioneering Distributed Ledger Technology (DLT), has garnered considerable
attention in recent years. Initially conceived as a Peer-to-Peer (P2P) transaction system,
blockchain distinguished itself by enabling efficient transactions without the need for
intermediary entities. Operating within a fully decentralized framework, it effectively
mitigated the risk of a single point of failure. In this system, each participant maintains
a synchronized copy of the ledger records. The information stored within the blockchain
is inherently resistant to tampering and, crucially, is marked by irrevocable immutabil-
ity. Once data is inscribed on the blockchain, it remains unalterable. Consequently,
blockchain’s unique attributes have rendered it applicable to a diverse array of domains,
including finance, Internet of Things (IoT), and the realization of smart cities. As the
volume of data within the blockchain ecosystem continues to escalate, certain limitations
have become apparent. A pronounced shortcoming is the challenge of scalability, leading
to reduced transaction confirmation speeds. In contrast to centralized systems, which
offer swift transaction processing, blockchain systems are notably slower. For instance,
VISA boasts a transaction processing rate of 10,000 Transactions per Second (TPS). To
address this issue, a spectrum of solutions has been proposed, including sharding, Layer 2
scaling solutions, and the adoption of the Directed Acyclic Graph (DAG) data structure.
The incorporation of DAG into the blockchain architecture represents a fundamental
transformation of the traditional data structure, offering a promising avenue for enhancing
scalability.

The realm of blockchain technology has witnessed a paradigm shift with the advent
of DAG-based blockchains, which revolutionize the manner in which transactions are
processed. In these innovative systems, transactions are structured as a DAG rather than a
linear chain, and they have engendered the development of various DAG-based blockchains,
including notable platforms such as IOTA, Byteball, Hashgraph, and Fantom. Among
these, IOTA has emerged as one of the most prominent and is stewarded by the IOTA
Foundation (IF). IOTA employs a distinct DAG data structure, referred to as the ‘tangle’,
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1. Introduction

which serves as its foundational ledger and repository for all transactions. Distinguished
by its absence of transaction fees and robust support for micro-transactions, IOTA stands
out as a scalable solution. Theoretically, as the number of transactions integrated into
the tangle increases, the transaction speed accelerates, rendering IOTA particularly
well-suited for IoT use cases. Within the tangle, each transaction is represented as a
vertex, commonly termed a ‘site’. In the present landscape, IOTA exists in two primary
iterations: the older IOTA 1.0 and the more recent IOTA 2.0. Despite the evolution to
IOTA 2.0, the unique consensus mechanism of IOTA 1.0 continues to captivate significant
attention and interest. Several research efforts and applications have been developed
around IOTA 1.0, underscoring its enduring relevance. This paper focuses specifically on
the examination and exploration of IOTA 1.0. Henceforth, the term ‘IOTA’ herein refers
to ‘IOTA 1.0’.

IOTA relies on the Markov Chain Monte Carlo (MCMC) as its consensus mechanism.
Within the tangle, a novel transaction undergoes a stochastic selection process. A ‘walker’
embarks on a random traversal from a predefined site to the extremity of the tangle,
culminating in the selection of a ‘tip’, which denotes an unconfirmed transaction. Various
Tip Selection Algorithm (TSA) have been devised, with the MCMC standing as the official
and recommended TSA. Subsequent to the initial tip selection, the random walk repeats,
leading to the selection of a second tip, whereby the new transaction becomes appended
and confirmed through its connection to these chosen tips. Each site within the tangle is
endowed with a crucial attribute known as cumulative weight, denoting the number of
sites linked to the respective site. A pivotal parameter governing the course of the random
walk is α, which influences the direction taken and, concomitantly, the tangle’s security.
A higher α value compels the random walker to traverse along routes with substantial
cumulative weights, ultimately permitting the selection of tips along such paths. This,
however, results in an elevated count of unconfirmed transactions. Paradoxically, the
tangle’s security is bolstered, as transactions associated with greater cumulative weights
manifest heightened confidence and broad approver support in comparison to their
counterparts with lesser cumulative weights.

1.1 Problem Statement

The utilization of the DAG data structure empowers IOTA to engage in asynchronous
transaction processing, allowing multiple transactions to be appended to the blockchain
concurrently rather than in a sequential manner. However, the adoption of the DAG data
structure introduces greater complexities and poses a heightened demand on the consensus
mechanism. The asynchronized attachment of transactions introduces increased diversity,
potentially resulting in amplified security concerns. Within this section, we delineate the
scope of this thesis by articulating a comprehensive description of the challenges that
form the focal point of our research.

The primary objective of this thesis is to develop a consensus mechanism that achieves
both security and scalability within the context of DAG-based blockchains. More
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1.1. Problem Statement

specifically, our aim is to enhance the efficiency of attaching new transactions, ensuring
swift and streamlined processes while concurrently regulating the number of unconfirmed
transactions, and maintaining a consistent and manageable level. Our research unfolds
in a multifaceted approach, encompassing several critical dimensions of IOTA. We
intend to (i) conduct a comprehensive analysis of the genuine IOTA tangle to unveil its
inherent characteristics, (ii) explore the degree distribution and generation processes of the
authentic IOTA tangle, (iii) introduce a highly efficient and secure transaction attachment
algorithm, and (iv) probe the potential utility of IOTA within the telecommunications
domain. The proposed algorithm offers the dual benefits of reducing computational
complexity during the attachment of new transactions and upholding the overall security
and stability of the tangle. Moreover, we will provide a tangle simulator to facilitate the
rapid generation of tangles for research purposes, ensuring accessibility for both academic
researchers and private enthusiasts seeking to engage in tangle analysis.

IOTA employs a DAG data structure, allowing for parallel transaction attachment to
the tangle, thereby enhancing the blockchain’s operational efficiency. Previous research
endeavors have primarily evaluated IOTA through simulation-based methodologies. For
instance, in the work by [KSG18a], an analysis of cumulative weight development, in-
degree distribution, and the number of tips was conducted, which included the creation
of an offline IOTA network for performance testing. This research substantiated IOTA’s
commendable scalability and TPS capabilities. However, the practical deployment of
IOTA confronts a fundamental challenge in that it lacks a prescribed and universally
accepted TSA, leading to diverse TSA implementations and subsequently varying tangle
topologies. This variation underscores the criticality of understanding the authentic
structure and performance of IOTA in real-world scenarios, which is presently unknown.
A comprehensive comprehension of IOTA’s genuine performance is an imperative prereq-
uisite for any attempts aimed at enhancing its efficacy.

IOTA utilizes a DAG data structure as its foundational framework. This architectural
choice empowers IOTA to execute the concurrent attachment of transactions to the tangle,
consequently enhancing the operational efficiency of the blockchain. Prior academic
inquiries into the domain of IOTA have predominantly relied upon simulation-based
methodologies to assess its performance. For instance, as exemplified in [KSG18a],
comprehensive analyses pertaining to the development of cumulative weight within the
tangle, in-degree distribution, and the quantification of tips were undertaken. In the
mentioned reference, an offline IOTA network was meticulously engineered to facilitate
performance evaluations, ultimately confirming IOTA’s commendable scalability and TPS
capabilities. However, the practical implementation of IOTA confronts a fundamental
quandary as the IOTA Foundation refrains from mandating a universally recognized TSA,
thereby giving rise to a proliferation of diverse TSA implementations and, in turn, varying
tangle topologies. This scenario underscores the critical imperative of comprehending
the genuine structure and performance of IOTA within authentic, real-world contexts,
a dimension that remains elusive. To elevate IOTA’s operational efficiency, a profound
understanding of its real-world performance is an essential prerequisite.
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After knowing the real IOTA generation process and dynamic model, we could consider
improving the performance of the IOTA consensus mechanism. Due to the asynchronized
attachment process and the uncertainty of the random walk, it is hard to improve and
design the consensus mechanism. The main difficulties are 1) the influence of the random
walk factor on the unconfirmed transaction, and 2) the change of the new transaction
coming rate, 3) the network delay during the synchronization between different nodes.
Hence, the attachment process of the new transaction has much uncertainty and the
number of unconfirmed transactions is also influenced. In G-IOTA [BGP19] and E-
IOTA [BHP20], DA-IOTA [RID+23] , the original IOTA was optimized. However, these
optimizations use a small random walk influence factor α to stabilize the number of
unconfirmed transactions. Through a small α, the unconfirmed transactions could be at
a stable and low level. However, for a small α, some abnormal transactions could have a
bigger probability of being chosen. The whole system is still under a risk of attack. We
still need a secure transaction attachment mechanism.

The introduction of a novel transaction attachment mechanism necessitates comprehensive
evaluation through simulation and testing within the IOTA framework. Presently,
simulation tools are predominantly grounded in the IOTA protocol and rely on a random
walk process to generate the tangle. However, these existing simulators require substantial
computational resources, consuming considerable energy and time during the process
of recalculating the random walk for tangle generation. Therefore, the imperative for a
more efficient and resource-conserving simulator becomes evident, aimed at economizing
both time and energy resources.

1.2 Research Questions
The challenges delineated above serve as the foundational impetus driving the research
conducted throughout the course of this thesis. Within the expanse of this study, we
elucidate the pivotal research inquiries that form the bedrock of our investigation and
subsequently provide answers to these questions.

Q1: What are the structural attributes and performance characteristics of
the authentic IOTA tangle, and what constitutes the dynamic generation
model of the real IOTA tangle?

In theory, the DAG-based IOTA tangle exhibits superior scalability when compared
to traditional chain-based blockchains. The augmentation of transactions attached to
the tangle theoretically leads to heightened confirmation speeds, rendering IOTA a
highly promising candidate for IoT applications. However, real-world scenarios deviate
from simulated environments, necessitating the acquisition of data from actual IOTA
operations to scrutinize the performance and generation processes of the real IOTA tangle.
Distinguished by its distinctive DAG-based architecture, IOTA diverges from traditional
chain data structures featuring a singular linear chain. Compounded by the absence of
an official, universally mandated tip selection algorithm for IOTA, the genuine IOTA
tangle manifests distinctions from its simulated counterpart. Consequently, the precise
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topology and performance of the authentic IOTA tangle, along with the intricacies of its
real-world generation process, remain elusive. Gaining insight into the genuine IOTA
performance and generation process holds the potential to facilitate optimization of the
tangle generation algorithm, ensuring a more seamless alignment of the IOTA tangle
with real-world use cases.

Q2: How can an efficient and secure transaction selection algorithm be
developed for execution on resource-constrained devices within the context
of a DAG-based blockchain?

Challenges persist when it comes to attaching new transactions to the tangle in resource-
constrained and asynchronized systems. The primary challenge lies in achieving the
delicate balance of maintaining security while simultaneously regulating the quantity of
unconfirmed transactions, ensuring it remains at a lower and consistent level. IOTA’s
utilization of the MCMC random walk in its tip selection algorithm imparts a transaction
weight, with the random walk inherently influenced by this weight. This influence is
governed by a particular factor, which plays a pivotal role in determining the extent
of influence. A larger factor enhances the impact of transaction weight, compelling
the random walk to traverse the route where transactions with substantial weight are
concentrated. Transactions with significant weight boast more endorsements, thereby
enhancing their security but leading to a proliferation of unconfirmed transactions.
Conversely, adopting a smaller factor mitigates this bias, infusing greater randomness
into the process, but it can compromise security. Consequently, the design of a tip
selection algorithm that balances security and the number of unconfirmed transactions
becomes imperative for optimizing the system’s utility.

Q3: How can an efficient simulator be designed to rapidly generate IOTA
tangles for the analysis of TSA performance?

Upon the development of a novel tangle transaction selection algorithm, the need for a
simulator arises, enabling the generation of tangles and the subsequent evaluation of the
algorithm’s performance through the analysis of the generated tangles. Conventionally,
simulators generate the tangle by iterating the random walk process. However, the
generation of numerous tangles using this approach demands substantial time and energy
resources. Therefore, the imperative for an efficient simulator that expedites tangle
generation becomes apparent.

Q4: How can IOTA be effectively deployed in real-life IoT use cases and
contribute to the enhancement of IoT service performance?

In the evolving landscape of the IoT, the proliferation of IoT devices poses considerable
challenges, particularly in terms of inter-machine communication. Among these challenges,
cross-domain authentication between machines emerges as a pivotal concern. Conventional
centralized authentication methods may fall short in meeting the demands presented
by the extensive number and dispersed nature of IoT devices. As previously discussed,
IOTA exhibits enhanced scalability and has been purposefully designed to cater to the
requirements of IoT. Serving as a fundamental component of the IoT network, it becomes
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essential for IOTA to furnish a lightweight authentication mechanism, specifically tailored
to the unique needs of IoT devices.

1.3 Scientific Contributions
In this section, we delineate the contributions made by this thesis to the state of the art
by addressing the previously stated research questions. These contributions encompass:

C1: A comprehensive series of analyses and investigations were conducted on
the IOTA tangle.

These analyses and investigations include an in-depth examination of the real IOTA
tangle using historical empirical data sourced from the IOTA mainnet, the formulation
of a dynamic model delineating the genuine IOTA tangle generation process, and an
accurate portrayal of the in-degree distribution within the authentic IOTA tangle.

Due to the diversity of TSA and the variances in node behaviors, the real IOTA tangle
exhibits distinctions when compared to its simulated counterpart. Through initial
detection efforts, anomalous structural patterns were identified within the real IOTA
tangle. Consequently, a comprehensive analysis was undertaken to comprehend the real
IOTA tangle’s topology and performance, with a particular focus on confirmation delay
within authentic IOTA transactions. The tangle was meticulously reconstructed based
on real IOTA data, followed by an analysis of in-degree distribution, cumulative weight,
and transaction delay. This investigation revealed substantial differences between the
real tangle and its simulated counterpart, notably the presence of greater delays than
those theoretically expected.

Furthermore, the Stochastic Differential Equation (SDE) model was harnessed to elucidate
the genuine tangle generation process. In this endeavor, the in-degree distribution
was compared against common long-tail distributions, with the empirical finding that
the in-degree distribution in the real tangle adheres to the double Pareto Lognormal
(dPLN) distribution. To refine this discovery, the Expectation-Maximization (EM) fitting
algorithm was employed to fine-tune the distribution, thereby rendering it a more precise
fit. The performance of this fitting was evaluated and contrasted.

Detailed information regarding this contribution is presented in Chapter 3, 4, 5 and
was originally introduced in [GXHD20a, GXHD22b, GXHD22a].

C2: An optimization of the transaction selection algorithm: a faster, se-
cure and scalable, supporting the attachment of burst coming transactions
algorithm.

In real-world scenarios, nodes often encounter the simultaneous arrival of numerous
transactions, all vying for attachment to the tangle. Traditionally, transaction selection
algorithms processed these transactions sequentially, necessitating at least two separate
random walk operations for each new transaction. This approach led to increased
transaction attachment delays. To address this challenge, a fast transaction selection
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algorithm was devised, specifically tailored to address burst-arrival scenarios. This
algorithm eliminates the need for repetitive random walks. When confronted with a
batch of new transactions entering the tangle concurrently, the node utilizes a predefined
list of transactions with corresponding selection probabilities for efficient decision-making.
Moreover, building upon this foundation, a secure and scalable transaction selection
algorithm was formulated. This advanced algorithm possesses the ability to identify
abnormal transactions promptly and subsequently attaches incoming transactions to the
tangle in a random manner. This approach serves to maintain the count of unconfirmed
transactions at a low and stable level.

Detailed information regarding this contribution can be found in Chapter 6, 7 and was
initially introduced in [XGHD22].

C3: An efficient tangle simulator algorithm generating tangles without re-
peating random walks.

In this contribution, we have optimized the tangle simulation process, eliminating the
requirement for random walks. We introduce the Graph Generation and Refinement
algorithm (GraGR). With GraGR, tangles can be generated directly by inputting prede-
fined parameters and applying graph theory principles. This approach streamlines the
tangle generation process, rendering it free from random walks and significantly saving
both time and energy resources. Comparative analyses between tangles generated using
GraGR and those created by traditional tangle generators, which rely on simulating
the IOTA tangle principles, reveal similar properties. However, GraGR demonstrates
superior efficiency when compared to conventional simulators.

Detailed information regarding this contribution can be found in Chapter 8 and was
initially presented in [GXHD23a].

C4: An exploration of IOTA use cases in the field of IoT, particularly the
implementation of lightweight machine-to-machine authentication.

IOTA’s potential applications in the realm of IoT have been extensively studied, spanning
domains such as smart homes, internet of vehicles, and smart factories. Our research
specifically delves into the utilization of IOTA within the context of Mobile Edge Comput-
ing (MEC). We have integrated IOTA and MEC to establish an authentication network
that involves multiple IoT service providers. In a more detailed perspective, we have
defined customized transaction content and the core operational procedures. This system
empowers authentication at resource-constrained local devices, eliminating the need for
centralized servers. Additionally, to validate the viability of our proposed lightweight
authentication solution, we have constructed a small in-house prototype.

A comprehensive exploration of this contribution can be found in Chapter 9 and was
originally introduced in [XGH20].
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1.4 Thesis Structure
This thesis is built upon the contributions of original research papers published in journals
and conferences. Certain chapters have been expanded or refined to better align with
the overall context of the thesis. The structure of this thesis is as follows:

• Chapter 2 provides a foundation by offering background information and introducing
the concepts and terminology that will be referenced throughout the thesis.

• Chapter 3 offers a comprehensive analysis using real transaction data provided by
the IOTA Foundation. It highlights the existing gaps in IOTA’s ability to meet the
stringent requirements of delay-sensitive IoT applications.

• Chapter 4 presents a generative model for the IOTA tangle, employing stochastic
analysis.

• Chapter 5 introduces a theoretical model for the evolving IOTA tangle based on
stochastic analysis. After analyzing real-world IOTA snapshots, a key finding
emerges: the IOTA tangle follows a dpln degree distribution. Furthermore, we
estimate model parameters through a newly designed fitting algorithm based on
the EM algorithm.

• Chapter 6 unveils a novel tip selection algorithm tailored for the scenario of burst
message arrivals on edge nodes.

• Chapter 7 introduces a scalable and secure transaction attachment algorithm
designed for DAG-based blockchains.

• Chapter 8 presents a lightweight cross-domain authentication mechanism for IoT,
built upon IOTA.

• Chapter 9 brings the thesis to a conclusion, summarizing our contributions and
offering insights into potential future work.
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CHAPTER 2
Preliminary

In this chapter, we present an overview of the fundamental concepts that underlie our
work, encompassing IOTA-related concepts, including IOTA tangle, TSA, and common
attacks separately. Additionally, we provide a comparative analysis of scalability solutions.

2.1 IOTA Tangle
The IOTA tangle is a ledger of IOTA that comprises transactions and directed links
connecting these transactions. The directed link between two transactions signifies an
approval relation and also denotes the order of attachment. The more transactions that
attach to a particular transaction, the greater the confidence that transaction acquires.
The transaction that lacks any referred transactions is deemed unapproved and is referred
to as tips. The key idea behind IOTA is that a new transaction validates two previous
transactions. As a result of this, linked transactions are disseminated throughout the
entire network, leading to the convergence of tangles and the formation of consensus
opinions through a distributed consensus protocol.

In the tangle, each transaction possesses its own weight and a concept known as Cumula-
tive Weight (CW). The own weight is assigned a value of 1, while the CW is determined
by the number of children of the transaction plus itself. The CW value serves as an
indicator of a transaction’s significance within the tangle. A higher CW value implies
that the transaction has received more approvals compared to transactions with lower
CW values. The difference between the CW values of two connected transactions is
referred to as the Edge Weight (EW).

2.2 Transaction Attachment
A new transaction (cf. the white square in Figure 2.1) is composed at a client and
submitted to a node. An initial validation is done by checking some attributes that
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can be locally verified such as signature, balances and so on. A validated transaction
is attached to two tips selected from the tangle, where a tip is a site that is not yet
referenced (i.e., approved) by any other site (e.g. Tip m3, m4, m5 in Figure 2.1).

IOTA attaches new incoming transactions to the tips through the TSA, which is executed
by a node locally. The official recommended TSA is the MCMC algorithm, which selects
tips through a biased random walk process. A random walker initiates its walk from a
predefined beginning transaction towards the end of the tangle, i.e., the tip. An important
parameter in the MCMC algorithm is α, which influences the probability of tip selection.
A large α value causes the random walk to prioritize tips with high cumulative weight,
resulting in more unconfirmed transactions. Conversely, a small α value leads to a more
random walk process. An α value of 0 results in an unbiased MCMC. Another commonly
used TSA is the Uniform Random Tip Selection (URTS) algorithm, which selects tips
randomly from the tip pool. Once a new transaction attaches to the tips, this new
transaction becomes a new tip and the selected tips are approved and no longer available
for selection. While there is no mandatory TSA, IOTA Foundation recommends the use
of MCMC for better security and stability of the tangle. URTS and Unbiased Random
Walk (URW) are theoretical TSA and cannot be used in the real-life implementation of
DAG based DLT due to their vulnerability to parasite chain attacks [KSP+19a].

Figure 2.1: Transaction attachment on the tangle

Here we provide a detailed illustration of MCMC, as shown in Figure 2.1, m3, m4, and
m5 represent tips, while m6 and m7 denote new incoming transactions. A random walker
walks from m0 towards the end of the tangle. The transition probability between m0 and
m1 is calculated using Equation 2.1. By following the same approach, we can calculate
the probability of other edge transactions. Finally, m3 and m4 are selected by m6 via
MCMC.

pm0m1 = e−αEWm0m1

e−αEWm0m1 + e−αEWm0m2
(2.1)
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Figure 2.2: Transaction Propagated to Other Nodes

2.2.1 IOTA Transaction Propagation

In parallel, a node receives forwarded transactions from neighboring nodes (as shown in
Figure 2.2). A forwarded transaction could already exist in the local ledger. In this case,
the node ignores it locally, but forwards it to all neighbors, except to the expedient. If the
transaction does not exist in its local ledger (e.g., node n2 does not have the transaction
received from node n1), a node (here: node n2) saves the transaction and checks, whether
the two referenced sites (denoted as two small eclipses on the transaction) can be found
in its tangle. If so, the node simply adds the transaction to its tangle; otherwise, the
transaction is suspended, until the missing sites are provided from neighbors.

The node will send requests to neighbors to find a missing site. For example, if node n2
does not have the two sites, it will broadcast requests to both nodes n1 and n3. If any
node knows any of the requested transactions, it (e.g., node n1) it replies to the requester
(i.e., node B). Note that this could recursively trigger further missing site requests. Hence,
missing sites in a local tangle are progressively completed with the helps of other nodes,
until tangles are synchronized.

2.3 Attacks in IOTA

2.3.1 Lazy tip

The lazy tip is a new coming transaction that approves previously approved transactions
instead of unapproved ones. While the lazy tip does not contribute to the confirmation
rate and does not aid the IOTA system, it does occupy storage space and interaction
bandwidth. For instance, in Figure 2.1, transaction m7 would be identified as a lazy tip,
as it approves the already approved transaction m2.

2.3.2 Parasite chain

An attacker secretly constructs a sub-tangle that cites a transaction on the main tangle,
thereby enhancing the cumulative weight of that transaction, as depicted in Figure 2.3.
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Figure 2.3: Lazy tip and parasite chain

This parasite chain exerts influence on the MCMC random walk process, directing the
walker towards the tips on the parasite chain. Consequently, incoming transactions will
validate the tips on the parasite chain, while disregarding those from honest nodes. In
the worst-case scenario, the parasite chain may reference a double-spending transaction,
thereby attracting additional transactions to validate it, ultimately resulting in an attack
on the tangle.

2.4 Comparison of Scalability Solutions
Scalability is a critical challenge in blockchain networks, as increasing transaction volumes
often lead to congestion, high fees, and reduced efficiency. Several solutions have been
proposed to address this issue, including DAG, Sharding, and Layer-2 solutions. This
section provides a comparative analysis of these approaches, evaluating their strengths,
weaknesses, and applicability to different blockchain ecosystems. Table 2.1 provides a
structured comparison of these solutions, highlighting their key differences and use cases.

Criterion DAG Sharding Optimistic Rollups ZK-Rollups
Throughput High High High High
Decentralization Varies Relatively High Inherits Layer-1 Inherits Layer-1
Security Requires additional security measures Cross-shard security required Fraud proofs required Cryptographic security
Complexity High High Medium High
Finality Probabilistic Consensus-dependent 7-day challenge period Immediate
Use Cases IoT, micropayments Smart contract platforms DeFi, general transaction scaling High-security applications

Table 2.1: Comparative Analysis of Scalability Solutions

2.4.1 Directed Acyclic Graph

DAG-based architectures depart from traditional linear blockchain structures by organiz-
ing transactions in a graph-like format. In DAG systems, transactions confirm multiple
prior transactions rather than being sequentially added in blocks. Notable DAG-based
projects include Avalanche, Nano, and IOTA. They have the following characteristics:
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• Throughput: High, as transactions can be processed in parallel.

• Decentralization: Varies by implementation, consensus mechanisms such as
Avalanche’s voting or IOTA’s coordinator affect decentralization.

• Security: Requires additional mechanisms to prevent attacks, such as double-
spending.

• Complexity: More complex than traditional blockchains, making standardization
challenging.

• Finality: Non-deterministic, often relying on probabilistic confirmation models.

• Use Cases: Well-suited for high-throughput environments, such as IoT networks
and micropayments.

2.4.2 Sharding

Sharding enhances scalability by partitioning the blockchain network into multiple
parallel chains (shards), each processing a subset of transactions. Ethereum 2.0 and
Polkadot utilize sharding as a fundamental scalability strategy. They have the following
characteristics:

• Throughput: High, as multiple shards operate in parallel.

• Decentralization: Maintained, but inter-shard communication can introduce
bottlenecks and centralization risks.

• Security: Relies on robust cross-shard communication mechanisms, such as
Ethereum 2.0’s beacon chain.

• Complexity: High, due to challenges in shard communication and data consistency.

• Finality: Depends on the consensus mechanism; Ethereum 2.0 employs Casper
FFG for finality.

• Use Cases: Ideal for large-scale smart contract platforms such as Ethereum 2.0
and Polkadot’s heterogeneous chains.

2.4.3 Layer-2

Layer-2 scaling solutions operate on top of the main blockchain (Layer-1), reducing
on-chain transaction load while leveraging the security of the underlying blockchain.
One of the most famous Layer-2 solutions is the Rollups, which aggregate multiple
transactions into a single batch, posting compressed data onto Layer-1. Two major types
exist: Optimistic Rollups (Arbitrum, Optimism) and ZK-Rollups (zkSync, StarkNet).
They have the following characteristics:
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• Throughput: High, though constrained by Layer-1 data availability.

• Decentralization: Inherits Layer-1 security, but centralized sequencers can be a
concern.

• Security: Optimistic Rollups rely on fraud proofs, whereas ZK-Rollups use cryp-
tographic proofs for enhanced security.

• Complexity: Optimistic Rollups are simpler to implement, while ZK-Rollups
require advanced cryptographic computation.

• Finality: Optimistic Rollups have delayed finality due to challenge periods (typi-
cally 7 days); ZK-Rollups achieve near-instant finality.

• Use Cases: Suitable for DeFi applications (Optimistic Rollups) and high-security,
high-performance environments (ZK-Rollups).

In summary, the key idea behind IOTA is that new transactions approve existing
transactions, which progressively gain on weight as more sites approve them. Through
transaction propagation, tangles on different nodes mix, grow and finally converge to
one. Invalid transactions are blocked locally. The reason for this is that attaching invalid
transactions is futile, even for malicious nodes, as during propagation, these will not pass
the validation phase on any (honest) node. Recent theoretical analysis has proved the
convergence and equilibrium of the tangle synchronization in IOTA [PSF19a].
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CHAPTER 3
Characterizing IOTA Tangle with

Empirical Data

IOTA organizes transactions in the ledger as a DAG called Tangle, instead of a hash
chain of transaction blocks used by most of traditional blockchains. IOTA is considered
a promising platform to support IoT applications with its key features such as micro-
payment support and absence of transaction fees. While prior art shows extensive analysis
based on synthetic data generated through simulations, an analysis based on empirical
data from a deployed IOTA network is still missing. In this chapter, we provide the
first comprehensive analysis by using real transaction data officially published by IOTA
Foundation. Our key finding is that neither the tangle’s topological features nor the actual
observed performance is consistent with the main conclusions from the literature. In
particular, most of transactions take roughly 10 minutes to be officially confirmed, which
is not exactly instant as commonly assumed; yet, what is arguably worse is that there
is a certain amount (5%) of transactions experiencing exceptionally long confirmation
time. This shows that IOTA still has gaps to meet the stringent requirements of IoT
applications that are delay sensitive.

The structure of this chapter is outlined as follows. In Section 3.2, we provide a literature
review; Section 3.3 introduces our analysis methodology; full results are presented in
Section 3.4 and Section 3.5 concludes the chapter.

3.1 Introduction

Blockchain technology enables distributed consensus and is regarded as the ultimate tool
to establish a trustworthy relationship in a large-scale anonymous environment. Recently,
blockchain technology is being adopted by many industry sectors from finance, logistics,
decentralized web services and so on [Pil16].
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In 2016, IF1 proposed a blockchain network, namely IOTA, using DAG (called tangle) as
the ledger data structure to organize transaction data on every IOTA node [Pop16]. In a
tangle, a vertex, namely site, represents a single transaction object. A direct edge from
one site pointing to another site indicates that the source site approves the destination site.
Regarding its consensus mechanism, IOTA removes the Proof-of-Work (PoW) mining
phase used in traditional blockchain. Instead, IOTA allows every node to update its local
ledger immediately where a new site (i.e., a new transaction) is attached into the tangle
by approving two existing sites (called tips) in the ledger. Technically, which two tips
are selected is not arbitrary but determined by a TSA, wherein the TSA executes two
weighted random walks in the tangle until two tips are identified. In IOTA, every IOTA
node receives transactions from clients, adds them into its tangle and keeps propagating
the processed transactions to its neighbors. As a result, every transaction is propagated
across the entire IOTA network, where the distributed tangle ledgers converge to a
synchronized status. The mechanism of IOTA will be revisited with more details in the
next section.

The key feature of IOTA is its lightweight transaction processing manner without a
heavy PoW mining phase. For this reason, IOTA and its variants seem suitable for
IoT applications, wherein tiny, massive and ‘instant’ transactions are typical. For
example, IOTA is used as a marketplace where electricity trading is directly done by IoT
devices as sellers and buyers in [PCAM19]. Another example is IOTA usage in vehicular
communication [BVF18a].

Previous studies extensively analyzed IOTA using synthetic data [Kus17, KSG18a,
KG18, BRP18, FKCM19a, PSF19a, GRW20]. These works build their own applications
and evaluate system performance using the transaction data generated in a simulated
environment. However, an analysis based on empirical data generated in the IOTA
mainnet, i.e., the official IOTA network on the Internet, is still not available in the
research community. Consequently, many questions remain open, such as the real tangle
topology, the actual transaction confirmation rate in the deployed system, and, in case of
diverging findings, the reasons behind the present observations. In this chapter, we try
to answer all these questions. More concretely, our main contributions are:

• Since the published transaction datasets do not explicitly contain topology informa-
tion, we first fully reconstruct all the ledger tangles through identifying all sites and
directed edges by looking for every approval relationship among all transactions.
In total, 96 tangles were reconstructed from a 322GB original dataset.

• With the reconstructed tangle ledgers, then we compute interested properties based
on graph theory and IOTA specification. Specifically, we analyze the diameters,
in-degree distribution, cumulative weight of the ledger tangles and measure the
actual performance regarding transaction confirmation delay;

1The official IOTA development and operation consortium
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• Based on the derived properties and metrics, we found that the real IOTA tangles
present different topological features (e.g. site in-degree distributions). More
importantly, we observed that the actual transaction confirmation time shows
higher latency, which is not as usual beliefs that IOTA can provide much faster
transaction rate than traditional blockchain.

In general, to the best of our knowledge, we are the first trying to present such an
in-depth study where we publish all our source code for this empirical data analysis
online2.

3.2 Related Work
In [Kus17], this pioneering work was the first to simulate the development of the site
CW values in time. However, this work is the first work to mimic an IOTA network
with limited sizes as well as insufficient parameters. In [KSG18a], it further analyzed
impacts of two different TSAs to site CWs and the number of tips in the tangle in a
continuous-time model. However, the random walk depth is too low compared to the
TSA random walk depth of 5000 used in real IOTA. The same team in [KG18] studied
the relationship between the so-called Probability of Being Left Behind, the coefficients
of walking randomness and the transaction arrival rate. A similar deficiency is also the
limited size of the simulated tangles, comparing with the million-site scale in the real
IOTA.

In [BRP18], an IOTA network is simulated as a multi-agent system by Netlogo, a
simulation environment [WR15]. Based on the simulation, the work concludes that IOTA
overcomes the shortcomings of traditional blockchains and shows both faster confirmation
speed and lower computation requirement. However, the experiment is largely simplified
with small sizes of the synthetic tangles and some idealistic assumptions. Besides,
in [FKCM19a], an offline IOTA network was deployed to evaluate the performance
by simulating some more realistic assumptions. The derived conclusion is that IOTA
presents good scalability in terms of transaction confirmation rate, increasing accordingly.
However, the provided results rather suggest a steady transaction rate, even if more
resources are dedicated to IOTA.

In [GRW20], TSA performance in blockchains based on DAGs was evaluated. This
work is also based on simplified settings such as shallow TSA random walk depth. A
self-defined approval time was used to measure the confirmation rate. However, this
definition is aligned neither with the real IOTA case nor with the theoretical definition
from the IOTA whitepaper [Pop16]. This may yield a wrong interpretation of the actual
performance in deployed IOTA networks.

In summary, the fundamental difference of this work to the state of the art is that it uses
neither simulation to mimic the behaviors of IOTA for statistical analysis, nor any offline

2https://github.com/goldrooster/IOTA-Empirical-Data-Analysis
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deployment for performance evaluations. We emphasize that the main objective of this
work is to understand the nature of the real-world IOTA by statistically analyzing the
original ledger data kindly made publicly available by the IOTA Foundation.

3.3 Methodology

3.3.1 Motivation

The key factors that make the IOTA mainnet different from a simulated IOTA system
are:

• Transaction Arrival Rate: It is usually modeled as a Poisson distribution controlled
by a parameter λ. However, from other online real-world blockchains do not only
follow a Poisson distribution [LPDG18]. A different transaction arrival pattern
influences the order of transaction attachment, which could further influence the
topological features in the resulting tangle topology.

• TSA Options: Simulation-based studies rely on a simplified and unified random
walk-based TSA assumption. In contrast, in the IOTA mainnet, TSA is not limited
to one common option. Instead, various strategies are used in practical situations.
For example, URTS, MCMC with customized parameters or directly referring to
the Coordinator (COO)-issued milestone are acceptable choices.

• COO Intervention: This could be the most critical factor. The COO keeps issuing
milestones, which dominates several parameters of the transaction confirmation
performance. Moreover, milestones act as a special type of sites in the tangle and
could affect the tangle topology properties in IOTA mainnet.

Given these differences, the question arises, whether IOTA mainnet performs anywhere
near the observations in the prior art, and, in particular, to which extent COO - not
considered in the prior art - affects the transaction confirmation delay. This question is
the main motivation for this study, which seeks to characterize the IOTA performance
using the available empirical data.

3.3.2 Tangle Reconstruction

Transaction data are being regularly collected from the IOTA mainnet by IF and published
online3. The ledger data are archived periodically (every two or three months). The
archiving activity is called generating a Mainnet Snapshot (MS), wherein transactions are
frozen and account balances are settled. Then, a new archive period starts. A MS mainly
contains transaction records including issued milestones from COO and an approvee list
that contains key-value pairs, whose key is a hash value of a transaction, and value fields
contain the hash values of its direct approver transactions.

3http://dertangle.iota.cafe/
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The first obstacle is that the published ledger data are represented in trytes but compressed
in bytes. Therefore, decompression and data format conversion have to be done at the first
place. After the data conversion, snapshot datasets are converted into human-readable
format and saved as JSON files.

The next challenge is that tangle topology information is not explicitly kept in the datasets
when generating every MS. This means that tangle topology has to be reconstructed
manually. Given a MS, we have to iterate all transaction records to identify their edges
and connected sites according to the hash values of the two referenced transactions (sites).
A more challenging case is that multiple tangles could exist in one MS. This further
requires us to manually identify the first and the last sites in order to determine one
sub-tangle instance.

We provide an overview of the published MS datasets in Table. 3.1. Note that IF did not
officially publish MS anymore after April 2019.

MS Date Tangle# Site# Average Site#
Index (month) (million) (million)

1 2016.11

1

0.043 0.043
2 2017.01 0.115 0.115
3 02 0.09 0.09
4 06 2.5 2.5
5 08 3.5 3.5
6 09 2.1 2.1
7 10 1.2 1.2
8 2018.01 8 4.3 0.55
9 04 4 9.6 2.4
10 07 9 15.4 1.7
11 09 26 19.6 0.7
12 12 20 49.1 2.4
13 2019.04 22 43.5 2.0

Total 28 96 151.280210 1.575835

Table 3.1: IOTA Mainnet Snapshot (MS) Overview

3.3.3 Property Extraction

Given the reconstructed tangles, we then characterize their properties. First of all, we
study typical graph-theoretical properties (e.g., diameter, vertex in-degree, etc.) of the
tangles. Furthermore, we also calculate specific IOTA properties, e.g., site CW related to
TSA. To determine the actual confirmation time, we identify the earliest milestone that
approves a considered transaction from the tangle.

The challenge here is that most properties are not directly available but rather have to
be calculated from the tangle. Among them, the most difficult one is to compute site
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3. Characterizing IOTA Tangle with Empirical Data

CW values. The reasons are as follows. A site CW is computed on the fly during TSA
random walk procedure in the transaction attachment stage, as described above. Ergo,
every attachment of a new site into the tangle may change the CW values of preceding
sites. This means that the site CW value is not a static value, thus it is not provided
with the published data. Calculating site CW is a graph traversal problem according to
the definition of CW. Given a n-vertex graph and the graph traversal complexity O(n),
thereby O(n2), there is a significant computational effort given that tangle size n equals
to 1.57 millions on average as per Table 3.1.

In addition, the actual transaction confirmation time is also not readily available. The
main effort is on identifying the earliest milestone that approves a site. To do this, we
first have to visit every milestone site in a tangle and identify all its preceding sites; after
that, we calculate the time interval between the site issuing timestamp and the milestone
timestamp, which tells the actual confirmation time of the corresponding transaction in
the real-world IOTA. Provided that every tangle contains millions of sites, this also takes
quite a long processing time.

3.3.4 IOTA Network Simulator

To facilitate our comparisons, we also use a network simulator, TangleSimulator 4, to
generate simulated tangles, whenever necessary. There are two main parameters for
tuning the simulation process. The first one is transaction arrival rate denoted as λ, and
the second one is a coefficient α influencing the TSA random walk procedure. To align
with the previous work [KG18, KSG18a], we choose λ = 10 but vary the value of α, and
generate 10 simulated or synthetic tangles, each of which contains 1 million sites without
particular notes.

3.4 Analysis Results
Based on the reconstructed 96 tangles, our statistical analysis results are reported here.

3.4.1 Topological Property

The first part of the analysis is based on graph theory, where a set of graph properties
are investigated for both synthetic tangles and MS tangles.

Tangle Size

We examined characteristics of the shapes of the tangles. We first calculated the shortest
and longest paths of every tangle. After that, we calculated the ratio of the two paths
(called diameter ratio). The results are shown in Figure 3.1.

The diameter ratio of the simulated tangles (Figure 3.1a) is much smaller than the case of
MS tangles (Figure 3.1b). In other words, the shape of simulated tangles looks closer to

4https://github.com/minh-nghia/TangleSimulator
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(a) Simulated Tangle (b) MS Tangle

Figure 3.1: Ratio of Tangle Longest and Shortest Paths

a square shape with relatively equal lengths of the longest and shortest paths. However,
the shape of MS tangles appear more like a narrow band shape. Another interesting
point is that the shape of MS tangles seems irrelevant to the size of MS tangles, because,
although the numbers of sites of the MS tangles differ a lot, the lengths of the longest
and shortest paths (the blue band height) do not change drastically.

Site In-degree

(a) Simulated Tangle (5x106 sites) (b) MS Tangle (log x, y-axis)

Figure 3.2: Site In-Degree Distribution

We further generally characterize the site in-degree distribution in Figure 3.2. We first
clustered the 96 MS tangles into 9 groups with k-mean clustering, where k = 9 and two
criteria are the diameter ratio and size of MS tangles. This selects MS tangle samples
that are representative enough for diversity.

Given the selected MS tangles, we plot the in-degree distribution. A key difference
is that the in-degree distribution of nodes in the simulated tangles generally follows a
Poisson distribution (Figure 3.2a), while the in-degree of MS tangles follows a power law
distribution (Figure 3.2b), with fitted curves in shown in red respectively.
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3. Characterizing IOTA Tangle with Empirical Data

(a) Usual Site (b) Milestone

Figure 3.3: MS Tangle Usual Site and Milestone In-degree Comparison

We are further interested in the degree features of different types of sites (e.g., usual sites
and milestones). In MS tangles, the in-degree values of usual sites are small (Figure 3.3a),
where mean and median values are around 1 or 2 overlapping with middle two quartiles,
although there are some exceptional cases with higher degrees in the range of [10, 103].
However, for the case of milestones (Figure 3.3b), we notice that the mean and median
values of milestones range between [5, 102], overlapping with middle two quartiles. This
is several magnitudes higher than the cases of usual sites. It seems that milestone sites
are selected more frequently in real IOTA.

3.4.2 Specific IOTA Property

We then present the analysis on IOTA specific properties.

Site CW

As we explained in Section 3.3, site CW is a dynamic value calculated on the fly. Thus,
these values are not present in the published MS. We have to repeat the TSA random
walks to recalculate them. Similarly, we used k-mean clustering, where k = 10 to select
10 MS tangles in different shapes and sizes.

Site CW values of the selected MS tangles are slightly higher than the case of simulated
tangles. It seems that tangle topology does not influence the CW that much. The possible
reason could be that site CW is a value added up with all sites in a sub-tangle, which
dissolves and normalizes the impact of topological differences.

Edge Weight

Based on site CW, we define a new edge property called EW as the absolute difference
of its two sites’ respective CW values. This value implies the location of a site to attach
to. For example, the EW of a newly added edge shall be small, if a new site attaches to
a recently attached tip, whose CW is similar to the new site. Oppositely, if a new site
attaches to an old site, the EW of the newly added edge is large, because the difference
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(b) Selected MS Tangle

Figure 3.4: Site CW Analysis

of the two sites’ CW values is large. Therefore, EW can be an indicator of 1) a lazy site,
which does not select a recent tip but an old site or 2) a parasite chain phenomenon,
where a fork diverts from the main tangle. The two cases are generally called abnormality.
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(b) Selected MS Tangle

Figure 3.5: Tangle Abnormality

Both simulated and MS tangles generally show certain amounts of abnormalities according
to the results in Figure 3.5. It seems that the abnormality of simulated tangles is more
stable than the case of MS tangles in terms of the variations of EW values. This might be
because the simple TSA strategy is used in simulated cases, while more diversified TSA
strategies are adopted in real IOTA. In general, both CW and EW are less influenced by
the tangle topology.

3.4.3 Transaction Confirmation Performance

Finally, we evaluate the transaction confirmation performance based on the criteria used
in IOTA mainnet. Ideally, a transaction is considered as approved, once that transaction
is attached by a new coming site in a tangle. However, according to the definition of IF,
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3. Characterizing IOTA Tangle with Empirical Data

in reality a transaction is considered as confirmed, only if it is approved by a milestone.
In a MS tangle, this means that a milestone site directly or indirectly connects to the
considered site. This might delay the confirmation time, because milestones are not
always issued timely.
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Figure 3.6: MS Tangle Tx Confirmation Performance

We first summarized in Figure 3.6a the issuing rate of milestones in two different
scales of time intervals (every 12 and 24 hours). Before May 2018, the issuing rate
fluctuated between several hundred and 1800 per day; after that, the issuing rate
increased significantly up to 3000. The issuing rate slowed down since September 2018 to
500 per 12 hours and 1500 per day. It further went down to 500 per day since January
2019.

We then studied the distribution of confirmation time of transactions in all MS tangles
(Figure 3.6b). The median value of confirmation time ranges around 10 minutes. This also
applies to 25% to 75% quantile transactions (blue band areas). With some exceptional
cases, the confirmation time gets maximum value ranging between [102, 104] minutes.
This also stretches the mean value above the median value curve. Another observation is
that before November 2018 (MS Tangle 55), the confirmation performance in real IOTA
had larger fluctuation and became more stable after that. It is worth noting that the
maximum time range ([102, 105]) is a confirmation time delayed from 1.6 hours to 6.9
days. In the light of the IoT orientation, this would rather seem as a considerably long
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3.5. Summary

transaction delay.

We further investigate cumulative proportions of transactions that are confirmed after a
certain duration. We divided the whole period, since IOTA mainnet was launched into
five periods with a half-year step. Statistically, we calculated the Cumulative Distribution
Function (CDF) of transaction confirmation times of the five periods in Figure 3.6c. In
the presented results, we found that the transactions that are confirmed in less than 1
minute are rather very few, at max. 12%, with two of the periods exhibiting values lower
than roughly 5%. The confirmation rate increased rapidly in between 1 and 10 minutes,
where the proportions of confirmed transactions reached at least 65% in two periods and
the other three periods even reached more than 85%. It took 77 minutes for all periods
to confirm 95% of transactions. However, almost every period has a small proportion
(around 1% to 5%) of transactions that were delayed for an exceptionally long time.

3.4.4 Key Observations

1. Real IOTA generates tangles with different topological features, compared to the
simulated tangles. The shape of the real tangles is narrower. Real IOTA tangles
show a power-law degree distribution rather than a Poisson distribution as in
simulated cases.

2. Nodes in the real IOTA indeed use various TSAs to attach new sites into their
local tangles. Milestones are selected more often than usual sites. Abnormal sites
were observed in reality (cf. the result of EW Analysis), which are not simulated in
most of the prior art, where nodes perfectly follow the IOTA specification;

3. The transaction confirmation rate is not as high as usual believed, if the confirmation
by a milestone is required. This needs the assistants from milestone sites. Because of
that, most of transactions (> 50%) are confirmed in around 10 minutes, and there is
a small proportion of transactions delayed for several days. The normal confirmation
time in IOTA mainnet seems equivalent to the performance in typical traditional
blockchains (i.e., having to wait roughly 10 minutes, until the transaction can be
considered confirmed). This is far behind the requirement to support lightweight,
rapid and instant IoT applications that are delay-sensitive, especially considering
those exceptionally delayed transaction cases.

3.5 Summary
In this chapter, we provide an in-depth analysis on the real IOTA tangle based on
historical empirical data from the IOTA mainnet. We reconstructed the tangles from
the empirical ledger data, analyzed the tangle properties and presented a comprehensive
statistical analysis. According to the presented results, our key findings are that the
features of the real IOTA tangles are topologically different from the simulated tangles;
more importantly, the transaction confirmation time largely depends on the milestones
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issued by COO. In addition, it is inefficient to rely on the mechanism of using site
cumulative weight in the random walk of TSA, which aligns with the recent plans of the
IOTA Foundation. We hope that the presented results can provide a better understanding
of the nature of the real IOTA and motivate to continue further analysis in the IOTA
community.
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CHAPTER 4
Modeling Ledger Dynamics in

IOTA Blockchain

IOTA blockchain is a new type of distributed ledger systems that is lightweight without
mining and feeless-of-using. Rather than using a chain structure as in traditional
blockchains, IOTA organizes ledger records with a DAG, called Tangle. When message
entries are committed into the ledger, the ledger tangle grows in a special way where
multiple messages could be attached by different processing nodes in parallel. Such
a unique evolution process motivates us to study the ledger tangle dynamics, which
is unexplored so far. In this chapter, we present the first generative modeling for
IOTA tangle based on stochastic analysis. A key finding is that IOTA tangle renders a
dPLN distribution, rather not typical network models (e.g., Power-Law and Exponential
distributions). Quantitative comparisons show that the fitting quality of our model
outperforms existing popular models on official real-world datasets published by IOTA
Foundation. Estimated model parameters are provided, which is immediately instrumental
for a more realistic IOTA network generator design. The proposed generative model also
provides a deeper understanding of the internal mechanics of IOTA network.

The structure of this chapter is outlined. We review existing network models in Section 4.2
and introduce IOTA preliminary as a background in Section III; Section 4.3 presents
our model and Section 4.4 introduces model fitting; after that Section 4.5 shows the
comparison results with existing popular models; Section 4.6 concludes this chapter.

4.1 Introduction

In 2016, IF proposed a new type of blockchain–IOTA network. Instead of using a chain
topology, IOTA uses a DAG, called Tangle topology, to organize ledger data on every
processing node [Pop16]. IOTA abandons PoW consensus and is feeless. Thus, IOTA
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4. Modeling Ledger Dynamics in IOTA Blockchain

is suitable for many IoT applications, where communications can be characterized as
instant, massive exchange of tiny messages. Although IOTA enjoys a high popularity
in research, most of the studies focus on statistical analysis [FKCM19b], protocol ex-
tension/enhancement [PAD20] and applications [BVF18b], [XGH20]. In contrast, we
would like to gain more insights into theoretical analysis, notably through network graph
modeling, to reveal and better understand the core mechanism of IOTA network.

IOTA tangle evolves in a special way. Specifically, every vertex represents a single message
record in the ledger (either a value transaction or a simple data payload). For a new
message (e.g., submitted by a user), it will be attached as a new vertex with introducing
new directed edges to existing vertices in the tangle. Semantically, each directed edge
represents the approval from the source vertex (message) of the target vertex (message).
Vertice selection is determined by specific selection algorithms, defined by the distributed
consensus protocol. The key idea is to stimulate processing nodes attaching new messages
biasing on tips, i.e., vertices having no approver yet thus their in-degrees are zero. With
the new vertices independently added in the tangle by different nodes, the size of the
tangle will grow with multiple vertex- and edge-arrivals over time.

In this chapter, we are interested in the tangle ledger dynamics driven by IOTA.

This chapter focuses on the tangle ledger dynamics driven by IOTA. It would be ideal
to develop a formal network model capable of correctly describing the evolution of
an operational IOTA tangle and in particular its stationary degree distribution. Alas,
it appears unlikely that usual network models, e.g., random graphs [ZMN17, ACL01,
Gar09]or the Barabasi-Albert’s Preferential Attachment (PA) model [BA99] can correctly
explain the IOTA tangle behavior. Key differences are as follows.

First of all, IOTA tangle typically grows non-uniformly, in bursts, during which multiple
new vertices are added at the same time, each with more than one new edge. The reason
for such bursts is tangle consolidation: since every node independently attaches incoming
messages to its local tangle ledger copy, at one point, those individual tangles need to
be consolidated and merged to one. During this phase, multiple messages and edges
are added in one batch. In contrast, prior work usually assumes a single node arrival
mode, and very often simplifies the process further to single edge addition. Hence, it is
inaccurate to simplify IOTA tangle growing with a single vertex arrival mode.

Secondly, vertex and edge additions do not follow a simple PA model (or any of its
variants). In PA model, a vertex is randomly selected proportionally to its degree. In
IOTA, however, tip selection is a distributed decision-making process to identify a valid
branch, where a new vertex can safely attach without causing conflicts. Such a process
involves evaluating other existing vertices (i.e., historical messages) in a sub-tangle
topology, thus it cannot be trivially abstracted as a simple vertex attribute (e.g., a degree
value) as in PA model.

We will see that an alternative is required in order to derive a network model that can
capture the essence of the ledger dynamics. In summary, the main contributions of this
chapter are as follows:
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• We employ stochastic analysis to characterize IOTA tangle evolution with an SDE
that can approximately govern the vertex degree dynamics over time;

• We discover that operational IOTA tangles can be accurately described through
the dPLN distribution;

• We quantitatively compare fitting quality of the proposed model against other
popular candidate models with the real-world data (whose size is around 320G)
published by IF. The results confirm the correctness of our key finding, where IOTA
tangles render a dPLN degree distribution.

To the best of our knowledge, this is the first theoretical work modeling IOTA network
dynamics. Estimated model parameters in this work are immediately instrumental for a
more realistic IOTA network generator design.

4.2 Related Work
Though there are very limited relevant theoretical works, we observed several attempts
on analytical performance modeling about IOTA. In [Kus17], they built a rule-based
discrete model and a continuous-time model for IOTA, respectively, in order to build
the relationship of the number of tip vertices and the vertices’ cumulative weights over
time. In [PSF19b], the authors analyzed the message attachment behavior of IOTA
network and proved that there exists a Nash equilibrium, revealing that selfish nodes
will cost more than non-selfish nodes. This work targets to a different goal, which aims
to theoretically model how the tangle topology evolves and what a degree distribution
could best represent it.

The main difference of the IOTA network to random graph models summarized in [ZMN17]
is that IOTA’s ledger tangle is growing, while random graph models consider graph’s size
unchanged. This motivates us to consider those models characterizing evolving graph
networks.

A famous growing/evolving network model (i.e., PA model) was proposed in [BA99]. In
this model, new vertices attach to target vertices selected proportionally to their degree
(often periphrased as “rich gets richer”). The authors have shown that applying this
simple principle results in a scale-free network, i.e., a graph with a Power-Law (PL)
degree distribution). Hence, PA is a popular generator for (a particular class of) scale-free
networks.

Cyclic PA (CPA) was introduced in [KP13] as a variant of the PA model. In CPA model,
the attachment probability depends on the shortest path from the node to all other
nodes. The author used this model to analyze the real world network, such as online
social networks and relations amongst company leaders. The finding is that the proposed
CPA provides more flexibility to model the real life networks. Additionally, [WGYZ09]
proposed another PA model variant to model a phenomenon, where a vertex acquires a
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new vertex depending on the density of its local area in a graph. Authors analytically
obtain stable degree distributions and cluster in-degree correlations. They show the
emergence of a PL distribution of the resulting graph’s degrees.

Although PA-like models provide decent modeling for a large number of evolving networks,
the message attachment in IOTA behaves differently. One key difference is that most
of PA models only consider a single vertex arrival mode, while IOTA tangle grows with
a batch arrival mode. Another key difference is that the attachment probability is
determined by running an algorithm applied on a sub-tangle topology, which cannot be
written in an analytical form as in PA models.

In reality, many phenomena are not following PA models. Their degree distributions
are also not PL/Exponential (Exp) distributions . For example, the authors showed
respectively that the file size [Mit03a], the city size [siz] and mobile call graphs [SMS+08a]
follow dPLN distributions [RJ04a]. Compared to them, the IOTA network is a distributed
system and ledger dynamics are implicit. Hence, a correct modeling is required.

4.3 IOTA Tangle Ledger Dynamics

Figure 4.1: Dynamics of Degree Group Size (DGS) sk(t) of Gk(t)

4.3.1 Key Idea

We denoate a subset of vertices in a tangle where all vertices have the same degree
k ∈ Z+ ∪ {0} at time t, called a degree group. The cardinality (size) of a degree group is
|Gk(t)| = sk(t), called DGS. Let us further denote all new edges, which are added from
several new messages to the same vertex, as et, called an edge group. In IOTA network,
sk(t) cna change because of the following two ways as illustrate in Figure 4.1.

The first way is that sk(t) increases, because there could be one or more vertices, whose
original degrees are less than k but an edge group et makes the degree increase to k by
adding |et| new edges. Va in Figure 4.1 is such an example, where Va joins in degree
group Gk(t) and increase sk(t) by one.
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The second way is that sk(t) decreases, because there could be a vertex, whose degree
is already k, but another edge group e′

t makes its degree increase to k′ by adding |e′
t|

new edges. Vb in Figure 4.1 is an example, where Vb leaves to degree group Gk′(t) and
decreases sk(t) by one.

Mapping to IOTA network, the first situation happens to any vertex with a degree value
between [0, k), and the second situation happens to any vertex with a degree value is
equal to k, thus covering all types of vertices in a tangle. For instance, a tip vertex (i.e.,
degree value is 0) will join in degree group Gk(t), if an edge group et adds exactly k
edges to it (i.e., |et| is k); any non-tip vertex whose degree is < k will also join in degree
group Gk(t) if an edge group et adds up its degree value to k. However, attaching to any
vertex, whose degree is already k will make the vertex leave the degree group Gk(t).

From a statistical view, the macro effect of the joining and leaving vertices of a degree
group Gk(t) can be viewed as a Brownian motion [Nel67], because how DGS sk(t) will
exactly change is a stochastic process, which is driven by the random behaviors (e.g.,
random vertex selections) from processing nodes in IOTA blockchain.

4.3.2 A Stochastic Model

Considering the above two possible ways sk(t) may change, the ratio of the variation of
sk(t) to its original value sk(t) can be either positive, zero or negative. Mathematically,
it can be formulated with a SDE of DGS sk(t) as follows.

dsk(t)
sk(t) = ω(t)dt + σ(t)dB(t) (4.1)

where ω(t) and σ(t) are coefficients characterizing the growth rate of DGS and the
variantion of DGS resulting from random selection behaviors, which is modeled as a
Brownian motion dB(t). Another implicit necessity is that sk(t) must be non-negative
value. However, if we directly model the amount change of sk(t) (rather than the ratio
dsk(t)
sk(t) as in Equ. 4.1), the Brownian motion term may lead to sk(t) becoming negative,

which would contradict its definition.

The SDE in Eq. 4.1 agrees the form of Geometric Brownian Motion (GBM), which is
analytically solvable if ω(t) and σ(t) are time independent. Interested readers are referred
to [KS98] for the details of deriving GBM’s theoretical properties. Here we recap them
as follows:

1) The solution of the SDE of sk(t) in Eq. 4.1:

sk(t) = sk(0)exp( (ω − σ2

2 )t︸ ︷︷ ︸
Denoted by µ

+σBt) (4.2)

where the µ term is used in the following equation.
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2) The Probability Density Function (PDF) of sk(t) at any observation time t follows
a Lognormal (LN) distribution:

pLN (x, t) = 1
xσ
√

2πt
exp(−(logx− tµ)2

2tσ2 ). (4.3)

3) The PDF of sk(t) at an exponentially distributed observation time t (i.e., pT (t) =
ξe−λt) follows a dPLN distribution:

pdP LN (x) = αβ

α + β
[x−α−1A(α)Φ( logx− µ− ασ2

σ
)

+ xβ−1A(−β)Φc logx− µ + βσ2

σ
],

(4.4)

where A(z) = exp(zµ + α2σ2/2), z = α,−β, Φ(·) and Φc(·) are the CDF and
complementary CDF of a standard normal distribution, respectively. The model
parameters of a dPLN distribution are Θ := [µ, σ2, α, β], which will be estimated
from observed data.

The interpretation to our problem is that the DGS sk(t) grows along with the tangle
over time t and the stoppage time t is assumed exponentially distributed. Importantly,
the PDF in Equation 4.4 tells what the probability density the size of a certain degree
group Gk(t) will be. After normalized with the total tangle size n, it tells exactly the
degree distribution of a tangle that we target.

4.4 Model Fitting

4.4.1 Fitting Data Preparation

We use real ledger data generated from IOTA mainnet on Internet that are published
by IF. The whole dataset contains ledger records from 2016.11-2019.06 (Period I) and
2020.04-2020.08 (Period II). Period I contains 96 tangles and Period II contains 16 tangles
(112 tangles in total). The number of messages of reconstructed tangles vary from several
thousands to about 40 millions. To prepare the data for model fitting, there are two
main challenges when processing the original datasets as follows.

The first challenge is that the published ledger data is represented in trytes but compressed
in bytes. Thus, decompression and data format conversion have to be done at the first
place. After the conversion, the datasets are converted into human-readable format and
saved as JSON files.

The second challenge is that tangle topology information is not explicitly recorded. This
means that tangle topology has to be reconstructed manually. We iterate all message
records to identify their edges and connected vertices according to the hash values of the
two referenced messages. A more challenging case is that multiple tangles could exist
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in one batch. This further requires us to cluster messages manually that belong to the
same tangle by identifying individual genesis vertices and the last vertices attached to
the tangle starting from a particular genesis.

After all tangles are reconstructed, the vertex’s (in-)degree value is calculated by summing
up the total number of attached messages of the considered vertex. For a certain degree
group Gk, its DGS sk is the number of vertices having the same degree k in the tangle.
For each vertex in Gk,∀k∈[1,K], the observed probability (proportion) of such a degree
group yi = sk/n. This thus gives the fitting data for the proposed model.

4.4.2 Model Parameter Estimation

Maximization Likelihood Estimation (MLE) is a general method of estimating the param-
eters of an assumed probability distribution model, given observed data. Mathematically,
this is achieved by maximizing the likelihood of observed data Y with an presumed
parametric model characterized by parameter θ. Specifically, we have:

θ∗ ← arg max
θ

ℓP DF (θ;Y), (4.5)

where the ℓP DF (·) is the log-likelihood function defined ass follows:

ℓnLP (θ;Y) =
n∑

i=1
logfP DF (θ; yi) (4.6)

where fP DF (·) is the PDF of the presumed model. For example, it can be dPLN model’s
PDF Equation 4.4, or any other candidate models.

To solve Equ. 4.5, in the simplest cases, where an analytical solution of the optimal
estimate exists, the optimal estimate can be obtained directly. This situation exists
to most of simple statistical models such as PL and Exp distributions and so on. In
difficult cases, where the analytical solution does not exist, solving MLE needs numerical
algorithms. Since the fitting algorithm is not the main focus of this work, we follow the
MLE formulation and use an optimizer ’L-BFGS-B’, which is a classical gradient-descent
method proposed in [ZBLN97a], to solve the MLE problem in Equ. 4.5. Note that this
routine is commercialized and directly available in Python library.

Note that though MLE is a principal way to handle the parameter estimation problem,
the key issue of using MLE is that the likelihood function is usually not convex or
concave (due to the sum of a number of log-PDF terms). Hence, whether or not the
estimated parameter is a global optimum is uncertain. In fact, there are rich research
topics on non-linear optimization, which is also planned as our future work for studying
the efficiency of dPLN’s parameter estimation.
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4.5 Results

4.5.1 Candidate Models and Scoring Metrics

Model PDF Model Parameters Closed-Form
PL ζxγ γ Closed-Form

Exp ξe−λx λ Closed-Form
LN Equ. 4.3 µ, σ2 Closed-Form

dPLN Equ. 4.4 µ, σ2, α, β L-BFGS-B

Table 4.1: Summary of candidate models (ζ and ξ: Normalization Constants)

The candidate models for comparisons and their parameter estimations are summarized
in Table 4.1. The model complexity increases from PL and Exp to LN and dPLN.
The number of model parameters also increases from 1 to 4, thus becoming reasonably
representative for both model performance and complexity.

We choose Root Mean Sqaured Logarithmic Error (rMSLE) to measure the fitting quality
of different models. Its definitionis given below:

rMSLE =

√√√√ 1
n

n∑
i=1

(log yi − log ŷi)2 (4.7)

where n is the total number of observed vertices, and ŷi is the predicted probability value
of observed probability value yi. rMSLE measures the relative errors of the predicted and
actual values. The reason to choose rMSLE is that the probabilities between different
types of vertices may be significantly different with several magnitudes. In this case,
unit dependent measures e.g. Mean Square Error (MSE) turns out to be unsuitable
because the absolute distances of errors from data points with smaller proportions will
be overwhelmed. rMSLE solves this issue so that it becomes unit independent by taking
a log-difference/relative ratio.

4.5.2 Quantitative Fitting Comparison

Figure 4.2 shows the four candidate models’ performance scored by rMSLE on different
parts of the vertex population. The optimal rMSLE is 0 highlighted with a yellow bar,
meaning all observed and predicted data exactly match.

On the overall interval (Figure 4.2a), the rMSLE mean of dPLN model is 0.3. LN model is
at the second place but its rMSLE mean is about 0.5, which is worse than dPLN model’s.
Both Exp and PL are incorrect models to explain the observed in-degree distributions of
the tangle snapshots with much larger rMSLE.
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(a) Overall interval Gk ∈ [1, max]

(b) Head part Gk ∈ [1, 2]

(c) Middle part Gk ∈ [3, 5]

(d) Rear part Gk ∈ [6, max]

Figure 4.2: Comparisons of candidate models with rMSLE
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Parameters µ σ2 α β

Mean 0.29 0.15 17.00 14.92
Variance 0.03 8e-3 517.93 185.28

1/4 Quartile 0.16 0.09 2.32 5.01
Median 0.32 0.18 3.17 9.65

1/4 Quartile 0.44 0.21 36.21 27.72

Table 4.2: Statistics of estimated model parameters

On segmented parts, in the head and middle parts, LN model performed slightly better
than dPLN model (see Figure 4.2b and Figure 4.2c). However, the rMSLE mean shown by
two models are actually quite close to each other, especially the median rMSLE. Neither
Exp nor PL models fits these two parts well, especially in the head part. In the rear
part (see Figure 4.2d), the best is dPLN model. Surprisingly, the performance of LN
model degrades significantly, although it performs well on the previous two intervals even
slightly wins against dPLN model.

As we know, the uniqueness of a population is determined by the minority instead of
majority features. The segmented comparisons above justify this fact because although a
candidate model can perform better to some common features, its overall performance
can still be hindered. For example, LN model strongly biases to fit vertices in the head
and middle parts, in which both are majority. However, LN model completely ignores
the minority feature of higher degree vertices in the tangles. Although the proportion of
high degree vertices is small, a significant divergence on them failed LN model’s overall
performance. In contrast, only dPLN model showed a good balance between majority
and minority features, which explains why it can eventually achieve an overall quality
fitting results.

We also provide the estimated values of model parameters in Tab. 4.2. These values can
be directly used with our model to generate tangles that give the most realistic topology
as in IOTA mainnet.

4.5.3 Graphical Fitting Comparison

We then provide a graphical comparison of the candidate models with three tangle
examples in Figure 4.3. This helps readers to capture the difference of model performances
in a visual way. For fairness, we pick the three tangle samples with top 25%, median and
bottom 25% rMSLE of dPLN model, respectively. We also zoom in the fitting of degree
group [1, 3] in the subplots at the upper right corner.

Generally, the graphical fittings match the quantitative results. Specifically, dPLN
model (green-solid curves) fits averagely closer to the observed distributions in all parts.
Additionally, LN model fits slightly better to the head part but extremely poorer in the
rear part. As we can see, it diverts the farthest to the tails. Moreover, none of PL and
Exp models is a reasonable choice.
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(a) Tangle 34 (b) Tangle 26

(c) Tangle 61

Figure 4.3: Graphical fitting comparison

In summary, the evaluation results can tell that with the real-world data from IOTA
mainnet, the network dynamics result in a dPLN distribution, which invalidates the
typical assumption of either PL or Exp models in this space.

4.6 Conclusion
In this chapter, we modeled IOTA ledger dynamics with stochastic analysis and ana-
lytically derived its degree distribution. Our key finding is that the tangle topology of
IOTA network renders a dPLN distribution. This finding was confirmed by fitting our
model predictions to official datasets and the proposed model outperforms other existing
models. We hope that this promotes a deeper understanding of the mechanism of IOTA
and hence benefit IOTA network generator design for further research and/or application
purposes.
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CHAPTER 5
A Theoretical Model

Characterizing Tangle Evolution
in IOTA Blockchain Network

IOTA blockchain system is lightweight without heavy proof-of-work mining phases, which
is considered a promising service platform of Internet of Things applications. IOTA
organizes ledger data in a DAG, called Tangle, rather a chain structure as in traditional
blockchains. With arriving messages, IOTA tangle grows in a special way, as multiple
messages can be attached to the tangle at different locations in parallel. Hence, the
network dynamics of an operational IOTA system would justify a thorough study, which
is currently unexplored in the literature. In this article, we present the first theoretical
modeling for the evolving IOTA tangle based on stochastic analysis. After analyzing
snapshots of the real-world IOTA ledger data, our key finding suggests that IOTA
tangle follows a rather atypical dPLN degree distribution. In contrast, typical power-law
and exponential distributions do not accurately reflect the fact. For model parameter
estimation, we further realize that using generic optimization solvers cannot yield quality
fitting results. Thus, we design an alternative algorithm based on the EM framework.
We evaluate the proposed model and fitting algorithm with official data provided by the
IOTA Foundation. Quantitative comparisons confirm the fitting quality of our proposed
model and algorithm. The whole analysis reveals a deeper understanding of the internal
mechanism of the IOTA network.

The remainder of this chapter is organized as follows. Related work is reviewed in
Section 5.2; Section 5.3 presents our model and Section 5.4 introduces our model fitting
algorithm; after that, Section 5.5 shows the evaluation results; Section 5.6 concludes this
article.
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5.1 Introduction
In 2016, IOTA Foundation - The official IOTA development and operation consor-
tium—launched a new type of blockchain system, called IOTA. Rather than using a
chain topology, the ledger of the IOTA system is organized as a DAG, called Tangle,
wherein every vertex represents a single message record (either a value transaction or a
data payload) [Pop16]. In IOTA, every participating node holds a copy of the tangle,
responsible for committing incoming messages independently and forming consensus in a
distributed manner among participants.

IOTA is lightweight and feeless without heavy proof-of-work mining phases. Hence,
IOTA is considered suitable for a decentralized service platform of IoT applications,
characteristic to a massive exchange of instant, typically tiny information. Although IOTA
recently has gained high research popularity, most of the works focus on its empirical
studies [FKCM19b], protocol extensions [PAD20], and applications [BVF18b], [XGH20].
Nevertheless, we are not aware of any graph- and network-theoretical analysis on the
ledger tangle evolution, especially for the operational IOTA network deployed in the real
world. Undoubtedly, theoretically understanding how the tangle evolves is important to
capture the core mechanism underlying IOTA network dynamics.

Due to the particular structure and the distributed consensus mechanism, the evolving
ledger tangle in IOTA would justify such a network dynamics analysis. Specifically, when
a new message arrives, it is attached as a new vertex, with directed edges pointing to the
existing vertices. As in a DAG, many candidate vertices exist, the location the vertex
will attach to is determined by a selection algorithm—part of the IOTA distributed
consensus protocol. In IOTA, a directed edge represents an approval from the source
vertex to the referred vertex. The key principle is to encourage new messages approving
yet unapproved vertices, so-called tip vertices, whose in-degree is zero. The ledger tangle
chronologically grows in such a manner over time. More details about IOTA’s mechanism
will be introduced in a later section.

This chapter focuses on how the tangle topology evolves in IOTA. Particularly, we try to
answer, if there exists a theoretical network model governing this process; and if so, what
a degree distribution would best represent it. Several typical network models, such as
the random graph model [ZMN17], [ACL01], [Gar09] and Barabási’s PA model [BA99]
have gained a wide recognition, after they were shown to have good fitting properties
for many naturally occurring processes. However, during our initial investigation, we
realized that the existing network models did not fit well with the observed data sets
generated from the IOTA network. The key reasons are explained as follows.

First, IOTA tangle grows with a batch arrival mode, in which multiple new vertices may
come and every new vertex may add more than one new edge. The key fact behind
this is that a copy of the tangle exists on every participating node; and every node can
attach new messages to its local tangle independently; thus, after individual ledger copies
are merged, multiple messages and edges can appear to one vertex at burst. Existing
models, however, often assumed a single vertex sequential arrival mode, where only one
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new vertex is added at each time. Most even further assumed a single edge addition.
Hence, it is inaccurate to simplify IOTA tangle developing with such a simple way. The
network modeling for IOTA’s tangle evolution has a different growing behavior.

Second, vertex and edge addition in IOTA tangle do not follow a similar logic of the PA
model (or of its variants). In the PA model, a vertex is randomly selected proportional
to (or modeled as a function with explicit form of) its degree value. In IOTA, however,
vertex selection is a much more complicated process, which involves evaluating other
existing vertices (i.e., historical ledger records) in a subtangle topology. Clearly, it cannot
be attributed to a simple vertex property (e.g., a degree value) characteristic to the
PA model. The above two key features of the formation process makes IOTA’s tangle
evolution show a unique behavior, which was not studied in the scope of network modeling
research.

In addition to deriving the model, another technical problem that is equally important is
parameter estimation. Unfortunately, the issue we encounter is that a generic optimization
solver (typically Gradient Descent (GD)-based methods) cannot give a satisfactory
parameter estimation for the derived model. We then develop a dedicated algorithm
based on EM framework [DLR77] as an alternative. In summary, our main contributions
are listed as follows.

1) Using stochastic analysis, we characterize operational IOTA network dynamics with
an SDE that approximates vertex degree evolution over time.

2) Based on the analytical solution of the modeled SDE, we derive that IOTA tangle
dynamics follow a dPLN distribution.

3) For parameter estimation, we develop an EM-based algorithm, which can provide
more reliable and higher. quality fitting results than using generic GD-based solvers;
our source code is also published to benefit the community.

4) We evaluate the fitting quality of the derived model and proposed algorithm with
realistic snapshot data generated from IOTA mainnet, and the results justify our
findings.

To the best of our knowledge, in short, this work is the first trying to model the tangle
evolution in IOTA, whose network dynamics behaviors combine a batch vertex arrival and
a complex attachment process. However, modeling of such a unique network dynamic,
meanwhile providing a more efficient fitting algorithm, were not seen so far in the past
literature.

5.2 Related Work
With the high popularity of blockchain, there are many survey works on research
activities of blockchain and IoT systems, such as [FDM+19], [DDPS21], [DZZ19], [FS21],
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[PLH+21], and [HAÖG22]. Most of them focused on inventing/proposing consensus
protocols, improving system performances, applications of blockchain for IoT services, and
security issues. For example, as an application presented, Dhall et al. [DDPS21] provided
a solution to utilize blockchain platform for reducing fake information propagation on
social media/messaging systems; additionally, Hayyolalam et al. [HAÖG22] provided a
comprehensive review on using edge-assisted solutions for healthcare systems based on
IoT devices. Nevertheless, few of them mentioned the theoretical analysis research about
blockchain systems; and even fewer had an eye on the theoretical modeling on the tangle
dynamics of the IOTA blockchain network.

5.2.1 Theoretical Work in IOTA (DAG-Based) Blockchain

Though there are very limited relevant theoretical works, we observed several attempts
on analytical performance modeling of DAG-based blockchain systems. Kusmierz et
al. [Kus17], [KSG18b] built a rule-based discrete- and continuous-time models for IOTA,
in order to build a relationship of the number of tip vertices and the vertices’ cumulative
weights over time. In [KG18], it theoretically analyzed the probability of being left-behind
of confirmation of a message in IOTA tangle by simulating the IOTA protocol. Popov
et al. [PSF19b] analyzed the message attachment behavior of the IOTA network and
proved that there exists a Nash equilibrium, revealing that selfish nodes will cost more
than nonselfish nodes. Our interest in this work targets to a different goal, which aims
to theoretically model how the tangle topology evolves and what a degree distribution
could best represent it.

5.2.2 Network Graph Models

Network graph modeling is an active research area. The famous growing/evolving network
model (i.e., PA model) was proposed in [BA99]. In this model, new vertices prefer to
attach on existing vertices with higher degrees, which models a common phenomenon
where the rich becomes richer. The authors proved that the graph will become a scale-free
network (i.e., a PL distribution) at the end.

As a variant of the PA model, CPA was introduced in [KP13]. The attachment probability
of the CPA model depends on the shortest path from the node to all other nodes. The
author used this model to analyze the real-world network, such as Facebook and company
directors. They showed that the CPA model can provide more flexibility to model the
networks in the real life. Furthermore, in [WGYZ09], another PA model’s variant is
proposed to model a phenomenon where a vertex acquires a new vertex depending on
the density of its local area in a graph. It also shows that a PL distribution appears.
The work in [HCZ+17] introduced a burst model based on the PA model. However, this
burst model only extends the PA model with a random vertex mutation behavior where
a new vertex randomly duplicates to multiple ones at its original point.

Recently, Pandey and Adhikari [PA17], based on the PA model, proposed a network
reconstruction model for structural reconstruction of scale-free real networks. Liu et
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al. [LFY+19] used two jointly evolving graphs, i.e., K-partite graph and generated graph,
to characterize intertype and intratype interactions among nodes, respectively, and
establishes the evolving process of them. Its underlying assumption is also based on the
PA model where higher degree vertices are preferred when the graphs evolve. Tajeuna et
al. [TBW19] modeled the community structure changes of social networks to facilitate
predictions of critical events. It applied a sliding window analysis from which it developed
a model that simultaneously exploits an autoregressive model and survival analysis
techniques. Qiao et al. [QYB+19] proposed a variant of stochastic block models in order
to characterize clusters or community structures of network data with PL degree features.

In summary, although the PA model and its variants provide decent modeling for a large
number of evolving networks, to our problem, IOTA tangle evolution cannot be simplified
like that due to its special burst arrival mode and the vertex selection mechanism,
explained before.

In reality, many phenomena do not follow the logic of a PA model. The degree distributions
of their topology are also not PL/Exp distributions. For instance, the authors, respectively,
showed that the file size [Mit03b], the city size [GZS10], and mobile call graphs [SMS+08b]
follow dPLN distributions [RJ04b]. Comparing to them, the main challenge of this work
is that IOTA is a distributed network system and its network dynamics are implicit.
Hence, a correct modeling with rigorous verification is needed. In fact, initial results
in [GXHD20b] already realized that the PL model does not fit the empirical data of
IOTA mainnet.

5.2.3 Modeling Tools

Technically, there are two main approaches used for network modeling: 1) Master
Equation System (MES) and 2) SDE approaches.

The MES approach uses the Markov chain theory to derive a set of differential equations
that describe the transition of the probability distribution of an interested system
state [Ros95]. For example, Wing et al. [HCZ+17] used this approach and presented
a generalized framework to unify different evolution stages of complex networks. Its
network growing strategy is similar to the PA model. The advantages of using the MES
approach are its accuracy and flexibility, while its disadvantage is that modeling with
MES may render the problem intractable. We will see that our problem drops into this
case. This also explains why most of the existing works only covered simplified network
behaviors.

The SDE approach describes a dynamic system in a probabilistic view by introducing
stochastic terms in modeling [VK76]. Reed and Jorgensen [RJ04b] explained the genesis
of dPLN distribution with such an approach. The advantage of using the SDE approach
is its simplicity. It can help to simplify the original problem to an easier case and get
a decent approximation. Its disadvantage is that sometime it may oversimplify the
problems thus lose its original properties. We will see that our problem can benefit from
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the SDE approach, where after approximation, the original problem becomes solvable
without sacrificing any key property.

5.3 IOTA Tangle Network Dynamics

5.3.1 Modeling

Our modeling consists of two components: 1) a batch attachment model and 2) a state
transition model.

Batch Attachment Model:

As explained, messages in the IOTA network arrive in batches, because different nodes
may independently select the same message to attach new messages to their own tangle
copies. Hence, a vertex can get multiple referencing messages after consolidation. A
typical random process to model this phenomenon is a multivariate Poisson process
Poi(λt, λm), where one or more messages arrive with an average rate λt and an average
size λm.

Figure 5.1: New messages and edge set partition at time t

Denoting all new messages arriving at time t as a set Mt, IOTA requires each new message
(vertex) to select s ∈ [2, 8] existing vertices in the tangle for approval. This would create
maximally s · |Mt| new directed edges, denoted as an edge set Et. We further denote
the subset of new messages selecting the same vertex as Vet ∈Mt; these messages will
introduce a subset of new edges et ⊂ Etto the selected vertex. Figure 5.1 illustrates such
an example, where three new messages (ma, mb, and mc) select the same vertex U and
bring three new edges to U . Note that a new message can have its new edges in multiple
edge subsets at the same time (e.g., ma has its second edge to e′

t).

The total new message set Mt splits into several subsets (such as Vet), which results in a
partition πi on the whole edge set Et split into many edge subsets (such as e′

t and e′′
t ).

We denote all possible partitions on Et caused by Mt’s attachment as ΠEt . Obviously,
there are many possible ways to partition Et, depending on where the new messages in
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Mt are exactly attached/clustered. In the following analysis, it is sufficient to analyze
the outcome of an edge partition πi ⊂ ΠEt , because only newly attached edges increase
the vertex degree.

State Transaction Model:

The total new message set Mt always changes degrees of selected vertices and likewise,
the size of the tangle. Hence, the system state of the tangle can be described with a 2-D
state vector ⟨k, n⟩, representing a state of vertex degree type k given the current tangle
size n. There are three possible state transitions involving the system state ⟨k, n⟩, which
are illustrated in Figure 5.2 and elaborated as follows.

Figure 5.2: State transition graph. (For the case k = 0, gτ1 and gτ2 do not exist; for the
case k = K, gτ3 does not exist.)

1) Transition gτ1 : Suppose that the current tangle size is n− |Vet |, an edge subset et
attaches to a type of vertex whose original degree is k− |et|. It changes the vertex’s
degree type to k and increases the tangle size to n, thus transiting into the state
⟨k, n⟩

⟨k − |et|, n− |Vet |⟩
gr1→ ⟨k, n⟩

2) Transition gτ2 : Suppose that the current tangle size isn− |Vet |, an edge subset et
attaches to any type of vertices whose degree ∀i = k − |et| It keeps vertices whose
degree type is already k untouched while only increases the tangle size to n, thus
also transiting into the state ⟨k, n⟩

⟨k, n− |Vet |⟩
gr2→ ⟨k, n⟩

3) Transition gτ3 : Suppose that the current tangle size is n, an edge subset et attaches
to any type of vertices possibly with any degree. If the selected vertex has its
degree type kj == k, this changes the vertex’s degree type to k + |et| (i.e., the
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right horizontal transition in Figure 5.2); if the selected vertex has its degree type
∀kj ̸= k this changes the vertex’s degree type to another k′ ≠ k + |et| (i.e., the
upper right transition in Figure 5.2). In either case, the tangle size increases to
n + |Vet |. This makes the state jump out of the state ⟨k, n⟩.

⟨k, n⟩
gr3→ ⟨k′, n + |Vet |⟩

The state transition graph in Figure 5.2 is a 2-D Markov chain. The evolution of the
probability distribution of the system state pk,n(t) follows the Chapman–Kolmogorov
equation [Kar61] below:

dpk,n(t)
dt

= Poi(λt, λm) ·
∑

πi⊂ΠEt

∑
et⊂πi

(gτ1(k − |et|) · pτ1(t)︸ ︷︷ ︸
Gain term 1

+
∑

∀ki ̸=k

gτ2(ki) · pτ2(t)

︸ ︷︷ ︸
Gain term 2

−
∑
∀kj

gτ3(kj) · pk,n(t)

︸ ︷︷ ︸
Lossterm

) (5.1)

where each gτi(·) defines the generalized transition rate. Such a differential equation
system is called a MES in statistical mechanics [Tol79], formulating the probability
distribution change of a system state by aggregating all possible “Gain” and “Loss”
transitions. If only the standard way of attachment is preferred, we can limit the state
transitions to tip vertices with an indicator function 1(k == 0).

Unfortunately, the MES in Equ. 5.1 does not permit an analytical solution thus hinders
our further analysis, because: 1) the MES enumerates over set partitions Πet and further
over subsets (i.e., every edge subset et) of every possible edge set partition πi ⊂ ΠEt .
Both of them are set permutations thus do not have explicit expressions and 2) transition
rate functions gτi(·) do not possess an analytical form either, as it represents a vertex
selection algorithm involving subtangle operations. Clearly, a new approach is needed for
the problem.

Modeling Approximation

Instead of analyzing the detailed transitions between degree types, our idea is to analyze
a macro effect resulted from the new message set Mt. Recalling from Section 5.3-A, an
edge set partition πi ⊂ ΠEtsimultaneously leads to degree changes on multiple vertices,
this motivates us to model the size change of a degree group Gk(t) in a tangle, denoted
as the DGS sk(t). A degree group Gk(t) represents vertices all having the same degree k.
In IOTA, DGS sk(t) may dynamically change due to the following two events, which are
illustrated in Figure 5.3 and explained as follows.

1) “In”-Event: DGS sk(t) may increase, because there could be a vertex va, whose
original degree is less than k, but an edge subset et makes va’s degree increase to k
with adding |et| new edges;

46



5.3. IOTA Tangle Network Dynamics

Figure 5.3: Dynamics of DGS sk(t) at time t.

2) "Out"-Event: DGS sk(t) may decrease, because there could be a vertex vb, whose
original degree is already k, but another edge subset et′ makes vb degree increase
to k′ with adding |et′| new edges.

In IOTA, "In"-Event can happen to any vertex whose degree value is between [0, k), and
"Out"-Event can happen to any vertex whose degree value is equal to k, thus covering all
degree groups in a tangle.

From a probabilistic point of view, the macro effect of "In"- and "Out"-Events to a degree
group Gk can be roughly viewed as a Brownian motion[LP75], because whether or not
the DGS sk(t) will eventually change is uncertain, which is driven by the random vertex
selections from participating nodes. Mathematically, the rate of the changing ratio can
be either positive, zero, or negative during an infinitesimal period. Such a stochastic
process can be formulated with an SDE of sk(t) as follows:

dsk)(t)
sk(t) = ω(t)dt + σdB(t) (5.2)

where ω(t) is a growing rate coefficient, and σ(t) is a fluctuation coefficient of random
behaviors modeled as a Brownian motion dB(t). Note that, we did not use the absolute
change of sk(t), because the variation of sk(t) might be negative due to the Brownian
motion term, which would conflict with the reality, as size cannot be negative. A benefit
of using a relative ratio here is that it guarantees sk(t) a non-negative value.

5.3.2 Degree Distribution

Based on the SDE modeling, we sketch the main theoretical results regarding the
stationary distribution of sk. Since related properties are well studied, interested readers
are kindly referred to [RJ04b] for the concrete steps to derive the results below.

First, the SDE in Equation 5.2 takes the form of GBM. If ω(t) and σ(t) are independent
of time t, this SDE is analytically solvable, and we have
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sk(t) = sk(0) · exp((ω − σ2

2 )︸ ︷︷ ︸
µ term

+σBt) (5.3)

where the µ term is referred in the following equations.

Second, the PDF of DGS sk(t) at any observation time t follows a LN distribution:

fLN (x) = 1
σ
√

2πx
exp(−(logx− µ)2

2σ2 ) (5.4)

Additionally, if the observation time t is exponentially distributed as pT (t) = ξe−λt , the
PDF of sk(t) follows a dPLN distribution as follows:

pdP LN (x) = αβ

α + β
[x−α−1A(α)Φ( logx− µ− ασ2

σ
)

+ xβ−1A(−β)Φc logx− µ + βσ2

σ
],

(5.5)

where A(z) = exp(zµ + (z2σ2/2)), Φ(·) is the CDF of a standard normal distribution,
and Φc(·) is the complementary CDF of Φ(·). Although the form of dPLN distribution
in Equ. 5.5 looks complicated, it can be interpreted as a multiplicative process of LN
quantities over exponentially distributed observation time t.

To our problem, the interpretation is that the DGS sk(t) grows along with the tangle
over time t and the stoppage time t is assumed exponentially distributed. Importantly,
the PDF in Equation 5.5 tells what the probability density the size of a certain degree
group Gk(t) will be. After normalized with the total tangle size n, it represents exactly
the degree distribution of a tangle that we target.

5.4 Parameter Estimation

5.4.1 Problem Formulation

The PDF of a dPLN distribution can be converted to a more friendly form—normal-
Laplace (nLP) distribution—by substituting y = logx

fnLP (y) = αβ

α + β
Φ(y − µ

σ
)[R(ασ − (y − µ)

σ
)

+ R(βσ + (y − µ)
σ

)]
(5.6)
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where R(·) = ([1− Φc(·)]/Φ(·)) is Mills’ ratio/survival function. The model parameter θ
is [α, β, µ, σ2] for both dPLN and nLP distributions. In the following sections, we use the
nLP distribution in Equation 5.6 for parameter estimation due to its simplicity.

Denoting the observed data (i.e., the observed degree distribution of a tangle) as Y, the
log-likelihood is written as

ℓnLP (θ;Y) =
n∑

i=1
logfnLP (θ; yi). (5.7)

A corresponding MLE problem is

θ∗ ← arg max
θ

ℓnLP (θ; yi). (5.8)

The problem in Equation 5.8 is usually not a concave (convex) problem due to the sum
of a series of log-PDF terms. Therefore, the rest of this article focuses on the parameter
estimation for the derived model, especially after we realize that in our trials generic
optimization solvers cannot provide quality estimation results.

5.4.2 Main Idea

According to the result in [Ree06], the visible/observed random variable Y of an nLP
distribution can be considered a sum of two invisible/latent variables Z and W (i.e.,
Y = Z + W ), following Normal distribution fZ(µ, σ2) and Skewed-Laplace distribution
fW (α, β), respectively.

Based on this feature, it is possible to construct an EM algorithm [DLR77]. An EM
algorithm moves to a maximized likelihood in iterations with the help of an augmented
likelihood function of complete data by introducing auxiliary latent variables. Such an
augmented likelihood function usually enables a simplification to the original likelihood
function. Specifically, the simplified version calculates a set of expectation quantities of
the augmented latent variables. This, in turn, eliminates the introduced latent variables
after the expectation operation; in addition, that simplified version usually becomes a
linear function of the unknown parameters, much easier for optimization.

The key benefits of an EM algorithm are: 1) neither a gradient nor Hessian matrix
is needed, unlike generic optimization techniques such as Newton–Raphson methods
and 2) iteration steps usually enjoy closed forms, thus quite efficient for computation.
Nevertheless, a known obstacle of adopting EM framework is that no generic way exists
to transform an MLE problem automatically into a form suitable in the EM framework.
Always, a case-by-case design/transformation is needed, for which we will develop upon
next.
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5.4.3 dPLN EM Algorithm

The PDF of an nLP distribution with the visible random variable Y can be considered
the marginal PDF of a joint distribution fY,Z(·) integrating over an introduced latent
variable z. Hence, the likelihood in Equation 5.7 is extended as

ℓnLP (θ;Y) =
n∑

i=1

∫
fY,Z(yi, z; θ)dz (5.9)

The following result gives a lower bound of ℓnLP (θ,Y).

Theoream I : A lower bound Q(θ) of the likelihood ℓnLP (θ;Y) in Equ. 5.9 is

ℓnLP (θ;Y) ≥ Q(θ) def= =
n∑

i=1
E[log fY,Z(yi, z, θ)] (5.10)

where E[·] is the expectation over an arbitrary distribution g(z) of Z.

Theorem 1 says that we can consider to maximize Q(·) instead of ℓnLP (·) in Equation 5.9.
The question is how to find a proper g(z).

Since g(z) used in Q(·) can be arbitrary, it is convenient to use the conditional probability
fZ|Y =yi

(·) as gi(z), which represents, how likely z will be in terms of an observed data
point yi ∈ Y with a specified parameter θ(s) . This gives us an explicit gi(z) as follows:

gi(z) = fZ|Y =yi
(z; θ(s))

fY,Z(yi, z; θ(s))
fY (yi; θ(s))

= fZ(z; θ(s))fW (yi − z; θ(s))
pnLP (yi; θ(s))

.
(5.11)

Note that gi(z)’s exact form in Equation 5.11 is completely given since θ(s) has a specific
value and all PDFs are known to us.

With gi(z), the lower bound Q(·) in Theorem 1 also gets an explicit form as follows:

Q(θ; θ(s)) = nlog( 1√
2πσ2

)− nµ2

2τ2 + n log( αβ

α + β
)

+ µ

σ2

n∑
i=1

E[zi]−
1

2σ2

n∑
i=1

E[z2
i ]

+ β
n∑

i=1
E[yi − z]yi

−∞ − α
n∑

i=1
E[yi − z]+∞

yi

(5.12)

Let us review the two important features of Q(θ; θ(s)) as follows.
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1) If the four summation terms with the four E[·] are treated as coefficients, Q(θ; θ(s))
only contains seven terms, much simpler than Equation 5.9 with n terms (i.e., the
number of data points).

2) Q(θ; θ(s)) is (almost) a linear function of elements [α, β, µ, σ2] of θ after the values
of the four E[·] quantities are determined, then much easier for optimization.

These two features match our initial expectations. More importantly, these two features
also provide the algorithmic procedures of our dedicated EM algorithm.

Figure 5.4: dPLN model parameter estimation algorithm illustration

Feature 1 defines an "E-Step" to calculate the four E[·] quantities (so as the summation
terms) by assigning θ(s) a specific value, starting with an initial guess θ(0). When
calculating the four E[·] quantities, the introduced latent variable z is thus eliminated
with expectation operations. Since summation terms become coefficients, Q(·) reduces
to a linear form of parameter θ. θ(s) will be repeatedly updated with a new value in an
"M-Step" below.

Feature 2 defines the M-Step to optimize the Q(·) function. In this step, only the model
parameter θ is treated as a variable, because the four E[·] quantities, which were already
fixed in the E-Step, have become coefficients. To yield an optimal θ∗ in this iteration,
we maximize Q(·) by taking partial derivatives in terms of θ and solving an equation
system ▽θQ(·) = 0. As Q(·)is linear to θ, this equation system has an analytical solution.
Hence, the optimal θ∗ can be directly calculated with the closed form.

Iterating between the two steps defines the body of our parameter estimation algorithm.
As said, the old value θ(s) is updated with θ∗ derived in the M-Step, becoming θ(s+1) .
Based on θ(s+1) , the E-Step recalculates the four new E(·) quantities, and this once again
modifies Q(·). Then, the M-Step is repeated with the new Q(·) function, and it gives
another θ∗ used to replace θ(s+1) , and so on so forth. Once the optimized parameter
in the M-Step does not change anymore or fulfill a predefined threshold, then a (local)
optimal estimate is obtained. A diagram of the algorithm is shown in Figure 5.4.

51



5. A Theoretical Model Characterizing Tangle Evolution in IOTA Blockchain
Network

5.4.4 Remarks

In the literature, EM-based methods are often used for estimating parameters with a
mixed Gaussian model. Differently, the nLP (dPLN) model is rather a mixture of Normal
and Skewed-Laplace distributions, which cannot trivially reuse the existing algorithms
developed for other models. How a dPLN model can be estimated under an EM framework
is partly discussed in [RJ04b] and [CFW17]. Unfortunately, none of them shows evidence
of executable implementations and reports comprehensive performance evaluations; some
of them even contain errors after our examination. In contrast, we not only provide
explicit mathematical derivations, publish our source code but also compare its fitting
performance against using existing optimization solvers.

5.5 Results

Considering the nature of the technical contributions, this work neither modified any
existing system nor proposed any new system. Instead, this work theoretically analyzed
the dynamics of a real-world system—IOTA network—by deriving a new model and
designing a fitting algorithm. Therefore, the rationale of our evaluation plan is to directly
evaluate: 1) whether the derive model (dPLN) does fit better with the observed data and
2) whether the proposed fitting algorithm provides a better parameter estimation.

5.5.1 Settings

Data Set Information

Our evaluation uses real-world historical data generated from IOTA mainnet. Some
information about the used data are introduced as follows.

First, IOTA mainnet was launched on 11 July 2016. IOTA mainnet regularly maintains a
network scale of more than 400 active nodes running the IOTA protocol on the Internet.

Second, the used data were officially published by IF. The whole data set contains message
records from two archive periods: Period I is November 2016–June 2019 (generating
96 tangle snapshots) and Period II is April 2020–August 2020 (generating 16 tangle
snapshots). Except for these two periods, we do not see any newer official data set
available.

Third, tangle snapshots vary in size, which is mainly determined by the message arrival
rate and the number of active participating nodes during the period of the tangle
snapshot was created. The former information can be calculated by dividing the number
of messages over the period length. However, for the latter information, it is difficult to
restore because IF does not make the history record of participating nodes public.

Last but not least, the tangle size refers the total number of messages contained in an
archived ledger snapshot. Snapshots are periodically created and archived by IF every
two or three months since June 2016. After a snapshot is created, IOTA mainnet resets
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and starts over a new empty ledger. Hence, the tangle size is not additive between two
snapshots. For a vertex’s original degree, it particularly refers to its in-degree value in
this work, which equals the total number of direct references from other messages.

Data Set Preparation

To prepare the reference data, given a snapshot, the in-degree of a vertex (message) can be
calculated by summarizing the total number of messages that reference to the considered
message. After that, for each tangle snapshot, we first count the DGS sk of every degree
group Gk, and then we calculate its proportion yk = (sk/n) in the tangle, giving the
observed degree distribution of a tangle. This is the reference data Y = {Gk, yk}Kk=1 for
parameter estimation of one tangle snapshot, where each degree group Gk corresponds
sk data points (vertices).

Candidate Models

The candidate models for comparisons are listed in Table 5.1. Besides the dPLN model,
the other three candidates are chosen because they are widely acknowledged network
models representative for many natural phenomena. The complexity of candidate models
increases from the simplest ones (i.e., PL and Exp) to complicated ones (i.e., LN and
dPLN). The number of their model parameters also increases from 1→ 2→ 4. Table 5.1
also lists the solution methods of MLE for each candidate model.

Fitting Quality Metric

We use rMSLE to quantify the fitting quality. Its classic definition is given as follows:

rMSLE =

√√√√ 1
n

n∑
i=1

(log yi − log ŷi)2 (5.13)

where n is the total number of observed data points, and ŷi is the predicted value of
yi. rMSLE can be considered a relative error of the predicted and actual values. The
smallest rMSLE is zero when every predicated valueŷi is equal to its observed value yi.

The key reason to choose rMSLE is because it is a unit/scale-independent metric.
Note that in our problem, the probabilities (proportions) of degree groups may differ
significantly in scale. In this situation, unit-dependent measures like the Mean Absolute
Error (MAE) and the Root Mean Sqaured Error (rMSE) turn out to be unsuitable,
because the absolute error distances from the prediction on data points with smaller
proportions will be insignificant. With those metrics, since only dominant features
matter, this will falsely reflect the fitting quality. rMSLE solves this issue by taking a
log-difference/relative ratio so that it becomes unit-independent.
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For our evaluation, we can get a more succinct form, as the log-difference term for every
data point (vertex) in one degree group Gk is identical. Therefore, we only need to
calculate once the log-difference for all data points in every degree group Gk weighted by
its proportion yk as follows:

rMSLE =

√√√√ K∑
i=1

yk(log yk − log ŷi)2 (5.14)

The benefits of using Equation 5.14 are as follows:

First, it speeds up the calculation, because the summation in Equation 5.14 only has
K terms (i.e., K observed degree groups), much less than the summation of n terms in
Equ. 5.13. In our data sets, n means millions of vertices while K means only hundreds
types of degree groups.

Second, if we remove the root and square operators in Equation 5.14, rMSLE recovers to
Kullback–Leibler (KL) divergence5 that is widely used to measure the divergence between
two probability distributions. Therefore, one metric acts as two. More importantly,
rMSLE removes a cumbersome constraint in using KL divergence where both yk and
ŷk ∀k = 1, ..., K must be perfect probability distributions (i.e., the sum of probability
values equal to 1). Practically, since the predicted value ŷk will be sampled from a
continuous PDF of a candidate model, this constraint is not always met, leading to an
invalid KL divergence, thus making the evaluation fail. Then, it is inevitable to introduce
extra techniques to discretize every candidate model’s PDF. However, this may cause
uncertainty to our evaluation, as it is unknown yet which discretization technique fits
the best for our case. Instead, rMSLE measures in a similar way as KL divergence does
but free of such a constraint.

5.5.2 Model Selection

Quantitative Comparison

In this part, we examine the fitting quality of the four candidate models. We rank the
candidate models in a decreasing order in terms of their fitting qualities. The model
getting rMSLE closest to the optimal value 0 (highlighted with yellow bar) is put at the
top.

The first comparison is on overall interval where all degree groups are considered, shown in
Figure 5.5. In this comparison, we show both the CDFs of rMSLEs of the four candidate
models and a statistical boxplot on top. We can observe that dPLN model achieves the
least average rMSLE below 0.2 with a concentrated variance distribution (shown as the
short green boxplot). Besides, the LN model (in blue) ranks as the second best but
its mean rMSLE (around 0.55) is already worse two times more than dPLN model’s; in
addition, the LN model has the largest variance of rMSLE. Furthermore, neither Expon
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Figure 5.5: rMSLE comparison on overall interval

nor PL models (in purple and orange, respectively) seems a correct model to explain the
degree distribution of the realistic tangles generated in the real world, where both of
them have much worse rMSLE, especially the PL model.

The large variances of rMSLE values show the instability of the three compared candidate
models when they fit the observed in-degree distributions. Actually, their mean values of
rMSLE are also worse than the dPLN model’s performance. In contrast, the variance
of dPLN model’s rMSLE is concentrated and much less than the variances of the other
three models. This again justifies that the performance of the dPLN model is not only
better on average but also relatively more stable than the other three models can do.

The second comparison is on segmented intervals as shown in Figure 5.6. We compare
three separate intervals that split the data points into three parts: 1) header; 2) middle;
and 3) rear parts. Specifically, the header part contains vertices in degree groups
Gk ∈ [1, 2], which often roughly occupy 45%; the middle part contains vertices in degree
groups Gk ∈ [3, 5], which occupy another 30%–45%; and the rear part is all the rest kinds
of vertices (i.e., in degree groups Gk ∈ [6, max]).

Specifically, in the header part [shown in Figure 5.6(a)], the ranking is the same as in
the overall interval but the performances of dPLN and LN models become closer, though
dPLN model’s rMSLE is slightly smaller. This implies that for vertices with degree values
in [1, 2], both models fit well and achieve small errors. In the middle part [shown in
Figure 5.6(b)], the ranking is also the same but every candidate model gets a smaller
rMSLE, meaning that all candidate models fit better to the distribution of vertices with
degree values between [3, 5]. Particularly, dPLN and LN models even get their rMSLE
smaller than 0.1. In the rear part [shown in Figure 5.6(c)], the ranking becomes different,
where the second-best model is now PL, the third place is LN, and the last one is Exp. In
fact, LN and Exp show much worse performances when fitting to the degree distribution
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Figure 5.6: rMSLE comparison on segmented intervals

of vertices with large degree values.

Note that there are deeper reasons behind the observation where every model performs
well in the middle part. We explain as follows.

1) The head part (vertices with in-degree between [1, 2]) is also a majority (45%).
However, due to the shape of their distributions bending down, the other three
models cannot cover the both head and middle parts. Specifically, PL model as a
straight line cannot bend obviously (the worst), Exp model can slightly bend (the
second worst), and LN model can do more (the third worst). Only the dPLN model
can nicely balance the two parts. This is why we see distinct performances at the
head part in Figure 5.6(a).

2) The rear part (vertices with in-degree ≥ 6) is not a majority (< 5%). For the same
reason, not all the other three models are able to cover this part. The order of
thefitting performance changes, the Exp model becomes the worst, the LN model
becomes the second worst, and the PL model (as a straight line to fit the right tail)
becomes the third worst. Still, dPLN performs the best in Figure 5.6(c).

This observation can be seen more directly in our graphical comparison next.

In summary, we can clearly observe that on any considered interval dPLN model ranks
always the best, and its rMSLEs are relatively stable.

Graphical Comparison

We then give a graphical comparison. This helps readers to understand how the four
candidate models fit the reference data in a visual way. Here, in Figure 5.7 we pick
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three tangle instances, to which dPLN model yields its min, median, and max rMSLEs,
respectively. The subplots therein particularly zoom in on the fittings of degree groups
Gk ∈ [1, 3].

Figure 5.7: Graphical fitting comparison of candidate models. (a) Tangle 34, (b) Tangle
39, (c) Tangle 64

In the graphical fitting comparison, we can visually observe that dPLN’s fittings (the
green solid curves) indeed stick much closer to the actual distribution of the data points
(gray empty circles). In contrast, we can see that the other three models are far away
either to the header part (such as Exp and PL models) or to the rear part (such as the
LN model).

In the zoom-in subplots (on upper right corners), we can see that only dPLN and LN
models can fit the data points in the header part (curves in green and blue, respectively).
They are slightly different, where the LN model tends to overestimate while the dPLN
model relatively underestimates the data points. Nevertheless, neither Exp nor PL
model performs reasonably in the header part fitting, where the Exp model largely
underestimates (purple curves) and the PL model significantly overestimates (orange
curves) the data points.

The key factor making the dPLN model better than the other models is that it can not
only characterize dominant features like majority vertices with degrees in [1, 3] (as LN
model), but also reflect special features like existences of high degree vertices (as the
PL model does), which is unique to the real-world tangles. Generally, we can conclude
that the dPLN model can explain much better the observed degree distributions of tangle
data generated in the IOTA mainnet. This confirms our theoretical modeling for IOTA
network dynamics.

5.5.3 Fitting Algorithm Comparison

We then evaluate the performance of our algorithm in Figure 5.4 named "EM" algo-
rithm against "Broyden Fletcher Goldfarb Shanno (BFGS)" algorithm [ZBLN97b]. The
BFGS algorithm is a typical example of GD-based methods already implemented in the
Python.scipy package, considered a default optimization Python library. Both algorithms
aim to find the optimal solution for the MLE problem defined in Equation 5.8.
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We set the maximum iteration number equal to 2000 for both algorithms. We set the
convergence threshold to 10−4 for BFGS. Particularly, we set the convergence threshold
to our algorithm as follows:

max
{

∆s|∆s =
√

(θ(s+1) − θ(s))2
}
≤ 10−4 (5.15)

where it requires the maximum norm of the difference in W consecutive θ(s) less than
10−4. Note that our threshold is harsher than BFGS uses.

For both algorithms, we evaluated ten different initial θ(0) values generated with the
following rules. We first fix (µ, σ2) pair but triple the (α, β) pair from 0.1→ 2.7 (giving
four initial values). Then, we fix (α, β) pair but triple (µ, σ2) pair from 0.1→ 2.7 (giving
another 3 initial values). Last, we triple both pairs 0.1→ 2.7 (giving the last three initial
values). This gives a set of initial values differ with several magnitudes.

We did not use a random strategy to generate the initial values in order to guarantee the
reproducibility of all presented results.

Algorithm Termination Status

There are three possible termination states of the two algorithm candidates as follows.

1) "Loc-Opt.": An algorithm terminates, because it fulfilled its convergence condition
before reaching the configured maximum iteration number;

2) "MaxIter": An algorithm terminates, because it reached the configured maximum
iteration number (i.e., 2000 here);

3) "Boundary Condition": An algorithm terminates, because some temporal solution
violated some boundary conditions. In our case, this bound is that all elements of
θ should be positive

It has to be emphasized that all three termination statuses give parameter estimation
solutions but with different fitting qualities. With the ten different initial values and 112
tangle snapshots, the termination states of the 112×10 times’ fitting tests with the two
algorithms are summarized in Figure 5.8.

Our EM-based algorithm shows 60.36% of convergence rate, versus 15.18%, when using
BFGS. In contrast, 84.82% times of using the BFGS solver triggered boundary condition
versus 30.08%, when using our EM-based algorithm. Additionally, less than 10% of using
our EM-based algorithm reached the maximum iteration number. Using the BFGS solver
never reached the maximum iteration number, because we have seen that BFGS easily
terminated due to boundary condition violation. This confirms that our algorithm has a
higher chance to get a local optimal solution, which is several magnitudes higher than
using the existing solver—BFGS.
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Figure 5.8: Termination status comparison.

Figure 5.9: rMSLE comparison of using EM and BFGS on (segmented) intervals.(a)
Overall (Gk ∈ [1, max]), (b) Header part(Gk ∈ [1, 2]), (c) Middle part(Gk ∈ [3, 5]).

Fitting Quality

We again evaluate the two algorithms with rMSLE shown in Figure 5.9. In all interval
performance of using BFGS is worse than using our EM-based algorithm. We can
observe a larger variation of the rMSLE of the fitting results given by the BFGS solver.
Instead, the rMSLEs of our EM-based algorithm are closer to the optimal value 0 and
the variations are not only more consistent but also much smaller than BFGS has. With
different initial values, we observe a similar result where our EM-based algorithm achieves
a better fitting quality (i.e., smaller rMSLE) than using BFGS.

The results from the termination status and fitting quality suggest that for the parameter
estimation of a dPLN model, an EM-based algorithm is recommended. It also shows
that it is difficult for GD-based methods to handle optimization problems within a
high-dimensional space (our problem has four elements in θ thus it is 4-D). In fact, we
had also tested Nelder–Mead (downhill simplex) method as a third candidate, which
was chosen as an opponent that is without calculating gradient/Hessian matrix [NM65].
Since its fitting quality was even much worse than BFGS can provide, it is less valuable
to report its results here.
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Fitting Time

Finally, we report the time cost spent on fitting every tangle with our EM-based algorithm
in Figure 5.10. The heatmap plot indicates individual execution time to reach one of the
three termination states in every tangle fitting test (1120 times in total). Specifically,
blocks in green, blue, and yellow colors represent termination states of "Loc-Opt.",
"Boundary Cond." violation, and "MaxIter", respectively. The proportions of the three
color blocks correspond to the summary result in Figure 5.8.

Figure 5.10: Time to reach termination statuses in all estimation tests with the proposed
EM-based algorithm.

First, we observe that when estimating parameters for tangles number 8-18, 20-25, 36, 73,
74, and 109, our EM-based algorithm triggered the boundary conditions with any initial
value. This is a known outcome when the given data are not perfectly dPLN distributed
[RJ04b]. Second, we observe that θ

(0)
4 seems to be a challenging initial value. With

this particular initial value, our EM-based algorithm did not terminate at the Loc-Opt.
status. Actually, for BFGS, with θ

(0)
4 , it also yielded poorer rMSLE. It needs further

investigation to check whether such an initial value is at a location blocked to a local
optimal in the solution space. Except θ

(0)
4 , our algorithm performs coherently, where we

observe not only similar termination states but also similar execution times. Third, we
observe that our algorithm reaches the MaxIter termination status when fitting tangles
number 97–112. This can be because of our the harsh convergence threshold defined in
Equation 5.15.

One important reason why the fitting time may vary among different tangles is because
of the tangle size. If the tangle size n is large, the number of terms in Equation 5.9 grows
as well. As a result, a fitting algorithm may take longer time in each iteration when
evaluating Equation 5.9. In contrast, a different vertex’s degree will not immediately
influence the fitting performance. Instead, the population distribution of vertices with a
certain degree will statistically influence the fitting quality of a model. The nature of the
fitting data (i.e., the observed in-degree distribution) determines whether or not a model
can fit well.

The execution time falls in the range with an upper limit of 100s (except for those reaching
MaxIter status). From the color distribution, execution time seems more relevant to the
size of the tangles (i.e., the number of vertices). Instead, it seems rather less dependent to
the initial values because no matter which initial value is used, the variation of execution
time across the entire data sets are similar. On average, a tangle has a million vertices,
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we can expect approximately 40–60s with our EM-based algorithm.

5.5.4 Statistics of Estimated Parameters

Finally, we provide a summary of the estimated parameters for the tangle data sets of
IOTA mainnet, shown in Table 5.2.

As part of our future work, with the estimated parameters, the derived network model
gives a new way to design an IOTA simulator. Specifically, it can initialize a dPLN
distribution, then sample from the distribution, and rewire sampled vertices to construct
a tangle topology. This can largely improve the efficiency because simulating heavy
network protocols is avoided completely.

Model PDF Model Parameters Closed-Form
PL ζxγ γ Closed-Form

Exp ξe−λx λ Closed-Form
LN Equ. 5.4 µ, σ2 Closed-Form

dPLN Equ. 5.5 α, β, µ, σ2 Algorithm 1

Table 5.1: Summary of candidate models (ζ and ξ: Normalization Constants)

Parameters α β µ σ2

Mean 4.638 2.02 0.497 0.096
Variance 22.325 0.800 0.039 0.002

1/4 Quartile 2.076 1.526 0.432 0.101
Median 2.762 1.631 0.579 0.071

3/4 Quartile 3.766 1.881 0.624 0.131

Table 5.2: Statistics of estimated model parameters (θ0 = [0.1, 0.1, 0.1, 0.1])

5.6 Conclusion
In this chapter, we developed a theoretical model for IOTA network dynamics with
stochastic analysis. The key finding is that realistic tangles follow a dPLN distribution,
which is not as usual belief, such as PL and Exp distributions. We designed a dedicated
model estimation algorithm that can provide more reliable and quality solutions, which
overcomes the deficiencies of using the existing solvers. Based on the real-world official
data sets, the evaluation results confirmed our finding where our proposed model out-
performs the existing popular network models; the evaluation results also justified the
performance of our proposed parameter estimation algorithm. The whole work also gave
a deeper understanding on the internal mechanisms of the IOTA network.
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CHAPTER 6
Fast Tip Selection for Burst

Message Arrivals on A DAG-based
Blockchain Processing Node at

Edge

With the rapid evolution of blockchain technology, a clear trend is that new blockchain
systems (e.g., IOTA) tend to use a Directed Acyclic Graph (DAG) rather a chain
structure to organize ledger records. Such a DAG-based blockchain system shows higher
scalability as multiple locations are available in the ledger for new message attachment.
To decide an attachment location, a popular type of tip selection algorithms follow an
approach using weighted random walks on the DAG ledger. In a burst message arrival
scenario, however, a processing node deployed at edge using such a method may become a
bottleneck because sequentially repeating random walks significantly increases processing
delay. In this chapter, we propose a new tip selection algorithm for the burst message
arrival scenario on an edge node. Our solution abandons the weighted random walk
approach, instead, with similar efforts we transfer to calculatein advance the tip selection
probability distribution of the DAG ledger. Such a new scheme reduces tip selection to a
probability distribution sampling task, which can be done extremely fast. We implement
our solution and demonstrate the benefits of our approach by comparing with the random
walk approach. We believe our attempt can effectively mitigate the congestion at the
edge node and inspire tip selection algorithm design with a new vision for DAG-based
blockchain systems.

This structure of the chapter is outlined as follows. In Section6.2, we review the existing
literature; in Section 6.3, we formally introduce our Absorbing Markov Chain (AMC)
modeling; in Section 6.4, we introduce our sampling-based TSA; in Section 6.5, we present
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our evaluation results and conclude this chapter in Section 6.6.

6.1 Introduction

A widespread adoption of blockchain technology is happening in various business sectors
across FinTech [FWKKEBK20], decentralized marketplace [Sub17], and decentralized
Application (dApp)s [ACA+21]. A blockchain system consists of distributed processing
nodes, each of which maintains a copy of a common ledger. The ledger copy on every
node is synchronized and temper-proof with a distributed consensus protocol. For the
first time, blockchain technology makes information shared on the Internet trustworthy
in a decentralized manner.

A recent trend promotes using a DAG to organize ledger records (e.g., IOTA [Pop16]) on
processing nodes, rather than a chain of transcation blocks widely used in traditional
blockchains (e.g., Bitcoin [Nak09] and Ethereum [Woo14]). In a DAG ledger, a vertex
represents a single message entry; and a directed edge represents an approval from the
pointing vertex to the pointed vertex. Such a change brings several promising features
e.g., multiple locations for new message attachment, lightweight consensus procedures, no
miner/transaction fee and so on [FWS21]. All these features make DAG-based blockchain
systems easier to be integrated within edge/fog computing, thus bringing IoT applications
closer to the end users [WDW20].

On a processing node of a DAG-based blockchain system, a key processing logic is its tip
selection module. A tip of a DAG ledger is a message without any approval. A node
has to decide which tips it shall approve by attaching a new message behind there. Such
a decision-making process is nontrivial because the node has to make sure that: the
selected tip(s) and all their connected vertices in the branches do not conflict with the
new message; in addition, hopefully, the branches of the selected tips can be re-selected
with a higher chance afterwards, so that the new message itself can get approved earlier
as well. The more (direct or indirect) approvals a vertex gets, the higher the weight the
vertex earns. The cumulative weight is an important metric indicating how many times
a message was repeatedly voted in history.

Many existing TSAs widely used on the processing nodes are designed based on the
cumulative weight metric, where typically a random walk is simulated on a weighted DAG
constructed from the ledger. Due to the heterogeneous weight distribution among vertices,
a random walk will bias to some tips. The chance of a tip being selected reflects the
collective opinion of all nodes cast in previous attachments. However, such an approach
sometimes is inefficient as a processing node indistinguishably repeats random walks
for tip selection of every single message. Particularly, when messages arrive on an edge
node in a burst, due to a sudden long message queue and non-negligible time of doing
random walks, the node might become a bottleneck in congestion, which postpones all
the following phases, such as ledger consolidation and so on. Alas, this kind of burst
scenarios are common in reality, e.g., crowds aggregating at a hot spot (like sport events
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or a public area during rush hours) to use the same service at one place. Obviously, a
revisit is needed for such a scenario.

Motivated with the above concern, we reconsider the weighted random walk approach and
try to seek a new solution for an edge node in this chapter. The key idea of our solution
is as follows: inspired by AMC theory, we discover that the weighted DAG enjoys a nice
property where the Tip Selection Probability Distribution (TSPD) can be calculated
straightforwardly. We will see that pre-calculating the TSPD is worthy because, with
the TSPD information, tip selections simply reduce to drawing random samples from the
derived probability distribution, which not only can be reused for multiple messages but
also can be done extremely fast. This completely avoids the tediously simulating random
walks on the processing node. In summary, our contributions are listed below:

• We model the DAG ledger on a processing node as an AMC; we show that the
stationary distribution of the modeled AMC represents a statistical outcome of
sufficient random walks on the DAG, thus giving us directly the TSPD of the DAG
ledger;

• Based on the TSPD property, a sampling-based TSA is proposed for handling
burst message arrivals on an edge node; the proposed TSA relies on a strategy of
periodically updating the TSPD along with the evolving DAG ledger;

• We implement the proposed TSA and compare with the typical weighted random
walk TSA. Evaluation results demonstrate that the proposed TSA can effectively
mitigate Message Attachment Delay (MAD) in the burst message arrival scenario
at edge node.

To the best of our knowledge, our work is the first to ask if there could be an alternative
approach replacing the weighted random walk, especially considering a DAG-based
blockchain processing node at the edge.

6.2 Related Work
In this chapter, we focus on a type of DAG-based blockchain systems where a vertex in the
DAG represents a single message entry and will not develop to a multi-layer DAG topology.
Exemplary systems are IOTA [Pop16] and its variants, e.g., Graphchain [BCH18] and
Avalanche [RYS+20]. Note that there are many other graph-based blockchain systems
such as Spectre [SLZ16] and Hashgraph [Bai16]. For instance, Spectre batches messages
to blocks and then organizes them as graphs. Nevertheless, those systems are of already
a mixture with many extra components, thus considered out of scope in this work.

Within the interested scope, one line of research is to propose auxiliary strategies when
doing weighted random walks for tip selection. For example, a TSA was proposed in
G-IOTA [BGP19], where the mechanism chooses three tips, the first two are selected by
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Table 6.1: Main notations

Variable Definition
Gt DAG ledger < V, E > at time t
G′

t Sub-DAG ledger ∈ Gt

n Vertex size of the sub-DAG G′
t

vi A vertex (i.e., a message entry) in ledger Gt

eji A directed edge from vj to vi (i.e., vj approves vi)
ci Cumulative weight (i.e., approval count) of vi

Ṽ Tip set in Gt, i.e., vi = 0, ∀vi ∈ Ṽ

ωij Edge weight eij , defined as |ci − cj |
s Required number of tip selections for a new message
vo Random walk starting point/head point of G′

t

vp Tip vertex in Gt

pij Jumping probability on edge eij (along reverse direction)
Pt Transition matrix of G′

t

π̃∗
t Tip selection probability distribution over Ṽ of G′

t

λ Message arrival rate with a Poisson process
τ essage window size

the weighted random walk and the third is selected from left behind tips. Later, E-IOTA
introduced in [BHP20] presented a mechanism to dynamically adjust system parameters
controlling the random walk simulation to reduce the number of random walks.

Another line of research is to modify the vertex (edge) weight definition so that the
random walks can achieve different purposes. For example, in [WYW21], the authors
proposed a new metric, called sharpness, to describe the extreme degree in a part of
the DAG. Based on the new weight definition, the proposed algorithm aims to solve the
splitting and fairness problem in IOTA. In [Hal21], the authors gave a novel definition
of message weight and time with integrating the information from IoT devices; after
that, another TSA called best tip selection method (BTSM) was proposed to enhance
the resistance to malicious attacks. Similarly, in [WZ19], the authors studied a TSA
optimization problem by using tree theory. They defined new labels on vertices for
random walks in the DAG for tip selection and a dynamic tree will be maintained to
improve the message validation efficiency.

Generally, the common ancestor of existing works is the TSA originating from IOTA [Pop16].
Existing works are still under the framework of using a weighted random walk approach.
Comparing to this, differently, our goal is to look for a new approach that does not
require simulating weighted random walks for a processing node at edge.
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Figure 6.1: Modeling weighted random walks on DAG ledger

6.3 Modeling Random Walk on DAG As AMC

In the following discussions, we use the terms ’vertex’ and ’message’ interchangeably. For
brevity, we also refer to ’node’ as the processing node of a DAG-based blockchain system
deployed at an edge network. For better readability, in addition, the main notations of
this chapter are summarized in Table 6.1.

As shown in Figure 6.1, we denote a DAG ledger on a node at time t as Gt =< V, E >t.
A vertex vi ∈ V represents a message already in the ledger; a directed edge eji ∈ E
represents a direct approval from message vj to message vi. A directed edge eji also
implies an indirect approval from vj to all ancestor messages of vi . Gt starts with
a genesis vertex v̄0 (i.e., the leftmost gray vertex). The rest of the vertices can be
categorized into tip/non-tip vertices in terms of their in-degree values (i.e., the direct
approval count). Non-tip vertices have their direct approval count greater than 0; and
tips have zero approval count (e.g., the blue vertex vp). We further denote the set of tips
in Gt as Ṽ .

We denote v′
is cumulative weight ci as the total count of direct and indirect approvals vi

earned at time t. This definition is also used in many existing systems such as IOTA. ci

characterizes the confidence of a message credited in the ledger. Based on ci, we denote
edge weight wij as the weight difference of its two endpoint vertices (i.e., wij = |ci − cj|).
The jump probability pij from vi to any of its direct approving vertices vj is proportional
to the edge weight wij . A weighted random walk tip selection starts at a certain vertex
(e.g., the blue vertex vo in Figure 6.1), and jumps hop-by-hop with the jumping probability
pij along the reverse direction of ingress edges towards a tip vp ∈ Ṽ . For example, the
highlighted blue vertices in Figure 6.1 form a realized path of a random walk from vo to
vp.

Notice that tips are always the final stop of a random walk because there is no edge for
further jumps. This is equivalent to the absorbing states of an AMC, i.e., a Markov chain
containing states with self-transition probabilities equal to 1 (e.g., the self-transition
probability of vp is 1). Actually, every random walk tip selection is a realization of state
transitions on an AMC. Hence, the state transition on a sub-DAG G′

t (with a size n)
starting with any vo is fully characterized by a transition matrix Pt consisting of jump
probabilities pij of all edges in G′

t including the self transition probabilities of absorbing
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Figure 6.2: Main idea illustration

states.

An important property of an AMC is its stationary distribution, denoted as π̃∗
t , which

tells the staying probability of every state of an AMC in the long run. On the one hand,
since non-tip vertices are transient states where a random walk never stays, the staying
probability of any non-tip vertex will be zero. On the other hand, only tips in Ṽ will
yield non-zero staying probabilities. If the random walk is repeated with a sufficient
number of times, the selection probability of a tip is roughly equal to the proportion
of occurrences where the random walks stop at the particular tip. Thus, the statistical
outcome of sufficient times of random walks is equivalent to the stationary distribution
π̃∗

t of the corresponding AMC, which just tells the TSPD of the DAG ledger at time t.

6.4 A Sampling-Based TSA For Edge Nodes

6.4.1 Main Idea

A processing node usually needs to select s tips for approval (e.g., an IOTA node picks
s ∈ [2, 8]). Thus, sk times’ tip selections are needed for k messages in total. When k
messages arrive at the node in a short time (i.e., a burst arrival), if the sk times’ random
walks are sequentially repeated for tip selections, this may significantly increase the MAD
on the node. For example, as illustrated by light blue blocks in Figure 6.2, message
v4 can be processed only if all the previous random walks are done for the first three
messages (i.e., v1 to v3). Clearly, congestion occurs due to the close and tight arrivals on
the node.

Notice that here we exclude a trivial solution: parallelizing weighted random walk
simulations on the node. As explained, here we consider a processing node deployed
at edge, which might have limited resources onboard, e.g., a virtualized microservice
instantiated in an edge/fog computing periphery. Therefore, arbitrarily parallelizing
random walks on a resource-constrained node is not an easy option.

Given such a challenge, we were wondering if the TSPD π̃∗
t of the DAG ledger G′

t can be
known in advance; if so, the node can easily sample from π̃∗

t for tip selection without
doing random walk anymore. Intuitively, such a sampling-based TSA shall be faster
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because: 1) the TSPD is calculated only once but reused for multiple messages; and 2)
repeated random walk simulations are completely avoided, largely shortening the MAD.
This idea is illustrated by the light green blocks at the lower part in Figure 6.2. The only
question is: how to calculate the TSPD, which will be answered upon next.

6.4.2 Calculating TSPD π̃∗
t

The selection probability of a tip vp ∈ Ṽ equals the probability of realizing a random
path leading vo to vp. Obviously, the random path can visit different sets of intermediate
vertices (with or without overlaps) to reach the same tip vp. For an intermediate
jump, independently, it could be either a direct jump from vi → vj or an indirect jump
vi → [vk]→ vj via another vertex vk. Assume the set of all such feasible vk is V̂ , the jump
probability of such a transition according to Champman-Kolmogorov equation [Kar61]
can be formally written as:

p(vi|vj) = pdirect(vi|vj) +
∑

vk∈Ṽ

p(vi|vk) · p(vk|vj)

= pij +
∑

vk∈Ṽ

pik · pkj

(6.1)

Mathematically, Equ. 6.1 is the operation of the i− th row vector multiplying the j − th
column vector of transition matrix Pt of G′

t. Hence, going over all rows and columns, the
transition probability of one jump for all feasible cases can be calculated with a matrix
product as below:

P (1) = Pt × Pt = P 2
t (6.2)

Extending the one-jump transition probability in Equ. 6.2 to multiple jumps, we have:

P (1) = Pt × · · · × Pt︸ ︷︷ ︸
ℓ+1 terms

= P ℓ+1
t (6.3)

where ℓ is the path length of a random walk in G′
t. P ℓ in Equ. 6.3 gives the full transition

probability after ℓ jumps from any-to-any vertices.

In our problem, the situation is much simpler because i) the random walk always starts
from a given vertex vo(i.e., not an arbitrary vertex); and ii) the DAG ledger G′

t at any
time is acyclic, thus the random walk stops in finite steps deterministically (i.e., no circle
path and infinite jumps). With these nice features, we represent a random walk starting
at vo as a row vector π0(i.e., an initial state). π0 has only the o-th element non-zero
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(value is 1) and its length is equal to n, i.e., the size of G′
t. Hence, with Equ. 6.3, the

state transition from π0 after ℓ jumps can be calculated by:

πℓ = π0 × Pt × · · · × Pt = π0 × P ℓ+1
t (6.4)

The maximum value of ℓ is the maximum path length in the sub-DAG ledger G′
t, denoted

by L. Immediately, this gives the stationary distribution reaching any possible tip
∀vp ∈ Ṽ in G′

t as follows:

π̃∗
t = π0 × P L+1

t (6.5)

π̃∗
t given by Equ. 6.5 specifies the probability distribution arriving at a set of vertices

after L jumps starting from a chosen point vo. As mentioned, since the random walk only
goes towards the tips, after L steps, this certainly covers the required number of jumps
arriving at any other tip(s) that distance closer to vo. Additionally, only the elements at
the indices of tips (i.e., absorbing states) are non-zero in π̃∗

t , which is a known property
of the stationary distribution of an AMC [Kem81].

6.4.3 The Sampling-based TSA

Knowing the TSPD π̃∗
t facilitates a node to quickly draw any required number of random

samples from the distribution for tip selection. This can handle tip selections for multiple
new messages rapidly because sampling is much faster than random walk, especially
useful in a burst arrival scenario. However, this approach has to consider the fact that
the DAG ledger G′

t is time-evolving after adding new messages. The topology change
will also alter the tip set Ṽ so as the transition matrix Pt, thus π̃∗

t too. In our proposed
TSA, we introduce a message window size τ parameter to control the updating frequency
of π̃∗

t , where after every τ s, π̃∗
t has to be updated in order to adapt with the latest DAG

ledger topology change.

Algorithm 1 Tip Selection Probability Distribution Update Worker
Require: Pt

1: while Timer(τ) is up do
2: Lock π̃∗

t

3: π̃∗
t ← calculate TSPD(Pt) with Equ. 6.5

4: Unlock π̃∗
t

5: Reset τ Timer
6: end while

Our sampling-based TSA mainly consists of two modules: The first module (pseudo code
in Algorithm 1) is a periodic TSPD update worker at the beginning of every message
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Algorithm 2 Sampling Routine
Require: msgQ

1: loop
2: if msgQ.IsNotEmpty() AND π̃∗

t is unlocked then
3: vm ← msgQ.Dequeue()
4: Ṽm ← samplingFrom π̃∗

t for vm

5: Update Pt based on Gt ∪ vm, Evm,Ṽm

6: end if
7: end loop

window. When calculating TSPD, accessing π̃∗
t will be blocked until its updating is

finished at the worker side. Locking the π̃∗
t prevents conflict accessing from the sampling

module. The second module (pseudo code shown in Algorithm 2) is the sampling routine
for every new message vm suspending in the message queue msgQ, according to the
derived π̃∗

t periodically updated by the TSPD worker in Algorithm 1.

6.4.4 Remarks

First, calculating Equation 6.5 practically is not time-consuming. The reasons are: with
a specified starting point vo (i.e., π0 vector), Equation 6.5 reduces to a vector-matrix
product. This is much faster than matrix-matrix product operations, in both time
and space complexities; in addition, for a DAG, the transition matrix Pt is always an
upper-triangle sparse matrix, thus the actual complexity of the sparse vector-matrix
products in Equation 6.5 is much lower than normal dense matrix multiplications. In our
evaluation, its cost is slightly more than a single-time random walk simulation.

Second, although calculating a TSPD consumes slightly more time, such overheads pay
off because the TSPD information can benefit to the tip selections of following messages
dropping into the same message window while the weighted random walk cannot. The
delay can be largely mitigated after knowing the TSPD because a rapid sampling from
the TSPD π̃∗

t replaces the random walk for every message (as illustrated by the blue
blocks in Figure 6.2).

Third, the proposed TSA is backward compatible because it is an optimization to the
local tip selection module on one node, which only relies on the information already
available from the node and does not require any external interaction with neighboring
nodes. It is not mandatory to have a full installation of our TSA to the whole DAG-based
blockchain system.

Last but not least, the proposed TSA does not touch the principle of tip selection. An
invalid message is treated in the same way, i.e., drop and re-sample a tip until a valid
one is identified. In other words, the proposed TSA considers the efficiency issue when
selecting a tip, thus neutral to all following stages.
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Figure 6.3: Performance comparisons on Message Attachment Delay (MAD) δti (τ =
0.06s)

6.5 Evaluation Results
We implemented our sampling-based TSA (labeled as ‘Sampling’) in Python and compared
with the typical weighted random walk TSA (labeled as ‘RW’). In all evaluation tests, we
set our sub-DAG G′

t size n = 1000, and we set s = 3 (i.e., three tips have to be selected
for each message).

6.5.1 Message Attachment Delay (MAD)

Given three different scales of the message arrival rate λ, we first evaluated the two
methods with MAD defined as δti = tc

i − ta
i , where ta

i is the time a message enters the
message queue and tc

i is the time its three tips are selected. For each λ, we repeated the
test K = 50 times and in each time we randomly generated m = 2000 messages. We are
concerned with the median, mean and worst cases of MAD with the two methods. The
results are shown in Figure 6.3.

When the arrival rate is low (λ = 10), the two methods have similar performances as
shown in Figure 6.3a’s column. For the median MAD, both methods could make half of
the traffic loads experience MAD around 0.04s, where the Sampling method performed
slightly better; for the worst case, few more numbers of tests with our method showed
longer MAD (prolonging to the [1s, 10s] interval), this also worsened the mean MAD
of some tests with our method. As expected, the proposed Sampling method does not
enormously advantage in a low arrival rate scenario due to similar costs of updating
TSPD π̂∗

t once and doing a single random walk.

However, when the arrival rate increases (e.g., λ = 40), as shown in Figure 6.3b’s column,
the performance of the RW method severely degraded, where half of the traffic loads
(i.e., the median case) experienced their MADs in between 10 s and 50s; for the worst
case, there were 20% of tests experiencing MAD > 50s. Instead, the proposed Sampling
method did not degrade. Clearly, with a burst arrival, more messages dropped in the
same message window, and thereby could reuse the calculated TSPD π̂∗

t for tip selection
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Figure 6.4: Comparison on total processing time (λ = 40)

by sampling. Similarly, when the arrival rate doubled to λ = 80, as shown in Figure 6.3c’s
column, the median and mean cases of MAD with the RW method prolonged to the
interval of [20s, 50s] and its worst case even prolonged beyond 100s in some tests. Instead,
our method showed that only less than 20% of tests in the worst case prolonged beyond
1s but still less than 10s.

The MAD evaluations clearly confirmed our motivation and the key benefit of the
proposed sampling-based TSA, where the processing delay at the node can be effectively
mitigated especially in a burst message arrival scenario.

6.5.2 Total Processing Time

We then evaluated the total processing time T consumed by the two methods for the
tip selections for all new messages, given three different message window size τ values
0.02s, 0.04s and 0.06s. Similarly, for each τ value, we repeated the tests K = 50 times
and each test processed m = 2000 messages but with a fixed arrival rate λ = 40. The
evaluation result is shown in Figure 6.4.

First, our proposed TSA consumed much less time to finish tip selection for all messages
than the RW method did (see the three cold-color curves are all at the left-hand side
of the orange curve). Specifically, with our method, nearly 90% of the tests consumed
around 43s, 30s and 23s, respectively to finish the entire jobs. In contrast, 80% of tests
with RW method consumed 70s to 90s and the rest took up to 150s. This confirms
that with the message window size τ increasing, the frequency of updating the TSPD of
every message window became less often, while the chances of reusing a derived TSPD
increased gradually. This also shows the influence of the message window size τ .
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Figure 6.5: Time ratio of the two modules in Sampling method (λ = 40)

The evaluation results of the two different metrics above confirm the idea of the proposed
Sampling method, which says that paying slightly more efforts to calculateTSPD π̂∗

t is
definitely beneficial. They also confirm that simulating weighted random walk is not
imperative to tip selection in DAG-based blockchain systems. Instead, we do have a
better approach to achieve the same goal instead.

6.5.3 Features of the Proposed TSA

Last, we are also interested in the features of the proposed Sampling method. Our
Sampling method pays main efforts on periodically updating a TSPD π̂∗

t , which is
different to the RW method where all time for tip selection is mainly spent on random
walks. Therefore, it is helpful to quantitatively measure the time proportion of the two
modules (i.e., Algorithm 1 and Algorithm 2). The result is shown in Figure 6.5 still with
an increasing τ value.

We can first notice that the proportion of time spent on calculating TSPD π̂∗
t indeed

dominates, comparing with the time for sampling tips (i.e., the forward slash bars are
much higher than the purple bars). This again reflects the key idea of the proposed TSA,
where if the TSPD can be known, the tip selection is easier. Secondly, we can find out
that when the message window size τ increases, the number of times updating the TSPD
π̂∗

t (i.e., the blue point clouds) decreases from 2000 (i.e., no reuse at all) to around 450
times. This also matches our expectation where the larger the message window size τ ,
the less frequent TSPD updates will be.

As an initial attempt, clearly, many other interesting aspects are not covered in this work,
such as impacts to the DAG topology evolution and so on, which is being undertaken as
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ongoing work.

6.6 Conclusion
In this chapter, we focused on the tip selection module of a DAG-based blockchain
processing node. Instead of following the existing approach using weighted random walks,
we proposed a different strategy that pre-calculates the TSPD of the DAG ledger then
sampling for tip selection. Evaluation results confirm that the proposed TSA can largely
mitigate MAD at the edge node facing burst arrivals. We believe that our new approach
can further.
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CHAPTER 7
A Stable and Secure Transaction

Tip Selection Algorithm For IOTA

With the advent of the IoT, an amount of data is generated and processed. Ensuring
the privacy, security, and interoperability of data is a challenging task. Blockchain has
emerged as a potential solution to address these issues, as it is a decentralized system
that ensures the integrity and confidentiality of data through encryption. However,
the scalability of blockchain technology is still a critical limitation with the increasing
volume of data. To address this limitation, DAG data structure has been proposed
to improve scalability by supporting asynchronous process of transactions. IOTA is a
well-known DAG-based blockchain that theoretically offers faster confirmation speeds
with an increasing number of transactions. However, in practice, IOTA still faces the
challenge of balancing scalability and security. In this chapter, we propose a scalable
and secure transaction attachment algorithm for the DAG-based blockchain IOTA. We
determine two critical parameters through empirical analysis: one for calculating the
selection probability and the other for setting the threshold for abnormal transactions.
Firstly, we calculate the selection probability of unconfirmed transactions. Then, we select
abnormal transactions whose selection probability falls below the predefined threshold to
maintain security. Finally, new transactions attach randomly to former transactions with
a computational complexity O(n), ensuring scalability. Through experiments comparing
the proposed algorithm to the current transaction attaching algorithm, we demonstrate
the scalability and security of our proposed algorithm.

The rest of the chapter is organized as follows: We illustrate the related analysis about
the TSA and attacks in Section 7.2. We describe the design of the proposed algorithm in
Section 7.3. In Section 7.4, we design the experiment to determine the critical parameters
and test the proposed algorithm. Then we analyze the experiment result in Section 7.5.
The future work is illustrated in Section 7.6. We conclude the whole chapter in Section 7.7.
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7.1 Introduction
In recent years, the IoT has experienced significant growth, with an increasing number of
intelligent devices. These devices generate vast amounts of data, which has led to huge
challenges in data interoperability, security, and privacy [ZGK+22]. Blockchain technology
as a novel DLT that provides transparency, anti-tampering, and traceability of data.
Meanwhile, the blockchain system is decentralized and against the single point of failure,
making it an ideal solution for the challenges faced by IIoT [ZXE+23, YW21, WCL23].

As the IoT continues to expand, the number of transactions submitted to the blockchain is
increasing at an unprecedented rate. However, this rapid growth has led to a shortage of
blockchain resources, with scalability being one of the most critical issues. In comparison
to centralized systems, the confirmation speed of blockchain is relatively slow, and the
TPSof traditional blockchain technology is insufficient to meet the high throughput
requirements of IoT use cases [KKKR22].

(a) Chain (b) DAG

Figure 7.1: A comparison of the blockchain data structure

A novel blockchain data structure DAG is proposed to solve the scalability issue. As shown
in Figure 7.1, compared to the chain, blockchain with DAG can process transactions
asynchronously. The vertex on the DAG represents either a block of transactions or a
single transaction. The directed edges of the DAG indicate the confirmation relationship.
In these years, various DAG blockchains have been developed, such as IOTA[Pop16],
Byteball [Chu16], Hashgraph [BL20] and Fantom [NCK+21] etc. IOTA is one of the
most widely deployed DAG DLTs, which is maintained by IOTA Foundation (IF) 1.

There exist two versions of IOTA, namely IOTA 1.0 and IOTA 2.0, with the latter being
the most recent. They differ in their consensus mechanisms [Pop16] [PMC+20]. Despite
the novelty of IOTA 2.0, IOTA 1.0 is being still used in both research interest [TCS+22,
RID+23] and applications [ASA+23, ZZSS22, EJCF22, PSV+22, MWB+22] recently
due to its specific consensus mechanism. Therefore, IOTA 1.0 still holds potential for
development and improvement. The term "IOTA" in the following context refers to IOTA
1.0.

In IOTA, the DAG data structure is referred to as the tangle, where each vertex represents
a transaction. Upon the arrival of a new transaction, it must select and approve two
previous unconfirmed transactions, which are also called tips. The algorithm used for
selecting tips is named TSA. The original IOTA protocol employs the MCMC algorithm
as its TSA, which utilizes a weighted random walk to attach new transactions. A critical

1https://www.iota.org/
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parameter, denoted as α, is used in the MCMC algorithm. A larger value of α results in
a more secure IOTA, as the walker is more likely to traverse transactions with higher
weights. However, this also means that transactions with lower weights, even if they
originate from honest nodes, may not be approved. Consequently, a larger α value leads
to an increase in unconfirmed transactions. Conversely, a smaller α value may reduce the
number of unconfirmed transactions but increase the selection probability of abnormal
transactions, which are attached to the tangle not through MCMC. To enhance the
IOTA’s defense against attacks, a larger α value must be set, which will result in more
unconfirmed transactions in the tangle. Therefore, IOTA with the MCMC algorithm still
struggles to balance security and scalability.

There have been several research efforts aimed at stabilizing and minimizing the number
of unconfirmed transactions, meanwhile keeping the security of the tangle. One such
effort was proposed by G. Bu et al. in the form of G-IOTA [BHP20]. This approach
involves each new transaction referencing three previous messages. The same team later
proposed E-IOTA [BGP19], a variant of IOTA that utilizes a mix of TSA with varying α
values executed with different probabilities. For each round, one of three α values is used
to perform a random walk and select the tip. In DA-IOTA [RID+23], S. Rochman et al.
set the α value as a variable that depends on the standard deviation of all cumulative
approver weights. These research works have successfully controlled and stabilized the
number of tips. However, the tangle remains vulnerable to attacks when a small α value
is deployed. As long as a small α value is used, the tangle will remain at risk of being
attacked.

Our aim is to enhance scalability while maintaining security. Initially we detect and select
out abnormal tips with abnormal selection probabilities, then attach new transactions
using URTS, which selects the tip from set of all tips randomly [KSP+19b]. There are
two main challenges to achieve the goal:

1. A Proper α for the Tip Selection Probability Calculation: The parameter α directly
influences the probability of selecting tips in a tangle when the new transactions
are attached via MCMC. In such a tangle, tips on the random walk routine with
higher weight may have a greater selection probability. However, the situation may
differ in a tangle generated via URTS. Therefore, selecting an appropriate α that is
sensitive to abnormal tips and attack patterns is the first challenge of this study.

2. A Baseline Value for the Abnormal Tip Selection: In order to identify abnormal
tips, a baseline between the selection probabilities of normal tips and abnormal
tips needs to be established. This baseline may vary depending on the transaction
incoming rate λ and the weighted random walk parameter α. The accuracy of tip
detection is also influenced by the baseline. Therefore, determining an appropriate
baseline represents the second challenge.

This chapter proposes a Secure Uniform Random Tip Selection (S-URTS) algorithm
that addresses the aforementioned challenges and ensures the scalability and security
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of the tangle. Our solution effectively mitigates the risk of attacks by detecting them
prior to attaching new transactions, thereby maintaining a stable number of unapproved
transactions. The previously attached transactions can be approved immediately by
the incoming transactions, and the new transactions will be approved in the subsequent
round, without any accumulation of unapproved transactions. Our contributions are as
follows:

• We propose a novel tip selection algorithm, which can maintain both scalability
and security of a DAG-based blockchain.

• We determine a proper α for the proposed algorithm based on an empirical analysis.

• We set the baseline for the normal tip distribution and detection of the abnormal
tips.

• We demonstrate the properties of the proposed algorithm through various experi-
ments. The proposed TSA-URTS takes similar time to other TSAs, but S-URTS
has less number of tips and could defend against to the parasite chain attack.

7.2 Related Work

In this section, we present previous works pertaining to the scalability and security of
the IOTA tangle. These works encompass theoretical analyses of tips count, tangle TSA
variants, and tangle security.

7.2.1 Theoretical Analysis of the Tangle Tips Count

The experimental analysis of the influence of α and λ on the number of tips has been
conducted and reported in [KSG18a]. The results of the experiment indicate that a small
value of α leads to a slower development trend of tips, while a large value of α causes
a continuous increase in the number of tips. Among the various TSAs, URTS exhibits
the smallest number of tips, whereas MCMC has a higher number of tips than URTS,
even when α is 0. This finding has also been confirmed in [KSP+19a]. In another study
by the same team, reported in [KG18], the influence of α and λ on the probability of
left-behind transactions and permanent tips has been analyzed. The results indicate that,
for the same value of λ, an increase in α leads to a higher percentage of tips.

7.2.2 Tangle TSA Variants

There exist several works proposing various algorithms to stabilize the number of tips.
In G-IOTA [BGP19], the number of tips is reduced by approving three tips through a
new transaction, and experimental results demonstrate a decrease in the number of tips.
To reduce the number of random walks and save energy consumption, the same team
proposed E-IOTA [BHP20]. For each random walk process, one α is selected from the
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α set with a certain probability p. The security is maintained by a large α, while the
number of tips is stabilized by another small α and 0. Experimental results confirm that
E-IOTA can maintain a low number of tips. However, the security experiment is still
missing, and the determination of the selection probability p is not provided. Pietro et
al. proposed a hybrid TSA [FKS20] by using a large and a small α for two tip selection
processes separately. It is experimentally proven that this method can stabilize the
number of tips. But there is no information on how to set the two α values. A TSA
algorithm DA-IOTA was proposed in [RID+23], which determines the α size based on
the standard deviation of the cumulative weight. Comparing with MCMC and E-IOTA,
the number of tips is smaller than the other two TSAs. However, there is no detailed
explanation of the algorithm’s basis and no proof of security.

All the above TSA variants have better performance than MCMC in maintaining a
stable and minimum number of tips, but they lack sufficient experiments to approve their
security and enough information about parameter setting.

7.2.3 Tangle Security

The most prevalent form of attack in the IOTA network is the parasite chain attack, and
several studies have been conducted on detecting such attacks. One approach involves
using a sampling random path to calculate a distance and identify the parasite chain, as
described in [PKC+20a]. If the calculated distance d exceeds a predetermined threshold, a
flag is raised, and the tip selection process needs to be restarted. Experimental results have
confirmed the effectiveness of this detection algorithm. Another study by Ghaffaripour
et al. [GM22a] proposes a scoring function to measure the importance of transactions in
the IOTA network. Any sudden changes in transaction importance indicate abnormal
behavior, which can be used to detect parasite chain attacks. Chen et al. [CGWB22]
analyzed the behavior strategies of IOTA nodes using evolutionary game theory and
identified key factors affecting parasite chain attacks. They proposed a parasite chain
attack prevention algorithm based on price splitting, which effectively prevents the
formation of parasite chains. Numerical simulations confirmed the effectiveness of the
proposed solution.

While these above TSA variants and parasite chain detection algorithms have shown
promising results, there is still lack of a work verifiying and evaluating both scalability
and security of the novel TSA comprehensively.

7.3 Algorithm Design

This section presents the proposed TSA S-URST. Before deploying the algorithm, we
need to determine two important parameters: α and T . These two parameters will
influence the precision of the abnormal structure detection. To facilitate understanding,
we provide a summary of the definitions of all variables used in this study in Table 7.1.
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7.3.1 Determine the α

Algorithm 3 α Determination
Require: set(λ), n, m, set(α)
Ensure: α

1: for λ in set(λ) do
2: Gλ = tangle_generator(λ, n)
3: end for
4: for i in [1,m] do
5: Pci = parasiteChain_generator(i)
6: end for
7: for Gλ in set(G) do
8: for Pcm in set(Pc) do
9: Gm

λ = parasiteChain_attach(Pcm, Gλ)
10: end for
11: end for
12: for Gm

λ in set(Gm
λ ) do

13: for α in set(α) do
14: Dλ,m

α = probability_calculator(Gm
λ , α)

15: end for
16: end for
17: for Dλ,m

α in set(Dλ,m
α ) do

18: pmin, ppc = select_from(Dλ,m
α )

19: pdiff = pmin − ppc

20: end for
21: Calculate the mean and variance of pdiff for each α
22: Choose the α, whose mean is max and var is min.
23: return α

The value of α will have a direct impact on the probability of tip selection. As the tangle
is generated through the use of URTS TSA, the effect of α on the probability of tip
selection may differ from that of the tangle generated through MCMC. It is imperative
that we select an appropriate value for α that can differentiate between the selection
probabilities of normal and abnormal tips. In this chapter, we employ an empirical
approach to determine the appropriate value for α.

Algorithm 3 shows the whole process for α determination. Firstly, we generate tangles
for various values of λ using the URTS algorithm, and add parasite chains of varying
lengths to the tangle. Subsequently, for each length of the parasite chain, the selection
probability of both normal tips at the main tangle and the abnormal tips at the parasite
chain are calculated and collected. Finally, the difference between the minimum selection
probability of normal tips and the selection probability of abnormal tips is calculated.
The mean and variance of these differences are then computed, and the value of α with
the largest mean and smallest variance is selected.
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7.3.2 Determine the T

Algorithm 4 Threshold Determination
Require: set(λ), n, α
Ensure: T

1: for λ in set(λ) do
2: Gλ = tangle_generator(λ, n)
3: end for
4: for Gλ in set(Gλ) do
5: Dλ = probability_calculator(Gλ, α)
6: end for
7: for Dλ in set(Dλ) do
8: Dmin = min(Dm)
9: end for

10: Calculate the moving average: T = moving_ave(Dmin)
11: return T

After determining an appropriate value for α, it becomes necessary to identify a suitable
threshold T for detecting the selection probability of abnormal tips for various values
of λ, shown in Algorithm 4. The moving average algorithm is utilized to determine the
threshold T . Initially, we collect the values of Dt for each t during the tangle generation
process. Subsequently, we obtain the minimum value of each Dt and calculate the moving
average value. Once the moving average value stabilizes and converges, we set that value
as the threshold T .

7.3.3 Proposed TSA S-URTS

(a) Tangle (b) Absorbing Markov chain

Figure 7.2: Convert tangle to a absorbing Markov chain

The present algorithm S-URTS commences by transforming the tangle into an absorbing
Markov chain, followed egin by the computation of the probability distribution of all tips.
Subsequently, the identification of the anomalous tip is carried out, and transactions
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Table 7.1: Variable definition

Variable Definition
Gt The DAG at time t

n The number of transaction
Pci The parasite chain i

m The length of the parasite chain
λ The new transaction arrival rate
Et The edge set at time t

eij The edge between two adjacent messages i and j

Vt The transaction set at time t

vi The transaction i of the tangle
v0 The genesis transaction of the tangle
Lt The set of tips at the time t

lt The number of tips at the time t

Dt The probability distribution of tips at the time t

Pt The transition probability matrix at time t

pij The transition probability between message i and j

πt The probability distribution of the absorbing state at time t

α The weighted random walk parameter
ci The cumulative weight of message i

wij The edge weight of edge ij

T (t) The tip selection threshold at the time t

are selected from the remaining tips. The primary steps involved in the algorithm are
illustrated in Algorithm 5.

At first, we transform the tangle Gt into an absorbing Markov chain via designating
tips as absorbing states and reversing the direction of directed edges in the tangle. For
example, the tangle shown in Figure 7.2a includes n transactions, comprising r approved
transactions and l tips. Figure 7.2b shows the absorbing Markov chain converted from
that tangle in Figure 7.2a, which includes r transient states and l absorbing states with
a transient probability of 1. The transient probability from state 1 to states 2 and 3 is
p12 and p13, respectively.

Then, we calculate the cumulative weight ci of each transaction i and get the edge weight
wij of each edge ij from Equation 7.1. The affinity value between two states aij is
influenced by α and calculate by Equation 7.2. We obtain the transition probability
pij for each pair of connected transactions from Equation 7.3. After gathering this
information, we construct the transition matrix P of the absorbing Markov chain, initiate
the initial state π0 as Equation 7.4, calculate the stationary state distribution π to obtain
the tip selection probability distribution Dt, through Equation 7.5.
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Figure 7.3: Illurstration of the abnormal tips selection

wij = ci − cj (7.1)

aij = exp(−αwij) (7.2)

pij =


aij/

∑
z∈N(i) aiz, 1 ≤ i ≤ r,

1, i = j, n− l ≤ i ≤ n,

0, otherwise.
(7.3)

π0 = [1, 0, ..., 0] (7.4)

π1 = π0P

...

π = π0P k

(7.5)

At the end, we pick out the abnormal tips as shown in Figure 7.3. We select the tips
whose selection probabilities are below the threshold T (t), and delete these abnormal
tips from the tip set, construct a new tip set L′(t), and attach new transactions to the
new tip selecting from set L′(t) uniformly.

In order to improve the efficiency and energy utilization of adding new transactions, and
to avoid network congestion, new transactions are added at a fixed time unit interval. The
current set of newly arrived transactions is M(t) and the new transactions are m1,m2,...
. The above process is executed once for every time unit, and the new transactions are
added to the new tip set L′(t) in the order they arrive. This process ensures that the
new transactions are added to the tip set in a timely manner, and that the network does
not become too busy.

As the DAG topology evolves over time with the addition of new transactions, the
proposed TSA S-URST algorithm effectively adapts to these changes by employing
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a probabilistic approach within a fixed time window. The algorithm recalculates the
selection probabilities of unconfirmed transactions based on a pre-set random walk
weight parameter. This recalibration allows the algorithm to dynamically account for
changes in the tangle’s structure caused by the continuous arrival of new transactions. To
maintain the integrity of the tangle, the algorithm incorporates an anomaly detection and
pruning mechanism, utilizing pre-defined thresholds to identify and exclude anomalous
transactions. This ensures that irregularities in the DAG topology are effectively managed.
By continuously recalculating probabilities and pruning anomalies, the framework adapts
seamlessly to the evolving tangle structure, guaranteeing robust and secure operation in
dynamic environments.

Algorithm 5 Tip Selection
Require: G(t), V (t), E(t), α, λ, T
Ensure: tip1, tip2

1: for vi in V (t) do
2: ci = sum(children(vi)) + 1
3: if in-degree(vi) = 0 then
4: Add v(i) to the L(t)
5: end if
6: end for
7: for eij in E(t) do
8: wij = ci - ci

9: end for
10: for eij in E(t) do
11: pij = f(eij , α)/sum(f(eij′ , α)) for all j′ − > i
12: end for
13: Construct the transition probability matrix Pt

14: Calculate the stationary state D(t)
15: for di in D(t) do
16: if di > T (t) then
17: Add v(i) to the L′(t)
18: end if
19: end for
20: tip1 = random_select(L′(t), 1)
21: tip2 = random_select(L′(t), 1)
22: return tip1, tip2

7.4 Experiment Design

This section presents two experiments conducted for the proposed TSA: experiments
aimed at estimating the critical parameters of the algorithm, and experiments designed
to evaluate the algorithm’s performance.
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7.4.1 Parameter Estimation

Determine α

The parameter α of the weighted random walk has an impact on the transition probability
between two connected transactions in the tangle. A small value of α results in a very
even probability distribution, while a large value of α leads to a scattered probability
distribution for the tangle generated by MCMC. However, the effect of α on the probability
distribution of the tip in the tangle generated by URTS remains unknown. To determine
the most appropriate value of α for S-URTS, we conducted the following empirical
experiments.

Table 7.2: Experiment setup: Parameter estimation

Parameters Value
α 0.001, 0.005, 0.01, 0.05
λ 5, 10, 15, 20
N 500

Parasite chain length from 1 to 200

The experiment was conducted using varying values of λ and α. Some common values,
including λ values of 5, 10, 15, 20, and α values of 0.001, 0.005, 0.01, and 0.05, were
selected. The tangle consisting of 500 transactions was generated using the URTS
algorithm via these λ. Subsequently, parasite chains of varying lengths were attached to
a fixed transaction, and the selection probability of tips on the parasite chain and the
tips on the normal tangle were calculated. The attachment point was determined based
on the maximum distance in the 500-transaction tangle.

The results of the tip selection probability development are shown in Figure 7.4. For a
fixed value of λ, as the value of α increases, the selection probability of the tip at the
parasite chain becomes more sensitive to the length of the parasite chain. When α is set
to 0.001, the increasing rate of the tip selection probability at the parasite chain is slow,
and the selection probability of the tip at the parasite chain is always lower than that
of the tips at the main tangle. However, when α is set to 0.05, the rate of increase is
fast, and the selection probability of the tip at the parasite chain is higher than that of
the tip selection probability. Our findings indicate that for each value of λ, the best and
most stable performance is achieved when α = 0.001. As α increases from 0.001 to 0.05,
the tip probability on the parasite chain grows faster. We have also calculated the mean
and variance of the difference between the probability of the tip at the parasite chain
and at the tangle, and the results are presented in Figure 7.5, which shows that for all
values of λ, α = 0.001 has a higher mean value and a smaller variance value compared to
other values of α. This indicates that with α = 0.001, it is easier to detect the tip at the
parasite chain.
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(a) λ = 5, α = 0.001
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(b) λ = 5, α = 0.005
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(c) λ = 5, α = 0.01
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(d) λ = 5, α = 0.05
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(e) λ = 10, α = 0.001

1 10 20 30 40 50

Parasite chain length

0

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

Selection probability of abnormal tips

(f) λ = 10, α = 0.005
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(g) λ = 10, α = 0.01
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(h) λ = 10, α = 0.05
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(i) λ = 15, α = 0.001
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(j) λ = 15, α = 0.005
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(k) λ = 15, α = 0.01
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(l) λ = 15, α = 0.05
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(m) λ = 20, α = 0.001
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(n) λ = 20, α = 0.005
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(o) λ = 20, α = 0.01

1 10 20 30 40 50

Parasite chain length

0.0
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ob

ab
ilit

y

Selection probability of abnormal tips

(p) λ = 20, α = 0.05

Figure 7.4: The selection probability of the tip at the main tangle and at the parasite
chain

Determine threshold T

The minimum probability in the probability distribution of tips is influenced by the
value of λ. Generally, the threshold value T decreases as the number of tips increases.
In order to accommodate the arrival of nodes with different λ values, we derive the
minimum threshold for tip addition when normal, using the same calculation criteria.
If the tip selection probability falls below the threshold, that tip is deemed abnormal.
We set α = 0.001, generate the tangle using URTS with various λ values: 5, 10, 15,
20, and calculate the minimum selection probability of the tip distribution each round.
We then calculate the moving average of the minimum selection probability. Once the
moving average value stabilizes and converges, we set it as the threshold for that λ value.
Figure 7.6 shows that after 600 messages, the lowest value of the tip is essentially stable
around 0.035. Therefore, we adopt the corresponding value of 0.035 as the threshold for
abnormal tips for λ = 5. Using the same method, we calculate that the thresholds for λ
values of 10, 15, and 20 are 0.015, 0.01, and 0.007, respectively.
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Figure 7.5: The mean and variance of the probability difference between normal tip and
parasite chain tip
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Figure 7.6: The moving average of the minimum tip selection probability

7.4.2 Algorithm Evaluation

The performance evaluation experiments comprise two aspects: scalability and security.
In the scalability test, we generate tangles with varying TSAs and parameter settings, and
collect data on the tips number and time consumption of tangle generation. Additionally,
we analyze the computational complexity of these TSAs. In the security test, we attach
parasite chains of varying lengths to the tangle and calculate the selection probability of
tips at these parasite chains.

Scalability

We compare the scalability of our proposed algorithm, S-URTS, with two other algorithms,
namely, URTS and MCMC, with α values of 0.001 and 0.05. The α value of 0.001 for
MCMC was determined through empirical experiments, while the α value of 0.05 was
found to be highly sensitive to abnormal structures. Throughout the remainder of this
chapter, we will refer to MCMC with α = 0.001 as MCMC1 and MCMC with α = 0.05
as MCMC5. The experimental setup is presented in Table 7.3.
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Table 7.3: Experiment setup: Scalability

Items Value
TSA URTS, MCMC1, MCMC5, S-

URTS
λ 5, 10, 15, 20
N 104

Table 7.4: Experiment setup: Security

Items Value
N 500
α 0.001

TSA URTS, MCMC1, S-URTS
Parasite chain length from 1 to 200

λ 5 10 15 20
Attaching point index 400 380 330 300

Security

In order to conduct an analysis of the security of the S-URTS, we have employed a
rigorous methodology. Specifically, we have attached parasite chains of varying lengths to
a fixed site located at the sub-tangle with a size of N=500. The tip selection probability
has been calculated through the use of several algorithms, including S-URTS, MCMC1,
and URTS. The selection of the fixed site has been based on the maximum difference
between two indexes of the transactions on the tangle. It is important to note that if
the attachment position is too close to the normal tips, they cannot be detected, as has
been previously noted [PKC+20a]. The detailed experimental settings are presented in
Table 7.4.

7.5 Evaluation

In the present section, we undertake a comprehensive analysis of the experimental
outcomes and compare the proposed S-URTS with other existing TSAs from two distinct
perspectives, namely scalability and security. Regarding to scalability, we delve into
the development of the number of tips during the tangle generation process, the time
taken for tangle generation, and the computational complexity. In terms of security, we
scrutinize the tip selection probability of tips at both the main tangle and the parasite
chain.
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(b) λ = 10
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Figure 7.7: The comparison of the number of tips development

7.5.1 Scalability

The number of tips

The present study involves the analysis of tip counts during tangle generation using
different TSAs, namely: URTS, MCMC1, MCMC5, and S-URTS. The raw data and the
fitting line of the data of the number of tips are depicted in Figure 7.7, which provides
insights into the development trend of the number of tips with different TSAs and λ
values. The tip development of S-URTS is found to be similar to that of URTS, wherein
the number of tips initially increases and then stabilizes. Moreover, the number of tips of
S-URTS during the stable period is also similar to that of URTS. In the case of MCMC1,
when λ is 5, the number of tips shows an increasing trend for a tangle size of 10000. For
other λ values, the number of tips of MCMC1 initially increases and then stabilizes at a
higher value than that of URTS and S-URTS. As for MCMC5, the number of tips always
increases and is greater than the other three TSAs. Theoretically, the minimum number
of tips is 2*λ, which is achieved by URTS and S-URTS [Pop16]. These experiments
demonstrate that the number of tips of S-URTS can be maintained at a stable and low
level.

Consuming time

We collect the consuming time for generating the tangle with 10000 transactions and show
the results in Figure 7.8. The results show that when λ is set to 5, URTS outperforms
the other three algorithms in terms of consuming time, with S-URTS taking the longest
time. However, as λ increases, the consuming time of URTS and MCMC also increases.
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Figure 7.8: Comparisons of consuming time

Specifically, when λ is set to 10, the consuming time of S-URTS is comparable to that of
MCMC5, whereas when λ is set to 15, the consuming time of S-URTS is similar to that
of MCMC1, but less than that of MCMC5. Finally, when λ is set to 20, the consuming
time of S-URTS decreases and becomes less than that of MCMC1 and MCMC5, but
higher than that of URTS.

The duration of the batch attaching process has a significant impact on the execution
time of S-URTS. Specifically, when the value of λ is relatively small, the number of
attaching transactions processed per unit time is correspondingly low. Conversely, as the
value of λ increases, the efficiency of S-URTS is enhanced. Despite these fluctuations,
the overall execution time of S-URTS remains within an acceptable range.

Computational Complexity

We conducted a comparative analysis of the computational complexity of URTS, MCMC,
and S-URTS.

In the case of URTS, the selection of a tip from the tip pool is performed randomly in
each step, resulting in a computational complexity of only O(n), n is the number of tips.

For MCMC, the situation is more intricate. MCMC employs a biased random walk
and necessitates knowledge of the cumulative weight of each transaction. Based on
the definition of cumulative weight, the number of ancestors of each transaction must
be calculated, resulting in a computational complexity of O(|V |2). The subsequent
step involves the computation of edge weight. The edge number is denoted as E,
and the complexity of calculating edge weight is O(|E|). Similarly, the complexity of
calculating transition probability is also O(|E|), as each edge has a transition probability
associated with it. The MCMC algorithm for one-time random walk has a complexity
of O(|V |2 + 2|E|). When dealing with a tangle consisting of V transactions, the total
calculation time becomes |V |(|V |2 + 2|E|). This is because each transaction can approve
a maximum of two older transactions, and each vertex in the tangle has at most two
edges. Therefore, the edge number |E| is equal to or less than 2|V |. By substituting
these values, we can obtain the calculation complexity as O(|V |3 + 4|V |2).

The S-URTS algorithm involves two initial steps, namely the calculation of the cumulative
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weight and transition probability, which are identical to those of the MCMC. The
computational complexity of the first step is O(|V |2 + 2|E|). Additionally, the S-URTS
algorithm requires the computation of the selection probability distribution of all tips.
The computational complexity of the matrix calculation is O(|V |2/λ). For each round,
the computational complexity is O(|V |2 + 2|E| + |V |2/λ). Assuming an average of λ
transactions per round, and a tangle with |V | transactions, it requires approximately
|V |/λ rounds. The overall computational complexity can be equivalent to O((λ2 +
1)|V |3/λ2 + 4|V |2). When λ is large, the computational complexity of the S-URTS
algorithm is comparable to that of the MCMC algorithm.

Table 7.5: Computational complexity

TSA Complexity
URTS O(n)

MCMC O(|V |3 + 4|V |2)
S-URTS O((λ2 + 1)|V |3/λ2 + 4|V |2)

Conclusion

Scalability is a fundamental aspect of blockchain systems, defined as the ability to
confirm new transactions promptly as the number of transactions continues to grow.
The scalability of the proposed solutions has been evaluated using multiple metrics,
including the number of tips (unconfirmed transactions), transaction processing time,
and algorithmic complexity.

A critical indicator of scalability is the number of tips in the tangle. If the number of un-
confirmed transactions remains low and stable as new transactions arrive, it demonstrates
that the system can process incoming transactions in a timely manner. This stability
is a hallmark of good scalability. Conversely, an increasing number of tips over time
would indicate that the system struggles to confirm transactions promptly, reflecting poor
scalability. Our experiments show that the proposed solutions maintain a low and stable
tip count even under a high transaction load, proving their ability to handle growing
transaction volumes effectively.

Transaction processing time is another key metric for scalability. A shorter processing time
indicates the system’s ability to handle more transactions per unit of time, showcasing
better scalability. Comparative analysis reveals that the proposed solutions achieve faster
transaction processing times compared to other methods, enabling the system to process
a higher number of transactions efficiently.

The lower computational complexity of the proposed algorithms further supports their
scalability. By reducing the computational overhead, the solutions achieve faster transac-
tion processing speeds, ensuring that the system remains efficient even as the transaction
volume increases. This contrasts favorably with other algorithms that have higher com-

93



7. A Stable and Secure Transaction Tip Selection Algorithm For IOTA

(a) λ = 5 (b) λ = 10

(c) λ = 15 (d) λ = 20

Figure 7.9: The comparison of the selection probability of the parasite chain tip for
various TSAs (can calculate the MCMC1, MCMC5 and compare them)

plexity and longer processing times, making the proposed solutions more suitable for
real-world applications, especially in environments with high transaction loads.

Through our analysis of the number of tips, time required for computation and the
computational complexity, we have demonstrated that the S-URTS algorithm is capable
of maintaining a stable and low number of tips. Furthermore, we have observed that
for larger values of the parameter λ, the consuming time of S-URTS is less than that of
MCMC1 and MCMC5. These findings suggest that S-URTS exhibits superior scalability
compared to the aforementioned algorithms.

7.5.2 Security

Parasite Chain Attack

In this study, we have affixed parasite chains of varying lengths to the tangle and have
subsequently computed the selection probability of the tip on the parasite chain through
the utilization of different TSAs. The outcomes of this analysis are presented in Figure 7.9.

The results show that URTS consistently exhibits the highest selection probability across
all values of λ. In contrast, the selection probability of S-URTS is significantly lower than
that of MCMC1. Furthermore, when λ is set to 5, 10, or 15, the selection probabilities of
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both URTS and S-URTS fall below the threshold T . Notably, even when the length of
the parasite chain is set to 200, the selection probability remains at 0, indicating a secure
tangle. However, when λ is set to 20, the tangle becomes vulnerable when the length of
the parasite chain exceeds 150. Additionally, as the length of the parasite chain increases,
the tip selection probability of MCMC1 increases at a faster rate than that of S-URTS
for each λ. Overall, the experimental results suggest that URTS is the most vulnerable
TSA, while S-URTS is better than MCMC1 in resisting parasite chain attacks.

7.6 Future Work
This section establishes a theoretical foundation for the S-URTS algorithm, with a
primary focus on its scalability and security through simulated testing. However, further
work is needed to enhance its practical applicability and to address potential challenges
in real-world deployments. Future efforts will concentrate on three main areas: node
diversity, network latency, and security threats at the network layer.

7.6.1 Node Diversity

In real-world networks, blockchain nodes often exhibit significant differences in hardware
capabilities, processing power, and network bandwidth. This heterogeneity in nodes
may impact the overall performance of the algorithm. For resource-constrained nodes,
the efficiency of the S-URTS algorithm could decrease, affecting the system’s real-
time performance and security. Future work will include evaluating the algorithm’s
adaptability to varying hardware configurations and exploring optimization techniques,
such as dynamic parameter adjustments or resource allocation strategies, to enhance the
algorithm’s robustness in a diverse node environment.

7.6.2 Network Latency

Network latency and communication instability are inevitable in real-world environments,
potentially affecting the consensus process of the S-URTS algorithm. Latency can lead to
delays in synchronization between nodes, impacting the timeliness of consensus and, under
high-latency conditions, may even pose security risks. To address this, the algorithm
could incorporate fault-tolerance mechanisms to ensure its resilience under high-latency
and packet-loss conditions. Future experiments will test the algorithm’s performance
under various network conditions (such as high latency and low bandwidth) and identify
appropriate network optimization strategies to address these challenges.

7.6.3 Security Threats at the Network Layer

Beyond consensus layer security, blockchain networks face additional threats at the
network layer, including transaction censorship and routing attacks. For example,
transaction censorship occurs when a lightweight node sends a transaction to a consensus
node, which then verifies the transaction’s validity before adding it to the blockchain.
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In future work, we will explore how optimizing interactions between lightweight and
consensus nodes could enhance the system’s resilience against these types of attacks and
strengthen the network layer’s security.

Through these efforts, we aim to build a comprehensive understanding of the S-URTS
algorithm’s applicability in complex network environments and to support its practical
implementation.

7.7 Summary
This section presented a S-URTS algorithm that ensured both scalability and security of
a DAG-based blockchain. The proposed algorithm was designed for tip selection, and we
further developed algorithms to determine the main parameters α and T for the S-URTS.
To demonstrate the scalability and security of the proposed S-URTS, we conducted
various experiments. We analyzed scalability in terms of the number of tips, growth
trend, time spent on generating tangles, and computational complexity. Additionally, we
evaluated security by calculating and comparing the tip selection probability on parasite
chains using different TSAs. The experimental results indicated that the proposed
S-URTS algorithm effectively stabilizes the number of tips at a very low level, which
was lower than the MCMC and essentially equal to the URTS. Furthermore, the time
consumption was at a normal level, and the algorithm was capable of resisting parasite
chains and avoiding double spending attacks.

Our proposed algorithm would strengthen blockchain-based applications, such as access
control and trust management and autonomous systems in IoT. For example, a blockchain-
based access control framework for IoT [NZSK] utilizes an encryption algorithm to store
access rights on IOTA’s Tangle, addressing scalability and transaction cost issues while
enabling efficient, fine-grained access control. Our algorithm would further expands this
system’s capacity to manage access control for a larger number of devices. Additionally,
IOTA is used to create a trust overlay for secure information exchange among autonomous
vehicles [CMJ], with a tangle architecture integrated with vehicle simulation to assess
trustworthiness in decision-making. Our algorithm could enhance the network’s ability
to support more vehicles.

Overall, the proposed TSA S-URTS algorithm represents a significant contribution to
the field of blockchain technology, and its potential applications are numerous.
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CHAPTER 8
An Efficient Graph-Based IOTA

Tangle Generation Algorithm

IOTA is a recent distributed ledger technology that relies on DAG for its ledger organiza-
tion. To improve IOTA mechanisms, the state-of-the-art methodology employs graph
analysis and, for that, heavily relies on synthetic graph generation. Herein, the most
popular generation method simulates IOTA protocol execution. Although this method
produces realistic IOTA ledgers, it requires too much memory and time due to repeated
random walks on the DAG. In this chapter, we propose an alternative GraGR algorithm
designed to generate realistic IOTA ledgers while strongly relaxing memory and timing
constraints. The evaluations show that, compared to the state of the art, GraGR can
generate a ledger with the same properties with only half of memory and up to 10 times
faster.

In the following, we review existing IOTA tangle generation methods in Section 8.2.
Section 8.3 introduces IOTA preliminary as a background and presents GraGR; after
that, Section 8.4 compares Protocol Simulation based Generator (ProSG)-type generation
to tangle generation with GraGR. Finally, Section 8.5 concludes this chapter.

8.1 Introduction

Blockchain is a popular technology that features a decentralized and immutable data
ledger [Nak08] with a distributed consensus mechanism. It shows huge potential in areas,
where several independently operating authorities work together, such as finance, supply
chain management and IoT. However, most current blockchain or DLT exhibit some
weaknesses [ZXD+18], such as limited transaction processing speed. In the traditional
blockchain it is caused, among others, by the data structure choice: since a chain offers
exactly one block that new transactions (or a new block) can be “attached” to, to achieve
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consistency, either the number of nodes upholding this particular block has to be limited,
or complex agreement/consensus between all such nodes at the moment of attachment is
required. Both effects limit the transaction throughput [HDM+19].

A solution to improve the scalability of DLT is to use a DAG data structure. Among
the DAG-based DLTs, one of the most recent and prominent is IOTA [Pop16]. Here,
the incoming transactions can be attached to any leaf node (called “tip”), promising an
increased transaction processing speed. However, the speed depends on several factors:
an empirical analysis of an operational IOTA data structure (called “tangle”) reveals
that the actual processing speed is not as high as expected [GXHD20a], pinpointing the
relative complexity of the tangle as the main challenge area. To address this and to
improve the performance, graph topology analysis becomes key, as it allows to develop
better-suitable, faster algorithms for transaction processing.

For a comprehensive graph analysis, many sample tangles are required. Such samples
can be obtained from either real or synthetic data. The problem with real data is limited
diversity and availability. The main problem with generated tangles is realism. The
common methodology is to follow IOTA protocol for arriving transactions: concretely,
after an initiation to a single-vertex DAG, the generator, e.g., IOTA node binary, is
subsequently fed with incoming transactions, either taken from a recorded trace or from
a stochastic arrival process. Per default, IOTA employs random walk on the transpose
graph of its DAG, i.e., from the root to the tips for each incoming transaction, i.e.,
for each step in the transpose graph, the walker calculates the transition probability
for all candidate attachment points. Alas, this transition probability cannot be reused,
because the cumulative weight and edge weight change, once the incoming message is
attached to the tangle. In a nutshell, this method keeps the whole tangle data structure
in memory, including cumulative weight of each message and, potentially, additional
graphical information. We refer to these approaches as ProSG. Albeit delivering realistic
IOTA tangles, ProSG is not optimized for efficient research data generation and requires
a lot of time and memory [XGHD22], in particular under a bursty message arrival.
Hence, a more efficient tangle generator is crucial to streamline research and development
activities.

This chapter proposes a novel GraGR for realistic IOTA tangle generation. GraGR does
not need to calculate the transition probability at each step. Instead, with additionally
provided, expected in- and out-degree distributions, GraGR can generate a representative
IOTA tangle while limiting memory and timing requirements. Our main contributions
are:

• We propose the first IOTA tangle generation algorithm that does not rely on costly
random walk approaches.

• We conduct a comprehensive evaluation and analysis of the performance of GraGR
in comparison to ProSG type of methods and show that GraGR generation is both
correct and efficient.
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8.2 Related Work

There are two known ways to obtain IOTA tangles to analyze and improve IOTA system
performance. Because they only differ in the used dataset, but rely on the IOTA protocol
for message processing, we generally refer to these both methods as ProSG.

The first is to use a synthetic message sequence under IOTA typical message processing.
One of such methods is TangleSimulator1. Starting from a genesis message, TangleSimu-
lator generates a Poisson message sequence and adds each message to the tangle using
IOTA-typical random walk. A well-known analysis of basic properties of IOTA tangles,
such as cumulative weight, number of tips for different TSA versions, etc., also uses this
method to create different tangles [KSG18a, KSP+19a]. Similarly, security analysis of
IOTA tangles [PKC+20b, GM22b] utilizes tangles generated this way to study parasite
chain attacks. Authors in [Vri19] study tangle parameter influence on a so-called large
weight attack on an IOTA tangle in a real network. They generate the tangle with a
Python library and simulate the large weight attack. An analysis of the TSA properties
in [XGHD22] also uses this method and states that it is rather ineffient, in particular for
a bursty message arrival.

The second way is to extract ledger data from the operational IOTA ledger, called IOTA
mainnet/devnet tangle. An analysis of the real transaction speed in IOTA extracts real
tangle data from the IOTA raw dataset, rebuilds the tangle and finds various abnormal
structures in the real IOTA tangle that limit the transaction speed [GXHD20a]. However,
the raw datasets of real IOTA tangles are of limited diversity and availability.

In contrast to these state of the art approaches, which all rely on the basic IOTA protocol,
we aim to generate IOTA tangles based on graph construction mechanisms. Random
graph generators are widely used in many fields, such as social networks, biological
networks and Internet studies [DT19].

A DAG generation algorithm was proposed in [TK02]. The input is n vertices and m
layers. Two vertices are selected from two adjacent layers. A random variable is generated
and, if it is smaller than a predefined threshold p, an edge is added from the vertex of the
previous layer to the vertex of the latter layer. Common to random graph generators is
the fact that the generated graph does not follow IOTA tangle’s degree distribution. To
improve IOTA mechanisms, it is an important requirement to closely follow topological
features of real IOTA tangles [KSG18a].

To find out what would be characteristic properties of tangles, authors in [GXHD20a]
analyzed and compared real and theoretical tangles in terms of in-degree distribution,
longest and shortest path, diameter ratio and edge weight. The in-degree distribution
of simulated tangles based on [Pop16] follows a Poisson distribution. The length of the
longest and shortest paths in tangles with 1 million messages are similar and about 105.
The edge weights of these simulated tangles are distributed in a range from 1 to 100.

1https://github.com/minh-nghia/TangleSimulator
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Table 8.1: Variable definition

Variable Definition
Gk The k-th DAG
n The size of the message set
λ Message arrival rate
vt

i Message i with out-degree t
V, V t

k Message set, Message set of Gk with out-degree t

li The number of messages in the layer i

Dk In-degree distribution of Gk

di In-degree of the message i

Tk Out-degree distribution
nt

k Message count with t out-degree in graph k

E Index difference distribution
eij Index difference between i and j

Tangles should always have a single genesis message and the out-degree of all messages
in all kinds of tangles is limited to 2 [Pop16].

In summary, the existing IOTA tangle generators can only generate tangles in an inefficient
way, while the existing general random graph generation algorithms do not necessarily
comply with the identified constraints of IOTA tangles. Hence, we still need an efficient
IOTA tangle generator to generate tangles, which meet the in-degree, out-degree, index
difference and other prescribed requirements.

8.3 Algorithm Design

In this section, we introduce the idea of our proposal and present the details of GraGR,
the new graph-based tangle generation method.

8.3.1 GraGR Algorithm Design

The basic idea of the IOTA tangle construction method in this chapter is inspired from
graph generation methods. In contrast to generic random graph generation, we create
an algorithm that creates a DAG with some characteristic topological parameters of
a simulated IOTA tangle. Specifically, we want the generated structure to exhibit the
same in-degree distribution as an additionally provided input distribution, and to respect
typical constraints of the IOTA tangle’s out-degree, as described in Section 8.2.

We define V is the message set, D0 is the prescribed in-degree distribution (input to our
algorithm), and E is the prescribed index difference distribution. The index difference
is the difference between the indices of two connected messages. The index difference
indicates an attachment time interval between two connected messages. For all tangles,
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the index difference should follow a similar distribution. Otherwise, the tangle structure
is abnormal, and the attachment order is chaotic.

The in-degree list di is generated by D0, and index difference list eij is generated from E.

Table 8.1 summarizes all used variable definitions.

Initially, the generated tangle starts with a genesis message, and the new vertices are
attached to this genesis message.

The proposed tangle generation algorithm can be divided into two major parts: part
I is the Generation part, where we generate a DAG following wanted in-degree and
index difference distributions, as shown in Code 6. Part II is the Refinement part,
where we change output Part I using the out-degree distribution and the index difference
distribution, as shown in Code 7.

For Generation part, Code 6, inputs are message arrival rate λ, number of nodes N , and
the prescribed in-degree distribution D0. The output of Code 6 is DAG G1. The major
steps are as follows:

1. For the first message v0 in the tangle, assign a random variable l1 based on the
Poisson distribution determined by arrival rate λ, and add l1 in-degree to this
message.

2. Calculate the index difference for each edge, and the index of messages connected
to v0 is the message v0 index 0 plus an index difference value.

3. For the following vertices, associate each message vi with an in-degree value di and
add di messages to this messages, whereas di follows the given in-degree distribution
D0.

4. The index of the message added in step 3, which directly connects to the current
message, is the current message index plus a random index difference e generated
from the index distribution E.

While the output of Algorithm 6, G1, is a DAG with basic properties of an IOTA tangle,
it cannot be considered a realistic IOTA tangle, as it includes too many messages with
out-degree 0, and, some of its messages have an out-degree higher than 2. Indeed, in
Code 6, we only enforce the prescribed in-degree and add the directly connected children
to each message, while out-degree constraints are not respected yet.

The following is the Refinement part, Algorithm 7, starts from G1 and the prescribed
out-degree distribution T0.

1. Calculate the out-degree distribution of G1 and compare the percentage of each
out-degree value of the out-degree distribution T1 to the prescribed out-degree
distribution T0. Select the messages with unqualified out-degree values, for example,
0 or higher than 2.
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2. For all messages with out-degree 0 - except the genesis message - generate two
random index difference variables eij , eih based on the index difference distribution
E. Link vi to vi−eij , vi−eih

.

3. In Step 3, if the index of the added out-degree message is smaller than 0, then link
vi to genesis message v0.

4. For messages, whose out-degree is bigger than 2, delete the edges randomly, until
their out-degree is exactly 2.

5. For messages with out-degree 1, if the prescribed out-degree distribution needs more
messages with out-degree 2, then randomly select the messages vi with out-degree
1, link vi to a former message vi−eij , the index difference eij , which is also selected
from the index difference distribution E0.

Algorithm 7 returns DAG G2, which is a synthetic tangle with prescribed properties.

Algorithm 6 Graph Generation
Require: n, V , D0, E, λ, T0
Ensure: G1

1: for vi in V do
2: if i == 0 then
3: j ∼ Poisson(λ)
4: V ′={v1,v2,...,vj}
5: add vj ∈ V ′ to v0
6: else
7: h ∼ D
8: generate V’={vj1 ,vj2 ,...,vjh

}
9: each jh = i + e, e ∼ E

10: add V’ to vi

11: end if
12: end for
13: return G1

The GraGR algorithm showcases significant adaptability by supporting various param-
eter configurations and degree distributions, enabling the generation of diverse tangle
topologies. It accommodates multiple parameterized generation models, each designed to
produce tangle topologies with specific characteristics. By adjusting degree distribution
parameters, the algorithm can create topologies that meet diverse design requirements,
making it versatile for a wide range of use cases and environments. This flexibility offers
researchers and developers a convenient and efficient method for generating tailored
DAG structures, facilitating the evaluation and experimentation of different system
configurations.
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Algorithm 7 Graph Refinement
Require: G1, n, V , T0
Ensure: G2

1: for vi in V1 do
2: if Out-degree (vi) == 0 and i ̸= 0 then
3: e1,e2 ∼ E
4: vj1 = i - e1
5: vj2 = i - e2
6: if vj1 <0 then
7: vj1 = 0
8: end if
9: if vj2 <0 then

10: vj2 = 0
11: end if
12: Add vi to vj1 , vj2

13: else if Out-degree (vi) >2 then
14: Successor (vi) = {vj1 ,vj2 ,...,vjh

}
15: random delete edges until Length(Successor(vi)) ==2
16: else if n2

0 >n2
1 then

17: ∆n = n2
0-n2

1
18: random select ∆n vertices V ′ from V 1

1
19: get V ′ = {vi1 ,...,vin′ }
20: each en′ ∼ E, jn′ = in′ − en′

21: add vin′ ∈ V ′ to vjn′

22: end if
23: end for
24: return G2

8.4 Evaluation

In this section, we evaluate general ProSG methods and our GraGR proposal in the
following aspects: out-degree, in-degree, longest path, shortest path from the genesis
message to the latest tip, diameter ratio, index difference and costs, i.e., time and memory
consumption. Since the realism of ProSG is not questioned, we use it as a reference for
topological parameters. In contrast, we want to have a better performance.

8.4.1 Experiment Setup

We run all experiments on a computer with Intel Core i5-8265U @ 1.6Ghz CPU and
16GB RAM. All algorithms are implemented in Python 3.8. For the experimental setup,
we set α = 0.01, which is the default value in the real IOTA network. Then, we vary both
λ values, and the number of vertices N in Table 8.2. We generate a number of tangles
for each set of parameters, until the statistical error of the reported results is lower than
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Figure 8.1: Comparisons of path lengths of generated tangles

5%. In practice, the number of generated tangles was around 10 for each parameter set.

Table 8.2: Experiment parameter setup

Parameters Value
α 0.01
λ 5, 10, 15, 20
N 104 ∼ 105 with a step-size =

104

8.4.2 Results

Path Length

The determined shortest and longest path lengths from the genesis message to the latest
tip of the tangles generated by ProSG and GraGR are shown in Figure 8.1.

As can be seen in Figure 8.1, with the number of messages going up, the lengths of the
longest and shortest paths increase. For the same number of messages, for smaller λ
values the paths are longer. For λ = 1 (smallest value), the tangle degenerates to a chain.
Generally, for bigger λ values, the tangle becomes wider. Note that for the same value
of λ, the longest and shortest paths of the tangles, generated by ProSG and GraGR
respectively, are similar in length. We conclude that GraGR maintains the path length
properties of real IOTA tangles.
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Figure 8.2: The comparison of the tangle diameter ratio
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Figure 8.3: The comparison of the tangle in-degree mean

Diameter Ratio

In addition, we calculate the diameter ratio of tangles generated by these two methods
and the absolute value of the difference of diameter ratios. We define diameter ratio
as the longest path length divided by the shortest path length. Semantically, this term
is indicative of the shape of the tangle. A bigger diameter ratio indicates the tangle is
wider, while a smaller diameter ratio means that the tangle becomes like a narrow band.

The results are shown in Figure 8.2.

For diameter ratio comparison, we use λ = 10 as an example, as the results are similar
for different λ. In Figure 8.2a, the difference between the diameter ratio of the tangle
generated by the two methods is very small. Figure 8.2b shows the diameter ratio
difference of the experiments. Most difference values are around 0.06. This comparison
indicates that the tangles generated by GraGR and ProSG have quite similar diameter
ratios. Hence, we conclude that GraGR generates tangles of realistic shapes.
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Figure 8.4: The comparison of the index difference

Out- and In-Degree Distributions

Just like ProSG methods, which use IOTA TSA, by the strict construction of GraGR
in Code 7, the out-degree of each message in the constructed tangle exactly follows the
prescribed out-degree distribution, but without employing TSA.

We now evaluate the in-degree distribution of the generated tangles. Specifically, we
measure mean and absolute difference values of the in-degree mean of tangles generated
by the two methods, as shown in Figure 8.3. Using λ = 10 as an example, Figure 8.3a
shows that the average in-degree of tangles generated by two methods is essentially the
same. We show the absolute value of difference of in-degree mean in Figure 8.3b. For
higher numbers of vertices (e.g. more than 10000), the difference value is slightly larger.
However, the maximum difference is under 0.002, which is still small. As the number
of vertices grows, the difference of the in-degree mean becomes smaller, and, when the
number of vertices is 100000, the difference is still below 0.0005. Note that the in-degree
mean difference remains stable for changing parameter settings. These findings confirm
that the tangles generated by ProSG and GraGR have similar properties in terms of
in-degree.

Index Difference

We calculate the index difference in the generated tangles and compare their distributions.

Results are presented as CDF in Figure 8.4a. Note the good match of the index difference
distribution of the tangles generated by ProSG and GraGR for the same message arrival
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Figure 8.5: The comparison of the consumed time and memory

rate respectively. Depending on λ, the proportion of high index difference values (more
than 50) rapidly decreases: while for λ = 5, there is a very significant proportion of index
differences underneath 25, for λ = 10, the same proportion includes values underneath
50 and for λ = 15 and λ = 20 - values under 100.

Figure 8.4b shows this phenomenon more clearly. The index difference values of the
tangles generated by ProSG and GraGR are almost the same. The index difference values
are distributed in a small range, for example, most index difference values of the tangles
with λ = 5 are mostly distributed in the range (1,20). As λ increases, the median and
mean value of the index difference distribution also increase. Overall, however, the index
difference in the tangles produced by ProSG and GraGR are similar.

Runtime and Memory Cost

We evaluate both ProSG and GraGR approaches in terms of runtime and memory
consumption required when generating tangles of the respectively same size. We run
experiments for different tangle sizes N and using different message arrival rates λ. We
record the elapsed time and the required memory. The results are shown in Figure 8.5.

First of all, we observe that λ has almost no effect on memory consumption. Hence, we
chose λ = 10 as an example. The upper plot in Figure 8.5 shows the consumed memory.
As expected, bigger graphs (more vertices) require more memory; the relationship is
essentially linear. To better understand GraGR, we present the consumed memory
separately for both of its phases. GraGR Refinement part consumes approx. 3 times
more memory than its Generation part, because Refinement needs to calculate the
out-degree distribution of the tangle. Comparing GraGR to ProSG, we observe that
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GraGR consumes only half of the memory required by ProSG for the same size of the
generated IOTA tangle.

The second plot in Figure 8.5 describes the runtime duration of both generators for a
tangle of the same size. Again, as expected, with the increasing number of vertices,
both ProSG and GraGR require more time; the relationship is, again, essentially linear.
However, the runtime of ProSG grows significantly faster than that of our algorithm.
Generating a tangle with the same number of vertices, GraGR is up to 10 times faster.
Also note that the message arrival rate has a relatively low impact on GraGR execution
time.

Overall, GraGR is way more efficient. From the observed trend, and expressing it another
way around, on a platform with 1024MB of memory, to produce a tangle with 1 million
vertices, the state of the art ProSG requires from 3000 to 5000 seconds, depending on the
message arrival rate, while GraGR finishes the task in only 300 to 500 seconds. Given the
second-only duration of tangle production for smaller size tangles, with GraGR synthetic
tangles can be produced on the fly, without the need to store the tangles for latter
analysis. This significantly speeds up the experimentation.

8.5 Conclusion
In this chapter, we propose a novel IOTA tangle generation algorithm. Instead of following
IOTA protocol like all existing generators (aka ProSG), our proposal, GraGR, manipulates
the topology of a generated random DAG, until its properties fulfill requirements on
IOTA tangles. While GraGR delivers results topologically equivalent to ProSG, GraGR
consumes only about half of the memory and is up to 10 times faster.

One of the key contributions of this work is the development of an efficient simulator
for generating tangle topologies without relying on traditional random walk methods.
This innovation addresses significant computational challenges, particularly for scenarios
involving extensive parameter studies or experimentation. GraGR directly generates
tangle topologies based on pre-defined parameters, enabling researchers to efficiently
study the structural properties of the DAG. The efficiency of this simulator is particularly
advantageous for research purposes, allowing for rapid evaluation of whether the generated
topology meets the desired design objectives. This approach not only advances the
methodology for studying DAG topologies but also paves the way for more efficient and
scalable implementations of tangle-based systems.

The main difference between ProSG and GraGR is the reliance of ProSG on repetitive
reverse random walks. Our evaluations suggest that such random walks are indeed the
main contributor to the performance gap of ProSG.

In general, the new tangle generation algorithm provides the research community with
an easier way to yield experimental tangles for DAG DLT research. For the first time,
GraGR allows on-the-fly generation of realistic IOTA tangles with hundreds of thousands
of messages.
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8.5. Conclusion

We recently found that dPLN distribution may be a better fit [GXHD23b] for tangle
degree distribution. While in this chapter, we still rely on the accepted state of the and
require Poisson distribution, a generator using dPLN distribution will be addressed in
our future work.
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CHAPTER 9
A Lightweight Cross-Domain

Proximity-Based Authentication
Method for IoT Based on IOTA

Nowadays, electronic industry witnesses a massive explosion of offering IoT devices with
cellular technology to the market for Machinery Type Communication (MTC). Due
to usually unmanned deployments, MTC requires authentication for security reasons
before exchanging actual information. Today, IoT cross-domain authentication executed
at a blockchain backend side is well studied. However, lightweight proximity-based
authentication for cross-domain IoT devices is still lack of consideration. In this chapter,
we show the first attempt to solve this problem based on IOTA blockchain technology.
Specifically, our solution benefits both from the advantages of IOTA blockchain and the
capabilities of MEC so that a lightweight authentication procedure can be achieved by
reducing involvements of the heavy backend side. A small in-house prototype system is
implemented in order to validate the feasibility of the proposed solution.

The following chapter is organized as follows. Section 9.2 briefly summarizes the literature
review. Section 9.3 gives a formal problem statement of our objective. In Section 9.4, we
introduce the details of our proposed solution, specifically about how the proximity-based
authentication service is built based on IOTA blockchain. After that, our prototype
system is introduced in Section 9.5 and Section 9.6 concludes this chapter.

9.1 Introduction

In recent years, the adoption of IoT is rapidly happening in various industry sectors.
Today, most people have more than one wearable; increasing number of so-called smart
home appliances are observed; most of governments significantly invest on building smart
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cities and factories (e.g. Industry 4.0 in Germany [Jaz14]). At its heart, IoT devices play
an irreplaceable role as the frontier for data collection, transmission and local actuation.
With the support from backend clouds, a fully operational loop can be formed without
human intervention. With the popularization of IoT devices, MTC will dominate most
communication traffic in future networks. Such a phenomenon is further amplified in the
forthcoming 5G era because ubiquitous wireless connectivity and high bandwidth with
mobility support are assumed as a solved problem.

However, MTC suffers security issues. Firstly, IoT devices are expected to work standalone
without regular maintenance (e.g. in open and rural areas), thus easy to be damaged
and/or hacked. Secondly, IoT devices are usually resource-constrained, which prevents
IoT devices from executing sophisticated mechanisms for self-protection. If IoT devices
are compromised without notice, other participants in the system face security risks.
Especially when cellular IoT devices come into the whole picture, there will be a significant
number of devices deployed at a wild range without regular maintenance. Consequently,
self-managed authentication for MTC is a prerequisite before the actual communication
starts.

In terms of where the authentication is executed, current proposals can be mainly
categorized into two types. The first type is an IoT device authenticated at a backend
side. For example, before a smart sensor uploads collected data for further processing, the
backend server will have to first authenticate if the IoT device is legitimately identifiable.
In this case, the backend side completely determines whether a device is legitimate
by verifying some provided authentication information. The backend side can be an
intra-/inter-domain authenticator.

The second type is proximity-based authentication, where one IoT device is locally
authenticated by another IoT device, instead of forwarding the authentication job to
the backend side. Many IoT applications actually can drop into this category. For
instance, an electric car (eCar) may want to recharge on-demand at an electric charging
station (eCharger). Today some car vendors (e.g. Tesla) deploy their own eChargers,
thus authenticating is relatively easy (e.g. directly verifying a shared key secretly stored
in both devices) in a single domain. However, it does not have to be the case in the near
future because there will certainly be 3rd-party eChargers coming into the market while
different car vendors and eCharger providers have to collaborate.

The second type scenario represents a more generalized scenario where two machinery
devices from different domains may need to communicate with each other based on a
temporal objective. In an idea cyber-physical system, machinery type interactions shall
just happen like a social association, where IoT devices assume to be able to “talk” to
each other depending on their social relationships, no matter if the two participants
are from the same ecosystem. Therefore, it is quite difficult to enable such a temporal
interaction between IoT devices themselves if the interaction is cross-domain. It is even
harder to enable the two machinery participants to authenticate each other.

This work targets to the proximity-based authentication problem for cross-domain in the
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latter case where the authentication execution happens locally on a device rather than a
backend side. As introduced, the conventional solution is that an authentication request
of one device is sent from the visiting domain back to the home domain, wherein the
authentication request is processed and then replied back to the visiting domain. After
that, the authentication result is returned to the requesting device. First of all, engaging
two domains in order to support mutual authentication is a long process involving
organizational negotiations. If two domains are not associated (e.g. Tesla’s eCharger
does not support charging eCars from other companies), cross-domain authentication
requests cannot be handled. In addition, this type of solutions not only introduces
longer delay, but handling massive concurrent authentication requests could cause a
bottleneck issue at the backend side, no matter if blockchain technology is employed
[GKS17, HHBS18, WHL18, SLZ+20]. Last but not least, sharing sensitive data to other
domains may cause privacy issues.

In this chapter, we propose a lightweight solution for cross-domain proximity-based
authentication with reduced involvements from the backend side. Our contributions can
be summarized as follows:

• We combine to use IOTA1 blockchain within MEC to establish a decentralized con-
sortium authentication service network consisting of various IoT service providers;

• We provide detailed IOTA blockchain design including customized transaction
definitions and key operation procedures for realizing the proposed proximity-based
authentication;

• As an initial step, we implement a small in-house prototype system to validate the
feasibility of the proposed solution.

To the best of our knowledge, such an attempt of using IOTA blockchain to build a
cross-domain proximity-based authentication is not observed yet.

9.2 Related Work

9.2.1 Single Domain Authentication With Blockchain

For single domain access control, a large number of previous work studied IoT authen-
tication problems where authentication actions happen at a cloud backend side with
blockchain. The authors in [GKS17] propose an architecture for scalable IoT access
management based on blockchain. A trust region construction scheme is proposed for
IoT devices in [HHBS18]. Blockchain for authorization access with smart contract is
studied in [AKC+17]. Similar works can be found in [LPDG18, KS18, PTM+18].

1https://www.iota.org/
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9.2.2 Cross-Domain Authentication With Blockchain

BlockCAM proposed in [WHL18] employs a consortium blockchain to construct a decen-
tralized network with the root Certificate Authority (CA) as the verification nodes. The
hash values of the authorized certificates are stored in each block and the verification
process only needs to compare whether the hash calculated by the certificate provided
by the user is consistent with the hash stored in the blockchain. However, BlockCAM
does not remove the root CA, thus it still relies on one trust anchor for certificate
authentication. The actual use of blockchain is as of an immutable registry to store the
proof of existing certification.

BASA proposed in [SLZ+20] is a blockchain-assisted device authentication system for
cross-domain industry IoT. Specifically, a consortium blockchain is introduced to construct
trust among different factory domains. Identity-Based Signature (IBS) is exploited
during the authentication process. A cross-domain authentication is enabled with the
coordination of Private Key Generator (PKG), Area Authentication Service (AAS) and
the consortium blockchain. A similar work can be found in [JHS+20], which also uses
IBS and cross-domain coordination for signature verification.

However, in both works, heavy executions and interactions are required among the
coordination elements while IoT devices pend on until all interaction/authentication
procedures are finished at the backend side. Simply put, they belong to the backend side
authentication category as introduced before.

9.2.3 Integration of Blockchain and MEC

In [YYS+19], the authors summarized the recent work introducing edge computing to
extend the cloud resources and services to be distributed at the edge of the network
for blockchain applications. For example, in [GWZ+19], blockchain is integrated with
MEC for smart grid network data collection. Another example is in [XZN+18], the
authors proposed to outsource the proof-of-work puzzles to MEC for mobile blockchain
applications, where an economic approach for edge computing resource management was
designed to incentivize collective contributions from mobile edge nodes.

For the authentication problem, in [GHG+19], the authors proposed a distributed and
trusted authentication system that combines MEC and blockchain to provide efficient
authentication for smart terminals. However, the main goal is to provide an optimized
Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. In [AKA+18], the
authors proposed to use blockchain combining with fog computing nodes for users who will
be authenticated before accessing an IoT device. However, the authentication happens
at the backend side but proximity IoT authentication is not solved.

9.2.4 Main Differences

Generally, both intra-/cross-domain authentication solutions built with blockchain tech-
nology introduce sophisticated procedures at the backend side, which may cause longer
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delays and significant overheads. For highly dynamic and on-demand MTC services, this
may cause efficiency problems. In addition, most of the existing solutions use classical
blockchain technology such as Ethereum [W+14] or Hyperledger Fabric [Cac16] (usually
with similar PoW consensus mechanism).

Compared with the literature works, specifically we target to proximity-based authenti-
cation and reduce involvements with the backend side. Additionally, the proximity-based
authentication shall support cross-domain scenarios in a decentralized, efficient and
flexible manner. Last but not least, using IOTA to cross-domain proximity-based authen-
tication problem is not observed according to our literature review. In general, our work
can be considered as a complementary proposal in terms of the authentication execution
location.

9.3 Problem Statement

In the following discussions, we use ‘device’ to denote ‘CIoT device’ for simplicity.

9.3.1 Our Assumptions

First of all, we assume that there are multiple IoT service providers considered, each
of which is denoted as SPi. An IoT service provider represents a service domain, in
which every device di

p in this domain are under the management of the service provider
SPi. Every device di

a is equipped with a cellular interface for accessing mobile network
services and a near-field communication interface (e.g. ZigBee or Bluetooth) for proximity
interactions.

Secondly, we assume that there is no 3rd-party who can act as a trust anchor for the
multiple service providers. As a result, a centralized solution is excluded.

Third, we assume that every device di
a is already granted to access mobile network

services over its cellular interface, which means that every device has full connections to
MECs. Note that being able to access MECs via mobile network services does not mean
two devices di

a and dj
b from different service domains can authenticate each other.

Last but not least, as mentioned, we assume that authenticating at backend side may
risk latency due to possible cross-domain interactions and signaling overheads. Thus, a
proximity-based authentication is preferably considered.

9.3.2 Device Registration Approach

In a service domain, every device di
a has to register at its service provider (i.e. at SPi).

There are three main options for registration as follows:

The first way is that a device can create an account (with username and password) at
the service provider side. This is the most conventional way as how we usual create an
account at a website.
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The second way is identity-based method as introduced in the previous section, where a
device links its public identity (e.g. an email account) to its private key, which is generated
from a PKG. Although this option shows promising benefits such that identity-based
encryption and digital signature verification can be easily done, cross-domain interactions
(e.g. authentications) suffer large overheads with coordinations between multiple PKGs
as already shown in the existing solution [SLZ+20].

Our system setting incorporates the third option, which is PKI-based certificate, where
every device gets a certificate from a CA. In our case, the CA of a device di

a can be
just its service provider SPi. Formally, we denote a certificate of a device di

a that is
authorized in service domain SPi as Certi

a. The key reason we use the third option is
because proximity-based authentication can directly happen between two devices if the
verifying device possesses the public key of the corresponding service provider pubKi

who issues the certificate to the device that is being authenticated. Another reason is
that with the rapid development of hardware, the compute resource on a device also
upgrades a lot so that computational jobs such as certificate/signature verification will
not be a burden anymore.

9.3.3 Cross-Domain Proximity-Based Authentication Problem

Based on the assumptions and given the device registration approach, our problem can
be formally described as follows.

Figure 9.1: Cross-Domain Proximity-Based Authentication Problem

There are two different service providers SPi and SPj , each of which manages its own
devices and issues certificates to the devices with its asymmetric cryptography key pair
⟨privKi, pubKi⟩. Additionally, device di

a and dj
b register at SPi and SPj separately.

Our problem is how device dj
b can locally fast verify device di

a’s certificate Certi
a with

less interaction without forwarding the authentication request to the backend side. An
illustration of the problem is also depicted in Figure 9.1.
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9.4 Our Solution

9.4.1 System Architecture

Our solution has three main components consisting of a set of service providers (SP1, · · · , SPk),
devices ({di

p}ki=1) belonging to corresponding service providers, and a MEC infrastructure
that can be operated by multiple mobile network operators.

The service providers can be considered as a device vendor or an OTT (Over-The-
Top) companies, and the MECs provided by mobile operators can be considered as
underlying resources, on which the application layer builds the cross-domain proximity-
based authentication service for the devices. The general architecture is depicted in
Figure 9.2.

Figure 9.2: General Solution Architecture

Three types of interfaces are introduced in our system. 1) The vertical interface between
the OTTs and the MEC resource layer, which is used to deploy blockchain nodes from
every service provider to constitute the authentication service; 2) the horizontal interface
between MEC nodes, which is used to execute blockchain protocol in order to distribute
immutable information. The detailed design of the blockchain will be introduced in the
next section; 3) the vertical interface between the devices and the MEC nodes, which is
used to access the blockchain authentication service from the end-users.

9.4.2 Main Idea

Every service provider authorizes its own devices by issuing a device certificate. Every
service provider publishes at least one piece of information when authorizing a device
certificate:

• Certi: The certificate of the service provider itself, in which the public key informa-
tion pubKi that can verify the issued device certificate is included,

onto the blockchain network. After a distributed consensus procedure, the information is
immutably synchronized and available on every MEC node.
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When a first device (e.g. dj
b) from one domain (e.g. SPj) want to authenticate a second

device (e.g. di
a) from another domain (e.g. SPi), the first device dj

b retrieves the published
information (i.e. Certi) from the local MEC node to validate the provided certificate of
the second device (i.e. Certi

a). Note that the consideration of certificate revocation that
a service provider invalidates a previously issued device certificate will be introduced
later.

We can see that the overall procedure does not involve any long authentication execu-
tion and interactions happening at backend side and the verifying device executes the
authentication locally. In addition, the contact between the two devices are based on
direct peer-to-peer communication.

9.4.3 Customized IOTA Blockchain Design

Service providers who want to constitute the cross-domain proximity-based authentication
service join in a consortium. The consortium is a permissioned virtual organization,
in which every participant is sanctioned to each other after an entering verification
process. Note that this is not equivalent to a centralized 3rd-party model. Rather It
can happen in a distributed manner as well such as entering with an application process
that the majority of existing participants have to approve first. The actual cross-domain
authentication service is still built in a decentralized way, where our modified IOTA
blockchain network works for.

As we introduced, instead of simply using a traditional blockchain platform, we build our
cross-domain authentication service with IOTA blockchain technology. The key feature
of IOTA is its lightweight transaction processing manner but without the heavy PoW
mining phase. This makes IOTA or its variants considered suitable for IoT applications,
wherein tiny, faster, and massive instant transactions are typical cases.

Specific IOTA Transaction Structure

An IOTA blockchain network accommodates transactions and attaches them into a
tangle topology, where every single vertex is a transaction object. To the information
(i.e., Certi) that is published by every service provider, correspondingly, there is a type
of transaction, and additionally, there is another type of transaction for publishing
revocation log information RevokeLogi

a against a device certificate. The three types of
transactions are listed as follows:

1. SPCert-Tx: Service Provider Certificate Transaction;

2. CertRevoke-Tx: Service Provider Revocation Transaction.

We now introduce their structure definitions respectively whose Python code sample is
shown in Listing 9.1.
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Listing 9.1: Transaction Definitions (key fields only)
class txHeader :

hash = ’ ’ # Tx hash va lue o f a l l t x f i e l d s , 9
timestamp = 0 # Tx submiss ion time , 9
value = 0 # Token va lue ( always 0) , 27
bundle = ’ ’ # Bundle hash po inter , 81
trunkTx = ’ ’ # The 1 s t t x e x i s t i n g in tang l e , 81
branchTx = ’ ’ # The 2nd tx e x i s t i n g in tang l e , 81
address = ’ ’ # 0−va lue address f i e l d ( random ) , 81
attachTag = ’ ’# A user−de f ined tag , 27

class sPCertTx ( txHeader ) :
sPCertData = ’ ’ # Message bu f f e r , may be fragmented , 2187

class certRevokeTx ( txHeader ) :
revokeCert = ’ ’ # Message bu f f e r , may be fragmented , 2187

The two types of transactions share the same transaction header definition. The SPCert-
Tx has the sPCertData field, where a service provider encodes its own certificate and
publishes with the composed transaction; the CertRevoke-Tx contains a revokeCert field,
where a revoked device certificate is encoded in the transaction. All specialized fields
here will be serialized in Trytes format and encoded in a message field of a transaction.

If the original message exceeds the maximum length, the transaction will be decomposed
into smaller transactions submitted together as a bundle transaction to IOTA network.
This is why in the transaction header, there is the bundle field specifying the hash value
of a previous transaction in the same bundle.

Since our problem does not involve cryptocurrency tokens, according to IOTA’s require-
ment, our transaction type is always ‘zero-value transaction’, thus in the transaction
definition, the value field is always 0 and the address field specifies no recipient but a
random address; furthermore, except specified with value 0, all string fields are in Trytes
format and the integer number at the end of the comments tells the maximum field
length.

9.4.4 Key Procedures

Given the specialized transaction definitions, the main procedures operating the cross-
domain proximity-based authentication are described as follows.

Device Registration

The first procedure is the registration procedure, which is depicted in Figure 9.3.

The first step is that a device sends a registration request consisting of its profile including
its pubKi

a as its IDa to its IoT service provider SPi (its privKi
a is secretly kept locally).
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Figure 9.3: Device Registration Procedure

The profile data may contain other fields such as a serial number, manufacture date,
model and so on.

Next, the IoT service provider checks the attributes in the profile; if valid, a certificate
with a digital signature is issued with specifying an expiration date information as well.
Meanwhile, a transaction SPCert-Tx is submitted to an IOTA node deployed at MEC
by the service provider. After the transactions are successfully processed by the IOTA
network, the commission results are returned. Note that SPCert-Tx does not have to
be submitted after every registration if an identical secret material is used repeatedly
ot issue certificates; otherwise, every certification has a corresponding secret material
behind it.

Service Access and Proximity-Based Authentication

A device di
a from one domain sends a service request including its profile and certificate

(Certi
a) to a second device dj

b belonging to another domain SPj . The second device parses
the domain information from the first device’s certificate (i.e. Certi

a).

The second device sends a read request to an IOTA node deployed at MEC to retrieve
information of the corresponding service provider SPi’s certificate Certi and possibly the
latest revocation information related to the certificate of the first device. The IOTA node
at MEC responds to the second device with lookup results.

If all information is available, the second device checks if the certificate of the first device
was revoked with the found RevokeLogi

a; if not, the second device then checks if the
certificate of the first device is valid by using the service provider’s certificate retrieved
from the IOTA node; if so, the authentication result is successful; otherwise, failed.

The second device responds the service request with the authentication result and the
service access can proceed (if the result is [OK]). The second procedure is depicted in
Figure 9.4.

Device Certificate Revocation

A service provider shall be able to manage the certificates issued from it. An important
task is to revoke a certificate considered as invalid when necessary, even if the certificate
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Figure 9.4: Proximity-Based Authentication Procedure

is still before its original expiration date.

A promising feature of IOTA is that a transaction has an AttachTag field as in Listing 9.1,
which can be used to specify extra public information regarding the transaction. This
helps to quickly search and locate interested transactions without first downloading and
decoding a transaction, which is the usual way when using traditional blockchain such as
Etheruem.

Specifically, a service provider composes a CertRevoke-Tx, where the AttachTag field
specifies the revoked device certificate information and the message field encodes the
actual device certificate data, which can be verified. After the commission is done, the
service provider gets a confirmation from its IOTA node. The revocation procedure is
depicted in Figure 9.5.

Figure 9.5: Device Certificate Revocation Procedure

Note that although submitting a certificate revocation transaction is simple, some other
jobs can be done in parallel so that the efficiency local check at the end user side can be
further improved. Specifically, independent to the revocation transaction submissions,
every IOTA node in the network can prepare a local Certificate Revocation List (CRL)
by searching the AttachTag fields in the ledger records. The local CRL can be a hash
table taking device identifiers as the keys so that a device can quickly identify whether
or not a certificate is revoked.
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9.5 Our Prototype

In order to verify our proposed framework, we have implemented an in-house simplified
prototype system. The prototype consists of a small local server farm, two WiFi Access
Point (AP)s, and two Raspberry Pi 4 single-board computers:

• Raspberry Pi 4: Two Raspberry Pi 4 devices were chosen to simulate CIoT
devices. Each device is equipped with Bluetooth for proximity-based communi-
cation and WiFi for connectivity with the service providers. The Raspberry Pi 4
provides a quad-core ARM Cortex-A72 processor and 8GB RAM, offering sufficient
computational power for cryptographic operations such as certificate validation
and signature verification. Its affordability and compatibility with IoT frameworks
make it an ideal choice for prototyping.

• WiFi Access Points (APs): Two WiFi APs were used to establish a wireless
network between the server farm and the Raspberry Pi devices. This ensures
seamless communication with the service providers and the IOTA blockchain nodes.

• Local Server Farm: A virtualized server environment was deployed to sim-
ulate two service providers (SP1 and SP2). The server farm hosts the IOTA
blockchain nodes and manages the certification and authentication processes. Each
service provider runs on a separate virtual machine, ensuring isolation and realistic
management of device registrations and certificate issuance.

9.5.1 System Architecture and Workflow

The architecture is shown in Figure 9.6, wherein the local server farm provides computing
resource pool and a virtual network topology is created there. WiFi APs are connected
to the servers as an access network for IoT devices. Two Raspberry Pi devices mimic
CIoT devices (d1

a and d2
b).

Cert ificati

on

Service 1

Cert ificati

on

Service 2

AP1

AP2

Device A

Device B Server Farm

IOTA 

Node1

IOTA 

Node2

IOTA 

Node3

IOTA 

Node4

Figure 9.6: A Simplified System Architecture

Firstly, two service providers (SP1 and SP2) are deployed as two virtual machines running
in the server (in green and blue respectively). The IOTA blockchain network is created
by the management tool installed in the server farm. By doing so, we assign two service
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providers their addresses and accounts including preparing required key materials for
certifying devices.

In our prototype, IOTA is configured to launch a 4-node blockchain network representing
heterogeneous resources provided from MECs of different operators. The proposed
transaction definitions are prepared at the two service providers. Note that, every service
provider owns at least one of the four IOTA nodes while the rest of the two can represent
other service providers in the same consortium, which are not explicitly shown in this
prototype.

Preparation jobs work as follows. Device A (Device B) is configured with the IP address
of its own service provider as a default factory configuration. After it boots up and
connects to the service provider to do registration (i.e. Device Registration Procedure
before). After that, service provider 1 (2) submits an SPCert-Tx to its owned IOTA
node. After going through IOTA’s distributed consensus protocol (i.e. TSA and site
synchronization), the public key certificate is distributed to all the other nodes and stored
in the local ledger of every IOTA node.

Proximity authentication works as follows. Device A sends a message containing its
certificate to Device B. This is done over a proximity communication channel (Bluetooth
interface); after receiving the message, Device B follows the procedure proposed in
Figure 9.4 to look up the necessary information from the IOTA node owned by the
domain it belongs to. Note that the computational costs of public key certificate
verification depend on the digital signature algorithm used at the certification service.

In our experiment, the main interactions of the cross-domain authentication are directly
between the two proximity devices, only retrieving the required verification materials is
done by reading from an IOTA node at the MEC, which is deployed by the service provider
managing Device B. In addition, the deployed IOTA blockchain is only responsible for
distributed proof log information and verifying tools (i.e. certificates of service providers),
both of which can be done periodically but independently to the authentication events.
In other words, they can be prepared before the retrieval requests come.

9.5.2 Scalability and Security Analysis

The current prototype demonstrates scalability up to N devices with the existing server
and node setup. However, larger deployments would require optimizations, such as:

• Adding more IOTA nodes to handle increased transaction loads.

• Implementing caching mechanisms for frequently accessed certificates and revocation
logs.

The system was tested against several potential attack scenarios:

• Man-in-the-Middle (MITM) Attacks: Bluetooth communication was secured
using encrypted pairing to mitigate unauthorized interception.
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• Certificate Forgery: The use of IOTA’s tamper-proof blockchain ensures the
integrity of issued certificates.

• Denial of Service (DoS): The lightweight nature of the IOTA nodes minimizes
vulnerability to large-scale DoS attacks, though further enhancements such as rate
limiting may be required.

9.5.3 Challenges and Future Work

The implementation of the prototype revealed several challenges that require further
attention. One limitation is the computational power of the Raspberry Pi, which, although
sufficient for the current implementation, may struggle with highly complex cryptographic
algorithms or large-scale deployments. Additionally, environmental factors such as
interference can impact the reliability of Bluetooth-based proximity communication.
While the IOTA blockchain proved effective for the prototype, further testing is necessary
to evaluate its scalability and efficiency in real-world IoT ecosystems. Future work aims
to address these challenges by testing alternative hardware, to enhance performance,
extending the prototype to support multi-hop proximity authentication, and conducting
large-scale simulations to assess scalability and security under malicious attack models.

With the first version of our prototype, we aim to verify the feasibility of the proposed
solution. Ongoing work is still being undertaken for performance evaluation on scalability
and more testing will be done by including various malicious attack models in our future
work.

9.6 Summary
In this chapter, we studied a cross-domain proximity-based authentication problem for
IoT devices. In general, our solution provides a local authentication execution between
two devices, instead of relying on heavy backend procedures as of existing solutions.
Additionally, our solution is built with a lightweight blockchain - IOTA within MEC,
which inherits the benefits of the featured technologies. As the first step, feasibility
verification was with our in-house prototype and the next step will aim for deeper
performance gain evaluations.
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CHAPTER 10
Summary and Future Work

In this concluding chapter, we present a comprehensive summary of this thesis. Sec-
tion 10.1 offers an overview of the topics addressed and the contributions presented. In
Section 10.3, we revisit the research questions originally introduced in the thesis’s intro-
ductory section. Section 10.4 is dedicated to a thoughtful examination of the limitations
inherent in our work, concluding with a succinct exploration of potential avenues for
future research.

10.1 Summary of Contributions
This thesis primarily delves into the extensive research concerning scalability and security
within the realm of the DAG-based blockchain known as IOTA. Our focus has centered on
three distinct aspects, each accompanied by comprehensive analysis and the presentation
of optimized solutions, as well as an exploration of prospective applications. These
facets include: 1) A meticulous examination and characterization of the authentic IOTA
tangle; 2) The introduction of a pioneering transaction attachment algorithm designed for
incoming transactions; and 3) An in-depth exploration of IOTA’s potential applications
within MEC.

In our initial phase, we focused on the comprehensive analysis of the properties exhibited
by the genuine IOTA tangle. To accomplish this, we undertook the task of acquiring the
authentic IOTA database and subsequently reconstructed the IOTA tangle. The findings
from this analysis serve as invaluable resources for researchers seeking to gain insight
into the authentic properties and performance metrics of IOTA, facilitating their pursuit
of further algorithmic optimization. Our investigation extended to an exploration of the
in-degree distribution, revealing notable distinctions between the in-degree distributions
of the real-world tangle and its simulated counterpart. While the simulated tangle
adhered more closely to a Poisson distribution, the real tangle’s distribution bore the
characteristics of a power law distribution. Moreover, we scrutinized transaction delay
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in the authentic IOTA and determined that it exceeded initial expectations. Further
exploration unveiled the presence of atypical structures within the real IOTA tangle,
including instances of blowballing and elongated chains. This analysis also confirmed
that the transaction selection algorithm yielded limited influence on the progression
of cumulative weight. In an effort to offer a more precise portrayal of the in-degree
distribution within the authentic IOTA tangle, we engaged in a fitting process, ultimately
concluding that the dPLN provided a superior fit when compared to other long-tail
distributions such as LN, Exp, and PL. Our work culminated in the provision of fitting
parameters for the dPLN, an achievement facilitated by the development of an innovative
fitting algorithm founded on the EM algorithm. Recognizing the dynamic nature of
the tangle’s generation process and the inherent uncertainty within the tip selection
algorithm, we embarked on the development of a theoretical dynamic model aimed at
capturing the intricacies of the real IOTA tangle generation process. The insights derived
from our research contribute to a more comprehensive and tangible understanding of the
evolutionary trajectory of the real IOTA tangle.

Secondly, we introduce an optimized tip selection algorithm tailored to address the
challenges posed by high concurrency and diverse transaction scenarios, particularly
within the context of IoT deployments. In the course of this thesis, we set forth a dual-
tiered approach. Initially, we present a rapid tip selection mechanism designed to manage
burst transaction influxes within a DAG-based blockchain framework. Subsequently, we
extend this mechanism to propose a secure and scalable tip selection algorithm that
maintains a consistent count of unconfirmed transactions. Specifically, our advanced
tip selection mechanism eliminates the need for a random walk process to compute tip
selection probabilities. Instead, it leverages the transformation of the tangle into an
AMC and calculates the probability distribution of stable states. The implementation of
AMC not only circumvents the repetition of random walks, thus conserving time and
energy resources, but also facilitates batch addition of new transactions. Comparative
analysis against conventional random walk-based tip selection algorithms reveals superior
performance characteristics. Our proposed algorithm demonstrates diminished transaction
delay and reduced processing time, with the advantages becoming more pronounced
as the rate of incoming transactions escalates. In scenarios marked by a concurrent
influx of transactions, our method stands out as an exemplar of efficiency. Building
upon the foundation of the fast tip selection mechanism for burst transaction arrivals,
we have made additional refinements and introduced novel features to enhance both the
security and scalability of the tangle. This innovative algorithm excels in the selection
of abnormal unconfirmed transactions and expedited attachment of new transactions,
thus surmounting the prior challenge of reconciling security and scalability. In addition,
we have meticulously elucidated the primary parameters employed within this proposed
algorithm, delineating both the rationale and computation procedures behind the random
walk parameter and the threshold for identifying abnormal transactions.

Thirdly, we introduce a tangle simulator designed to generate the tangle topology without
resorting to the random walk process. The simulator operates by initializing predefined
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parameters, following which it employs graph theory principles to generate the tangle.
This approach significantly reduces computational complexity and enhances the speed
of tangle generation. Conventionally, the generation of simulated tangles necessitates
a minimum of two random walks for each transaction attachment process. In contrast,
our innovative graph-based simulator empowers devices with constrained computational
resources to expeditiously generate tangles.

Fourthly, this thesis delves into the practical application of IOTA, specifically within the
realm of the IoT. IOTA is purposefully designed to cater to IoT needs and has demon-
strated its versatility in various use cases. In Chapter xx, we present the development
of a lightweight authentication mechanism tailored for devices operating at the mobile
edge. This innovative mechanism facilitates the establishment of ephemeral communica-
tions between different devices and enables proximity-based cross-domain authentication.
Significantly, the entire authentication process occurs at the local devices rather than
relying on backend infrastructure. This approach not only streamlines the authentication
process by eliminating negotiation requirements and reducing inter-device interactions
but also enhances privacy and data security for users. To validate the feasibility of this
mechanism, we have implemented an in-house prototype.

10.2 Implications for Various Stakeholders

The findings and contributions of this work extend beyond theoretical advancements,
offering practical value to multiple stakeholders in the blockchain and IoT ecosystems. By
addressing critical challenges in scalability, security, and system design, this research not
only advances the understanding of DAG-based blockchain technologies but also provides
actionable insights for platforms, researchers, and end-users. The following sections
outline the specific implications for key stakeholders, including the IOTA Foundation,
blockchain research institutions, and practical users such as IoT and cloud service
providers. These discussions highlight how the proposed solutions can drive innovation,
improve system performance, and support real-world applications.

10.2.1 For the IOTA Foundation

By analyzing real-world IOTA tangle data, this work provides the IOTA Foundation
with valuable insights into how the tangle evolves and operates in real-world conditions.
Unlike theoretical models, this analysis reveals the true nature of the IOTA tangle,
identifying areas of potential security risks, deviations from the original design principles,
and inefficiencies in the current system. These findings offer a basis for refining the IOTA
system, improving its robustness, and addressing vulnerabilities.

Previous research has primarily focused on theoretical aspects or simulations of IOTA;
however, this thesis is among the first to delve into real data analysis. The insights
generated can serve as a unique resource for the Foundation to understand its system
better and guide future development and algorithmic adjustments.
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10.2.2 For Blockchain Research Institutions

This work introduces a novel, secure, and highly scalable DAG-based blockchain consensus
mechanism, which offers fresh inspiration for researchers. Blockchain institutions can
build upon this mechanism, conducting further studies and experiments to enhance it or
adapt it for their own use cases.

Leveraging the proposed consensus mechanism, research institutions can design a
blockchain system that ensures scalability while maintaining transaction security, which is
critical for real-world applications where high throughput and low latency are necessary.

The proposed topology generation algorithm eliminates the need for complex mathematical
computations to generate experimental topologies. This feature makes the algorithm
a convenient tool for researchers conducting experiments on DAG topologies, saving
computational resources and enabling quicker iterations.

10.2.3 Impact on IoT and Cloud Companies

The proposed blockchain-based authentication method provides a cost-effective and
efficient solution for scenarios requiring device authentication across different regions.
This is particularly beneficial for IoT companies managing devices that operate across
regions and need secure cross-domain authentication mechanisms.

By reducing authentication costs and enhancing system security, the proposed approach
addresses critical concerns for these companies, paving the way for more secure and
scalable IoT deployments.

This work not only advances the theoretical understanding of DAG-based blockchains
but also bridges the gap between research and practical applications. The proposed
methodologies and insights have the potential to catalyze innovation across various fields,
from refining existing blockchain systems to inspiring new use cases in IoT, finance, and
other industries.

10.3 Revisiting Research Questions
In Section 1.2, we introduced four key research questions that have served as the
foundational pillars of the research presented throughout this thesis. In the concluding
chapter of this thesis, we will revisit these research questions and provide a comprehensive
summary of the manner in which they have been addressed. Additionally, we will engage
in a critical examination of the potential limitations of our research work.

Q1: What does the real IOTA tangle look like, what is the performance of
the real IOTA and the dynamic generation model of the real IOTA tangle?

We addressed this question in Chapter 3, Chapter 4, and Chapter 5. In the initial
stages of former research, tangle analysis was primarily based on simulated data, lacking
insights into the real IOTA tangle. To enhance IOTA’s performance, a comprehensive
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understanding of real tangle properties is indispensable. Our approach involved accessing
and parsing the actual IOTA database, which enabled us to convert the tangle data
into a readable JSON file. Leveraging the networkx Python package, we reconstructed
the tangle and conducted extensive analyses of its characteristics, including in-degree,
cumulative weight, and transaction confirmation delay. By sharing our method for real
tangle reconstruction in Chapter 3, we’ve contributed valuable insights. However, it’s
important to acknowledge certain limitations in this chapter, particularly regarding the
precision of tangle in-degree fitting. As the in-degree distribution closely reflects the
tangle’s generation process, more accurate estimations and fittings of this distribution
are required for modeling the dynamic tangle generation process effectively. In Chapter 4,
we explored common long-tail distribution fitting and identified that the Double Pareto
Lognormal (DPLN) distribution offers a better fit for the in-degree distribution. While
this significantly enhanced our understanding of the real tangle’s dynamic process, there
is still room for improvement in fitting quality. In Chapter 5, we introduced a fitting
algorithm based on the EM algorithm to enhance fitting accuracy. Additionally, we
utilized SDE to describe the dynamic generation process of the real tangle, further
contributing to the field of study.

These contributions collectively advance our understanding of the real IOTA tangle and
its dynamic generation process, providing a foundation for further optimization and
consensus algorithm improvements. However, ongoing work remains to further enhance
the quality of tangle fitting and better characterize its dynamic generation process.

Q2: How to design an efficient and secure transaction selection algorithm
running on the resource-constrained device for the DAG-based blockchain?

We addressed this question in Chapter 6 and Chapter 7. In the beginning, the former
tip selection algorithms use random walks to select the unconfirmed transaction and
attach transactions to the tangle sequentially. Therefore, we propose a TSA without the
random walk which can calculate the selection probability distribution of all unconfirmed
transactions, then attach the new coming transactions to these transactions with the
calculated probability. At first, we propose a tip selection algorithm for burst coming
transactions. We set a time window. Then we convert the tangle to the absorbing Markov
chain and calculate the absorbing stable state. This absorbing stable state is same to the
tip selection distribution of all unconfirmed transactions in this time window. When a
bundle of transactions comes to the tangle in this time window, they will be attached to
the tangle based on this probability distribution. In this way, the parallel attachment
could be achieved the attaching efficiency could be improved and the confirmation delay
would be decreased. However, we have found the limitations of this algorithm. When we
use a big factor to calculate the probability distribution, the security could be maintained
but the number of unconfirmed transactions would be increased. And when a small
factor is used, the number of unconfirmed transactions could be controlled, but the
security can not be guaranteed. These limitations are solved in Chapter 7. We provide
an algorithm that could guarantee security and scalability. After calculating the tip
selection probability, the abnormal tips could be selected out based on the predefined
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threshold value. Then the new transaction could be attached to the tangle randomly.
In the end, this algorithm still has some limitations. The calculation and setting of the
probability calculation factor and the threshold of the abnormal transaction are based
on the empirical method and we still lack a theoretical derivation and analytic solution.
The algorithm could only be used in some specific conditions.

These contributions collectively advance our understanding of the real IOTA tangle and
its dynamic generation process, providing a foundation for further optimization and
consensus algorithm improvements. However, ongoing work remains to further enhance
the quality of tangle fitting and better characterize its dynamic generation process.

Q3: How to design an efficient simulator to generate the IOTA tangle fast
for the TSA algorithm analysis?

We addressed this question in Chapter 8. While various directed graph generation
algorithms exist, they cannot effectively replicate the complex tangle topology structure.
Previous tangle simulators also had limitations, as they relied on repeating random walks
to generate simulated tangles. To tackle this research question, we introduced a novel
simulator that integrates graph generation principles with tangle structure properties,
known as the GraGR. GraGR comprises two essential steps. Initially, it establishes
directed edges between sites based on predefined in-degree distribution. Subsequently,
it refines this arrangement based on the out-degree distribution, aligning it with the
predefined out-degree distribution. The output of this second step yields the desired
tangle structure. Nonetheless, there are some constraints. The algorithm presented in
Chapter 8 generates complete tangle structures but does not simulate their dynamic
generation process.

Q4: How to deploy the IOTA in IoT use cases in real life and improve the
IoT service performance?

We addressed this question in Chapter 9 through the creation of a lightweight cross-domain
proximity-based authentication mechanism. As the IoT continues to expand, an increasing
number of devices populate networks, necessitating secure communication through proper
authentication. Our designed lightweight cross-domain authentication mechanism enables
local authentication before communication, preserving data security and privacy. This
solution consists of three main components: a group of service providers, devices affiliated
with these service providers, and a MEC infrastructure that accommodates multiple
mobile network operators. The authentication process begins with a device sending
a registration request to its respective service provider. The service provider verifies
the request’s attributes and finalizes the registration process. Concurrently, the service
provider submits a certificate transaction to an IOTA node. Subsequently, another device
from a different domain initiates service access and proximity-based authentication with
MEC support. This device forwards service requests and retrieves the certificate from
the IOTA node. It then verifies the certificate’s validity, completing the authentication
process. Additionally, a device certificate revocation mechanism was developed, allowing
service providers to issue certification revocation transactions to the IOTA node. The
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IOTA node updates the certificate revocation list and confirms the process with the
service provider. Nevertheless, several limitations should be noted: 1) The authentication
method was tested in a small-scale scenario with a limited number of devices, and its
applicability to larger scenarios remains unverified. 2) While feasibility was established,
an efficiency and authentication time assessment was not conducted.

10.4 Future Work

In this thesis, we have conducted explorations pertaining to the analysis of DAG-based
blockchain IOTA, modeling its generation process, optimizing the consensus methodology,
and exploring potential applications. Our efforts have been directed at addressing several
critical challenges, particularly those arising from disparities between real tangle and
simulated tangle, as well as the existing limitations in achieving a balance between
security and scalability through current consensus mechanisms. However, it is important
to acknowledge that several challenges and unexplored avenues remain. In this section,
we outline these challenges and propose possible directions for future research.

Real-time detection and identification of abnormal structures in tangles

A promising research direction is to analyze the anomalous structures in the DAG-based
blockchain, by importing the DAG structure, it can identify what are the anomalous
structures and what kind of anomalous structures are they. This technique will improve
the security of DAG-based blockchain. Real-time localization and identification of
anomalous structures can distinguish which areas have been attacked, thus enhancing
the security of the corresponding areas.

In contrast, with a real-time anomaly structure recognition algorithm, we can actually
monitor whether the DAG based shows anomalous behavior. When anomalous behavior
occurs, action can be taken to avoid further anomalous events and protect the security of
the blockchain. Note that the anomalous behavior algorithm does not prevent the node
that generates the anomalous behavior from continuing to add transactions to the DAG
based blockchain, but it can isolate the anomalous structure by using the anomalous
behavior algorithm to prevent other transactions from being added to the anomalous
structure.

For example, when a transaction with a large weight of an abnormal structure appears on
a DAG based blockchain, the transaction identification algorithm recognizes the anomaly
when this transaction structure is added to the blockchain, the current node flags the
abnormal transaction structure and adds the newly arrived transaction to the other
legitimate transactions so that the abnormal structure cannot be referenced by the other
new transactions and thus becomes invalid.

Synchronization of ledger data across diverse devices

A novel research direction that follows our recently proposed transaction selection
algorithm is DAG data synchronization across distinct devices based on this algorithm.
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This approach focuses on determining the consistency of ledger knowledge between two
servers. The goal is to synchronize both the topology data and ledger data of each node
while in an asynchronous state. Upon successful data interaction, a consensus is reached
among different ledgers.

As outlined in prior sections, our newly devised transaction selection algorithm prioritizes
the rapid addition of new transactions to the existing DAG ledger structure, all the while
maintaining security and scalability. However, the current implementation exclusively
facilitates the swift addition of new transactions on local nodes, without addressing
transaction synchronization between different nodes. Failure to synchronize the topology
and ledger data among diverse nodes can result in conflicting transactions. To achieve
network-wide data synchronization and decentralized data storage, there is an ongoing
need for an efficient algorithm to facilitate interactions between nodes.

By adopting an inter-device interaction methodology, we can ensure consistent data
synchronization across different nodes, mitigating the risk of conflicting transactions. The
device synchronization algorithm will systematically compare the database disparities
among various nodes to identify elements that require interactive synchronization. In
instances where content or transactions are found to be missing, the node currently
lacking said data will request synchronization from neighboring nodes. The ultimate
objective is to achieve a harmonized dataset across the network.

Ordering of transactions in a DAG-based blockchain

In a DAG-based blockchain, the simultaneous addition of a multitude of transactions
presents a fundamental challenge: how to establish a consistent global order for these
transactions. While various transaction ordering algorithms have been employed in
different DAG blockchains, a universal ordering algorithm remains absent in a pure
DAG-based blockchain, as evident from the literature review. Establishing a global
transaction order is crucial as it lays the foundation for providing sequentiality within
the blockchain, enabling the deployment and development of smart contracts.

Our previously proposed transaction attachment algorithm, like many other DAG-based
approaches, does not inherently consider the order of transaction additions. Unlike
traditional chain structures where transactions are uniformly appended one after the
other, DAGs involve parallel and unordered transaction additions, potentially leading
to varying orders across different nodes. In our approach, transactions are added to
the blockchain without a predetermined sequence, prioritizing scalability and security.
Consequently, when there is a need to retrieve the transaction order, our system can
provide information about transfer records and balance details.

The introduction of a transaction sequencing mechanism offers a solution to this challenge.
This mechanism enables the determination of the sequence in which transactions occur
within the blockchain. Access to transaction order information empowers the blockchain to
support a broader range of services, notably facilitating the execution of smart contracts.
For smart contracts to operate effectively, knowledge of the transaction sequence is
essential to ensure the accuracy of their execution results.
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