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Kurzfassung

Diese Dissertation widmet sich grundlegenden Problemen, die durch die Verbreitung von
Geräten in zunehmend verteilten Systemen entstehen. Während Ressourcen von zentrali-
sierten Clouds zu einem heterogenen Edge-Cloud-Kontinuum verteilt werden, überlasten
Datenmengen aus Inferenzanfragen und die für das Sammeln erforderliche Telemetrie
die Netzwerke. Bestehende Lösungen können die anspruchsvollen Anforderungen von
Edge-Cloud-Systemen nicht angemessen erfüllen, da sie zu komplex für die Einführung
sind, Ergebnisse liefern, die schwierig zu reproduzieren sind, oder die Grundursachen nicht
behandeln. Wir fokussieren uns auf Methoden, die mit geringem Aufwand erhebliche Ver-
besserungen bei der Integration in bestehende Systeme erzielen. Eine minimal-opinionierte
Referenzarchitektur betont die Kompatibilität mit bestehenden Systemen und die Be-
deutung der Beobachtbarkeit für automatisierte Entscheidungsmechanismen wie die
Terminplanung. Eine strenge empirische Methodik für Machine-Learning-Forschung in
Edge-Cloud-Systemen zeigt die Bedeutung der Einfachheit beim Entwurf von Methoden,
die in komplexen Systemen laufen sollen. Ein Trainingsalgorithmus und ein neuartiger
Wissensdestillationsansatz für aufgabenunabhängige Kompression erreichen erhebliche
Datenratenreduzierungen und übertrifft sogar die konkurrenzfähigsten Baseline-Verfahren.
Das Grundmodell besteht aus einem Encoder mit nur 140.000 Parametern und ist effizient
genug, dass die Latenzstrafe durch den Kodierungs- und Dekodierungsoverhead mehr als
durch die reduzierten Übertragungskosten ausgeglichen wird. Eine Erweiterung behandelt
Netzwerke, in denen Konnektivität nur intermittierend verfügbar ist und Durchsatz bevor-
zugt wird, wodurch das herunterladbare Datenvolumen um über zwei Größenordnungen
erhöht wird. Schließlich verbessert eine Methode, die Algorithmen zur Konstruktion sta-
tistischer Zusammenfassungen für die Überwachung erweitert, deren Kodierungseffizienz.
Die Erweiterung erhält nachweislich die zugrunde liegenden mathematischen Garantien
des Basisalgorithmus und die Kompatibilität mit bestehenden Systemen.

Zusammen schaffen die Beiträge eine prinzipielle Grundlage für skalierbare, transparente
und kodierungseffiziente Systeme, die nur die wichtigsten Informationen unter strengen
Beschränkungen für neue Paradigmen im verteilten Computing wiederherstellen und
übertragen.
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Abstract

The thesis concerns fundamental problems that emerge from the proliferation of devices
in increasingly distributed systems. As resources migrate from centralized clouds to a
heterogeneous edge-cloud continuum, payloads from inference requests and telemetry
required for monitoring overwhelm networks. Existing solutions cannot adequately
meet the demanding requirements of edge-cloud systems as they are too complex for
adoption, report results that are virtually impossible to reproduce, or do not address
root causes. We follow a strict bottom-up approach, focusing on simple methods that
yield significant improvements with little effort to integrate into existing systems. A
minimally opinionated reference architecture emphasizes legacy compatibility and the
importance of observability for automated decision mechanisms, such as scheduling. A
rigorous empirical methodology for Machine Learning research in edge-cloud systems
demonstrates the importance of simplicity when designing methods that are expected to
run in complex systems. A training algorithm and novel knowledge distillation approach
for task-agnostic compression achieves significant rate reductions, outperforming even
the most competitive baseline. The base model consists of an encoder with just 140,000
parameters and is efficient enough for the latency penalty from the encoding and decoding
overhead to be more than offset by the reduced transmission costs. An extension handles
networks where connectivity is only intermittently available and throughput is favored,
increasing downlinkable data volume by over two orders of magnitude. Finally, a method
that augments algorithms for constructing statistical summaries for monitoring improves
their coding efficiency. The augmentation provably maintains the base algorithm’s
underlying mathematical guarantees and compatibility with legacy systems.

Together, the contributions establish a principled foundation for scalable, transparent,
and coding-efficient systems that recover and transmit only the most salient information
under stringent constraints for emerging paradigms in distributed computing.
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CHAPTER 1
Introduction

Mobile data traffic is growing with an annual rate of more than 15% and is expected to
double by 2030, with 5G subscriptions alone projected to reach 6.3 billion [Eri25]. The
surge in bandwidth demand underscores the fundamental trade-offs between communi-
cation cost, latency, and information fidelity, motivating new frameworks for inference
in distributed systems. In particular, efficient data transmission and reliable recovery
of salient information are indispensable for semi- or fully decentralized platforms with
resources organized in hierarchical networks.

1.1 Motivation

The increased data availability, specialized hardware, and algorithmic advancements
have elevated Artificial Neural Networks (ANNs) as an enabler for numerous problem
domains. As foundational models become more reliable, platforms can accommodate
a wide range of applications using existing cloud infrastructure. When applications
are latency sensitive, computation may be pushed to mobile clients at the network’s
edge by applying model compression methods, such as quantization [JKC+18, LHC+24],
and knowledge distillation [GYMT21, WY22]. Problems arise when there are stringent
constraints on the solution quality and request completion times [Sat17]. The edge-cloud
continuum addresses the limitations of cloud and edge computing by organizing resources
hierarchically in a distributed network ranging from constrained edge devices to cloud
data centers [DPD22]. The paradigm promises increased resource efficiency and meets
the requirements of even the most demanding applications with the same convenience for
client programmers as public cloud computing service providers. A basic requirement
is observability since automated decision mechanisms, such as orchestrators and load
balancers, cannot function without information on the constantly updating system states.
Observability requires extracting telemetry from an increasing number of devices. For
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1. Introduction

example, the EU Rolling Plan for ICT standardization predicts that by 2030, 50 billion
connected devices worldwide will be in use, generating zettabytes of data [Com25].

1.2 Problem statement

While walled garden edge-cloud offerings exist for select services [XFM+21], semi- or
fully decentralized platforms still have to emerge [NRF+22, RD21]. We identify the data
volume generated by ANN inference requests and required by monitoring services as the
primary inhibitor for scalability. Therefore, the thesis is concerned with the fundamental
problem of managing the accelerating bandwidth costs as systems become increasingly
distributed. The challenges it addresses are motivated by basic requirements of a semi-
or fully decentralized platform [RRFD23]. We refer to a platform as a system of systems
where clients can indiscriminately deploy their applications. The platform handles scaling
and managing the underlying hardware infrastructure. Platforms may exploit locally
available resources at end devices, fog nodes from telecommunication providers, or source
existing infrastructure from third parties, such as VMs hosted in data centers from public
and private cloud services [RLF+20]. Client programmers enter contracts with platforms
based on application requirements. The contracts are typically expressed as Service Level
Agreements (SLAs) and consist of multiple Service Level Objectives (SLOs)[NMP+20].
Beyond providing a reference architecture, we do not pile onto the countless studies
that introduce opinionated suggestions on implementation details, advocate going in a
certain direction, or solve toy placement and scheduling problems. Instead, the thesis
views the problems through the lens of an operator of a distributed platform. The
operator represents a collective of engineers and system designers tasked with building
the platform.

The thesis empathizes with the operator and does not wish to further burden them
with fantastic ideas or over-engineered systems accompanied by elaborate diagrams. It
acknowledges that, stripped of all complexity, obfuscation, and mysticism, the edge-cloud
compute continuum is an exercise in system integration. A simple problem, yet arguably
the most ambitious paradigm of a distributed system. Worthwhile contributions must be
bottom-up, easily adoptable, and enable the emergence of such platforms. Accordingly,
the thesis makes minimal assumptions about the system design and components of the
platform. The following briefly describes the components and challenges we address
within the thesis’s scope. In-depth technical explanations are deferred to later chapters.

1.2.1 Data Compression

While building a compute continuum is an exercise in system integration, scaling it
is primarily problem in data compression. To significantly reduce data volume, lossy
compression algorithms are required as perfect reconstruction of the input is needlessly
strict. The challenge is to design algorithms that are semantically lossless, focusing on
salient information and keeping the overhead to recover context minimal. The following

2



1.2. Problem statement

elaborates on what semantic losslessness implies for the two system components and their
respective modalities considered in the thesis.

Distributed Inference Engines Inference Engines are APIs that client programmers
can call for intelligent tasks. We refer to intelligent tasks as problems where classical
control structures cannot provide solutions tractably or with sufficient precision [FBB+23].
Operators may easily fulfill prediction performance-related targets by offloading requests
to cloud-style data centers. However, exclusively relying on offloading leaves resources at
or close to the device idle, forcing application instances to compete for bandwidth. A
popular approach is partitioning ANN inference by deploying partitioned models across
the network [WL23]. This may solve memory challenges without degrading prediction
performance using quantization, but its applications are limited when the primary concern
is latency, and it is impractical to adopt for platforms.

At the application layer, the dominant modalitiesies are visual, such as video feeds
generated by camera sensors [Cis20]. Transform coding is the commonly used framework
for lossy compression. Using rate-distortion theory, the objective is to find the number of
bits (bitrate, or rate) to store an encoded representation to restore it according to a set
distortion constraint [Sha59]. Here, semantic losslessness refers to a distortion constraint
that empirically quantifies whether we hit the prediction quality-related SLO.

Monitoring & Data Analytics Statistical summaries of distributions are a fundamen-
tal building block in data analytics and monitoring system states [TMN20]. Monitoring
the system state to pass enough information to an orchestrator is particularly taxing
on infrastructure. A distributed platform where local resources may be scarce increases
the importance of an accurate scheduler while making it more challenging to sched-
ule accurately. Compared to a centralized platform, federations are less demarcated,
dropouts are more frequent, hardware is less standardized, and networks are more hetero-
geneous [Rau21]. Irrespective of how well a scheduler may work in sterile benchmarking
environments, it will always be limited by the quality and recency of the information on
which it can base decisions. Platforms must also offer monitoring and analytics services
to clients for their applications. Assuming a central entity with a fully observable system
state by aggressively extracting telemetry is not feasible, as bandwidth is already scarce
to serve requests due to application payloads. For example, with a research extension for
Geo-Distributed Kubernetes, centrally collecting status information from 500 clusters,
each hosting only a single worker and control plane node, was shown to incur a monitor-
ing and traffic overhead of 230 Mbit/s for the centralized data collecting [HP24]. Note
that this figure involves only resource-level metrics and does not consider more detailed
application-level probes.

For telemetry and monitoring, the modality is univariate data streams. TC is unsuitable
for this modality, since the data must be processed during ingestion in at most small
buffered chunks [WM15]. Instead, the principled approach to lossy compression of streams
is creating summaries using sampling and sketch algorithms [CY20]. The thesis considers

3



1. Introduction

the class of algorithms with strong guarantees [CV20], so semantic losslessness refers to
provably maintaining equivalent guarantees.

1.2.2 Operational Challenges

Operational challenges in this thesis refer to the effort required to support a particular
application type and to adopt a method that enables or further improves the efficiency
of its associated deployment style.

Server-Side Transparency and Compatibility

As seamless integration is a primary concern in the compute continuum, methods that
maintain server-side transparency are invaluable. When transparency is strict, operators
can use existing legacy infrastructure without implementing modifications and rules for
each service, client application, or subsystem.

Figure 1.1 illustrates a generic scenario where the operator maintains three sizes from
the same model family, each associated with a different cost and expected accuracy.

Client Application 2Client Application 1
Application 1:

Latency:   200ms
Accuracy:  70%

Application 2:
Latency:   150ms
Accuracy:  85%

VM 2

75%

$$
VM 1

90%

$$$
VM 3

60%

$

Load Balancer

Figure 1.1: SLO-aware Load Balancing.

The load balancer aims to meet the latency and prediction accuracy SLO target for two
client applications and keeping the platform’s cost down. The platform can trivially
meet the accuracy target by routing all requests to the largest model. It may manage
peak hours and keep costs down with a more informed strategy without breaching SLAs
by temporarily routing requests to smaller models. Now, assume an operator wishes
to improve resource efficiency by drawing from local resources where possible. Assume
operators apply a common approach to the above-discussed ANN partitioning that
requires finetuning the deeper layers deployed at the server [FRD24]. Since end devices
may not have the resources for local computation, operators must maintain two sets of
weights to route requests to the fine-tuned or finetunedights conditionally. Expecting an
operator to maintain multiple versions of the same architecture for modest efficiency gains
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1.2. Problem statement

is unreasonable. Clearly, methods intended to solve problems concerning the edge-cloud
continuum must aim for transparency and compatibility with existing infrastructures.

Next, consider that platforms must extract telemetry for application analytics or system
monitoring. Figure 1.2 illustrates an operator integrating the monitoring services of their
platform seamlessly using existing infrastructure.

Application Application Application  2

Cloud Data CenterFog Node

Data
Warehouse/lake

Monitoring
Service

Operator

Application Application Application  1

Client

Figure 1.2: Extracting Telemetry for Monitoring.

This is only possible when relying on the same algorithm to create statistical sum-
maries [CY20, WM15, GZR23]. As devices and applications proliferate, operators may
need to find novel algorithms that can reduce bandwidth requirements instead of reducing
the data resolution. However, operators must progressively introduce modifications and
special rules if the algorithms break server-side transparency.

Performance-Critical Applications

An application is performance-critical when it requires state-of-the-art prediction perfor-
mance from large models. Operators can support various applications using foundational
models. A foundational model may be a feature extractor where clients upload a small
dataset to tune predictors, or supports numerous tasks without requiring additional data.
Figure 1.3 exemplifies the former.

Either way, end-devices offload requests to remote servers where resources are seemingly
horizontally scalable.

Latency-Sensitive Applications

An application is latency-sensitive when milliseconds determine the difference between
an acceptable and unacceptable user experience. For example, Augmented Reality (AR)
applications require less than 16 milliseconds to achieve perceptual stability [HCH+14].
For such applications, operators may push computation to end-user devices as illustrated
in Figure 1.4.
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Foundational Model
(Feature Extractor)

Operator Client

Figure 1.3: Operator maintains foundational models and handles horizontal scaling.
Clients supply datasets to support their applications.

Operator

Deploy

Compress

Compile

Client

Figure 1.4: Clients provide the model for their application. Operator handles optimization
and deployment to end-devices with varying properties

Since the local resources of end-devices are constrained, it is necessary to compress and
optimize the model for the target hardware [DLH+20]. Managing model optimization
and deployment for clients incurs significantly more operational overhead than processing
requests server-side with foundational models. End-user devices1 are less predictable and
more heterogeneous than data center hardware. Vendors have varying support for the
underlying operations of ANN architectures and maintain different, often proprietary,
software stacks for optimization. The NVIDIA Jetson device lineup has TensorRT, Intel
CPUs are surprisingly potent for ANN inference with OpenVINO, and ApacheTVM
search heuristic is a powerful default option for arbitrary edge devices without dedicated
software support [FWR+25].

Performance-Critical and Latency-Sensitive Applications

Most challenging are application types that are latency-sensitive and performance-critical.
The deployment strategy is a combination of the previous two operators must install edge
servers or provision fog nodes near clusters of end-user devices. Such servers may have
high-end hardware analogous to data centers, but horizontal scaling is limited. During

1End-user devices may also refer to small devices in proximity to the application host.
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1.2. Problem statement

peak hours, schedulers must carefully decide which requests can temporarily be rerouted
to more remote servers without breaching SLAs. Without mitigation strategies, the
limited bandwidth will inevitably result in network congestion whenever numerous clients
cluster. For platforms to scale in such situations, they require fast methods to reduce
transmission costs and request latency, irrespective of where the request is routed. The
challenge is to design lightweight encoders that can significantly reduce transmission
costs by exploiting local resources while maintaining prediction quality constraints on
downstream tasks. This strategy corresponds to the distributed inference engine, which
we will illustrate and elaborate on in later chapters.

1.2.3 Research Questions

Three overarching research questions drive the thesis.

RQ1. How can we design (I) Methods and (II) Experiments for Machine
Learning Research in Edge-Cloud Systems? Evaluating rate-distortion perfor-
mance is straightforward with standardized benchmarks, such as Kodak[Fra99] and
CLIC [TST+20]. However, designing methods and experiments yielding meaningful
empirical evidence on efficacy in Edge-Cloud systems under real-world conditions has
two distinct challenges.

1. What is the real gain for operators when implementing a proposed method? Channel
conditions and hardware are highly heterogeneous and progressively advancing.
Experiments for data-driven compression algorithms that learn nonlinear transforms
using ANNs must consider the increasingly diverse landscape of special-purpose
accelerators [SICM23]. Even when hardware has comparable specifications, vendor-
locked software optimization often leads to incomparable performance in real-world
runtime environments.

2. How can operators assess the adverse effects of lossy compression for downstream
prediction? Conventional reference-based metrics from image compression, such
as Peak Signal-to-Noise Ratio (PSNR), Multi-Scale Structural Similarity Index
Measure (MS-SSIM), or Learned Perceptual Image Patch Similarity (LPIPS), cannot
provide conclusive evidence on whether an algorithm reduces the performance of
prediction models on unknown tasks.

RQ2. What approach exploits local resources best to (I) transparently
meet the requirements of (II) latency-sensitive and (III) system-critical
applications? End-user devices are increasingly equipped with powerful special-purpose
hardware that we aim to exploit to meet the requirements of demanding applications.
From the problem statement, we derive the three requirements to assess whether an
approach makes the best use of locally available resources

7



1. Introduction

1. How high is the operational burden on the operator and how much knowledge on
client tasks is required? We seek methods that generalize to (near-) arbitrary
tasks with minimal assumptions on their properties. Competitive methods are
self-supervised and function without access to a labeled dataset. They exhibit
strong results on tasks without seeing the test and train set. Their adoption should
require minimal operational overhead, for example, by not introducing complex
runtime systems or finetuning large foundational models.

2. Under what conditions does the encoding and decoding latency penalty outweigh
the transmission cost reduction? Hardware and channel properties determine the
conditions. The more constrained the hardware and the less constrained the
channel, the more challenging it is to reduce request latency through compression.
A competitive method will yield lower request latency even for lower-end user
devices in urban environments with developed and highly available infrastructure.
When connectivity is only sporadic or in fixed intervals, the priority is on processing
throughput.

3. Is the data integrity preserved? Substantial reductions in data volume require intrin-
sically lossy methods. Accordingly, we must determine whether salient information
is preserved. Human interpretability is an implied requirement, even if the primary
criterion is the performance of downstream prediction. Client applications may
need to store imagery when ANNs are used for decisions. Especially when human
costs are involved, review and intervention by human experts must be possible.
Note that this requirement is distinct from perceptual quality, which focuses on
realism [The24, BM19, BM18].

RQ3. What are (I) suitable approaches to construct statistical summaries,
and (II) can we improve their coding efficiency without breaking server-side
transparency? Unlike RQ2, this RQ concerns data volume generated to support the
underlying systems and services, not the applications that turn on them.

1. What are suitable algorithms to construct statistical summaries in heterogeneous
environments? Here, heterogeneity refers to the statistical properties of telemetry
resulting from hardware and application properties. An algorithm must handle
a large data stream with minimal assumptions on input properties and construct
summaries that operators and clients can trust to base decisions on.

2. Can we improve the coding efficiency of existing summarization algorithms without
breaking server-side transparency? Maintaining compatibility with existing systems
requires strict server-side transparency. The challenge is to improve existing
algorithms encoding or serialization logic that maintains compatibility with server-
side decoding or deserialization.

8



1.3. Methodology & Contributions

1.3 Methodology & Contributions

The research questions closely align in their objective, but adequately answering them
requires varying methodologies. Our studies are predominantly empirical, drawing
from image compression that benchmark rate-distortion performance on standardized
datasets [YMT23], complemented with typical methodologies from systems research to
assess the system’s efficacy in real-world environments [RRP+22]. Still, we perform
extensive theoretical analysis where safety guarantees are necessary. In answering the
research question, we contribute architectures, frameworks, algorithms, and complete
systems. The core contributions are novel and designed from the ground up to address
problems of the compute continuum. They significantly progress the state-of-the-art,
not just in isolated use cases with over-optimized implementations, but as general
approaches in their corresponding problem domain. Limitations and open problems
remain, which are transparently discussed. We ensure reproducibility by extensively
describing our experiment designs, open-sourcing the accompanying code, and the
experiment frameworks. Indeed, at the time of writing, studies that reproduce results and
use the published methods included in the thesis as baselines have already emerged [ZC25,
FLW+25].

The following summarizes the thesis in four main contributions, each mapping to open
challenges and the research questions. The thesis structure follows the contributions
enumeration. C1. provides the high-level context of the problem statement and RQs.
C2 maps to RQ1, C3. to RQ2, and C4 to RQ3.

C1. A Complete Reference Architecture for a Hybrid Distributed Platform
ANN inference workload has special treatment as specialized hardware accelerators are
integral to every computational tier. However, the definition of intelligence as a means
to solve problems unfeasible for classical control structures is not limited to classical ML.
Since the architecture aims to be a complete reference, it acknowledges the importance of
quantum chips as a new class of specialized hardware. Analogous to mobile accelerators
for ANNs, the architecture enables applications to exploit (mobile) Quantum Processing
Units (QPUs) for an orthogonal class of intelligent tasks, and to enhance the solution
quality or efficiency of ANN inference.

We draw parallels between past work on edge intelligence in classical computing and
integrating quantum resources into hybrid systems. We elaborate on monitoring, detailing
the levels of observability necessary for schedulers to cope with the complexity in a
distributed platform. Lastly, we discuss solution approaches for distributed inference
engines. The contribution provides the overarching context that motivates the core
contributions. At the time of writing, the corresponding publication [FBB+23] is one of
the most viewed and cited documents within all proceedings of the conference where it
was presented2.

2https://ieeexplore.ieee.org/xpl/conhome/1847584/all-proceedings/popular
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C2. Designing and Evaluating ML Methods in Edge-Cloud Systems Graph
compilers that optimize computational graphs of neural networks can improve latency
or throughput by orders of magnitude without loss in prediction performance. This
contribution shows that it is crucial to understand how graph compilers can invalidate
relative performance differences between architectural archetypes of neural networks.

We introduce a framework to utilize such tools for designing, implementing, and de-
ploying experiments in research for Edge or Edge-Cloud systems that rely on neural
components [FWR+25]. We perform a comprehensive empirical analysis across vary-
ing architectural families on a heterogeneous physical testbed. We demonstrate how
vendors prioritize optimizing different layer compositions using vendor-agnostic and
vendor-specific graph compilers. While the corresponding study of this contribution was
conducted and published towards the end of the thesis, we could see how architectural
types see varying degrees of support from preliminary results. Accordingly, we focus
on fundamentals, such as training objectives, and deliberately follow a simple encoder
design, using widely supported layers.

C3. End-to-End Systems for Neural Feature Compression We introduce Shal-
low Variational Bottleneck Injection (SVBI), which dedicates local resources exclusively
to compression. The encoder achieves considerable rate reductions and is task agnostic.
Operators may deploy a single encoder to end-devices and support arbitrary network
architectures for downstream tasks. Server-side transparency is maintained by not requir-
ing labeled datasets or finetuning foundational models. Meaningful theoretical analysis of
compression algorithms with non-trivial sources in complex systems is not feasible. Hence,
studies are empirical, and multiple publications are associated with this contribution
to provide sufficient evidence. The initial work introduces the general approach and a
novel distillation algorithm [FRD24]. It exhaustively evaluates on standardized datasets
and request times under varying channel conditions. Besides requiring only a single
encoder and maintaining server-side transparency, it significantly outperforms the then
state of the art in split computing. A follow-up considers the opposite extreme, where
data is generated at the space’s edge rather than in urban environments [FZR+25],
addressing the downlink bottleneck in satellite computing, where network connectivity
is only intermittently available. It extends SVBI to improve compression performance
and introduce image recovery components. Evaluation of satellite imagery from several
datasets shows that the system increases downlinkable data volume by two orders of
magnitude.

C4. Transparently Improving the Coding Efficiency of Statistical
Summaries

The contribution concerns randomized online quantile approximation with strong guaran-
tees for efficient data transmission and persistence in distributed systems. While existing
research has primarily focused on minimizing in-memory representation size [CV20],
optimizing their encoding has seen little attention.
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1.3. Methodology & Contributions

We extend the comparison-based computational model with a communication model
that enforces receiver-side transparency to ensure compatibility with legacy systems. A
verification procedure formally maintains the strong underlying mathematical properties.
We introduce a principled method for augmenting existing algorithms that yield optimal
codeword length with virtually no overhead to the core summarization procedure and
strictly maintain server-side transparency. Additionally, we generalize the approach to
jointly encoding locally available summaries. Extensive experiments supplement the
formal analysis to demonstrate the efficacy of augmented algorithms, with further gains
in coding efficiency when jointly optimizing sequentially constructed summaries.
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CHAPTER 2
A Reference Architecture for the

Edge-Cloud Continuum

This chapter introduces an architecture that provides an overview of deployment strategies,
focusing on the inference engine, and explaining the importance of telemetry in edge-cloud
systems. The architecture is minimally opinionated, follows established best practices,
and is considerate of what the software architecture research community is familiar
with. The novelty is the integration of quantum resources and the more thought-out
components to provide schedulers with sufficient observability.

2.1 Integrating and Provisioning Resources in Hybrid
Compute Platforms

Deploying edge applications on mobile quantum devices is approaching with the recent
advancements of diamond-based QPUs [Gmb] that allow quantum computation at room
temperature [Ltd23]. Hence, quantum computers may become widely available for
individuals and organizations.

2.1.1 Introduction

Noisy intermediate-scale quantum (NISQ) computers are error-prone, contain only a
limited number of qubits, and impose restrictions on the depth of successfully executable
circuits [LB20]. Yet, algorithms tailored towards NISQ devices started to demonstrate
the viability of quantum computers in various fields, ranging from molecule simula-
tion [GEBM19] to machine learning [CVH+22] and optimization problems [CK19]. Ev-
idently, to advance research and development into practical applications of quantum
algorithms, increasing the accessibility of quantum computers by introducing adequate
abstractions is effective. Owing to the limited availability, complexity, and cost of QPUs,
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quantum computation for the masses may currently only be viable through cloud services
that can hide the low-level machinery behind a convenient interface. However, while
cloud providers can decrease the complexity and cost, we cannot exclusively rely on the
efforts of hardware manufacturers to increase the accessibility of resources by simplifying
the production and installation of QPUs. Instead, we must draw from our experiences in
classical computing on the long-term limitations of relying exclusively on centralized pub-
lic cloud platforms. Besides the privacy-related risks of entrusting third-party providers
with sensitive data, the cloud computing paradigm bears numerous downsides, such as
vendor lock-in and data centers posing a single point of failure vulnerable to outages.
Additionally, a narrow cloud-centric view is inefficient, leaving resources closer to the
client idle by indiscriminately offloading tasks to remote data centers.

The edge-cloud continuum addresses the limitations of cloud computing by organizing
resources in a hierarchical distributed network ranging from constrained edge devices to
cloud data centers. After decades of relying on centralized architectures, the transition
is slow, with semi- or fully decentralized platforms still needing to emerge [NRF+22,
RHS+21a, RRFD23]. The chapter elaborates on the potential of edge-cloud continuum
for classical and quantum computing while explaining the interplay of numerous classical
components a system must stitch together into a cohesive unit. We design a complete
reference architecture for a distributed hybrid platform that can automate orchestrating
hybrid applications. For components most relevant to the thesis, we describe key
implementation challenges and possible solution approaches. The focus is on exploiting
hybrid resources from a hierarchical network and explaining the problems not covered in
the literature on classical computing when integrating numerous classical and quantum
components into one cohesive unit.

2.1.2 Background & Related work

Cloud-centric platforms have paved the way for cost-efficient and large-scale applications
to be accessible to the public. However, the emerging edge-cloud continuum accentuates
the drawbacks of centralized architectures. Promising application paradigms, such as Edge
Intelligence [DZF+20], heavily rely on the edge-cloud continuum and require autonomous
management over the large and heterogeneous system. The success of these applications is
tied to available platforms that need to support developers in designing, writing, testing,
deploying, and managing them. This section introduces concepts fundamental to our
architectural vision and summarizes related work.

Orchestration

The services of centralized platforms that provide access to quantum computers can
be combined with classical applications. For example, Amazon offers event-based pro-
cessing for its quantum offerings. This forces practitioners and researchers to build
hybrid applications by manually combining separate quantum and classical components.
They are further burdened with selecting different QPU technologies, devices, and com-
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pilers [GARV+21]. Despite quantum applications consisting of classical and quantum
components, they follow the same framework as classical computing in dividing orches-
tration into workflow technologies managing control flows, and provisioning technologies
handling the deployment of application components [WBLZ21]. Hence, we can reduce
infrastructure complexity by extending existing systems to support quantum applications.
Wild et al. present Tosca4Q, which extends Tosca to support workloads relying on
quantum computers [WBH+20]. Weder et al. introduce Quantum Application Archives
(QAAs), allowing orchestration methods to treat quantum applications as self-contained
entities [WBLZ21]. Later, Leymann et al. propose extending QAAs through a mar-
ketplace, with an architecture for a collaborative software platform to consider the
development process [LBF+20].

Quantum Platforms

Several cloud offerings provide access to Quantum Computing as a Service (QCaaS), but it
is burdensome to integrate managed quantum services cohesively into classical applications.
Garcia-Alonso et al. [GARV+21] present their proof-of-concept implementation of a
Quantum API Gateway, recommending a quantum computer target to run a given
quantum application for Amazon Braket1. Beisel et al. [BBG+23] propose Quokka, a
microservice-based framework to model and deploy quantum workflows. They propose
a set of microservices that model the typical quantum workflow based on Variational
Quantum Algorithms (VQAs) [CAB+21]. This workflow comprises circuit generation,
execution, error mitigation, objective evaluation, and parameter optimization. The
advantage of the approach is the complete decoupling of pre-processing, execution, and
post-processing that follows a flexible workflow definition. Salm et al. [SBB+20] present a
concept that automatically handles the analysis of quantum algorithms and the selection
of quantum computers. Grossi et al. [GCA+21] build a prototypical platform inspired by
Serverless Computing through which quantum developers can deploy their applications.
They employ a scheduler that focuses on queue management and result retrieval. Leymann
et al. [LBF+20] propose an architecture for a collaborative software platform for quantum
applications that encompasses the development process and deployment aspect through
a marketplace for quantum applications.

The studies so far have shown how platforms can enhance collaboration, improve the
development of applications, and simplify deployment aspects, such as dynamically
selecting an adequate quantum computer. Extensions, such as modeling serverless
applications [WBK+18, WBH+20], to edge-cloud systems are required to realize the
seamless integration of resources in a hierarchical network.

Serverless Edge Computing

A key problem of edge-cloud applications is the autonomous orchestration of applications
that exploit resources at different tiers in the network [DZF+20]. Manual management is

1https://aws.amazon.com/braket/
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infeasible in these large-scale and geo-distributed infrastructures, so a platform that can
autonomously manage application deployments is required.

Serverless Edge Computing is the extension of Serverless Computing that abstracts the
underlying infrastructure and transparently deploys applications packaged as functions
across edge-cloud systems [ATC+21, NRF+22]. We argue that autonomous management
and simplified application development and deployment are enablers of the emerging
quantum computing paradigm. Nguyen et al. [NUB24] present a holistic serverless
platform that supports classic, quantum, and hybrid applications. Conversely, we envision
a platform that spans the edge-cloud continuum and manages application deployments
across heterogeneous infrastructures. The increased complexity stems from the composed
applications and the sophisticated and fine-grained monitoring.

Task Partitioning

Task partitioning in classical edge computing and quantum computing are two distinct
research areas that address orthogonal problems. Still, they share a common motivation
in dividing a task into subtasks executable by geo-distributed nodes to handle resource
limitations or increase resource efficiency.

Partitioning in classical edge computing concerns distributing load for resource effi-
ciency [LLJL19]. In quantum computing, splitting tasks between classical and quantum
nodes is necessary for near-term applications to cope with the limitations of NISQ
devices [LB20], and most common hybrid classical-quantum splitting patterns assign
fixed roles to components [WBLV21a]. Patterns for quantum computation are typically
designed to execute a particular class of algorithms and do not consider applications where
a quantum algorithm is just one of several subtasks [WBLV21b]. As the limitations of
quantum computation will gradually diminish, a platform should be able to accommodate
new emerging patterns. Further, for near- and long-term QPUs, the platform should
dynamically adjust the workload between quantum and classical nodes according to
target Service Level Objectives (SLOs), internal and external conditions, such as load
and bandwidth, respectively.

Variational Quantum Algorithms Variational Quantum Algorithm (VQA) is a
generic framework for optimizing the parameters of a quantum circuit on a classical
computer [CAB+21]. Depending on the target task, we can derive more specific algorithms,
such as Variational Quantum Eigensolver for approximating the lowest eigenvalue of
a matrix [TCC+22] or Quantum Approximate Optimization Algorithms (QAOAs) to
approximate the solution of a combinatorial optimization problem [SA19]. Another
notable instance of VQAs is Quantum Neural Networks (QNNs), which aim to improve
the representation of classical neural networks with embeddings in the Hilbert space.
Note, in literature, the distinction between VQAs, Quantum Machine Learning (QML),
and QNNs is blurry; thus, for clarity, we refer to QNNs as models that are built and
trained for typical ML tasks, such as Feature Extraction, Regression, or Classification.
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Warm-Starting The term warm-starting is ambiguous due to its widespread usage in
classical and quantum computing. For example, it may refer to techniques that reduce
resource usage in machine learning and optimization [AA20]. In classical serverless
computing, warm-starting typically relates to methods for preparing execution environ-
ments, such as reusing running containers [MEHW18]. For the remainder of the thesis,
warm-starting refers to a general strategy for partially computing or preparing a quantum
algorithm’s output on auxiliary devices. Notably, warm-starting methods are not limited
to classical-to-quantum and may be quantum-to-quantum or quantum-to-classical.

Hybrid classical-quantum systems can benefit from various warm-starting methods that
utilize previously obtained solutions, approximations, or trained models [TBB+24]. For
example, following the assumption that optimal variational parameters for similar problem
instances solved with VQAs are in proximity, parameters can be transferred between
instances as an initial point to warm-start from and improve upon [GLL+21]. Moreover,
approximations that are cheaply generated by efficient classical algorithms can be utilized
to initialize quantum circuits with a quantum state biased towards potential solutions
rather than starting from a neutral initial state [EMW21]. On the other hand, QNNs
can benefit from pre-trained models through transfer learning, i.e., adapting a classical
or hybrid model trained for a general task and training it further to tackle a similar or
more precise subtask [MBI+20].

As these warm-starting methods comprise a source algorithm from which information
is drawn and a target algorithm that is enhanced with it, it indicates potential ways of
distributing both classical and quantum computational efforts in the continuum.

Depth and Widthwise A(Q)NN Partitioning In classical computing, depth or
widthwise partitioning refers to whether layers are split horizontally and vertically.
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Figure 2.1: ANN Processing Flow

Figure 2.1 illustrates the width and depthwise execution of classical ANNs. Methods that
split horizontally typically aim to facilitate resource efficiency by distributing layers across
several devices. It increases resource efficiency, but does not lend itself to. Splitting layers
vertically implies distributing cut-out chunks of a neural network, for example, across
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channels in a block of convolutional layers. It can overcome the memory limitations of
mobile devices. Moreover, it may alleviate batch-width frictions, which Chapter 3 will
discuss.

In quantum computing, depthwise partitioning may refer to stacking QNN circuits to
mitigate cascading gate errors and accumulating noise during training [BF20]. Conversely,
widthwise partitioning facilitates parallelization by horizontally splitting a layer or circuit.
Quantum circuit cutting concerns address some limitations of NISQ devices by partitioning
larger circuits into several smaller subcircuits [BBL+23]. Classical widthwise ANN
partitioning is less common since accelerators parallelize the execution of layers. Still, in
highly constrained environments without access to server-grade hardware, methods such as
parallelizing filter computation of convolutional layers across devices are sensible [ZBG18].
Classical depthwise and quantum widthwise partitioning are essential for inference engines
in distributed platforms, and select approaches are detailed in Section 2.2.7. The following
first introduces the platform architecture.

2.2 Architecture Design

2.2.1 Architecture Planes

The architecture differentiates between four planes according to their function and
intended interaction with other components, clients, or client programmers. Each plane
exposes private or public APIs. Private APIs are only accessible by internal components,
whereas public APIs are accessible by external entities, such as client applications.

Execution Plane Application instances run on the execution plane. It consists of
Public APIs, Hardware Hosts, and Worker Clusters. The public APIs allow clients
to interact with the application via access points. The hardware hosts are subdivided
according to the supported application types, namely into classical and quantum nodes.
The quantum hosts are further subdivided according to their grade, i.e., QPUs are
server-grade and MQPUs are mobile-grade. Figure 2.2 illustrates component organization
and interaction.

The classical hosts additionally subdivide to consider ANN workloads. Each node is
registered by the device registry that associates data describing their capacity, such as
memory size, VRAM, or qubits, and stores it in the metadata storage. The metadata
storage is a highly available key-value storage, such as ETCD2 used in Kubernetes,
accessible by other components. Especially for the continuum, where nodes can arbitrarily
join and leave the system, the metadata must be highly available and not remain stale
to measure the system’s overall capacity accurately. The Workers consist of at least
one hardware host and represent the application environments that may rely on one
or multiple hardware nodes. Since quantum and classical environments are separate, it
is necessary to distinguish between classical and quantum worker clusters. Quantum

2https://etcd.io/
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applications require classical workers for auxiliary tasks, such as pre-processing and
measurement. Once a worker completes a task, the classical part is responsible for
forwarding the result. Intermediate results may be forwarded to another worker cluster
when tasks are partitioned. The final result is forwarded to the client. Telemetry tools
send data to the monitoring system by accessing private APIs of the Provenance Plane.

Provenance Plane The Provenance Plane encapsulates a highly available distributed
Provenance database through which real-time monitoring data is stored and shared. It
consists of a Quantum Provenance and a Classical Provenance system, offering private
APIs to access and store data. It is crucial to design methods that consider the intrinsic
properties of QPUs to create reliable and predictable systems for quantum workloads.
Error rates vary depending on a QPU’s current state, so exclusively collecting classically
relevant data, such as load, for quantum and hybrid applications is insufficient to ensure
SLOs with solution quality targets are fulfillable. Classical monitoring for a platform
deploys telemetry tools (Execution Plane) alongside the application to collect data
on workload trends and resource usage of function instances. Quantum provenance
system gathers information orthogonally, on the state of QPUs to analyze errors, such
as properties of Quantum Circuits, QPUs, Compilation, and Execution, as proposed by
Weder et al. [WBL+21].

To separate concerns, we suggest the software design reflect the orthogonal handling of
information as shown in Figure 2.3. This permits flexible adjustment of the granularity
of information according to workload properties. A platform can utilize provenance data
for error mitigation and to aid schedulers with upholding SLOs by assessing the currently
expected solution quality. Platforms that support hybrid applications should integrate
quantum provenance with classical telemetry to form one cohesive monitoring system
for simplified access to various heterogeneous devices. The objective of a monitoring
system is to collect the minimal data necessary for informing schedulers to uphold SLOs.
Conceiving hybrid systems is non-trivial, as finding a balance is already challenging for
classical edge-cloud and hybrid systems monitoring [GST+18, RRD+22]. A system that
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trivializes monitoring by aggressively collecting data may ease the task of a scheduler but
can cause resource congestion across the edge-cloud continuum [GST+18]. Conversely,
collecting insufficient data will considerably reduce the system’s scalability as it cannot
appropriately route requests or scale resources up and down. We argue that a granularity
mechanism capable of adjusting the frequency of quantum and classical monitoring data
according to the current workload’s characteristics is one of the principal challenges that
future work must address before a hybrid platform can emerge. Nevertheless, monitoring
itself is simply a precondition. The following describes how our architecture supports
resource efficiency and elasticity based on available monitoring data.

The importance of monitoring system states has been a key motivation for Chapter 6.
The method it introduces does not directly concern quantum or classical provenance,
as the diverse input properties require algorithms with no assumptions on distribution
properties or value ranges.

Elasticity Plane The elasticity plane is the central organ of the decision mechanisms
that allocate resources and route requests according to client SLOs, metadata, and
monitoring data.

Figure 2.4 illustrates component organization and interaction. The Control clusters
are subdivided between Quantum and Classical Control Clusters. The former manages
quantum application instances, such as scale-out quantum coordinators, while the latter
manages classical application instances, such as horizontal scaling of applications. Each
control cluster manages a set of worker clusters (see Execution Plane) that are dynami-
cally scaled up or down according to the application instances the cluster can control.
Monitoring Agents are responsible for the worker clusters and relay data to the control
cluster’s monitoring broker. A Monitoring Broker disseminates the data across the
components. A Classical Autoscaler and Classical Scheduler maintain a local and global
view of the control cluster’s state. Classical autoscalers and schedulers exist in Quantum
Control Clusters, since Quantum Coordinator Applications (See Control Plane) are classic.
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The Quantum Coordinator Manager supervises the Classical Autoscaler and Scheduler to
scale and place the Quantum Coordinator Application (see Control Plane) instances. The
Local View contains fine-grained information about the Worker Clusters, such as CPU
usage per second. The Global View contains coarse-grained aggregate information, such as
average CPU usage over an hour, about neighboring control clusters. The coarse-grained
data consists of fine-grained local data collected by a Global View Aggregator that
periodically publishes a summary, i.e., the global view consists of exchanged summaries
of local views. The control cluster’s messaging topology and broker partially address
the granularity control of monitoring data and permit an elastic control mechanism
that can scale the entire system by adequately allocating its limited resources. The
implementation of the autoscaler and scheduler is interchangeable, and system designers
may experiment with various methods. The Quantum Cluster Autoscaler is inspired by
the work of Tamiru et al. and Gandhi et al. and is an SLO-aware cluster autoscaler
capable of adding and removing Quantum Hosts from worker clusters to process the
incoming workload. Classical Routing is inspired by the work by Raith et al. [RRD+22]
and consists of a Load Balancer and a Load Balancer (LB) Watcher. The Load Balancer
is a high-throughput and low-overhead component that redirects incoming requests to
application instances or other clusters (e.g., because no application instance is running).
The Load Balancer Watcher is SLO-aware and periodically refreshes the load balancer’s
state to update the decision mechanism. The Quantum Routing component differentiates
itself from Classical Routing, as it considers additional challenges to improve the resource
efficiency of quantum hosts. Quantum Computing Selection is particularly valuable for
the edge-cloud continuum as it introduces further heterogeneity. The selection method is
another freely interchangeable component. For example, system designers may opt to use
the method proposed by Quetschlich et al. [QBW23] and replace it once they find a more
suitable alternative. Multi-programming in quantum computing has a comparable role to
virtualization in classical computing, i.e., it allows sharing of the resources of quantum
computers among multiple circuits [DTNQ19]. However, unlike in classical computing,
where we can readily select existing mature virtualization methods, multi-programming
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is more involved and should be considered together during encoding [OSVM22] and
influences quantum computer selection.
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Figure 2.5: Control Plane

Control Plane The Control plane exposes an API to client programmers to deploy
and manage their applications. The public API should allow client programmers to define
hybrid applications as workflows without separately deploying classical and quantum parts.
The platform analyzes the workflow during the registry and partitions it into classical
and quantum applications. The Application Registry encapsulates several registries
responsible for storing application services, SLO targets, and parameterized models.
The Model Registry is a repository of readily available models. The models may either
be classical neural networks or quantum circuits. In addition, profilers associate static
metadata with each model, such as the number of parameters, circuit depth, and layer
types. Chapter 3 will emphasize the importance of extracting the correct metadata.
Profiler metadata supplements the schedulers and autoscalers with valuable information
to predict resource usage more accurately. Service Discovery enables Quantum and
Classical Routing to locate running application instances. The architecture supports
warm-starting as a first-class citizen, which we discuss in the following.

2.2.2 Warm-Starting at the Edge

Warm-starting aligns with the objectives of a distributed hybrid platform, i.e., it facilitates
drawing from resources across the continuum. Ideally, applications can pre-process input
before passing it to a remote server. Warm-starting methods in the context of quantum
computing are categorizable into Classical-To-Quantum (C2Q), Quantum-To-Quantum
(Q2Q), or Quantum-To-Classical (Q2C) [TBB+24]. Each category has an input and an
output format. For example, C2Q expects classical input, and the output format should
suit a quantum algorithm.

Nevertheless, we argue that system designers must subdivide the categories further to
include neural input and output formats, such as Neural-To-Quantum (N2Q) or Classic-
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To-Neural (C2N), for two reasons. First, neural methods rely on AI accelerators that
may not be present or have alleviated energy consumption, i.e., it is indispensable for a
scheduler to know hardware properties to hit SLO targets. Second, although the output
of a classical ANN is classical, the network weights may be tuned to extract features
tailored for a particular class of algorithms.

2.2.3 Current and Future Role of Warm-Starting

Currently, a common motivation for warm-starting is to reduce the dependency on
QPU time due to cost and limited availability [TBB+24]. However, we stress that the
importance of warm starting lies in improving the solution quality by combining classical
and quantum algorithms. Moreover, once QPUs mature to a point where we can entirely
forgo classical computation, the research focus can shift to Q2Q warm-starting, where
smaller client devices can partially onload quantum algorithms for resource efficiency.
For example, warm-starting can be a means to embed performance guarantees of classical
algorithms into quantum algorithms and can reduce the amount of training data required
for (Q)ML.

A downside of warm-starting is that it increases the applications’ complexity as it intro-
duces more parts that must be managed. It is crucial to introduce a convenient interface
that supports warm-starting as a first-class citizen to further shift complexity from client
programmers to platform providers. Notably, warm-starting is chainable. Hence, we can
naturally integrate warm-starting methods in the edge-cloud continuum if a platform
exposes an interface that resembles the hierarchical properties regarding device capacities
in the network.

The following describes the requirements and proposed solution approaches for a hierar-
chical warm-starting programming model. Hierarchical refers to how the warm-starting
methods are composable in a pipeline that resembles their resource usage requirements.
The proposed interface does not rely on any assumption regarding the availability and
limitations of QPUs, i.e., it treats each method in the pipeline as exchangeable building
blocks. The current progress of available QPUs is considered by informing client pro-
grammers about the feasibility of their planned warm-starting pipeline. For example,
the platform could disable support for Q2Q warm-starting at the network’s edge until
MQPUs find widespread adoption in end devices, such as smartphones.

2.2.4 Hierarchical Warm-Starting

In our running example, the MAR platform aims to improve resource efficiency with hier-
archical warm-starting. The load heavily fluctuates for city-scale applications according
to date and time. By chaining warm-starting hierarchically, idle computational resources
of edge and fog nodes can be utilized, e.g., to reduce offloading to the cloud.

Warm-starting is a broad term encompassing numerous classes of methods [TBB+24].
The challenge is to conceive an interface flexible enough to remain convenient without
exposing low-level details, such as manually selecting devices and fallback mechanisms,
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to the clients. An interface would be maximally flexible if it forces client programmers
to define every single step of the execution, where to deploy which part at which node,
and to manually configure the quantum executions (e.g., device, compiler) for every
method in the pipeline. An interface that does not restrict the configuration space is
especially undesirable when considering the heterogeneity of the continuum. Specifically,
it would not be sufficient to provide a single configuration for a method, and there is
no guarantee for the availability of a particular device configuration at the edge or fog.
Conversely, constraining client programmers exclusively to a list of pre-implemented
solutions is counterproductive as it hinders innovation, i.e., they should at least be able
to (optionally) provide their warm-starting method.

To summarize, the responsibility of a platform is to build the infrastructure and provide
adequate abstractions to access the resources. A dedicated interface for warm-starting
should allow clients to define composable workflows to process a warm-starting pipeline,
i.e., client programmers can register pre-processing steps for warm-starts through the
control plane from our architecture that may run on CPUs, TPUs, or QPUs deployed at
the client device or fog nodes.

Consider Figure 2.6 for the following example. Three clients execute the same application
using the public API of the control plane. The client programmers defined a warm-
starting pipeline for their applications. Hence, the pipeline and its methods are placed in
the warm-starting registry, and the system decides where to position the models in the
continuum based on the profiler metadata. However, the clients request varying target
qualities; hence, the platform applies different intensities of warm-starting before sending
the task to a quantum cloud vendor. Intensity refers to the expected solution quality of
a quantum algorithm with an input processed by a warm-starting method.

In Figure 2.6, client C1 cannot achieve any pre-processing at the edge due to energy
constraints (indicated by an empty battery symbol) and therefore forwards the input in
its original classical representation. Since C1 registered at least one pre-processing step
at the fog, the load balancer routes the request to a fog node, applying the step that
maps to a C2Q warm-start. Conversely, if C1 had the resources to pre-process its input
for a target neural network, the fog node would have taken over processing its output
further to warm-start the quantum task, resulting in a chain of C2N and N2Q warm-start.
Client C2 can perform resource-conscious pre-processing for a C2N warm-start. Still,
since it does not achieve the required target quality, the request is routed to a fog node
with available QPUs to apply further pre-processing for an N2Q warm-start. Client C3’s
request is directly routed to the cloud by the load balancer, since C3 had enough onboard
resources for pre-processing the task to the target quality without relying on fog nodes.

2.2.5 Distributed Inference Engines

While the last two sections introduced high-level concepts of the architecture, this section
focuses on lower-level system designs for platform designers and how client programmers
may implement a distributed hybrid application. We extend our running example and
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Figure 2.6: High-level Sequence of Hierarchical Warm-Starting

discuss how the MAR platform may support an inference engine with hybrid classical-
quantum neural networks. An inference engine refers to the inner system of an interface
that client programmers can utilize for intelligent tasks. (A)QNNs are uniquely qualified
as a representative application beyond ANN inference to cover how a distributed platform
can adapt as the limitations of QPUs are gradually lifted for three reasons. First, a
hybrid QNN is composed of parameterized classical and quantum nodes. Contrastingly,
other VQAs typically operate non-parameterized classical components exclusively for pre-
/post-processing and to optimize the parameters. For a hybrid QNN, there are additional
components with no statically predefined role assignments, so we can represent how
systems adapt as they progressively replace classical with quantum nodes proportional
to availability and advancements in QPUs. Second, we can split a neural network
horizontally by layer or cut individual layers vertically and view each partition as an
isolated computational graph. Then, we can emulate the behavior of a complex task with
numerous classical and quantum subtasks that a system must coordinate to compute a
single solution. Third, ANN partitioning and collaborative inference are well-established
research areas in CEC that consider the heterogeneity of classical hardware and the
resource asymmetry between edge, fog, and cloud nodes [MLR22]. Hence, we can directly
extend existing work to determine whether QPUs may improve the quality of classical
methods and are not restricted to orthogonal problems infeasible for classical computers.

Chapter 4 and Chapter 5 will introduce methods suitable for distributed inference engines,
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but only for classical computing. An extensive study on hybrid methods is not within
the scope of the thesis. However, in Chapter 7, we present preliminary results for future
work that extend the method in Chapter 4 to warm start Hybrid QNNs.

2.2.6 Implementation Challenges

Unlike regular business logic, applications often draw from specialized hardware for
intelligent tasks, such as visual recognition or complex optimization problems. Irrespective
of whether QPUs are included, the platform must treat inference requests as a workload
with distinct characteristics.

Volatility The scheduler must dynamically adapt to two sources of volatility. First,
outages in the fog domain are frequent. Moreover, unlike in the cloud, classical fog
resources cannot seamlessly scale horizontally, i.e., requests may have to be routed to the
cloud. Second, fog and cloud QPUs may be scarce, and depending on their current state,
they may not hit the target solution quality SLO.

Device Heterogeneity While the challenges of heterogeneity of classical components
are only tangentially related to the integration of QPUs, minimal consideration regarding
the numerous accelerators is necessary. Compilers map classical ANN to computational
graphs, and vendors have varying support for operations, limiting the available layer
types and activation functions [LL20].

Task Chaining and Bandwidth Consumption To fully draw from the resources
on the continuum, we require methods that onload some computation on client-side
accelerators. However, mobile devices can typically only host a single network in memory,
and swapping out ANN weights from storage incurs significant overhead. Hence, latency-
sensitive applications sending subsequent inference requests for different tasks must
offload, leaving valuable resources idle. Additionally, when numerous clients compete for
limited bandwidth by streaming high-dimensional image data, the limited bandwidth
will inevitably lead to erratic response delays.

Optional Quantum Embeddings Although the availability of QPUs is steadily
increasing, clients cannot currently expect the same graceful scaling of classical resources
in the cloud. Depending on the load, hitting latency SLOs with quantum layers may
not be possible. Accordingly, the inference engine should be flexible enough to skip
computing quantum embeddings for near- and intermediate-term devices.

Utilizing Mobile Quantum Devices Diamond quantum accelerators are expected
to be mature enough soon for commercial use [Gmb, Ltd23]. However, regardless of how
MQPUs improve, analogous to classical hardware, we assume that server-grade hardware
will consistently outperform its mobile counterparts. The challenge is to conceive methods
that can leverage the advantages of MQPUs, ideally without sacrificing solution quality.
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2.2.7 Methods for Hybrid Distributed Inference Engines

The simple solution for accommodating multiple tasks and configurable solution qualities
considers a separate ANN for each variation. This is difficult to maintain and inflexible,
forcing client programmers to implement and redeploy entire architectures for each task.
Instead, we describe how partitioning methods lead to composable architectures that
naturally define small deployable applications.

Classical Depthwise Partitioning Sequentially applying horizontally split layers is
a particular form of hierarchical warm-starting. Platforms can include pre-trained ANNs
in the warm-starting registry of the Control Plane. Additionally, client programmers
may register modules according to their requirements. For example, edge devices can
optionally perform preliminary feature compression, and fog nodes can apply a small- or
medium-sized feature extractor according to solution quality and latency targets. We
require an encoder suitable for constrained end devices composed of operations widely
supported by the various vendors of AI accelerators. The encoder should perform initial
feature extraction and find a minimal representation for a sufficient statistic on several
downstream tasks to reduce bandwidth consumption. Then, the server can select an
interchangeable ANN for additional feature extraction according to the configured latency
and accuracy SLO. To handle the limited availability of QPUs, the QNN should be
optional.

Quantum Circuit Cutting Quantum circuit cutting addresses challenges. The idea is
to cut large circuits that require many qubits widthwise into smaller subcircuits requiring
fewer qubits [BBL+23] by strategically cutting circuit wires [PHOW19, BPS23] and
gates [MF21, BBL+23]. Figure 2.7 illustrates an example in which one wire and two
gates are cut.

Gate Cut

Wire Cut

Figure 2.7: Circuit Cutting Basics

Wire cutting separates circuit wires through multiple measurements with different ob-
servables Oi and subsequent initializations of the qubit to state |ψi⟩, while gate cutting
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substitutes two-qubit gates with varying combinations of single-qubit gates. The stacked
subcircuits in Figure 2.7 indicate the generation of multiple variations for each subcircuit.

The widthwise partitioning enables each subcircuit instance to be executed individually on
smaller quantum devices, which may be more readily available. Following the execution
of these subcircuits, a classical post-processing procedure is applied to recombine the
results obtained from the individual subcircuits, ultimately reconstructing the output
of the original circuit as a linear combination of the subcircuit results. This approach
facilitates the distribution of quantum circuit computations across multiple QPUs without
necessitating quantum communication. As a result, quantum circuit cutting offers the
opportunity to harness the power of several smaller MQPUs at the edge, enabling
the computation of larger quantum circuits. Moreover, it promotes the more flexible
placement of quantum circuits across resources of the compute continuum. Additionally,
once MQPUs are widely available, we can leverage them to parallelize the execution
of subcircuits. This parallelization can alleviate the overhead associated with each cut,
significantly improving computational efficiency and scalability.

Inference Flow Figure 2.8 illustrates the flow for a conditionally depthwise ANN and
widthwise partitioned QNN inference across a hierarchical network. End-user devices
host varying client applications. For example, one client classifies artwork in a museum
to retrieve a description using a virtual tour guide. Another client may be interested
in retrieving descriptions of the local fauna. Clients with AI accelerators apply neural
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Figure 2.8: Inference Engine Request Flow

compression methods for preliminary feature extraction. Solid black lines represent
the flow of a request within a domain. The dashed red lines represent inter-domain
data transfers. The dashed gray lines represent the provenance data collected adjacent
to inference requests by a runtime spanning all domains. The runtime is detailed by
the Elasticity Plane of our architecture in Figure 2.4. It collects data to periodically
update the SLO-aware load balancer to perform informed decisions based on the state
of each participating node and client configurations. Dashed black lines represent an

28



2.3. Summary

alternative path, i.e., one request flows only to one of the choices. An edge load balancer
routes the request to the load balancer of a fog cluster. Depending on load and client
requirements, the request is routed to a Fog GPU node or the cloud. After feature
extraction, a load balancer decides whether the classical embedding should be passed to
a QNN before classification. The QNN may be executed on a Quantum Fog Node or sent
to a remote cloud provider, for example, due to privacy or availability. However, based
on our assumption, the MQPUs are more constrained than the server-grade QPUs from
cloud providers. Hence, circuit cutting methods can aid MQPUs in achieving a target
solution quality. A request ends after the label is sent as a response to the client.

Application Preparation and Deployment The individual operations of an ANN
form a computational graph. Moreover, partitioning methods naturally demarcate a
monolithic ANN into connectable vertices. The vertices represent coarse-grained classical
layers or QNN circuits, and one or multiple consecutive vertices form one depthwise
partitioned deployment unit. Alternatively, we can further partition a vertex to create
one widthwise partitioned deployment unit, for example, with circuit cutting. Notably,
depthwise methods define isolated compute nodes, which we can transparently combine
with widthwise methods, i.e., from an outside view, an adequate abstraction can present
a cut circuit as a single coarse-grained layer. The client programmers may provide hints
to the platform via annotations, but the application should be deployable as a single
(monolithic) workflow. It is the responsibility of the Control Plane of our architecture
to create the deployment units before spawning Quantum and Classical Application
instances. From the point of view of the client programmers, they have deployed a single
application. However, the runtime system should be aware that the application is split
into multiple parts. Figure 2.9 illustrates an example with a computational graph of
coarse-grained layers. A coarse-grained layer consists (recursively) of finer-grained layers.
The nodes are enumerated to indicate the processing sequence, and a subindex indicates
a branching path. A node with the same index and subindex implies the same partition
deployed on different nodes. Partitions 1-2 are grouped depthwise and will be deployed as
one unit on edge devices. Partition 3.2 is deployed on cloud and fog nodes, while Partition
3.1 is a different model deployed exclusively on cloud nodes. For example, Partitions
3.1 and 3.2 could be Feature Extractor L and M from Figure 2.8. An SLO-aware load
balancer routes the output of Partition 2 to a variation of Partition 3. Lastly, the output
of Partition 3 is passed on to one of the instances of Partition 4. Partition 4 is deployed
on fog and cloud nodes. However, it is a QNN circuit that a server-grade cloud QPU
can execute, but must be partitioned widthwise for the mobile-grade MQPUs at the fog
nodes.

2.3 Summary

This chapter presented a distributed hybrid platform integrating quantum and classical
resources in a hierarchically organized network. It summarized existing literature in
quantum and classical computing. The presented applications focused on facilitating
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research efforts in quantum applications with warm-starting and ANN inference. The
key insight is the importance of seamless integration of components and that scaling such
platforms relies on large volumes of information at varying degrees of granularity.
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CHAPTER 3
Design Considerations for Neural
Networks in Edge-Cloud Systems

The chapter was motivated by observing substantial differences in performance between
testbeds and real-world experimentations, particularly when applying readily available
tools for optimizing performance. While absolute performance differences do not invalidate
results, diverging relative performance rankings across competing approaches invalidate
claims that authors deduce based on empirical data. We show that vendor-specific
software optimization stacks are a key source of unexpected performance reordering.
The chapter introduces a methodology and software tool to increase the confidence and
reproducibility of empirical studies in edge–cloud systems.

3.1 Graph Compilers for Artifical Neural Networks

The pervasiveness of ANNs in modern computing systems has generated significant de-
mand for methods to improve the efficiency of available hardware. As computational com-
plexity increases and deployment scenarios diversify, optimizing ANN execution becomes
indispensable for practical applications across various computational platforms [RHS+21b].
Among the most promising optimization approaches are graph compilers, which optimize
the computational graphs of neural networks to enhance scheduling, improve data flow,
and exploit dedicated hardware modules. Unlike other model optimization methods,
such as model compression [DLH+20] with pruning [CZS24], quantization [LHC+24], or
knowledge distillation [GYMT21], graph compilers can improve throughput or latency
by orders of magnitude with no loss in accuracy.
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Figure 3.1: Graph Compilers Reversing Throughput Rankings.

3.1.1 Trusting Research Results for Real-World Operations

While these compilers can be used independently, they may also be combined with model
compression or acceleration methods, such as quantization, that trade off efficiency for
accuracy. The potential performance improvements are substantial. Yet, fully leveraging
graph compilers presents distinct challenges. Graph compilers and other vendor-specific
optimizations can completely alter the relative performance across competing architectures.
Figure 3.1 not only precisely exemplifies this behavior, but also demonstrates that the
exact inverse holds for a different device-compiler pair.

The models are comparably large, and the batch size is 8. On the Orin, the convolutional-
based EfficientNet has a higher throughput than the transformer-based Swin. Applying
TensorRT significantly improves throughput for both models. However, the EfficientNet
is now slower than the Swin. On the Xeon with OpenVINO, we observe the exact inverse
behavior. Swin is faster before compilation, and compilation yields throughput gains
for both models, but Swin is now slower than EfficientNet. Section 3.2.3 will detail
experiment configurations.

Arguably, the increasing complexity of optimizing neural networks creates a disconnect
between academic research and real-world applicability, despite directly addressing
practical problems. When designing novel machine learning algorithms for Edge(-Cloud)
Systems [DZF+20], it is crucial to understand how graph compilers can invalidate
relative performance differences between architectural archetypes. A common problem
when extending research work into real-world systems is determining whether reported
performance improvements, regarding resource usage or throughput, from the latest
advancements will generalize to the target hardware. This problem stems not from a
lack of rigor by researchers but from the inherent heterogeneity of the AI accelerator
landscape [RMJ+22]. This insight was a key motivation in our previous works [FRD24,
FZR+25, FFSD25], where we deliberately opted for simplified encoder architectures with
widely supported operations to ensure that reported results would generalize across
vendors. While these and similar research contributions are valuable, their practical
application requires further consideration, often creating a needlessly high barrier for
practitioners by having to navigate complex optimization landscapes. To narrow the gap
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between research contributions and their applications in real systems, we introduce an
automated tool that integrates with existing profilers commonly used in edge or cloud
frameworks (e.g., for model selection [CSM+20]). The tool streamlines graph compiler
benchmarking over heterogeneous compute infrastructure to facilitate iterative empirical
analysis.

3.1.2 Background

Graph compilers analyze and optimize computational graphs representing neural networks
as nodes (operations) and edges (data dependencies). They provide abstraction to lower-
level implementation details by converting models from high-level frameworks (PyTorch,
TensorFlow) into hardware-agnostic intermediate representations. Moreover, they may
apply transformations that improve execution speed and memory efficiency across AI
accelerators, and hardware-specific code generation for low-level kernels tailored to target
architectures, such as CUDA for NVIDIA GPUs, and OpenCL for FPGAs.

High-level Network Architecture Organization

Figure 3.2 illustrates how most modern architectures organize layers.

Network
Stage Stage Stage 

Layer Layer Layer 
Block

Stage

Transform Normalization Nonlinearity
Layer

Figure 3.2: Network Architecture Layer Organization

Each layer applies a linear transform, normalization, and introduces non-linearity with
an activation function. Layers are grouped into blocks, which may be more complex, as
shown here, such as the ResNet bottleneck [HZRS16] that uses two 1× 1 convolutional
layers to reduce the number of channels, before increasing them again. A stage consists
of a sequence of repeated blocks. Finally, an architecture consists of at least one stage,
and each stage may have a variable number of blocks. The difference between models of
different sizes from the same architecture is typically their width and block ratios. For
example, the block ratio in Swin-Tiny is 2:2:6:2 and in Swin-Base 2:2:18:2 [LLC+21].
Graph Compilers can improve throughput by exploiting the repeated patterns present
in such organizations and by providing specialized hardware modules for particular
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compositions (e.g., Conv-BatchNorm-ReLU). The following briefly summarizes software
and hardware optimizations that compilers commonly use.

3.1.3 Software-Level Optimizations

Operator Fusion Operator fusion combines multiple operations, such as convolution
and activation, into a single computational kernel. Without operator fusion, each
operation would write intermediate results to memory and then read them back for the
next operation. By fusing operations, the compiler generates a single kernel that executes
all the fused operations sequentially within the same execution context. This eliminates
redundant memory accesses and reduces the overhead of launching multiple kernels.

Constant Folding Constant folding identifies subgraphs where all inputs are constants
and precomputes them at compile time. This reduces runtime computation by eliminating
the need to compute results that do not depend on dynamic inputs repeatedly.

Layout Transformation Different hardware architectures have specific data layout
preferences for optimal performance. For example, NVIDIA GPUs with Tensor Cores
prefer the BHWC (batch size, height, width, channels) format over BCHW (batch
size, channels, height, width). Layout transformations reorganize tensor data into these
preferred formats during compilation. These transformations ensure that memory accesses
are coalesced and aligned with hardware requirements, improving throughput.

Hardware and Kernel-Level Optimizations

Kernel Fusion Kernel fusion is similar to operator fusion, but at the kernel level.
Similarly to operator fusion, kernel fusion combines multiple operations into one kernel
execution to reduce kernel launch overheads. However, kernel fusion operates at a lower
level and can merge operations with finer granularity.

Memory Latency Hiding Memory latency hiding overlaps computation with data
transfers using asynchronous execution techniques. Specifically, by overlapping data
movement (e.g., between global memory and shared memory) with computation, the
memory access latencies appear instantaneous, i.e., “hidden.” Similarly to dynamic
batching, it involves a static code analysis and code generation for execution paths.
The execution paths facilitate asynchronous memory transfers and efficient scheduling
of threads, such that some threads perform computations while others wait for data
transfers to complete. For example, in matrix multiplication on GPUs, while one block of
threads computes partial results using data already loaded into shared memory, another
block loads the next set of data from global memory asynchronously.

Sparse Computation Sparse computation exploits sparsity in weights or activations.
It leverages tensor sparsity patterns (e.g., weights with many zero values) to skip
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unnecessary calculations and reduce storage requirements and memory use. In particular,
specialized sparse matrix formats like Compressed Sparse Row or Block Sparse Row store
only non-zero elements efficiently. Hardware accelerators often include optimized sparse
matrix multiplication routines that exploit these formats. For example, consider a sparse
neural network where 70% of weights are zero due to unstructured pruning. Instead of
performing dense matrix multiplication on all elements, sparse matrix multiplication
algorithms process only non-zero elements stored in CSR format. Then, multiplying
an input vector with a sparse weight matrix skips zero-weighted connections, reducing
computation time and memory bandwidth usage.

3.1.4 Related Work

Shuvo et al. [SICM23] provide an excellent review on techniques for utilizing AI accelera-
tors, but it is focused on lower-level tricks for a particular class of hardware. Zhou & Yang
benchmark TensorRT [ZY22], but only on convolutional architectures. Li et al. [LLL+21]
provide a broad overview of existing compilers, but only include rudimentary evaluation
on behavior in practice. Like our work, Xing et al. examine graph compilers on differ-
ent hardware (CPUs, GPUs) [XWW+19], but the evaluation only considers individual
operations and convolutional-based architectures, without addressing important factors,
such as batch size, depth, width, etc. Conversely, this work evaluates graph compilers
on various networks from varying architectural families and leverages the broad results
to draw generalizable insights. The work by Jajal et al. [JJT+24] shares similarities in
examining computational graph optimization of varying architectural styles and vendors,
but the focus is on interoperability, and specifically the issues that may be encountered
when converting models to ONNX. The work in [ZJS+25] also examines computational
graph optimization, but more generally focuses on uncovering bugs in the development
cycle of systems that train and deploy deep neural networks. The work in [ZXWZ23]
shares similarity in advocating for a design strategy that is mindful of the underlying
hardware acceleration. Still, it is an entirely qualitative assessment without any empirical
analysis. Lastly, Zhang et al. [ZLC+22, ZCC+24] introduce libraries for benchmarking
and provide comprehensive results, but include only mobile platforms and do not examine
graph compilers.

3.2 Graph Compiler-guided Method Design

We implement NGraphBench, a library that permits quick, automated, empirical eval-
uation of graph compilers in a heterogeneous cluster. However, the focus of the work
is not the implementation details of the library, and we only mention high-level details
for evaluation transparency in Section 3.2.3. Instead, the focus is on effectively utilizing
empirical compiler benchmark results to iteratively conceive and refine ML methods,
with a clear application focus on edge-cloud systems.
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3.2.1 NGraphBench Library

NGraphBench exposes a uniform interface for accessing and integrating graph compiler
APIs. Users can provide their models in ONNX or native PyTorch and configure experi-
ments, such as compiler-device pairs, compiler flags, repetitions, and model initialization
parameters.
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Figure 3.3: NGraphBench high-level flow.

Figure 3.3 illustrates the high-level application flow. The client coordinates the experi-
ments for participating clients in a cluster. Each device may evaluate multiple compilers.
Crucially, the compilation is done locally on the target devices, i.e., we are not using
hardware simulators, which are likely to result in worse optimizations. Each device
may benchmark multiple compilers, and will persist results in predefined checkpoints
periodically (e.g., to resume on a crash). After benchmarking, the devices will report
the results to the client. Once all devices have reported their results, the client will tear
down the benchmarking environments and terminate the application.

3.2.2 Pragmatic Research Design for Practical Systems

The disconnect between academic research and practical deployment is particularly
problematic when optimizing neural networks for heterogeneous hardware. While novel
architectures may excel in controlled benchmarks, their performance can vary dramatically
when deployed with different graph compilers across diverse hardware. We propose a
methodological framework that incorporates compiler effects throughout the research
process, as illustrated in Figure 3.4.

This framework divides the research process into three phases, each integrating compiler
optimization considerations:
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Figure 3.4: Iterative refinement guided by empirical analysis

Design Phase The design phase prioritizes architectural choices with widespread
hardware and compiler support. Using our work in [FZR+25] as a case study, we
selected variational compression methods for orbital edge computing applications where
processing must occur within finite time windows. Rather than optimizing for theoretical
metrics like the number of Multiply-And-Accumulate (MAC) operations or parameter
counts, we introduced the Transfer Cost Reduction per Second (TCR/s) metric to balance
compression efficiency against computational throughput. This approach enabled the
evaluation of different architectural paradigms (convolutional vs. transformer-based)
against practical deployment metrics.

Development Phase During development, researchers must examine how block com-
positions affect model performance and compiler-optimized throughput. Our analysis
revealed that increasing model depth often yields disproportionate throughput gains
when target hardware incorporates vendor-specific compiler support. Similarly, compiler
optimizations can effectively mitigate width adjustments that should reduce throughput.
Researchers can identify viable block compositions and configurations that maximize
performance within deployment constraints through systematic evaluation with graph
compilers.

Deployment Phase The final phase involves comprehensive testing on target hardware
with appropriate compiler optimizations. In our case study, without graph compiler opti-
mization, increased model width significantly deteriorated batch parallelization efficiency,
contradicting development-phase expectations. This resulted in selecting marginally
smaller models for constrained devices despite 30% worse compression performance. The
cause was what we refer to as the batch-width scaling friction. By slightly increasing
the convolutional channels (i.e., the width), the TCR/s has significantly dropped due
to reduced processing throughput. Such counterintuitive outcomes highlight the critical
importance of evaluating compiler-hardware interactions throughout the research process.
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In short, the methodology aims to bridge the gap between academic innovation and
practical deployment by integrating graph compiler considerations into each research
phase. While this approach requires additional empirical testing, it ensures that reported
performance improvements generalize across deployment scenarios, ultimately produc-
ing more valuable contributions for practitioners working with heterogeneous hardware
environments.

3.2.3 Empirical Analysis

The analysis is motivated by the three phases of our compiler-guided framework from
Section 3.2.2. We examine: (1) differential compiler support across architectural styles
to inform design decisions in Figure 3.5; (2) depth scaling and batch-width friction
mitigation effects to guide component composition in Section 3.2.4, Section 3.2.4; and (3)
analyze graph compiler effects on resource usage to reason about unexpected throughput
gains or losses, such as from adverse effects by concurrent tasks in Section 3.2.4. We
restrict the study to vision models to control confounders and isolate compiler effects,
and block-level experiments cover convolutional and attention compositions. However, we
emphasize that the results generalize to problem domains that rely on ANNs for function
approximation, such as NLP or Deep Reinforcement Learning. Moreover, we isolate
compilation from model compression, such as quantization [LHC+24], pruning [CZS24], or
knowledge distillation [GYMT21], as compilers alter execution without affecting accuracy
or training. In contrast, model compression introduces accuracy trade-offs that would
confound compiler-specific effects.

Experiment Design

We include TensorRT and OpenVINO to represent vendor-specific compilers and Apache
TVM to represent vendor-agnostic compilers with hardware-level optimizations. The
ONNX and TorchScript runtimes represent a software-level optimization approach. The
evaluation exclusively focuses on applying graph compilers without fundamentally altering
prediction behavior, i.e., it does not consider quantization and other model compression
methods. For experiments with a relative measure that relies on a baseline (e.g., speedup
factors, BSR), we use the PyTorch dynamic computational graph and refer to it as the
identity. We repeat each experiment 100 times and report the average with standard
deviations. Compilation is performed on the native hardware without hardware simulators.
The experiments are performed end-to-end by deploying them on a physical testbed
cluster using the NGraphBench library (Section 3.2). The following details the testbed
and configurations to facilitate reproducibility. We emphasize that in this work, the
NGraphCompiler library is exclusively for convenience and is not required to reproduce
our results.

Testbed We implement a physical testbed with relevant specifications summarized
in Table 3.1. For clarity, we will refer to Server 1 and Server 2 as “GPU” and “Xeon”
respectively, i.e., the chip we compile for and run the neural network on. The Orin Nano
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Table 3.1: Testbed Device Specifications

Device CPU GPU
Server 1 8x Ryzen 5700G @ 3.80 Ghz (x86) RTX 4070
Server 2 8x Xeon Skylake @ 3.0 Ghz (x86) N/A
Orin Nano 6x Cortex-A78 @ 2.0 Ghz (ARM) Amp. 512 CC 16 TC

uses Jetpack 6.2, which is based on Ubuntu 22.04. Hence, the other devices use
Ubuntu 22.04 LTS with Linux kernel version 5.15. We prioritize consistency over
using the latest versions. Table 3.2 reports the oldest versions installed on the devices.

Table 3.2: Library Versions

Library Version
ONNXRuntime 1.19.2
TensorRT 10.4.0
ApacheTVM 0.18.dev0
OpenVINO 2024.3.0

Library Version
PyTorch 2.4.1
CUDA 12.5
cuDNN 9.3.0
timm 1.0.15

Compiler Configurations Except for Apache TVM, we use intuitive default configu-
rations for graph compilers (e.g., optimize for throughput instead of latency in OpenVINO
when the evaluation criterion is throughput). To remain vendor-agnostic, TVM takes a
fundamentally different approach to optimization than vendor-specific compilers. TVM
can fuse arbitrary patterns and support new operations, if it can find them [CMJ+18].
Vendor-specific frameworks compile fast, but are limited to pre-defined fusion patterns or
operations. TVM’s tuning involves running many candidate kernels on the hardware or a
simulator to measure performance, yielding highly optimized code, potentially matching
or exceeding vendor libraries. The caveat is that TVM traverses an exponentially

Table 3.3: Contrasting Compile Times in Seconds

Model Batch Size Intel Xeon GeForce RTX
OpenVINO TVM TensorRT TVM

ResNet-101 1 2.249 18,022.663 11.863 57,307.949
32 4.080 28,327.363 16.089 58,466.694
1 3.109 36,241.423 53.332 69,364.992EfficientNet-B5 32 5.646 49,765.446 68.360 61,700.123
1 4.830 36,431.073 10.004 16,533.937ConvNeXt-Base 32 6.763 68,943.533 19.394 18,404.425
1 4.764 11,464.397 6.320 5230.073DeiT-Base 32 6.264 36,199.033 13.827 6157.337
1 9.338 88,095.557 17.545 27,378.831Swin-Base 32 12.628 13,4262.784 29.204 14,287.950
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scaling search space, such that finding an optimal computational graph for a single
experiment may take weeks or months. Therefore, we cap the number of trials at 1500
with early stopping after 150 using the xgb tuner, as we empirically determined on a
subset of models that increasing the number of trials beyond 1500 yields diminishing
results. Moreover, we only apply TVM to the off-the-shelf models on the native hardware
and omit it from the block-level evaluation due to time constraints. Table 3.3 shows the
compile times for the largest models. Notice that even after limiting the number of trials,
the compilation time may take more than 19 hours. Lastly, notice that the compilation
time increases with batch size only for Apache TVM. Unlike OpenVINO and TensorRT,
the TVM search heuristic relies on real measurements for each candidate graph, where
the runtime scales with the batch size.

Network Architecture & Layer Composition We perform experiments on off-the-
shelf architectures and more fine-grained blocks. Evaluating widespread models yields
general insights, such as whether vendors favor a particular architectural style. Table 3.4
summarizes the architecture specifications.

Table 3.4: Network Architecture Specifications

Architecture Style Parameters MACs
ResNet-18 Convolutional 11,689,512 1,814,083,944
ResNet-50 Convolutional 25,557,032 4,089,238,376
ResNet-101 Convolutional 44,549,160 7,801,511,784
EfficientNet-B3 Convolutional 12,233,232 962,729,320
EfficientNet-B4 Convolutional 19,341,616 1,503,740,472
EfficientNet-B5 Convolutional 30,389,784 2,356,534,504
DeiT-Small Transformer 22,059,496 79,557,352
DeiT-Medium Transformer 38,849,512 115,513,320
DeiT-Base Transformer 86,585,320 201,581,032
Swin-Tiny Transformer 28,328,674 52,152,040
Swin-Small Transformer 49,737,298 66,312,424
Swin-Base Transformer 71,125,762 94,739,176
ConvNeXt-Tiny Hybrid 28,589,128 322,371,592
ConvNeXt-Small Hybrid 50,223,688 411,391,240
ConvNeXt-Base Hybrid 88,591,464 646,530,408

We use the timm [Wig19] library that ensures consistent implementations to access
off-the-shelf architectures, so exact parameter and MAC counts may differ slightly from
those reported in original publications. We consider five architectural families and three
consecutively increasing model sizes per family. We include two convolutional-based
(ResNets [HZRS16], EfficientNets [TL19]) and two transformer-based (Swins [LLC+21],
DeiTs [TCD+21]). Additionally, we include ConvNeXts [LMW+22] as a hybrid approach
that is a convolutional-based model but includes design principles from transformers.
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Table 3.5: Per-Block Specifications

Convolutional Multi-Head Attention
Channels Params Per Block Embedding Dimensions Params Per Block

64 37,056 128 66,048
96 83,232 256 263,168

128 147,840 384 591,360
256 590,592 512 1,050,624

Table 3.5 summarizes the per-block specifications. Blocks allow us a more targeted
evaluation of depth (i.e., investigate optimization as we stack repeated blocks) and width,
and reduce noise from certain implementation quirks or other factors that affect compiler
efficacy.

The multi-head attention (MHA) block uses ReLU nonlinearity. We use channels in
convolutional blocks and embedding dimensions for MHA blocks to parameterize block
widths when investigating batch-width friction. We found that varying kernel and input
sizes similarly affect batch-width friction as increasing the channels. To simplify, we only
report results with the kernel size fixed at 3× 3 and input size 3× 244× 244. In MHA
block experiments, we fix the sequence length to ten for the input tensor and consider
the embedding dimensions to parameterize the block width.

Measuring Batch Parallelization

We can measure the Relative Throughput Rate (RTR) as

RTRc(b) := Tc(b)
Tc(1)

where Tc(b) is the throughput in samples per second for batch size b when compiler c is
used. The RTR quantifies the unnormalized parallelization rate. When scaling is perfect,
the throughput linearly scales as a function of the batch size. Note that once RTR drops
below 1, the batching reduces absolute throughput. Moreover, perfect scaling does not
happen in practice for larger batch sizes, so we will visualize the decay in batch scaling
efficiency with the Absolute Scaling Efficiency (ASE) measure:

ASEc(b) := Tc(b)
b · Tc(1) .

The ASE normalizes the RTR, so any reduction from a perfect parallelization rate directly
indicates reduced scaling efficiency. For example, when batch parallelization is perfect, the
ASE stays consistently 100%, irrespective of the batch size. Conversely, decreasing ASE
implies diminishing returns from increasing the batch size. As discussed in Section 3.2.2,
it is interesting to see whether compilers can mitigate the decay, i.e., maintain scaling
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efficiency at higher batch sizes. We measure this with the Batch Scaling Resilience (BSR)
as follows:

BSRc(b) := ASEc(b)
ASEidentity(b) .

The BSR is a relative measure that can quantify, without eyeballing, the improvement in
mitigating friction compared to a baseline compiler. Compilers with BSR values greater
than 1 consistently across varying configurations demonstrate that they can improve the
batch scaling efficiency for target hardware.

We emphasize that ASE and BSR are analytical instruments that quantify compiler-
induced scaling behavior; they are not conceptual innovations but make observed patterns
measurable and comparable across settings. In particular, measuring BSR as we increase
the batch size for different width configurations can determine whether a compiler can
alleviate the scaling friction, which we elaborate on in the following.

Batch-Width Scaling Friction

The batch-width scaling friction describes the joint effects of increasing model width
and batch size parameters on scaling efficiency that significantly impact systems that
prioritize processing throughput, such as in [FZR+25]. To empirically assess the efficacy
of compilers to mitigate the effect, we provide a minimally formal definition.

Definition 1. (Batch-Width Scaling Friction) Batch-width scaling friction is present
when, for fixed b, ASEc(b, w2) < ASEc(b, w1) with widths w2 > w1 in the operating range,
which indicates that increasing width reduces parallelization efficiency.

3.2.4 Compiler Support Across Architectural Styles

Figure 3.5 compares the absolute throughput of the vendor-specific compilers with the
dynamic uncompiled graphs. It shows how compiling results in significant throughput
gains, except when resources are scarce, the performance saturates. Each row corresponds
to a model size, and each column to an architectural family (e.g., smallest for ResNets
is ResNet-18). The y-axis scaling is non-uniform, highlighting the strong relationship
between compiler efficacy and architectural style. Notice that even if the absolute
throughput across model sizes is offset, the throughput scaling as we increase the
batch size is strikingly similar within a family. The caveat is that the varying device
capacities obfuscate the results, making it challenging to assess compilation efficacy.
Hence, we report relative values for the remainder of the evaluation but summarize
partially aggregated measurements using absolute values in Table 3.6. Figure 3.6 plots
the throughput multiplier for the five architectural families on different devices-compiler
pairs. It contrasts the multiplicative throughput increase relative to the uncompiled
baseline.

The results reveal strikingly distinct performance patterns across batch sizes and neural
network architectures, demonstrating performance patterns highly dependent on batch
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Figure 3.5: Contrasting the absolute throughputs

size and neural architecture. Conv-based architectures see broader support, whereas
for transformer-based architectures, it strongly varies. Interestingly, despite being
advertised as a “convolutional architecture”, ConvNeXt behaves similarly to transformers
in performance across all compilers. At small batches (≤2), compilers provide 2-6×
speed-ups by eliminating Python dispatch overhead and enabling operation fusion. These
advantages diminish as batch size increases, with only vendor-specific solutions (TensorRT
for GPU, OpenVINO for CPU) maintaining consistent performance advantages at batch
size 16. Architecture significantly influences compiler efficacy: traditional convolutional
networks benefit substantially from all compilers at small batches, while transformer-
based models show minimal improvement with TVM, moderate gains with ONNX,
and substantial acceleration only with vendor-specific tools. While TVM demonstrates
substantial performance gains for convolutional architectures, the performance completely
tanks for transformer architectures, particularly for ConvNeXt. The weaker TVM results
on ConvNeXt are consistent with a search-based optimization that must navigate a
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Table 3.6: Aggregated Results by Architectural Family
Batch Size(2-4) Batch Size(8-16)Family Compiler Throughput [t/s] ↑ CPU [%] ↓ Throughput [t/s] ↑ CPU [%] ↓

Identity (Orin) 104.69 ± 0.57 11.13 ± 0.78 149.63 ± 0.66 5.52 ± 2.00
Identity (GPU) 1047.32 ± 14.09 6.24 ± 0.09 2442.30 ± 43.44 6.22 ± 0.10
Identity (CPU) 68.08 ± 1.75 99.83 ± 0.94 75.12 ± 2.78 95.41 ± 2.60
TensorRT (Orin) 179.01 ± 6.98 3.45 ± 1.14 247.99 ± 1.28 1.58 ± 0.77
TensorRT (GPU) 1740.11 ± 14.18 6.26 ± 0.14 2673.77 ± 19.56 6.24 ± 0.03
OpenVINO (CPU) 136.94 ± 5.80 97.98 ± 0.84 163.90 ± 6.21 96.99 ± 1.40
TVM (GPU) 1678.78 ± 29.22 6.32 ± 0.17 1823.83 ± 374.62 6.26 ± 0.05

ResNets

TVM (CPU) 46.55 ± 0.69 49.99 ± 0.72 60.27 ± 0.99 49.88 ± 0.83
Identity (Orin) 50.33 ± 0.25 14.29 ± 0.83 64.47 ± 0.17 6.27 ± 3.75
Identity (GPU) 294.85 ± 4.57 6.25 ± 0.10 1029.42 ± 4.12 6.24 ± 0.08
Identity (CPU) 30.80 ± 0.92 99.05 ± 1.26 47.34 ± 0.96 97.43 ± 2.90
TensorRT (Orin) 93.74 ± 0.48 5.31 ± 0.83 113.39 ± 0.36 2.03 ± 0.90
TensorRT (GPU) 1114.56 ± 8.67 6.23 ± 0.14 1578.73 ± 5.53 6.24 ± 0.17
OpenVINO (CPU) 96.04 ± 2.35 98.28 ± 0.83 120.00 ± 3.28 97.36 ± 1.32
TVM (GPU) 1088.48 ± 32.06 6.21 ± 0.12 1261.05 ± 236.20 6.26 ± 0.11

EfficientNets

TVM (CPU) 17.69 ± 0.42 49.96 ± 0.80 20.66 ± 0.22 49.94 ± 0.82
Identity (Orin) 36.45 ± 0.26 6.14 ± 1.39 41.50 ± 0.16 1.89 ± 1.96
Identity (GPU) 674.76 ± 5.76 6.26 ± 0.14 1015.49 ± 3.17 6.25 ± 0.13
Identity (CPU) 37.08 ± 1.18 99.59 ± 1.58 50.81 ± 1.55 99.11 ± 1.33
TensorRT (Orin) 95.67 ± 1.06 1.40 ± 0.84 116.26 ± 0.70 0.60 ± 0.78
TensorRT (GPU) 1164.57 ± 9.87 6.28 ± 0.15 1531.85 ± 6.62 6.25 ± 0.11
OpenVINO (CPU) 50.29 ± 1.52 99.01 ± 1.07 61.01 ± 2.27 97.26 ± 2.43
TVM (GPU) 71.43 ± 4.02 6.25 ± 0.07 87.22 ± 5.54 6.25 ± 0.09

DeiTs

TVM (CPU) 7.00 ± 0.06 49.92 ± 0.89 8.56 ± 0.07 49.93 ± 0.85
Identity (Orin) 22.28 ± 0.12 7.20 ± 2.80 25.66 ± 0.05 3.08 ± 4.38
Identity (GPU) 304.23 ± 2.38 6.25 ± 0.08 591.81 ± 1.24 6.25 ± 0.09
Identity (CPU) 21.37 ± 0.56 96.62 ± 2.52 23.81 ± 0.52 95.29 ± 2.75
TensorRT (Orin) 68.00 ± 0.55 1.25 ± 0.74 81.62 ± 0.84 0.56 ± 0.88
TensorRT (GPU) 918.61 ± 7.71 6.22 ± 0.23 1062.34 ± 3.32 6.25 ± 0.14
OpenVINO (CPU) 36.75 ± 0.81 99.26 ± 0.98 42.79 ± 1.19 98.01 ± 1.90
TVM (GPU) 149.52 ± 15.19 6.25 ± 0.09 80.34 ± 3.27 6.27 ± 0.17

Swins

TVM (CPU) 8.01 ± 0.17 49.94 ± 0.81 9.67 ± 0.08 49.90 ± 0.85
Identity (Orin) 29.72 ± 0.19 6.51 ± 1.92 34.34 ± 0.08 2.32 ± 2.98
Identity (GPU) 563.15 ± 5.28 6.24 ± 0.17 862.64 ± 3.24 6.24 ± 0.10
Identity (CPU) 31.86 ± 1.99 98.31 ± 3.28 45.00 ± 1.33 99.37 ± 1.81
TensorRT (Orin) 76.98 ± 0.57 2.21 ± 0.97 89.80 ± 0.43 0.74 ± 0.82
TensorRT (GPU) 972.13 ± 6.93 6.25 ± 0.04 1166.44 ± 3.43 6.26 ± 0.12
OpenVINO (CPU) 38.91 ± 0.91 99.43 ± 0.94 45.50 ± 1.29 97.13 ± 1.91
TVM (GPU) 266.40 ± 24.91 6.26 ± 0.10 143.74 ± 17.35 6.25 ± 0.08

ConvNeXts

TVM (CPU) 10.67 ± 0.21 49.95 ± 0.80 13.50 ± 0.12 49.91 ± 0.87

large combinatorial schedule space for hybrid blocks [CMJ+18], which is consistent with
the compile-time profile in Table 3.3. The architectural hybridization of ConvNeXt
exponentially expands the optimization search space, complicates identifying possible
fusion patterns, and frequently results in convergence to suboptimal local minima within
the computational graph. Conversely, Vendor-specific compilers maintain their advantage
through extensive manual optimization targeted specifically at popular cutting-edge
architectures. Since the dynamic computational graph is executed sequentially in the
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Figure 3.6: Contrasting multiplicative throughput increase relative to the baseline.

Python runtime on the Xeon CPU, we also include TorchScript as an additional baseline.
TorchScript can exploit the multiple cores on the CPU with intra-op parallelism. However,
compared to OpenVINO, which achieves up to 5-6 times higher throughput, TorchScript
only marginally improves throughput across all configurations.

The results show strikingly distinct performance patterns across compilers, hardware
platforms, and neural architectures. Convolutional-based networks benefit from all
compilers, while transformer-based models see limited gains from vendor-agnostic
solutions. Vendor-specific compilers maintain advantages through targeted optimization
for popular architectures, while automated tuning approaches struggle with hybrid
designs. Performance advantages are most pronounced at small batch sizes, with only
vendor-specific solutions maintaining consistent advantages as batches grow.

Exploiting Repeated Patterns from Depth Scaling

Figure 3.7 plots the throughput multiplier relative to the uncompiled graph for the
convolutional and MHA blocks separately.

Note that the Y-axis scaling is non-uniform to accentuate the relationship between
compiler-device pairs at a set batch size. It contrasts how stacking homogeneous blocks
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Figure 3.7: Contrasting how stacking homogeneous blocks improves throughput.

improves throughput over the baseline. The factor diminishes at higher batch sizes, but
the relative relationship between depth and the factor remains consistent. Unsurpris-
ingly, we observe comparable behavior of convolutional blocks and MHA blocks as with
convolutional-based and transformer-based architectures. However, the depth noticeably
impacts the throughput relationship between the compilers. This trend remains even
when performance starts to saturate due to high computational load from large batch
sizes and block widths. For example, Figure 3.7b shows how the throughput for MHA
blocks at batch size 8 with embed dimension 128, using the TensorRT compiler on the
GPU, is approximately twice that of the baseline dynamic computational graph on a
single block, but jumps to eightfold when stacking six repeating blocks. Conversely,
convolutional architectures perform best using ONNX and OpenVINO on Xeon CPUs
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Table 3.7: Depth Scaling of Convolutional Blocks

Device Compiler Width Batch Size 8 Batch Size 16
Slope Retention Slope Retention

GPU TensorRT 64 0.08924 3.821 0.1032 1.187
GPU TensorRT 96 0.1024 0.2116 0.1038 0.6593
GPU ONNX 64 0.06953 1.153 0.09141 0.426
GPU ONNX 96 0.07876 1.304 0.08367 0.7538
Orin TensorRT 64 0.1695 0.7846 0.1349 0.7759
Orin TensorRT 96 0.1285 1.126 0.212 6.553
Xeon ONNX 64 0.04862 1.009 0.0006561 0.9756
Xeon ONNX 96 0.0453 1.025 0.02658 0.9954
Xeon OpenVINO 64 0.4417 0.3379 0.4775 0.7428
Xeon OpenVINO 96 0.3553 0.8669 0.3378 0.4106

across the majority of experiment configurations. Table 3.7 and Table 3.8 quantify how
varying compilers can leverage the repeating patterns. We compute the slope with the
least-squares fit to measure how much speed-up changes as we increase the depth. A
positive slope implies that each additional layer makes the compiler’s advantage even
larger. In contrast, a negative slope means that extra blocks diminish initial gains. The
retention is simply the ratio between the speed-up factor of the deepest stack and the
speed-up factor of a single block. A value close to 1 implies that a compiler is agnostic
towards the depth parameter, i.e., it cannot leverage the repeated block patterns. Values
above 1 imply that the compiler can leverage repeated blocks.

For convolutional blocks, the speed-ups of the vendor-specific compilers with hardware
optimization are amplified by increasing the depth. The convolutional blocks are a
repeated sequence of the simple Conv →BatchNorm →ReLU pattern. The simple design
aids the hardware-based compilers. The vendor-specific compilers can leverage the
repeating patterns and tile and fuse them into smaller or larger kernels. For example,
this can occur by collapsing all 3N pointwise ops into one fused pass, or merging multiple
2D convolutions into one multi-stage convolution that reuses intermediate results. As we
increase the depth, the amortized overhead per block of kernel launch, memory barriers,
and descriptor setup decreases. Conversely, the software-based optimization of ONNX
shows weaker improvements.

The retention values of MHA blocks are, on average, less than those of convolutional
blocks, i.e., the compilers cannot leverage the repeated patterns as effectively. The
dependency graph of the Linear(QKV) →Reshape →MatMul →Softmax →MatMul
→Add →LayerNorm →ReLU is significantly more complex, such that we may get good
one-block kernels, but stacking them does not result in intra-block fusion.
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Table 3.8: Depth Scaling of MHA Blocks

Device Compiler Width Batch Size 8 Batch Size 16
Slope Retention Slope Retention

GPU TensorRT 128 0.8207 1.404 1.028 0.556
GPU TensorRT 256 0.6369 0.6935 0.8831 1.471
GPU ONNX 128 0.3594 2.187 0.3106 0.83
GPU ONNX 256 0.3406 1.724 0.2929 0.9108
Orin TensorRT 128 0.05291 1.178 0.173 0.9055
Orin TensorRT 256 0.08368 0.95 0.1488 1.629
Xeon ONNX 128 0.04244 1.105 -0.01775 1.018
Xeon ONNX 256 0.01867 1.031 0.0215 0.9735
Xeon OpenVINO 128 0.1113 1.115 0.1355 0.9635
Xeon OpenVINO 256 0.1589 1.577 0.1015 1.029

Vendor-specific compilers achieve increasing throughput with depth by exploiting
repeated block structures for deeper fusion and lower launch overhead. Convolutional
blocks (Conv→BatchNorm→ReLU) show superlinear scaling under TensorRT and
OpenVINO, as their regular patterns enable kernel tiling and fusion. Transformer-style
blocks (QKV→Softmax→Add→Norm) saturate early since inter-layer dependencies
hinder intra-block fusion, producing additive rather than multiplicative gains. Depth
interacts multiplicatively with batch size: GPUs favor deep, narrow models, while
CPUs benefit from shallower, wider ones due to cache and scheduling limits. Repeated
simple patterns yield disproportionate efficiency in constrained settings, emphasizing
compiler-aware design that favors regular, fusable structures.

Batch Parallelization Scaling Efficiency

From both Figure 3.6 and Figure 3.7, it is apparent that increasing the batch size
significantly influences the throughput rate, and different compilers exhibit varying
behavior. Figure 3.8 contrasts between architectural styles explicitly to show how
increasing the batch size decreases the scaling efficiency despite increasing the raw
throughput.

As performance saturates at higher batch sizes, the throughput gain from paralleliza-
tion diminishes. Apache TVM shows considerable but inconsistent scaling efficiency
for convolutional-based architectures on the GPU. This is expected due to TVM’s
search-heuristic-based optimization, i.e., we must start a new search for each batch size.
Conversely, the scaling efficiency decay of TensorRT is more predictable, as it is consistent
with negligible variance.

To account for varying compute capacities, and to provide information on relative
improvement over the dynamic computational graph baseline, Figure 3.9 plots the batch
scaling resilience (Section 3.2.3) for each architectural style.
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Figure 3.8: Contrasting ASE (higher is better) of architectural styles.

TensorRT has BSR ≈ 1 across most architectures, which implies consistent throughput
gains over the baseline. Note that a BSR below 1 implies steeper efficiency losses relative
to the baseline. We argue that a BSR below 1.0 indicates that there are potentially further
opportunities for optimization that the compiler has missed. The intuition is that if the
compiler has found a global maximum, the drop in scaling efficiency should be at worst
consistent between the unoptimized dynamic and the optimized compiled computational
graph. In particular, the erratic results of TVM demonstrate that specific optimizations
exist that the corresponding vendor does not adequately consider, but they are challenging
to find. For example, applying TVM to the mid-sized DeiT shows significantly higher
resilience than OpenVINO on the Xeon CPU. Conversely, the resource-constrained Orin
shows a BSR of roughly 1.0 across transformer-based architectures for all sizes while
showing substantial throughput gains for the same architecture. However, especially
for smaller architectures, the BSR of TensorRT on the comparatively powerful GPU is
consistently below 1.0.

The results indicate a consistent relationship between compiler optimization strategy
and runtime saturation behavior. When scaling efficiency decreases at larger batch
sizes, it often reflects limited overlap between data movement and computation once the
compiler’s kernel fusion scope is reached.
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Figure 3.9: Contrasting BSR (higher is better) of architectural styles.

We conjecture that Vendor-specific compilers maintain near-constant BSR because their
fusion templates are tuned for common convolutional and attention patterns. In contrast,
search-based approaches such as TVM show irregular scaling since each batch configura-
tion exposes a different optimization boundary. Hence, compiler efficiency does not grow
smoothly with batch size but changes discretely with internal scheduling thresholds. For
evaluation design, benchmarking a single batch configuration can overestimate scalability.
Measuring ASE and BSR across several batch-width regimes provides a more accurate
view of achievable throughput. Compilers with stable BSR values yield predictable
latency–throughput trade-offs, which is preferable for systems that rely on dynamic
batching or experience variable workload intensity.

The Batch Scaling Resilience (BSR) metric uncovers compiler-specific optimization
patterns, demonstrating that TensorRT achieves consistent scaling profiles (BSR ≈ 1)
for most architectures while TVM shows erratic but occasionally superior resilience
for specific model-hardware combinations. The results show that compilers can more
easily optimize for resource efficiency when resources are scarce. When resources are
abundant, BSR values below 1.0 suggest that further optimizations are possible.
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Batch-Width Scaling Friction Mitigation

We investigate whether compilers can mitigate the batch-width scaling friction described
in Definition 1 block-level experiments.
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Figure 3.10: Heatmaps plotting the effect of width on ASE.

The batch-width friction is directly apparent from Figure 3.10. On all device-compiler
pairs, the scaling efficiency decreases faster for wider networks, but the rate varies.
As we increase the width for a block, the efficiency scaling drops considerably faster
from one batch size to the next larger batch size. However, to account for hardware
differences and to compare with the baseline dynamic computational graph Figure 3.11
plots the BSR for three depth configurations. Successful optimization on the CPU shows
improved parallelization rates even at higher batch sizes. Increasing the depth tends
to moderately improve BSR for TensoRT, arguably for the same reasons as outlined in
Section 3.2.4. TorchScript slightly mitigates the scaling friction for some configurations
through intra-ops parallelization, which is expected. A BSR value higher than one implies
that scaling efficiency decreases more gracefully relative to the uncompiled dynamic graph.
This is best seen with OpenVINO. For the convolutional blocks, it can considerably
mitigate the efficiency decrease by exploiting the multiple cores. The results indicate
that batch-width scaling friction primarily stems from memory-bandwidth contention
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Figure 3.11: Contrasting BSR between convolutional and MHA blocks.

and kernel-launch serialization as tensors expand laterally. Increasing the width increases
synchronization cost between fused operations, which reduces effective parallel overlap
within compute units. Compilers may mitigate this by restructuring fusion boundaries
and adjusting tile granularity. Vendor-specific compilers such as TensorRT rely on
pre-defined fusion templates and optimized CUDA launch graphs, which benefit deep
but narrow configurations where per-kernel reuse is high. Conversely, OpenVINO’s
thread-level parallelism distributes wide tensor partitions across cores, explaining its
stronger friction mitigation for convolutional blocks. Transformer-based blocks see greater
friction because attention layers may introduce irregular memory access and residual
connections that hinder static scheduling. Consequently, compilers can only partially
amortize the width-induced overhead through operator fusion. In practice, this implies
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that widening layers should be balanced against attainable batch parallelism under the
target compiler: depth scaling favors environments with GPUs, whereas moderate width
scaling with multi-core exploitation is preferable on CPU-based deployments. These
interactions highlight that compiler-aware architecture design can reduce scaling friction
without altering model semantics, emphasizing the need to evaluate joint width-batch
trade-offs during system optimization.

Batch-width scaling friction originates from increased memory synchronization and
reduced kernel reuse as model width expands. Compilers differ in their ability to restruc-
ture execution to offset this loss. Vendor-specific compilers such as TensorRT mitigate
friction through deep-kernel fusion and launch-graph optimization, favoring narrow
but deep configurations. OpenVINO may achieve stronger mitigation for convolutional
blocks by distributing wider tensor partitions across CPU cores. Transformer-style
blocks are limited by irregular memory access and residual dependencies that can
hinder static fusion. Overall, effective friction mitigation depends on the compiler’s
capacity to balance fusion depth with parallel partitioning, implying that width scaling
should be aligned with the underlying compiler–hardware concurrency model.

Resource Usage Reduction

From Table 3.6 it is apparent that when compilers successfully optimize the graph to
have considerable throughput gains, the CPU usage increases on the Xeon where there is
no dedicated GPU. On the GPU server and the Jetson board, TensorRT can decrease
the CPU usage - marginally on the powerful server and significantly on the constrained
Jetson board. TensorRT on GPU leverages static-graph capture and aggressive kernel
scheduling to slash CPU-side launch overhead, which on the constrained Jetson Orin’s
SoC shows up as CPU-usage drops. On a higher-end GPU Server, these savings are
negligible.
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Figure 3.12: The left Y-axis (solid line) shows the absolute CPU usage. The left Y-
axis (dashed line) shows the relative CPU reduction. When the batch size increases,
throughput performance saturates on the GPU, such that the CPU usage reduces.

Figure 3.12 directly compares the CPU usage of TensorRT on the compiled network
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and the baseline on all architectural families on the Orin device. Notice that for the
transformer-based architectures, particularly for the Swin family, there is up to 80%
reduction in CPU usage. This is valuable in constrained environments that perform
auxiliary tasks on the CPU. For example, in [FZR+25], interference from pre- and
post-processing on the CPU was negligible on smaller models but adversely affected the
throughput of larger models.

Applying compilers on devices with a dedicated accelerator can significantly reduce
CPU utilization (up to 80%) through static-graph capture and kernel scheduling
optimizations. This reduction is particularly valuable in edge computing scenarios
where horizontal scaling is limited and CPUs may handle concurrent auxiliary tasks.
These findings indicate compiler selection should consider both throughput and resource
utilization metrics when deploying neural networks in resource-constrained edge-cloud
systems.

Discussion

Our findings are largely consistent with prior benchmarking work, though our scope
differs methodologically. Earlier studies typically focus on isolated compilers or per-
operation performance, whereas our evaluation integrates compiler effects into end-to-end
model benchmarking. Consistent with Zhou & Yang [ZY22] and Li et al. [LLL+21], we
observe that vendor-specific compilers (e.g., TensorRT, OpenVINO) achieve superior
throughput due to aggressive fusion of supported operator patterns. However, unlike
Xing et al. [XWW+19], who report stable performance ordering across architectures, our
cross-compiler evaluation shows that compilation can invert relative throughput rankings
when optimization coverage diverges. This apparent inconsistency arises from differences
in experimental design, explained by our methodology using fully compiled workloads
on heterogeneous edge–cloud hardware rather than operation-level microbenchmarks.
Moreover, while Zhang et al. [ZLC+22, ZCC+24] attribute performance variance across
libraries to framework differences, our results subsume their finding that underlying
compiler optimizations are the decisive factor. In summary, our work is complementary
to earlier studies by extending the benchmarking dimension from framework-level to
compiler-level and providing diagnostic metrics such as BSR for future analyses.

3.3 Summary

The chapter introduced a framework for incorporating compiler effects throughout the
research process for Edge-Cloud systems relying on NNs. Empirical analysis demonstrated
that optimizations can completely invalidate performance expectations by systematically
analyzing compiler behavior across heterogeneous platforms. The introduced Batch
Scaling Resilience metric quantifies a compiler’s ability to mitigate performance friction
as batch size increases. Block-level experimentation confirmed that simple compositions
with widely supported operations provide significant advantages in resource-constrained
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environments, as compilers effectively leverage repeated patterns for disproportionate
throughput gains. However, despite our comprehensive analysis, the evaluation relies
on a finite heterogeneous testbed, which does not capture the full diversity of emerging
accelerator architectures. Scaling the methodology to distributed settings or deployments
that include model compression is left for future investigation.
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CHAPTER 4
Neural Feature Compression

This chapter handles the demands of latency-sensitive and performance-critical applica-
tions by efficiently reducing transmission costs. Efficency here implies (I) the operator
need not know about client tasks, (II) latency reduction from lower transmission costs,
and (III) preserving enough information for (near-)lossless prediction performance. The
encoder design is purposefully simple, consisting of vanilla convolutional layers, as the
previous chapter has shown that this layer type sees the most consistent support across
vendors.

4.1 Shallow Variational Bottleneck Injection

The section describes the core method for addressing the need for efficient bandwidth
reduction from ANN inference requests. It first provides a broad overview of existing
approaches and discusses their limitations.

4.1.1 Introduction

Problem domains relying on ANN inference range from Computer Vision (CV) [VDDP18]
to Natural Language Processing (NLP) [OMK20]. Complementary with the advancements
in mobile edge computing (MEC) [FHZ+22] and energy-efficient accelerators, visions of
intelligent city-scale platforms for demanding applications, such as mobile augmented
reality (MAR) [RHS+21b], disaster warning [TD22], or facilities management [XAD+22],
are increasingly feasible. Progress in energy-efficient ASICs and embedded AI with
model compression, such as quantization, pruning, or knowledge distillation, may permit
constrained devices to host lightweight ANNs. Yet, irrespective of advancements for
local computing, network providers see unprecedented growth in Machine-to-Machine
(M2M) communication [Cis20] from mobile clients. The same methods that facilitate
local computing on constrained devices are also applicable to large models, and when
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prediction performance is critical, it is preferable to offload requests to the most accurate
model available. Moreover, hosting foundational models is convenient as it gives operators
more control over optimizing inference [FD22] and reduces the maintenance overhead as
a single model may accommodate various tasks [JT21, ANK+25]. Besides leaving local
resources idle, the downside to offloading is that by constantly streaming high-dimensional
visual data, the limited bandwidth will inevitably lead to network congestion, resulting
in erratic response delays. As discussed in Section 1.2 and Section 2.2.7, Split Computing
(SC) emerged as an alternative to alleviate inefficient resource utilization and to facilitate
latency-sensitive and performance-critical inference. To recap, the idea is to partition an
ANN to process the shallow layers with the client and send a processed representation to
the remaining deeper layers deployed on a server. SC can draw resources from the entire
edge-cloud compute continuum, but its applications are limited. They assume extremely
constrained conditions, are tailored toward specific neural network architectures, and
break server-side transparency. We identify two critical design flaws of SC that render
them impractical in MEC. First is forcing the requirement for reducing server-side
workload when there is significant resource asymmetry. Second is the black-box approach
that treats ANN inference as a special workload.

4.1.2 Related Work

Neural Data Compression

Image Compression Lossy image compression minimizes bitrates given a constraint
on the distortion or perceptual quality of the reconstruction [BM19, Sha59]. Transform
coding is a basic framework of lossy compression, which divides the compression task into
decorrelation and quantization [Goy01]. Decorrelation reduces the statistical dependencies
of the pixels, allowing for more effective entropy coding, while quantization represents
the values as a finite set of integers. The core difference between handcrafted and learned
methods is that the former relies on linear transformations based on expert knowledge.
Contrarily, the latter is data-driven with nonlinear transformations learned by neural
networks [BCM+20].

Ballé et al. introduced the Factorized Prior (FP) entropy model and formulated the
neural compression problem by finding a representation with minimal entropy [BLS17].
An encoder network transforms the original input to a latent variable, capturing the
input’s statistical dependencies. In follow-up work, Ballé et al. [BMS+18] and Minnen et
al. [MBT18] extend the FP entropy model by including a hyperprior as side information for
the prior. Minnen et al. [MBT18] introduce the joint hierarchical priors and autoregressive
entropy model (JHAP), which adds a context model to the existing scale hyperprior latent
variable models. Typically, context models are lightweight, i.e., they add a negligible
number of parameters, but their sequential processing increases the end-to-end latency
by orders of magnitude. The empirical analysis will describe and include more recent
methods as baselines.
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Feature Compression Singh et al. demonstrate a practical method for the Information
Bottleneck principle in a compression framework by introducing the bottleneck in the
penultimate layer and replacing the distortion loss with the cross-entropy for image
classification [AMT+17]. Dubois et al. generalized the VIB for multiple downstream
tasks and were the first to describe the feature compression task formally [DBRUM21].
However, their encoder-only CLIP compressor has over 87 million parameters. Both
Dubois and Singh et al. consider feature compression for mass storage, i.e., they assume
the data is already present at the target server. In contrast, we consider how resource-
constrained clients must first compress the high-dimensional visual data before sending it
over a network. Closest to our work is the Entropic Student (ES) proposed by Matsubara
et al. [MYLM23, MYLM22], as we follow the same objective of real-time inference with
feature compression. However, the ES exhibits the same limitations as other bottleneck
injection methods. We carefully examine the problem domain of resource-conscious
feature compression to identify underlying issues with current methods, allowing us to
derive training objectives and decoder designs with significantly better performance.

Split Computing

We focus on Split Computing (SC) and distinguish between two orthogonal approaches.
SC corresponds to depthwise partitioning discussed in Section 2.2.7. Widthwise partition-
ing is omitted, as the objective is to minimize request latency and bandwidth requirements
when offloading requests to foundational models running on powerful hardware.

Split Runtimes are characterized by performing no or minimal modifications on
off-the-shelf ANNs. The objective is to dynamically determine split points according to
the available resources, network conditions, and intrinsic model properties. Hence, split
runtimes primarily focus on profilers and adaptive schedulers. Kang et al. performed
extensive computational cost and feature size analysis on the layer-level characterizations
of ANNs and introduced the first split runtime system [KHG+17]. Their study has shown
that split runtimes are only sensible for ANNs with an early natural bottleneck, i.e., models
performing aggressive dimensionality reduction within the shallow layers. However, most
modern ANNs increase feature dimensions until the last layers for better representation.
Consequently, follow-up work focuses on feature tensor manipulation [LHJ+18, LVA+20,
ALV+22]. We argue against split runtimes since they introduce considerable complexity
and force operators to tune the system towards external conditions, with extensive
profiling and careful calibration. Additionally, runtimes raise overhead and another point
of failure by hosting a network-spanning system. Notably, even the most sophisticated
methods still rely on a natural bottleneck, evidenced by how state-of-the-art split runtimes
still report results on superseded ANNs with an early bottleneck [LZLG22, BMZ+23].

Artificial Bottleneck Injection retains the simplicity of offloading by shifting the
effort towards modifying and re-training an existing base model (backbone) to replace
the shallow layers with an artificial bottleneck. Eshratifar et al. replace the shallow
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layers of ResNet-50 with a deterministic autoencoder network [EEP19]. A follow-up work
by Jiawei Shao and Jun Zhang further considers noisy communication channels [SZ20].
Matsubara et al. [MBC+19], and Sbai et al. [SSTM21] propose a more general network
agnostic knowledge distillation (KD) method for embedding autoencoders, where the
output of the split point from the unmodified backbone serves as a teacher.

4.1.3 The Case for Neural Data Compression

We assume an asymmetric resource allocation between mobile devices and servers, where
the latter has considerably higher computational capacity. Additionally, we consider large
models for state-of-the-art performance of non-trivial discriminative tasks unsuitable for
mobile clients.

Limitations of depthwise partitioning in Mobile Edge Computing

Figure 4.1 illustrates generic on/offloading and split runtimes that illustrate how SC may
conditionally draw resources from two computational tiers when binary on- or offloading
decision mechanisms will leave either client or server-side resources idle.
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Figure 4.1: Prediction with on/offloading and split runtimes

The caveat is that both SC approaches discussed in Section 4.1.2 are only conditionally
applicable. In particular, split runtimes reduce server-side computation for inference
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tasks with off-the-shelf models by onloading and executing shallow layers at the client.
This approach introduces two major limitations.

First, when the latency is crucial, this is only sensible if the time for client-side execution,
transferring the features, and remotely executing the remaining layers is less than the
time of directly offloading the task. More recent work [LZLG22, ALV+22, BMZ+23] relies
on carefully calibrated dynamic decision mechanisms. A runtime component periodically
measures (e.g., network bandwidth) and internal conditions (e.g., client load) to measure
ideal split points or whether direct offloading is preferable. Second, since the shallow
layers must match the deeper layers, split runtimes cannot accommodate applications
with complex requirements, which is a common justification for MEC (e.g., MAR).
Constrained clients would need to swap weights from the storage in memory each time
the prediction model changes. Worse, the layers must match even for models predicting
the same classes with closely related architectures. Hence, it is particularly challenging to
integrate split runtimes into systems that can increase the resource efficiency of servers
by adapting to shifting and fluctuating environments [RLYK21, ZZC+22]. For example,
when a client specifies a target accuracy and a tolerable lower bound, the system could
select a ResNet-101 that can hit the target accuracy but may temporarily fall back to a
ResNet-50 to ease the load when necessary.

Execution Times with Resource Asymmetry. Table 4.1 summarizes the results of
a simple experiment to demonstrate limitations incurred by resource asymmetry. The
client is an Nvidia Jetson NX2 equipped with a low-powered accelerator, and the server
hosts an RTX 3090 (see Section 4.2.2 for details on hardware configurations). We measure
the execution times of ResNet variants, classifying a single 3× 224× 224 tensor at two
split points.

Table 4.1: Execution Times of Split Models

Model Split
Index

Head
[NX2] (ms)

Head
[3090] (ms)

Tail
[3090] (ms)

Rel. Exec.
[NX2] (%)

Contribution
[NX2] (%)

Stem 1.5055 0.1024 4.9687 23.25 0.037ResNet-50 Stage 1 8.2628 0.9074 4.0224 67.26 0.882
Stem 1.5055 0.1024 9.8735 13.23 0.021ResNet-101 Stage 1 8.2628 0.9074 8.9846 47.91 0.506
Stem 1.5055 0.1024 14.8862 9.18 0.015ResNet-152 Stage 1 8.2628 0.9074 13.8687 37.34 0.374

Similar to other widespread architectural families, ResNets organize their layers into four
top-level layers, and the top-grained ones recursively consist of finer-grained ones. While
the terminology differs for architectures, we will uniformly refer to top-level layers as
stages and the coarse-grained layers as blocks.

Split point stem assigns the first preliminary block as the head model. It consists of
a convolutional layer with batch normalization [IS15] and ReLU activation, followed
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by max pooling. Split point Stage 1 additionally assigns the first stage to the head.
Notice how the shallow layers barely constitute the overall computation, even when the
client takes more time to execute the head than the server for the entire model. Further,
compare the percentage of total computation time and relate them to the number of
parameters. At best, the client contributes to 0.02% of the model execution when taking
9% of the total computation time and may only contribute 0.9% when taking 67% off
the computation time.

Despite a powerful accelerator, it is evident that utilizing client-side resources to aid
a server is inefficient. Consequently, SC methods commonly include some form of
quantization and data size reduction to offset resource asymmetry. In the following,
we conceive a hypothetical SC method to provide intuition behind the importance of
reducing transfer costs.

Feature Tensor Dimensionality and Quantization. Studies on SC commonly start
with some statistical analysis of the output layer dimensions, as illustrated in Figure 4.2.
Excluding repeating blocks, the feature dimensionality is identical for ResNet-50, -101,
and -152. The red line marks the cutoff where the size of the intermediate feature tensor
is less than the original input. ResNets (including more modern variants [XGD+17]),
among numerous recent architectures [LLY+22, HWC+22], do not have an early natural
bottleneck and will only drop below the cutoff from the first block of the second stage
(S3RB1-2). Since executing until S3RB1-2 is only about 0.06% of the model parameters
of ResNet-152, the computational overhead may seem negligible. However, as shown in
Table 4.1, even when executing 0.04% of the model, the client will make up 37% of the
total computation time. More recent approaches reduce the number of layers a client
must execute, quantize the feature tensor, and apply other clever methods that statically
or dynamically prune channels [MLR22].
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Figure 4.2: Output dimensionality distribution for ResNet

For our hypothetical method, we use the execution times from Table 4.1. We generously
assume that the method applies feature tensor quantization and channel pruning to
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reduce the expected data size without a loss in prediction performance. While early work
has experimented with graph compilers on the local device [EEP19] to mask inefficiencies,
we omit applying TensotrRT as Chapter 3 has shown how graph compilers will at least
match the performance gains and may increase the resource asymmetry. Instead, we
reward the client for executing deeper layers to reflect deterministic bottleneck injection
methods, such that the output size of the stem and stage one are 802816 and 428168
bits. For stage one, this is roughly a 92% reduction relative to its original FP32 output
size. Yet, the plots in Figure 4.3 show that offloading with PNG, let alone more modern
lossless codecs, will beat SC in total request time, except when the data rate is severely
constrained.
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Figure 4.3: Inference latency for SC and offloading

Since partially unloading task inference locally is clearly not an efficient use of local
resources, we propose an approach driven by the question: Is it more efficient to focus the
local resources exclusively on compressing the data rather than executing shallow layers
of a network that would constitute a negligible amount of the total computation cost on
the server?. The following elaborates on diverging approaches to compression, its role in
SC, and why applying existing methods cannot meet the requirements of MEC.

Dimensionality Reduction and Transform Coding

The most common method to reduce the transmission costs in SC literature is to crudely
reduce the latent dimensions. Dimensionality reduction may seem effective on toy datasets.
However, this is more due to the overparameterization of large ANNs. Precisely, for a toy
dataset, we can prune most channels or inject a small autoencoder at the shallow layers
that may appear to achieve unprecedented compression rates relative to the unmodified
head’s feature tensor size. Section 4.2.2 will show methods that work reasonably well on
a toy dataset, with performance collapsing on more challenging datasets. Dimensionality
reduction may approximate compression, but is not equivalent to it [MBT18]. The output
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dimensionality of a layer is an uninformed measure of transmission costs [SZT17]. A
trivial counterexample is a high-dimensional but extremely sparse tensor. Conversely,
compression reduces the entropy of the latent under a prior shared between the sender
and the receiver.

Transform coding is the underlying framework of principled approaches to lossy com-
pression, consisting of decorrelation and quantization [Goy01]. Decorrelation reduces
the statistical dependencies of the pixels, while quantization represents the values as
a finite set of integers. The difference between handcrafted and learned methods is
that the latter is data-driven with nonlinear transformations [BCM+20]. The nonlinear
transformations are typically ANNs, hence, Neural Image Compression (NIC). Notably,
larger models can learn more powerful representations, so increasing the dimensions
of encoder latents may reduce transmission costs, which we will empirically show in
Section 4.2.2. Despite outperforming handcrafted codecs [YMT23], we will empirically
show that NIC is unsuitable for real-time inference in MEC since it consists of large
models and other complex mechanisms. Moreover, they are designed with an objective
that either maximizes PSNR with a reconstruction loss or with a perceptual loss, leaving
considerable room for improving efficiency.

The following derives the objective that addresses the limitations of methods not intended
to minimize request latency through compression.

4.1.4 Semantic Rate-Distortion

Using Shannon’s rate-distortion (r-d) theory [Sha59], we seek a mapping bound by a
distortion constraint from a random variable (r.v.) X to an r.v. U , minimizing the bitrate
of the outcomes of X. More formally, given a distortion measure D and a distortion
constraint Dc, the minimal bitrate is:

min
PU|X

I(X;U) s.t. D(X,U) ≤ Dc (4.1)

where I(X;U) is the mutual information and is defined as

I(X;U) =
∫︂ ∫︂

p(x, u) log
(︃
p(x, u)
p(x)p(u)

)︃
dxdu (4.2)

In lossy image compression, U is typically the reconstruction of X̃ of the original input, and
the distortion measure is some sum of squared errors d(x, x̃). We may use Equation (4.1)
to implement an objective that enforces the integrity of any task, irrespective of whether
it is image reconstruction or prediction performance on a particular dataset. With
semantically lossless, we refer to the solution quality that meets the client-application
requirements. It poses a threshold, so we seek the lowest possible rate during optimization.

From Deep to Shallow Bottlenecks

When the task is to predict the ground-truth labels Y from a joint distribution PX,Y ,
the r-d objective is essentially the information bottleneck principle [TPB00]. By relaxing
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the Equation (4.1) with a lagrangian multiplier, the objective is to maximize:

I(Z;Y )− βI(Z;X) (4.3)

Specifically, an encoding Z should be a minimal sufficient statistic of X respective Y ,
i.e., we want Z to contain relevant information regarding Y while discarding irrelevant
information from X. Practical implementations differ by the target task and how they
approximate Equation (4.3). For example, an approximation of I(Z;Y ) for an arbitrary
classification task, the conditional cross entropy (CE) [YMT23]:

D = H(PY , PỸ |Z) (4.4)

where Ỹ is the prediction based on the compressed representation Z. Using Equation (4.4)
for estimating I(Z;Y ) to end-to-end optimize a neural compression model is not a novel
idea (Section 4.1.2). However, in such work, the latent variable is typically the final
representation of a large backbone, which we refer to as Deep Variational Information
Bottleneck Injection (DVBI). Conversely, we work with resource-constrained clients. To
design lightweight encoders, we shift the bottleneck to the shallow layers, which we refer
to as Shallow Variational Bottleneck Injection (SVBI).
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Figure 4.4: Prediction with Variational Bottleneck Injection

Figure 4.4 sketches the proposed approach at a high level. There are two elemental
distinctions to SC methods. First, the prediction model is not split between the client
and the server. Instead, SVBI separates the concern for learning a representation with
sufficient information and learning to map the representation to a client-requested model
architecture. A decoder restores and transforms the compressed representation to a
backbone that may accommodate multiple tasks. Hence, operators can deploy a single
lightweight encoder. Server-side decoders replace the shallow layers of a backbone, so the
prediction model is split within the server. The encoder is decoupled from a particular
task and the decoder-backbone pair. Second, compared to split runtimes, the decision to
apply the compression model may only depend on internal conditions. It can decouple
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the client from any external component, and applying the encoder should always be
preferable if a mobile device has the minimal required resources. Since our method does
not fine-tune weights, we do not need to maintain additional models to accommodate
clients who cannot apply the encoder and can simply route the image tensor to the input
layer instead of skipping them.

The properties permit server-side transparency and minimize the operator overhead, as
demanded in Section 1.2, Section 4.2.1 will elaborate on the technical details of how this
separation permits one encoder instance to accommodate multiple decoder-backbone
pairs. We first derive the optimization objective of SVBI.

Shallow Bottlenecks with Head Distillation

The existing objectives for DVBI could generalize to SVBI, for example, by estimating
the distortion term with Equation (4.4) as done in [AMT+17]. The downside is that
it assumes access to the original labeled dataset. We may substitute hard labels Y
distillation, using the soft labels YT (dark knowledge [HVD15]) of the prediction model
we inject the bottleneck in. Still, we will demonstrate empirically in Section 4.2.2 that
neither hard labels nor distillation with soft labels yield a meaningful reduction in rate.

SVBI requires an objective function that is simple enough for low-capacity encoders to
learn while significantly reducing latent entropy without adverse effects for downstream
tasks. We achieve this by training the compression model to predict the output of the
shallow layers H of the prediction model instead of hard or soft labels, so the objective
becomes maximizing

I(Z;H)− β I(Z;X). (4.5)

Loss functions using the output of the shallow layers as the reconstruction target, optimize
for a Z that is a minimal sufficient statistic of X with respect to H.

2.59
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Compression Model (Student)

0.05

...

Deep Layers (Backbone)

Shallow Layers (Teacher)

0.05
-0.19

3.67

...

2.38

Figure 4.5: Head Distillation

Figure 4.5 illustrate the idea. With faithful replication of H, the partially modified ANN
has an information path that approximates the unmodified version accurately. A sufficient
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statistic retains the information necessary to replicate the input for a deterministic tail,
so the final prediction does not change.

Lastly, we emphasize that any rate reduction for a set distortion constraint does not come
from targeting the ANN inference instead of human perception. It is the specificity of
the task that determines the lower-bound on a distortion constraint that is semantically
lossless. Shallow features represent less specific information than deep features, and
therefore, there is less potential for reducing the rate of semantically lossless prediction.
In return, a compressed representation of shallow features will generalize more seamlessly.
Under reasonable conditions, there is no meaningful relationship between how the data is
represented and the rate-distortion performance. Hence, we are not gaining any efficiency
with an objective that uses the syntax of a particular architectural style’s latent tensor,
instead of pixel values aligned in a two-dimensional grid. Chapter 5 will elaborate on the
seemingly pedantic distinction when discussing image reconstruction from feature tensors.
We first design a practical method for MEC using SVBI to empirically demonstrate that
it can meet the demands set in Section 1.2.

4.2 Neural Feature Compression for Mobile Edge
Computing

This section describes an implementation of an SVBI, which we named FrankenSplit.
FrankenSplit is intended for MEC, meaning that it should reduce request latency by
reducing transmission costs. Operators may deploy a single encoder for devices of various
applications, and support arbitrary ANN architectures for high-level vision tasks. We
extensively evaluate FrankenSplit and compare it against a wide range of competitive
baselines. At the time of writing, the core methodology of FrankenSplit may be considered
the state-of-the-art in artificial bottleneck injection for MEC, with some recent work
starting to outperform it, but only in isolated use cases [ZC25].

4.2.1 Solution Approach

While Head Distillation has been proposed in the context of Split Computing [MBC+19,
MYLM22, SSTM21], such methods have the same limitations discussed in Section 4.1.3.
Their loss relies on signals from deeper layers for convergences, so the shallow layers only
serve as hints [RBK+15, WY22]. Additionally, they require a second training stage that
fine-tunes the deeper layers of the target model. This results in unstable training, modest
rate reductions, and their adoption would incur the operational overhead that should be
avoided.

Besides showing Section 4.2.2 that pure HD can significantly outperform existing ap-
proaches without fine-tuning deeper layers with an adequate decoder design, we show
how to distill “softer signals” from deeper layers. Unlike in previous approaches, such
signals are not crutches required for the bottleneck to converge, but further improve
rate-distortion performance.
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Loss Function for End-to-end Optimization

The compression algorithm follows the NTC framework [BCM+20], embeds a variational
autoencoder, and assumes a factorized prior (FP) as in [BLS17]. For an image vector x,
we have a parametric analysis transform ga(x;ϕg) that maps x to a latent vector z. Then,
a quantizer Q discretizes z to z̄, such that an entropy coder can use the entropy model
to losslessly compress z̄ to a sequence of bits. Different from NIC, a parametric synthesis
transform parametric synthesis transforms gs(z̄; θg) does not map z̄ to a reconstruction of
the input x̃, but to an approximation of shallow representation h̃ distilled from a teacher.

Analogous to variational inference, we approximate the intractable posterior p(z̃|x) with
a parametric variational density q(z̃|x), excluding constants, as follows:

Ex∼pxDKL
[︂
q∥pz̃|x

]︂
= Ex∼pxEz̃∼q[−log p(x|z̃)⏞ ⏟⏟ ⏞

distortion

−
weighted rate⏟ ⏞⏞ ⏟

log p(z̃) ] (4.6)

The distortion term is given by

Px|z̃(x | z̃, θg) = N (x | gs(z̃; θg), 1) (4.7)

which we implement as the square sum of differences between h and h̃ as our distortion
loss.

The rate term describes the cost of compressing z̃. We apply uniform quantization
z̄ = ⌈z̃⌉. Since discretization leads to problems with the gradient flow, we apply a
continuous relaxation by adding uniform noise η ∼ U(−1

2 ,
1
2). Combining the rate and

distortion term, we derive the loss function for estimating objective Equation (4.5) as:

L = ∥Ph(x) - (gs(ga(x;ϕg) + η; θg)∥22 + β log(ga(x; θg) + η) (4.8)

Note that FP is a strong assumption, and there is no shortage of sophisticated methods
that can further improve rate-distortion performance, such as with side information,
considered in Chapter 5. We chose the simplest model since the empirical analysis focuses
on gains from SVBI, and replacing FP with any more recent methods is straightforward.
The following shows how to improve the semantic rate-distortion performance without
introducing additional components native to NIC.

Saliency Guided Distortion

As discussed in Section 4.1.3, we may trade off task specificity with rate. Sufficiently
approximating shallow layers as a distortion constraint may generalize, but it may be
needlessly strict. The challenge is to distill knowledge from deeper layers, but only as soft
signals for regularization that reduce the penalty of not accurately predicting non-salient
pixels. For each sample, we require a vector S, where each si ∈ S is a weight term for a
spatial location salient about the conditional probability distributions of the remaining
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tail layers. Then, we should be able to improve the r-d performance by regularizing the
distortion term in Equation (4.8) with

Ldistortion = γ2 · L1 + γ2 · si ·
1
N

∑︂
i

(hi − h̃i)2 (4.9)

Where L1 is the distortion term from Equation (4.8), and γ1, γ2 are nonnegative real num-
bers summing to 1, and may be used to tune the regularization from the saliency guidance.
We default to γ1 = γ2 = 1

2 in our experiments, as we refrain from optimizing performance
through dataset-specific adjustments. Figure 4.6 describes our final training setup. Note

Teacher

Stage Stage Extracted Saliency Maps

Load Saliency Map

Guided Distortion

Rate Estimation

Compressor

Head Stage

Figure 4.6: Training setup

that we only require computing the saliency maps once, and they are architecturally
agnostic towards the encoder. We compute saliency maps using class activation mapping
(CAM) [ZKL+16]. Their intended purpose to improve the explainability of ANNs is to
summarize salient pixel locations, which we repurpose to regularize the reconstruction
loss. Specifically, we use Grad-CAM [SCD+19] to measure a spatial location’s importance
at any stage.

The advantage of Grad-CAM is its architecture-agnosticism and computational efficiency.
Mixing with guided backpropagation [SDBR15] could refine the resulting saliency maps
with finer-grained feature importance scaling. However, guided backpropagation relies
on specific properties of the activation function and requires adjustments for each
architectural family. Figure 4.7 illustrates some examples of saliency maps when averaged
over the deeper backbone stages.

69



4. Neural Feature Compression

Figure 4.7: Extracted saliency maps using Grad-CAM

Network Architecture

The beginning of this section broke down our aim into three problems. We addressed the
first with SVBI and proposed a novel training method for low-capacity compression models.
A generalizable resource-asymmetry-aware autoencoder design remains. Additionally, the
encoder should be reusable for several backbones. To not inflate the significance of our
contribution, we refrain from including components based on existing work in efficient
neural network design.

Model Taxonomy We introduce a minimal taxonomy described in Figure 4.8 for
our approach. The top-level, Archtype, reflects the primary inductive bias of the model.
Architectural families describe variants (e.g., ResNets such as ResNet [HZRS16], Wide
ResNet [ZK16], ResNeXt [XGD+17], etc.). Directly related refers to the same architecture
of different sizes (e.g., Swin-T, Swin-S, Swin-B, etc.). The challenge is to conceive a

CNNs Vision Transformers

Vision Models

Archtype

Architectural
Family

Directly
Related

ResNets
Hierarchical Vision

Transformers

ResNet-50/101/152 Swin-T/S/B/L

ConvNeXt

ConvNeXts

ConvNeXt-S/B/L

Figure 4.8: Simple taxonomy with minimal example

design heuristic that can exploit the available server resources to aid the lightweight
encoder with minimal overhead on the prediction task. First, we concretize shallow
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features by describing how to locate the layers for bottleneck placement. Then, we derive
the heuristic to conceive decoder models for arbitrary architectural families and how to
account for client-server resource asymmetry.

Lastly, we describe how to share trained compressor components among directly related
architectures.

Bottleneck Location by Stage Depth Consider how most modern ANNs consist
of an initial embedding followed by a few stages (Described in Section 4.1.3). Within
directly related architectures, the individual components are identical. The difference
between variants is primarily the embed dimensions or the block ratio of the deepest
stage. For example, the block ratio of ResNet-50 is 3:4:6:3, while the block ratio of
ResNet-101 is 3:4:23:3. Consequently, the stage-wise organization of models defines a
natural interface for SVBI. For the remainder of this work, we refer to the shallow layers
as the layers before the deepest stage (i.e., the initial embedding and the first two stages).

Decoder Blueprints A key characteristic distinguishing archetypes is the inductive
bias introduced by basic building blocks (e.g., convolutions versus attention layers). To
consider the varying representations among non-related architectures, we should not
disregard architecture-induced bias by directly repurposing neural compression models
for SC. For example, a scaled-down version of Ballé et al.’s [BLS17] convolutional neural
compression model can yield strong r-d performance for bottlenecks reconstructing a
convolutional layer [MYLM23]. However, we will show that this does not generalize to
other architectural families, such as hierarchical vision transformers [LLC+21].

One potential solution is to use identical components for the compression model from
a target network. While this may be inconsequential for server-side decoders, it is
inadequate for encoders due to the heterogeneity of edge devices. Vendors have varying
support for the basic building blocks of a ANN, and particular operations may be
prohibitively expensive for the client. Hence, in FrankenSplit, the encoder is fixed, but
the decoder is adaptable. Regardless of the decoder architecture, we account for the
heterogeneity with a uniform encoder architecture composed of three downsampling
residual blocks of two stacked 3×3 convolutions with ReLU non-linearity, totaling around
140, 000 parameters. We handle the varying representations by introducing decoder
blueprints tailored towards an architectural family, i.e., one blueprint corresponds to all
directly related architectures.

Figure 4.9 illustrates a reference implementation of FrankenSplit post-training with two
blueprints applied to two variants. Creating blueprints is required only once for an
architectural family. Boxes within the gray areas are separate instances (i.e., only one
encoder), and boxes with the same name share an architecture. The rounded boxes
outside organize layer views from coarse to fine-grained. We elaborate on how a single
encoder can accommodate multiple decoder-backbone pairs in Section 4.2.1. The numbers
in the parentheses refer to stage depth. Since the backbones are foundational models
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Figure 4.9: Reference implementation of FrankenSplit

extensively trained on large datasets, we can naturally accommodate several downstream
tasks by attaching separately trained predictors.

Blueprint instances replace a backbone’s first two stages (i.e., the shallow layers) with
two blueprint stages, taking a compressed representation as input instead of the original
sample. The work by Liang et al. [LCS+21] inspires our approach to treat decoding as
a restoration problem. Each stage comprises a restoration block and several blueprint
(transformation) blocks, followed by a residual connection. The idea is to separate
restoration (i.e., upsampling, ‘’smoothing“ quantized features) from transformation (i.e.,
matching the target representation regardless of encoder architecture). The restoration
block is agnostic regarding the target architecture and optionally upsamples. The
blueprint blocks induce the same bias as the target architectural family.

Two distinctions exist between the original blocks and their corresponding blueprint
(transformation). First, the latter modifies operations not to reduce the latent spatial
dimensions. Second, the embedding layer dimensions and stage depths may differ to
reflect the resource asymmetry commonly found in MEC.
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Although we should consider the resource asymmetry between the client and the server
(i.e., by allocating more parameters to the decoder), there are limitations. Learning a
function that can accurately retain necessary information is limited by the encoder’s
capacity (Section 4.1.4). Still, when end-to-end optimizing the compression model, it can
benefit from increasing the decoder’s capacity for restoration with diminishing returns.

Intuitively, we implement blueprints that result in decoder instances with, at most, the
same execution time as the head of a target backbone. As a reminder, unlike most
work in SC, we advocate keeping the execution time roughly equal on the server rather
than reducing it. The encoder’s responsibility is not to minimize the server load by
executing shallow backbone layers. FrankenSplit treats the encoder entirely separate
from the backbone. Besides dedicating the encoder exclusively to reducing transfer size,
this separation of concern is necessary to accommodate several backbones with a single
encoder instance.

Encoder Re-Usability We argue that the representation of shallow layers generalizes
well enough that it is possible to reuse compressor components. Consider the experiment

Figure 4.10: Routing head outputs to different tails

illustrated in Figure 4.10, where we split several backbones into head and tail models.
The backbones are off-the-shelf models from torch image models (timm) [Wig19] and
pre-trained on the ImageNet [RDS+15] dataset. The head models consist of the initial
embedding and shallow layers, i.e., the first two stages. The remaining layers comprise
the substantially larger tails (roughly 2− 5% of total model parameters).

Then, we freeze the tail parameters and route the head output to all non-corresponding
tails (e.g., ConvNeXt-T to Swin-T/S/B) and measure the accuracy every few iterations
with a batch size of 128 as we finetune the head parameters using cross entropy loss.
Each head-tail pair is a separate model built by attaching a copy of the head from one
architecture to the tail of another. Where dimensions between head and tail pairs do not
match, we add a single 1× 1 convolutional layer.

Figure 4.11 shows how rerouting the input between head models first (0 iterations) results
in near 0% accuracy across all head-tail pairs. However, the concatenated models quickly
converge near their original accuracy (roughly 80 − 83%) within just a few iterations
(10100 iterations with 128 samples corresponding to one epoch on the ImagNet dataset).
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Figure 4.11: Recovering Top-1 accuracy of rerouted heads

Notice that this holds regardless of whether the head-tail pairs are directly related to the
modified network.

Therefore, if a compressor can sufficiently approximate the representation of just one head
(i.e., the shallow layers of a network), it should be possible to accommodate arbitrary
tails (i.e., the deeper layers of a network).

Crucially, applying the distortion measure in Equation (4.8) or Equation (4.9) does not
result in an inherently different encoder behavior. Like training the compression model
with a distortion measure from NIC, the purpose of the encoder is to reduce uncertainty by
decorrelating the data and discarding information. The distortion measure only controls
what information an encoder should prioritize. Regardless of the target backbone’s
architecture, the encoder should decorrelate the input to reduce uncertainty. Conversely,
the decoder seeks a mapping to the backbone’s representation. In other words, if we
can map the latent to one representation, we can map it to any other with comparable
information content. We can freeze the encoder and train various decoders to support
arbitrary architectures once we train one compression model with a particular teacher as
described in Figure 4.6. The blueprints facilitate an efficient transformation from the
encoder’s compressed representation to an input suitable for a particular backbone.

In summary, the high-level procedure is to take a copy of PT . Mark the location of the
bottleneck by separating the copy into a head Ph and a tail Pt. Since both parts are
deterministic, or every realization of r.v. X there is a representation Ph(x) = h such
that PT (x) = Ph(Pt(x)). Then, replace the head with an autoencoder and a parametric
entropy model. The encoder is deployed at the sender, the decoder at the receiver, and
the entropy model is shared. Instantiate decoders using the corresponding blueprint, and
train a separate instance for each variant. Notice that this method keeps the encoder
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parameters frozen, permitting us to deploy a single set of weights across all clients. After
deployment, splitting is replaced with rerouting the input to a layer index (Section 4.2.1)
since the original weights remain unmodified.

4.2.2 Evaluation

Training & Implementation Details

We optimize our compression models initially on the 1.28 million ImageNet [RDS+15]
training samples for 15 epochs, as described in section 4.2.1 and section 4.2.1, with some
slight practical modifications for stable training. We aim to minimize bitrate without
sacrificing predictive strength. Hence, we first seek the lowest β resulting in lossless
prediction. We use Adam optimization [KB14] with a batch size of 16 and start with an
initial learning rate of 1 · 10−3, then gradually lower it to 1 · 10−6 with an exponential
scheduler. Methods are implemented using PyTorch [AYH+24], CompressAI [BRFP20]
for entropy estimation and entropy coding, and pre-trained backbones from timm [Wig19].
All baseline implementations and weights were either taken from CompressAI or the
official repository of a baseline. To compute the saliency maps, we use a modified
XGradCAM method from the library in [Gc21] and include necessary patches in the
accompanying repository. Lastly, we use torchdistill [Mat21] to configure experiments
and for reproducibility.

Experiment Setting

The experiments aim to empirically demonstrate that SVBI can enable latency-sensitive
and performance-critical applications. The basic scenario is that a mobile client requires
access to a remotely deployed ANN. The metrics measure the semantic rate-distortion
performance, i.e., whether it can achieve a substantially lower rate without loss in
prediction quality, and request times in various channels. As in Section 3.2.3, since it is
not feasible to exhaustively evaluate all existing ANN architectures, we focus on three
well-known architectural representatives and some of their variants.

ResNet [HZRS16] for classic residual CNNs, Swin Transformer [LLC+21] for hierarchical
vision transformers, which are receiving increasing adoption, and ConvNeXt [LMW+22]
for modernized state-of-the-art CNNs. Table 4.2 summarizes the relevant characteristics
of the unmodified backbones subject to our experiments.

Baselines Since our work aligns closest to learned image compression, we extensively
compare FrankenSplit with learned and handcrafted codecs applied to the input images,
i.e., the input to the backbone is the distorted output. Comparing task-specific methods
to general-purpose image compression methods may seem unfair. However, FrankenSplit’s
universal encoder has up to 260x less trainable parameters and further reduces overhead
by not including side information or a sequential context model.
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Table 4.2: Overview of Backbone Performance on Server

Backbone Ratios Params Inference
(ms)

Top-1 Acc.
(%)

Swin-T 2:2:6:2 28.33M 4.77 81.93
Swin-S 2:2:18:2 49.74M 8.95 83.46
Swin-B 2:2:30:2 71.13M 13.14 83.88

ConvNeXt-T 3:3:9:3 28.59M 5.12 82.70
ConvNeXt-S 3:3:27:3 50.22M 5.65 83.71
ConvNeXt-B 3:3:27:3 88.59M 6.09 84.43

ResNet-50 3:4:6:3 25.56M 5.17 80.10
ResNet-101 3:4:23:3 44.55M 10.17 81.91
ResNet-152 3:8:36:3 60.19M 15.18 82.54

The naming convention for the learned baselines is the first author’s name, followed by
the entropy model. Specifically, we choose the work by Ballé et al. [BLS17, BMS+18]
and Minnen et al. [MBT18] for NIC methods since they represent foundational mile-
stones. Complementary, we include the work by Cheng et al. [CSTK20] to demonstrate
improvements with architectural enhancement.

As the representative for disregarding autoencoder size to achieve state-of-the-art r-d
performance in LIC, we chose the work by Chen et al. [CLM+21] Their method differs
from other LIC baselines by using a partially parallelizable context model, which trades
off compression rate with execution time according to the configurable block size. We
refer to such context models as Blocked Joint Hierarchical Priors and Autoregressive
(BJHAP). Due to the large autoencoder, we found evaluating the inference time on
constrained devices impractical when the context model is purely sequential, and set
the block size to 64x64. Additionally, we include the work by Lu et al. [LGS+22] as a
milestone of the recent effort on efficient LIC with reduced autoencoders, but only for
latency-related experiments since we do not have access to the trained weights.

As a baseline for the state-of-the-art SC, we include the Entropic Student (ES) [MYLM23,
MYLM22]. The ES demonstrates the performance of directly applying a minimally
adjusted LIC method for feature compression. One caveat is that we intend to show
how FrankenSplit generalizes beyond CNN backbones, despite the encoder’s simplistic
CNN architecture. Although Matsubara et al. evaluate the ES on a wide range of
backbones, most have no lossless configurations. Nevertheless, comparing bottleneck
injection methods using different backbones is fair, as we found that the choice does
not significantly impact the r-d performance (Section 4.2.2). Therefore, for an intuitive
comparison, we choose ES with ResNet-50 using the same factorized prior entropy model
as FrankenSplit. We separate the experiments into two categories to assess whether our
proposed method addresses the abovementioned problems.
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Criteria rate-distortion performance We measure the bitrate in bits per pixel
(bpp) because it permits directly comparing models with different input sizes. Choosing a
distortion measure to draw meaningful and honest comparisons is challenging for feature
compression.

Unlike evaluating reconstruction fidelity for image compression, PSNR or MS-SSIM does
not provide intuitive results regarding predictive strength. Similarly, reporting absolute
values (e.g., top-1 accuracy) gives an unfair advantage to experiments conducted on
higher capacity backbones and veils the efficacy of a proposed method.

Hence, for a transparent evaluation, we determine the adversarial effects of codecs with
image classification since it provides an unambiguous performance metric with established
benchmark datasets. Specifically, we evaluate the distortion with the relative measure
predictive loss, i.e., the drop in top-1 accuracy incurred by codecs. In particular, for
SVBI methods, (near) lossless prediction implies that the reconstruction is a sufficient
approximation for shallow features of an arbitrary feature extractor.

To ensure a fair comparison, we give the LIC and handcrafted baselines a grace threshold
of 1.0% top-1 accuracy, to account for mitigating predictive loss incurred by codec
artifacts [LTY+21]. For FrankenSplit, we set the threshold at 0.4%, reflecting the config-
uration with the lowest predictive loss of the ES. Note that, unlike the ES, FrankenSplit
does not rely on fine-tuning the tail parameters of a backbone to improve r-d performance.

Measuring latency and overhead To account for the resource asymmetry in MEC,
we use NVIDIA Jetson boards1 for representing capable but resource-constrained mobile
clients. Contrastingly, the server hosts a powerful GPU. Table 4.3 summarizes the
hardware we use in our experiments.

Table 4.3: Clients and Server Hardware Configuration

Device Arch CPU GPU
Server x86 16x Ryzen @ 3.4 GHz RTX 3090

Client (TX2) arm64x8 4x Cortex @ 2 GHz Vol. 48 TC
Client (NX) arm64x8 4x Cortex @ 2 GHz Pas. 256 CC

Rate-Distortion Performance

We measure the predictive loss by the drop in top-1 accuracy from Table 4.2 using
the ImageNet validation set for the standard classification task with 1000 categories.
Analogously, we measure filesizes of the entropy-coded binaries to calculate the average
bpp. To demonstrate that we can accommodate a non-CNN backbone with a CNN
encoder, we start with a Swin-B implementation of FrankenSplit. Figure 4.12 shows
r-d curves with the Swin-B backbone. The architecture of FrankenSplit-FP (FS-FP)

1nvidia.com/en-gb/autonomous-machines/embedded-systems/
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and FrankenSplit-SGFP (FS-SGFP) are identical. We train both models with the loss
functions derived in Section 4.2.1. The difference is that FS-SGFP is saliency-guided, i.e.,
FS-FP represents the pure HD training method and is an ablation to the saliency-guided
distortion.

Effect of Saliency Guidance Although FS-FP performs better than almost all other
models, it is trained with the suboptimal objective discussed in Section 4.1.4. We
identified the issue as overly skewing the objective needlessly towards the distortion term.
Consequently, we proposed regularizing the distortion term by applying extracted saliency
maps in Section 4.2.1 to improve the r-d performance. We favor Grad-CAM to compute
the saliency maps over comparable methods for two reasons. First, it is generically
applicable to arbitrary vision models. Second, it does not introduce additional tunable
hyperparameters. The suboptimality of the unregularized objective is demonstrated
by FS-SGFP outperforming FS-FP. By simply guiding the distortion loss with saliency
maps, we achieve a 25% lower bitrate without impacting predictive strength or additional
runtime overhead.

Figure 4.12: Rate-distortion curve for ImageNet

Comparison to the ES Even without saliency guidance, FS-FP consistently outper-
forms ES by a large margin. Specifically, FS-FP and FS-SGFP achieve 32% and 63%
lower bitrates for the lossless configuration.
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We ensured that our bottleneck injection incurs comparable overhead for a direct com-
parison to the ES. Moreover, the ES has an advantage due to fine-tuning tail parameters
in an auxiliary training stage. Therefore, we attribute the performance gain to the more
sophisticated architectural design decisions described in Section 4.2.1.

Comparison to Image Codecs For almost all lossy codec baselines, Figure 4.12
illustrates that FS-(SG)FP has a significantly better r-d performance. Comparing FS-FP
to Ballé-FP demonstrates the r-d gain of task-specific compression over general-purpose
image compression. Although the encoder of FrankenSplit has 25x fewer parameters,
both codecs use an FP entropy model with encoders consisting of convolutional layers.
Yet, the average file size of FS-FP with a predictive loss of around 5% is 7x less than the
average file size of Ballé-FP with comparable predictive loss.

FrankenSplit also beats modern general-purpose LIC without including any of their heavy-
weight components. The only baseline FrankenSplit does not convincingly outperform is
Chen-BJHAP. Nevertheless, in Section 4.1.3, we demonstrate that the incurred overhead
offsets the compression gain disproportionately.

Image Codec Incurred Predictive Loss For clarity, we separately evaluate r-d
performance on the other backbones listed in Table 4.2 for FrankenSplit and baseline
codecs.

Earlier, we argued that measuring PSNR is unsuitable for assessing effects on downstream
prediction. Since the image codecs are entirely decoupled from the predictive task, the
bitrate is identical regardless of the backbone. We use this opportunity to plot PSNR
instead of bpp against predictive loss in Figure 4.13.

Considering that compression models aggressively discard information, it is intuitive that
the predictive loss is comparable across backbones. While some models handle distorted
samples better, the difference in predictive loss is at most 3-5%. Still, the discrepancy
demonstrates that PSNR is not a suitable measure for downstream tasks even within the
same codec. More importantly, the discrepancy across baselines is considerably wider.
For example, it is around 10% between Minnen-MSHP and Chen-BJHAP for lower PSNR
levels.

Blueprints Generalization to Arbitrary Backbones We now evaluate the r-d
performance of other implementations of FrankenSplit to determine whether the blueprint
heuristics generalize to arbitrary architectures. We create a decoder blueprint (Sec-
tion 4.2.1) for each of the three architectural families (Swin, ResNet, and ConvNeXt).
Then, we perform bottleneck injection at the layers before the deepest stage (Section 4.2.1),
Figure 4.14 plots r-d performance of directly related architectures sharing the correspond-
ing blueprint but with separately trained compressors. All models are trained as described
in Figure 4.6. Across all architectural families, we observe similar r-d performance. The
(near) lossless configurations of the largest backbones (Swin-B, ConvNeXt-B, ResNet-152)
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Figure 4.13: Predictive Loss of baselines on multiple Backbones

require around the same bpp, whereas smaller models tend to require 3-4% more bpp for
comparable predictive loss.

Next, we conduct experiments to determine the importance of finding an adequate
blueprint but assigning mismatching instances to a backbone. Table 4.4 summarizes the
results for the largest backbones with varying decoder sizes. The Swin blueprint for the
Swin-B decoder results in the FrankenSplit implementation from FS-FP from Figure 4.12.
With 1% overhead in parameters, the compressor achieves 5.08 kB for 0.40% predictive
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Figure 4.14: Rate-distortion curve for various backbones

loss. However, once we train compressors with ResNet or ConvNeXt restoration blocks,
the r-d performance for the Swin-B is significantly worse when overhead is roughly equal.
A blueprint that performs well for its intended target architecture results in substantially

Table 4.4: Effect of Mismatching Blueprints

Blueprint-Backbone Params Overhead (%) File Size (kB) Pred. Loss (%)
19.05 2.490.96 15.07 3.00
14.46 2.532.86 11.37 2.74
12.53 1.36

ConvNext-Swin

5.89 10.08 2.09
22.54 0.821.03 18.19 0.99
16.32 0.812.73 12.68 0.98
13.89 0.79

ResNet-Swim

5.25 10.01 0.98

worse r-d performance for other architecture. Only increasing the decoder size brings the
r-d performance closer to configurations that apply the appropriate blueprint.
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From our findings, we can draw several conclusions. The r-d performance regarding the
backbone network is near-agnostic. The implication is that the information content of
the teachers (i.e., shallow layers) of varying architectures is comparable. We explain this
by considering that we select the shallow layers as all layers preceding the deepest stage,
which have comparable parameters across varying architectures.

Additionally, choosing a decoder architecture with the correct inductive bias (i.e., a
blueprint) can transform compressed features significantly more efficiently.

Single Encoder with Multiple Backbones We conduct a similar experiment as
head rerouting from Section 4.2.1. However, we finetune the decoders instead of the head
models.

We first select the compressors with (a near) lossless prediction from Figure 4.14 for
each architectural family. Then, we choose the encoder from one of the compressors
corresponding to the largest variants. Finally, we attach the decoders from the other
compressors and finetune their parameters. We use unweighted head distillation and
cross entropy (between the backbone classifier outputs and the hard labels) as the loss
function. Analogous to the experiment in Section 4.2.1, we set the batch size as 128
and use PyTorch’s Adam optimizer with a learning rate of 7 · 10−5. To demonstrate the
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Figure 4.15: Iterations to recover accuracy with decoder

limited importance of the initial teacher, we repeat this process for each of the three
encoders separately and summarize the results in Figure 4.15. Note that the bitrate
does not change due to freezing the encoder parameters. Hence, we report iterations
until accuracy is restored to exemplify the similarity to the rerouting experiment in
Section 4.2.1. We consider an accuracy restored if it is within 0.25± 0.25% of its original
accuracy.
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Besides requiring more iterations for convergence, the results are unsurprisingly similar
to the head routing experiment outlined in Figure 4.11. Since we can infer from the
earlier results that decoders can sufficiently approximate the head output, fine-tuning
the decoder is near-equivalent to fine-tuning a head.

Generalization to multiple Downstream Tasks Arguably, SVBI naturally general-
izes to multiple downstream tasks due to approximating shallow features. We provide
empirical evidence by evaluating the r-d performance of the compressors from Figure 4.12
without retraining the weights on different datasets.

Specifically, attach separate classifiers to the Swin-B backbone (as illustrated in Fig-
ure 4.9). Using PyTorch’s Adam optimizer, we train each classifier for five epochs with
no augmentation, a learning rate of 5 · 10−5. A classifier refers to the last layers of a
network.

For FrankenSplit-(SG)FP, we applied none or only rudimentary augmentation to evaluate
how our method handles a type of noise it did not encounter during training. Hence, we
include the Food-101 [BGVG14] dataset since it contains noise in high pixel intensities.
Additionally, we include CIFAR-100 [KH+09]. Lastly, we include Flower-102 [NZ08]
datasets to contrast more challenging tasks. The classifiers achieve an 87.73%, 88.01%,
and 89.00% top-1 accuracy, respectively. Figure 4.16 summarizes the r-d curves for each
task. Our method still demonstrates clear r-d performance gains over the baselines.
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Figure 4.16: Rate-distortion curve for multiple downstream tasks

More importantly, notice how FS-SGFP outperforms FS-FP on the r-d curve for the
Food-101 dataset, with a comparable margin to the ImageNet dataset. Contrarily, on the
Flower-102 datasets, there is less performance difference. Presumably, on simple datasets,
the suboptimality of HD is less significant. Considering how easier tasks require less
model capacity, the diminishing efficacy saliency guidance is consistent with our claims.

Effect of Tensor Dimensionality on R-D Performance Section 4.1.3 argues that
measuring tensor dimensionality is inadequate to assess whether partial execution on the
client is worthwhile.

To verify, we implement and train additional instances of FrankenSplit with the Swin-
B backbone and show results in Figure 4.17 FS-SGFP(S) is the model with a small
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Figure 4.17: Comparing effects on sizes

encoder (∼140′000 parameters) we have used for our previous results. FS-SGFP(M) and
FS-SGFP(L) are medium and large models where we increased the (output) channels
C = 48 to 96 and 128, respectively. Besides the number of channels, we’ve trained
the medium and large models using the same configurations. On the left, we plot the
r-d curves showing that increasing encode capacity naturally results in lower bitrates
without additional predictive loss. For the plot on the right, we train further models
with C = {48, 64, 96, 108, 120, 128} using the configuration resulting in lossless prediction.
Notice how increasing output channels will result in higher dimensional latent tensors
C × 28 × 28 but inversely correlates to compressed file size. Arguably, increasing the
encoder capacity will yield more powerful transforms to decorrelate the input.
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Figure 4.18: Contrasting the r-d performance

The Limitations of Direct Optimization for SVBI Section 4.2.1 mentioned that
direct optimization does not work for SVBI as it does for DVBI, where the bottleneck is
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at the penultimate layer. Specifically, it performs incomparably worse than HD despite
the latter’s inherent suboptimality. We demonstrate this by applying the SVBI-CE and
SVBI-KD objective on the CIFAR-10 [KH+09] and ImageNet dataset. All models are
identical and trained with the setup in Section 4.2.2, except we train for more epochs to
account for slower convergence.

Figure 4.18 summarizes the results the results. On CIFAR-10, SVBI-CE and SVBI-KD
yield moderate performance gain over JPEG. Yet, they perform substantially worse
on ImageNet. Sufficiency as a necessary precondition may explain why the objective
in (4.3) does not yield good results when the bottleneck is at a shallow layer, as the
mutual information I(Y ; Ỹ ) is not adequately high. Since the representation of the last
hidden and shallow layer are so far apart in the information path, there is insufficient
information to minimize D(H; H̃). The compression model approximates the intermediate
representation for a simple classification task to minimize predictive loss by incurring
higher bitrates. Consequently, for the challenging ImageNet classification task, the same
method incurs significant predictive loss even when skewing the r-d objective heavily
towards high bitrates.

Prediction Latency and Overhead

We exclude entropy coding from our measurement, since not all baselines use the same
entropy coder. For brevity, the results implicitly assume the Swin-B backbone for the
remainder of this section. Inference times with other backbones for FrankenSplit can be
derived from Table 4.5. Analogously, the inference times of applying LIC models for

Table 4.5: Execution Times of FS (S) with Various Backbones

Backbone Overhead Prams
(%)

Inf. Server+NX
(m/s)

Inf. Server+TX2
(m/s)

Swin-T 2.51 7.83 9.75
Swin-S 1.41 11.99 13.91
Swin-B 1.00 16.12 18.04

ConvNeXt-T 3.46 6.83 8.75
ConvNeXt-S 1.97 8.50 10.41
ConvNeXt-B 0.90 9.70 11.62

ResNet-50 3.50 13.16 10.05
ResNet-101 2.01 8.13 15.08
ResNet-152 1.48 18.86 20.78

different unmodified backbones can be derived using Table 4.2. Notably, the relative
overhead decreases the larger the tail is, which is favorable since we target inference from
more accurate predictors.

Computational Overhead We first disregard network conditions to get an overview
of the computational overhead of applying compression models. Table 4.6 summarizes
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Table 4.6: Inference Pipeline Components Execution Times

Model Prams
Enc./Dec.

Enc. [NX/TX2]
(ms)

Dec.
(ms)

Full [NX/TX2]
(ms)

FrankenSplit 0.14M/
2.06M

2.92/
4.87 2.00 16.34/

18.29

Ballé-FP 3.51M/
3.51M

27.27/
48.93 1.30 41.71/

63.37

Ballé-SHP 8.30M/
5.90M

28.16/
50.89 1.51 42.81/

65.54

Minnen-MSHP 14.04M/
11.65M

29.51/
52.39 1.52 44.17/

67.05

Minnen-JHAP 21.99M/
19.59M

4128.17/
4789.89 275.18 4416.7/

5078.2

Cheng-JHAP 16.35M/
22.27M

2167.34/
4153.95 277.26 2457.7/

4444.3

Lu-JHAP 5.28M/
4.37M

2090.88/
5011.56 352.85 2456.8/

5377.8

Chen-BJHAP 36.73M/
28.08M

3111.01/
5837.38 43.16 3167.3/

5893.6

the execution times of the prediction pipeline’s components. Enc. NX/TX2 refers
to the encoding time on the respective client device. Analogously, dec. refers to the
decoding time at the server. Lastly, Full NX/TX2 is the total execution time of encoding
at the respective client plus decoding and the prediction task at the server. Lu-JHAP
demonstrates how LIC models without a sequential context component are noticeably
faster but are still 9.3x-9.6x slower than FrankenSplit despite a considerably worse
r-d performance. Notice that the computational load of FrankenSplit is near evenly
distributed between the client and the server. The significance of considering resource
asymmetry is emphasized by how the partially parallelized context model of Chen-BJHAP
leads to faster decoding on the server. Nevertheless, it is slower than other JHAP baselines
due to the overhead of the increased encoder size outweighing the performance gain of
the blocked context model on constrained hardware.

Competing against Offloading The average compressed filesize gives the transfer
size from the ImageNet validation set. Using the transfer size, we evaluate transfer time
on a broad range of standards. Since we did not include the execution time of entropy
coding for learned methods, the encoding and decoding time for the handcrafted codecs
is set to 0.

The setting favors the baselines because both rely on sequential CPU-bound transforms.
Table 4.7 summarizes how our method performs in various standards. Due to space
constraints, we only include LIC models with the lowest request latency (Minnen-MSHP)
or the lowest compression rate (Chen-BJHAP). Still, with Table 4.6 and the previous
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Table 4.7: Total Latency with Various Wireless Standards

Standard/
Data Rate

(Mbps)
codec Transfer

(ms)
Total [TX2]

(ms)
Total [NX]

(ms)

FS-SGFP (0.23) 142.59 160.48 158.53
FS-SGFP (LL) 209.89 227.78 225.83
Minnen-MSHP 348.85 415.89 393.01
Chen-BJHAP 40.0 6167.79 3441.41

WebP 865.92 879.06 879.06

BLE/
0.27

PNG 2532.58 2545.72 2545.72
FS-SGFP (0.23) 3.21 21.09 19.15
FS-SGFP (LL) 4.72 22.61 20.66
Minnen-MSHP 7.85 74.89 52.01
Chen-BJHAP 0.9 6128.69 3402.31

WebP 19.48 32.63 32.63

4G/
12.0

PNG 56.98 70.13 70.13
FS-SGFP (0.23) 0.71 18.6 16.65
FS-SGFP (LL) 1.05 18.93 16.99
Minnen-MSHP 1.74 68.78 45.9
Chen-BJHAP 0.2 6127.99 3401.61

WebP 4.33 17.47 17.47

Wi-Fi/
54.0

PNG 12.66 25.81 25.81
FS-SGFP (0.23) 0.58 18.46 16.51
FS-SGFP (LL) 0.85 18.73 16.78
Minnen-MSHP 1.41 68.44 45.56

5G/
66.9

Chen-BJHAP 0.16 6127.95 3401.57
WebP 3.49 16.64 16.64
PNG 10.22 23.36 23.36

results, we can infer that the LIC baselines have considerably higher latency than
FrankenSplit. Generally, the more constrained the network is the more we can benefit
from reducing the transfer size. In particular, FrankenSplit is up to 16x faster in highly
constrained networks, such as BLE. Conversely, offloading with fast handcrafted codecs
may be preferable in high-bandwidth environments. Yet, FrankenSplit is significantly
better than offloading with PNG, even for 5G. Figure 4.19 plots the inference latencies
against handcrafted codecs using the NX client. For stronger connections, such as 4G
LTE, it is still 3.3x faster than using PNG. Nevertheless, compared to WebP, offloading
seems more favorable when bandwidth is high. Still, this assumes that the rates do not
fluctuate and that the network can seamlessly scale for an arbitrary number of client
connections. Moreover, we did not apply any optimizations to the encoder.
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Figure 4.19: Comparing effects on sizes

4.3 Summary
This chapter has introduced the core method concerning bandwidth requirements from
request payloads in urban environments. It has shown the difficulty of exploiting local
resources due to resource asymmetry and introduced a method for task-agnostic feature
compression with (near-) lossless prediction. An informed decoder design made relying
on hard signals from deeper layers obsolete, improving the (semantic) rate-distortion
performance while enabling the encoder to be reusable across backbones with varying
architectural styles. A novel distillation approach further improves performance by
distilling soft signals from deeper layers. Extensive evaluation has shown the method to
outperform numerous competitive baselines convincingly.
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CHAPTER 5
Downlink Bottlenecks in Remote

Sensing

Previously, we have assumed urban environments with near-permanent and high-quality
network availability with Wi-Fi, 5G base stations, etc. This chapter explores the problem
of efficiently transmitting and recovering salient information at the opposite extreme
of available networking infrastructure. It extends SVBI to include the peculiarity of
intermittently available network connections in Low Earth Orbit and addresses challenges
when recovering trustworthy human image interpretable images from low-bitrate lossy
compression.

5.1 Satellite Edge Computing

5.1.1 Introduction

The development of commercial ground stations [TPK21] and the advancement in
aerospace technology has enabled the emergence of nanosatellite constellations [LBC+18]
in low earth orbit (LEO) as a novel mobile platform. The standardization of small form
factors, such as CubeSat [LHT+09], reduces launch costs, allowing for frequent updates
and deployments. Manufacturers typically equip satellites with sensors to capture large
geographic regions. The downlinked satellite imagery enables Earth observation (EO)
services with socially beneficial applications, such as agriculture [SRS20] and disaster
warning [TD22]. Nonetheless, most constellations follow a “bent pipe” architecture where
satellites downlink raw sensor data for processing in terrestrial data centers. Notably,
given the constraints of orbital dynamics, satellites may only establish a connection for
a few minutes. For example, the Dove High-Speed Downlink (HSD) system [DKL+17]
provides segments with volumes as low as 12 GB during a single ground station pass.
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5. Downlink Bottlenecks in Remote Sensing

As constellation sizes and sensor resolutions increase, downlink bandwidth cannot keep
up with the accumulating data volume [VSC21, TMGV23]. Additional ground station
equipment may prevent link saturation. However, building and maintaining them,
including licensing the necessary frequencies, is a significant cost factor for satellite
operation. As an alternative, Orbital Edge Computing (OEC) proposes processing data
at the source [DL20, FMD+20, WLX+23, GFM+22, WL23]. Recent work on reducing
bandwidth requirements in OEC is roughly categorizable in aggressive (task-oriented)
filtering and compression [WLX+23]. The former relies on subjective value measures
that restrict their practicability to coarse-grained tasks, such as de-duplication or cloud
filtering. The latter constrains entire missions to particular tasks or prediction models.
We argue that the limitations of existing compression or other data reduction approaches
are particularly adverse to OEC.

First, the CubeSat design is intended for short-duration missions [LHT+09] (typically
up to 3-5 years), and despite waning prices, launching sensor networks in space is still
associated with substantial logistical, administrative, and monetary costs. Therefore, it
seems undesirable to designate entire constellations to a small subset of tasks and Deep
Neural Network (ANN) architectures. More pressingly, irrespective of whether current
codecs can prevent bottlenecks, they may undermine the effectiveness of entire missions.
Precisely, the assumption that prediction models only require a subset of information
for image reconstruction may lead to false confidence in a codec to reliably discern the
salient signals. We argue the opposite holds, i.e., when the objective is to accommodate
arbitrary downstream tasks with prediction models instead of human experts, there is
less potential for rate reductions. Intuitively, two seemingly visually identical images
may have subtle differences in pixel intensities, which a prediction model could leverage
to overcome physiological restrictions.

In summary, three conflicting objectives aggravate the challenges for OEC: (i) maximizing
downlinking captures, (ii) ensuring the value of the captures by relying on as few assump-
tions on downstream tasks as possible, and (iii) minimizing the risk from unpredictable
adverse effects on current and future prediction models. To this end, we propose drawing
from recent work on neural feature compression with Shallow Variational Bottleneck
Injection (SVBI) [FRD24]. The idea of SVBI is to reduce discarding information nec-
essary for arbitrary, practically relevant tasks by targeting the shallow representation
of foundational models as a reconstruction target in the rate-distortion objective. In
other words, rate reductions come from constraining the solution space with abstract
high-level criteria rather than reifying target tasks with an explicit definition of value or
expert-crafted labels. We investigate whether the SVBI framework is suitable for EO
from a compression perspective and identify lower-level system considerations given the
oppressive constraints of OEC. Then, we apply our insights to introduce a Tile Holistic
Efficient Featured Oriented Orbital Learned (THE FOOL) compression method, which
we will refer to as FOOL for short. FOOL alleviates the challenges of OEC by generalizing
SVBI to improve compression performance while introducing more specific methods that
aid in meeting the requirements of OEC and EO tasks. FOOL comprises a profiler, a

90



5.1. Satellite Edge Computing

neural feature codec with a separate reconstruction model, and a simple pipeline. The
profiler identifies configurations that maximize data size reduction, factoring in intermit-
tently available downlinks and the trade-off between processing throughput and lowering
bitrate from more powerful but costlier transforms. The neural codec’s architecture
includes task-agnostic context and synergizes with the profiler’s objective to maximize
throughput with batch parallelization by exploiting inter-tile spatial dependencies. The
pipeline minimizes overhead by CPU-bound pre- and post-processing with concurrent
task execution. We perform in-depth experiments to scrutinize our approach with a wide
range of evaluation measures by emulating conditions on a testbed with several edge
devices. Our results show that FOOL is viable on CubeSat nanosatellites and increases
the downlinkable data volume by two orders of magnitude relative to bent pipes at no
loss on performance for EO. Unlike a typical task-oriented compression method, it does
not rely on prior information on the tasks. Additionally, FOOL exceeds existing SVBI
methods with an up to 2.1× bitrate reduction. Lastly, the reconstruction model can
map features from the compressed shallow feature space to the human-interpretable
input space. The resulting images compete with state-of-the-art learned image compres-
sion (LIC) models using mid-to-high quality configurations on PSNR, MS-SSIM, and
LPIPS [ZIE+18] with up to 77% lower bitrates. Like all core methods introduced in the
thesis, we open-source the core compression algorithm1. Crucially, it proposes a solution
approach that assumes reconstruction for human interpretability as a subset of objectives
that prioritize maintaining the integrity of model predictions.

5.1.2 Related Work

Collaborative Inference and Data Compression

The Deep Learning aspect of our method draws from recent advancements in collaborative
inference [MLR22] and data compression [YMT23]. The underlying compression algo-
rithm and objective functions are derived and extended from our previous work [FRD24],
which re-formulizes the distortion term from lossy compression methods [BCM+20] and
deploys lightweight models suitable for resource-constrained mobile devices. Besides in-
troducing novel components to further lower transfer costs, FOOL considers the diverging
requirements due to intrinsic differences between terrestrial and orbital remote sensing.

Preventing Link Saturation with Orbital Inference

The system aspect of our method aligns best with work focusing on getting the data to
the ground for further processing instead of performing inference on board [GDdG+20,
GFM+22, DL20, ZYX+24]. We emphasize the high variability among fundamental design
principles for OEC, as it is an emerging field, and a comprehensive literature review is not
within the scope of this work. In summary, we found that current approaches focus on
designing complex systems tailored to specific conditions and rely on strong assumptions
limiting their applicability. Moreover, they may adequately model the system conditions

1https://github.com/rezafuru/the-fool
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5. Downlink Bottlenecks in Remote Sensing

but run experiments on toy tasks or on low-resolution images. Contrastingly, FOOL
is a holistic approach to the downlink problem that considers satellite systems and
imagery properties. The following discusses the approaches we find most promising as
representatives in their general direction.

Gadre et al. introduce Vista [GKM22], a Joint Source Channel Coding (JSCC) system
for LoRa-enabled CubeSats designed to enhance low-latency downlink communication of
satellite imagery and ANN inference. It shows significant improvements in image quality
and classification performance through LoRa-channel-aware image encoding. Moreover,
the evaluation assumes simple tasks that are not representative of practical EO. In
contrast, FOOL decouples image recovery from the initial compression objective and
ensures task-agnostic preservation of information.

Lu et al. introduce STCOD [LCH+23], a JSCC system for efficient data transmission
and object detection in optical remote sensing. STCOD integrates satellite computing to
process images in space, distinguishing between regions of interest (ROIs) and backgrounds.
It shows promising results with a block-based adaptive sampling method, prioritizing
transmitting valuable image blocks using fountain code [Mac05]. The caveat is that ROI
detectors that can reliably prevent predictive loss for downstream tasks require strong
biases regarding sensor and task properties. FOOL includes task-agnostic context, with
significantly less overhead and more robustness towards varying conditions than an ROI
detector. Furthermore, it is end-to-end optimized with the other compression model
components without relying on the same biases or expert-crafted labels.

Thematically, our work resembles Kodan by Denby et al. [DCC+23] the closest. Like
FOOL, Kodan treats channel conditions as an orthogonal problem and primarily focuses
on source coding to address the downlink and computational bottlenecks. Kodan uses a
reference application for satellite data analysis and a representative dataset to create
specialized small models. Once in orbit, it dynamically selects the best models for
each data sample to maximize the value of data transmitted within computational
limitations. Kodan’s excellent system design is promising but relies on assumptions that
hinder practicability and the potential for meaningful rate reductions. Unlike Kodan, we
follow a different design philosophy by treating the downlink bottleneck primarily as a
compression problem. Further, we do not treat the computational deadline as a hard
temporal constraint to decouple the method to a particular system design, as reflected by
FOOL’s profiler measuring key performance indicators on the pixel level. Given hardware
limitations, the aim is to reduce transfer costs by balancing the lower bitrate of more
powerful encoders and the gain in processing throughput of more lightweight encoders.

5.1.3 Background

The Downlink Bottleneck

Downlink bottlenecks occur when the data volume exceeds the bandwidth within a
downlink segment during a single pass. We formalize a model sufficient for our purposes by
considering link conditions and sensor properties of satellites belonging to a constellation.
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5.1. Satellite Edge Computing

A constellation is defined as C = (L,S, I, f) where L is a link to communicate with a
ground station and S is a set of satellites. The link is determined by its expected downlink
rate, measured in megabits per second (Mbps). The function f : S → I maps each
satellite s ∈ S to an interval where it passes the downlink segment into disjoint subsets
G = {Gi|Gi = {s ∈ S|f(s) = i}, i ∈ I}, such that

⋃︁
Gi = S and

⋂︁
Gi = ∅. The link

capacity Vlink is the bandwidth available per pass and is determined by the link rate and
the interval range. Satellites S = (Rorbit, Srate, Sspatial, Sbands, Sradio, Sfov) are equipped
with a sensor, and its properties determine the volume per capture.

Vcapture :=

Total Pixels⏟ ⏞⏞ ⏟
R2

orbit · tan2(Sfov)
Sw · Sh

·Sbands · Sradio⏞ ⏟⏟ ⏞
Bits per Pixel

(5.1)

The radiometric resolution Sradio and number of bands Sbands determine the downlink
cost per pixel in bits. The orbit Rorbit, sensor spatial resolution Sspatial = Sh × Sw, and
field of view Sfov determine the number of pixels per capture. The number of captures
depends on the time to complete an orbit

Torbit := 2π

√︄
(Rorbit +Rearth)3

GM
(5.2)

and on the capture rate Srate. G is the gravitational constant and M is the earth’s mass.
The orbit Rorbit is usually around 160 to 800 kilometers for LEO satellites. For reference,
Rorbit is 786 kilometers for Sentinel-2 [DDC+12]. Finally, the number of captures from
all satellites within the segmentation group determines the total volume per pass.

Vpass :=
∑︂

s(i)∈Gj

TOrbit · S
(i)
rate · V

(i)
capture (5.3)

The superscript (i) denotes the costs associated with a satellite (i). For constellations
with homogenous sensors Vcapture is a static value. Notice that Vpass scales linearly by
the constellation size and a constant factor c for overlap occurrences, i.e., |Gj | = |S|

c . To
determine c for a constellation, we must calculate the minimum angle between satellites
β∗. Assuming a single ground station at the Earth’s North Pole and given the minimum
communication elevation θ

β∗ = 2× (180◦ − (θ + 90◦)− arcsin(Rearth · sin (90◦ + θ)
Rorbit +Rearth

) (5.4)

For example, consider a constellation at Rorbit = 790, 000 meters altitude with a minimum
elevation θ = 25◦ such that β∗ ≈ 22.52◦. Then, c = 360◦

22.52◦ ≈ 16, i.e., to prevent any
interval sharing, the constellation size may not exceed 16 satellites.

In short, the aim is to facilitate cost-efficient scaling of constellations by increasing
bandwidth value and substantially reducing reliance on building additional infrastructure.
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5. Downlink Bottlenecks in Remote Sensing

That is, we require an encoding scheme enc, such that Venc < Vlink. Note that a single
satellite may experience a bottleneck even if the constellation is sparse enough to prevent
interval sharing [DCC+23]. Say, each s ∈ S is equipped with a sensor using approximate
Sentinel-2 configurations [DDC+12] by setting a multispectral sensor for (near-) visible
light to Sbands = 4, Sradio = 12 Sfov = 21◦, Sh×w = 10× 10, and five captures per pass.
With |S| ≤ 16, the volume for each pass is 790,0002·tan2(10.5◦)

100 · 4 · 12 · 5 ≈ 410 GB. To
prevent a bottleneck even without sharing an interval and using a higher-end link, such
as WorldView-3 [CCA+21] where Vlink = 90 GB per pass, the enc needs to decrease the
data volume by a factor of 4.5.

There are two overarching objectives for a codec and the system we deploy its encoder.
The system’s objective is to process and encode large volumes of high-dimensional data,
given the physical limitations of LEO (nano-) satellites. A 3U nanosatellite following the
CubeSat standard is limited to 10cm×10cm×30cm and 4kg [CHJ+22] with restricted
power supply by using solar harvesting [DL19]. The compression objective is to achieve
a sufficiently low bitrate while maintaining the data’s integrity. The following elaborates
on the challenges of conceiving a method that fulfills our criteria and the limitations of
applying existing codecs.

Limitations of Codecs

Given remote image captures and a set of unknown associated object detection tasks, we
seek a transformation of the captures into representations that minimize transfer costs
and loss of information that may impact any detection tasks. We refer to generalizability
as a measure of how well a method can minimize the predictive loss on unknown detection
tasks. For example, a purely task-oriented encoding (e.g., [SAEHJ+20]) can retain infor-
mation for a set of explicitly defined tasks. Still, it does not generalize as the transformed
data is unusable for non-overlapping tasks Besides bent pipes, lossless codecs are the
only approach with easily understood guarantees on generalization. Nevertheless, lossless
compression cannot adequately address the downlink bottleneck due to theoretical lower
bounds. Promising alternatives are lossy methods that relax the requirement of relying on
identical reconstruction for generalization. More formally, given a distortion measure D, a
constraint Dc bounds the minimal bitrate to minPY |X I(X;Y ) s.t. D(X,Y ) ≤ Dc . Neu-
ral Image Compression (NIC) replaces the typically linear transformation of handcrafted
codecs with nonlinear ones to reduce dependencies from sources that are not jointly
Gaussian [BCM+20]. The sender applies a parametric analysis transform ga(x; θ) into a
latent y, which is quantized to a latent with discrete values ŷ. Then, an entropy coder
losslessly compresses ŷ using a shared entropy model pŷ. The receiver decompresses ŷ and
passes it to a parametric synthesis transform gs(ŷ;ϕ) to recover a distorted approximation
to the input. To capture leftover spatial dependencies of ŷ, more recent work adds side
information with a hyperprior z [BMS+18] and a context model [MBT18]. Including
side information requires two additional parametric transforms ha(ŷ; θh) and hs(ẑ;ψh).
Despite efficient LIC methods [MCJ+24] consistently outperforming handcrafted codecs
on standardized benchmarks, the results are deceptive when assessing the impact on
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5.1. Satellite Edge Computing

downstream tasks. To provide further explanation, we perform a preliminary experiment
that contrasts the predictive loss with additive noise and codec distortion and summarize
results in Figure 5.1.
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Figure 5.1: Comparing Effect of Codec and Additive Noise

We download pre-trained weights [WTJ21] for the ImageNet [RDS+15] classification
task of three popular architectures[HZRS16, LLC+21, LMW+22]. First, we compute
the expected Peak Signal-To-Noise Ratio (PSNR) of a popular LIC model [BLS17] for
each quality level on the validation set. Then, we apply Additive White Gaussian Noise
(AWGN) on the input to match the PSNR of a codec for each quality level separately.
Lastly, we measure the predictive loss as the average difference between the accuracy of
the original and processed samples. Notice that the predictive loss on the distorted input
is significantly worse than the noisy input. Additive noise does not remove information;
rather, it superimposes unwanted information. Conversely, lossy compression intentionally
discards information from signals, and two codecs may achieve comparable rate-distortion
performance despite emphasizing different information to retain. Re-training model
weights on reconstructed samples may mitigate some predictive loss, but only due
to adjusting prediction to input perturbations and error-prone extrapolation of lost
information.

Particularly, for EO with satellite imagery that spans large geographic areas, we stress
the unsuspecting danger of lossy compression, which is compounded with learned trans-
forms [BCM+20], where it is challenging to understand behavior. The ability to differen-
tiate between intensities beyond the capability of humans may explain why detection
models can outperform domain experts. Accordingly, we should assume that lossy codecs
may discard information where even experts cannot reliably verify the impact on machine
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5. Downlink Bottlenecks in Remote Sensing

interpretability. For example, suppose a codec that reduces the rate by focusing on
preserving coarser-grained structures. Then, tasks that rely on assessing the environment
for fine-grained object classes will lack background information (e.g., inferring region by
tree species with subtle color variations).

Current limitations of image codecs put operators in a difficult position, especially for
EO. The decision falls between (a combination of) lossless codecs, applying crude filtering
methods, or attempting to reduce the bitrate with lossy codecs, remaining uncertain
about whether the codecs retain information necessary in real conditions. As a solution,
we previously introduced SVBI, which prioritizes salient regions for (near) arbitrary high-
level vision tasks. To briefly recap, SVBI trains neural codecs by replacing the distortion
term of the rate-distortion objective of variational image compression models [BMS+18]
with head distillation (HD) [MBC+19, SSTM21, MYLM22, FRD24], using the shallow
representation of a pre-trained foundational model as the prediction target. We define
a foundational model as a pre-trained ANN that can accommodate multiple tasks by
attaching predictors or fine-tuning the deeper layers. In Knowledge Distillation (KD)
terminology, the codec is referred to as the student and the shallow layers of a foundational
model as the teacher. Note that KD is not this work’s focus, as HD diverges from the
typical KD objective. The intuition behind SVBI is that if a codec can reconstruct the
representation of a foundational model, then the representation is sufficient for at least
all tasks associated with that model.

The Effectiveness of Shallow Features

Readers may reasonably assume that using the representation for one particular network
architecture instead of the input as the distortion measure is more restrictive for two
reasons. First, the features are not human-readable, i.e., we cannot overlay the bounding
boxes on the images. We could infer the global coordinates to present boxes overlaid
on previously captured satellite imagery. This is sufficient for observing (semi-) perma-
nent objects (e.g., landmarks) but certainly not for ephemeral or moving objects (e.g.,
tracking the movement of vessels). Second, even if the trend toward transfer learning
with foundational models [JT21, ANK+25] can accommodate various predictors, client
preferences for architectures may vary.

We argue that by targeting shallow representations, both limitations can be addressed.
View an n-layered feed-forward neural network as a Markov chain of successive represen-
tations Ri, Ri+1 [TZ15]:

I(X;Y ) ≥ I (R1;Y ) ≥ . . . ≥ I (Rn;Y ) ≥ I(Ỹ ;Y ). (5.5)

The mutual information I(X;Ri) will likely decrease relative to the distance between
the input and a representation. This loss stems from layers applying operations that
progressively restrict the solution space for a prediction, particularly for discriminative
tasks. That is, the deeper the representation, the more information we are likely to lose
regarding X:

I(X;X) ≥ I(R1;X) ≥ · · · ≥ I(Rn−1;X) ≥ I(Rn;X). (5.6)
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Figure 5.2 visualizes how information is gradually discarded in the processing path.
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Figure 5.2: Data Processing Inequality visualized.

We extract the features from a ResNet network with weights trained on the Ima-
geNet [RDS+15] classification task and recover the original image by training separate
reconstruction models for each marked location. Section 5.2.1 elaborates on the recon-
struction. Notice that models at shallow layers can recover the input with high similarity,
but the recovery progressively worsens as the path distance increases. Now assume a
discriminative model, such as a ResNet for image classification,M = (H, T ) with separate
shallow H from deeper layers T as disjoint subsets, such that H(X) = H (i.e, mapping
input to shallow features) and M(X) = T (H(X)). Further, given a codec c = (enc,dec)
where dec(enc(X)) = H̃ is an approximation of H(X). Then, H̃ is a sufficient approxi-
mation of H if T (H̃) results in lossless prediction, i.e., no drop in prediction performance
relative to T (H). In other words, a sufficient representation in the shallow latent space
results in high similarity in the deep latent space between T (H) and T (H̃). Consider that
similarity in the deep latent space coincides with high similarity for human perception in
the input space [ZIE+18]. Therefore, the encoder output enc(X) should retain sufficient
information to reconstruct X with quality comparable to H(X). Finally, since enc(X)
sufficiently approximates H, it should be possible to sufficiently approximate the shallow
representation of any model M′ = (H′, T ′) if I(H(X), X) ≈ I(H′(X), X).
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Rate Reductions by Task Specificity

The idea of task-oriented communication is that messages for model prediction may
require less information than human domain experts, so it should be possible to reduce
bitrate by not (exclusively) using input reconstruction as the distortion measure. We argue
that this assumption contradicts empirical evidence demonstrating models outperforming
human experts in various image-related tasks, since machines can detect signals and
patterns that humans physiologically or intellectually cannot. Rather, the opposite
should hold. When compressing for quality using domain experts as judges, we should
see more potential for rate savings, not less. The claim is consistent with the results
in Figure 5.1 where codecs with high reconstruction quality result in images that are
deceptively similar to the input (details in Section 5.2.4). As claimed in Section 4.1.4,
rate reductions are from task specificity of the distortion measure, irrespective of the
input interface, whether a particular layer of an ANN architecture, human receptors, or
textual encoding. Note that this holds even when limiting measures to discriminative
task objectives without image reconstruction. Besides visualizing Equation (5.6), the
input image illustrates a practical example. The frog subset of ImageNet distinguishes
between Tree Frogs, Bullfrogs, and Tailed Frogs. Since these frog species have distinct
figures and dominant colors, the more delicate characteristics of a tree frog are redundant
for ImageNet classification. The network gradually discards information regarding the
fine-grained blue-yellow colored patterns, permitting only the recovery of general shape
and environment from the deep features. The deeper the features, the less structure
and detail are present, which may be redundant for the task. Now, suppose training a
codec where the encoder retains the minimal information necessary to reconstruct the
output of the deepest layers for a classification task (e.g., similar to Vista [GKM22]).
Then, assuming uniform class distribution, we can reduce the transfer cost to as low as
log2 (#labels) without predictive loss. However, we may lack the information for other
tasks, i.e., there is a trade-off between generalization and the lower bound on the bitrate.
In contrast, targeting shallow features for compression may strike a balance between
aiming to retain information for all possible downstream tasks and only emphasizing
the salient regions for the tasks associated with a foundational model. Arguably, the
limitation is negligible, as maintainers will train models with useful tasks in mind.

5.2 A Complete Neural Compression Pipeline for Satellite
Computing

5.2.1 The FOOL’s Compression Method

We design the compression method based on three criteria. First, it should synergize
with the profiling strategy (Section 5.2.2). Second, it should embed context for feature
compression without favoring a particular downstream task. Third, it should prioritize
the integrity of downstream tasks but allow recovering human interpretable images
without increasing the bitrate.
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Model Building Blocks

For a focused evaluation and transparent discussion on the efficacy of our contributions
in Section 5.2.3, we restrict FOOL to basic layer types and exclude methods from work
on efficient neural network design (e.g., dilated convolutions to increase the receptive
field). Moreover, basic layer types ensure widespread support across hardware ven-
dors [RMJ+22]. Figure 5.3 illustrates the building blocks of the codec architecture we
will introduce in Section 5.2.1 and how it organizes the primary networks for transform
coding (Section 5.1.3).

(Cross-) Attention Block 2D/3D

(1x)1x1 C
 C

/2

(1x)1x1 C
/2

 C

(D
x)3x3 C

/2
 C

/2

Residual Unit (RU)

3x3 C
 C

3x3 C
 C

Stage 1 C  C

Stage 2 C  C

Stage 3 C  C

Stage 4 C  C
Primary Network

Residual Block

AttentionBlock3D

Residual Block

ResidualBlock 

Stage

RU

RU

RU

RU

RU

RU (1x)1x1 C  C

Figure 5.3: Network Organization and Components

The primary networks have four stages that control the depth and width. Each stage
has at most one lightweight attention block and at least one residual block. A residual
block optionally up or downsamples the spatial dimensions. A stage’s width and depth
parameters configure the number of channels and residual blocks within a stage.

Capturing Inter-Tile Dependencies

The input to the compression model is tiles of satellite imagery that were partitioned
to maximize processing throughput (Section 5.2.2), i.e., we consider an input x as a list
with T separate image tensors xt ∈ RC×H×W . To decrease transfer costs further, FOOL
leverages the prior knowledge from partitioning (i.e., tiles corresponding to the same
image) in two ways. The first is via weight-sharing with 2D Residual Blocks by reshaping
the tensor to T ·B×C×H×W . This way, we include further inductive bias during training
by forward passing T similar tensors before each backpropagation. The second is with
an inter-tile attention mechanism. Since self-attention from transformer architectures
is prohibitively expensive for our purposes, even when applying it on downsampled
representations as proposed in [ERO21]. Therefore, we modify and extend the lightweight
convolutional attention layer from [CSTK20]. The layer stacks residual units to increase
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the receptive field that primarily emphasizes local interactions, i.e., it is not a drop-in
replacement to capture global dependencies. We conjecture that FOOL partially replaces
the need for global operations by assuming tiles to have “pseudo-temporal” dependencies.
The intuition is that partitioning single captures spanning large geographic areas, which
typically have recurring patterns, may be similar to moving a video feed with large strides.
In particular, tiles within the same regions or biomes have global dependencies. In the
3D version of the attention block from Figure 5.3, a residual unit consists of two 1× 1× 1
convolution and a D × 3× 3 convolution in between. The kernel size for the temporal
dimension of attention layers (Section 5.2.1) is set as D = 3 for T < 5 and D = 5
for T ≥ 5. The advantage of 3D layers over concatenating channels and applying 2D
convolutional operations (e.g., with channel attention [GXL+22]) is that it considerably
reduces width. For example, given a 3×3 2D convolution with T ×C in and out channels.
Then for T = 5 image tensors, with dimensions C = 64, H = 128,W = 128, would require
5 · 64 · (3 · 3 · 5 · 64 + 1) = 921, 920 parameters. Conversely, for a 5× 3× 3 3D convolution
with the same in and out channels, it would result in 64 · (5 · 3 · 3 · 64 + 1) = 184, 384.
Additionally, we reduce the number of multiply-and-accumulates from approximately 15
million to 9 million. Besides lowering memory requirements, this allows scaling model
capacity with less friction against processing throughput.

Task-Agnostic Context for Feature Compression

The leftover spatial dependencies after encoding are commonly around high-contrast
areas. Consider that high-contrast areas typically correspond to edges and other regions
of interest, i.e., keypoints. As an example, Figure 5.4 contrasts leftover pixel dependencies
of ŷ from a LIC model [MBT18] to keypoints output by a KeyNet [BLRPM19] network.
It shows that we can further improve compression performance with side information by
embedding keypoints as context for encoding as follows:

ŷ = Q(ga(x; θ))
ykp = fds(k(x)⊙ x;ωkp)
yca = ac(ykp, ωca)

ẑ = Q(ha(fca(ykp, ωca); θh))
pŷ|ẑ(ŷ | ẑ)← hs (ẑ;ϕh)

h̃ = gs(ŷ;ϕ)

where k is a keypoint extraction function k : R3×H×W → R1×H×W , fds is a parametric
downsampling function fds : R1×H×W → RC′× H

2n × W
2n , and ac is a single (2D) cross-

attention block (Figure 5.3). The cross-attention block takes context as an additional
input for weighting the latent with attention scores. For k, we use scores from a
(frozen) pre-trained and simplified KeyNet [BLRPM19] due to its robustness in diverse
environments and low memory requirements (less than 6000 parameters). While this
method should generalize to LIC, it complements feature compression exceptionally well
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and found quantizing and compressing yca (i.e., h̃ = gs(Q(yca), ψ) further lowers the
bitrate without affecting task performance.

Figure 5.4: Leftover Spatial Dependencies (middle left), Keypoints (middle right), Entropy
Heatmap (right)

Compression Model Architecture

Figure 5.5 illustrates the compression model’s complete architecture. The dashed lines to
Q indicate that we either quantize (and subsequently compress) the base latent or the
cross-attention weighted latent.

For the case of passing yca to Q, we include an additional residual unit after attention-
weighting. We skip applying the attention block to the highest input dimensions to reduce
memory and computational costs. The non-linearity between the layers is ReLU to reduce
vendor dependency of results from the system performance evaluation in Section 5.2.4.
Residual blocks are two stacked 3× 3 convolutions to increase the receptive field with
fewer parameters and a residual connection for better gradient flow. For the remainder
of the work, we refer to the compression model as an encoder-decoder pair enc, dec. The
encoder comprises ga, ha, k, fds, ca, and the entropy coder. The decoder consists of the gs

and the entropy decoder. The entropy model pẑ(ẑ) and hs are shared. Note that, despite
deploying more components on the constrained sender, the encoder has significantly
fewer parameters than the decoder since we increase the width of the receiver-exclusive
components.
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Figure 5.5: The FOOL’s Compression Architecture

Single Encoder with Multiple Backbones and Tasks

Analogous to [FRD24], consider a set of n shallow and deep layers pairs of backbones
(i.e., foundational models):

Mf = (H1, T1), (H2, T2) . . . (Hn, Tn) (5.7)

The shallow layers map a sample to a shallow representation, i.e., Hi(x) = hi. Further,
associate a separate set of m predictors P = P1, . . .Pm to the non-shallow (i.e., deep)
layers of a backbone. Assume an encoder-decoder pair can sufficiently approximate the
shallow layer’s representation of a particular backbone (i.e., dec(enc(x)) = h̃ ≈ hi). Then,
inputting h̃ to Ti, should result in the same predictions for all m predictors associated
to Ti. Since two shallow layers output different representations (i.e., Hi(x) ̸= Hj),
the encoder-decoder pair cannot replace the shallow layers for any Hj where i ≠ j.
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Accordingly, after training an initial encoder-decoder pair, FOOL instantiates n − 1
additional decoders, resulting in a set of separate dec1, dec2 . . . decn decoders, i.e., one
for each target backbone.

Image Reconstruction

FOOL trains the compression and image reconstruction models in two stages. After
training the compression model and freezing encoder weights, it separately trains a
reconstruction model that maps ŷ to an approximation x̃ of the original sample x.

Separate Training over Joint Optimization We could reduce the distortion d(x, x̂)
with a joint objective for training the reconstruction and compression model. While
the resulting models would score higher on the sum of error benchmarks, the added
distortion term will result in higher bitrates. Instead, after optimizing the encoder with
the objective of SVBI, we freeze the weights (i.e., “locking” in the rate performance).
Then, we leverage the high mutual information between shallow features and the input to
recover presentable approximations (Section 5.1.3). Image recovery is closely related to
image restoration, such as super-resolution or denoising. The component is exchangeable
with the state-of-the-art, as it is orthogonal to the compression task. For this work,
we select SwinIR [LCS+21] due to its relative recency, computational efficiency, and
simplicity.

Reconstruction Does not Replace Decoders Approximations from decoders (Sec-
tion 5.2.1) resulting in (near) lossless prediction would evidence ŷ has sufficient information
to reconstruct a sample for the input layers that result in comparable task performance.
Hence, after training the encoder, we could replace all decoders with the reconstruction
model to approximate the input sample. Nevertheless, sufficiency may not directly result
in lossless prediction since artifacts perturb the reconstructed samples. We could account
for the perturbation by fine-tuning for a relatively small number of iterations [FRD24].
The downside is that operators must maintain, store, and serve different versions of the
otherwise identical backbones for each client separately. Additionally, they may need
to retrain the predictors of the various downstream tasks for each backbone. Instead,
we train small decoders that directly map the low-dimensional encoder output to an
adequate representation, i.e., FOOL does not pass the reconstruction to prediction models
for downstream tasks. There are two advantages to introducing multiple decoders over
multiple backbone weights. First, the number of additional weights operators must
maintain only scales with supported backbones and not the number of backbone-task
pairs. Second, the small decoder weights incur considerably less training and storage
overhead than the weights of massive backbones.

Loss Functions

FOOL’s training algorithm starts with extracting the shallow layers of a particular
detection model (teacher). Then, it freezes the encoder and trains newly initialized
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decoders dec1, dec2, . . . decn using the corresponding teacher models H1,H2, . . .Hm (i.e.,
target shallow layers).

Rate-Distortion Loss Function for SVBI To simplify the loss expression, we treat
the components related to keypoints as part of ha if we exclusively use it as a hint for the
side-information network. Alternatively, it may be used as the final block of ga before
quantizing and entropy coding the latent. Analogous to the SVBI training objective
[FRD24, MYLM22], we have a parametric analysis transform ga(x; θ) that maps x to a
latent vector z. Then, a quantizer Q discretizes z to ẑ for lossless entropy coding. Since
we rely on HD (Figure 4.5) as a distortion function, the parametric synthesis transforms
gs(x̂;ϕ) that maps ŷ to an approximation of a representation h̃. As introduced in [BLS17],
we apply uniform quantization Q, but replace Q with continuous relaxation by adding
uniform noise η ∼ U(−1

2 ,
1
2) during training for gradient computation.

Without a hyperprior, the loss is:

Ex∼pxDKL
[︂
q∥pỹ|x

]︂
= Ex∼pxEỹ∼q − log p(x|ỹ)− log p(ỹ)] (5.8)

With side information, we condition on a hyperprior, such that each element ŷi is now
modeled as a Gaussian with its own mean and standard deviation:

pỹ|z̃ (ỹ | z̃, ϕh) =
∏︂

i

(︃
N

(︂
µ, σ̃2

i

)︂
∗ U

(︃
−1

2 ,
1
2

)︃)︃
(ỹi) (5.9)

where z = ha(ŷ; θh) and µ̂, σ̂ = hs(z̃;ϕh). The final loss function results in the following:

Ex∼pxDKL
[︂
q∥pỹ,z̃|x

]︂
= Ex∼pxEỹ,z̃∼q [log q(ỹ, z̃ | x)

− log px|ỹ(x | ỹ)− log pỹ|z̃(ỹ | z̃)
− log pz̃(z̃)] (5.10)

For the distortion term, we use the sum of squared errors between the shallow layer
(teacher) representation and the compressor (student) approximation, i.e., sse(h, h̃).

Mapping Encoder Output to Target Representations After training the first
enc, dec1 pair, FOOL freezes enc weights, i.e., only applying the distortion term of the
loss in Equation (5.10), for subsequent decoders dec2, dec3 . . . decn (Section 5.2.1). Lastly,
FOOL treats the reconstruction model rec as a decoder and assigns the identity function
as its teacher, i.e., Hrec(x) = x. Unlike for other decoders, the target representation must
be human-interpretable. Hence, we train the decoder for image reconstruction using the
Charbonnier Loss [CBFAB94]

Lrec =
√︂
∥x− rec(enc(x))∥2 + ϵ2 (5.11)

where ϵ is a small constant we set as 2 ·10−3. It is out of this work’s scope to exhaustively
evaluate image restoration methods. Rather, the focus is to provide empirical evidence
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for the claims in Section 5.1.3. We simply found that, despite performing comparably
to other sums of error losses on benchmark metrics, using Charbonnier results in more
stable training.

5.2.2 The FOOL’s System Design

Compression and Prediction Request Flow

Figure 5.6 illustrates a high-level view for serving requests.

Encoder

Image
Reconstruction

Detection Pipeline

Figure 5.6: High-Level Inference Request Flow

For samples processed by FOOL, there is a single encoder. The output ŷ is forwarded to
the detection pipeline, skipping the shallow layers. The detection pipeline for a single
forward pass consists of a decoder, backbone, and predictor. There may be multiple
backbones the client can choose from, and each backbone may have multiple predictors.
A decoder transforms ŷ into an input representation for a particular backbone. A
predictor outputs bounding boxes for a specified task. An image reconstruction model
optionally restores the latent to a human-interpretable image to overlay the bounding
boxes. Samples downlinked with bent pipe or some image codec are forwarded to the
shallow layers, skipping the corresponding decoder and reconstruction model. This
section focuses on the pipeline, before Section 5.2.1 introduces the compression method.

Profiling Compression Pipelines for OEC

A common challenge for operators is to determine whether reported performance regarding
resource usage or throughput from the latest advancements generalizes to their target
hardware. This problem stems not from a lack of rigor by authors but from the sheer
heterogeneity of the AI accelerator landscape [RMJ+22]. Graph compilers and other
vendor-specific optimizations discussed in Chapter 3 further complicate evaluation, with
varying methods for operator fusion, graph rewriting, etc. Consequently, FOOL includes
a simple profiling and evaluation strategy that operators may run before deployment.
Notably, in contrast to existing work that partitions images to match the input size
of a particular application, the profiler regards the importance of spatial dimensions
for resource efficiency. The purpose of the profiler is to determine a configuration that
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maximizes throughput. While throughput evaluation is straightforward, how to measure
it (e.g., images/second) is not necessarily obvious, particularly for (neural) compression
pipelines.

First, terrestrial and LEO remote sensing with constrained sensor networks demand
resource-conscious methods, but in LEO, downlinks are only available within segments.
Due to memory and storage constraints, devices must process samples according to a sensor
rate, i.e., a prolonged interval between incoming samples. Hence, the objective in LEO is
to maximize the number of pixels the accelerator can process before reaching a downlink
segment, given a time constraint for a single sample (i.e., “frame deadline” [DCC+23]).
For example, assume a cheaper and a costlier compression model where both models meet
the frame deadline. Applying the latter results in half the bitrate but thrice the inference
time. Using the former is beneficial in most network conditions for real-time terrestrial
applications since it results in a lower end-to-end request latency. In contrast, applying
the latter in LEO may be advantageous, as finishing earlier results in the needless
idle time of resources. Second, satellite imagery has substantially higher resolution
than captures from most terrestrial sensor networks. A standard method to improve
throughput for high-dimensional images is parallel processing with tile partitioning. The
distinction is that there is more control over the spatial dimensions and the batch size.
Nonetheless, a caveat is the friction between a model’s size and the input size. Increasing
the width (e.g., the number of feature maps output by a convolutional layer) of a neural
codec’s parametric transforms may result in better compression performance but lower
processing throughput. In summary, we require a measure that includes (i) the tile spatial
dimensions, (ii) batch size, and (iii) the capacity-compression performance trade-off.

We can address the requirements (i) and (ii) by measuring throughput as pixels processed
per second (PP/s). To motivate the need to expand on PP/s for (iii), we demonstrate
the friction between model width, input size, and batch size using the convolutional
encoder in [FRD24], consisting of three downsampling residual blocks (Section 5.2.1).
Figure 5.7 summarizes the results as the average of 100 repetitions with progressively
increasing width. Notice how evaluating img/s always favors smaller spatial dimensions
and disregards batch size and model width. In contrast, PP/s reveals that the optimal
spatial dimension is around 500× 500 but will naturally favor smaller models, as it does
not consider that wider models may reduce transfer costs. To alleviate the limitations of
PP/s, we measure Transfer Cost Reduction per Second (TCR/s) as:

TCR/s = Image Dimension
Seconds per Batch⏞ ⏟⏟ ⏞

PP/s

×(bppraw − bppcodec) (5.12)

The measure now includes the compression performance as the difference between
the expected bits per pixel (bpp) of compressed (bppenc) and uncompressed (bppraw)
sensings. The raw bpp value refers to the bit depth, i.e., the sensor’s radiometric resolution
and the number of bands. For example, the radiometric resolution of Sentinel-2 is 12
bits [DDC+12], so for three bands bppraw = 3 · 212. The advantage of TCR/s is twofold.
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Figure 5.7: Contrasting Throughput Measures

First, decoupling it from system-specific parameters, such as sensor resolution or orbital
period, permits drawing generalizable insights regarding the relative trade-off between
codec overhead and bitrate reduction. Second, operators can still assess the feasibility of
the pipeline on target hardware and the expected downlinkable data volume by running
the profiler with configurations that reflect deployment conditions.

Concurrent Task Execution

So far, this section has solely discussed the computational cost of a codec’s parametric
transforms without considering pre- and post-processing. In particular, after applying the
encoder transforms, it is still necessary to entropy code the output to compress the latent.
Since FOOL’s entropy model is input adaptive, it requires a range coder. Although more
recent range coders are efficient, they incur non-negligible runtime overhead. Therefore,
given the unforgiving conditions of OEC, we argue that the entropy coder cannot be
neglected in the design process and evaluation of a neural codec. FOOL virtually offsets
the entire runtime overhead with simple concurrent task execution. The idea is to exploit
the minimal interference of processes drawn from different resource types. For three
sequentially incoming samples xi−1, xi, xi+1, FOOL executes CPU-bound pre-processing
of xi+1, accelerator-bound inference of xi, and CPU-bound post-processing of xi−1. In
this work, pre-processing corresponds to tiling the samples, and post-processing to entropy
coding with rANS [Dud14, Tow20]. Concurrently to inference xi−1 on the accelerator, a
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process starts tiling xi. After inference on xi−1, ŷ, ẑ, σ̂, µ̂ (Section 5.2.1) are persisted
on the file system. Then, a separate process loads the data and losslessly compresses ŷ, ẑ
with an entropy coder. We expect minimal interference between the processes, resulting
in virtually no PP/s decrease.

5.2.3 Evaluation

Experiment Design

Our experiments reflect our aim to determine (i) the compression performance on aerial
and satellite imagery without relying on prior knowledge and (ii) the feasibility of orbital
inference.

Testbed We benchmark [RRP+22] on an analytic and trace-driven [RRFD23] sim-
ulation based on results from a physical testbed with hardware summarized in Ta-
ble 5.1. The power consumption is capped at 15W for the entire testbed. Our

Table 5.1: Testbed Device Specifications

Device CPU GPU
Ground Server 16x Ryzen @ 3.4 GHz RTX 4090
Edge (Nano Orin) 6x Cortex @ 1.5 GHz Amp. 512 CC 16 TC
Edge (TX2) 4x Cortex @ 2 GHz Pas. 256 CC
Edge (Xavier NX) 4x Cortex @ 2 GHz Vol. 384 CC 48 TC

simulation replicates a configurable CubeSat by imposing energy, memory, and band-
width constraints. To simulate the downlink bottleneck with varying link conditions,
parameterize link conditions and data volume (Section 5.1.3) using real-world mis-
sions [DKL+17, CCA+21, DBB+12, Nat24] as summarized in Table 5.2. Due to the
orthogonality of compression to systems-related challenges in OEC, we argue a focused
simulation yields more insight results than running a full OEC simulator (e.g., [DL20]).
Our intention is for FOOL to facilitate OEC as an auxiliary method. Therefore, we
demonstrate the bitrate reduction and resource usage trade-off for various configura-
tions representing the heterogeneity of available compute resources and nanosatellite
constellations.

Table 5.2: Constellation Link Conditions

Operator Constellation Link Rate
(Mbps) Pass (s) Data Per Pass

(Gb)
Planet Dove (3P/B13) HSD 1 160 510 12.0
Maxar WorldView WorldView-3 1200 600 90
ESA Copernicus Sentinel 3A/B 560 600 40.0
NASA Landsat Landsat 8 440 120 39.6
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Third-Party Detection Models & Target Tasks FOOL derives the basic ap-
proach to accommodate multiple backbones with a single encoder (Section 5.2.1) from
FrankenSplit [FRD24]. Foundational models (i.e., feature extractors or backbones)
are interchangeable third-party components in SVBI. To complement previous work
(Section 5.1.2) and further show the flexibility of SVBI, we focus on modern YOLO
variants [JCQ23]. Figure 5.8 illustrates the pipeline to represent third-party detectors
we prepare before evaluating codecs.
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(Shallow Layers)
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(Deep Layers)
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(Deep Layers)
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Predictor Weights

Predictor Weights
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Frozen
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Figure 5.8: Detection Pipeline for Evaluation

While the work in [FRD24] did not explicitly evaluate object detection tasks, the support
for two-stage detectors follows from the codec sufficiently approximating the representation
of the feature extractor (i.e., the first stage). However, it is not apparent whether the
general SVBI framework yields gains over image codecs when the targets are one-stage
detectors. Therefore, to replicate a representative service for inference on aerial or
satellite imagery, we apply simple transfer learning on open-source weights [JCQ23] for
YOLOv5 and YOLOv8. Image codecs pass a sample dec(enc(x)) = x̂ to the input layers
of a target model. Feature codecs (i.e., SVBI methods) skip the shallow layers and pass
dec(enc(x)) = ĥ to the deeper layers. Detection models with the same architecture share
the frozen shallow layers (i.e., layers until the first non-residual connection). We associate
one task as outlined by the test labels for each of the three dataset separately. The
tasks represent varying mission conditions. DOTA-2 [DXX+21] for a more coarse-grained
aerial task with comparatively lower Ground Sample Distance (GSD) and larger objects.
SpaceNet-3 [VELB18] for urban tasks (e.g., for traffic control) with high image resolutions.
Lastly, xView [LKM+18] for disaster response systems where detection models rely on
fine-grained details. Lastly, image reconstruction is treated distinctly as single task for
the reconstruction model, and not the detection pipeline, by combining the images from
the three test sets.

To simplify the already intricate evaluation setup and to ease reproducibility, we deliber-
ately refrain from more refined transfer learning methods. We merely require detection
models with mAP scores that are moderately high to determine whether a codec can
preserve fine-grained details for EO tasks on satellite imagery. For each architecture,
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we jointly finetune the deeper layers and train separate predictors that achieve around
35-65% mAP@50.

Training & Implementation Details To demonstrate that FOOL can handle detec-
tion tasks without relying on prior information (Section 5.1.3), we do not optimize the
compression model with the training set of the prediction tasks (i.e., DOTA-2, SpaceNet-3,
xView). Instead, we curate other aerial and satellite datasets [Cla23, BVR19, HAL+22,
VEH21, SHB+20, SHVE+21, BS23, RCS+21] that cover region and sensor diversity.
SVBI does not rely on labels, i.e., replacing the curation with any diverse enough dataset
from satellite imagery providers (e.g., Google Earth Engine) should be possible.

We train one separate compression mode for each third-party detector using the shallow
layers as teachers and verify whether the rate-distortion performance is comparable. Then,
we freeze the encoder of the compression model for YOLOv5-L and discard all other
encoders. Lastly, we freeze the remaining encoder’s weights and (re-)train the separate
decoders to demonstrate clients may request inference on variations (YOLOv5-M) or
newer models as they emerge (YOLOv8).

We fix the tile resolution to 512 × 512 during training. We load samples as a video
sequence for FOOL by grouping tiles from the same image in partitioning order with
random transformations to fill any remaining spots. After training, the tensor shape (i.e.,
the number of tiles and the spatial dimensions) may vary for each separate sample. We
use PyTorch [AYH+24], CompressAI [BRFP20], and pre-trained detection models from
Ultralytics [JCQ23]. To ensure reproducibility, we use torchdistill [Mat21]. We use an
Adam optimizer [KB14] with a batch size of 8 and start with an initial learning rate of
1 · 10−3, then gradually lower it to 1 · 10−6 with an exponential scheduler. We first seek a
weight for the rate term in Equation (5.10) that results in lossless prediction with the
lowest (best) bpp. Then, we progressively increase the term weight to evaluate trade-offs
between rate and predictive loss.

Datasets Preparation The train sets for third-party detectors and the train sets for
the compression models are strictly separated. However, we create square tiles for all
datasets by partitioning the images with a configurable spatial dimension and applying
0-padding where necessary. We extract bands from samples corresponding to RGB and
convert them to 8-bit images, as to the best of our knowledge, there are no widespread
open-source foundational models for detection with multispectral data yet. To ease direct
comparisons, we convert the network detection labels of SpaceNet-3 by transforming the
polygonal chains into bounding boxes. Lastly, since there are no publicly available labels
for the xView and SpaceNet test sets, we create a 9:1 split on the train set.

Compression Performance Measures To evaluate how codecs impact downstream
task performance, we measure Predictive Loss as the drop in mean Average Precision
(mAP) by inputting decoded samples. We regard a configuration to result in lossless
prediction if there is less than 1% difference in expected mAP@50. We confirm the
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Table 5.3: Summary of Codec Parameter Distribution

Codec Pars. Total Pars. Encoder Pars. Decoder Shared
FOOL-L 4.97M 1.19M 4.06M 0.28M
FOOL-M 4.33M 0.69M 3.83M 0.16M
FOOL-S 3.91M 0.35M 3.66M 0.08M
SVBI-L 4.99M 1.25M 4.39M 0.65M
SVBI-M 4.35M 0.72M 3.91M 0.29M
SVBI-S 3.95M 0.38M 3.71M 0.16M
FP 7.03M 3.51M 3.51M 0.02M
MSHP 17.56M 14.06M 11.66M 8.15M
JAHP 25.50M 21.99M 19.60M 16.10M
TinyLIC 28.34M 21.23M 19.16M 12.05M

observations from [FRD24] where the initial teacher only negligibly affects compression
performance, and the predictive loss by a codec is comparable across target models (i.e.,
the retained information in shallow layers is similar across YOLO variations). Hence, for
brevity, we aggregate the compression performance for each task separately, taking the
highest predictive loss incurred on a detection model. We train the image reconstruction
model using the same configurations as [LCS+21], and compare it with LIC models using
common measures (PSNR, MS-SSIM, LPIPS [ZIE+18]).

Baselines We consider seminal work for image codecs as baselines with available
open-source weights. Factorized Prior (FP) [BLS17] as a relatively small model without
side information. (Mean-)scale hyperprior (SHP, MSHP) [BMS+18, MBT18] for drawing
comparisons to side information in LIC, and Joint autoregressive and hierarchical priors
(JAHP) [MBT18] that further improves compression performance with an autoregressive
context model. Lastly, TinyLIC [MCJ+24] represents recent work on efficient LIC design
with state-of-the-art rate-distortion performance. Table 5.3 summarizes parameter
distributions between encoder and decoder components from LIC models.

To draw comparisons to existing work on SVBI, we use FrankenSplit [FRD24] without
saliency guidance as the baseline (BSVBI). The encoder consists of stacked residual
blocks (Section 5.2.1), and the decoder is instantiated from a YOLOv5+ blueprint
(C3 blocks [JCQ23]). We scale the capacity of BSVBI by including side information
from LIC (MSHP) and increasing the width and depth to match the various FOOL
configurations. We train FOOL and BSVBI with the same dataset and training parameters
(Section 5.2.3).

Rate Trade-off with Predictive Loss

We report the predictive loss as a percentage point difference using mAP@50 on founda-
tional detection models.
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5. Downlink Bottlenecks in Remote Sensing

Comparison to Image Codecs Figure 5.9 illustrates the trade-off between bpp (left
is better) and predictive loss (top is better) for LIC models on each task separately. We
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Figure 5.9: Compression Performance Image Codecs

primarily focus on how FOOL compares to existing SVBI to draw new insights from
the novel additions and confirm that our results on aerial and satellite imagery datasets
with one-stage detectors are consistent with previous findings on standardized terrestrial
datasets in Chapter 4.

Comparison to Feature Codecs Figure 5.10 contrasts the trade-off between bpp
and predictive loss for FOOL and BSVBI with progressively increasing sizes. The efficacy
of compressing shallow features is best shown by comparing BSVBI and FOOL to MSHP,
as they rely on the same entropy model. The highest quality MSHP model results in
about 3-4% predictive loss for DOTA-2. In contrast, the highest quality BSVBI-S model
has 37x fewer encoder parameters but results in half the bitrate with no predictive loss.
Despite BSVBI demonstrating strong compression performance, FOOL significantly

outperforms BSVBI across all configurations. FOOL-S has a 51% lower bitrate for
configurations with lossless prediction than the comparatively large BSVBI-L. Relative
to the FOOL model with matching capacity (FOOL-L), BSVBI-L has twice the bitrate.

Ablation Study We consider BSVBI an ablation, as FOOL extends BVSBI’s architec-
ture by placing 3D attention layers between the residual blocks and a cross-attention
layer to include context. The auxiliary networks ha and hs (Section 5.2.1) are identical
for FOOL and SVBI, i.e., three stacked residual blocks. Additionally, we perform ablation
studies to assess by-component improvement and summarize the results for lossless
predictions in Table 5.4.
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Figure 5.10: Compression Performance Feature Codecs

Table 5.4: Ablations Comparisons for lossless Prediction

Model DOTA-2 (bpp ↓↓) SpaceNet-3 (bpp ↓↓) xView (bpp ↓↓)
FOOL-L 0.1843 0.1760 0.1822
FOOL-M 0.2110 0.1993 0.2032
FOOL-S 0.2389 0.223 0.2290
BSVBI-L 0.3622 0.3440 0.3452
BSVBI-M 0.3775 0.3605 0.3699
BSVBI-S 0.3889 0.3852 0.3909
NITA-L 0.2209 0.1993 0.2032
NITA-M 0.2287 0.2193 0.2205
NITA-S 0.2433 0.2386 0.2407
NKPC-L 0.2839 0.2712 0.2768
NKPC-M 0.2926 0.2855 0.2883
NKPC-S 0.3116 0.3029 0.3112

The NITA models include the keypoint context without the inter-tile attention (ITA)
layers. Analogous to BSVBI, we replace attention layers with residual blocks and match
corresponding model sizes by increasing the depth and width of NITA models. NKPC-
Ablation drops components for embedding keypoints, i.e., it only includes the IT attention
layers.

The results show that relative to BSVBI, the task-agnostic context component contributes
considerably more to rate reductions than the ITA layers that leverage inter-tile spatial
dependencies. Still, we argue that the NTI-layers fulfill their purpose, to synergize with
the partitioning strategy that maximizes processing throughput (Section 5.2.4).

113



5. Downlink Bottlenecks in Remote Sensing

5.2.4 Image Reconstruction Quality

We aim to demonstrate the feasibility of recovering presentable images from the com-
pressed latent space of shallow features. We average results on DOTA-2, SpaceNet-3, and
xView to reduce the bloat of reporting similar values summarize the results in Table 5.5.

Table 5.5: Comparison Between Recovery and Image Codecs

Model PSNR↑↑ MS-SSIM↑↑ LPIPS↓↓ BPP↓↓ Pred. Loss↓↓
FOOL 36.51 15.43 0.1700 0.1808 -
FOOL-FT 35.56 14.57 0.1480 0.1808 -
FP-HQ 43.22 25.07 0.0896 1.0470 1.500
FP-MQ 35.56 16.55 0.2498 0.3200 7.508
MSHP-HQ 43.90 25.20 0.0841 1.0370 1.711
MSHP-MQ 36.45 16.83 0.2361 0.2787 7.180
JAHP-HQ 43.95 25.17 0.0818 1.0297 1.504
JAHP-MQ 36.61 16.95 0.2303 0.2641 6.397
TinyLIC-HQ 44.52 25.07 0.0683 1.0473 1.602
TinyLIC-MQ 37.42 17.27 0.2102 0.2899 5.499

For transparency, we exclusively select samples from the lower quartile across all measures
to qualitatively showcase the reconstruction. HQ refers to the weights with the highest
available quality, and MQ refers to mid-quality weights that roughly match FOOL in
PSNR. FOOL-FT finetunes the reconstruction model for an additional 2.5 · 105 iterations
using LPIPS [ZIE+18]. Unsurprisingly, the LIC models achieve significantly better scores
across all reconstruction measures (i.e., PSNR, MS-SSIM, and LPIPS). The advantage of
FOOL is that it has a considerably lower bitrate with no predictive loss on tasks for which
it had no prior information. Nonetheless, the results are considerably more interesting
when contrasting FOOL to LIC models with mid-quality weights. Notice how FOOL
matches reconstruction measures at no predictive loss and a 46-77% lower bitrate. Note
that we did not find that the dataset significantly influences rate-distortion performance,
except for a slight reduction in predictive loss (verified by training an FP model on
the curation using the same setup as in [BRFP20]). Compression is a low-level vision
task that generalizes well but may lack domain specificity when applying a standard
rate-distortion reconstruction loss. In other words, the objective is the decisive difference
between the SVBI and the NIC models. To provide some intuition to the LPIPS measure,
we select an image where FOOL-FT achieves considerably lower PSNR than TinyLIC
and contrast the results in Figure 5.11.

Notice that the quality differences are most visible with fine-grained details, i.e., compared
to TinyLic-HQ, TinyLic-MQ has a noticeable blur with some shadows completely missing
in the bottom left. FOOL-FT preserves such details, despite lower PSNR, and this
increase in perceptual quality is reflected in the LPIPS score. Figure 5.12 further
visualizes the potential of reliably recovering fine-grained information from the compressed
representation.
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Figure 5.11: Visual Comparison between FOOL Image Recovery and a State-of-the-Art
LIC model
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Figure 5.12: Showcasing Potential of Recovery from Compressed Features with fine-tuning
for Perceptual Quality using LPIPS

Naturally, it should be possible to fine-tune the TinyLic-MQ to improve perceptual
quality analogous to FOOl-FT. However, TinyLIC is still a significantly costlier model,
with a worse rate and prediction performance. More pressingly, we stress that the
reliability of a restoration model is bound by the available signals in the compressed
latent space. Accordingly, we deliberately avoid generative models that prioritize realism
over structural integrity. Prioritizing realism over reliability defeats the primary purpose
of image restoration, i.e., intervention by human experts in critical EO applications. A
model outperforming experts does not imply that predictions may inexplicably be false.
In particular, where human cost is involved, such as disaster warning or relief [TD22], it
is paramount that experts can trust the codec to not include extrapolated elements in an
image.

We argue that our results adequately underpin the statements in Section 5.1.3 and
Section 5.1.3. In summary, if the salient regions align, compressing for model prediction
requires more information than for human observation. Task specificity determines rate
savings and not an entity’s input interface. Targeting shallow features is minimally
task-specific by relaxing the objective for lossless prediction on all possible tasks to those
valuable for clients.
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System Performance

The following evaluates FOOL’s resource usage and how well it can address the downlink
bottleneck. The methodology resembles how the system aids operators in determining the
correct model size for a target device and estimating the increase in data volume relative
to bent pipes. We do not apply vendor-specific optimization (e.g., TensorRT) to ensure
transparent evaluation and keep the results reasonably platform agnostic. Instead, we
instantiate all models dynamically with half-precision in the native PyTorch environment
(torch 1.14.0 with CUDA 11.4.315). Image codecs are omitted for conciseness, as
even the state-of-the-art for efficient LIC design still runs considerably slower than the
largest SVBI models.

Processing Throughput and Transfer Cost Reduction We manually step through
parts of the profiler (Section 5.2.2) for evaluation and to show how it estimates gains
in downlinkable data volume. Consider the results from measuring the friction between
model sizes and input dimensions on processing throughput in Figure 5.13. Processing
throughput grows with frequency and decreases with model size, showing compute-bound
behavior. Each device has a batch-size-dependent optimum around 6, reflecting GPU
utilization vs. memory constraints. The Jetson Orin achieves the highest throughput,
TX2 the lowest, with consistent scaling across all models. The drops between even and
uneven batch sizes reflect discrete transitions in GPU kernel scheduling efficiency, for
example, due to occupancy saturation boundaries. Notably, the processing throughput
gain of FOOL-S over FOOL-M is significantly higher than FOOL-M over FOOL-L, despite
FOOL-M having a comparable size difference to both models.

Table 5.6 summarizes the configuration that maximizes profiler selection by TCR/s
for all models on each device separately. Since bitrate variance is low between DOTA-
2, SpaceNet-3, and xView, we average the bpp (Section 5.2.3) on the validation sets.
The bold Model value indicates the adequate size of each model family on a device,
i.e., the model we will deploy to measure data volume downlinking in the following
experiments. The bold TCR/s marks the highest overall value for a device, i.e., we can
expect applying FOOL over BSVBI to result in considerably more downlinkable data on
all devices. However, due to keypoint extraction and the ITA layers, FOOL’s processing
throughput is slower than that of BVSBI. The overhead is particularly punishing for
the most constrained device (i.e., the previous-generation TX2), where BSVBI-M has
slightly higher TCR/s than FOOL-M despite the latter’s significantly better compression
performance. Moreover, the profiler selects FOOL-S over FOOL-M/-L for the low-end
current generation Orin Nano and high-end last-gen past generation NX. Conversely, the
profiler decides on the mid-sized model for BSVBI across all devices despite FOOL’s
compression performance scaling better.

Still, we argue that the results accentuate the findings from Section 5.2.3. Notice the
contrast between TX2 and Nano Orin. One hardware generation was sufficient for the
lowest-end device in the Jetson lineup to see a threefold increase in TCR/s on FOOL-L
over the last-generation midrange device. Thus, it is reasonable to claim that FOOL
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Figure 5.13: Processing Throughput by Model Size

can (i) adequately leverage the current rapid progression of energy-efficient hardware
improvement (i.e., with FOOL-M, L, and potentially larger variants) and (ii) is flexible
enough to be deployed on more constrained devices using the small FOOL-S that still
achieve substantial rate reduction.

Model Inference with Concurrent Task Execution The following examines the
claim in Section 5.2.2, i.e., whether FOOL’s compression pipeline can offset the runtime
overhead of entropy coding. In other words, we evaluate whether the interference between
concurrent GPU and CPU-bound processes is negligible enough. We assume the worst
case for interference, i.e., the CPU-bound processes run continuously and concurrently by
keeping them busy from an additional data stream when necessary. As all three devices
have multicore CPUs and a dedicated GPU, we report results on the Nano Orin for
brevity.
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Table 5.6: Throughput Comparison Between Feature Codecs

Device Model Spatial Dimensions Batch Size TCR/s ↑↑
FOOL-L 600x600 4 7.4794 · 108

FOOL-M 600x600 8 7.6694 · 108Orin Nano
FOOL-S 600x600 8 1.3386 · 109

FOOL-L 600x600 8 7.5456 · 108

FOOL-M 600x600 6 8.1664 · 108NX
FOOL-S 600x600 8 1.3422 · 109

FOOL-L 600x600 8 2.3696 · 108

FOOL-M 600x600 8 2.8067 · 108TX2
FOOL-S 600x600 6 4.0751 · 108

BSVBI-L 600x600 8 6.1419 · 108

BSVBI-M 600x600 5 7.2504 · 108Orin Nano
BSVBI-S 550x550 7 6.9919 · 109

BSVBI-L 600x600 8 6.0007 · 108

BSVBI-M 600x600 6 7.3717 · 108NX
BSVBI-S 600x600 6 7.0720 · 109

BSVBI-L 600x600 7 1.7861 · 108

BSVBI-M 600x600 6 2.9978 · 108TX2
BSVBI-S 600x600 7 2.6818 · 108

Table 5.7: Concurrent Entropy Coding and Effect on TCR/s

Model TCR/s TCR/s dec. File Size (MB) File/s rANS (MB/s)
FOOL-L 7.26 · 108 2.94% 0.616 29 37.2
FOOL-M 7.57 · 108 1.28% 0.462 30 38.3
FOOL-S 1.32 · 109 1.06% 0.383 52 38.8
BSVBI-L 5.96 · 108 2.88% 0.822 37 37.6
BSVBI-M 7.15 · 108 1.37% 0.617 42 39.6
BSVBI-S 6.91 · 108 1.28% 0.437 58 40.1

Table 5.7 summarizes the results from running the entire compression pipeline with
concurrent task execution using the configurations that maximize TCR/s from Table 5.6.
The bold values in the TCR/s dec. column indicates the size with the highest decrease.
A file includes all model artifacts output by the neural codec’s ANN components for
a single tile, i.e., the pipeline still needs to entropy code them to match the bpp in
TCR/s calculations. File size refers to the storage requirements per tile of the encoder
output tensors, i.e., the data volume the rANS process encodes. We compute file size by
a worst-case upper bound by the encoder output tensor dimensionality (Section 5.2.1)
without serialization formats that could exploit the sparsity of ŷ and ẑ. There are
two essential findings from the results. First, the rANS process can consume tasks
considerably faster than the inference process can produce them, i.e., there is no risk of
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backpressure within the pipeline. Second, there is only a minimal percentage decrease in
TCR/s across all devices and models relative to sequential execution. Hence, we argue
that the pipeline successfully offsets the runtime overhead as claimed in Section 5.2.2
even without relying on a precomputed lookup table (e.g., tANS in ZSTD [CK18]). The
results are unsurprising when viewing the CPU and GPU load of ANN inference without
CPU-bound concurrent tasks in Figure 5.14.
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Figure 5.14: CPU (red) and GPU (blue) Usage of Encoder Network

Since inference is GPU-bound, CPU usage is low even when the GPU is under maximal
load. Contrast this with the CPU and GPU usage in Figure 5.15 where we moni-
tor [RRP+22] usage while running the entire pipeline with the two concurrent processes.
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Figure 5.15: CPU (red) and GPU (blue) Usage of Concurrent Pipeline

If the CPU-bound processing task were to interfere with the ANN execution, resource
usage should reveal frequent drops in GPU load. Comparing FOOL-L to S and M reveals
some dependency between ANN size and CPU usage. For FOOL-L, two discernible drops
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in GPU usage suggest some interference, which may explain the 2.9% decrease in TCR/s
for FOOL-L and BSVBI-L. In contrast, there is no noticeable pattern difference in GPU
load between Figure 5.15 and Figure 5.14 for S and M variants, explaining the negligible
1-1.5% TCR/s drop.

Downlinkable Data Volume We now compare how methods can alleviate the down-
link bottleneck using the traces from previous experiments. Figure 5.16 visualizes the
transferable volume per downlink pass.
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Figure 5.16: Downlinkable Data Volumes by Link

Notice the logarithmic scale, i.e., FOOL improves downlinking using bent pipes by over
two orders of magnitude without relying on prior information on the downstream tasks or
crude filtering methods. For example, given Maxar’s WorldView-3 conditions [CCA+21],
it would be possible to downlink roughly 9TB of sensor data per pass before reaching
downlink saturation. As a comparison, the state-of-the-art filtering method in [DCC+23]
reports a 3× improvement based on a definition of value. Note that to provide a realistic
presentation of the opportunities SVBI provides, we assume that a nanosatellite processes
tiles until reaching a downlink segment. Moreover, we disregard the “computational
deadline”, i.e., it can process all the data before reaching a ground segment. This is
reasonable since there should always be enough data to process. If not produced by a
single sensor, constellations may designate certain satellites as compression nodes using
reliable, high-capacity local communication channels [Mit20]. Further, it is inferable that
even the low-end current-generation Orin Nano without any vendor-specific optimization
would barely miss the computational deadline.

Energy Consumption and Savings The following investigates the energy usage of
the selected model for each device. As the GPU and CPU usage patterns are highly
similar, we measure by the time it takes until a method can double the downlinkable
data. For example, if only downlinking 40 GB is possible with the unprocessed data,
then we measure energy cost until the encoded size corresponds to 80 GB of raw captures.
Figure 5.17 summarizes the results.

As expected, processing on TX2 requires more energy than on NX and Orin Nano as it is
slower. Somewhat interesting is that the NX consumes more energy than the Orin Nano.
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Figure 5.17: Energy Cost of Compression Pipelines

As they execute the same models with comparable processing throughput, the results
suggest that the newer Jetson lineup is more energy-efficient. Lastly, we measure savings
from reduced transmission time, arguably an often undervalued advantage of compression.
Admittedly, satellites will downlink as bandwidth permits, i.e., the transmission energy
cost does not depend on the codec performance when there is saturation. Nonetheless,
to intuitively show the amount of energy large volumes might require, we contrast with
bent pipes in Figure 5.18.
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Figure 5.18: Potential Energy Savings from Transmission

Given the link conditions, we measure the difference in energy cost between transmitting
until saturation and transmitting the corresponding raw volume from Figure 5.16.

5.3 Summary

This chapter introduced a novel compression method that addresses the downlink bot-
tleneck in LEO without relying on prior knowledge of downstream tasks. A rigorous
evaluation showed that FOOL increases data volume with advancements that, to the
best of our knowledge, are unprecedented. The rate reductions are primarily from the
task-agnostic context, focusing on low-level features. Additionally, the ITA layers further
improve compression performance with an overhead that does not outweigh the processing
throughput gains from batch parallelization.
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A remaining limitation is not handling cases with insufficient bandwidth to downlink
all processed data. In such situations, satellites must discard all remaining tiles after
passing the downlink segment. Since tiles are stored as compressed latents, an informed
method may quickly decide ad hoc which tiles to downlink according to how reliable they
may be recovered on the ground. The intuition is to rank tiles by their uncertainty, given
other tiles. We did not pursue the research due to a lack of resources for implementing
and training large generative models for multispectral satellite imagery. However, due to
a recent publication of a foundational model for such modalities with openly accessible
weights [JYB+25], we plan to revisit the direction.
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CHAPTER 6
Coding Efficient Constructions for

Statistical Summaries

This chapter concerns handling data volume generated by monitoring services. While the
root problem it addresses is identical to the previous two chapters, the modality requires
a different methodology. The inputs are univariate data streams that must be processed
within a single pass due to memory limitations and provide worst-case guarantees on
arbitrary sources.

6.1 Monitoring at Scale

Statistical summaries of data distributions are a fundamental building block in modern
analytics systems [CY20]. Quantile sketches are a principled approach to statistical
summaries, offering mathematically sound guarantees on approximation error given strict
bounds on memory consumption [GK16, WLYC13]. While the research literature on
quantile sketches has extensively focused on minimizing the unserialized in-memory
representation size, relatively little attention has been paid to their encoding. Sketches
rarely remain local. They are transmitted repeatedly in massively distributed systems
and are persisted on disk to enable fast offline analytics [TMR20].

Current approaches to sketch optimization implicitly assume that minimizing memory
usage implies improved coding efficiency [CV20]. However, the assumption breaks down
when multiple valid representations that are functionally equivalent for query purposes
but differ significantly in their compressibility. The difficulty lies in identifying trans-
formations that preserve the mathematical guarantees of the original algorithm. We
address this optimization gap by extending the comparison-based computational model
to accommodate codeword length minimization as an explicit objective. Our approach
maintains strict compatibility with existing systems through receiver-side transparency,

123



6. Coding Efficient Constructions for Statistical Summaries

ensuring optimized representations remain fully interoperable with legacy infrastruc-
ture. The key insight is that online construction algorithms produce representations
with exploitable redundancy patterns that can be eliminated without compromising
approximation guarantees and modifying the underlying summarization logic. This
work does not progress the state-of-the-art in quantile sketches by finding new worst-
or expected-case asymptotic lower bounds. Instead, it introduces a formal framework
for augmenting existing sketch algorithms to improve their coding efficiencies. We first
introduce measures to quantify redundancy and establish theoretical bounds on achievable
efficiency gains. Then, we develop augmentation procedures that transform existing
sketch instances into codeword-optimal representations while preserving their validity.
Lastly, we extend the method to jointly optimize sketches when encoded in batches by
exploiting inter-representation correlations post-ingestion.

We complement the theoretical analysis by empirically demonstrating the efficacy of
our approach, with consistent gains for single-instance encoding. Additionally, the joint
optimization further increases efficiency according to the input-stream characteristics.
These gains are achieved without increasing their asymptotic runtime complexity and
require no receiver-side changes. A prototype implementation and the complete evaluation
code are available in a public repository1.

The work primarily focuses on establishing the necessary theoretical framework, yet the
introduced methods have direct practical implications, as they readily apply to existing
systems. Hence, we occasionally break the narration to include summaries in colored
boxes, making the work accessible to a broader audience, particularly readers with an
engineering background.

Practitioners may only read the boxed text before proceeding to the empirical analysis
to determine whether the proposed method has any value for their system. The
summaries lack technical precision but convey the minimally necessary information to
follow the intuition of the motivation, guarantees, and algorithms.

6.1.1 Related Work

Sketches are insert-only data structures that represent a static dataset summary and
may be extended to support dynamic representations with bounded deletions [ZMW+21].
Platforms may pre-compute sketches for offline analytics or real-time monitoring in
time-series databases and log stores [CS25].

Study on quantile sketches is commonly classified by the nature of their guarantees and
assumptions on the input [TMR20]. Guarantees are strong when the error is bound
in quantile space and require no assumptions on the input stream. The error bound
may be unbiased [KLL16, GK01, ACH+13] or biased towards extreme quantiles at one
tail of the empirical distribution [CKL+21, GSWY25]. No or weak guarantees are a

1https://github.com/rezafuru/Codeword-Optimal-Quantile-Approximation
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blanket term for sketches that assume input properties and compromise on whether,
what, or where the error is bound [MRL19, GDT+18, Dun21]. Randomized sketch
algorithms have lower theoretical bounds, but introduce a small failure probability
δ [CV20]. Deterministic algorithms can match the bound of randomized algorithms while
providing guarantees in rank space, but only when assuming a known universe of bounded
size [GSW24, SBAS04, ŁTV25].

Our approach shares similarities to information-theoretic work on cardinality estimation,
which shows compressing mergeable sketches to their Shannon-entropy yields (near-
optimal) space/error trade-off [Lan17, PW21]. However, quantile sketches must preserve
the total key order. A lexicographically minimal summary has at most ⌈1/2ε⌉ keys and is
trivially optimal, i.e., without additional priors, we may not further reduce the entropy of
a summary with a minimal number of words. The challenge is to exploit the redundancy
from any further source of words by finding a representation that preserves the syntax
and the order at minimal entropy.

6.1.2 Background & Problem Definition

The work aims to reduce data volume by finding representations more amenable to the
input of generically available compression algorithms. Accordingly, the following extends
the formal computational model to accommodate the problem definition that additionally
minimizes the encoded size of the statistical summary while maintaining compatibility
with existing systems. Table 6.1 lists the introduced symbols. Function parameters are
omitted when clear from context.

Table 6.1: Notations

Symbol Description
U Data Universe
A Sketch Algorithm
QA Query Routine of A
MA Merge Routine of A
RA Representation Space of A
VA Valid Representations of A
⇔∗ Semantic Equivalence
W Wordsize function
B Worst-Case Bound
f Error Bound Function
C Encoding Function
ℓ Codeword Length Function
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Communication and Computational Model

All changes necessary to benefit from the reported gains in the evaluation are completely
client-sided and only require one additional step in the serialization logic. A server
may instantiate the sketch to serve queries without changes to the deserialization logic.

We refer to procedures that maintain the bound on memory requirements as summariza-
tion and reserve compression as a keyword for the conventional objective that reduces
the entropy of a latent variable under a shared prior between the sender and receiver.
The communication model assumes separate source and channel coding where a sender
transmits values and structural information of a quantile summary. The sender and
receiver only share knowledge on the syntax of the summary structure and established
lossless compression algorithms.

{0,1}

Augmented
Construction

Downstream
Operations

Base Serialization

Deserialization

Codec Transform

Codec Inverse
Transform

Shared Knowledge

Entropy Decoder

Entropy Coder

Updated Serialization

Figure 6.1: Communication model with transparent Server-side modifications.

Figure 6.1 illustrates a high-level view of the communication model. The priors shared
between the sender and receiver are the structural information necessary for (De)-
Serialization and the codec, i.e., the syntax to instanciate queriable summaries. Op-
tionally, they may share a more powerful, but widely available, codecs that introduce
additional shared priors and apply invertible (lossless) transforms, such as the Lem-
pel–Ziv–Markov chain Algorithm (LZMA). For the theoretical analysis, we only consider
entropy (de)coding, using Arithmetic Coding (AC) [WNC87], as it can compress the state
of any stochastic process down to the Shannon limit with an expected 2 bits overhead.
A sender-side comparison-based algorithm constructs a summary from an input stream
with elements drawn from a totally ordered universe without further information. The
algorithm is only permitted to compare and test for equality on observed elements, i.e.,
mapping elements to values not observed in a stream, such as replacing a group of
elements with an average representative, is not permissible. The sender may modify the
algorithm. However, the modification must provide equivalent guarantees and cannot
change the representation syntax. The procedures for deserializing and querying must be
identical to summaries constructed from the unmodified algorithm.

Streaming Algorithms for Quantile Approximation

Quantile sketches maintain approximate order statistics of a data stream by keeping
a compressed, weighted set of representative elements. We consider the definition of
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6.1. Monitoring at Scale

mergeability by Agarwal et al [ACH+13]. A sketch is mergeable if summaries of disjoint
data streams can be combined to produce a result that is equivalent in accuracy guarantees
to constructing a sketch over the union of the streams. A sketch is fully mergeable if
repeated or hierarchical merging does not decrease the approximation accuracy beyond
the error bounds of a sketch constructed directly over the union of the data streams.
The deterministic Greenwald-Khanna (GK) sketch [GK01] keeps a sorted list of tuples
that associate weight and uncertainty values with each recorded observation. On every
insertion, a new tuple is instantiated and a summarization routine periodically combines
adjacent tuples whose total sum of weight and uncertainty stays below 2εn. The GK
sketch is not known to be fully mergeable.

The ACHPWY sketch is a fully mergeable randomized quantile summary that achieves
O((1/ε) log3/2(1/ε)) space [ACH+13]. The algorithm organizes the stream into a hierarchy
of compactors, where each compactor at level h holds elements with equal weight
wh = 2h−1. A compactor stores up to kh elements. When it becomes full, it performs
a compaction step: the items are sorted, and an unbiased coin determines whether to
retain the even or odd positions. The discarded items are removed, and the remaining
elements have their weights doubled to 2wh, which effectively promotes them to the next
level. Figure 6.2 illustrates this procedure.

0 1 2 3 4 5

0 2

3

4

1 5

Promote
Odd Indices

Promote
Even Indices

R(1) R(2) R(4) R(5)

Compactor[h]
weight = 

Compactor[h+1]

Figure 6.2: Compaction procedure.

Each compaction perturbs the rank of any query value by at most ±wh, and after mh

such operations per level, the cumulative error remains O(εn) with high probability. The
merge routine concatenates compactors of two instances, level by level, and applies the
compaction routine. The merged sketch has the same asymptotic guarantees as one
built directly on the union of the data streams. The expected number of compactors is
O(log(1/ε)), giving a total space complexity of O((1/ε) log3/2(1/ε)) and constant-time
updates. Karnin, Lang, and Liberty (KLL) improve the ACHPWY design by allowing
geometrically decreasing compactor capacities, which concentrate most of the memory at
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6. Coding Efficient Constructions for Statistical Summaries

lower levels while maintaining unbiasedness [KLL16, ILL+22]. Figure 6.3 illustrates the
geometric capacity scaling of KLL.

Weight

C
ap
ac
ity

Height

Figure 6.3: Geometric capacity scaling of KLL.

Let kH denote the capacity of the topmost compactor and H the number of levels.
The algorithm enforces kh ≥ kcH−h, c ∈ (0.5, 1), so the compactor capacities shrink
exponentially with level. When a level exceeds its capacity, it performs the same random
even-or-odd compaction and promotes the retained elements with doubled weights. This
geometric scaling ensures that the lower levels, which handle lighter elements, compact
more aggressively, while the upper levels maintain higher precision. The refinement
removes the redundant logarithmic factor in the space bound of ACHPWY. The expected
number of retained elements becomes (O((1/ε)

√︁
log(1/δ))) for single-quantile estimation

with failure probability (δ), and (O((1/ε) log log(1/δ))) for the all-quantiles case. The
sketch is fully mergeable because each level’s buffer corresponds exactly to that produced
by running the algorithm on the concatenated stream. Conceptually, the ACHPWY
sketch can be viewed as a merge-and-reduce hierarchy with uniform compactor capacities.
The KLL sketch replaces this uniform design with a geometrically weighted hierarchy
that smoothly transitions between randomized sampling at the bottom and deterministic
Greenwald-Khanna behavior at the top. Both maintain a sorted sequence of weighted
representatives whose rank errors accumulate additively and remain unbiased. Our
framework builds directly on this property by introducing transformations that minimize
the encoded representation length while preserving the syntax and mergeability of the
original sketch.

Representations for Valid Quantile Summaries

Let U be a totally ordered universe and π = (x1, x2, . . . , xn) ∈ Un a data stream. For
any u ∈ U , let R(u;π) = |{i ∈ 1, . . . , n}|xi ≤ u| be the rank of u in stream π. Let A be
a comparison-based quantile sketch associated with a representation space RA, query
routine QA , and a merge routine MA. The representation determines the syntax of a
sketch, i.e., the logic to create servable instances. Each representation is described by
key-weight tuples r = (xi, wi), xi ∈ U , wi ∈ N. The keys are values observed from the
stream. We refer to the multiset of values a representation stores as words, and the set
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6.2. Representational Redundancy

of distinct keys as symbols. A query routine Q : RA × U → N takes a representation and
a key Q(r, u) and returns an estimate of R(u;π). For an error-bound function f(π, ε, u),
we refer to a representation r ∈ RA as f(π, ε, u)-valid if:

∃QA, ∀u ∈ U : Pr[|Q(r, u)−R(u;π)| > f(ε, π, u)] < δ

where δ is the failure probability. We describe the set of all valid representations for a
given stream and error bound as

VA(π, ε) := {r : ∃QA, ∀u ∈ U , r is f(π, ε, u)-valid}

We refer to two representations as semantically equivalent r1 ⇔∗ r2 when r1, r2 ∈ VA(π, ε).
When representations are semantically equivalent, they may be used interchangeably to
serve queries for a particular stream at the configured error bound. A merge routine
MA : VA(π, ε)×VA(π, ε)→ VA(πi⊕πj , ε) takes as input valid representations of streams
πi, πj and outputs a valid representation for the combined stream without any input
order assumption πi ⊕ πj . The construction algorithm of a sketch takes as input a pair
(π, ε) and outputs a representation r ∈ A(π, ε). The representation is readily queriable
by QA and is f−valid, so A(π, ε) ⊂ VA(π, ε) ⊂ RA.

Measuring and Encoding Representations

Let W : RA → N measure the size of a representation in words, subject to an asymptotic
worst-case bound W (Z) ≤ B(π, ε). Let C : RS → {0, 1}∗ be a universal, prefix-free
lossless encoding that maps representations to a codeword. We measure the codeword
length of a representation ℓ : RS → N. The codeword of a representation r is optimal if
its codeword length is minimal among all valid representations in VA(π, ε) with a fixed
number of words W (r), We associate with every pair (π, ε) a lexicographically minimal
(LM) summary produced by an oracle O. If multiple word-optimal summaries exist for
an input stream, the oracle outputs are equiprobable and are therefore all codeword
optimal. We refer to the difference between ℓ(A) and ℓ(O) representational redundancy
and distinguish between intra- and inter-representation redundancy. The latter concerns
instances sequentially created out of chunks of a single stream without assumptions on
chunk size or distribution drift. For example, a system may provide real-time monitoring
at high temporal resolution by creating one instance per minute.

6.2 Representational Redundancy

6.2.1 Intra-Representation Redundancy

Imagine you are purchasing ingredients at a market for a dish. Since keeping stock
of diverse inventories is more expensive, a tax scales the base price of an item by the
number of distinct items. While you may be unable to reduce the volume you must
purchase, there may be a possibility to substitute some ingredients by increasing the
frequency of others without ruining the dish.
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6. Coding Efficient Constructions for Statistical Summaries

For the remainder of this section, consider a running example where we create streams
by incrementally drifting from a type that concentrates all probability mass on a single
symbol to the type that never repeats a symbol within t = 10 steps. Figure 6.4 illustrates
the concept for π0, . . . π9.

Figure 6.4: Stream types πi with incremental drift and uniform size.

The entropy increases from 0 (single symbol) to log2 |π| (all unique). Notice that for
step indices, i, j with i < j πi always majorizes πj . An online construction A(πi, ε) may
remove symbols in the summary as it ingests a stream. Still, any construction algorithm
must always maintain at least as many symbols as the LM summary O(πi, ε). The
stream that emits a single symbol has zero entropy, and O(π0, ε) consists of a single
word. The codeword length for A(π0, ε), the online algorithm is trivially optimal with
uniform codeword length, as any valid summary will contain a single symbol, regardless
of W (A(π0, ε)). For the stream with maximal entropy πt (never repeating a symbol), the
LM summary has exactly ⌈(1/2ε)⌉ symbols. In contrast, the online summary must have
at least ⌈(1/2ε)⌉ symbols. Every other stream type will result in summaries where the
minimal number of required symbols is between 1 and ⌈(1/2ε)⌉. Hence, two sources drive
the intra-representation redundancy: (I) increased codeword length from larger messages,
and (II) the cost per word is directly proportional to W (A)

W (O) , regardless of whether they
are apparent in an asymptotic analysis using Bachmann-Landau notation.

Figure 6.5 demonstrates the relationship between words, symbols, and codeword length,
as we synthesize streams each with 215 samples from maximal (lowest entropy) to minimal
skew (highest entropy), comparing an LM summary with a KLL [KLL16] construction.
We use arithmetic coding with a simple adaptive entropy model. Section 6.4 details
the experiment setup. The construction algorithm assumes the worst-case uncertainty
by design, so the number of words only scales with the target error bound. Notice
that the number of symbols perfectly matches the number of words in the stream type
with maximal entropy. The message length and the entropy rate (the expected cost per
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(a) Measuring Symbols as the sum of all Keys in a Summary
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(b) Measuring Codewords as the bitstring size output by Arithmetic Coding

Figure 6.5: Comparing KLL scaling (Top: Symbols, Bottom: Codeword length) of stream
type against number of words.

word) determine the codeword length, so we can precisely quantify the representational
redundancy. Notice that as a stream becomes less skewed, we are paying twice for every
additional word, i.e., for increasing the message size, and by increasing the cost per
element. Since we are sampling from a possibly unbounded universe, the number of
redundant symbols scales virtually one-to-one to the factor of redundant words that
an online summary has over an LM summary, unless the source distribution is highly
skewed.

The following shows how to quantify the redundancy between an LM and an arbitrary
summary according to the number of symbols.

Lemma 1 (Codeword Length Scaling). Let m := |O| ∈
[︁
1, ⌈1/2ε⌉

]︁
as the number of

words in the lexicographically minimal summary output by an oracle and k ≥ 1 the word
factor realized by an online algorithm, and define the intra-representation redundancy of
a single representation as ℓ∆(·, ·, ·) = ℓ(A)− ℓ(O) Assume the km−m additional words
are all distinct. Then, the increase in expected code-word length is

∆ℓ(k,m, 1) = m[k log k + (k − 1) logm] (6.1)

Proof. O carries the uniform distribution on m symbols, so ℓ(O) = m logm and A carries
the uniform distribution on km symbols, so ℓ(A) = km log km = km(log k + logm).
Hence, ℓ(A)− ℓ(O) = m[k log k + (k − 1) logm].
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6. Coding Efficient Constructions for Statistical Summaries

We may generalize the redundancy measure by accounting for the exact number of
symbols in an oracle summary according to the stream type.

Corollary 1 (Parametric Redundancy Curve). Let υ denote the number of unique
additional symbols and its ratio to the number of re-occurrences of existing m oracle
symbols (k − 1)m− υ as α ∈ [0, 1] := υ

(k−1)m−υ . Then,

∆ℓ(k,m, α) = m
[︁
(1 + α(k − 1)) log

(︁
1 + α(k − 1)

)︁
+ α(k − 1) logm

]︁ (6.2)

Proof. When the sketch keeps a factor k ≥ 1 more words than the oracle and a fraction
α ∈ [0, 1] of the (k − 1)m extra words introduce new keys, the number of distinct keys in
the sketch is n = m

(︁
1 + α(k − 1)

)︁
. The oracle’s encoding cost is ℓ(O) = m logm because

its m keys are equiprobable. For the sketch, whatever the true frequency vector on its
n keys, entropy is maximized when that vector is uniform; hence ℓ(A) ≤ n logn, with
equality exactly when every retained key appears once (Lemma 1). Substituting n yields
ℓ(Z)− ℓ(O) = n logn−m logm = m[(1 + α(k − 1)) log(1 + α(k − 1)) + α(k − 1) logm],
establishing the claimed redundancy formula.

The derivative of this expression with respect to α is m(k−1) log
(︁
1+α(k−1)

)︁
+ m(k−1)

1+α(k−1) ,
which is strictly positive for k > 1, so the redundancy increases monotonically from 0 at
α = 0 (all duplicates) to m[k log k + (k − 1) logm] at α = 1 (all unique).

6.3 Augmented Construction Algorithms
The augmentation of an existing construction algorithm is framed as a deterministic
post-transform on existing summaries to reflect their intended usage. However, we will
show that such augmentations are completely online without relying on any assumption
on the system, such as when and how instances are finalized, stored, or transmitted.

6.3.1 Syntax- and Order Preserving Transforms

The idea is to frame the problem as augmenting an algorithm with certain constraints.
The constraints are sufficient for server-side transparency, but only mandatory to ensure
that the augmentation matches the guarantees of the base algorithm. A property
that immediately follows is that any algorithm implementing the constraints will only
modify the state when there is a reduction in data volume.

We decouple the construction algorithm of a sketch A from the query and merge routines,
as the receiver does not need to know how the representation is constructed. Since augmen-
tations do not change the in-memory size of a transform, we formulate entropy-minimizing
constructions as ad-hoc applicable transforms. For a b ≥ 1 batch of representations
r(i) ∈ [b], express the values and structural information of a representation rval, rstruct as
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finite multiset of observation and weight pairs r(i) =
{︂(︂
x

(i)
j , w

(i)
j

)︂}︂ki

j=1
, x

(i)
j ∈ U , w

(i)
j > 0

listed in non-decreasing key order x(i)
1 ≤ · · · ≤ x

(i)
ki

.

Definition 2 (Syntax and Order-Preserving Transform). A syntax and order-preserving
transform

T :
b∏︂

i=1
(U × (0,∞))ki −→

b∏︂
i=1

(U × (0,∞))mi

maps each instance r(i) to r′(i) =
{︂(︂
y

(i)
l , w

′(i)
l

)︂}︂mi

l=1
preserving the order y(i)

1 ≤ · · · ≤ y
(i)
mi

subject to the existence of a non-decreasing surjection σ(i) : {1, . . . , ki} ↠ {1, . . . ,mi},
such that y(i)

σ(i)(j) ≥ x
(i)
j and w

′(i)
l =

∑︁
j: σ(i)(j)=l w

(i)
j . The constraints state that a

mapping may (i) move keys rightwards or (ii) merge any contiguous block, but it may
never reorder or introduce new keys.

∑︁
l w

′(i)
l =

∑︁
j w

(i)
j .

Assuming we directly pass a representation to an entropy coder, an essential property
that immediately follows from the definition is that no transform that implements the
constraints can ever result in a longer codeword. Hence, any augmentation will only
manipulate keys when there is a strict increase in expected compression efficiency.

Lemma 2 (Entropy Minimizing Property).

∀r ∈ A(π, ε), H(r) ≥ H(T(r))

Proof. Consider that σ : {1, . . . , k}↠ {1, . . . ,m} is a non-decreasing surjection, so we can
partition the index set into contiguous blocks 1 = a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm = k
such that σ(j) = l⇔ al ≤ j ≤ bl. Define the aggregation matrix as

Aσ =

⎛⎜⎜⎜⎜⎝
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 0
... . . . ...
0 · · · 0 0 · · · 1

⎞⎟⎟⎟⎟⎠ ∈ {0, 1}m×k (6.3)

where (Aσ)lj = 1[al ≤ j ≤ bℓ] = 1[σ(j) = l], i.e., the l-th row contains ones precisely
in the contiguous block al, . . . , bl and zeros elsewhere. Each column therefore contains
exactly one 1,i.e., Aσ is column-stochastic. Applying it to the input weight vector
w = (w1, . . . , wk)⊤ gives wl = Aσw, i.e., wl

l =
∑︁bl

j=al
wj Therefore, wl results from

summing contiguous indexes, operation sums consecutive coordinates, implying wl ≺ w
(weak majorization). Because Shannon entropy is Schur-concave, weak majorization
guarantees H(wl) ≤ H(w).

By definition, for every syntax and order-preserving transform r ∈ A(·, ·) implies T(r) ∈
RS, so a receiver may readily deserialize and instanciate a queriable sketch using T(r).
The following introduces a procedure for arbitrary syntax and order-preserving transforms
to certify transforms where r ∈ A(π, ε) implies validity T(r) ∈ VA(π, ε).
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6. Coding Efficient Constructions for Statistical Summaries

6.3.2 Verification Certificates
With certificates, the constraints are now sufficient to ensure that the guarantees of
the base algorithm are met.

The mechanism of f(π, ε, u)-validity depends on the properties of the error bound function
f . For sketch types with strong guarantees, the error bound function is either unbiased
or biased.

Verification Certificate for the Additive Error Bounds

The additive error bound f(π, ε, u) = εn is unbiased toward any particular rank and
treats all query positions uniformly for error calculation. The following theorem shows
how a transform (Definition 2) can maintain the validity of a representation.

Theorem 1 (Additive Error Certificate).

∀p ∈ C (r, r′) : |Q(r, p)−Q(r′, p)| ≤ εn
⇒ ∀u ∈ U : |Q(r, u)−Q(r′, u)| ≤ εn

Proof. Q(·, ·) is a monotonously increasing step function that only changes value at the
points {z1, z2, . . . , zk}. Therefore, Q(r, u) and Q(r′, q) are left-continuous step functions
with discontinuities in x1, . . . , xk, y1, . . . , yk. Set F (q) := Q(r, q) − Q(r′, q) as the rank
difference step function. The real line decomposes into open intervals I0 = (−∞, y1), I1 =
(y1, y1], I2 = (y1, y2), . . . , I2k = (yk,∞). Since there are no y inside (yj , yj+1), Q(r′, q)
is constant there. Only xi strictly between yj and yj+1 affect Q(r, u). Each such xi

increases Q(r, u) by wi > 0 exactly once Hence, F is a piecewise-constant, non-decreasing
function on I2j and attains its maximum magnitude at the right endpoint y−

j+1 ∈ C (r, r′),
such that F is constant on each even-indexed I2j (i). At q = yj , the function Q(r′, q)
jumps by wj , while Q(r, u) may or may not jump. So F can change sign or shrink, but
its value is directly probed at yj ∈ C (r, r′). Therefore, F is checked at every odd-indexed
I2j−1 Now assume q lies in an even interval I2j = (yj , yj+1). By (i) and the initial
hypothesis, |F (q)| ≤ max

{︂
|F (yj)|, |F (y−

j+1)|
}︂
≤ εn. Lastly, Let q lie in an even interval

I2j = (yj , yj+1). By (ii) and the initial hypothesis, if q = yi, the bound again holds.
Hence |F (q)| ≤ εn for all q ∈ U .

Corollary 2 (C (r, r′) is minimal). No strict subset of C (r, r′) exists. Hence, no set with
fewer than 2k+1 points can certify the εn bound for every pair (r, r′).

Proof. Fix weights w1 = · · · = wk−1 = δ, wk = (ε+ δ)n with δ > 0 small. Let xi = i and
relocate only xk, setting yk = xk + η for some tiny η > 0; keep yi = xi for i < k. Then,
Q(r, u) − Q(r′, q) = wk > (ε + δ)n while Q(r, p) = Q(r′, q) ∀p /∈ (y−

k , yk]. So omitting
either yk or y−

k from the probe set allows an error > εn.
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Definition 3 (Unbiased Quantiles Critical Point Set). Let f : R ↦→ R be any function
and f(y−) := limg→y− f(q) the one-sided (left) limit for arbitrary point q ∈ U . For a
representation r and a syntax and order-preserving transform T with r′ = T(r) define the
critical point set for the unbiased quantile problem as

C (r, r′) := {y−
i |1 ≤ i ≤ k} ∪ {yi|i ≤ i ≤ k} ∪ {∞}.

While this work focuses on the unbiased quantile problem, the following introduces the
equivalent of C for the biased variant.

Verification Certificate for Relative Error Bounds

The relative error bound, f(π, ε, u) = εR(u;π), biases the accuracy guarantee by scaling
it with the rank, resulting in tighter error near one tail of the distribution.

Definition 4 (Biased Quantiles Critical Point Set). For a representation r and a syntax
and order-preserving transform T with r′ = T(r) define the critical point set for the
biased quantile problem as

Crel(r, r′) := {xi|i ≤ i ≤ k} ∪ {yi|i ≤ i ≤ k} ∪ {∞}.

Theorem 2 (Relative Error Certificate).

∀p ∈ Crel(r, r′) :
⃓⃓
Q(r, p)−Q(r′, p)

⃓⃓
≤ εQ(r, p)⇒

∀u ∈ U :
⃓⃓
Q(r, u)−Q(r′, u)

⃓⃓
≤ εQ(r, u)

Proof. Let P = {x1, . . . , xk, y1, . . . , yk} as a multiset and p1 < p2 < · · · < pm (m ≤ 2k) be
the strictly increasing list of its distinct values. Because the rank functionsQ(r, ·), Q(r′, ·) :
U → N are non-decreasing step functions that may change value only at points of P , the
real line decomposes into the half-open intervalsI0 = (−∞, p1), Il = [pl , pl+1) (1 ≤ l <
m), Im = [pm,∞). Inside any fixed Il both the numerator |Q(r, u) −Q(r′, u)| and the
denominator Q(r, u) are constant. Hence, the ratio g(u) = |Q(r,u)−Q(r′,u)|

Q(r,u) is constant on
Il as well. Because the left endpoint pl (or ∞ for Im) belongs to Crel, verifying the bound
g(pl) ≤ ε implies g(u) ≤ ε for every u ∈ Il . The union of the Il covers U , such that the
stated inequality holds universally.

Corollary 3 (Crel is minimal). For general representations with identical weights, no
proper subset of Crel(r, r′) is sufficient to ensure the above inequality.

Proof. Remove any boundary b ∈ P from the set and suppose, w.l.o.g that b = xi for
some i (the case b = yj is symmetric). Construct a new transform r̃′ by shifting the value
xi to xi + ∆ with 0 < ∆≪ 1 while keeping its weight unchanged. The modified sketch
r̃′ agrees with r′ at every remaining test point,. Yet, on the whole interval [b, b + ∆)
we now have Q(r, u) = Q(r, b) and Q(r̃′, u) = Q(r′, b), so |Q(r,u)−Q(r̃′,u)|

Q(r,u) = wi
Q(r,b) > ε for

sufficiently small ∆ that lies entirely inside Il .
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6.3.3 Prefix-Additive Error
A certificate can only verify a representation after modifications. Here, we show that
we may design algorithms that maintain the invariants set by the validity constraint
with capped prefix sum that track accumulating error.

We introduce a prefix-additive error εn that can certify transforms without explicitly
verifying against C (r, r′) repeatedly. For a T, let ∆(x) = Q(r, x) − Q(T(r), x) with
∥∆∥∞ := supx∈U |∆(x)| be the prefix-error function. The following shows that tracking
the prefix error reduces to verifying T against C (r, r′) explicitly.

Theorem 3 (Reduction to C Verification). Assume T maintains an online prefix-error
counter errpref = maxi≤m |

∑︁
j≤iwj | over a totally ordered representation r = (vj , wj)k

j=1
and enforces errpref ≤ ε. Then a constant number of passes ensures ∥∆∥∞ ≤ εn is
equivalent to verification against C (r,T(r)).

Proof. For any key x, the rank of the original representation is the total weight of items
with value v ≤ x. While scanning the representation, the prefix carries the weight
Q(r, v−

i ) =
∑︁

j:vj<vi
wj . By definition T(r) has the same weighted computation, except

with modified values v′
j , such that the same scan at position the rank is Q(T(r), v−

i ) =∑︁
j:v′

j<vi
wj . The difference of the two sums is the net weight shifted left of vi, i.e.,

precisely the running counter errpref(i) = Q(r, v−
i )−Q(T(r), v−

i ) = ∆(v−
i ). By definition,

transforms are only accepted when ∥∆∥∞ ≤ εn. Therefore, errpref = maxi |∆(vi−)| ≥
∥∆∥C∞, and |∆(p)| ≤ εn at every critical point p ∈ C (r, (T(r)) follows immediately.
Therefore, invoking Theorem 1 extends to all u ∈ U . Conversely, suppose C (r,T(r)), but
|∆(v−

j )| > εn. However, because by definition v−
j ∈ C (r,T(r)), such a prefix contradicts

the certificate.

Definition 5 (Augmented Constructions). Denote a C -certified syntax- and order pre-
serving transform T as T . Assume A is an online construction of valid summaries. Then,
we refer to T as an augmentation, and an augmented construction as the composition
AT := T ◦ A.

The remainder of the work assumes the construction algorithm as A = KLL to show
finer-grained properties of an augmented construction KLLT . Starting with how from a
C -certificate, the global rank error is also bound by εn with a negligible constant increase
in failure probability.

Lemma 3 (Global Rank Error Failure Probability). Fix a query value u, and representa-
tions r, r′ = T (r). Denote the respective global rank errors as E(u) = Q(r, u)−R(u;π)
and E′(u) = R(u;π) − Q(r′, u). Let F (u) = Q(r, u) − Q(r′, u) be the local determin-
istic offset where by the properties of T and Theorem 3 |F (u)| ≤ εn. Define the
prefix error ratio ρ∆ := ||F ||∞

εn ∈ [0, 1]. Since Pr[|E(u)] > εn ≤ δ has symmetric parts
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6.3. Augmented Construction Algorithms

Pr[E(u) < −εn] = δ/2 for an augmented KLL construction, the failure probability is

Pr[|E′(u)| > εn] ≤ δ

2 +
(︃
δ

2

)︃(1−ρ∆)2

(6.4)

Proof. For the right tail over-estimates, E′(u) > εn ⇒ E(u) = E′(u) + F (u) > εn.
Hence, Pr[E′(u) > εn] ≤ Pr[E(u) > εn] = δ/2. For the left tail under-estimates
E′(u) < −εn iff E(u) < −(εn − F (u)) =: −θ Since ρ∆ ≤ 1 we have θ = (1 −
ρ∆)εn. The Hoeffding bound for a centered sub-Gaussian gives Pr[E(u) < −θ] ≤
exp(−θ2/2σ2). From σ2 = (εn)2/(2 log(2/δ) and θ = (1−ρ)εn we have Pr[E(u) < −θ] ≤
exp

(︁
−(1− ρ∆)2 log(2/δ)

)︁
=

(︁
δ
2
)︁(1−ρ∆)2

. The union bound yields (6.4).

The following shows the possibility of further ingesting elements from a stream after
applying T .

Corollary 4 (Post-Transform Processing). Consider processing a stream in intervals
π = πt0 ∪ πt1 ∪ . . . πts , where nti = |πt0 ∪ · · · ∪ πti |. Let rt0 be the representation after the
first interval. For t > t0, feed the sketch instance with an unmodified representation of the
remaining items. Then, for every query key x, Pr

[︂
|Q(r′

t, x)−R(πt, x)| > εnt

]︂
≤ 2e−Kε2k,

where k is a constant propotional to (ε, δ) and K > 0 the usual Hoeffding constant.

Proof. For fixed values x, the random error Q(rt, x) − R(πt;x) of an instance r at
time t is

∑︁H(t)
h=1

∑︁mh(t)
i=1 whXh,i, where every Xh,i ∈ {−1, 0,+1}, E[Xh,i] = 0, and∑︁

h,iw
2
h ≤ K,n(t)/k for the usual Hoefding constant K. Invoking Hoeffding imme-

diately gives Pr
[︁
|Q(rt, x) − R(πt;x)| > εnt

]︁
≤ 2e−C′ε2k. A transformed instance

|Q(r, u) − Q(T (r), u)| ≤ εn for u ∈ U , introduces a deterministic (not necessarily
positive) error offset et=0(x). For a t > 0 split the error Q(T (rt), x) − Q(rt, x) into
Q(T (rt), x)−Q(T (r0), x)+∆t=0(x). Since the C -certificate guarantees that Pr[|Q(r, x)+
R(π, x)+∆(x)| ≤ εn] ≥ 1−δ for arbitrary π , the total error is |Q(T (rt), x)−R(x;πt)| ≤
εn0 + ε (nt − n0) = εnt with probability ≥ 1− δ.

Corollary 5 (Chained Transforms). Suppose we track the prefix error incurred by a T
that is executed at the end of intervals t1 < t2 < · · · < ts producing offsets ∆t(x) with
|∆tj (x)| ≤ ε

(︁
ntj − ntj−1

)︁
with (j ≥ 1). Then |Q(T (rt), x)− R(πt, x)| ≤ εnt for every

query x with probability ≥ 1− δ.

Proof. The offsets are deterministic and add linearly, so
⃓⃓⃓∑︁s

j=1 ∆tj (x)
⃓⃓⃓
≤ ε

∑︁s
j=1(ntj −

ntj−1) = εnts . Applying Hoeffding deviation ε(nt − nts) from post-ts updates and the
triangle inequality concludes the proof.

Together Corollary 4 and Corollary 5 imply that an augmentation is itself an online
construction algorithm.
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6. Coding Efficient Constructions for Statistical Summaries

6.3.4 Prefix Bound Operations

Imagine the rank function as a staircase, where a new stair is added in intervals
whenever a value changes. A summary containing the minimal number of points to
ensure at most εn error is a smooth staircase at every segment where a non-minimal
summary would introduce bumps. A prefix sum lets you safely iron out some of the
bumps, reducing the number of distinct keys by increasing the frequency of existing
keys. Since segments are disjoint intervals, we can run separate prefix sums.

Algorithm 1 shows the basic PrefixBoundCollapse (PBC) procedure based on the prefix
error function that a transform may use to find an equivalent representation.

Algorithm 1 PrefixBoundCollapse(C, ε, n)
1: F ← flatten(C) to list of (v, w, l, i)
2: B ← ⌈εn⌉, ∆← 0, L← F [0].v
3: for j = 0 to |F | − 2 do
4: (v1, w1, l1, i1)← F [j], (v2, w2, l2, i2)← F [j + 1]
5: if |∆ + w2| ≤ B then
6: C[l2][i2]← v1, F [j + 1].v ← v1, ∆← ∆ + w2

return C

The flatten operation maps the compactor elements to a flat list of named tuples to
explicitly access the compactor level l and index i. The routine assumes that it is only
ever called after a compaction operation, so vi ≤ vi+1. From Lemma 2 it follows that
PBC may only reduce entropy, and serves as the primitive operation for transforms that
run prefix errors in disjoint segments.

Lemma 4 (Locally Bound Error). Let I = (vs, . . . , ve) be a contiguous segment of a
lexicographically minimal summary, and w(I) =

∑︁e
i=swi ≤ εn. For any query x if x < vs

or x ≥ ve then ∆I(x) = 0 and if vs ≤ x < ve then |I(x)| ≤ w(I) ≤ εn.

Proof. Inside the segment the transform moves every value to an existing symbol e, so
the only items that can change their contribution to the rank at x are those within the
original value in [vs, x] if x ≥ e or [x, e] if x < e. In both cases, the total weight affected
is bound by w(I), i.e., outside the interval, all values either remain ≤ x or > x.

We can now show that any T manipulating keys using the PBC routine within bound
intervals retains mergeability properties using the augmented procedure MAT

.

Lemma 5 (Post-Transform Merges). Assume A to be the fully mergeable KLL variant
with merge procedure MKLL. Let T denote a C -certifiable transform manipulating
keys using the PBC routines. For the AT the augmented construction algorithm there
exists a merge procedure MAT

: VS × VS ↦→ VS with polynomial runtime, such that
for every triple of valid representations r1 = T (z1), r2 = T (z2), r3 = T (z3) with
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6.3. Augmented Construction Algorithms

zi ∼ A(πi, ε) the following properties hold: (I) MAT
(r1, z2) ⇔∗ T (M(z1, z2)) (One-

Sided Mergeability). (II) MAT
(r1, r2) =MAT

(r2, r1) (Commutativity). (III) For any
r1, r2, r3, MAT

(r1,MAT
(r2, r3)) ⇔∗ MAT

(MAT
(r1, r2), r3) (Associativity). Hence,

the augmented algorithm is fully mergeable.

Proof. Define the augmented merge procedure

MAT
(r1, r2) := T (MKLL(KLL(r1),KLL(r2))) .

Describe instanciating KLL with the multiset as z↑
i := KLL(ri). Consider that for every

key-weight pair (v, w) of ri, T has only moved keys to the right and summed weights
of contiguous blocks. No information required by KLL has been discarded. Let z∗ =
M(z↑

1 , z
↑
2) and run the same T again r∗ := T (z∗). All three operations are deterministic

and require only constant left-to-right scans of r1 and r2, needing O(|r1|+ |r2|) = O(k)
runtime. AKLL is fully mergeable, soMKLL(z1, z2)⇔∗ AKLL(π1⊕ π2). From Corollary 4
it follows that r∗ = T (z∗) is a valid summary for π. Consider that instanciating KLL
z1

↑ now uses ri = T (z1) instead of z1. Commutativity directly follows from both MKLL
and T being symmetric in their arguments. From the associativity of the underlying
KLL merge follows:

MT (r1,MT (r2, r3)) = T
(︂
MKLL

(︂
z↑

1 ,MKLL(z↑
2 , z

↑
3)

)︂)︂
= T

(︂
MKLL

(︂
MKLL(z↑

1 , z
↑
2), z↑

3

)︂)︂
= MT (MT (r1, r2), r3).

Therefore, arbitrary merge trees yield equivalent results.

6.3.5 Optimizing Instances Separately

The problem of maximizing allocatable prefix errors reduces to the continuous bin
packing problem. By exploiting the properties of the cost function (Entropy), we can
find an optimal solution in linear time and space.

We refer to a block as a contiguous segment of values that an algorithm collapses to a
single key. Hence, the optimization problem is finding the least number of blocks.

Codeword Optimal Representations

Let B = εn and E(I, j) = minP H(P ) where P partitions (w1, . . . , wj) in to blocks
with boundary E(0, 0) = 0 and E(j, 0) = ∞ for j > 0. Given the sorted weight
vector w = (w1, . . . , wk) we aim to find a partition into exactly W contiguous blocks,
each of weight ≤ B that minimizes H(P ) =

∑︁
I∈P

||I||
n log n

||I|| . Define the expected
codeword length contribution (block cost) as h(x) := x

n log n
x . Since the cost function

h is strictly concave, the edge-cost matrix satisfies the quadrangle inequality (Monge
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6. Coding Efficient Constructions for Statistical Summaries

property [BKR96]). Consider that the recurrence for any contiguous segmentation with
concave per-block cost

dp[j] = min
i<j,

P [j]−P [i]≤B

(dp[i] + h(P [j]− P [i])) (6.5)

is an instance of the concave least-weight subsequence problem [Wil88]. Since the edge-
cost matrix C[i, j] = h(P [j]− P [i]) is a Monge array the quadrangle inequality follows.
Let Eλ(j) = minP ∈Pj(B) (

∑︁
I∈P h(∥I∥))Compute Eλ(j) for j = 1, . . . , k by rolling over

candidate predecessors

Eλ(j) = min
i≤j

Sij≤B

{Eλ(i− 1) + h(Sij)} . (6.6)

Algorithm 2 implements the recurrence that finds the least number of blocks as a single
linear-time scan that dynamically aggregates contiguous ranges whose cumulative weight
remains within the admissible bound.

Algorithm 2 SMA-Pass(P,Γ)
1: Q← [0], cost[0]← 0, blk[0]← 0, par[0]← 0
2: for j = 1 to k do
3: while not Γ(Q[0], j) do
4: pop Q[0]
5: i⋆ ← Q[0], w ← P [j]− P [i⋆]
6: cost[j]← cost[i⋆] + w log P [k]

w
7: blk[j]← blk[i⋆] + 1, par[j]← i⋆

8: while |Q| ≥ 2 and slopei1,i2,j ≥ 0 do
9: pop Q[−1]

10: append j to Q
11: return par

The key idea is that each element represents a prefix sum of weights, and we maintain a
queue of candidate predecessors corresponding to feasible partition boundaries. For every
new prefix, we remove candidates that would violate the weight constraint or cannot yield
a lower cost. Because the block-cost function (entropy) h(x) = x

n log n
x is concave, the

predecessor that minimizes the cost always advances monotonically with the scan index.
This monotonicity allows the algorithm to update the optimal partition state using a
two-ended queue, so each element is inserted and removed at most once. Intuitively, the
procedure merges adjacent prefixes as long as doing so does not exceed the permissible
cumulative error εn. Whenever the bound would be violated, a new block is started.
The resulting sequence of parent indices identifies the least number of contiguous blocks
that jointly minimize the expected codeword length under the admissibility constraint.
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6.3. Augmented Construction Algorithms

Intuitively, the algorithm behaves like a “running aggregator” that greedily fuses nearby
weights while ensuring that the total rank error of every collapsed segment remains within
the prescribed limit.

After the SMA pass, we must simply backtrack to recover the block boundaries and
then collapse the values to their corresponding keys. Algorithm 3 describes the complete
procedure that runs in O(k) and requires O(k) memory.

Algorithm 3 S-CLO(C, ε)
1: n←

∑︁
l,i 2l|C[l]|

2: F, P ←FlattenAndPrefixSum(C)
3: Γ(i, j) : P [j]− P [i] ≤ ⌈εn⌉
4: par←SMA-Pass(P,Γ)
5: C ← back-track S = {(f, e)} from par
6: for (f, e) ∈ S do ▷ collapse blocks
7: r ← ⌊(f + e)/2⌋, v⋆ ← F [r].v
8: for p = f to e do
9: (_,_, l, i)← F [p]; C[l][i]← v⋆

10: return C

Theorem 4 (S-CLO is Codeword Optimal). Let w1, . . . , wk ∈ N denote the flattened
weights, n =

∑︁k
i=1wi, B = ⌈εn⌉, and h(x) = x log2

n
x the Shannon block-cost. For any

contiguous partition P ∈ PB, define the code-word cost as ℓ(P ) =
∑︁

I∈P h(
∑︁

i∈I wi) with
P ∗ = arg minP ∈PB

(ℓ(P )). Algorithm 3 outputs a representation that realizes P ∗. Hence,
it minimizes the expected codeword length among valid syntax- and order-preserving
representations that can be obtained from the original representation.

Proof. Inside a block, all keys are collapsed to a single representative. For an opti-
mal prefix code, the expected length contributed by that block equals h

(︁∑︁
i∈I wi

)︁
=∑︁

i∈I wi log2
∑︁ n∑︁

i∈I
wi

. The recurrence Equation (6.5) with prefix sums P [j] =
∑︁

t≤j wt

computes the global optimum since (I) removing the last block of an optimal partition
leaves an optimal partition of the prefix and (II) h(x) is strictly concave so the edge-cost
matrix C[i, j] = h(P [j]− P [i]) is totally monotone. Algorithm 2 maintains a dequeue
of candidate predecessors and updates dp[j] in O(1), exploiting the Monge property.
Algorithm 3 invokes the Algorithm 2 with the predicate Γ(i, j) : P [j] − P [i] ≤ B to
obtain the parent array that realizes the minima of the recurrence. After, it back-tracks
the parents to recover P ∗ to collapse each block using the corresponding keys. No other
admissible transform can yield a shorter codeword.

6.3.6 Joint Optimization

The idea is to make the representations more compressible by remapping the observed
keys post ingestion. The summaries remain valid for their corresponding chunk.
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6. Coding Efficient Constructions for Statistical Summaries

Encoding with concatenation as a batch strictly generalizes the single instance case,
i.e., we solve a multivariate segmentation problem. The optimization objective is to
minimize the codeword length according to the intra-stream novelty factor αi and the
inter-stream overlap ratio β. Applying S-CLO or Greedy-PBI to representations
separately optimizes only according to αi. Algorithm 4 describes the complete algorithm.

Algorithm 4 J-CLO(C, ε)

1: n←
(︁∑︁

l,i 2l|Cs[l]|
)︁|C|

s=1
2: E ← ⌈ε · n⌉
3: Γ(i, j) : ∀s P [s][j]− P [s][i] ≤ E [s]
4: F ,P ←FlattenAndPrefixSum(C)
5: par←SMA-Segment(P,Γ)
6: backtrack boundaries S = {(f, e)} from par
7: for (f, e) ∈ S do
8: r ← ⌊(f + e)/2⌋, v⋆ ← F [r].v
9: for p = f to e do

10: (_,_, l, i, s)← F [p]; C[s].C[l][i]← v⋆

11: return C

For each candidate segment [s, e] define its weight vector ws,e = (w(1)
s,e , . . . , w

(b)
s,e) with

w
(i)
s,e =

∑︁e
j=sw

(i)
j . A segment is admissible iff w

(i)
s,e ≤ εni for every i. Analogous to the

single instance case, under the worst-case uniform distribution in symbol frequency the
cost of as segment is h(ws,e) = ||ws,e||

N log N
||ws,e|| , i.e., a concave function with l1 weight.

Our goal is to partition the flattened list with minimal total cost. Since h is concave
and the admissibility test is additive and separable by the representations, the Monge
property still holds. The only difference is that the queue Equation (6.6) in now stores
vectors of cumulative weights, so there are still O(1) amortized pops per j. Hence, we
may generalize the single stream Algorithm 3 to the concatenated joint case by first
collecting the keys and passing the predicate Γ(i, j) : ∀s, P [s][j]− P [s][j] ≤ E where E is
the array of error bounds nsε with runtime O(bk) and space O(bk).

6.4 Empirical Analysis

6.4.1 Methodology

For all experiments, we repeat each trial 100 times unless stated otherwise, reporting
aggregated means with standard deviations displayed as error bars. We use double-
precision floating-point numbers to emulate an unbounded universe model. This is
particularly relevant when evaluating whether J-CLO can leverage input stream similarity.
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Reproducibility & Evaluation Framework

All reported results are seamlessly reproducible with minimal effort, as the accompanying
repository organizes configuration files by experiment type2. The evaluation framework
minimizes the number of dependencies to reduce interference on performance from
external factors. One challenge in reporting intuitive results for real-world performance
is selecting and configuring the compression algorithm (e.g., delta coding, precision,
etc.). However, we find few relative performance differences between KLL and S-/J-CLO,
i.e., absolute differences in results vary at comparable scales. Therefore, we use the
LZMA implementation of the Python 3.10 standard library with default configurations.
Additionally, we implement serialization that is not version or programming language-
dependent, using a special symbol for compactor tags. This minimizes reporting absolute
performance differences that may differ considerably due to implementation details.

Datasets

Uniform(0, 1) Normal(0, 1) Exponential(1.0) Pareto(1.5)
Figure 6.6: Common Sources drawn from to Synthesize Streams.

Experiments are categorized into two configuration archetypes according to dataset prop-
erties: (I) Streams sampled from the common Normal, Uniform, Pareto, and Exponential
sources to evaluate single instance encoding (Figure 6.6). (II) Datasets that demonstrate
specific edge cases and behaviors predicted in the theoretical analysis.

We favor synthesized datasets as we can engineer them to cover a wide range of monitoring
patterns and demonstrate the whole range of performance expectations according to types
of empirical distributions. Interested practitioners can find examples in the accompanying
repository demonstrating how to integrate their datasets to determine whether the
reported improvements will hold for their applications.

KLL and Augmentations Implementation

All augmentations are applied to the construction algorithm of the fully mergeable KLL
variant based on the prototype3 while considering the changes and configurations of the
Apache Datasketches implementation4. The asymptotic number of words (i.e., retained
observations) does not scale with stream size, and the precise size varies between ≈2-3k
for tighter error bounds. Accordingly, we consider the spread in the number of words by
sampling streams with sizes in a geometric sequence from 214 to 217 in 25 steps. Except

2https://github.com/rezafuru/Codeword-Optimal-Quantile-Approximation/
config

3https://github.com/edoliberty/streaming-quantiles
4https://datasketches.apache.org/
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6. Coding Efficient Constructions for Statistical Summaries

Table 6.2: KLL Words by Base Capacity

Approx. Error Capacity Mean Words SD Max Words Min Words
0.0018 1600 3111 776 4277 1251
0.0035 800 1640 393 2316 662
0.0068 400 841 199 1193 352
0.0133 200 430 104 608 192
0.0512 50 120 27 166 46
0.1004 25 69 17 99 27

for the experiment that focuses on scaling by stream size, we increase from 214 to 222 in
175 steps. Table 6.2 summarizes the number of words retained in KLL by target bound
and base capacity using the larger sequence.

6.4.2 Performance on Separately Transformed Instances

Intra-Representation Symbol Scaling

The results in Figure 6.7 are from the same experiment as in Section 6.2.1, except that
results are measured on the entire spread of retained elements of a target bound. Streams
are synthesized by incrementally drifting from a maximally skewed (single symbol) to a
perfectly uniform (all unique) type as illustrated in Figure 6.4.
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Figure 6.7: Contrasting redundant symbols scaling between S-CLO and KLL.

The mean symbols scale uniformly across error bounds relative to the oracle. Symbol SD
in KLL increases with input stream uniformity, and at step t = 9, the Symbol and Words
SD are identical. Symbol SD in S-CLO is minimal, even at the tightest error bound.
Comparing how the mean and variance in symbols scale of KLL as we decrease the skew
directly reflects the spread of retained words shown in Table 6.2. Not only does S-CLO
significantly close the gap in symbols, but it is also nearly agnostic towards the number
of words. We emphasize that S-CLO does not promise any new worst-case lower bounds.
The type of input streams at the later steps may have high entropy at the last steps, but
they are straightforward for S-CLO to optimize for.
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Single-Instance Encoding on Common Sources

Figure 6.8 summarizes the results practitioners may expect if their distribution follows
common sources or any interpolated mixture on the full range of error bounds and stream
sizes.
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Figure 6.8: Mean compression ratio on common sources using the large-scale experiment
configuration.

Note that the most dominant parameter is the error bound. The improvement over the
sketch algorithm S-CLO augments is primarily determined by the factors that scale the
number of words over a lexicographically minimal summary. Since the number of words
of KLL does not scale by stream size, it only negligibly affects the performance of S-CLO.
Figure 6.9 aggregates the stream sizes and datasets to show the spread in compression
ratio.
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Figure 6.9: Contrasting relative performance between S-CLO and KLL.

Unsurprisingly, the KLL representations are not compressible (compression ratio ≈ 1),
as the symbol distribution will be (near) uniform even when sampling from skewed
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distributions. S-CLO has a noticeable IQR, as the performance depends on the initial
state of the initial representation before applying the transform. Figure 6.10 explicitly
shows the marginal influence of the input stream distribution and what practitioners
may expect to save on bandwidth or storage in practice.
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Figure 6.10: Absolute data volume reduction of S-CLO.

Raw volume is the serialized (uncompressed) in-memory size, identical for KLL and
S-CLO. Notice that S-CLO alleviates the twofold cost discussed in Section 6.2, as the
compression ratio of S-CLO scales with the target bound and the number of words.
The larger the input data volume, the higher the multiplier, which decreases the output
volume. Note that this is a conservative estimate, as it includes the overhead from LZMA,
which is more suitable for larger file sizes. Practitioners will likely want to consider more
suitable compression algorithms, unless they wish to encode multiple sequentially created
sketches, which we handle in the following.

6.4.3 Performance on Jointly Transformed Instances

The instances are locally available and are jointly encoded. We assume that the input
streams are non-overlapping chunks of a larger stream. The objective of J-CLO (Al-
gorithm 4) is to find representations that remain separate, but minimize the overall
codeword of the concatenated input by considering both intra-and inter-representation
redundancy.

i.i.d samples from a common source

The experiments with i.i.d. streams are identical to those in the single instance evaluation,
except we synthesize the stream with b times the samples, and pass b uniformly sized
chunks as inputs to the construction algorithms. β-compressibility is defined as the ratio
between the sum of separately compressed representations and the size of the compressed
concatenation of those same representations. We will use β-compressibility to measure
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how much of the scaling gains from increasing batch size result from improved coding
efficiency through joint optimization. Figure 6.11 aggregates the stream sizes and dataset
to compare the relationship between the batch size and compression ratio. S-CLO serves
as a baseline that transforms each representation separately.
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Figure 6.11: Contrasting relative performance for jointly optimized instances.

S-CLO and KLL have virtually no gain from compressing summaries as a batch. J-CLO
jointly optimizes the summaries by exploiting intra- and inter-summary redundancy.
At batch size 1, J-CLO and S-CLO behave identically as the J-CLO inputs are simply
vectors of size 1, i.e., scalars. Notice that the less tight the error bound, the higher the
gain from increasing the batch size. Since there is less intra-representation gain from less
tight error bounds, J-CLO allocates more prefix error to exploiting inter-representation
redundancy. The increase in interquartile range at larger batch sizes is expected, as
β-compressibility is susceptible to sampling error intrinsic to empirical distributions.
Increasing the batch size results in virtually no gain for S-CLO and KLL, as neither
performs joint optimization.

Figure 6.12 again shows how marginal the influence is of the underlying distribution
we sample from. Raw volume scales linearly in batch size, which may be prohibitively
expensive for tighter error bounds. J-CLO can exploit input stream similarity by
optimizing the representation of the corresponding summaries to decrease the volume
significantly.
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Figure 6.12: Absolute data volume reduction by batch size of J-CLO.

Efficiency gains from joint optimization

The following examines the effect of β-compressibility on overall compression gains for
J-CLO. We create five datasets by sampling from a normal distribution and progressively
increasing the range that overlaps between the minimum and maximum values.

Max JSD 1/4 Overlap 1/2 Overlap 3/4 Overlap Min JSD
Figure 6.13: Synthesizing distributions with overlapping ranges.

Figure 6.13 illustrates the concept for batch size 5. Each bin represents a value range of
a uniform distribution from which elements are sampled, but the number of values is
unbounded. For example, 1/4 overlap means that there is up to 25% inter-representation
redundancy. Analogous to previous experiments, we report results aggregated by tar-
get epsilon to show the full range of representation outcomes. Figure 6.14 shows the
relationship between the target bound, compression ratio, and input stream similarity.

The larger the overlap, the larger the gain in compression ratio from exploiting inter-
representation redundancy. Notice the widening gap between compression ratio and
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Figure 6.14: Measuring the efficiency gain from batch scaling at different target bounds.

β-compressibility as the error bound becomes less tight. The decrease in compression
ratio when reducing the overlap is partially mitigated by J-CLO allocating prefix error to
exploit intra-representation redundancy. β-compressibility increases by overlap and error
bound since there is less to gain from intra-representation redundancy at less tight bounds.
Conversely, the tighter the error bound, the less the adverse effect on the compression
ratio from decreasing β-compressibility. Figure 6.15 shows the results for the extreme
cases (Min/Max JSD) where there is maximal or no overlap. The input streams are
identical or have no statistical similarity.
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Figure 6.15: Measuring efficiency gain for extreme cases.

For Min JSD, the β-compressibility does not scale linearly, since J-CLO allocates prefix
error to exploit intra-representation redundancy, resulting in an overall compression rate
larger than the batch size. Conversely, the input streams have no statistical similarity for
Max JSD, so J-CLO yields the same compression ratio as if all instances were encoded
separately.
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Scaling Rate Degredation

The final experiments determine whether J-CLO can handle drifts, with experiments
that examine whether the rate of compression ratio scaling degrades according to the
drift rate at large batch sizes. The dataset is engineered to control how much mass
two neighboring chunks share using Gaussian mixture models. Each stream follows the
mixture distribution (1− w) ·N(0, 1) + w ·N(µi, σbump), where σbump = 1/b to account
for the scaling batch size.
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Figure 6.16: Gaussian Mixture Models that scale location shift by the number of steps
to keep the shared mass between two input streams uniform.

Figure 6.16 illustrates the concept at different batch sizes. The bump component linearly
shifts the mean µi from −b/2 to +b/2 across b streams. The weight w controls the ratio
of moving and shared mass.

Figure 6.17 summarizes the results by showing the relationship between the bump weight,
the target bound, and the compression ratio. Concept drift decreases the gain from joint
optimization. However, the gain gracefully degrades relative to the drift’s magnitude.
While the scaling rate is small, since the empirical distributions with w = 0.1 are
challenging to compress, the results show that the algorithm can exploit faint sources of
redundancy, as even for w = 0.9, the compression ratio scales with the batch size.

6.4.4 Error Analysis

The experiments compare the normalized rank error of KLL with the augmentations. We
sample from a normal distribution to synthesize streams, as it represents the type that
the augmentations modify representations the most.

Table 6.3 shows the max and mean normalized rank error, averaged across 100 trials.

Max error measures the highest absolute difference between the true and the approximate
at a rank. While the theoretical framework established in Section 6.3.1 that the error
remains bounded, it is expected that the mean error marginally increases. However, we
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Figure 6.17: Measuring the efficiency gain from batch scaling under concept drift.

emphasize that from Lemma 2 it strictly follows that any slight increase in expected error
implies a significant reduction in data volume. Figure 6.18 explicitly shows the confidence
intervals for the tightest and least tight intervals. We filtered for the configuration that
resulted in the number of words and measured the highest compression gain for the
target bound. Notice that for KLL, there is roughly an equal margin for separate and
merge queries. For S-CLO, the single instance queries are pushing against the boundaries,
but the error “amortizes” back to a similar margin as KLL when merging. J-CLO
additionally pushes against the error envelope on the union stream, since the instances
were transformed jointly before the merger.

6.5 Summary

Besides introducing a generic framework for transparently augmenting sketches, we
realized algorithms for the single and joint cases that readily apply to KLL and related
algorithms. Extensive empirical analysis showed that, on typical sources, S-CLO improves
coding efficiency considerably in linear time. Within the scope of a single study, the
formal and empirical analysis has only explored using entropy as the cost function. The
practical value of the proposed approach is not only to augment the sketch algorithm
transparently, but also to accommodate arbitrary compression algorithms without engi-
neering custom codecs. Hence, keys may be remapped using a cost function that matches
a codec’s assumptions to improve coding efficiency further. The crucial part is that such
optimization does not require the sketch algorithm to make assumptions on the input.
It is merely a flexible method to significantly reduce the data volume of the encoded
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Table 6.3: Normalized Error Summary

(a) Max Normalized Rank Error

Separate Encoding Joint Encoding (Merge)
Target Bound KLL S-CLO J-CLO KLL S-CLO J-CLO
0.0018 0.001134 0.001248 0.001191 0.000974 0.001015 0.001249
0.0035 0.001729 0.001847 0.001836 0.001799 0.001802 0.002049
0.0068 0.004731 0.005044 0.005049 0.003773 0.003889 0.004847
0.0133 0.008126 0.008515 0.008253 0.007732 0.007799 0.008016
0.0261 0.020066 0.021031 0.021003 0.018892 0.018970 0.019323
0.0512 0.033123 0.037358 0.037557 0.029889 0.030014 0.037324
0.1004 0.079329 0.082539 0.081982 0.064143 0.068473 0.077228

(b) Mean Normalized Rank Error

Separate Encoding Joint Encoding (Merge)
Target Bound KLL S-CLO J-CLO KLL S-CLO J-CLO
0.0018 0.000378 0.000408 0.000449 0.000344 0.000361 0.000417
0.0035 0.000592 0.000641 0.000857 0.000588 0.000593 0.000802
0.0068 0.001676 0.001721 0.001785 0.001345 0.001406 0.001608
0.0133 0.002637 0.002928 0.002903 0.002645 0.002736 0.003401
0.0261 0.007005 0.007439 0.007524 0.005377 0.006073 0.006444
0.0512 0.011228 0.012139 0.012403 0.010638 0.011486 0.012087
0.1004 0.027958 0.029278 0.029153 0.022382 0.022848 0.025989

representation with minimal changes.
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Figure 6.18: Confidence intervals using the Relative Standard Error (RSE).
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CHAPTER 7
Conclusion

The thesis has addressed fundamental problems of massively distributed systems with
methods for efficient data transmission and reliable recovery of salient information. It
first introduced a reference architecture to seamlessly deploy and scale applications
in a hierarchical network with classical and quantum components. The key insight is
the importance of seamless integration and that scaling such platforms is primarily a
compression problem. Then, it discussed sound methods and experiment design for ML
research in edge-cloud systems, where reproducibility and drawing conclusions about
whether reported results generalize into real-world environments is challenging. It has
demonstrated how advancements in orthogonal research areas can invalidate relative
performance differences and introduced a research tool to streamline graph compiler
benchmarking over heterogeneous compute infrastructure to facilitate iterative empirical
analysis. The following two chapters concern handling data volume generated by request
payloads for ANN inference. It investigated the problem at opposite extremes in network
availability. In urban environments, latency is the priority, whereas in satellite computing
with intermittently available connectivity, it is throughput measured by the expected
transfer cost reduction. The thesis has also considered the modality expected for systems
monitoring with advancements in stream algorithms. To maintain server-side transparency,
it introduced augmentations to existing algorithms and a verification procedure that
provably maintains the strong underlying mathematical properties.

We conclude the thesis by summarizing the contributions to answering the three research
questions posed in Section 1.2 and a discussion on future work.

7.1 Research Questions
RQ1. How can we design (I) Methods and (II) Experiments for Machine
Learning Research in Edge-Cloud Systems? Admittedly, this research question
does not lend itself completely to methodologies that provide accurate answers. For the
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problems the thesis addresses, formal methods can only help show correctness, and no
empirical analysis in isolated environments can provide irrefutable evidence on claims
regarding real-world efficacy. Still, the initial observation on how readily, risk-free,
and free optimization methods may significantly change relative performance rankings
has motivated the thesis to focus on fundamentals and report conservative estimates
on expected performance gains. Refraining from convoluted systems, overengineered
algorithm implementations, and complex scenarios has permitted us to evaluate our
methods with readily reproducible experiments extensively.

RQ2. What approach exploits local resources best to (I) transparently meet
the requirements of (II) latency-sensitive and (III) system-critical applica-
tions? When offloading to large, remotely deployed ANNs, three competing approaches
exist for exploiting locally available hardware accelerators. Empirical results have shown
that task partitioning by partially unloading ANN inference is an excessively inefficient
use of local resources, due to resource asymmetry. Alternatively, local resources may
be used to compress the data using NIC, which can significantly reduce transmission
costs due to recent advancements. The advantage is that it requires the least effort
for operators and naturally generalizes to any ANN architecture and task. However,
even at the highest quality levels, there is a significant loss in prediction performance,
which defeats the purpose of offloading, as applications may just execute a quantized and
distilled version of foundational models locally. Feature compression with an information
bottleneck is most promising in preserving the integrity for downstream tasks at signifi-
cantly reduced bit rates. The downside is that existing methods assume knowledge of the
downstream tasks and rely on large encoders that must be sufficiently deep to extract
the high-level semantic information. The thesis has handled the limitations with SVBI
that trades off higher bitrates for (near-)task agnosticity using an encoder with fewer
parameters by orders of magnitude than deep methods. A follow-up extended SVBI to
elaborate on the recovery of human interpretable data and to handle environments with
intermittently available connectivity. Experiments compared SVBI extensively against
competing approaches and have Our experiments with SVBI give conclusive evidence
that omitting any requirements that reduce server-side processing time will not only yield
disproportionally lower bitrate, but may also reduce overall request latency due to the
reduced transmission costs. Lastly, FOOL has explicitly used metrics that measure the
gain in reduced data volume by seconds and have convincingly outperformed baselines
on efficiency.

RQ3. What are (I) suitable approaches to construct statistical summaries,
and (II) can we improve their coding efficiency without breaking server-
side transparency? The type of algorithm, namely fully-mergeable quantile sketches
with strong-guarantees in an unbounded universe model, was chosen according to the
requirements in Section 1.2. There are no assumptions on input distribution or data
type properties. It is based on a well-developed and sound mathematical framework
that provides strong worst-case guarantees on approximation error. The guarantees
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establish trust for analytics tasks and automated decision mechanisms. The combination
of mergeability and sublinear memory requirements, enabling hierarchical processing on
mobile devices and servers, makes it a natural fit for a compute continuum. Mature
implementations exist and are widely deployed in legacy systems.

The thesis has shown that improving coding efficiency with server-side transparency
is feasible by introducing Syntax- and Order Preserving Transforms. It maintains the
same guarantees as the underlying algorithm while finding representations that are more
amenable to compression algorithms. Its adoption is as simple as overriding a serialization
method with a few lines of code.

7.2 Preliminary Results of Future Work

This section discusses non-speculative future work that we find worth pursuing, based on
preliminary results that were presented in smaller conferences.

7.2.1 Adversarial Robustness of Bottleneck-Injected Neural Networks

The pervasiveness of ANNs exposes significant vulnerabilities to adversarial attacks [AM18].
Since our work advocates increased pervasiveness of ANNs for communication, we found
it necessary to conduct a study that discusses the implications. The optimistic view is
that perturbations are intrinsically redundant information, and the IB objective naturally
enhances the robustness of ANNs by learning to discard redundancy more aggressively
along their information processing path [SZT17]. However, the established consensus on
the value of IB-based objectives is based on the assumption that the networks are deep.
Yet, task-oriented communication is feasible only when paired with lightweight compres-
sion such that the codec computational overhead is offset by the reduced transmission
costs [MVH+25, PXL+24]. There are additional constraints on the encoder design. While
a neural encoder may still be wide enough to leverage parallelization from onboard AI
accelerators, meeting stringent latency requirements demands reducing the number of
sequential operations. Hence, envisioned future communication networks that rely on
neural encoding schemes will realistically converge towards shallow networks. To this
end, the study is dedicated to investigating the robustness of methods that apply an
IB-based objective intended for communication systems that use IB objectives to reduce
transmission costs.

We apply several common adversarial attacks on recent approaches based on SVBI [FRD24,
FZR+25], and contrast their efficacy with the conventional deep variational information
bottleneck [AFDM16]. The preliminary results show that deep networks trained with a
traditional IB objective exhibit higher adversarial robustness than SVBI. Still, a shallow
variational encoder is considerably more robust than purely discriminative models trained
with non-IB objectives. We finalize our experiments by accentuating the increased attack
surface of systems that rely on generative models for communicating salient information
with a simple attack specifically targeting generative models. In other words, the overall
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system is more vulnerable even if task-oriented communication is intrinsically more robust
than passing messages through conventional channels for downstream tasks. While a
comprehensive study is not within the thesis’s scope, we hope our results and insights
can facilitate research securing next-generation communication systems.

Attack Surface of IB-based Communication Systems

Figure 7.1 illustrates a simplified but sufficient view of the communication system.

Encoder

Semantic Decoder

Semantic Decoder

Model Task 

Model Task 

Model Task 

Semantic Decoder

DiscriminativeGenerative

Figure 7.1: Attack Surface of IB-Based Communication Systems.

Before passing the input to a discriminative model for prediction, it is processed by
a generative model. Arguably, even if training the codec with an IB-based objective
improves adversarial robustness against attacks intended for discriminative tasks, it may
still increase the attack surface of the overall communication system due to the generative
components.

Considered Adversarial Attacks

The susceptibility of ANNs to adversarial examples was first investigated by Szegedy
et al. [SZS+14], who demonstrated that small, imperceptible perturbations to input
data can lead to significant misclassifications. Adversarial attacks are classified into
white-box and black-box attacks. White-box attacks assume complete model knowledge,
including architecture and gradient calculation, allowing for computing highly effective
adversarial samples. In contrast, black-box attacks assume no access to model details
and are generally more challenging but more realistic for real-world scenarios.

The following briefly describes the attacks we have chosen due to their influence and
being subject to numerous follow-up studies. The focus is on white-box attacks due
to the open nature of ML research and the popularity of readily available open-source
weights for a wide range of tasks. Fast Gradient Sign Method (FGSM) by Goodfellow et
al. [GSS15] efficiently generate adversarial examples by leveraging the gradient of the loss
function. FGSM adjusts the input along the gradient’s direction, with the perturbation
defined as:

xadv = x+ ϵ · sign (∇xJ(x, y)) (7.1)
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where x is the input, ϵ controls perturbation magnitude, and ∇xJ(x, y) is the gradient of
the loss concerning the input.

The attack by Carlini and Wagner (C & W) [CW17] minimizes the L2, L0, or L∞
distance between the original input and the adversarial example, and a term that
penalizes classifications other than the desired target class using the objective function:

J(x′) = α · ||x− x′||p + β · Lmcls(f(x′), yt) (7.2)

where x′ is the perturbed input, α, β balance the terms, and Lmcls is the missclassification
loss. Notably, this attack is shown to be highly effective against networks pre-trained on
ImageNet, which are commonly used to finetune for practical recognition tasks.

The Elastic-Net Attacks on ANNs (EAD) [CSZ+18] is particularly useful for producing
sparse perturbations, which can trick ANNs while maintaining minimal changes to the
input. It generates adversarial samples by minimizing the objective

c · f(x, t) + β ∥x− x0∥1 + ∥x− x0∥22 (7.3)

where f(x, t) is a target loss function and c, β ≥ 0 are the regularization parameters.
EAD’s dual-norm optimization is an interesting alternative benchmark for evaluating
how variational bottleneck injection handles diverse attack strategies.

The Jacobian-based Saliency Map Attack (JSMA) attack by Papernot et al. [PMJ+15]
constructs adversarial examples by identifying and perturbing input features most critical
to the classifier’s decision-making process. Unlike gradient-based methods, JSMA uses
forward derivatives to create a saliency map, guiding perturbations to specific input
features. Given that variational bottleneck techniques may alter feature representations,
testing JSMA will allow us to explore how bottleneck injection influences feature saliency
and adversarial resilience.

Lastly, we include the attack introduced by Tabacof et al. [TTV16] to demonstrate the
increased attack surface of communication systems that deploy generative models. This
attack disrupts reconstruction and induces the encoder to produce a completely different
target image. This would undermine the potential defensive role of autoencoders in
de-noising classifier inputs. Note that the efficacy of the attack towards the autoencoder
is irrespective of whether we map the latent to an approximation of the original image
(i.e., reconstruction) or use it for some image recognition downstream task [FZR+25].

Experiment Design

We generate adversarial samples using the torchattacks [Kim20] library. Except for the
Tabacof attack, we create samples for CIFAR-10, textitSVHN, and ImageNet64 (i.e.,
downsampled ImageNet but still using all original 1000 classes). Notably, we choose
JSMA as it may provide a different perspective on model vulnerability by perturbing
specific input features. However, JSMA has high memory requirements, which we cannot
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accommodate with our limited resources for ImageNet64. Therefore, we implement a
modified version of JSMA (JSMAOnePixel) that is inspired by [Son]. The OnePixel
variant identifies only a single pixel with the highest impact on each iteration. As shown in
Figure 7.2, the final perturbed image is comparable between JSMA and JSMAOnePixel.

Figure 7.2: In pairs, comparing JSMA (left) with JSMAOnePixel variant (right).

Unlike with other attacks, we use MNIST for Tabacof as the purpose is to demonstrate
the widened attack surface of IB-based communication. We train three sets of models.
Baseline models with standard log-loss, models with a shallow bottleneck (SVBI), and
models with a deep bottleneck (DVIB). We perform DVIB and SVBI as described in
Chapter 4. For DVIB, we place a bottleneck at the penultimate layer and use a log-loss
for the distortion term in the objective function. For SVBI, we follow the “blueprint”
encoder design that replaces the layers until the first high-level block of the network
(roughly 1% of the total model parameters) with a small variational autoencoder. We
experimentally determine the lowest possible bitrate for both bottleneck approaches
without sacrificing prediction performance.

Table 7.1 summarizes the model performances on the non-adversarial samples. The bits

Table 7.1: Models Prediction and Compression Performance

Dataset Acc@1 [%] Bpp (SVBI) Bpp (DVIB)
MNIST 97.36 ± 1.77 0.0829 0.0161
CIFAR-10 85.25 ± 1.40 0.5677 0.0308
SVHN 94.04 ± 0.69 0.4321 0.0086
ImageNet64 49.36 ± 1.12 1.2673 0.0115

per pixel (bpp) is a lower bound we have empirically determined for a bottleneck injected
model to perform (near-)lossless prediction as defined in [FRD24, FZR+25]. Naturally,
DVIB has much lower bitrates due to task specificity, as described in Section 4.1.3.
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Comparing Bottleneck Placements

Table 7.2 summarizes the effect on the adversarial samples represented as percentage
points (lower is better). Unsurprisingly, base models trained using a standard log-loss
have a significant drop in accuracy. Relative to the accuracy on the unperturbed dataset
(Table 7.1), all attacks completely tank the model’s performance. In particular, for the
SVHN task, the performance is at times worse than random guessing. As conjectured,
SVBI generally provides less adversarial robustness than DVIB across all datasets.
Notably, task complexity apparently influences the gap in adversarial robustness between
SVBI and DVIB. Still, SVBI exhibits considerably higher adversarial robustness than
the baseline. Additionally, notice that the model depth on the base model does not
considerably affect adversarial robustness. However, for the DVIB model, depth seems
to correlate positively with adversarial robustness. Presumably, since deeper models
have longer information paths, end-to-end training models with an IB objective have
more opportunities to discard information that does not contribute to task performance
gradually.

Table 7.2: Comparing Prediction Performance Decrease (% points; lower is better)
between Objectives.

CIFAR-10 SVHN ImageNet64
Model Attack Base SVBI DVIB Base SVBI DVIB Base SVBI DVIB

FGSM 74.5621 48.7298 39.513 69.9521 55.8298 48.5728 37.7602 31.8935 28.9807
EAD 85.5256 9.6447 8.8592 89.9427 19.8432 13.5824 35.4344 9.2381 8.0993
C&W 87.0232 7.7732 6.7682 92.2149 22.9992 18.3259 37.9903 12.5742 10.2117ResNet-18

JSMA 87.6210 20.7807 17.5784 91.5810 14.2348 11.1283 36.3821 11.1868 10.1935
FGSM 68.5621 42.8942 34.0803 68.2679 53.2118 45.1977 39.6985 28.9273 23.1021
EAD 85.1400 9.1258 7.8592 89.3852 18.0232 11.4375 32.6361 7.0377 4.8375
C&W 88.9231 7.2009 6.5408 93.3284 18.0931 15.3259 34.1083 9.9654 5.4281ResNet-50

JSMA 85.1010 19.6333 16.0549 90.2838 13.9125 10.1283 34.4847 10.1351 5.5213
FGSM 69.3189 40.8912 32.1534 66.2082 40.4817 42.9004 38.4451 24.0620 20.9997
EAD 87.6557 8.0322 7.8592 88.3294 16.4385 9.5729 32.4148 6.1124 3.0489
C&W 87.4633 7.1819 6.0018 92.1923 17.3284 12.2482 38.0200 8.7985 2.9663ResNet-101

JSMA 86.8781 19.439 15.2608 94.2933 11.2814 7.9833 36.6825 10.0382 1.4762

Analyzing Pixel Perturbations

We observe that IB-based objectives exhibit stronger robustness against attacks that
focus on a small subset of salient pixels with strong intensity than attacks that perturb
many pixels with smaller intensity. Moreover, similarly to the original work on deep
variational IB [AFDM16], we observe that attacks targeting IB-based models perturb
pixels considerably more than non-IB-based models. Nevertheless, since relative values
align across all models (i.e., attacks behave comparably regardless of the model depth
or objective), the following reports average values due to space constraints. Figure 7.3
visualizes the L0 norm by attack averaged over test sets, i.e., it measures how many
pixels an attack has perturbed.
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Figure 7.3: Average Percentage of pixels perturbed by an adversarial attack.

While FGSM perturbs nearly all pixels, JSMA only perturbs roughly 20% of the pixels.
More interestingly, EAD and C&W perturb fewer pixels for ImageNet than for the
simpler tasks. Generally, more complex tasks with many labels rely on more fine-
grained information, where just a small subset of salient pixels can influence the decision
boundaries. Figure 7.4 summarizes the magnitude of perturbations.
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Figure 7.4: Measuring the magnitude of perturbations with the average L2.

FSGSM and JSMA incur considerably higher perturbations than EAD and C&W. Further,
notice that JSMA has a larger total magnitude in total perturbation than FGSM, despite
JSMA focusing on a smaller subset of pixels. The reason becomes apparent when
examining the L∞ norm in Figure 7.5.

JSMA is more “pixel-efficient” by focusing on the most salient pixels but relies on
high-magnitude perturbations. Figure 7.6 visually compares JSMA and FGSM.

While FGSM perturbs a large number of pixels, they are only faintly visible. Conversely,
JSMA has clearly visible perturbations. This observation is consistent with the general
objective of IB-based communication, which is to focus on the most salient information.
Therefore, it may be reasonable to emphasize evaluating defense strategies for task-
oriented communication against less perceptible attacks.
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Figure 7.5: Average L∞ measure to quantify the magnitude of perturbation.
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Figure 7.6: Comparing magnitudes of pixels between JSMA and FGSM.

Targeted Autoencoder Attack

We briefly show the increased attack surface with the Tabacof [TTV16] attack. The
results are summarized in Table 7.3.

Table 7.3: Tabacof attack

Base DVIB
Model Acc@1 # Hits Acc@1 # Hits
Resnet-18 61.6 927 52.26 1802
Resnet-50 76.57 879 72.66 1126
Resnet-101 33.17 448 34.73 1641

We choose the label “1” as the target, and the hits column indicates how often the
model has predicted “1” after the attack. Since the models have near-perfect accuracy
on MNIST, and the test set has 10 000 samples that are uniformly distributed, we can
infer the efficacy of the attack by the increase in predictions of “1”. Figure 7.7 shows an
example with a curated sample of perturbed images.

Examples depicting the numbers two and four contain the most clearly visible perturba-
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Figure 7.7: Base images (bottom) and corresponding perturbation using the Tabacof
attack against DVIB (top).

tions to match this target. The leftmost example showcases a “failed” attack, where the
network will likely missclassify the input, but not hit the intended target. ResNet-101 is
noticeably less robust toward the attack. We explain the discrepancy by the simplicity of
the task and the dataset size. Since ResNet-101 is significantly larger, the model may
have been fitted to the samples, making it more susceptible to even slight perturbations.
Still, comparing the performance of ResNet-18 and ResNet-50 shows that the DVIB
model is considerably less robust than the baseline model. Notably, all DVIB models have
a substantial increase in predicting the target label, indicative of the attack’s efficacy.

Warm Starting Hybrid QNNs

Chapter 2 has extensively discussed the integration of both classical and quantum
resources in a distributed inference engine. While Chapter 4 reflects the classical parts,
a comprehensive method that exploits (simulated) quantum resources is not within
the scope of the thesis. However, we have conducted a short preliminary study that
empirically demonstrates how SVBI may be used as a warm-starting method as described
in Section 2.2.7.

Circuit Design The compression model is taken directly from Section 4.2.2 without
saliency guidance using Swin-Tiny as the teacher. However, here we replace the classical
classifier for a task with a hybrid QNN. Figure 7.8 illustrates the Ansatz of the QNN
with four qubits and layers.

The hybrid QNN takes as input the n-dimensional real-valued feature vector Zn and
classically projects it to a vector with dimensions equal to the number of qubits. Then,
it passes the features as input to the Ansatz. Regardless of circuit depth, it first applies
a Hadamard H Gate and a parameterized Z-rotation RZ to embed features in the
quantum node. Next, it applies a repeating sequence of trainable variational layers. A
layer consists of pairwise (shifted) C-NOT gates followed by alternating parameterized Y -
or Z-rotations, i.e., a layer with Y -rotation is followed by a layer with Z-rotations. The
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Figure 7.8: Hybrid QNN with Four Qubits and Layers

number of layers is a hyperparameter given by the depth of the circuit. Lastly, it passes
the measurements to a fully connected layer to output the class scores. The circuit is
optimized in a noise-free simulation using PennyLane [BIS+18].

Dataset Selection To emulate the scenario of Figure 2.8 with clients requesting
inference from diverse environments, we create four thematically unrelated datasets from
the 1000 labels from the ILSVRC [RDS+15] classification task. Compared to the main
experiments, we evaluate task performance on smaller datasets derived from ILSVRC
due to resource limitations. Table 7.4 summarizes the dataset properties.

Table 7.4: Training and Test Subsets of ILSVRC for Warm Starting

Task Classes Training Samples Test Samples

Nutriment 10 13’000 500
Felidae 13 16’900 650

Buildings 14 18’200 700
Vessels 23 29’900 1150

Each dataset represents a different location requiring separate predictors. The accompa-
nying repository contains a script and instructions to recreate the datasets.

Prediction Performance of Hybrid QNNs with compressed features We run
experiments with 4, 6, 8, and 10 qubits with a classical predictor as the baseline. The
depth of the circuit is fixed at 8. We performed additional experiments with varying
depth sizes and found that increasing the depth yields diminishing accuracy improvement.

Table 7.5 summarizes the results. The Plots in Figure 7.9 and Figure 7.10 show how a
hybrid model without and with the skip connection compares to their classical counterpart
for each dataset. Relative to the classical baselines, Hybrid QNNs without skip connections
gradually approach comparable, albeit still worse, Top-1 error as we increase the number
of qubits. For 4 and 6 qubits, the Top-1 error is roughly 20-30% worse while the
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Table 7.5: Top-1 (Err)or of (C)lassic, (H)ybrid, Hybrid with (Res)iduals

Qubits Top-1 Err. C. (%) Top-1 Err. H. (%) Top-1 Err. H. Res. (%)

Nutriment

4 13.00 37.13 12.11
6 11.73 25.20 10.40
8 11.30 16.90 10.07
10 10.69 14.80 9.58

Felidae

4 19.82 31.57 19.05
6 17.60 29.07 16.77
8 16.77 18.77 15.85
10 16.56 18.31 15.31

Buildings

4 9.29 31.57 8.57
6 7.26 14.86 6.86
8 6.14 10.57 5.71
10 5.74 9.00 5.27

Vessels

4 32.43 62.00 30.69
6 27.82 48.52 26.00
8 25.48 31.56 24.96
10 24.26 25.87 23.91

difference narrows to 2-5%. Interestingly, Hybrid QNNs with skip connections consistently
outperform the classical baselines across all numbers of qubits. Although the motivation
of skip connections in classical residual networks is to mitigate accuracy saturation for
very deep neural networks, they essentially learn a residual function. Considering the
autoencoder-backbone pair already heavily processes the input data, we hypothesized
that a QNN could find more suitable representations for the classical features for some
instances. In contrast, a QNN could decrease the performance for samples already
sufficiently processed for classification. The QNN narrowing the performance gap with
increasing qubits is consistent with our assumptions. The model without a skip connection
cannot find a representation as good as the initial input for a low number of qubits.
Conversely, the QNN with a skip connection can learn the residual function and sees a
performance gain for the samples, where a quantum embedding is useful.

A skip connection was the first intuitive attempt to provide empirical evidence, and
the initial results seem promising. Nevertheless, we remind the reader that this only
serves as a PoC to determine whether our vision is viable. The evaluation strategy
is not extensive enough, and thus, our results should not be considered conclusive.
Moreover, even with the skip connection, the hybrid model only marginally outperforms
the classical model across all task simulations with a noise-free device. We did not
experiment with optimization algorithms more appropriate for QNNs. Further, the
backbone is classical, i.e., the extracted features may be biased favorably towards classical
predictors. Future work can significantly improve our results by experimenting with
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Figure 7.9: Hybrid QNN without Skip Connection
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Figure 7.10: Hybrid QNN with Skip Connection

more sophisticated approaches for mapping low-dimensional qubits to a high-dimensional
feature space [PCH+21]. Additionally, once training large QNN extractors is feasible, it
would be interesting to determine whether we can train the classical compression model
to find suitable representations for QNN embeddings.

167





Overview of Generative AI Tools
Used

Grammarly1 und LanguageTool2 wurden als Grammatik- und Rechtschreibprüfpro-
gramme verwendet. Perplexity3 und Semantic Scholar4 wurden zur Ergänzung der
Literaturrecherche neben herkömmlichen Suchmaschinen eingesetzt.

1[https://app.grammarly.com/
2https://languagetool.org/
3https://www.perplexity.ai/
4https://www.semanticscholar.org
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Übersicht verwendeter Hilfsmittel

Grammarly5 and LanguageTool6 were used as grammar and spellcheckers. Perplexity7

and Semantic Scholar8 were used to supplement the literature review with traditional
search engines.

5https://app.grammarly.com/
6https://languagetool.org/
7https://www.perplexity.ai/
8https://www.semanticscholar.org
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