
Managing and Modeling
Persistent Data Access in

Process-Driven SOAs
DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Dipl.Ing. Christine Mayr
Matrikelnummer 9725295

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram DUSTDAR

Diese Dissertation haben begutachtet:

(Univ.Prof. Dr.
Schahram DUSTDAR)

(Univ.Prof. Dr.rer.nat. Uwe ZDUN)

Wien, 01.02.2012
(Dipl.Ing. Christine Mayr)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Managing and Modeling
Persistent Data Access in

Process-Driven SOAs
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Dipl.Ing. Christine Mayr
Registration Number 9725295

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram DUSTDAR

The dissertation has been reviewed by:

(Univ.Prof. Dr.
Schahram DUSTDAR)

(Univ.Prof. Dr.rer.nat. Uwe ZDUN)

Wien, 01.02.2012
(Dipl.Ing. Christine Mayr)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl.Ing. Christine Mayr
Quadenstrasse 138/2, A-1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

First of all, I want to thank Prof. Dr. Schahram Dustdar and Prof. Dr. Uwe Zdun
for guiding me through this thesis. I thank Prof. Dr. Schahram Dustdar for giving me
the chance to do my doctorate externally under his supervision. Thank you for your
professional scientific support, your ideas for improvement, and your prompt feedback
whenever I had questions. I would like to say a special thanks to Prof. Dr. Uwe Zdun
for his excellent scientific mentoring and advice, but also for his constructive ideas and
helpful stimulations throughout this thesis. Without both of you this work would not
have been possible!
I thank all the people (presently and formerly) from the distributed systems group for
comments and supports, in particular, I thank Dr. Huy Tran for his fundamental works
on the view-based modeling framework.
Next, I want to thank the anonymous reviewers for numerous critical comments and
insights extremely helpful for building up this work.
With all my heart I thank my husband, Thomas, for his patience, encouragement, and
emotional support.
Finally, I deeply thank my parents for their all-encompassing support in my whole life.

iii

To Thomas and Laurin.

Abstract

In process-driven service oriented environments, process activities in a business process
can invoke services to fulfill certain tasks. A service can e.g. invoke other services, per-
form business logic, or read and write data from persistent data storages. In particular,
in long-running business processes, which require human interaction with users, process
activities often need to read or write persistent data. Commonly this persistent data ac-
cess is encapsulated by a special type of services – the Data Access Services (DAS). With
these DAS, business processes can access persistent data both technology-independently
and database-neutrally.

Unfortunately, these DAS are not sufficiently integrated into process-oriented envi-
ronments, yet. Accordingly, the relationships between the different concerns of a pro-
cess such as the process activities, the DAS, the underlying object-relational mappings
(ORM), and the persistent data storages are not well-defined, yet. Moreover, different
stakeholders have to be able to focus on these different concerns of the process selectively.
For example, in order to prevent, detect, and solve structural problems in business pro-
cesses such as deadlocks, stakeholders need to have a tailored views into the persistent
data access of the process. When the number of process activities grows along with the
number of DAS, finding certain DAS of a process can become an impossible task for the
stakeholders.

In this thesis we focus on better integrating persistent data access into process-driven
service-oriented environments. In order to achieve this, firstly, we introduce the view-
based data modeling framework (VbDMF) designed to specify persistent data access
of processes. Based on VbDMF, we illustrate the concept of persistent data access
flows used to prevent, detect, and solve structural problems in processes. In order to
be able to better maintain and reuse persistent data access, we present an integral
architectural approach to manage our VbDMF models and model instances: The view-
based model-driven data access architecture (VMDA). Along with our concepts, we
illustrate the applicability by a number of industrial case studies. Furthermore, we prove
the complexity and correctness of the presented algorithms. Finally, we quantitatively
show, that the VMDA returns with acceptable response times.

vii

Kurzfassung

In prozessgetriebenen, dienstorientierten Umgebungen rufen Prozessaktivitäten von Ge-
schäftsprozessen Dienste auf, um bestimmte Aufgaben zu erfüllen. Ein Dienst kann z.B.
andere Dienste aufrufen, Geschäftslogik ausführen oder Daten von einem persistenten
Speicherort lesen und schreiben. Insbesondere in langandauernden Geschäftsprozessen,
die menschliche Interaktion mit Benutzern erfordern, müssen Prozessaktivitäten häufig
persistente Daten lesen oder schreiben. Persistente Datenzugriffe werden heute übli-
cherweise von einer speziellen Art von Diensten gekapselt, den Datenzugriffsdiensten
(DAS). Mittels dieser Datenzugriffsdienste können Geschäftsprozesse technologieunab-
hängig und datenbankneutral auf persistente Daten zugreifen.

Leider sind diese Datenzugriffsdienste noch ungenügend in prozessorientierte Um-
gebungen integriert. Die Beziehungen zwischen verschiedenen Belangen eines Prozesses
wie den Prozessaktivitäten, den Datenzugriffsdiensten, den darunterliegenden objektre-
lationalen Abbildungen und den persistenten Datenspeichern sind bis dato nicht ausrei-
chend definiert. Weiters müssen sich verschiedene Akteure auf die bestimmten Belange
des Prozesses gezielt fokussieren können. So benötigen die Akteure zur Vermeidung,
Erkennung und Behebung von strukturellen Problemen in Geschäftsprozessen wie zum
Beispiel Deadlocks einen fokussierten Einblick in die aufgerufenen Datenzugriffsdienste
des Prozesses. Wenn jedoch die Anzahl der Prozessaktivitäten und damit die Anzahl der
persistenten Datenzugriffsdienste immer mehr ansteigt, kann das Auffinden bestimmter
Datenzugriffsdienste des Prozesses eine unmögliche Aufgabe für die Akteure werden.

In dieser Dissertation fokussieren wir uns auf eine bessere Integration persistenter
Datenzugriffe in dienstorientierte Geschäftsprozesse. Wir stellen das view-based data
modeling framework (VbDMF) vor, das für die Modelling persistenter Datenzugriffe
von Prozessen entwickelt wurde. Basierend auf VbDMF, führen wir in das Konzept der
persistenten Datenzugriffsflüsse zur Vermeidung, Erkennung und Behebung struktureller
Probleme in Prozessen ein. Um die persistenten Datenzugriffe besser warten und wie-
derverwenden zu können, präsentieren wir einen ganzheitlichen architekturellen Ansatz
zur Verwaltung unserer VbDMF Modelle und Modellinstanzen: Eine modellgetriebene
Datenzugriffsarchitektur, genannt VMDA. Wir illustrieren die Verwendbarkeit unserer
Konzepte in mehreren industriellen Fallstudien. Weiters beweisen wir die Komplexität
und Korrektheit der verwendeten Algorithmen. Schließlich belegen wir die Anwendbar-
keit der VMDA quantitativ anhand von Messergebnissen.

ix

Contents

List of Figures 1

List of Tables 3

1 Introduction 9
1.1 Context . 9
1.2 Problem Statement . 9
1.3 Motivating Scenario . 11
1.4 Research Questions . 12
1.5 Scientific Contributions . 13
1.6 Previously Published Work . 15
1.7 Thesis Structure . 16

2 Related Work 19
2.1 Managing Persistent Data Access in Process-Driven SOAs 19
2.2 Modeling Persistent Data Access In Process-Driven SOAs 23

3 Background 29
3.1 Service-Oriented Architecture . 29
3.2 Model-Driven Development . 30
3.3 Persistent Data Access . 31
3.4 View-Based Modeling Framework . 33

4 View-Based Data Modeling Framework 39
4.1 Motivation . 39
4.2 Overview . 41
4.3 VbDMF Models . 43
4.4 Case Study . 48
4.5 Discussion . 54
4.6 Summary . 56

5 Improving Traceability of Persistent Data Flows in Process-Driven
SOAs 57
5.1 Motivation . 58

xi

5.2 Background . 59
5.3 Overview . 61
5.4 Solving Structural Problems in Business Processes 63
5.5 Model-Driven Solution: Specification, Integration, Extraction 68
5.6 Applicability of the Algorithms & Tooling 76
5.7 Evaluation . 79
5.8 Discussion . 84
5.9 Summary . 85

6 Reusable Architectural Decision Model for Model and Metadata
Repositories 87
6.1 Motivation . 88
6.2 Background . 88
6.3 Architectural Decisions . 89
6.4 Case Study . 105
6.5 Summary . 108

7 View-Based Model-Driven Architecture for Enhancing Maintainabil-
ity of Data Access Services 109
7.1 Motivation . 110
7.2 Architecture Overview . 110
7.3 The Data Access Service (DAS) Repository 113
7.4 Tooling: The View-Based Repository Client 117
7.5 Case Study . 123
7.6 Evaluation . 128
7.7 Summary . 134

8 Conclusion 135
8.1 Summary of the Research Problems . 135
8.2 Summary of the Contributions . 136
8.3 Future work . 137

Bibliography 139

xii

List of Figures

1.1 Missing Links between Data Access Services, Source Code, Documentation
and Data Storage Schemes . 10

1.2 Contributions Overview . 14

3.1 Service-Oriented Architecture (SOA) Triangle 30
3.2 Java EE Data Access Object (DAO) Pattern106 32
3.3 View-based Modeling Framework (VbMF) . 33
3.4 Core View Model . 35
3.5 Flow View Model . 35
3.6 Collaboration View Model . 36
3.7 Information View Model . 37

4.1 Different Stakeholders Focusing on Persistent Data Access in a Process-
Driven SOA . 40

4.2 VbMF and VbDMF – Overview . 41
4.3 Collaboration DAO Mapping View Model . 43
4.4 Data Access Object View Model . 44
4.5 Database Connection View Model . 45
4.6 Data Object Type View Model . 46
4.7 Information DAO Mapping View Model . 46
4.8 ORM View Model . 47
4.9 Physical Data View Model . 48
4.10 Case Study: Simplified Process Flow at the Land Registry Court 49
4.11 Case Study: Illustration of the VbDMF views 50
4.12 Case Study: Flow View, Collaboration View, and Information View in XMI

Notation . 52
4.13 Case Study: Collaboration View, Collaboration DAO Mapping View, and

DAO View in XMI Notation . 53
4.14 Case Study: Information View, Information DAO Mapping View, and Data

Object Type View in XMI Notation . 53
4.15 Case Study: DAO View and Data Object Type View in XMI Notation 54
4.16 Case Study: Data Object Type View, ORM View, Physical Data View, and

Database Connection View in XMI Notation 55

1

5.1 Data Flow of a Business Process specified with UML Pin Elements 60
5.2 Two Persistent Data Access Flows Extracted from a Business Process Flow . 62
5.3 Motivating Example for Manually Detecting Potential Deadlock Risks 65
5.4 Motivating Example for Detecting Inefficient Persistent Data Access Flows . 66
5.5 Motivating Example for Testing Persistent Data Access of a Process Flow . . 67
5.6 VbDMF Flow View Model . 69
5.7 VbDMF Integration Path . 70
5.8 XMI Notation of a Simple and Filtered DAS Flow View 77
5.9 Tooling for Tracing Persistent Data Access in Process-Driven SOAs 80

6.1 Dependencies between Architectural Decisions 90
6.2 Architectural Decision: Select Basic Repository Technology 92
6.3 Architectural Decisions: Select Support for Meta-Models and Modeling Levels 96
6.4 Architectural Decision: Select Metadata Types 98
6.5 Architectural Decision: Select Version Modeling Levels 100
6.6 Architectural Decision: Select Synchronization Model 104
6.7 Case Study: Selected Decisions for a Data Access Service (DAS) Repository . 105

7.1 Missing Link between Services and Data . 110
7.2 View-Based Model-Driven Data Access Architecture (VMDA) 111
7.3 Registration Service and Publication Service 114
7.4 DAS Repository View Model . 116
7.5 View-Based Repository Client GUI (Eclipse Plug-in) 118
7.6 Activity Flow Diagram from the User’s Point of View 119
7.7 Query Language Definition in BNF Notation 122
7.8 Case Study: Applying WFS to the VMDA 125
7.9 Case Study: Extending VbDMF by a New WFS Information View 126
7.10 Experiment Result: Response Time Against Number of Table Joins 132
7.11 Experiment Result: Response time Against Number of WFS 133
7.12 Experiment Result: Logarithmic Response Time Against Number of WFS . . 133

2

List of Tables

5.1 Algorithm Complexity . 82

7.1 Model Element Generator: Extraction of Result Set 122
7.2 Experiment: Number of Table Rows Related to Number of WFS 131
7.3 Experiment Settings . 131

3

List of Algorithms

5.1 RecursiveClean() . 73
5.2 MatchFilterCriteria() . 73
5.3 RecursiveGetIntegrationStartPoint() . 75
5.4 RecursiveMatchEntity() . 76
5.5 Reduced MatchFilterCriteria Algorithm . 80

- Function KeywordGenerator . 123

5

List of Acronyms

BPEL Business Process Execution Language

DAO Data Access Object

DAS Data Access Service

EMF Eclipse Modeling Framework

GIS Geographic Information System

Java EE Java Platform Enterprise Edition

MDA Model-Driven Architecture

MDD Model-Driven Development

ORM Object Relational Mapping

POJO Plain Old Java Object

RDBMS Relational Database Management System

REST REpresentational State Transfer

RPC Remote Procedure Call

SOA Service-Oriented Architecture

UML Unified Modeling Language

URI Uniform Resource Identifier

VbMF View-based Modeling Framework

VbDMF View-based Data Modeling Framework

WFS Web Feature Service

WSDL Web Services Description Language

XMI XML Metadata Interchange

XML Extensible Markup Language

7

CHAPTER 1
Introduction

1.1 Context

In modern process-driven service oriented architectures (SOAs), process activities can
invoke services in order to fulfill business requirements. A service offers a well-defined
interface109, i.e. a web service is a special type of service that provides an interface spec-
ified by a web service description language (WSDL)140. Service repositories25,58 manage
these services and support service discovery at runtime. Accordingly, process activities
can query a service repository dynamically in order to find a suitable service. Besides in-
voking services, process activities can perform human tasks, do transformations, and/or
invoke other process activities83–85. In long-running processes, that involve human inter-
actions143, process data usually need to be read and written data from persistent data
storages, typically from relational database management systems (RDBMS)111 or flat
files. Nowadays, this persistent data access is commonly done by so-called data access
services (DAS)20,114,133,146. DAS are special types of services designed to encapsulate
persistent data access details from the service consumer. As common services, the DAS
can either be invoked by another services or by process activities directly. In object-
oriented environments, DAS commonly use a layer of data access objects (DAOs) to
read and write data from physical data storages. The DAO pattern is part of the Java
EE pattern catalog106 and is designed to encapsulate the connection to the data source.

1.2 Problem Statement

A process-driven SOA is an architectural style for developing large business applica-
tions3. Here, a huge number of processes, processes activities, services, and in particular
data access services (DAS) need to be managed. As a result, finding certain DAS for
reuse can become an impossible task for stakeholders.

9

Unfortunately, the relationships between business processes, the DAS, and the un-
derlying persistent data access are not sufficiently elaborated, yet. In service oriented
architectures, services can be registered to a service repository. Nowadays, business pro-
cess execution languages such as BPEL98 are used as the missing link to incorporate
services into business processes66. These business process execution languages provide
higher level control for services as they describe the services to be invoked and which
operations shall be called in what sequence. However, the business process execution
languages do not integrate the semantics of an invoked service such as which process
activity reads or writes which data. In contrast, they rather regard the process internal
data read and written by process activities.

Figure 1.1 overviews the missing links from the user’s point of view: The WSDLs
stored in service repositories are neither associated with the DAS source code from
source code management systems, nor with the service internal documentation
stored in documentation management systems, nor with the data storage schemes man-
aged by data storage management systems. Accordingly, the service internal documen-
tation of the documentation management systems is not connected with the DAS in the
service repositories, the DAS source code in the source code management systems,
and the data source schemes in the data storage management systems. However, from
our experiences, in order to efficiently maintain DAS, a further integration of the DAS,
the DAS source code, the DAS documentation, and the data storage schemes is compul-
sory. In the following we describe the related problems experienced when maintaining,
reusing, developing, and tracing a huge number of DAS in a large enterprise in more
detail.

Source Code
Management System

Data Storage Schema
Management System

Service Repository

Database

WSDL

Database

soure code
(e.g. DAS,
DAOs, etc.)

code (DAS,
DAOs,

ORM, data
source)

Documentation
Management System

Database

data storage
schema

? ?

Database

?

?
?

service internal
documentation

Figure 1.1: Missing Links between Data Access Services, Source Code, Documentation
and Data Storage Schemes

Difficult maintainability In organizations, usually data storage schemes are subject
to changes. In order to efficiently maintain DAS, it is important to know which DAS are
concerned by a change. If a database table schema is redesigned e.g. in case of altering
a column, it will be essential to find all DAS that read or write data from this table in
order to adapt them. Accordingly, if a table is dropped, some DAS will be obsolete and

10

should not be available anymore. Due to lacking integration of DAS and the physical
data schemes, further elaboration to improve maintainability of DAS is required.

Insufficient reuse of persistent data access best practices DAO implementa-
tions use techniques for mapping data objects to physical database tables. These object
relational mappings (ORM) have already been subject to extensive research and de-
velopment. However, in some cases there are several ways in which the mapping can
be performed, and the resulting design decisions are typically based on performance or
other issues. Moreover, “up-to now attaining good performance still requires careful
optimization based on expert knowledge, which can make programs difficult to maintain
and evolve“29. Thus, in order to improve development productivity, there is a need to
reuse these DAOs in particular within teams and departments, but also within the over-
all enterprise or between partner organizations. Though DAOs are critical components
in terms of performance, DAOs are hardly reused. A basic reason for this is that finding
a suitable DAO for reuse among hundreds of DAOs usually is a time-consuming task.

Different stakeholders have different requirements Moreover, different stake-
holders involved in a business process should be able to understand the SOA only from
their perspective. For instance, service developers require mainly information about
which DAS access which data, process developers require DAS rather as interfaces to
the data, and IT-architects require the big picture of the process/DAS interconnection

Tight coupling between persistent data access and business logic in processes
The decision which alternative path to run in the business process often depends on per-
sistent data. Thus, there is a tight coupling between persistent data access and business
logic of a business process. This tight coupling is necessary to enable stakeholders to get
a basic understanding of the overall process. However, when the number of activities
in the process grows, focusing on particular activities of the process flow, such as the
process activities reading or writing persistent data (referred to as persistent data access
activities throughout this thesis) is a time-consuming task. In data-intensive applica-
tions, in order to solve structural problems concerning persistent data access in process
flows e.g. deadlocks, stakeholders such as data analysts, DAS developers, and database
testers need to overview and analyze the persistent data access activities.

1.3 Motivating Scenario
In the following we motivate the concepts presented in this thesis work. For this, we
consider a department of a large organization in which five development teams are each
responsible for developing e-government applications. Each team is in charge of planning,
analyzing, designing, developing, testing, and maintaining a certain business application
through the complete software cycle. In order to access the persistent data in the busi-
ness applications, each team provides its own data access services (DAS). These DAS are
used by the team itself and are consumed by other teams. The DAS implementations can

11

incorporate Data Access Objects (DAO) encapsulating object-relational mappings be-
tween data objects (POJOs) and data storage schemes, and connections to the database.
The development teams only need to view their own service implementations and have
to search for suitable services in other teams for reuse. On top of these development
teams, there is an executive board of a team of IT-architects responsible for the overall
architecture. The IT-architects focus on the big picture of the business process persistent
data access interconnection. The IT-architects job is to find out technology synergies
between the development teams and to consider about system and technology replace-
ments. Thus, they should have an overview about the whole architecture, and should be
able to inspect implementation details such as the service provider urls, object-relational
mappings, and the database connections. Moreover, in order to achieve improvements
such as business application refactoring, they have to know the data dependencies be-
tween the teams such that which business applications from one team access certain data
from another team.

As the number of process activities grows, the development teams usually can no more
survey which services access which persistent data storages. Likewise, the IT-architects
typically collect their required information from the development team members or access
most likely out-of-date documentation.

In this thesis, we fill the gap between processes and their DAS. As a result, both the
development teams and the IT-architects can have an overview of the overall architecture
including service implementation details such as the database connections of a business
application.

1.4 Research Questions

Research Question 1: How to improve documentation of the relationships
between processes, services, and persistent data access? Stakeholders need
to understand the relationships between process activities, the invoked DAS, the DAOs,
and the physical data storage schemes. E.g. persistent data access documentation should
contain which database tables relate to which data objects and which data objects are
used by a DAS. Unfortunately, documentation approaches to trace these relationships
usually lack quality. Accordingly, most software engineers do not update most soft-
ware documentation in a timely manner. “The only notable exception is documentation
types that are highly structured and easy to maintain, such as test cases and inline
comments“77. This research question focuses on how to make persistent data access in
process-driven SOAs easily understandable and documentable.

Research Question 2: How to support different stakeholders to model and
get their relevant part of persistent data access? Different stakeholders involved
in a business process should be able to understand persistent data access from their
perspective. For instance, data analysts require mainly information about which DAS
access which persistent data, business process developers require DAS rather as interfaces
to the data, and database administrators focus on the physical data storage schemes and

12

database connection details. This research question focuses on how to make persistent
data access in process-driven SOAs easily accessible to different stakeholders.

Research Question 3: How to support stakeholders in solving structural prob-
lems in business processes? Unfortunately, the process activities are usually tightly
coupled. Thus, when the number of activities in the process grows, focusing on partic-
ular activities of the flow such as the persistent data access activities invoking DAS is a
time-consuming task. In data-intensive applications, in order to solve structural prob-
lems in business processes such as deadlocks, stakeholders need to overview and analyze
the persistent data access activities of the process flow. This research question deals
with how to support stakeholders in solving structural problems concerning persistent
data access in business processes.

Research Question 4: How to build an architecture to enhance manageability,
maintainability, and reuse of persistent data access in a SOA? Though DAS
are critical components in terms of performance, they are hardly reused. However, in
order to improve development productivity, there is a need to reuse DAS in particular
within teams and departments, but also within the overall enterprise or between partner
organizations. Moreover, in order to efficiently maintain DAS, it is important to know
which DAS are concerned by an underlying change. In example, if a physical storage
schema is redesigned e.g. in case of altering a column, it will be essential to find all DAS
that read or write data from this table in order to adapt them. This research question
focuses on the requirements decisions for enhancing manageability, maintainability and
reuse of DAS.

1.5 Scientific Contributions
In order to answer the research questions before, this thesis achieves a series of scientific
contributions as specified as follows. Figure 1.2 gives an overview of these contributions.
In the figure, the number, dedicated to each of the contributions, corresponds to the
number of the contribution, described below. The bars on the left and on the right in
the figure denote the outcomes of the contributions. Accordingly, both contribution 1
and contribution 2 aim at improving documentation and traceability of persistent data
access in process-driven SOAs. Furthermore, a better stakeholder support results from
the 1st contribution, whereas the 2nd contribution focuses on structural problem solving
in business processes. Moreover, with both contribution 3 and contribution 4, we can
achieve better maintainability and reusability of persistent data access in process-driven
SOAs.

1. View-based data modeling framework (VbDMF) Based on the concept
of separation of concerns and the view-based modeling framework (VbMF) we
developed a set of data-related models tailored to the requirements of different
stakeholders. The data-related extension of VbMF, the view-based data modeling

13

Contribution 1:

A View-based

Data Modeling

Framework

(VbDMF)

Contribution 4:

A View-based

Model-Driven

Data Access

Architecture

(VMDA)

Contribution 3:

A Reusable

Architectural

Decision Model for

Model and Metadata

Repositories

(RADM)

Contribution 2:

Persistent Data

Access Flows

Modeling Persistent Data Access Managing Persistent Data Access

Improving Integration of Persistent Data Access in Process-Driven SOAs

S
ta
k
e
h
o
ld
e
r
S
u
p
p
o
rt

T
ra
c
e
a
b
ili
ty

R
e
u
s
a
b
lity

M
a
in
ta
in
ta
b
ility

D
o
c
u
m
e
n
ta
ti
o
n

P
ro
b
le
m
 S
o
lv
in
g

Figure 1.2: Contributions Overview

framework (VbDMF), introduces a layered model for accessing data in process-
driven SOAs83. These models are used throughout this thesis to improve traceabil-
ity, documentation, and maintainability of persistent data access in process-driven
SOAs. Consequently, these models have been specified to answer research question
1 and 2. VbDMF contributes to increase integrity of DAS within the process-driven
SOA by connecting process activities with DAS and the DAS with their underlying
implementation such as the DAOs, object-relational mappings, physical data stor-
ages, and database connections. Different data-related stakeholders such as data
analysts, DAS developers, database testers, etc. can view data-related information
according to their particular interest.

2. Persistent data access flows In order to answer research question 3, we applied
the concept of persistent data access flows to solve structural errors in business
processes. In this thesis, we introduce tailored persistent data access flows to
support stakeholders in solving structural errors in business processes. Several
motivating scenarios illustrate how different stakeholders can use our persistent
data access flow concept to solve different kinds of problems. A view-based model-
driven solution validates the feasibility and applicability of the approach. Finally,
we prove the correctness and the complexity of the used algorithms.

3. A reusable architectural decision model (RADM) for model and meta-
data repositories In order to answer research question 4, we firstly provide ar-
chitectural decision-support for architects in planning and setting up model and
metadata repositories. With our RADM we stakeholders can find solutions in re-
solving fundamental design problems arising during the design phase. For each
decision we present recommendations which alternative to choose depending on

14

certain requirements and boundary conditions. Hence, given a set of individual
requirements, our architectural decision model helps in setting-up a repository, as
well as building a custom repository. In a case study we illustrate the major design
decisions made when setting-up our own Data Access Service (DAS) repository.

4. A view-based model-driven data access architecture (VMDA)Our VMDA
focuses on better managing DAS in process-driven SOAs, and thus, contributes to
increase DAS reuse and maintainability. In order to solve research question 4,
our novel contribution combines four basic concepts (DAS, MDD, DAS repository,
VbMF/ VbDMF). To fulfill the requirements such as dynamic changes of data
sources in a process-driven SOA, we support DAS to read and write data from a
data source. However our architecture approach can be reused to integrate other
types of persistent data access implementations into DAS. We use the model-
driven development (MDD)139 approach to be able to abstract DAS from a higher
level than the source code layer. Another useful development aspects of MDD,
we can make use of, are automatic source code generation and deployment. To
provide management support for services, we introduce a DAS repository storing
DAS models and model instances. In particular, our DAS repository architecture
provides a query service with which remote repository clients can discover models
and model instances stored in the central repository. Our model-driven solution is
based on VbMF and VbDMF. The concept of separation of concerns contributes
to enhance documentation of processes, DAS, DAOs, the underlying physical data
storage schemes, and the relationships between them in process-driven SOAs.

1.6 Previously Published Work

Conference papers:

• We have specified the View-based Data Modeling Framework (VbDMF) for mod-
eling persistent data access in process-driven SOAs. VbDMF and the fundamental
concepts of this thesis were published in the following publication. We presented
the VbDMF fundamental concepts at the ServiceWave conference in Madrid. C.
Mayr, U. Zdun, and S. Dustdar. Model-Driven Integration and Management of
Data Access Objects in Process-Driven SOAs. In P. Mähönen, K. Pohl, and T.
Priol, editors, ServiceWave, volume 5377 of Lecture Notes in Computer Science,
pages 159–170. Springer, 2008.

• The reusable architectural decisions for setting-up model and metadata repositories
were published in the following paper: C. Mayr, U. Zdun, and S. Dustdar. Reusable
Architectural Decision Model for Model and Metadata repositories. In FMCO,
pages 1–20, 2008.

Journal papers:

15

• Our view-based model-driven architecture for enhancing maintainability of data
access services was published in the following journal: C. Mayr, U. Zdun, and S.
Dustdar. View-based Model-Driven Architecture for Enhancing Maintainability of
Data Access Services. In Data & Knowledge Engineering, September, 2011.

• Our approach to improve traceability of persistent data access flows in process-
driven SOAs is to be published in the following journal: C. Mayr, U. Zdun, and
S. Dustdar. Improving Traceability of Persistent Data Access Flows in Process-
Driven SOAs. In Distributed and Parallel Databases (under review).

1.7 Thesis Structure

The rest of this thesis is organized as following.

Chapter 2 introduces the state-of-the-art in managing and modeling persistent data
access in process-driven SOAs. Furthermore, we compare our contributions to
related work and explain how our contributions emphasize from this related work.

Chapter 3 introduces the background concepts of this thesis to better understand our
contributions. These are service-oriented architectures, model-driven development,
persistent data access, and the view-based modeling framework.

Our four major contributions are split into modeling and managing persistent data
access in process driven SOAs. The following two chapter focus on modeling persistent
data access in process-driven SOAs:

Chapter 4 introduces the View-based Data Modeling Framework (VbDMF) with a set
of data models used to specify the relationships between process, service, data
object, and persistent data storage. In this thesis we use VbDMF to prove our
concepts aiming at a better management of persistent data access in process-driven
SOAs.

Chapter 5 addresses the tight coupling of process activities by extracting tailored per-
sistent data access flows from the whole process flow. To the best of our knowledge
persistent data access flows are not used to solve structural problems concerning
persistent data access in business processes, yet. In a series of motivating scenarios
we illustrate how the persistent data access flow concept can be applied to problem
solving. Moreover, we qualitatively and quantitatively prove both the applicability
and feasibility of our approach.

The following two chapter focus on managing persistent data access in process-driven
SOAs:

16

Chapter 6 describes reusable knowledge in form of reusable architectural decisions for
IT-architects in setting-up, planning, and developing model and metadata reposi-
tories. A case study illustrates the decisions made when setting up our own data
access object model repository by walking through the reusable architectural de-
cision model.

Chapter 7 focuses on bridging the gap between the DAS and their implementation by
presenting a view-based, model-driven data access architecture (VMDA) managing
models of the DAS, DAOs and database queries in a queryable manner. Further-
more, we describe tool-support, and illustrate the applicability of our VMDA in
an industrial, large-scale case study. By evaluation, we quantitatively prove that
our approach performs with acceptable response times.

Finally,

Chapter 8 summarizes our research problems and the major contributions, and presents
some potential future work.

17

CHAPTER 2
Related Work

In this chapter we present related work from the existing literature, related standards,
and known uses. We also emphasize the contribution of our work by explaining how our
work compares to these related works. As our thesis is about managing and modeling
persistent data access in process-driven SOAs, this chapter is organized as follows: In
Section 2.1 we present the related work concerning managing persistent data access in
process-driven SOAs. Finally, in Section 2.2 we relate our View-based Data Modeling
Framework (VbDMF) to alternative solutions modeling persistent data access in process-
driven SOAs.

2.1 Managing Persistent Data Access in Process-Driven
SOAs

To be able to manage persistent data access in process-driven SOAs, we were inspired
of repositories in general. In14, Bernstein and Dayal give a fundamental overview of
repository technology as well as functional requirements of a repository. We compare
our architectural concepts with common service and model repositories. Afterwards we
relate our VMDA to alternative DAS architecture approaches. Furthermore, we contrast
the VMDA with other view-based systems. Finally, we check our model-driven approach
against the field of semantic knowledge discovery.

Service repositories Our work is in particular influenced by repositories incorporat-
ing metadata. A common representative of metadata repositories are service reposito-
ries. These service repositories contain metadata about location information such as
service bindings according to the web service description language (WSDL). There exist
several web service registry standards and implementations. Common standards are
UDDI25, ebXML99, and WSIL18. Examples of related implementations are the ebXML

19

repository reference implementation43 and the WebSphere service registry and reposi-
tory (WSRR)58 that is based on UDDI. Like our view-based model-driven data access
architecture (VMDA), ebXML web service registries99 have interfaces that enable sub-
mission, query, and retrieval of the contents of the registry. However, standards such
as UDDI are not adequate enough for finding suitable services5. In example, due to
missing key words and unsatisfactory documentation retrieving DAS is often impossible.
Consequently, there is a need to utilize service context during the discovery process125.
In our approach, we can search for DAS by more sophisticated criteria. Known infor-
mation about the underlying databases, tables, columns, and ORM frameworks can be
exploited for a more targeted DAS search and thus enable us to achieve better search re-
sults in less time. In order to integrate our DAS repository into process-driven SOAs, we
adopted the basic CRUD interface abstractions, used in these approaches, and assemble
them into our DAS repository architecture. Moreover, these service repositories such as
UDDI25 strictly separate the interfaces from their implementation. In contrast to these
approaches, our VMDA integrates the DAS with the underlying DAOs, object-relational
mappings, and database connections, and we can thus provide a high-quality documen-
tation of currently available and deployed DAS. This documentation can comprise both
the DAS, contingently underlying DAOs encapsulating the database queries, as well as
the data storage schemes.

Model repositories There are a series of model repository standards and implemen-
tations (e.g.89,95). An interesting approach is the one of Milanovic et al.89 who present
the design and implementation of a repository that supports storing and managing of
various artifacts such as meta-models, models, constraints, metadata, specifications,
etc. They illustrate the repository’s data model specifying the stored artifacts and ar-
tifact metadata such as versioning information. Furthermore, they give an overview
of the repository architecture, and describe how to manage artifacts from the reposi-
tory’s point of view. However, they do neither specify client-server interactions nor how
to synchronize with other repositories. Furthermore they do not provide an overview
about different types of metadata such as those presented in our work. They exem-
plary illustrate the design of the BIZYCLE repository architecture without identifying
architecture decisions to select different alternatives and options. In this thesis, we also
describe the basic repository services from a user’s point of view. Instead of involving
management issues such as project management and user control, our decisions primarily
deal with the question which artifacts shall be stored in a repository and how to model
the associations between them.

Nissen and Jarke’s encouraging work propose repository support for goal-oriented
inconsistency management in customizable multi-perspective modeling environments95.
Their repository approach aims at integrating meta-meta-models, meta-models, concep-
tual models, and model instances. Thus, Nissen and Jarke focus on the relationships
between the different modeling levels. Like their approach, our repository approach
stores meta-models, models and model instances and manages theses artifacts. How-
ever, in contrast to creating new perspectives for each modeling level, we concentrate on

20

creating views within a specific modeling level in order to enable stakeholders to focus
on several concerns of the overall model instance. According to the concept of separation
of concerns, in our work, database administrators can focus on the Physical Data View
describing database tables whereas DAO developers can focus on describing DAOs of
the DAO View.

Min et al.90 present an XML data management system using a relational database
as a repository that translates XQuery expressions into a single SQL statement. They
provide powerful searching using the standard XQuery language. However, e.g. in order
to create source code from the defined models, the models are usually based on a meta-
model. Hence, if the models contain embedded metadata elements, then using XQuery
to query the model elements will be very complex for stakeholders who do not know the
underlying meta-model. On the contrary, we use a lightweight easy-to-learn language
based on key word search conditions which fulfills the requirement to search for view
model instances and view models by different search criteria. Thus, our query language
supports user-friendly key word search in XMI model instances and models whereas Min
et. al. ’s approach lacks usability, when stakeholders only have a limited knowledge of
the metadata within the XML models.

France et.al.’s interesting approach42 introduces a development plan for setting up
model repositories storing MDD artifacts. In contrast to our approach, the authors of
the ReMoDD project in particular focus on the types of interactions that are most useful
for repository users. Besides, the ReMoDD project’s scope of research does not include
storing metadata.

Finally, there are many articles that focus on each of the architectural decisions for
setting up model and metadata repositories for their own. For example, several work10,52

focus on algorithms of mapping XML model instances to a certain repository storage
type. However, for the best of our knowledge there is no work that connects all these
illustrated architecture decisions with each other.

Data Access Service Architecture Approaches The most related to our work is
probably the architectural approach of Zhu et al.146. Like our approach, they use data
access services (DAS) to address the problem of large scale data integration where the
data sources are unknown at design time. More specifically, their architecture approach
proposes an integration broker service in order to establish a high level integration of
DAS into the SOA. Likewise, they focus on semantic description and discovery of DAS.
However, they do not describe how these semantic descriptions are linked with the DAS.
In contrast, in this thesis, we propose a model-driven view-based approach to describe
these semantic descriptions used to discover DAS in a SOA. Whereas their approach
specifies a high-level architecture, we rather present a continuous approach to develop,
maintain and manage DAS.

Like our approach, Resende uses DAS to manage heterogeneous data sources in SOA
environments114. Further, he describes how to efficiently handle persistent data access
with service data objects (SDO)114. Like our approach, Resende uses DAS to access the
data. In contrast, in their solution, the DAS are based on the SDO programming model

21

in order to handle data across heterogeneous data sources fit for a SOA environment.
In our approach we use the DAS as a general abstraction layer for integrating data
into the SOA rather than defining a certain implementation technology of the DAS.
Accordingly, our approach is more general, because the DAS can be implemented on top
of various service technologies such as SDO or the Java Architecture for XML Binding
(JAXB)136 to transform XML data formats into objects of object-oriented programming
languages. This unmarshalling is encapsulated by the DAS used for uniformly accessing
heterogeneous data sources.

View-based approaches To the best of our knowledge, up to now there is no work
that explicitly proposes a view-based model-driven architecture for managing and main-
taining DAS. However, there are many approaches using views in order to enhance
maintainability and traceability. In particular, our view-based concept is similar to
concerned-based and multi-perspective software development approaches:

Robillard et al.117 present a system called ConcernMapper in order to enable a
simple view-based separation of scattered concerns. The basic idea of ConcernMapper
is to allow developers to associate parts of a program with high-level concerns. Their
approach supports developers in development and maintenance tasks involving scattered
concerns by allowing them to organize and view the code of a project in terms of high-
level abstractions called concerns. Like our approach, an extensible platform is intended
to provide a simple way to store and query concern models. However, the concerns
are only subject to developers, whereas our view-based models can be tailored to the
requirements of diverse stakeholders. Moreover, concerns can only be retrieved, when
the relevant source code section has been mapped to concerns, before. Due to our model-
driven approach, we can retrieve all model elements and their relationships by diverse
search criteria.

Nuseibeh et al.97 apply their viewpoints framework to focus on method engineering in
a multi-perspective software development environment. In order to manage the diversity
in composite systems, their viewpoints, like our views, are defined to be loosely coupled
and encapsulate specific knowledge about processes,systems, and domains. Moreover,
as VbDMF, their viewpoints are described and developed following a formal notation
and development strategy. In contrast to our approach, their view-based solution is
an organizational framework. Our DAS repository is rather designed to store loosely
coupled models that have defined connection points to support a flexible integration
within the models. In addition, due to our model-driven approach, our model instances
can be transformed to other outputs such as source code and documentation.

Semantic knowledge discovery There are several approaches for semantic knowl-
edge discovery e.g.122,20. Representatively, we refer to the software architecture of
Cannataro et al.20 for distributed knowledge discovery. The paper discusses how the
knowledge grid can be used to implement distributed data mining services. These data
mining services are defined to search, select, extract, and transform data from specific
data sources. In particular, data sources can be found based on user requirements and

22

constraints. The disadvantage of these semantic approaches is that “the semantic service
discovery is more time-consuming due to the additional context and semantic matching
modules“80. In this chapter, we show that our query engine performs much better than
these semantic discovery approaches. In our view-based model-driven data access archi-
tecture (VMDA), we store structured model instances. Thus, with our VMDA, there
is no need to extract structured data from plain text by semantic services. Moreover,
we can reuse the high-structured DAS for model-to-code and model-to-documentation
transformations.

2.2 Modeling Persistent Data Access In Process-Driven
SOAs

In this section, we relate our view-based model-driven solution to related work concerning
modeling persistent data access in process-driven service-oriented environments. Hereto,
firstly, we compare to various approaches focusing on better integrating persistent data
into the overall SOA22,48,141,144. Secondly, we compare our model-driven solution to
existing business process modeling systems (BPMS). Finally, we contrast our VbDMF
with alternative solutions concerning solving structural problems in business processes.

Modeling persistent data access

In the literature, various related works propose using data access services (DAS) for
better data integration.

Carey et al.22 examined how the AquaLogic Data Services Platform (ALDSP) sup-
ports data modeling and design. They describe the ALDSP 3.0 data service model and
assert that the modeling extensions in ALDSP 3.0 provide a rich basis for modeling data
services for SOA applications.

Wang et al.141 propose a dynamic data integration model architecture based on SOA.
On the basis of XML technology and web service, their architecture model enables data
sharing and integration over all business systems. Thus data resource and information
interoperability is realized in a cross-platform manner.

As our approach, both ALDSP22 and the dynamic data integration model141 use
data access services to read and write data. However, they focus on separate modeling
of data access services for use in external environments. In these two approaches, data
integration overall business systems is established by using DAS as interface to the data.
In contrast, we propose a continuous integration approach to be able to exploit the
structured nature of the data access service models in business processes.

Zhang et al.144 propose a new process data relationship model (PDRM) to specify
the complex relationships among process models, data models, and persistent data ac-
cess flows. In our approach, we define the activities incorporating data access as DAS
activities. Likewise, Zhang et al. define these activities as data access nodes (DAN). Like
our approach, they understand data access flows as persistent data access flows rather
than data flows representing transient and persistent data. However, as opposed to our

23

approach, they focus on automatic data access component generation to cluster similar
data access components into larger components. In contrast, we concentrate both on
the applicability and the feasibility of generating data access flows. Furthermore, un-
like our model-driven solution, they solely focus on simple activities and cannot model
structured process activities.

Zhang et al.48 introduce a unique information liquidity meta-model (ILM) to separate
persistent data integration logics from business services and application services. Like
our approach their architecture uses a data service layer to access the data. In addition,
as our approach, they use views to relate processes to new and existing services, or new
and existing data definition. Whereas our approach focuses on modeling new view models
and extracting new view models from existing view models, they solely concentrate on
creating new models. In our approach we also focus on solving data analysis problems
by creating flattened persistent data access flows from the whole process flow.

Developmental related work Nowadays, there still is a missing link between the
programming components and the data storage schemes83. This gap results in several
object-relational mapping (ORM) problems41. A straightforward approach to solve this
problem are cartridges, such as those provided by AndroMDA7 or Fornax39. Cartridges
support separation of concerns by providing mechanisms for accessing and manipulating
data through DAOs. They are predefined components for model-driven generators that
enable developers to integrate DAOs into services by generating either an instance of
a DAO interface into the service code7 or generating DAO instances into the service
operation39. However, the relationships between DAO operations and service operations
are not specified so far by cartridges. Even though the Fornax cartridge39 connects DAOs
to service operations, it lacks information about which DAO operations are invoked
by which service operation. This information, however, is important for stakeholders,
such as software architects and service developers, to gain a clear view about which
database transactions are invoked by which service operation. To overcome this problem,
we extend the cartridge approach with the integration of DAO operations into DAS
operations.

Finally, SVN/CVS version management systems are closely related to our approach.
These systems can act as a DAS repository by historicizing all versions of DAS/DAO
model instances. However, this approach has some major limitations: When develop-
ers want to reuse committed source code from the version management system, they
have to check-out the specific components, provided that they know exact names (or at
least roughly the names) of the components that should be reused. However, if they
do not know the exact name of a component to be reused, all DAS/DAOs will have to
be checked-out from the version management system. Hence, a local full text search
is necessary to find DAS/DAOs by a key word, e.g., by a column of a database ta-
ble. In contrast, our DAS repository provides searching mechanisms to retrieve suitable
DAS/DAOs by diverse search criteria with acceptable response time.

24

Business Process Modeling Systems (BPMS)

Our work is closely related to common commercial and open-source business process
modeling systems (BPMS)142. Representatives of common commercial BPMS are IBM
Websphere MQ Workflow59, Webmethods123, and TIBCO130. In addition, there are
common representatives of open-source systems i.e. JBOSS64 and Intalio60.
Russel et al.118 define a specific data interaction pattern for how BPMS access persistent
data. Their main focus is to determine data patterns in business processes. On top of
this data integration pattern, our conceptual approach focuses more on solving structural
problems in business processes by using persistent data access flows. Unfortunately,
many BPMS do not explicitly support this pattern by a direct integration of persistent
data access into the process activities. In example, IBM Websphere MQ Workflow59

and Intalio BPMS Designer60 do not provide an explicit mechanism to invoke persistent
data access from the process activities within the BPMS. In these BPMS, the persistent
data is rather accessed e.g. through underlying services incorporating the persistent data
access implementation.

Other BPMS such as Webmethods123, JBOSS Messaging63 and TIBCO130 support
integration of persistent data access into the process activities. In these BPMS, process
activities can directly request persistent data within the BPMS environment. However,
as opposed to our persistent data access flow concept, these BPMS do not provide com-
parable support to adequately overview persistent data access in data-intensive business
processes. In Webmethods123, stakeholders can configure adapter services used to read
or write data from the database, in example the InsertSQL, UpdateSQL and DeleteSQL
services. As our approach, the services can configure SQL statements in a structured
way. For example, statements can contain structured elements such as database connec-
tion properties, database tables, and database table columns. Furthermore, Webmeth-
ods provides filtering mechanisms to limit the adapter services by structured elements
such as catalogs, schemes, and tables. JBOSS Messaging63 supports configuration of
relational database connections by the JDBC Persistent Manager. A channel mapper is
used to configure SQL statements such as Create and Select. However, as opposed to our
approach, JBOSS Messaging does not support structured modeling of persistent data
access. In TIBCO130, it is possible to establish the link between a process activity and
structured process data models with business objects, e.g. specified in UML74, designed
with TIBCO Business Studio. TIBCO provides tooling support to read/write access
from the business objects.

Solving Structural Problems in Business Processes

There are several approaches concerning solving structural problems in business pro-
cesses11,119. Sadiq et al.119 identify structural conflicts in process models by applying
graph reduction rules. Awad et al.11 use business process queries to detect structural
problems in business processes. In contrast to these works, in our approach, besides
solving structural problems in business processes, we aim at enhancing traceability and
documentation of persistent data access. Moreover, we provide a model-driven solution

25

to reduce business process complexity as we can flatten business processes by certain
filter criteria.

At this point we want to clearly differentiate our approach from other works such as
BPELDT49 which focuses on the data flows transporting data from one process activity
to the next process activity. Habich et al. introduce BPEL data transitions to efficiently
model “data-grey-box web services“49. In contrast, in our approach, we focus on tracing
the persistent data access activities themselves instead of the transitions between two
process activities.

Static analyzing techniques There are a number of frameworks for performing static
analysis to extract common data flows from the whole program. An example of these
static analysis approaches is the demand-driven flow analysis as proposed by Duesterwald
et al.31. “The goal of demand-driven analysis is to reduce the time and space overhead
of conventional exhaustive analysis by avoiding the collection of information that is
not needed“76. As our approach, Duesterwald et al. focus on extracting sub flows from
process flows on-demand. However, they aim at extracting common data flows instead of
persistent data access flows. Moreover, we provide a model-driven, view-based approach
to analyze and document persistent data access flows in process-driven SOAs.

Testing There are a number of approaches in the literature that elaborate on test case
creation and selection.

Fischer et al.37 focus on improving test case quality for declarative programs by
introducing a novel notion of data flow coverage. In their opinion, a visual representation
of the control- and/or data flow would help the users to better understand program
execution. We share the opinion that a visual view increases the understandability of
the data flows. However, our views are not restricted to the viewing of these data flows.
Accordingly, our persistent DAS Flow View can be integrated with other views in order
to form richer views, in example with the DAO View, the ORM View, and the Physical
Data View.

There are several works using data flows for selecting test cases as presented in112.
Rapps et al. apply data flow analysis techniques to examine test data selection criteria.
The procedure presented associates each definition of a variable with each of its usages
within a flow. The data flow criteria that they have defined can be used to traverse each
path. Like our approach, each persistent data access activity in the process flow can be
associated with corresponding definitions. In contrast to this formal approach, we use a
visual approach for selecting our test cases.

Deadlock detection and prevention In the following we relate our solution to
various static and dynamic deadlock detection techniques.

There are many runtime approaches (such as61 and113) that aim at deadlock-free
sharing of resources in distributed database systems. Isloor et al.61 distinguish between
deadlock detection, deadlock prevention and deadlock avoidance techniques. Krishna
et al.113 present a graph-based deadlock prevention algorithm that reduces processing

26

delays within the distributed environment. However, with our persistent data access flow
approach we provide a visual solution in order to discover errors at the earliest stage of
development – at the modeling level.

There are a number of static deadlock detection algorithms (e.g.92). Naik et al’̇s92
deadlock detection algorithm uses static analyses to approximate necessary conditions
for deadlocks to occur. Their effective algorithm concentrates on detecting deadlocks
between two threads and two locks.

Dedene et al.28 present a formal approach to detect deadlocks at the conceptual
level. In their work, they present a formal process algebra to verify conceptual schemes
for deadlocks based on the object-oriented analysis (OOA) method M.E.R.O.DE. As our
approach, Dedene et al. can check the models for deadlocks at the earliest stage in the
development process.

An interesting approach is presented by Zhou et al.145. Like our approach, the
authors use a static approach to analyze deadlocks in data flows. They in particular
concentrate on analyzing deadlocks in loops. In order to determine deadlocks, they
define a causality interface that abstractly represents causality of data flow actors.

In contrast to these formal deadlock analysis approaches, again, our approach is a
visual solution for detecting deadlocks. Furthermore, on top of our approach, common
deadlock detection and prevention techniques as described before can be performed.
Furthermore our persistent data access flow concept aims at documenting the persistent
data access flows within the control flow. Thus, with our approach we do not solely
focus on detecting deadlocks in process flows, we rather enable a more general analysis
of a series of development and testing problems.

Transaction handling (BPMS) In order to solve structural problems in business
processes, common BPMS such as IBM Websphere MQ Workflow59, JBOSS64, and
Intalio60 support transaction handling. Thus, in case of failures, the transactions can
be rolled back or compensated. Whenever some actions cannot be rolled back e.g. due
to external dependencies, a compensation handler can be invoked to perform an “undo
action“. In contrast, our persistent data access flow approach focuses on the underlying
structural problem. Moreover, we solve the cause of the failed transactions instead of
solely handle the problem. In example, if a database table is locked, due to a structural
problem in the business process, our persistent data access flow approach will contribute
to solve the problem more quickly. In addition, our model-driven provides up-to-date
documentation of persistent data access in business processes.

27

CHAPTER 3
Background

In this chapter we present some background information in order to better understand
the contributions in the following chapters.

3.1 Service-Oriented Architecture

Services are self-describing and self-contained components designed to support the com-
positional development of distributed systems109. In a SOA, organizations publish ser-
vices by suppling their services descriptions and by providing corresponding technical
support. Service descriptions include both functional and non-functional specifications
of the services. Functional specifications include the service interface descriptions, ex-
pected results, and behavior. Non-functional descriptions are Quality of Service (QoS)
attributes such as response time, availability, security, scalability etc.109. Whereas ser-
vice providing organizations publish the service descriptions, the service implementation
details remain hidden to the service consuming parties. Service consuming organizations
can query the state of a service by standard interfaces109. Service registries facilitate
service providing organizations to describe their services. Similarly, service consumers
are assisted in finding service descriptions registered by service providers71,108. After lo-
cating a service, service consumers can bind the service in order to communicate with it.
Figure 3.1 illustrates these relationships between a service consumer, a service provider
and a service registry in a SOA.

A web service is a special kind of service, whose service interface descriptions are
specified by a web services definition language (WSDL). Web services commonly com-
municate with each other via SOAP messages (in XML format). Web service consumers
utilize the universal description, discovery, and integration (UDDI) standard to locate
service providers and discover web service descriptions26,109. As a result, Web service
consumers can dynamically bind web service descriptions to web service implementa-
tions.

29

Service

Consumer

Service

Provider

Service

Registry

find publish

bind

communicate

Figure 3.1: Service-Oriented Architecture (SOA) Triangle

The WS-* stack is a collection of protocols and standards, mostly based on HTTP,
designed for building web services. This WS-* stack includes WS-Notification, WS-
Security, WSDL, and SOAP. In practice, these protocols and standards are used to
implement remote procedure call (RPC) applications over HTTP115. RPC-style web
service clients send an envelope containing the whole set of arbitrary service operations
to the service. RPC-style services are accessible via a single service endpoint URI. A
common light-weight alternative to RPC-style web services, are REST-style services:
REST is an architectural style to manipulate resources using a uniform set of HTTP
methods. As REST-style web services are resource-oriented, they expose one URI for
each resource of the service56,108,115. In our prototype implementation, our models
specify RPC-style web services.

3.2 Model-Driven Development

Models are gaining importance in software development, for instance in the model-driven
development (MDD)46,139 field, as well as in other disciplines such as biology and physics.
Today many systems are modeled with precisely specified and detailed models. Reasons
are among others the increasing support for model interoperability between modeling
tools116 and the increasing use of model-driven development (MDD)46,139. In MDD
many tools in a tool chain must work on a set of models, and they must be able to
import models developed with external modeling tools. Model repositories32,72,124 sup-
port this trend by managing modeling artifacts, such as models, model instances, model
relationships, and so on. A model repository enables modelers to create, retrieve, up-
date, and delete modeling artifacts, and to query for them. Usually additional metadata
about the modeling artifacts can be stored and used in the queries. These model and
metadata repositories can support extra functionality, such as versioning support, se-
curity functions, or storing of related source code artifacts. Some repositories are even
pure metadata repositories.

30

Repository, Metadata Repository, and Model Repository

The field of repositories is currently a popular area of research. Therefore the follow-
ing definitions are not exhaustive with regard to a full functional and non-functional
requirements specification of a repository. These nominal provisions rather point out
those characteristics of a repository we in particular focus on in this thesis.

We define a repository as a centrally accessible component storing information about
reusable artifacts14. Examples of these artifacts are source code, documents, and special-
purpose models such as models for defining data objects in object-oriented environments,
models for MDD139, biology models78, and so on. Furthermore, a repository has to pro-
vide the means to query these information artifacts and metadata about these informa-
tion artifacts respectively according to certain search criteria. In many cases, querying
is performed using some query language.

When setting-up a repository, architects can choose between two alternatives. The
repository can either provide this information by storing the artifacts themselves, or
it stores metadata about where and how a specific artifacts can be accessed, reached,
or invoked. We refer to a repository that stores arbitrary or user-defined metadata
on artifacts as a metadata repository. Typical examples of (categorized) information,
metadata repositories use, is information about users, versioning, affiliations, etc.

When a repository provides models and/or model instances such that it either stores
models and/or model instances as its artifacts or provides these models and/or model
instances stored at other locations, we refer to a repository as a model repository.

Usually, a model repository additionally provides metadata of models or model in-
stances. Hence, we refer to a repository that provides metadata of models and/or model
instances as a model and metadata repository.

3.3 Persistent Data Access

Data access services (DAS) Most service-oriented applications require reading or
writing data from a central physical storage, typically an RDBMS. Nowadays, this data
access is done by so-called data access services (DAS). DAS are variations of the ordinary
service concept: They are more data-intensive and are designed to encapsulate persistent
data access as a service133. Like a common service consists of service operations, a DAS
consists of DAS operations.

DAS can be complemented with many other technologies and concepts such as Ser-
vice Data Objects (SDO). SDO is a language-independent, unified programming model
defining CRUD operations for handling data access across various data sources such
as RDBMS, XML, flat files, etc. in distributed systems114. DAS can provide a layer
of abstraction between the SDOs and the data sources. This abstraction layer enables
different SDOs to transparently access heterogeneous data sources114.

Data access objects (DAOs) In object-oriented programming environments, the
DAS can use the Java EE Data Access Object (DAO) pattern106 to encapsulate access

31

to the data source. DAOs are a special kind of objects providing access to data that is
usually read or written from one or more database tables. The goal of this design is to
enhance software maintainability and strict separation of the layers providing business
functionality and persistent data access in a SOA. Hence, the DAO hides database-
dependent (e.g. SQL queries87) and technology-specific (e.g. JDBC27) connection details
from the DAS provider. Our approach uses DAS/ DAOs as example implementation.

Business Object Data Access Object Data Source

Transfer Object

creates/ usesobtains/ modifies

encapsulatesuses

Figure 3.2: Java EE Data Access Object (DAO) Pattern106

Figure 3.2 shows a UML class diagram representing the relationships of the Java EE
DAO pattern106. A BusinessObject accesses the data source via the a DataAccessObject.
The DataAccessObject enables transparent access to the data source by encapsulating
the underlying data access implementation. A data source can be any kind of physical
data storage, typically a relational database management system (RDBMS), but also an
XML repository, or a flat file system. If the data source is a service or another system,
the DataAccessObject can use a TransferObject to manipulate or query data from the
data source.

Object-relational mapping (ORM) Developers in the field of object-oriented appli-
cations use data objects and attributes to describe real-life objects. In order to connect
to a relational database management system (RDBMS), they can use a programming
API such as JDBC for database-independent connectivity. For querying and manipula-
tion of data, developers typically use SQL, the most accepted and implemented interface
language for RDBMS87. In a relational database management system (RDBMS), data is
stored in database tables and columns. Thus, when object-oriented applications read or
write data from an RDBMS, developers need to bridge the gap between two different pro-
gramming paradigms: They are faced with the problem of how to map objects to tables
and reversely67. Mapping one data object with a set of attributes to a certain database
table with certain table columns is comparably easy. However, the more sophisticated
object-oriented programming concepts such as aggregation, inheritance, polymorphism,
association between classes, and differing data types need to be implemented by the
developers, too.

ORM frameworks such as Hibernate55 and Ibatis57 support developers in mapping
data between object-oriented programming languages and RDBMS. Due to these tools,

32

development time can be significantly reduced comparably with manual data handling
with SQL and JDBC126.

3.4 View-Based Modeling Framework
The View-based Modeling Framework (VbMF) defines basic processes in process-driven
SOAs. By VbMF different concerns in a business process can be separated into different
views. According to the principle of separation of concerns, VbMF enables stakehold-
ers to understand each view on its own, without having to look at other concerns, and
thereby reduces the development complexity132. By VbMF, view models can be speci-
fied at different abstraction levels e.g. more abstract, technology-independent views are
separated from technology-dependent views: For example, business process developers,
that need to overview the business process and its sub processes, typically use abstract,
technology-independent views. Examples of abstract views are the Flow View, the Col-
laboration View, and the Information View (see Figure 3.3). In contrast, technical
experts, such as system architects, are also interested in technical details such as service
endpoints or database connection properties. Examples of technology-dependent views
are the BPEL Flow View, the BPEL Collaboration View, and the BPEL Information
View132.

Core View

model

Information View

model

Collaboration

View

model

Flow View model

inherits

integrates

BPELInformation

View model

BPELCollaboration

View

model

BPELFlow View

model

Figure 3.3: View-based Modeling Framework (VbMF)

VbMF consists of modeling elements such as view models, and views. A (view)
model (semi-)formally specifies particular business process concerns132. A (view) model
instance, also referred to as view throughout this thesis, conforms to an appropriate
(view) model. The models are defined on top of a meta-model. We use the Eclipse
Modeling Framework (EMF) meta-model to define our models. Accordingly, as shown
in Figure 3.3 the VbMF core model is derived from the EMF128 *.ecore meta-model132.
All views depicted in this thesis are based on the XML metadata interchange (XMI)
standard47. In Figure 3.3, the rectangles depict basic models of VbMF and the lines
depict their relationships to each other. Before we describe the relationships between
the view models and views, in the following, we overview basic VbMF models.

33

• The Core View model is the basic VbMF model and is derived from the Ecore
meta-model128.

• The Flow View model describes the control flow of a process.

• The Collaboration View model basically describes the service operations.

• The Information View model specifies the service operations in more detail by
defining data types and messages.

Examples for technology-specific models are:

• The BPEL Flow View model is inherited from the abstract Flow View model. This
view specifies BPEL specific flow elements such as waits, throws and loops.

• The BPEL Collaboration View model extends the basic Collaboration View and
specifies the service operations and channels.

• The BPEL Information View model extends the abstract Information View by con-
cretely specifying BPEL specific elements such as XML Schema (XSD) elements,
web service messages, and primitive and complex data types.

A new view model can be designed, or extended from another view model by adding
new features. As displayed by the dashed lines in Figure 3.3, basic VbMF view models,
namely the Information View model, the Collaboration View model, and the Flow View
model, extend the VbMF Core View model132. Moreover, a view can be integrated
with another view in order to produce a combined view. The dotted lines in Figure 3.3
indicate view integration e.g. the Collaboration View integrates the Information View
to produce a combined view. By the mechanism of view integration, views can be
enriched by keeping a loose coupling between the views. They can be integrated via
view integration points to provide a richer view or a more thorough view of the business
process. These view integration points can be determined by a view integration algorithm
based on name-based matching132. This algorithm integrates entities of one view with
matching entities of another view. In the following we shortly describe basic models
of VbMF shown in Figure 3.3. Furthermore, VbMF uses transformations to generate
source code from the views. As VbMF is based on model-driven development (MDD)139,
i.e., platform-specific code, such as BPEL/ WSDL, can be generated from the views132.
We use the Eclipse model to text (M2T) project’s Xpand language129 to generate source
code from the models. A BPEL definition for the process flow and a service description
in WSDL140 are generated from the BPEL Flow View, the BPEL Collaboration View
and the BPEL Information View. The Apache Axis2 Web services engine9 supports us
in building Java proxies and skeletons for the services.

To summarize, VbMF focuses on reducing the development complexity in process-
driven SOAs. By exploiting the concept of separation of concerns, it enables stakeholders
to concentrate on tailored views. By the mechanism of view integration, it is possible
to combine these tailored views. In this way, VbMF can, in particular, connect data

34

types and messages of the BPEL Information View to service operations of the BPEL
Collaboration View.

Core-, Flow-, Collaboration-, and Information Flow View model

In the following we specify the basic VbMF models in order to better understand the
contributions presented in the following chapters.

Core View model Figure 3.4 illustrates the VbMF Core View model in more detail.
The Core View Model defines basic elements such as Element, Identifier, and Namespace.
The main Process entity contains 1..n Views, and consists of a list of required and
provided Services132.

-processName : string

View

-name : string

-uuid : string

Identifier

Element

-uri : string

-prefix : string

-NSID : string

Namespace

Service

Process1*

-required

*

1 1

-provided

1..*

Figure 3.4: Core View Model

Flow View model The abstract Flow View model extends the basic Core View model
and specifies a control flow of activities. The BPEL Flow View model is an example of
a concrete technology-dependent model extended from the Flow View model.

-task 1

1
-name : String

core::Element

CompositeTask Exclusive

-condition : String

Branch
-branch1

1..*

Sequence

FlowView

-task

1 0..1

AtomicTask

Parallel

-otherwise 1

*

Task

Figure 3.5: Flow View Model

35

As shown in Figure 3.5, the FlowView consists of 0..n activities of the class Task132.
Please note that in this context we use the words Activity and Task synonymously.
There are basically three specializations of the main Task class:

1. An entity of class Exclusive can contain one or more Branch entities defining a
condition. Each Branch entity in turn can consist of an entity of class AtomicTask
or CompositeTask132.

2. An atomic task AtomicTask models a simple activity within a sequence or a par-
allel132.

3. A composite task CompositeTask specifies parallels and sequences of activities. A
Sequence class specifies activities running one after the other whereas the Paral-
lel class specifies tasks running in parallel. The containing tasks of parallels or
sequences can be of type AtomicTask, CompositeTask or Exclusive132.

Collaboration View model The abstract Collaboration View model extends the
Core View model and basically defines service operations to be invoked by a process
activity. Similarly, the BPEL Collaboration View model defines the information needed
to generate a web service description language document (WSDL) such as messages.

-interaction *

-services

*

-partners
*

-roles

*

0..*1 1

1

1

0..*1..*

-channel

1

-message
1

1

-out1

1

-in

*

1

core::Element

Interaction

-createInstance : bool

-type : string

Role

core::Service

Partner

Interface

-type : string

Service

-provided : bool

bpelcollaboration::Channel

Operation

bpelcollaboration::Message

CollaborationView

-interfaces

*

-partnerrole

1

-myrole

1 bpelcollaboration::Operation

Figure 3.6: Collaboration View Model

In Figure 3.6, we illustrate both the Collaboration View model and an extract of the
BPEL Collaboration View model. The CollaborationView consists of a list of Interac-
tions, Services, Interfaces, Roles, and Partners respectively132.

• An Interaction is related to a Partner, a service Interface and a service Operation.

• A Service has 0..n Interfaces.

36

• A service Interface consists of 1..n service Operations.

• A Role is related to a service Interface.

• A Partner has both 0..n Interactions and its own Role and the partner Role.

In addition, we describe two entitiesMessage and Channel of the BPEL Collaboration
View in relationship with the basic Collaboration View.

• An Operation of the BPEL Collaboration View is extended from the abstract
Operation of the Collaboration View.

• An Operation has an input Channel and an output Channel.

• A Channel is related to a Message.

Information View model The abstract Information View model extends the Core
View model and specifies the service operations in more detail by defining data types
and messages. In distributed systems, data is passed from one system to another. Each
system has its own underlying data structures. In particular, the technical BPEL Infor-
mation View model consists of data types and elements that can be used to generate an
XML Schema (XSD).

InformationView

Type

TransformationDataHandling

ObjectReference

core::View

-processName : string

1 *

1

*

1

*

core::Element
core::Namespace

-uri : string
-prefix : string
-NSID : string

1

1

1 *

11 -target

1

1

-source1
1

BusinessObject

Figure 3.7: Information View Model

The InformationView consists of a list of BusinessObjects, Types, and DataHandlings
respectively132 (see Figure 3.7).

• A BusinessObject consists of a Type.

• A Type is a basic element derived from the core elements Element and Namespace.

37

• A DataHandling consists of 1..n Transformations. A Transformation contains a
source and a target ObjectReference. An ObjectReference simply contains a Busi-
nessObject.

38

CHAPTER 4
View-Based Data Modeling

Framework

In this chapter we present our view-based data modeling framework (VbDMF) utilized to
implement the concepts presented in the subsequent chapters. This chapter is organized
as follows: Firstly, in Section 4.1 we motivate our view-based solution modeling persistent
data access. Next, in Section 4.2 we present the underlying basic models and views. In
Section 4.3 we describe the models in more detail. Section 4.4 evaluates our models
using an industrial case study in the context of a district court. Section 4.5 discusses
the contributions and limitations of our approach, and finally, Section 4.6 sums up.

4.1 Motivation

When the number of services as well as the data access services (DAS) in a process-
driven SOA grows, the complexity increases along with the number of process elements.
Furthermore, when developing and maintaining persistent data access in process-driven
SOAs, stakeholders are interested in different concerns of persistent data access. In
Figure 4.1, we exemplarily illustrate involved stakeholder roles with their correspond-
ing tasks when modeling persistent data access in business processes. In the following
we describe these stakeholder roles in more detail. We reuse these stakeholder roles
throughout the remainder of this thesis.

• Business process developer Business process developers need an overview of the
fundamental elements of a process flow such as the process activities. As process
activities can invoke DAS, business process developers are also interested in ba-
sic DAS implementation elements such as the DAS operations, service endpoints,
messages, and data types.

39

System architect

DAO developer

Database administrator
Configure database

connections

Business process developer

Set object

relational mapping

Configure

business

process execution

endpoint

Design business

flow

Develop DAO

operations

Configure data

storage schemes

Develop DAS

operations

Configure service

endpoints

DAS developer
«uses»

«uses»

«uses»

Develop Data

Objects

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Design Physical

Data Model

Design Logical

Data Model

«uses»

«uses»

«uses»

«uses»
Data analyst

Figure 4.1: Different Stakeholders Focusing on Persistent Data Access in a Process-
Driven SOA

• Data access object (DAO) developer DAO developers focus on the DAO operations
with the object relational mappings (ORMs) between the database tables and the
data objects. For this, they also need an overview of the data storage schemes and
database connection properties.

• Data access service (DAS) developer When implementing DAS, the DAS developers
need to view descriptions of the underlying DAO operations in order to invoke
them. In addition, as the DAO developers, they need to know available database
connections e.g. in order to being able to test the DAS. In addition, they need an
overview of the DAS and DAS operations.

• Data analyst Data analysts specify logical data models of a real-life use case. In
a next step, these abstract logical data models needs to be technically refined by
creating physical data models. Moreover, data analysts focus on solving structural
problems in business processes concerning data. Hereto, they need an overview of
the DAS, DAOs, data objects, object-relational mappings, and database connec-
tions within the business process.

• Database administrator Database administrators are responsible for developing

40

and maintaining the physical data storage schemes and database connections.

• System architect System architects typically focus on the system’s runtime config-
uration, in particular, the business process execution endpoint of the process flow,
the service endpoints, and the database connections.

In addition, the following stakeholders solely read-only access to various persistent
data access concerns within the business process:

• IT-architect IT-architects focus on the big picture of the business process persis-
tent data access interconnection. On one side, they need to have an overview about
the whole architecture, and on the other side, they need to inspect implementa-
tion details such as the service provider urls, object-relational mappings, and the
database connections.

• Database tester Database testers are responsible for testing persistent data access
in a process-driven SOA. They have to create, develop, and run test cases of the
persistent data accessing parts of the process. Hence, database testers are in partic-
ular interested in the persistent data relevant parts of the business process such as
the DAS, and the underlying data storage schemes and the database connections.

4.2 Overview
The view-based data modeling framework (VbDMF) extends the view-based modeling
framework (VbMF) (basically described in Section 3.4). Whereas VbMF defines basic
processes and services, VbDMF focuses on modeling persistent data access in process-
driven SOAs.

Collaboration

View

model

Core View

model

Information View

model

Data

Object Type

View

model

Database

Connection

View model

Physical

Data View

model

ORM View

model

DAO

View model

DAS

Flow View

model

Information

DAO

Mapping

View model

Collaboration

DAO Mapping

View model

Viewbased Modeling Framework

Viewbased Data Modeling Framework

inherits

integrates

is extracted from

Flow View

model

User View

Model

Figure 4.2: VbMF and VbDMF – Overview

Figure 4.2 illustrates the views of VbMF and VbDMF, and their relationships with
each other. The rectangles display view models of VbMF, whereas the ellipsoidal boxes
denote the additional data-related view models of VbDMF.

41

VbDMF view models In the following the basic view models of VbDMF are shortly
described:

• The Collaboration DAO Mapping View model is an optional view model that maps
DAS operations to DAO operations.

• The DAO View model describes the DAO operations, encapsulating persistent data
access in object-oriented environments, in detail.

• The DAS Flow View is extracted from the Flow View that only contains the data
access activities of the process

• The Database Connection View model comprises a list of arbitrary, user-defined
connection properties.

• The Data Object Type View model specifies data object types and data object
member variables used to store values in object-oriented environments.

• The Information DAO Mapping View model is an optional view model that maps
data types of the services (specified by the Information View) to data object types
of the DAOs (specified by the Data Object Type View).

• The ORM View model maps physical data to data object types.

• The Physical Data View model specifies the data storages such as database tables
and columns accessed from the DAOs.

• The User View model gives an overview of the registered and published DAS, and
the users who registered and published the DAS.

As displayed by the solid lines in Figure 4.2, the new view models of VbDMF rep-
resented by the ellipsoids extend basic VbMF views namely the Flow View, the Col-
laboration View, and the Information View. The dashed lines in Figure 4.2 are used
to display view integration, e.g. the Collaboration DAO Mapping View integrates the
Collaboration View and the DAO View to produce a combined view.

View extraction Besides view integration and view inheritance, in Chapter 5, we will
introduce a new relationship between views, the mechanism of view extraction: A view
can be extracted from another view in order to produce a flattened view. The dotted
lines in Figure 4.2 display an extraction relationship between the DAS Flow View and
the Flow View. The DAS Flow is extracted from the Flow View and, thus only contains
the Flow View’s persistent data access activities. We go deeper into how to extract a
view from another view in Section 5.5.

To summarize, whereas VbMF focuses on reducing the development complexity of
business processes and services, VbDMF introduces tailored views for integrating per-
sistent data access into the services of business processes.

42

4.3 VbDMF Models

In the following, we describe the basic models of VbDMF in more detail. Following
VbMF’s concepts, we distinguish low-level, technical views from high-level, conceptual
i.e. business-oriented views. In addition, our low-level technical view models support
separating technology-specific from technology-independent views, both for presenting
the information in the models to different stakeholders and for supporting platform-
independence via model-driven software development.

Collaboration DAO Mapping View model The Collaboration DAO Mapping
View is a technology-dependent view that can be used to map DAS operations of the
Collaboration View to DAO operations of the DAO View. Instead of using the Collab-
oration DAO Mapping View, the Collaboration View could also be integrated with the
DAO View by using the VbMF/VbDMF’s mechanism of view integration. However, as
we use a name-based matching algorithm for view integration, without using the Col-
laboration DAO Mapping View, the DAO operations and the DAS operations would
have to be named identically. Thus, the Collaboration DAO Mapping View model is an
optional view.

collaboration::CollaborationView

core::Element

1

-daoOperation

1

1

-das *

collaboration::Operation 1

-dasOperation

1 Mapping

-date : Date

dao::DAOOperation

CollaborationDAOMappingView DAS

1

-mapping

*

Figure 4.3: Collaboration DAO Mapping View Model

As shown in Figure 4.3, the Collaboration DAO Mapping View model is extended
from the Collaboration View model. The Collaboration DAO Mapping View contains a
list of DAS. Each DAS consists of a list of Mapping entities. A Mapping entity maps an
Operation of the Collaboration View to a DAOOperation of the DAO View.

Data Access Object (DAO) View model The DAOView is a technology-dependent
view that basically specifies the DAO operations used to encapsulate access to a data
storage. The view can integrate the ORM View and the Data Object Type View and is
typically used by the DAO developers.

43

DAOView

information::InformationView

-name : String

core::Element

DAOOperationDAOOperations

-daoOperations

1

1

-daoOperation

1

*

InputParameter

dataObjectType:DataObject

dataObjectType:MemberVariable

-variable*

1

1

-dataObject

1
VoidReturnType SimpleOutputParameterComplexOutputParameter

1 -dataObject 1

-outputParameter 1

*

1

-variable

1

-inputParameter

1

*

DAO

1

-dao*

OutputParameter
Variable

1

-variable 1

Figure 4.4: Data Access Object View Model

Figure 4.4 illustrates the DAO View that consists of a list of DAOOperations. Each
DAOOperation can consist of a list of InputParameters and OutputParameters. Each In-
putParameter can consist of a Variable or a Data Object. An OutputParameter can either
be a VoidOutputParameter, a SimpleOutputParameter, or a ComplexOutputParameter.
A SimpleOutputParameter consists of a Variable and a ComplexOutputParameter con-
tains a Data Object.

Please note, that, in this thesis, the DAOs are only one representative for all other
types of DAS implementations. As nowadays, the object-oriented programming (OOP)
paradigm is typically used to implement services, we use the DAO pattern as exemplary
DAS implementation of use throughout this thesis. Moreover, as our concepts are in-
tended for use in larger environments, we propose ORM instead of the more primitive
Java Database Connection (JDBC) interface to access the data.

DAS Flow View model As shown in Figure 4.2, the DAS Flow View model is
extended from the Flow View model, as it also models a flow. In addition, we can
extract the DAS Flow View from the Flow View, because it is the DAS Flow View that
only contains the persistent data access activities of the Flow View. In Section 5.5, the
DAS Flow View model is described in more detail, and then we further specify how to
extract the DAS Flow View from the Flow View.

Database (DB) Connection View model: The Database Connection View com-
prises a list of arbitrary, user-defined connection properties and therefore is a conceptual
rather than a technical view. We also support technology-dependent Database Connec-

44

tion views through model extension, e.g., a JDBC Database Connection View model for
database-independent connectivity27.

DBConnectionView

-connectionProperties

1 *

information::InformationView
-schema : string

-user : string

-password : string

-url : string

ConnectionProperties

-value : String

UserConnectionProperty
-userConnectionProperty1

*information::Type

Figure 4.5: Database Connection View Model

As shown in Figure 4.5, the Database Connection View describes the database con-
nections, each comprising a list of Connection Properties. Establishing the connection re-
quires at least minimum configuration effort for defining basic properties such as database
driver, database url, user, password, etc. The Connection Properties contain a list of
pre-defined properties and consist of a list of user-defined UserConnectionProperties.
Typically, they are the system architects, DAO developers, and database administrators
who need an overview of the database connections.

Data Object Type View model In object-oriented programming languages, data
is defined by ordinary objects137. We provide a conceptual, technology-independent
Data Object Type View that can be integrated by the ORM View and the DAO View.
The Data Object Type View is typically used by the DAO developers. In order to
define additional simple data types, developers can extend this view model to gain a
technology-dependent (e.g. programming-language-dependent) view.

In object-oriented programming languages information is stored in the objects’ mem-
ber variables. We provide a conceptual, technology-independent model, that consists
primarily of a list of DataObjectTypes. Each DataObjectType in turn consists of a list of
MemberVariables and/or DataObjects. Furthermore, whereas each DataObject is of type
DataObjectType, a MemberVariable can be of type SimpleDataType.

Flow View model With our new VbDMF Flow View model, besides basic process
activities, we can specify a special type of process activities, the persistent data access
activities. In Section 5.5 we both describe this view model in detail and explain how
to utilize this new VbDMF Flow View in order to solve structural problems in business
processes.

Information DAO Mapping View model The Information DAO Mapping View
model is an optional technology-dependent view model that maps data types of the
services to data object types of the DAOs. In distributed systems, data is passed from

45

DataObjecTypeView

information::Type information::InformationView

DataObjectType

-dataObjectType

1*

-primaryKey : bool

MemberVariable

DataObject

-simpleMemberVariable1 *

core::Element

-dataObjectMemberVariable*

-type

1

SimpleDataType -type

1 1

Figure 4.6: Data Object Type View Model

one system to another. Each system has its own underlying data structures. For this
purpose we specify data type mappings to support data interoperability between diverse
systems: The Information DAO Mapping View specifies conversions between web service
description language (WSDL) schema types and data types of the service providers’
software system environment. For this purpose, a class BusinessObjectTypeMapping
associates each ComplexType of the BPELInformation View with a DataObjectType of
the Data Object Type View.

information::InformationViewcore::Element

1-dataObjectType 1

1

-mapping

*

bpelinformation::ComplexType

1
-businessObjectType

1

-memberVariableMapping*

1

bpelinformation::XSDElement

dataobjecttype::MemberVariable

1
-businessObjectMemberVariable

1

-memberVariable

1

1

MemberVariableMapping

-date : Date

dataobjecttype::DataObjectType

InformationDAOMappingView

businessObjectTypeMapping

-memberVariableMapping

*

1

Figure 4.7: Information DAO Mapping View Model

Figure 4.7 illustrates the Information DAO Mapping View model. Each BusinessOb-
jectTypeMapping consists of a list of MemberVariableMappings. Finally, each Member-
VariableMapping maps an XSDElement of the BPEL Information View to a Member-

46

Variable of the Data Object Type View.

Object Relational Mapping View model The Object Relational Mapping View
is a technology-independent model that provides the basis for specifying object rela-
tional mapping mechanisms in VbDMF. In this case, technology-independent means,
that the ORM View can be described independently from a specific ORM framework
such as Ibatis57 and Hibernate55. In order to specify certain features of specific ORM
frameworks, DAO developers should design a new technology-dependent model by model
extension.

information::InformationViewcore::Element

1

-dataObjectType

1

1

-mapping*

physicaldata::Table 1

-table

1

-columnMemberVariableMapping * 1

physicaldata::Column dataobjecttype::MemberVariable1

-column

1

-memberVariable

11MemberVariableColumnMapping

-date : Date

dataobjecttype::DataObjectType

OrmView

DataObjectTypeTableMapping

Figure 4.8: ORM View Model

The basic ORM View describes mappings between data object types and member
variables of the Data Object Type View and database tables and columns of the Phys-
ical Data View. Accordingly, the class DataObjectToTableMapping maps a data object
type (DataObjectType) to a database table (Table). The class MemberVariableToColum-
nMapping allows for a more specific mapping between a MemberVariable and a table
Column.

Physical Data View model This view model is primarily intended for data analysts,
DAO developers, and database administrators who rely on detailed physical database
design. As shown in Figure 4.2, the Physical Data View can integrate the Database
Connection View.

The Physical Data View contains two basic classes: Tables and ColumnTypes. In
particular, the class Table comprises a list of Column and RefColumn types. We use
the class RefColumn to model referential constraints between tables. We support most
common simple data types for current RDBMSs. As data types can differ among different
RDBMSs, developers can create a new technology-dependent Physical Data View by
extending this conceptual view model.

47

-columnType

1

*

1
-table

*

-columnType
1

1
PhysicalDataView

Table

-dbName : string

information::InformationView

physicalData:ColumnTypes

1-columnTypes1

Column

-primaryKey : bool

RefColumn

ColumnType

-refColumn

11

information::Type

-column 1*

-refColumn

1*

Figure 4.9: Physical Data View Model

User View model The User View is extended from the Information View and gives an
overview of the users who register and publish DAS to service repositories. In Section 7.3,
we describe the User View in more detail. In addition, in Section 7.2, we illustrate how
stakeholders can register and publish DAS using our view-based model-driven data access
architecture (VMDA).

4.4 Case Study

To illustrate the applicability of VbDMF, in this section, we present a case study which
we will refer to again in Chapter 5.

This case study deals with a real workflow of a specific e-government application
modeling the jurisdictional provisions in the context of a district court. However, the
applicability of our VbDMF is not limited to this type of applications. VbDMF can
reasonably be applied to all applications, based on a process-driven SOA, where data is
accessed from a persistent storage.

First of all, let us explain the business process flow at the land registry court il-
lustrated in Figure 4.10. As governmental processes are typically very complex107, for
reasons of simplicity, we use a flattened workflow for demonstration. We use a UML101

activity diagram to model the process flow. Each process activity contains basic ac-
tions, the fundamental behavior units of an activity101. The business process consists
of different types of actions, namely service operations, data access service operations,
transformations, and human actions. The process starts when a new jurisdictional appli-
cation is received. Then, the ValidateApplication activity invokes a service that checks
the incoming jurisdictional application for correct syntax and semantic. Successfully
validated applications are saved by a flow of alternate transformation activities and per-
sistent data access activities. In case the validation fails, neither data is stored nor the
delivery is sent to the applicant. In order to store data into the database by object rela-

48

ValidateApplication

ExcecuteApplication

AccountFees

DeliveryDAS.insertDelivery

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

EditDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

PersonDAS.insertPerson

transformDelivery

transformPerson

ReceiveApplication

SendDelivery

ValidateDeliveryList

/ ok

/ nok

storeApplication

handleDelivery

Database

Table Person

Table Delivery

Service

Transformation

Human

Data Access Service

Action

Action

Action

Action

Figure 4.10: Case Study: Simplified Process Flow at the Land Registry Court

49

tional mapping (ORM) mechanisms, the process data need to be transformed into data
objects. The activities transformDelivery and transformPerson transform delivery and
applicants process data respectively into associated data objects. After executing each of
these transformation activities, the persistent data access activities insertDelivery and
insertPerson respectively are invoked in order to persistently store the resulting data
objects. Stored applications can be executed by the registrar within the human process
activity ExecuteApplication. If the registrar approves the application, the service-based
activity AccountFees will be invoked. As a dismissed application is free of charge, the
service operation AccountFees is never invoked in case of dismissal. After accounting
the fees, the registrar has to select whether the approval or dismissal shall be delivered
by the system. Dependent from the registrar’s decision, the approval or dismissal is de-
livered to the applicant. For this purpose, the process activity ValidateDelivery checks
the recipient information for correctness and completeness before sending the delivery
to the applicant. In case of successful validation, the two DAS operations updatePerson
and updateDelivery are invoked in order to store the recipient information persistently.
If the validation fails, the persistent data access activity selectPerson will return zero
rows. In this case, instead of updating the person, a new person has to be inserted by
invoking the persistent data access activity insertPerson. Finally, the service operation
SendDelivery sends the delivery to the recipient by invoking an external service.

Collaboration View
PersonDAS

insertPerson(PersonDASDO personDASDO)
updatePerson(PersonDASDO personDASDO)
selectPerson(PersonDASDO personDASDO)

DeliveryDAS

insertDelivery(DeliveryDASDO deliveryDASDO)
updateDelivery(DeliveryDASDO deliveryDASDO)

Collaboration DAO Mapping View
PersonDAO

insertPerson(PersonDO personDO)
updatePerson(PersonDO personDO)
selectPerson(PersonDO personDO)

DeliveryDAO

insertDelivery(DeliveryDO deliveryDO)
updateDelivery(DeliveryDO deliveryDO)

Data Object Type View
DeliveryDO

PersonDO personDO
Boolean sendDelivery
Integer path

PersonDO

String firstName
String lastName
Date dateOfBirth

Information View

Database Connection View

jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/test
jdbc.username=test
jdbc.password=test

Information Data Object Mapping View

DeliveryDASDO

PersonDASDO personDASDO
String sendDelivery
Char path

PersonDO

String firstName
String lastName
Date dateOfBirth

DeliveryDO

PersonDO personDO
Boolean sendDelivery
String path

PersonDASDO

String firstName
String lastName
String dateOfBirth

DeliveryDASDO

PersonDASDO personDASDO
String sendDelivery
Char path

PersonDAS

insertPerson(PersonDASDO personDASDO)
updatePerson(PersonDASDO personDASDO)
selectPerson(PersonDASDO personDASDO)

DeliveryDAS

insertDelivery(DeliveryDASDO deliveryDASDO)
updateDelivery(DeliveryDASDO deliveryDASDO)

Physical Data View

TableDelivery

Integer idDelivery
Integer idPerson
Char sendDelivery
Char path

TablePerson

Integer idPerson
Varchar(100) firstName
Varchar(100) lastName
Date dateOfBirth

Object-Relational Mapping (ORM) View

TableDelivery

Integer idDelivery
Integer idPerson
Char sendDelivery
Char path

TablePerson

Integer idPerson
Varchar(100) firstName
Varchar(100) lastName
Date dateOfBirth

PersonDO

String firstName
String lastName
Date dateOfBirth

DeliveryDO

PersonDO personDO
Boolean sendDelivery
Integer path

DAO View
PersonDAO

insertPerson(PersonDO personDO)
updatePerson(PersonDO personDO)
selectPerson(PersonDO personDO)

DeliveryDAO

insertDelivery(DeliveryDO deliveryDO)
updateDelivery(DeliveryDO deliveryDO)

PersonDASDO

String firstName
String lastName
String dateOfBirth

Figure 4.11: Case Study: Illustration of the VbDMF views

50

In the following we apply our case study to illustrate and verify our VbDMF models.

VbDMF views illustration Firstly, we illustrate the VbDMF models from the stake-
holders’ rather than from the model developers’ point of view. Figure 4.10 displays
a Flow View with various persistent data access activities namely DeliveryDAS.insert-
Delivery, PersonDAS.insertPerson, PersonDAS.selectPerson, PersonDAS.updatePerson,
and DeliveryDAS.updateDelivery. In Figure 4.11, we denote the relationships between
the Flow View and the data-related views of its persistent data access activities. As
depicted in Figure 4.11, the Collaboration View basically defines the DAS operations
invoked by the process activities of the Flow View. According to the WSDL140 specifica-
tion, each DAS operation consists of an input and/or output DAS message. These DAS
messages together with the data object types (PersonDASDO and DeliveryDASDO) are
in turn defined by the Information View. The DAS operations above are mapped to the
DAO operations PersonDAO.insertPerson, PersonDAO.updatePerson, PersonDAO.select-
Person, DeliveryDAO.insertDelivery, and DeliveryDAO.updateDelivery, respectively, by
using the Collaboration DAO Mapping View. These DAO operations in turn are de-
scribed in detail by the DAO View. Each DAO operation references some data object
types (PersonDO, DeliveryDO) used to encapsulate data in object-oriented environ-
ments. A Data Object Type View specifies these DAO data object types. The DAO
data object types can be mapped to the data access service’s data object types by using
the Information DAO Mapping View. In addition, each of the DAO data object types
(PersonDO, DeliveryDO) is mapped to a specific database table (TablePerson, TableDe-
livery) by a object-relational mapping (ORM) mechanism, as shown in the object rela-
tional mapping View. There are a large number of both commercial and open-source
tools for mapping data object types to database tables. Two common example of open-
source tools are Hibernate55 and Ibatis57. This object-relational mapping is shown by
the ORM View. In order to illustrate which DAO operation accesses which database
tables, data analysts and DAO developers can integrate the ORM View into the DAO
View. Each table of the ORM View can be integrated with the database table defini-
tions of the Physical Data View. Database test developers are probably interested in the
Database Connection View in order to check the current database configuration before
creating certain test cases.

VbDMF views in XMI notation In the following figures we outline the VbDMF
views in XMI notation. As mentioned in Section 3.4, views can be integrated via view
integration points. These VbDMF view integration points are displayed as red frames
and marks, respectively. In addition, we use a name-based matching algorithm for view
integration. Accordingly, a red-framed element in one view acts as view integration point
to a red-framed, equally named view integration point of another view. In a uniform
manner, the red-labeled elements in two different views can act as view integration points
between two views.

As shown in Figure 4.12, we can integrate each AtomicTask of the Flow View with
further service operation definitions from the Collaboration View.

51

Figure 4.12: Case Study: Flow View, Collaboration View, and Information View in
XMI Notation

In particular, each AtomicDASTask of the Flow View can be integrated with a DAS
operation definition specified by the Collaboration View. Whereas the Collaboration
View specifies the service operation definitions of the DAS operations, and the Informa-
tion View models the underlying messages and data types.

Figure 4.13 illustrates the relationships between the Collaboration View, the Collab-
oration DAO Mapping View, and the DAO View. The DAO View models the underlying
DAO operations of the DAS messages specified by the Collaboration View.

In order to map AtomicDASTasks of the Flow View to their underlying DAO oper-
ations of the DAO View, we use the Collaboration DAO Mapping View. To exemplify
this, we show an XMI view of both the DAO View and of the Collaboration DAO
Mapping View in Figure 4.13. Each DAO operation in the Collaboration DAO Map-
ping View matches a corresponding DAO operation in the DAO View. Accordingly,
each DAS operation of the Flow View corresponds to a DAS operation in the Col-
laboration DAO Mapping View. The Collaboration DAO Mapping View maps DAS
operations to DAO operations e.g. the DAS operations DeliveryDAS.insertDelivery and
PersonDAS.insertDelivery of the DAS Flow View are mapped to the DAO operations
DeliveryDAO.insert and PersonDAO.insert of the DAO View.

In Figure 4.14 we depict the mapping between the Information View and the Data
Object Type View. We use the Information DAO Mapping View to relate business ob-
jects of the service environment to data object types of the object-oriented environment.

52

Figure 4.13: Case Study: Collaboration View, Collaboration DAO Mapping View, and
DAO View in XMI Notation

Figure 4.14: Case Study: Information View, Information DAO Mapping View, and
Data Object Type View in XMI Notation

53

As displayed in Figure 4.15, the DAO View can integrate the Data Object Type View
in order to get the detailed specification of the data object types.

Figure 4.15: Case Study: DAO View and Data Object Type View in XMI Notation

Each DAO Operation of the DAO View contains DAO Input Parameters and DAO
Output Parameters. In addition, each parameter type can be mapped to corresponding
Data Object Types of the Data Object Type View. Please note that, in the figures, the
Data Object Type View only contains the name of each parameter rather than the data
parameter type. Thus, the data parameter type is specified as attribute of the entities
DAO Input Parameter and DAO Output Parameter, respectively.

The ORM View, displayed in Figure 4.16, integrates the Physical Data View with
the Data Object Type View. Accordingly, the ORM View maps Tables to Data Object
Types and Table Columns to Data Object Member Variables.

The Physical Data View integrates the Database Connection View (Figure 4.16)
in order to get the DBConnectionProperties details of the underlying RDBMS such as
url, user, password etc. The integration of the Physical Data View with the Database
Connection View is possible by the entity Table of the Physical Data View incorporating
a dbName attribute acting as view integration point.

4.5 Discussion

In the following we discuss the contributions and limitations of VbDMF used to model
persistent data access in process-driven SOAs.

VbDMF is a framework consisting of various views modeling persistent data access
tailored to the requirements of different stakeholders. As a result, according to the
pattern of separation of concerns, different types of stakeholders can concentrate on
their concerns of persistent data access. Because of the model-driven approach, VbDMF

54

Figure 4.16: Case Study: Data Object Type View, ORM View, Physical Data View,
and Database Connection View in XMI Notation

aims at improving software quality and reuse of persistent data access in process-driven
SOAs139.

Our prototype framework uses DAS/ DAOs as example implementation. It specifies
persistent data access services (DAS) with underlying data access objects (DAO). Each
DAO is based on object-relational mappings (ORM) of data objects to physical database
tables. A limitation of our protoype framework is, that the ORM View solely supports
1..1 mappings between one data object and one table. More complex mappings are
beyond the scope of this thesis. Accordingly, 1..n and n..n mappings have to be modeled
by a list of 1..1 mappings.

With our model-driven approach, we can hide technical details such as ORM-dependent
(HIBERNATE55, IBATIS57) configurations such as performance tuning settings from
the view modelers. Thus, with VbDMF, we can enhance the level of abstraction for
developing persistent data access. It goes without saying that VbDMF is not limited to
DAS and DAOs, it can be flexibly extended with new conceptual and technical models.

However, it is a big challenge to balance the flexibility of traditional software de-
velopment with the high abstraction level of MDD. The more attributes are specified
additionally, the more flexible, but also the less abstract are the view models. With
our VbDMF, we both support conceptual abstract views (e.g. the Collaboration View)
and technology-dependent views (e.g. the BPEL Collaboraton View). The technology-
dependent BPEL Collaboration View is extended from the abstract Collaboration View
in order to specify BPEL-specific elements such as messages and channels.

We have built a uniform framework for structurally specifying persistent data access
in process-driven SOAs. By using VbDMF, DAS can be developed by using homogeneous

55

programming languages, technologies, and tools. Hereby, we can reduce the development
complexity, and thus, increase development productivity and software quality. Moreover,
DAS are relatively small, self-contained software components specified to read and write
data from a persistent storage. Because of these characteristics, DAS are especially
suitable for model-driven source code generation. Moreover, in VbDMF, we do not need
to specify each view of VbDMF in order to generate the persistent data access source
code. For instance, the DAO View is an optional view, because the DAOs can also
be automatically generated from the Collaboration View, the Information View, the
Information DAO View, and the Data Object Type View. However, by modeling the
DAO View, we can specify the exact names of the DAO operations.

Besides automatic source code generation, VbDMF provides a structured integrated
documentation from the services to the physical database storages. Because of that, we
have documented which process activities read or write from which database tables, or
which DAS run on a certain service endpoint.

4.6 Summary
In this chapter we presented our view-based data modeling framework (VbDMF) as an
extension of the view-based modeling framework (VbMF). VbDMF consists of a set view
models specifying persistent data access in process-driven SOAs. As our view models
are based on VbMF, each model represents a specific tailored view to the requirements
of different stakeholders. We evaluated our models by an industrial case study in the
fields of e-government. The VbDMF view models as well as the case study will be used
to illustrate and verify our concepts in the following chapters.

56

CHAPTER 5
Improving Traceability of
Persistent Data Flows in

Process-Driven SOAs

In this chapter we present a concept to improve traceability of persistent data access in
process-driven SOAs which can be applied to solve structural problems such as dead-
locks in data-intensive business processes. With our view-based model-driven approach,
we provide a solution to generate flows of persistent data access activities (which we
refer to as persistent data access flows). To the best of our knowledge these persistent
data access flows are not used to solve structural problems in process-driven SOAs, yet.
Moreover, our persistent data access flows can be flattened by diverse filter criteria e.g.
by filtering all activities reading or writing from a specific database or table. In a se-
ries of motivating scenarios we show how our persistent data access flow concept can
contribute to enhance documentation, traceability, and productivity in service-oriented,
process-driven environments.

This chapter is organized as follows: First, in Section 5.1 we shortly motivate our
concepts. Next, Section 5.2 provides some background information to better under-
stand the contributions of our approach. In Section 5.3 we give a basic overview of
our approach. Next, in Section 5.4 we illustrate how our persistent data access flow
concept can solve structural problems in business processes by presenting selected use
cases. Section 5.5 describes the details necessary to realize our approach within a model-
driven environment: the model-driven specification, integration, and extraction of DAS
Flow Views. Section 5.6 demonstrates the applicability of our model-driven solution and
presents a suitable tooling, and in Section 5.7, we evaluate the correctness and complex-
ity of the presented algorithms. Afterwards, we discuss the limitations of our approach
in Section 5.8. Finally, Section 5.9 summarizes and concludes.

57

5.1 Motivation

A common problem in business process modeling is the detection of structural errors119.
Current business process modeling systems (BPMS)142 lack support for verification
of structural problems concerning persistent data access. In many BPMS, such as
IBM Websphere MQ Workflow, the process activities cannot request persistent data
directly118. Therefore, these systems cannot trace persistent data access without the
help of external dependencies. In other BPMS, such as Webmethods123, the process
activities are able to invoke persistent data accesses directly. However, they lack tool
support for solving structural persistent data access problems at modeling time.

While collaborating on several service-oriented software development projects in a
large enterprise, we identified a series of structural problems in business processes con-
cerning persistent data access. All these problems have in common that data is accessed
from persistent storage. Three groups of stakeholders are particularly faced with these
problems: the data analysts, DAS developers, and the database testers. In the following
we shortly describe the drawbacks from the perspective of each of these stakeholders
when analyzing, developing, and testing process flows.

Data analysts dealing with deadlock prevention The first group of stakeholders,
the data analysts, has to deal with various analysis problems. As an example of one
of the many tasks data analysts have to deal with, let us consider a process instance
failing at runtime due to a deadlock. This deadlock is caused by a structural problem
concerning modeling persistent data access in a business process. Common BPMS can
solely trace the specific process activities causing the failure. However, they do not
support detection of underlying business process modeling errors. In order to solve the
structural problem, data analysts usually have to examine the DAS operations of a
process flow by manually stepping through each activity. Therefore, if the flow consists
of a large number of activities, this analysis will be rather exhaustive88.

DAS developers modeling persistent data access activities A second group of
stakeholders, the DAS developers, focuses on modeling persistent data access activities.
DAS developers also need to add, adapt or delete persistent data access activities of the
process flow. For this, DAS developers need to overview the flow of data access activities
of the process. However, the persistent data access activities are tightly coupled with
other activities. Thus, when the number of control-flow constructs such as switches,
loops, and joins21 as well as the number of process activities grows, to manually overview
the required persistent data access in the whole business process can be a complex task.
In addition, personal factors as well as the amount of theoretical modeling knowledge
influence the ability to understand process models88.

Database testers creating, developing, and running test cases The database
testers are a group of technical stakeholders focused on an important part of the entire
business process: To ensure the correctness of the persistent data access activities of

58

a process flow. In order to create, develop, and run test cases, the test developers
have to acquire knowledge about the persistent-data-accessing parts of the technical
sub-processes. Even more, the persistent data access activities should be separately
testable. Thus, stakeholders need an overview of the control flow between the persistent
data access activities. However, up-to-now current BPMS provide no suitable tooling
documenting the control flows of persistent data access activities in business processes.

In Section 5.4, we will present conceptual solutions solving each these selected prob-
lems.

5.2 Background

Data Flow vs. Control Flow

Common graphical process modeling languages and business process management sys-
tems (BPMS)142 can differentiate between the control flow and the data flow of a process.
Examples of graphical modeling languages are the Business Process Model and Nota-
tion (BPMN)100 and the Unified Modeling Langage (UML)101 activity diagrams. An
example of a BPMS is the IBM Websphere MQ Workflow59 Whereas the control flow
describes the sequence of activities of the process flow, the data flow describes incoming
and outcoming data to and from process activities. An example of a control flow is
depicted in Figure 4.10.

In BPMN, data is transferred in data objects that can be associated with activities.
The data flow is modeled by associations from data objects to activities or vice versa.
Accordingly, data objects written by one activity can be read be the subsequent activity.
In IBM Websphere MQ Workflow, a data flow is modeled by connecting the activity’s
input and output container. Special data flow connectors define the mapping of the
activity’s input and output container. In UML 2.0, the data flow is specified by pin
elements representing the inputs and outputs of activities. Whereas input pins provide
the activities with data, output pins get the data from the activities. Figure 5.1 depicts
a data flow in UML notation of the business process in case study Section 4.4.

Lang defines that data flows between processes may represent either attributes of
objects, transient data or persistent data75. In contrast to these data flows, in this
thesis, we concentrate on persistent data access flows. Our persistent data access flows
are control flows that solely consist of data access activities reading or writing from a
persistent data storage. In contrast, whenever we refer to data flows, we outline the
common data flows, representing transient and persistent data respectively, as defined
by Lang75.

Microflow and Macroflow Pattern

Our work is in particular based on the so-called Macro-Microflow pattern53,54. The
Macro-Microflow pattern is a pattern designed for process-oriented integration in ser-
vice oriented architectures. According to this Macro-Microflow pattern, a microflow

59

ValidateApplication

ExcecuteApplication

AccountFees

DeliveryDAS.insertDelivery

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

EditDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

PersonDAS.insertPerson

transformDelivery

transformPerson

ReceiveApplication

SendDelivery

ValidateDelivery

/ ok

/ nok

storeApplication

handleDelivery

Service

Transformation

Human

Data Access Service

Action

Action

Action

Action

XMLApplication

XMLDelivery

Delivery

Delivery

Person

Person

XMLPerson

Application

/ approval

/ dismissal

Application

XML Application

Application

Delivery

Delivery
Delivery

Person

Person Person

Delivery

Delivery

Person

Application

Delivery

Figure 5.1: Data Flow of a Business Process specified with UML Pin Elements

60

represents a sub-process that runs within a macroflow activity53,54. Macroflows are con-
sidered to be high-level conceptual business processes whereas microflows are technical
information processes44,53,54

There are two types of microflows. Firstly, a short-running technical process that
runs automatically and secondly, a flow of activities that can contain interrupting pro-
cess activities such as human tasks and events. The first alternative, the technical
microflows are not interruptible and are running in a transaction53,54. The interruptible
microflows in turn can contain automatically short-running microflows. When analyz-
ing, developing, and maintaining persistent data access, stakeholders have to focus on
these microflows. In Figure 5.2, we will depict two technical microflows as technical
sub processes of the whole business macroflow depicted in Figure 4.10 in the case study
Section 4.4.

5.3 Overview

In this section we present the basic idea of our persistent data access flow concept. For
this, we reuse the business process presented in the precedent case study Section 4.4.

On the left and on the right of Figure 5.2, the resulting persistent data access flows
from the business process in the middle are shown. We define persistent data access flows
as control flows containing the persistent data access activities of the whole business
process flow. We differentiate simple persistent data access flows from filtered persistent
data access flows.

• Simple persistent data access flows are control flows containing all and only the
persistent data access activities of a business process

• Filtered persistent data access flows are control flows containing only those persis-
tent data access activities of a business process that match certain persistent data
access filter criteria

On the left of Figure 5.2, a simple persistent data access flow is depicted. On the
right of the figure, a filtered persistent data access flow is shown. The filtered persistent
data access flow in this example contains only those persistent data access activities
reading or writing data from table Person.

In this thesis we use DAS with underlying DAOs as example implementation. How-
ever, our approach can be easily applied for other types of persistent data access im-
plementations. In the following we show how our persistent data access flows depicted
on the left and on the right of Figure 5.2 can be applied to enhance traceability and
documentation of persistent data access in process-driven SOAs. For this purpose, in
the following Section 5.4, we present selected problems and solutions from different
stakeholders’ point of view, in particular from the perspective of data analysts, DAS
developers, and database testers.

61

ValidateApplication

ExcecuteApplication

AccountFees

DeliveryDAS.insertDelivery

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

EditDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

PersonDAS.insertPerson

transformDelivery

transformPerson

ReceiveApplication

SendDelivery

ValidateDeliveryList

/ ok

/ nok

storeApplication

handleDelivery

PersonDAS.insertPerson

/ not exists

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

handleDelivery

PersonDAS.insertPerson

storeApplication

Filtered Persistent Data Access Flow
(Table Person)

Is extracted from

Is extracted from

Process Flow

Is extracted from

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

handleDelivery

DeliveryDAS.insertDelivery

PersonDAS.insertPerson

storeApplication

Persistent Data Access Flow

Is extracted from

Is extracted from

Is extracted from

/ approval

dismissal

Figure 5.2: Two Persistent Data Access Flows Extracted from a Business Process Flow

62

5.4 Solving Structural Problems in Business Processes

In this section we illustrate how our persistent data access flow concept can be generalized
to solve various data analysis problems. For this, we refer to the selected problems
introduced in the motivating Section 5.1. These problems reoccur in many cases for data
analysts, DAS developers, and database testers when analyzing, developing, and testing
persistent data access in business processes. For each selected problem, we describe how
stakeholders can apply our persistent data access flow concept to solve it.

1. At first, we have a look at a typical data analysis problem. We show how our
persistent data access flow concept can ease the manual and automated data anal-
ysis in process-driven SOAs. Our goal is not to reinvent deadlock detection, but
instead show how both manual and automatic deadlock detection in a complex
process model can be eased by applying the persistent data access flows. On top of
our approach existing data analysis solutions such as deadlock detection techniques
can be applied.

2. Secondly, we show how DAS developers can benefit from our view-based approach.
The persistent data access flows can be applied to document the persistent data ac-
cess flows in a process. Furthermore, we illustrate how to detect design weaknesses
concerning persistent data access at the earliest possible state of the development
process28 – in the modeling phase.

3. Thirdly, we describe how our approach provides database testers with appropriate
input/output data needed for test case generation and execution. Moreover, we
explain how the persistent data access flow concept can improve the database
testers’ documentation. Finally, we illustrate how our persistent data access flows
support testers in locating errors more quickly.

Problem & Solution: Deadlock Detection

In process-driven SOAs usually a large number of process instances run in parallel in a
process-engine. These process instances often require access to competing data resources
such as data from an RDBMS. Deadlocks arise when process instances hold resources
required from each other. When none of these process instances will lose control over its
resources, a classic deadlock situation occurs61. There are various deadlocks detection
techniques in order to discover and resolve deadlocks. One common method to resolve
deadlocks are database transaction timeouts as used by common database drivers such
as the Java Database Connectivity (JDBC) driver27. Accordingly, after the timeout
expired, process instances lose control over the held resources.

A process can perform some transformations, invoke service operations, and access
the database. In order to prevent, detect, and solve deadlocks, data analysts need to
focus on the persistent data access activities of a process. Moreover, stakeholders have
to make sure that the DAS operations of different process flow instances always have

63

to be processed in the same order such that no two DAS operations have to wait for
competing resources.

Manual deadlock detection with persistent data access flows In the following
we present how our approach can contribute to detect deadlocks in business processes
by using our persistent data access flow approach. Figure 5.3 displays the two persistent
data access flows of our business process. In order to identify the persistent data access
activities they are consecutively numbered.

The persistent data access flow on the left hand side simply consists of two DAS
operations. The first DAS operation DeliveryDAS.insertDelivery (1) inserts delivery
data into table Delivery. Afterwards the DAS operation PersonDAS.insertPerson (2)
inserts person data into table Person. The persistent data access flow on the right hand
side of the figure consists of a DAS operation PersonDAS.selectPerson (3) that selects
a row from table Person using certain filter criteria. If the result set is empty, a new
row will be inserted into table Person by the DAS operation PersonDAS.insertPerson
(5). Otherwise the retrieved row in table Person is updated by the DAS operation
PersonDAS.updatePerson (4). Finally a row in table Delivery is updated by the DAS
operation DeliveryDAS.updateDelivery (6).

All activities in a process flow instance are running in a transaction121. Consider
two process instances p1 and p2 running through the main process. P1 inserts a new
row into table Delivery by performing the DAS operation DeliveryDAS.insertDelivery
(1). At the same time p2 updates a row into table Person by performing the DAS op-
eration PersonDAS.updatePerson (4). Thus DAS operation DeliveryDAS.insertDelivery
(1) holds table Delivery and DAS operation PersonDAS.updatePerson (4) holds table
Person. As a result, the DAS operation DeliveryDAS.updateDelivery (6) cannot be
executed because DAS operation DeliveryDAS.insertDelivery (1) holds table Delivery.
Likewise, the DAS operation PersonDAS.insertPerson (2) cannot be executed because
PersonDAS.updatePerson (4) holds table Person. This is the classic deadlock situation.
In the figure, this deadlock situation is displayed by the intersecting arrows on the left
hand side and, concomitantly, the non-intersecting arrows on the right hand side.

Without our persistent data access flow concept, analysts cannot solely focus on the
persistent data access activities of the process, but must consider many other concerns
at the same time. Therefore, especially if a large number of different types of activities
is used in a flow model, manual deadlock detection will be an exhaustive and time-
consuming task. Our approach is to provide a specific persistent data access flow that
enables data analysts to focus only on the relevant information helpful for detecting
deadlocks. In particular, our approach supports a visual solution to already eliminate
potential deadlock risks at the modeling level. The same can be assessed for any other
manual data analysis task in process-driven SOAs. Furthermore, on top of our approach,
common deadlock detection techniques (such as28,92,145) can be performed.

Automatic deadlock detection with persistent data access flows In some cases,
we want to go beyond manual data analysis in process-driven SOAs. The persistent data

64

Database

Table Person

Table Delivery

Persistent Data Access Flow

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

handleDelivery

DeliveryDAS.insertDelivery

PersonDAS.insertPerson

storeApplication

Persistent Data Access Flow

3

54

1

6

2

Figure 5.3: Motivating Example for Manually Detecting Potential Deadlock Risks

access flows enable us to easier implement algorithms for static deadlock detection in
distributed database systems: As explained in the example above (see Figure 5.3), a
deadlock can occur, when data resources in different persistent data access flows are
accessed in a different order. Thus in order to detect possible deadlocks, we need to
check the order in which database tables are accessed in each of these persistent data
access flows. For this, we need to consider the paths of all persistent data access flows
of the process. Accordingly, a possible deadlock algorithm compares the order in which
database tables are accessed in one path p1 with the order in which tables are accessed
in another path p2. This pair-wise comparison needs to be done for each possible path
of the persistent data access flows of a process.

Problem & Solution: Design Weakness Detection

In process-driven SOAs, at first, DAS developers have to become acquainted with the
process flows including business logic activities, transformation activities, and persistent
data access activities. In particular, they need a general overview of the persistent data
access flows of the process e.g. they need to know which tables are accessed by a certain
DAS operation. These persistent data access flows are in particular important for devel-
opers who need to review the developed database transactions in case of troubleshooting
or analysis of performance leaks.

Secondly, in Integrated Development Environments (IDE) such as Eclipse127, it is
possible to search for modules that invoke a certain DAS operation. However, in a
process flow of different types of activities, to search for specific DAS operations can be
a time-consuming task. Accordingly, in contrast to our approach, in common IDEs it
is not possible to extract a list of DAS operations accessing a specific database table or
database table column.

Thirdly, the persistent data access flow enables DAS developers to easily discover
inefficient persistent data access flow. Figure 5.4 shows an example of such an inefficient

65

Persistent Data Access Flow (Before)

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

handleDelivery

Persistent Data Access Flow (After)

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

PersonDAS.updatePerson

/ exists

handleDelivery

Figure 5.4: Motivating Example for Detecting Inefficient Persistent Data Access Flows

persistent data access flow before and after redesigning it. When we look at the flow
on the left hand side of the figure, we can easily recognize that eliminating the DAS
operation DAS1.select could reduce the number of statements during process execution.
The reason for this is that the update operation DAS1.update anyway returns the number
of updated data sets. After redesign, we can see the resulting flow on the right hand
side of Figure 5.4. There are various performance measuring tools used to discover
performance leaks at runtime. However we provide a visual approach to detect inefficient
source code at the earliest possible state of the development process28. Our approach is
not limited to the example above. It rather can be applied to solve many other types of
structural problems in business processes.

Problem & Solution: Test Case Generation

One major task during testing a process is to check whether data is correctly stored
and retrieved from a central storage. For this purpose, test cases have to be created,
tested, and executed, and finally, the results need to be examined51. In the following,
we concentrate on creating test cases at two different levels:

1. Test cases for single persistent data access activities: Each persistent data access
activity will have to be checked whether data is correctly stored and accessed. Each
persistent data access activity can be tested independently from the whole process.
In order to create, test, and execute these test cases respectively, testers require
necessary input and output data for each path of the process112 (see Figure 5.5).
In order to provide appropriate input and output data, they need the information
which tables are accessed by a specific DAS operation. Our approach enables

66

Path1:
Process Flow

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

EditDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

SendDelivery

ValidateDeliveryList

handleDelivery

Path 1:
Persistent Data Access Flow

DeliveryDAS.updateDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

handleDelivery

Path2:
Process Flow

DeliveryDAS.updateDelivery

PersonDAS.insertPerson

/ not exists

EditDelivery

PersonDAS.selectPerson

PersonDAS.updatePerson

/ exists

SendDelivery

ValidateDeliveryList

handleDelivery

Path 2:
Persistent Data Access Flow

PersonDAS.updateDelivery

PersonDAS.selectPerson

PersonDAS.insertPerson

handleDelivery

Figure 5.5: Motivating Example for Testing Persistent Data Access of a Process Flow

extracting persistent data access flows by different filter criteria, such as extracting
persistent data access flows containing only those activities accessing a specific
column of a database table.

2. Test cases for transactions: All persistent data access activities of a process are
running within a transaction. For each possible path in this transaction, a test
case has to be created, tested, and executed in order to verify the correctness of
each path. Figure 5.5 exemplifies these different paths both of the process flow and
of the associated persistent data access flow. The bold arrows mark a specific path
within the process flow. In order to create, test, and execute cases for transactions,
testers have to overview the overall persistent data access flows of a process. For
this purpose, data test developers need a documentation of these modeled persis-
tent data access flows. However, from our experience, in industry, persistent data
access flows are not documented. Furthermore, even if such kind of documenta-
tion existed, the problem of updating this documentation in a timely manner would
remain. “The only notable exception is documentation types that are highly struc-
tured and easy to maintain, such as test cases and inline comments“77. As our
persistent data access flows follow the MDD139 paradigm, there is no gap between
specification and development. In particular, the effort to update the specification
to be synchronized with the newly implemented data access activities is not neces-
sary. The persistent data access flow concept provides such kind of documentation
implicitly and thus enables testers to gain a better understanding of the persis-
tent data access flows of a process. As shown in Figure 5.5, with our persistent
data access flows, database testers can easily overview the persistent data access
activity paths of a process. Finally, due to the improved persistent data access

67

documentation, we argue that using the persistent data access flow concept can
decrease the participation of the different stakeholders during test case design.

Moreover, our persistent data access flow concept enables testers to locate errors more
quickly when a specific test case asserting persistent data access fails37. Accordingly,
testers will be able to verify the particular path of the flow and thus will more efficiently
determine the failure reason e.g. if the failure is due to an error within the process,
the test case or the provided input data. During the run, a log handler can log each
persistent data access activity performed during the process. With this information, the
error causing persistent data access activities can be easily retrieved by reconstructing
the entire path of the persistent data access flow.

5.5 Model-Driven Solution: Specification, Integration,
Extraction

In this section we prove the technical feasibility of our approach. Our model-driven
solution is based on the view-based data modeling framework (see Section 4.2). The
highly structured models are used as the modeling basis for extracting the flattened
persistent data access flows. In the following we present the necessary steps to be taken
in order to implement our persistent data access flow concept.

• Specification of persistent data access activities

• Integration of persistent data access activities with persistent data access imple-
mentation details

• Extraction of persistent data access flows from whole process flows

Specification

In Section 3.4 and Section 4.2 we already provided a general overview of the view-based
modeling framework (VbMF) and view-based data modeling framework (VbDMF). Now,
we present the newly defined VbDMF Flow View model that is used to specify the
persistent data access activities of process flows. As shown in Figure 5.6, our VbDMF
Flow View model is extended from the basic VbMF Flow View model.

The new VbDMF Flow View model consists of a separate persistent data access
task AtomicDASTask extended from the basic AtomicTask of the VbMF Flow View.
The VbMF AtomicTask class is a specialization of the VbMF Task class. The new
AtomicDASTask allows stakeholders to being able to better focus on persistent data
access in business processes. On the basis of this new simple Flow View model, we
can link a business process activity with persistent data access implementation details.
Below, we describe how stakeholders can associate each AtomicDASTask of the VbDMF
Flow View with a corresponding DAO operation definition of the VbDMF DAO View.

68

VbDmF

-name : String

core::Elementflow::AtomicTask flow::Task

flow::AtomicDASTask
VbDMF

VbMF

Figure 5.6: VbDMF Flow View Model

Integration

As explained before in Section 3.4, views can be enriched by the mechanism of view
integration. Here, we enhance the concept of view integration by introducing view
integration paths, which we use to trace implementation details of process activities
among different views.

In Figure 4.2, we have basically outlined the (directed) view integration dependencies
between the different VbMF/ VbDMF views. By the mechanism of view integration,
persistent data access activities of a business process can be integrated with their persis-
tent data access implementation details. In example, the Collaboration DAO Mapping
View integrates the Collaboration View and the DAO View. The DAO View, in turn
can integrate two views, namely the ORM View and the Data Object Type View. Fi-
nally, the ORM View can integrate the Physical Data View and the Data Object View.
In order to visualize whether a process activity reads or writes from a certain database
table, the Flow View needs to be integrated with the Physical Data View. However, as
depicted in Figure 4.2, these two views are not connected directly. Thus, we have to
establish an integration path between these two views.

To establish such an integration path from the source view i.e. the Flow View to
the target view i.e. the Physical Data View, many views need to be connected. When
integrating views to establish an integration path, the target view of the last view in-
tegration always becomes the source view of the next view integration. Within a view
integration, we define the connection point in the source view as integration start point
and the connection point in the target view as integration end point. In order to illus-
trate the concept of view integration paths, Figure 5.7 shows an integration path of four
view integrations. The individual views are depicted in XMI notation.

• The first view integration combines the Flow View with the Collaboration DAO
Mapping View. In this view integration, the entity DASDelivery.insertDelivery of
type AtomicDASTask of the Flow View acts as integration start point S1 and the
entity DASDelivery.insertDelivery of type AtomicDASTask of the Collaboration
DAO Mapping View acts as integration end point E1) The Collaboration DAO
Mapping View maps DAS operations to DAO operations e.g. it maps the DAS
operation DeliveryDAS.insertDelivery of the Flow View to the DAO operation

69

S1

E1
S2

E2
S3

E3
S4

E4

Figure 5.7: VbDMF Integration Path

DeliveryDAO.insert of the DAO View. Instead of using the Collaboration DAO
Mapping View, the Flow View can also be integrated with the DAO View directly
by using the VbMF/VbDMF’s mechanism of view integration. However, in this
case, as we use a name-matching algorithm for view integration (presented in132,
the DAO operations and the DAS operations would have to be named identically.

• The second view integration pair (S2,E2) combines the Collaboration DAO Map-
ping View with the DAO View. In this view integration, the DeliveryDAO.insert-
Delivery entity of type AtomicDASTask of the Collaboration DAO Mapping View
is integrated with the DAO operation DeliveryDAO.insertDelivery entity of type
AtomicDASTask of the DAO View.

• The third view integration combines the DAO View with the ORM View in order
to get information about the associated database tables. Each DAO Operation of
the DAO View contains DAO Input Parameter Types and DAO Output Parameter
Types. Each parameter type can be mapped to corresponding Data Object Types
of the ORM View. In our example, the entity DeliveryDO of type DAO Input
Parameter Type of the DAO View can be mapped to the correspondent entity

70

DeliveryDO of type DAO Input Parameter Type of the ORM View. In this view
integration, the entity DeliveryDO of the DAO View acts as integration start point
S3 and the entity DeliveryDO of the ORM View acts as integration end point E3.

• The fourth view integration pair (S4,E4) finally combines the ORM View with the
Physical Data View. In this final view integration, the DeliveryTable entity of type
Table of the ORM View is integrated with the DeliveryTable entity of type Table of
the Physical Data View. This is possible, because the ORM View maps Tables and
Table Columns of the Physical Data View to Data Object Types and Data Object
Member Variables of the Data Object Type View.

After illustrating the concept of view integration paths, we provide general definitions
of the underlying terms.

Definition 1 Let V1 and V2 be two views. If entity S ∈ V1 matches entity E ∈ V2
and entity E ∈ V2 matches entity S ∈ V1, then S will be defined as the integration
start point and E will be defined as the integration end point. In this case, V1 will
be defined as the source view and V2 will be defined as the target view of this view
integration.

Definition 2 Let V1 be a view, and M1 be the model of V1, such as V1 = instanceOf(M1).
An integration start point S1 ∈ V1 corresponds to an integration end point E1 ∈ V1 when
one of the following conditions is true:

• S1 ≡ E1

• E1 is a super element of S1

• Let MC1 be a mapping container entity ∈M1
with S1 childOf(MC1) and E1 childOf(MC1).

Definition 3 Let Vi, i ∈ 1..n be n views. A view integration path is a tuple of entity
pairs P (Si, Ei|i = 1..n − 1, Si ∈ Vi, Ei ∈ Vi+1) that meets the following conditions: ∀
i ∈ 1..n−1 ∃ Si ∈ Vi that matches an integration end point Ei ∈ Vi+1. Further, in a view
integration path, each integration end point Ei ∈ Vi+1 corresponds to a new integration
start point Si+1 ∈ Vi+1.

An unsolved problem still is how to extract the persistent data access flows from the
whole Flow View. In the following we present an algorithm calculating a flattened Flow
View, defined as the DAS Flow View. Parts of this algorithm are the sub-algorithms
implementing view integration as defined by the definitions 1–3 above.

71

Extraction

In the following we present our algorithm used to extract the DAS Flow View from
the whole Flow View. Due to our model-driven view-based approach we can filter data
access activities by specific filter criteria, such as tables, columns, DAOs, data objects etc.
As a result our extracted persistent data access flows can contain only those activities
accessing a specific table of a database. Before we define the algorithm to extract
persistent data access flows from the whole process flow, in the context of VbDMF, we
provide the following definition:

Definition 4: The VbDMF DAS Flow View is an extraction of the VbDMF Flow View,
accordingly, its tasks are of type AtomicDASTask. Hence, the DAS Flow View represents
the persistent data access flows of a business process.

Algorithms for global data flow analysis fall into two major classes: iterative algorithms
and elimination algorithms31. In iterative algorithms, the equations are repeatedly eval-
uated until the evaluation converges to a fixed point. Elimination algorithms compute
the fixed point by decomposition and reduction of the flow graph to obtain subsequently
smaller systems of equations. We settled for a recursive elimination algorithm and
present our simple recursive elimination algorithm RecursiveClean (Algorithm 5.1) to
extract the DAS Flow View from the Flow View. Algorithm 5.1 contains the MatchFil-
terCriteria sub-algorithm (Algorithm 5.2 which is the heart of our recursive elimination
algorithm RecursiveClean.

In the following we explain our recursive elimination algorithm RecursiveClean (Al-
gorithm 5.1). The start Task of the Flow View is passed as mandatory input parameter
to the algorithm. In addition, the optional input parameters searchView and searchEn-
tity are passed to the algorithm in order to filter DAS operations by certain filter criteria.
After executing the algorithm, the persistent data access flow contains only those DAS
operations matching the entity searchEntity of the view searchView. In order to filter
persistent data access flows by more than one filter criteria the algorithm can be per-
formed repeatedly. If the input task of type Task has children, for all non-data-related
entities, our recursive algorithm recursively will step into the different paths of the tree
view. A task will be able to have children if it is of type Sequence, Parallel, Exclusive or
Branch. For each non-data-related childTask of the current task, the algorithm calls itself
recursively. As explained before, a task will be data-related, if it is of type AtomicDAS-
Task. When stepping through a certain path, only the non-data-related leaf-tasks are
removed by recursion from the Flow View. Per default, tasks of type AtomicDASTask
must not removed, because they are part of our resulting DAS Flow View. Likewise,
tasks such as Sequence, Parallel, Exclusive and Branch containing data-related entities
must not removed as well, because they are also part of the resulting DAS Flow View.
Algorithm MatchFilterCriteria (Algorithm 5.2) filters all data-related leaf-tasks of type
AtomicDASTask provided that they do not match the filter criteria. In order to check
whether the current leaf-tasks match the filter criteria, the algorithmMatchFilterCriteria
tries to establish a view integration path to the entity searchEntity of the searchView.

72

Input: Task task ∈ F lowV iew
Input: View searchV iew
Input: Entity searchEntity

1 if (hasChildren(task)) then
2 foreach Task childT ask ∈ task.children() do

/* only process non-data-related tasks */
3 if (!(childT ask instanceof AtomicDAST ask)) then
4 recursiveClean(childT ask);
5 if (NOT hasChildren(childT ask)) then
6 task.removeChild(childT ask);
7 end
8 end

/* only process data-related tasks */
9 else if (MatchF ilterCriteria(childT ask, searchV iew, searchEntity)) then

10 task.removeChild(childT ask);
11 end
12 end
13 end
14 else if (!(task instanceof AtomicDAST ask)) then
15 task = null;
16 end
17 else if (MatchF ilterCriteria(childT ask, searchV iew, searchEntity)) then
18 task = null;
19 end

Algorithm 5.1: RecursiveClean()

Hereby the current leaf-tasks act as integration points. If a view integration path is
found, Algorithm 5.2 will return true.

Input: Entity integrationStartP oint ∈ F lowV iew
Input: View searchV iew
Input: Entity searchEntity

1 sourceV iew=F lowV iew;
2 if (NOT (searchV iew == null)) then
3 while (NOT sourceV iew.equals(searchV iew)) do
4 targetV iew = getNextV iew(sourceV iew, searchV iew);
5 integrationEndP oint = getIntegrationEndP oint(integrationStartP oint, targetV iew);
6 if (NOT (searchV iew.equals(targetV iew))) then
7 integrationStartP oint =

RecursiveGetIntegrationStartP oint(integrationEndP oint, targetV iew);
8 end
9 sourceV iew = targetV iew;

10 end
11 end
12 return (RecursiveMatchEntity(integrationEndP oint, searchEntity));

Algorithm 5.2: MatchFilterCriteria()

The sub-algorithm MatchFilterCriteria algorithm (see Algorithm 5.2) is the heart of
our implementation solution. It checks whether a certain process activity matches given

73

filter criteria by implementing the concept of view integration paths. Algorithm 5.2
consists of three basic functions:

• getNextView(View sourceView, View targetView) The function getNextView simply
returns the next related view based on the sourceView and the targetView. The
function returns the next view based on the view integration dependencies depicted
in Figure 4.2. The contained function NextEntity is comparably simple, and thus
is not further illustrated.

• getIntegrationEndPoint(Entity startEntity, View targetView) In order to connect a
source view with a target view, the integration start point of the source view needs
to be integrated with an integration end point of the target view. In our prototype
implementation, the algorithm finds the corresponding integration end point in
the target view based on name-matching132. As the name-matching algorithm
(presented in132) is sufficient for our prototype implementation, we do not provide
further implementations to find matching entities in the target view in this thesis.

• RecursiveGetIntegrationStartPoint(Entity oldEntity, View sourceView) Based on
the integration end point of the previous view integration, this Algorithm 5.3 can
calculate the integration start point of the next view integration. The target view
of the last view integration becomes the source view of the next view integration.
Thus, the old integration end point is in the same view as the new integration
start point. Algorithm 5.3, the heart of our integration path calculation, requires
the simple recursive sub-algorithm RecursiveMatchEntity (Algorithm 5.4) to check
whether the integration end point of the target view contains or matches given
filter criteria.

Three parameters are passed to Algorithm 5.2:

• The persistent data access activity integrationStartPoint of the Flow View, which
is the activity to be checked for a filter criteria match.

• The filter criteria to be checked contained in the view searchView.

• The entity searchEntity representing the filter criteria.

As defined above, a view integration path consists of pairs of each a integration start
entity and an integration end entity. Each integration start entity belongs to the source
view and each integration end entity belongs to the target view. Accordingly, at first, a
variable sourceView is initialized within the Flow View. As long as the current sourceView
does not equal the searchEntity entity of the searchView, the functions getNextView, get-
IntegrationEndPoint, and RecursiveGetIntegrationStartPoint are invoked. The function
RecursiveGetIntegrationStartPoint is invoked as long as the variable targetView does not
equal the variable searchView.

In the following we describe the algorithm RecursiveGetIntegrationStartPoint (Algo-
rithm 5.3) used to get the integration start point of the current view integration. The

74

Input: Entity currentEntity
Input: View targetV iew

1 integrationEndP oint=GetIntegrationEndP oint(currentEntity, targetV iew);
2 if NOT(integrationEndP oint == null) then
3 return integrationEndPoint;
4 end
5 else
6 if (hasChildren(currentEntity)) then
7 foreach (Entity childEntity ∈ entity.children()) do
8 return RecursiveGetIntegrationStartP oint(childEntity, targetV iew);
9 end

10 end
11 else
12 Entity parent = getP arent(currentEntity);
13 if (parent instanceof MappingContainer) then
14 foreach (Entity childEntity ∈ parent.children()) do
15 if (NOT (childEntity.equals(currentEntity))) then
16 return childEntity;
17 end
18 end
19 end
20 end
21 end
22 return NULL;

Algorithm 5.3: RecursiveGetIntegrationStartPoint()

input parameters currentEntity and targetView are passed to Algorithm 5.3. According
to Definition 2, there are three possibilities how to find an integration start point for the
next view: The new integration start point either is the last integration end point, the
new integration start point is part of a Matching Container, or the new integration start
point is a child of the last integration end point. According to the first possibility, the
function GetIntegrationEndPoint checks whether the current integration start point of
the currentView matches a corresponding integration end point in the target view. If the
integration start point matches a corresponding integration end point, a new integration
start point will be found. Otherwise, the new integration start point is either part of a
Matching Container or it becomes a child entity of the current entity. In both cases, the
RecursiveGetIntegrationStartPoint algorithm invokes itself recursively to check whether
the new integration start point matches an integration end point.

Finally, the simple recursive algorithm RecursiveMatchEntity (Algorithm 5.4) is in-
voked in order to check whether the integration point in the target view matches the
given filter criteria. For this purpose, two parameters are passed to Algorithm 5.4.
Firstly, the entity currentEntity is to be checked against certain filter criteria. Secondly,
the entity searchEntity specifies this filter criteria. The algorithm firstly checks whether
the entity searchEntity equals currentEntity by name-matching. If this is true, the busi-
ness process activity will match the filter criteria. If currentEntity has children, for each
child, the algorithm will invoke itself recursively.

75

Input: Entity currentEntity ∈ V iewcurrentV iew
Input: Entity searchEntity ∈ V iewcurrentV iew

1 if (currentEntity.equals(searchEntity)) then
2 return TRUE ;
3 end
4 if (hasChildren(currentEntity)) then
5 foreach Entity childEntity ∈ entity.children() do
6 RecursiveMatchEntity(childEntity);
7 end
8 end
9 return FALSE ;

Algorithm 5.4: RecursiveMatchEntity()

To conclude, our recursive elimination algorithm can be reused for extracting other
views such as for extracting all service operations from the Flow View.

5.6 Applicability of the Algorithms & Tooling

In this section we show the applicability of the algorithms above and present a suitable
tooling. For this, we exemplary apply our recursive elimination algorithm to the business
process of the case study presented in Section 4.4. We illustrate how our algorithms can
be applied to extract both simple and filtered persistent data access flows from the
business process flow.

Extract simple persistent data access flows When stakeholders want to test per-
sistent data access in process driven SOAs, as shown in Section 5.4, they need a docu-
mentation about the persistent data access activities in the business process. Our simple
persistent data access flow provides such a documentation. In the following we apply our
algorithms to extract the DAS Flow View from the Flow View modeling the business
process flow shown in Figure 5.2. For this purpose, we invoke the recursive elimination
algorithm RecursiveClean (Algorithm 5.1) with the start Task of the Flow View. The
resulting Flow View of this algorithm is a DAS Flow View that only contains persis-
tent data access activities. We invoke the algorithm with the null value for the input
parameters searchView and searchEntity. Figure 5.8(a) shows the XMI notation of the
extracted DAS Flow View after invoking the algorithm. The resulting DAS Flow View
consists of two simple persistent data access flows, represented as Sequence elements.

Extract filtered persistent data access flows In case a deadlock occurs, data ana-
lysts want to check the business process for structural problems. For this purpose, they
can extract all the persistent data access activities that read or write from a specific
database table. In our example the function MatchFilterCriteria of Algorithm 5.1 filters
all persistent data access activities that do not access a specific table DeliveryTable. To
establish this, we set the input parameters searchView and searchEntity to the values
Physical Data View and Table respectively. In addition, we set the attribute Table.name

76

(a) DAS Flow View

(b) DAS Flow View (Table Delivery)

Figure 5.8: XMI Notation of a Simple and Filtered DAS Flow View

to DeliveryTable. By view integration, we can filter those persistent data access ac-
tivities not accessing the specific table DeliveryTable. In Figure 5.7, we illustrate the
view integration path between the Flow View and the Physical Data View. In order
to establish the view integration path, each persistent data access activity has to be
integrated with the DAO View in order to get the corresponding DAO operation. The
Input Parameter Data Object Types and the Output Parameter Data Objects Types of
the DAO operation are then integrated with the Data Object Types of the ORM View.
Within the ORM View each Data Object Type is mapped to a specific Table. Finally,
we integrate the Table entity of the ORM View with the Table entity of the Physical
Data View. Finally, the algorithm RecursiveMatchEntity (Algorithm 5.4) checks each
current entity in the Physical Data View against the DeliveryTable entity. If the current
entity matches the DeliveryTable entity, the related persistent data access activity will
be part of the resulting persistent data access flow. Otherwise the concerned persistent
data access activity is filtered from the Flow View. The resulting extracted DAS Flow
View is shown in Figure 5.8(b). As a result, the DAS Flow View contains two persistent
data access flows (represented as Sequences) of the whole business flow. Both resulting
filtered persistent data access flows are characterized by containing only those persistent
data access activities accessing table DeliveryTable.

In the following, we give a few more use case examples fulfilled by stakeholders
developing and maintaining applications in large-scale enterprises. Whether a certain
use case occurs depends e.g. on the quality of the underlying business process and non-

77

functional requirements e.g. the availability of external dependencies such as service
providers and databases. These use cases mainly result from our study of analyzing
persistent data access in service-oriented environments in a large enterprise and secondly
from analyzing literature in this field. They demonstrate how our persistent data access
flows can be applied to specific analysis problems. Each of these use cases extracts a
persistent data access flow from the whole process flow by different filter criteria.

• In case a deadlock occurs, in addition to selecting all persistent data access ac-
tivities accessing a specific database table, data analysts can further flatten the
resulting persistent data access flow. In example, they can extract all the persistent
data access activities from the business process that read or write from a specific
column of a database table.

• In case a specific database fails, stakeholders such as DAS developers need a docu-
mentation of which business process activities access a specific database. For this
purpose, they need to extract all the persistent data access activities that read or
write data from a specific database url. In order to establish this, in addition to
the previous four view integrations, the Physical Data View needs to be integrated
with the Database Connection View.

• Let us consider the case a certain service provider is shut down for any reason.
Then, stakeholders such as system architects need to determine the business pro-
cess activities invoking services running on the failed service provider. For this
purpose, stakeholders can extract only those persistent data access activities from
the whole process flow which run on a certain URI Service.Uri.name. In order to
establish this, the algorithm MatchFilterCriteria integrates the DAS Flow View
with the Collaboration View.

In order to demonstrate applicability of our model-driven solution, Figure 5.9 shows
a suitable tooling. The tooling shall support stakeholders both to view the persistent
data access flows of a business process and to trace persistent data access details of the
process activities. Top middle in the figure, the relationships between the process flow,
the simple persistent data access flow, and the filtered persistent data access flow are
shown. In example, the dotted lines illustrate the view integration path of the persistent
data access activity DeliveryDAS.insertDelivery with its related views. In the figure,
each view is labeled with a number that has a corresponding number in the descriptions
below.

1. Persistent Data Access Flow Filter Criteria: Stakeholders can select filter criteria.
Based on the filter criteria, the recursive elimination algorithm RecursiveClean
(Algorithm 5.1) is invoked with certain input parameter values. In the example
we select PhysicalDataView.table.name=DeliveryTable to filter all persistent data
access activities from the flow that do not match the filter criteria. As soon as the
search button is pressed, as explained before, Algorithm 5.1 is invoked with the
input parameter values Physical Data View, Table, and DeliveryTable.

78

2. Persistent Data Access Flow Filter Results: In this window, stakeholders can view
the resulting persistent data access activities matching the filter criteria. In our
example, two persistent data access activities have been found. The first persistent
data access activity DeliveryDAS.insertDelivery is part of the sub process storeAp-
plication The second persistent data access activity DeliveryDAS.updateDelivery is
part of the sub process handleDelivery.

3. The Flow View shows the whole business process.

4. The DAS Flow View contains a simple business process that only consists of the
persistent data access activities.

5. The filtered persistent DAS Flow View shows a filtered business process that only
consists of the persistent data access activities reading or writing from Table De-
liveryTable.

6. Other related views: Stakeholders can view persistent data access details of per-
sistent data access activities such as physical storage tables, database connections,
object-relational mappings, and data access object types. In Figure 5.9, the imple-
mentation details of the business process activity DeliveryDAS.insertDelivery are
labeled in yellow. The dotted lines exemplify a view integration path of the per-
sistent data access activity DASDelivery.insertDelivery with its related views. So,
the VbMF Flow View can integrate each AtomicTask of the Flow View with further
service operation definitions from the Collaboration View. As an extension of the
VbMF Flow View, the VbDMF Flow View describes a flow of process activities
consisting of activities invoking DAS operations. The Collaboration View specifies
the service operation definitions of the DAS operations. The DAO Collaboration
Mapping View maps data access service (DAS) to underlying data access object
(DAO) definitions. Furthermore, the DAO View models the underlying DAO op-
erations of the DAS operations. The Physical Data View integrates the Database
Connection View in order to get the DBConnectionProperties details of the un-
derlying RDBMS such as url, user, password etc. The integration of the Physical
Data View with the Database Connection View is possible by the entity Table of
the Physical Data View incorporating a reference to the dbConnectionProperties
entity acting as integration point.

5.7 Evaluation

In this section we want to discuss both the correctness and complexity of the presented
algorithms.

Correctness Here, we discuss the correctness of the algorithm MatchFilterCriteria
(Algorithm 5.2) using induction. The MatchFilterCriteria algorithm is the heart of our

79

1

2

3 4 5 6

Figure 5.9: Tooling for Tracing Persistent Data Access in Process-Driven SOAs

recursive elimination algorithm that is used to implement our view integration path
concept.

Hypothesis: Let V Ti be the i-th target view and V Si+1 be the (i+1)-th source view
of a certain view integration path. The algorithm will be correct, if the target view V Ti

equals the source view V Si+1 ∀ 2 < i < n.

Algorithm 5.5 illustrates a reduced MatchFilterCriteria algorithm that contains the
relevant lines of the while loop to prove the hypothesis. In this reduced MatchFilter-
Criteria algorithm we use the following variables: V Si denotes the i-th source view of
a view integration path, V Ti denotes the i-th target view of a view integration path.
Accordingly, Si ∈ V Si denotes the integration start point of the i-th view integration
and Ei ∈ V Ti denotes the integration end point of the i-th view integration.

1 while (NOT V Si.equals(searchV iew)) do
2 targetV iew = getNextV iew(V Si, searchV iew);
3 Ei = getIntegrationEndP oint(Si, targetV iew);
4 if (NOT (searchV iew.equals(V Ti))) then
5 Si+1 = RecursiveGetIntegrationStartP oint(Ei, V Ti);
6 end
7 V Si+1 = V Ti;
8 end

Algorithm 5.5: Reduced MatchFilterCriteria Algorithm

80

Let i be the number of while loop cycles of Algorithm 5.5. The number of while
loop cycles equates the number of views in the view integration path. ∀ 0 < i < 2 the
hypothesis is false, because a view integration path must have at least two views in order
to fulfill the hypothesis:

1. i = 1 : S1 ∈ V S1, T1 = null

2. i = 2 : S1 ∈ V S1, T1 ∈ V T1

Base Case: i = 3 : S1 ∈ V S1, T1 ∈ V T1, S2inV S2, V S2 = V T1, T2 ∈ V T2

Inductive Step: Let V Si = V Ti−1 be true ∀ 2 < i < n:
S1 ∈ V S1, T1 ∈ V T1, .., Sn−1 ∈ V Sn−1, Tn−1 ∈ V Tn−1, Sn ∈ V Sn, V Sn = V Tn−1, Tn

∈ V Tn.

Now, we show that the hypothesis is true ∀ 2 < i < n + 1:
S1 ∈ V S1, T1 ∈ V T1, .., Sn−1 ∈ V Sn−1, Tn−1 ∈ V Tn−1, Sn ∈ V Sn, V Sn = V Tn−1,

Tn ∈ V Tn, Sn ∈ V Sn, Tn ∈ V Tn, Sn+1 ∈ V Sn+1, V Sn+1 = V Tn, Tn+1 ∈ V Tn+1
From this it follows that ∀ 2 < i < n + 1: V Si+1 = V T(i+1)−1 = V Ti. Hereby we have
proven that our hypothesis is true.

Complexity: In the following we quantitatively measure the complexity of the pre-
sented algorithms using the Big O notation. We evaluate each of our algorithms sepa-
rately before we will derive the overall performance from the parts.

Formally, the algorithm f(n) will be equivalent to O(g(n)) ∀ n > 0, if there exists
a constant c > 0, such that f(n) = c ∗ g(n). Table 5.1 summarizes the complexity of
the presented algorithms. The complexity of each algorithm is presented in a separate
sub table. The presentation order of the sub-algorithms is bottom-up such that the
complexity of the sub-algorithms are presented before the parent RecursiveClean algo-
rithm. In each sub table, the line number, the complexity of each line, and the maximum
number of invocations are displayed. Firstly, in Table 5.1(a) and Table 5.1(b) the com-
plexity of the algorithms RecursiveGetIntegrationStartPoint and RecursiveMatchEntity
are illustrated. As these two algorithms are invoked by algorithm MatchFilterCriteria,
next, Table 5.1(c) shows the complexity of the algorithm MatchFilterCriteria. Finally,
Table 5.1(d) displays the complexity of the algorithm RecursiveClean which invokes the
algorithm MatchFilterCriteria. In the sub tables, we use the following literals: v to refer
to the number of views in a view integration path, n to denote the number of elements
within a view, and the constant k to denote the number of child elements within an
integration element within a view. For example, The input parameter DeliveryDO of
the DAOView is a child entity of the DeliveryDAO.insert integration point. The number
of persistent data access activities within the Flow View is denoted by d.

Table 5.1(a) depicts the complexity of the recursive algorithm RecursiveGetIntegra-
tionStartPoint (Algorithm 5.3). The algorithm RecursiveGetIntegrationStartPoint will
check each entity of the view whether it matches the current entity currentEntity. Thus,

81

Table 5.1: Algorithm Complexity

(a) Complexity of Algorithm RecursiveGetIntegrationStartPoint (Algorithm 5.3)
Line Line of Algorithm Complexity of max. # of
Line Invocations

1 integrationEndP oint=GetIntegrationEndP oint(currentEntity, O(n) k
targetV iew)

2 If(NOT(integrationEndP oint == null)) O(1) k
3 Return(integrationEndPoint) O(1) k
4 Else
5 If ((hasChildren(currentEntity))) O(1) k
6 ForEach((Entity childEntity ∈ entity.children())) O(1) k
7 RETURN (RecursiveGetIntegrationStartP oint(childEntity, O(1) k

targetV iew))
8 Else
9 Entity parent = getP arent(currentEntity) O(1) k
10 If((parent instanceof MappingContainer))O(1) k
11 ForEach((Entity childEntity ∈ parent.children())) O(1) k
12 If((NOT (childEntity.equals(currentEntity)))) O(1) k
13 RETURN childEntity O(1) k
14 RETURN NULL O(1) k

(b) Complexity of Algorithm RecursiveMatchEntity (Algorithm 5.4)
Line Line of Algorithm Complexity of max. # of
Line Invocations

1 If ((currentEntity.equals(searchEntity))) O(1) k
2 ReturnTRUE O(1) 1
3 If (hasChildren(currentEntity)) O(1) k
4 Else
5 ForEach(Entity childEntity ∈ entity.children()) O(1) k
6 RecursiveMatchEntity(childEntity) O(1) k
7 ReturnFALSE O(1) 1

(c) Complexity of Algorithm MatchFilterCriteria (Algorithm 5.2)
Line Line of Algorithm Complexity of max. # of
Line Invocations

1 sourceView=FlowView O(1) 1
2 if (NOT searchView==null)) O(1) 1
3 while (NOT sourceView.equals(searchView)) O(1) v
4 targetView = getNextView(sourceView; searchView) O(1) v-1
5 integrationEndPoint = getIntegrationEndPoint(integrationStartPoint, O(n) v-1

targetView)
6 if (NOT(searchView:equals(targetView))) then O(1) v-1
7 integrationStartPoint = RecursiveGetIntegrationStartPoint O(1) v-2

(integrationEndPoint,targetView)
8 sourceView=targetView O(1) v-1
9 return (RecursiveMatchEntity(integrationEndPoint, searchEntity)) O(1) 1

(d) Complexity of Algorithm RecursiveClean (Algorithm 5.1)
Line Line of Algorithm Complexity of max. # of
Line Invocations

1 If ((hasChildren(task))) O(1) n
2 ForEach(Task childT ask ∈ task.children()) O(1) n
3 If((!(childT ask instanceof AtomicDAST ask))) O(1) n
4 recursiveClean(childT ask) O(1) n-d
5 If((NOT hasChildren(childT ask))) O(1) n-d
6 task.removeChild(childT ask) O(1) n-d
7 ElseIf((MatchF ilterCriteria(childT ask, , searchV iew, searchEntity))) O(d) d
8 task.removeChild(childT ask) O(1) d
9 ElseIf ((!(task instanceof AtomicDAST ask))) O(1) n-d
10 task = null O(1) n-d
11 ElseIf((MatchF ilterCriteria(childT ask, , searchV iew, searchEntity))) O(d) d
12 task = null O(1) d

82

the function RecursiveGetIntegrationStartPoint is of linear complexity O(n) and is in-
voked at most m times, whereas m corresponds to the number of child elements of entity
currentEntity. However, the number of child elements m is not dependent on the num-
ber of process elements, because it is a constant factor. Therefore, the next statements
are also of constant complexity. As a result, the overall performance of the algorithm
RecursiveGetIntegrationStartPoint is linear.

Table 5.1(b) summarizes the complexity of the algorithm RecursiveMatchEntity (Al-
gorithm 5.4). As an entity has a constant number of child entities e.g. the entity Table
has a constant number of Columns. Therefore, the algorithm RecursiveMatchEntity is
of constant complexity.

Table 5.1(c) illustrates the complexity of Algorithm 5.2. The function getNextView,
that is not further specified, is of constant complexity, because it simply returns the
next view by the current view. In contrast to the function getNextView, the function
getIntegrationEndPoint is dependent on the number of process elements within a view.
The function getIntegrationEndPoint determines a matching element (the integration
end point) in the target view, that is the integration end point. Thus, the response
time of this function grows linearly with the number of view elements. The function
RecursiveMatchEntity checks whether the current entity matches the filter criteria. This
function is also of constant complexity. As a result, Algorithm 5.2 has a linear overall
performance.

Table 5.1(d) shows the complexity of the algorithm RecursiveClean (Algorithm 5.1).
Each line in the algorithm is invoked linearly with the number of process activities in
the business process. In particular, line 7 and 11 are invoked linearly with the number
of persistent data access activities of the business process. The lines 8 and 12 will only
be invoked, if the persistent data access activities do not match the filter criteria. Thus,
the overall performance of our recursive elimination algorithm RecursiveClean for d > 0
is O(d2). For d = 0, the worst case response time of the recursive elimination algorithm
RecursiveClean grows solely linear with the number of process activities O(n). Again, d
is the number of persistent data access activities of the Flow View.

In the following we summarize the resulting complexity of the algorithms.

• RecursiveGetIntegrationStartPoint: k ∗O(n) + 11 ∗ k ∗O(1) ≡ O(n)

• RecursiveMatchEntity: 4 ∗ k ∗O(1) + 2 ∗O(1) = (2 ∗ (2k + 1)) ∗O(1) ≡ O(1)

• MatchFilterCriteria: (v−1)∗O(n)+v ∗O(1)+2∗ (v−1)∗O(1)+(v−2)∗O(1)+3∗O(1)
= (v − 1) ∗O(n) + (4v − 1) ∗O(1) ≡ O(n)

• RecursiveClean:
for d = 0: 3n∗O(1)+5∗(n−d)∗O(1)+2d∗O(d)+2d∗O(1) ≡ 3n∗O(1)+5∗(n)∗O(1) ≡ O(n)

for d = n: 3n∗O(1)+5∗(n−d)∗O(1)+2d∗O(d)+2d∗O(1) ≡ 3d∗O(1)+2d∗O(d)+2d∗O(1)
= 5d ∗O(1) + 2d ∗O(d) ≡ O(d2)

83

for 0 < d < n: 3n ∗ O(1) + 5 ∗ (n − d) ∗ O(1) + 2d ∗ O(d) + 2d ∗ O(1) ≡ 3 ∗ O(n) +
5 ∗O(n− d) + 2 ∗O(d) + 2 ∗O(d2) ≡ O(d2)

Today, XML is a popular standard data exchange format. Thus, in literature, there
is a variety of more efficient XML structural matching techniques4,19. By using these
structural matching techniques, the worst case complexity of our recursive elimination
algorithm O(d2) for d > 0 could be reduced. However, the aim of this section is to
quantitatively show the feasibility and applicability of our approach, which has been
achieved well.

5.8 Discussion

Different stakeholders such as data analysts, DAS developers, and database testers have
different requirements to a software system. According to the pattern of separation of
concerns45, appropriate views must be provided to the different stakeholders. However,
in addition to these views, read-only sub-views extracted from these rich views can
facilitate tasks such as developing, and testing. Thus, besides view model extension and
view integration, we introduced a further mechanism in order to generate a resulting
view: The mechanism to extract views from existing views. In this connection we need
to distinguish between editable and read-only views. The DAS Flow View is an example
of such a read-only view. The DAS Flow View cannot be specified at modeling time,
because usually connections have to be modeled in the context of the whole business
flow. Hence, these extracted views are typically read-only views. Moreover, our DAS
Flow View can be generated from the Flow View on the fly. Thus the DAS Flow View
does not have to be stored after adapting the corresponding Flow View. This concept is
comparable to the view concept in database theory: A database view can output data
stored in one more database tables. When data in one of these database tables changes,
the database view can output the updated data by accessing them through the tables.
The disadvantage of this on-the-fly-generation is that the generation procedure needs to
be performed each time when selecting the DAS Flow View.

To the best of our knowledge, up-to-now these persistent data access flows are not
used to solve analysis, development, and testing problems, yet. In this chapter, our goal is
to present a visual solution for a series of persistent data access problems. Accordingly,
the specified scenarios in Section 5.4 are just examples of how our approach can be
applied. Furthermore, we discover deadlocks by ensuring whether the DAS operations
are properly designed. However with our approach we do not claim to discover a new
approach for detecting deadlocks. The potential deadlock cause of two process-instances
invoking intersecting DAS operations presented, is just one of several possible causes
for a deadlock. Other mistakes such as an incorrect transaction handling or database
configuration can also increase the probability of a deadlock. Instead, our persistent
data access flow shall ease both manual and automatic deadlock detection in a complex
process model. On top of our approach existing data analysis solutions such as deadlock
detection techniques can be applied.

84

In the following we shortly state how our approach reduces the complexity of the
process in the context of the three presented use cases. Hereby we use the definitions
for process complexity specified in21. Four main metrics can be identified to measure
the complexity of a process: activity complexity, control flow complexity, data-flow
complexity, and resource complexity. The activity complexity of the process simply
calculates the number of activities a process has. The control flow behavior of a process
is affected by process constructs such as splits, joins, loops, and ending and starting
points. The data-flow and resource complexity perspectives measure the complexity of
data structures and the diversity of resources respectively. With our approach, according
to the concept of separation of concerns, we could reduce the number of activities of a
flow. We achieved this by extracting persistent data access flows consisting of simply data
access activities. Thus we reduced the activity complexity of the process. Furthermore
in the database testing use case, we resolved one complex problem into a number of
simpler problems by extracting the data paths from a whole process flow. In this use
case we could also decrease the control flow complexity to a minimum value. This is
because a data path contains no switch constructs. By our filtering mechanism, we could
also reduce the data-flow complexity and resource-complexity of business processes.

5.9 Summary
Process flows contain different types of activities such as business logic activities, trans-
formation activities, and persistent data access activities. When the number of activities
grows, focusing on special types of activities of the process flow such as the persistent
data access activities is a time-consuming task. In this work we presented a view-based,
model-driven solution extracting persistent data access flows from the whole process
flow. By using these persistent data access flows, different stakeholders such as data
analysts, DAS developers, and database testers can focus on the persistent data access
activities of the process flows and to solve structural problems in business processes.
We illustrated how our tailored DAS Flow View concept can improve data analysis,
development, and testing by presenting selected use cases. Each of these use cases is
an example of how persistent data access flows can increase efficiency and decrease the
time to solve certain problems at the earliest state of development. Our DAS Flow View
can be further tailored by different filter criteria such that the flow contains only those
persistent data access activities reading or writing data from a specific database table.
We have demonstrated the applicability of our approach by a suitable tooling. Further-
more, we have evaluated the feasibility by showing the correctness and complexity of
the presented algorithms. Apart from focusing on the persistent data access activities,
our approach can be generally applied to focus on any particular parts of the business
process in a process-driven SOA.

85

CHAPTER 6
Reusable Architectural Decision
Model for Model and Metadata

Repositories

In this chapter we describe reusable knowledge in form of reusable architectural deci-
sions for system architects in setting-up, planning, and developing model and metadata
repositories, as well as the main decision drivers. For each decision we present recommen-
dations which alternative to choose depending on certain requirements and boundary
conditions. Thus, our approach basically aims at decreasing the costs and impact of
making wrong decisions related when setting-up model and metadata repositories. In
addition, it can be used as a lightweight approach to architecture documentation: If the
reusable architectural decision model is used to make decisions, only a reference to the
decision model will be needed to document an architectural decision instead of docu-
menting the whole decision as well as the rationale. Our research results are based on
field notes and observations from own model repository projects, a detailed analysis of
existing model repository projects (both open source and commercial), and interviews
and discussions with other model repository developers.

This chapter is structured as follows: Firstly, in Section 6.1 we motivate our approach.
Next, in Section 6.2, we both define reusable architectural decision models (RADM)
forming the background for this chapter. Section 6.3 provides detailed specifications of
the architectural decisions and describes the dependencies between them. In Section 6.4,
the applicability of the RADM is illustrated by a case study. Finally Section 6.5 sums
up this chapter.

87

6.1 Motivation

When setting up model and metadata repositories, repositories should be optimized for
the kind of modeling artifacts they store and the task they should fulfill. For instance,
custom, model-aware queries should be provided that are simplified or more powerful
compared to standard queries, such as SQL queries, because they can make use of the
information in the modeling artifacts. In addition, model and metadata repositories are
often realized on top of existing basic technology such as databases, but it is not enough
to simply store the models in and retrieve them from such a basic technology. Therefore,
a lot of architectural decisions have to be made. Some of the resulting decisions might
be intuitively decided in a suitable way by system architects. However, other decisions
might be skipped or decided in a non-optimal way because of missing knowledge of
alternatives and consequences.

In this chapter we present our reusable architectural decision model (RADM), docu-
menting the decisions for setting up model and metadata repositories. This RADM can
be instantiated for a concrete system as shown in the case study Section 6.4.

6.2 Background

According to Jansen and Bosch62 “software architecture is a set of principal design
decisions“. During a software system’s design phase, system architects have to make
numerous decisions for organizational and business issues, for matters of broad and
detailed design, and for technologies148. We will refer to a design decision using the
term architectural decision, if it meets the following conditions: Firstly, it affects either
the architecture of a system or the role of the system architect, and secondly, the system
architects of the system see those decisions as principal decisions. The main argument
for using architectural decision modeling is that such principal decisions should not get
lost.

Architectural decision models are used to document architectural decisions62,73,134.
These architectural models capture selected decision options and justifications for these
decisions. However, from our experience, in industry, stakeholders often do not attach
great value to documenting decisions, and, if it is performed at all, documentation will
usually be done in retrospect. Thus, architectural decision models cannot solve the
problem of lacking documentation for architecture decisions.

Reusable architectural decision models proposed by Zimmermann et al.147,148 focus
on solving these problems: “A reusable architectural decision model enhances the basic
decision model by steering the architectural decision making activities148“. Reusable
decision models are closely related to software pattern concepts50. For instance, Zim-
mermann et al.’s approach applies the reusable architectural decision models for pattern
selection.

In this chapter, we describe a reusable architectural decision model for model and
metadata repositories. Each architectural decision is characterized by a decision name.
In this model, the decisions either have a number of alternatives or options between

88

which to decide. Some alternatives or options have variants, which can be selected. For
each decision, we describe the forces or decision drivers that must be considered, when
selecting an alternative or option. Usually, the different alternatives and options have
different consequences with regard to the forces. For each alternative and option, we
describe a few known uses. Finally, decisions have relationships with other decisions.
For instance, a decision will be able to be a follow-on decision to another decision, if a
specific alternative or option is chosen.

6.3 Architectural Decisions

In this section, we describe architectural decisions architects must make for planning,
setting-up, developing, and installing model and metadata repositories. In particular,
we focus on the underlying data model design – the core of a model and metadata
repository. At first, we give a short overview over these decisions and the dependencies
between them (see Figure 6.1). Subsequently, we present each of these decisions in detail.
The decision model is distilled from our own experiences, our study of other projects
(both open source and commercial), as well as the documented experiences of others.

• Select Basic Repository Technology: Usually, one of the first decisions is which
basic technology should be used for the repository. Depending on the types and
amounts of models or metadata to be stored, either an XML database, a specific
file structure, or a standard relational database are alternatives.

• Select XML to NXD Mapping: When system architects decide for an XML database,
they can select between two basic mapping alternatives, namely an XSD model-
based and a text-based approach.

• Select XML to RDBMS Mapping: When system architects choose an RDMBS, an
important follow-on decision is how to map the XML documents to the database,
namely by a domain model mapping or an XSD model mapping.

• Select XML to File Mapping: When system architects decide for a file storage
solution, they can select between three basic mapping alternatives, namely a XSD
model-based, a domain model-based, and a simple text-based approach.

• Select Repository Type: Depending on important decision drivers such as search-
ing capabilities and data categorization, system architects can decide for a model
repository, a metadata repository, or a model and metadata repository.

• Select Support for Meta-Model: When system architects decide for storing models
by selecting the model repository and model and metadata repository respectively,
they optionally can choose a meta-model that specifies the elements of the stored
models.

89

optional follow-on
decision

optional follow-on
decision

optional follow-on
decision

optional follow-on
decision

Select Repository
Type

Model Repositoryalternative

alternative Model and Metadata
Repository

Select
Metadata

Types

optional follow-on
decision

Metadata Repositoryalternative follow-on
decision

Select Modeling
Levels Stored

in the Repository

follow-on
decision

Select
Association Model

Select Basic
Repository
Technology

Native XML
Database (NXD)

alternative

alternative
(XML-enabled)

Relational
Database

File Structurealternative
Select

XML to File
Mapping

Select
XML to NXD

Mapping

follow-on
decision

optional follow-on
decision

Select Support
for

Meta-Model

optional
follow-on
decision

follow-on
decision

Select
XML to RDBMS

Mapping

optional
follow-on decision

General
Association

Model

alternative

alternative Domain Model

Select Change Log
Metadata Types

Select Version
Metadata Types

Select Security
Metadata Types

Select Life Cycle
Metadata Types

Select
Synchronization

Model

optional follow-on
decision

Select Data
Sovereignty

Own Repository

Other
Repository

Own and Other
Repository

alternative

alternative

alternative
follow-on
decision

follow-on
decision

Figure 6.1: Dependencies between Architectural Decisions

• Select Modeling Levels Stored in the Repository: System architects have to select
the modeling levels such as models, model instances, source code, and runnable
code to be stored in a model repository or in a model and metadata repository.

• Select Metadata Types: In case a metadata repository or a model and metadata
repository is used, system architects can select model-independent metadata such
as version information, ownership, affiliations, and security data.

• Select Version Metadata Types:

90

– Select Version Modeling Levels: When selecting version metadata types, firstly,
system architects have to decide to which modeling levels to apply versioning.

– Select Model Version Granularity: Afterwards, developers have to make the
follow-on decision for choosing an adequate version granularity.

– Select Kind Of Model Version Compatibility: Finally, provided that versioning
shall be applied on the model level, they should select a compatibility model
for model versions.

• Select Change Log Metadata Types: According to the decision of selecting version
metadata, system architects have to decide whether to add change log metadata
to either the model or model element level.

• Select Security Metadata Types: System architects can choose among several se-
curity metadata options. Unlike the decisions described before, security metadata
does not solely focus on several artifacts, but on mechanisms to secure the whole
repository.

• Select Life Cycle Metadata Types: System architects can opt for a life cycle man-
ager, that can determine whether a requested action is allowed dependent on the
current state.

• Select Association Model: This decision deals with whether to model relationships
in the domain models themselves or to use a general association model99.

• Select Data Sovereignty: This decision deals with whether the repository shall
delegate certain data to owner repositories or other systems.

• Select Synchronization Model: When the repository delegates data storing to other
repositories/ systems, system architects need to select the kind of synchronization
model.

Architectural Decision: Select Basic Repository Technology

A fundamental task of a repository architect is to choose a basic storage technology for
the repository. As illustrated in Figure 6.2, there are three basic alternatives for storing
artifacts: Native XML databases (NXD), (XML-enabled) RDMBS, and a file system
using a specific file structure. RDF triple stores are a popular variant of NXD.

Important decision drivers for this decision are the amount of data to be stored in
the repository and the expected performance/throughput the repository should provide.
For developers and administrators it is important to know which technology know-how
is needed in order to set-up and run the repository technology. One important aspect
of the repository technology are the searching capabilities provided. When a partner
or a customer should be enabled to search for a model or model instance, it is helpful
to use a repository based on standard technology, as standard interfaces often ease the

91

���������	
��

���	
����

��������

���
�������

������	������������������

	
��������������������

�����������
�
�����	���

����������� ��

�����
����

������	�

����������� �������

������������

����
��

������������������

���������

������������������

��!�

����� ��

�����������

�����������

�������

���������

����
��

���
��� ��
�����������

�������

�������
���

����
��

���������

������������������

�����������

�����������

�����������

�����������

Figure 6.2: Architectural Decision: Select Basic Repository Technology

integration. For standard technologies, often a number of tools and IDE plug-ins exist,
which help developers and partners to work with the repository.

There are a number of follow-on decisions related to mapping XML to one of these
storage alternatives. Although we mention alternative exchange formats such as objects
of a programming language (e.g., as possible in EMF128), in the following we focus only
on an in-detail description of XML model exchange format mappings, because XML is
the common model data exchange format.

“Each of these approaches has its own advantages and limitations“52. Particularly
with regard to throughput and huge amount of data, a NXF system may work best, be-
cause no mapping from XML files to database schemes is required52. Furthermore most
native XML databases support sophisticated full-text searches10. However, due to the
document-centric approach, complex queries can have longer response times compared
to (XML-enabled) RDBMS systems10. One known use of a NXF system is XTC, the
XML transformation coordinator for XML document transformation technologies40.

“Relational databases provide maturity, scalability, portability, and stability“68, and
they are the RDBMS that are probably most widely used today52. Known uses of model
repositories based on RDMBS are the SWISS–MODEL repository69 storing “three-
dimensional comparative protein structure models“ and the BrainML model repository17

storing neuroscience data.
Alternatively, especially for small amounts of data, system architects could choose

a simple file structure as repository storage. For this, one of many known uses is the
CellML model repository78 for storing and exchanging computer-based mathematical
models. Of course, when using a file storage, searching a large amount of data, could
be rather inefficient in comparison to using either a NXD system or RDBMS. However,
for repositories with only small amount of data, this might be the simplest and most
appropriate solution. In particular when using proprietary file formats, the repository
can be set-up quickly, because no data mapping is required.

92

Architectural Decision: Select XML to NXD Mapping

Provided that system architects opt for a native XML database, they can decide between
two basic storing alternatives (see Figure 6.2). Either the entire XML document can be
stored in text format or the XML document can be modeled as DOM and mapped to
XSD model objects such as elements, values, etc.52. In the former case the database or
file managing component has to manage indices to improve performance on its own. In
the latter case, XML documents can be “stored as type-annotated trees on disk pages,
indexed with path-specific indexes, and queried with XQuery, SQL/XML“94.

Whether to use a text-based or an XSD model-based mapping depends on the re-
quired performance and on the effort to establish the system. There are many NXD
systems both commercial and open-source. Most XML databases such as DB294 sup-
port the XSD model for mapping XML to corresponding tree structures in NXD10. When
stakeholders opt for the XSD model-based approach, they can make use of sophisticated
searching capabilities.

Architectural Decision: Select XML to RDBMS Mapping

Provided an RDMBS database is selected as the basic repository technology and the raw
models are provided in XML format, an important follow-on decision is how to perform
the mapping between the tree-based XML data model and the rows and columns of a
relational data model10. System architects can mainly choose between two alternatives:
They can either decide to map the domain model elements to a database schema or
use an XSD model approach by mapping standard XSD model elements to RDBMS. By
using the domain modelmapping approach, a separate table is generated for each domain
model element. In contrast, the XSD modelmapping approach is characterized by a lesser
number of resulting tables and columns, because unlike the domain model approach,
several XML elements are combined into a single table. Moreover, the resulting RDBMS
schema, here, can either be generated from an XSD or from a DTD. An algorithm for
mapping XML data to relational data is proposed by Atay et al.10. The work of Emadi
et.al.34 compares common DTD-independent methods by performance benchmarking.

Many commercial XML-enabled database systems such as SQL Server and Oracle
support both the XSD model and the domain model mapping. In the latter approach
the existing data model is extended with an additional XML data type to query and
store XML data10.

Basic decision drivers are both performance and the effort to accomplish the mapping.
In case neither an XSD nor a DTD exists, system architects should decide to use the
XSD model mapping approach. Additionally, this approach can “reduce the number of
join operations incurred while querying the data“52. Florescu’s and Kossmann’s work38

shows that even simple approaches provide good performance. Thus, in most cases,
we would clearly recommend to use the XSD model mapping approach, especially if
performance is the most important decision driver. However, a lower effort to establish
the mapping can be achieved with the domain model approach. In certain development
environments, e.g. in object-oriented systems, system architects may prefer the domain

93

model mapping alternative, because it is less abstract and reflects the object-oriented
view of the developers.

Architectural Decision: Select XML to File Mapping

In case system architects decide to use an appropriate file system structure and the mod-
els are stored as XML documents, they can select among three basic storing alternatives
(see Figure 6.2). The file itself can contain the entire XML document as text, the XML
document can be separated according to the XSD model, or the document can be split
into several files according to its domain model.

The advantages and disadvantages for using the XSD model-based or the domain
model-based approach were already discussed above. The obvious advantages of the text-
based alternative are simplicity and the low effort to establish the system. Thus which
alternative to use depends on the required performance and on the effort to establish
the file system storage.

Architectural Decision: Select Repository Type

Depending on the repository’s functional requirements, models, model instances, and/or
metadata must be stored in a model and/or metadata repository. As already defined
in Section 6.2, we can distinguish three alternative repository types: model repository,
metadata repository, and model and metadata repository. Figure 6.1 depicts these al-
ternatives. Most repositories use metadata to describe general characteristics such as
version information, user information, and security data. In contrast to metadata, mod-
els contain domain-specific elements. Some metadata, such as version information, is
linked to specific models as add-on data, other metadata, such as user authorization
data, can be considered as general repository data that is not linked to specific model
data. In Section 6.3 we focus on selecting adequate metadata types.

The decision drivers for storing models in the repository are mainly functional re-
quirements. Examples are: An important decision for system architects is whether the
MDD paradigm139 should be supported using the repository architecture. When using
MDD, the source code is generated from the underlying models and these models must
be accessible from the repository. In Section 3.2 we stated that a repository should
provide query mechanisms to search for repository artifacts according to certain search
criteria. These query mechanisms are based on categorized data such as domain specific
model data and repository metadata. When system architects want to store non-model
artifacts, in order to provide appropriate searching mechanisms, they should at least
provide these artifacts with some add-on metadata. Accordingly, in case solely non-
model artifacts are stored in the repository and provided with add-on metadata, system
architects decide in favor of a metadata repository.

System architects will choose a model repository, if they intend to store models in the
repository and do not require additional metadata, because the domain models possibly
contain part of this information. Moreover, adding special-purpose metadata such as

94

ownership and affiliation information to repositories in small companies may not be
necessary.

When more sophisticated queries about the repository artifacts are required, system
architects should consider storing categorized model data and thus select the model and
metadata repository alternative. A known use of a model and metadata repository is the
data access service (DAS) repository that we developed during our studies. In our case
study (see Section 6.4) we give more details about the DAS repository when applying it
to our reusable architecture decision model.

Once this decision has been made and if we have decided for one of the alternatives
that include metadata, we would need to make a follow-on design decision: Selecting
the types of metadata that are represented in the repository. Accordingly, if we have
decided for one of the alternatives that include modeling data, we would need to make
one or two follow-on decisions: An optional follow-on decision is to select support for
meta-models, and an mandatory decision is to choose the modeling levels stored in the
repository.

Architectural Decision: Select Support for Meta-Model

Provided that system architects decide for a model repository or a model and metadata
repository, they can select a meta-model for the domain models to be stored. A meta-
model describes the underlying model and thus is the basis for model validation by
tools. Moreover, compared to purely textual specifications, meta-models enable a much
more compact and clear overview of the model33. In addition, meta-models such as
UML and EMF128 can support visualizing models and thus ease model readability and
understandability. It has also been demonstrated that a meta-model can be used to
compare heterogeneous models. In the literature there are various approaches addressing
the problem of heterogeneous model integration23,93.

Decision drivers are both the functional and technical requirements. Firstly, system
architects may use an explicit meta-model, if they wish to benefit from one or more of
the properties described above. Secondly, technology reasons such as using MDD139 can
be a determining factor for using a meta-model. In case of MDD139, system architects
profit from tool support. For instance, they can use a meta-model-based generator, such
as EMF’s128 ant task emf.Ecore2Java, to generate source code from the models specified
by a corresponding meta-model such as EMF128. If system architects do not want to
profit from these functional and technical features, they can make use of a simple, but
much less flexible approach: To support no explicit meta-model. That means, to hard-
code the meta-model information and thus specifying a model without an underlying
meta-model.

In addition to that option, in Figure 6.3(a) we illustrate several meta-model op-
tions among which system architects can select: EMF128, UML, XSD, and a propri-
etary domain meta-model (see Figure 6.3(a)). They should choose a proprietary domain
meta-model, if standard meta-models such as UML and EMF128 did not fulfill the re-
quirements.

95

Select Support

for

Meta-Model

option EMF Meta-Model

UML Meta-Modeloption

XSD Meta-Modeloption

Proprietary Meta-Modeloption

No Explicit Meta-Modeloption

(a) Select Support for Meta-Model

�������

��	��
��������

������ ��	���

��	������������

���������	�

�����������	�

������

������

������

(b) Select Modeling Levels

Figure 6.3: Architectural Decisions: Select Support for Meta-Models and Modeling
Levels

A known use of using EMF128 meta-models, is our data access service (DAS) reposi-
tory that we developed during our studies. A known use of a model repository that loads
UML2 models into EMF is the AndroMDA’s EMF UML2 repository6. In contrast, the
BrainML model repository17 has a proprietary BrainML meta-model, that conforms to
the standard XML schema.

Architectural Decision: Select Modeling Levels Stored in the
Repository

Provided that system architects choose a model repository or a model and metadata
repository, an important follow-on decision is to select the modeling levels stored in the
repository: Models, model instances, source code, runnable (byte) code, or all of them.

Figure 6.3(b) depicts this architectural decision and its four modeling layer options.
In the following we specify important decision drivers for each of these layers.

At first, system architects should face the question whether to store models or not.
In this context an important decision driver is automatic validation of new models and
model instances. When storing models in addition to model instances, the model in-
stances can be validated using their models. In order to accomplish this validation,
the model instances have to be linked with their specific models. Accordingly, if an
automatic syntax-check fails, the publishing request can be rejected by the repository.
Furthermore, in an extended version, the repository could try to automatically adapt
existing model instances when the underlying model changes. When system architects
do not want to profit from the advantages of automatic syntax checking and automatic
adaption of source code, they can ignore the model layer in favor of saving storage space
and effort.

The next decision is whether system architects should store model instances in the
repository. This decision is closely related to the required search capabilities. Besides the

96

desired search capabilities, another decision driver is whether to support MDD or not.
In case MDD is supported, model instances rather than source code are stored in the
repository because the generator can use transformations to generate the source code. In
some cases, this means that the transformations for the generator should also be placed
in the repository. However, even for non-model-driven projects, we recommend to store
model instances, especially because to support querying artifacts.

There is also the option to store the model instances but not the models. An example
of a known use that stores model instances, but no models, is the Eclipse CDO Project32.

Whether the repository should provide source code, depends both on the technical re-
quirements, such as using MDD139, and on the development environment and platform of
repository users. When MDD is used, commonly technology- and platform-independent
model instances are stored in the repository. Accordingly, on the client side, repository
users can generate source code from these model instances according to their specific
platform- and technology requirements. Thus, if more than one technology or plat-
form is supported, source code shall not be stored in the repository, but generated by
the repository users. Otherwise, if no technology- and platform-dependent source code
generators are required, system architects can decide to store the source code in the
repository. In this case, generated source code can also be stored in the repository.
Alternatively, the source code can be stored in an external repository. In this case, a
reference to this external repository can be specified e.g. in the model instances or in
appropriate metadata (for more information about selecting metadata types please refer
to Section 6.3).

The next decision system architects should make is whether the repository should
supply runnable byte code and how. In the following we present three alternatives: The
first alternative proposes to build the source code on the client side. This alternative
primarily depends on the users’ source code build environment that has to fulfill the
technical requirements to build the source code. The second alternative discusses storing
the byte code in the repository itself. A disadvantage of this alternative are the associated
storage costs. An advantage is that building the source code on the client side is not
necessary. The third alternative only provides metadata about where and how to locate a
runnable software component. From the users’ point of view, this alternative is probably
the simplest one. However, for technical reasons, such as performance issues, system
architects could reject this alternative and decide in favor of storing or building the byte
code.

Architectural Decision: Select Metadata Types

Common repositories include metadata to provide additional, model-independent infor-
mation of repository artifacts. Figure 6.4 shows a few options: Metadata can include
versioning information, change log data, ownership and/or affiliation information, se-
curity data such as information on role-based access control and identity management,
location information, life cycle data, and data for internationalization features (see Sec-
tion 6.3). In the following we give a detailed overview of each of these metadata options
commonly used in repositories. System architects can use this checklist to decide whether

97

Select Metadata
Types

Version
Metadata

option

Location
Metadata

Models

Model Elements

Change Log
Metadata

alternative

Security
Metadata

Life Cycle
Metadata

Internationalization
Metadata

Identity Management
and Authentication

Metadata

Access Log Metadata

Authorization and
Access Control

Metadata

option

option

option

option

option

option

Ownership and
Affiliation Metadata

option

option

option

Assigning Life Cycle
State to Repository

Artifacts

Using a General
Process Modelalternative

alternative

alternative

Select Change Log
Metadata Types

follow-on
decision

Select Security
Metadata Types

follow-on
decision

Select Life Cycle
Metadata Types

follow-on
decision

follow-on
decision

Select Version
Metadata Types

follow-on
decision

Select Version
Modeling Levels

Figure 6.4: Architectural Decision: Select Metadata Types

to apply a certain metadata type or not. We have developed this checklist by studying
common repositories to the best of our knowledge. However, due to the diversity of pos-
sible metadata types, the list is not exhaustive. After illustrating the checklist, in the
proceeding sections we particularly focus on the follow-on decisions as well as resulting
options and alternatives depicted in Figure 6.4.

Version Information Metadata System architects have to decide whether to add
version metadata or not. In the simple case, system architects can opt for using no
versioning. For this purpose, they solely need to provide the most recent version of
repository artifacts. Otherwise, if the repository supports version management, they
shall make the follow-on decision of selecting version metadata types.

Change Log Metadata Change log metadata can include information about which
user has inserted or updated a certain repository artifact. The decision whether to
add change log data is based on the previous decision of adding version information
metadata. Thus, system architects can not opt for providing change log metadata, not
until they decide in favor of using version metadata. Below, we present the follow-on
decision of selecting different change log metadata types.

98

Ownership and Affiliation Metadata System architects can decide to tag repos-
itory artifacts with ownership and affiliation metadata. This information can contain
name, contact details, and affiliation information of repository artifact owners. By using
this metadata, system architects can enhance reuse of stored artifacts such as models,
model instances and source code. Adding this metadata and thus being able to search
for specific artifacts, is especially essential in large and medium-sized companies. If,
however, stored repository artifacts are intended to be solely used by a small team of
developers anyway, system architects can determine to omit this type of metadata.

Security Metadata According to their security requirements, system architects can
choose one or more types of security metadata (see the ebXML registry services and
protocols specification99). Please note that, unlike other types of metadata, security
metadata does not solely focus on several artifacts, but on mechanisms to secure the
whole repository. Below, we present some basic security options system architects can
install.

Location Metadata Another type of metadata, system architects can choose, is lo-
cation metadata. As already mentioned before, source code and runnable code can be
linked to models and model instances stored in other repositories. The decision drivers
for deciding whether source code and runnable (byte) code should be stored in the repos-
itory itself or in an external repository are the same as those described in Section 6.3.
Besides source code and runnable code, location metadata can be important, e.g., for
linking model instances or source code to specific documentation on document servers.
In order to save storage cost and maintenance efforts, we recommend to decide in favor
of referring to existing documentation instead of storing this information redundantly.

Life Cycle Metadata A repository incorporating life cycle metadata manages all life
cycle actions such as inserting, updating, deleting, and deprecating repository artifacts.
Besides these basic actions, the life cycle manager can oversee further actions such as val-
idating model instances, and finally publishing changes to repository users. Depending
on the current life cycle state, the life cycle manager determines whether the requested
action is allowed and consequently performs or rejects the action. Below, we present the
follow-on decision of selecting suitable life cycle metadata types.

Internationalization Metadata Internationalization metadata can be used for stor-
ing location-specific settings, such as different languages and coding sets. In the EBXML
standard99 internationalization metadata is defined as attributes, that may be localized
into multiple native languages. System architects will choose internationalization meta-
data, if e.g. international project members shall access the repository or different coding
sets shall be supported.

99

Architectural Decision: Select Version Metadata Types

In order to select version metadata types, system architects, firstly, have to make the
primary decision at which modeling levels to apply version metadata types. Secondly,
they have to make two important follow-on decisions, namely to select version granularity
and to select the kind of model version compatibility.

Architectural Decision: Select Version Modeling Levels

When selecting version metadata, system architects have to select the modeling levels
at which to apply version information. At least, they have to opt for the model and/ or
model instance level (see Figure 6.5).

Models

Model Elementsalternative

alternative

Select Version
Granularity

follow-on
decision

Select Kind Of
Model Version
Compatibility

None

Downward
Compatibility

alternative

alternative

Select Version
Modeling Levels

Model Level

Model Instance
Level

option

option

follow-on
decision

Figure 6.5: Architectural Decision: Select Version Modeling Levels

An important decision driver is the high complexity arising when storing model and
model instance versions. When system architects decide for managing versions in the
repository, they have to face consistency and compatibility problems, because model in-
stances of different versions can comply to different model versions. Another important
decision driver is the maintainability effort. If system architects decide against version-
ing models, whenever a model changes, the model instances will have to be regularly
upgraded to comply with this new and only model version. Therefore, if the diversity
of model instances in the repository is considerably low, system architects shall opt for
solely managing model instance versions. In this case, upgrading the model instances
can be established with considerably low effort. Otherwise, if various different model
instances are managed by the repository, it will be the best solution to manage versions
for models and model instances.

Architectural Decision: Select Kind Of Model Version Compatibility

In contrast to managing model instances of the same model version, managing model
instances belonging to different model versions comes along with consistency problems.
Thus, system architects have to decide for the kind of model version compatibility.

100

Firstly, system architects can opt for using no version compatibility for model ver-
sions. In this case, new model versions can be created with no restricts regarding to
compatibility issues for previous model versions. Further, they can decide on the model
downward compatibility alternative. In this case, each new model version has to be
downward compatible with each of its previous versions. When system architects decide
for being downward compatible with previous model versions, new model versions may
contain new model elements, but must not contain renamed or deleted elements.

The first decision driver, system architects have to consider, is the increasing com-
plexity for querying model instances. If a model element of a new model version has
been deleted or renamed, the querying of model instances could become very complex
because different model versions would have to be managed. The second decision driver
is the quality of the search results. If a model element of a new model version has been
renamed, search results would be dissatisfying, because not all expecting model elements
would be part of the result set. A third decision driver is the flexibility to define new
models. If a high flexibility is desired, system architects shall opt for none compatibility.
Downward compatibility comes along with limited flexibility to create new models. For
instance, if a certain element is not necessary anymore, it must not be deleted. Other-
wise the new model version would not have been downward compatible with the previous
versions.

Architectural Decision: Select Version Granularity

When storing models and model instances, system architects can decide on either adding
version information metadata to the whole model/ model instance or to each model/
model instance element. The CellML model repository78 is a known use of a repository,
that stores version information at the model/ model instance level. If a CellML model/
model instance is modified, the new updated version(s) will be added to the repository78.
The BrainML model repository17 is another known use that adds version information
metadata at the model/ model instance level. Version numbers start at one and are
incremented whenever an augmented or modified version of the model/ model instance
is submitted. Earlier versions remain available in the repository and can be referenced
by their version number.

Standards such as UDDI25, EbXML99, and the Content Repository API for Java
Technology of Java Specification Request (JSR)96 support adding version information to
model elements and model instance elements, respectively. JCR consists of one or more
workspaces that each consists of a tree of items representing either nodes or properties.
A content repository96 workspace that supports versioning may contain both versionable
and non-versionable nodes. A known use open-source implementation variant of a Java
content repository is eXo JCR36. According to the JCR , eXo JCR supports separate
versioning of repository artifacts such as model elements.

The decision, which of the alternatives to select, depends on the type of update-
strategy in case of changes. If selective updates are desirable, we will recommend using
versioning for model elements and model instance elements, respectively. If artifacts

101

such as models are updated as a whole, the alternative of versioning models and model
instances rather than model elements and model instance elements shall be chosen.

Architectural Decision: Select Change Log Metadata Types

The decision whether to set-up versioning on the model or model element level is closely
related to the question how fine-grained changes need to be traced and monitored. When
choosing the alternative to version model elements, a specific event log of changes for
each model element is stored. An alternative is the versioning of models where an event
log of changes is only available at the model level.

If system architects want to provide change log data at the model element level, the
corresponding change log information at the model level can be a view of all related model
element change log data. Moreover, when system architects only need change logging
at the model level, they save effort compared to storing logs at the model element level.
However, if system architects already decided in favor of versioning, the change log
information should be set-up at the same model and model element level, respectively,
as selected for the previous version management decision.

Architectural Decision: Select Security Metadata Types

Provided that system architects settled for storing security metadata, they can decide
in favor of one or more of the following options.

The first option is to provide access log metadata. Hereby, the repository keeps a jour-
nal of all significant actions performed by repository requesters on repository resources.
Another option is to establish identity management and authentication. Choosing this
option means, the repository itself manages the identity and credentials associated with
authorized users and services. Finally, system architects can enable authorized users to
perform specific actions or to access specific resources by establishing the authorization
and access control option. The repository provides a mechanism to protect its resources
from unauthorized access. In this context, system architects can augment a role-based
access control solution with well-defined authorizations for each role.

Architectural Decision: Select Life Cycle Metadata Types

In this decision, system architects have two basic alternatives: They can either assign a
life cycle state to each repository artifact or implement a general process model containing
flows of activities. In the latter case, a process engine is needed to drive the execution
of activities14. When deciding for the first alternative, the complexity of the life cycle
grows much more than proportional by the number of life cycle states. However, if
system architects intend to use only basic life cycle actions such as insert, update, and
delete, this alternative will be a very effective one.

A known use implementation incorporating life cycle metadata is the ebXML reg-
istry reference implementation project43. The ebXMLRR project aims at delivering a
functionally complete reference implementation for the OASIS ebXML specification99.

102

According to the ebXML standard, each RegistryObject instance must have a life cycle
status indicator that is assigned by the registry. In contrast, the alternative of using a
general process model should be used, when there are potentially new actions that will
be developed in future. Accordingly, if system architects attach a great value on life
cycle scalability, they shall decide in favor of a general life cycle model.

Architectural Decision: Select Association Model

Modeling associations among models and model instances is a commonly addressed
problem today. However, a current problem in process-driven SOAs is to retrieve the
relationships between different components, such as which service operations can be
invoked from which process activities and which services access which data. Furthermore,
components that do not depend on any component can be seen as obsolete, and thus can
be deleted83. Another benefit from modeling dependencies between different components
is to visualize these dependencies to better support understandability of the models. For
this purpose, graphical tools can be designed, because the tools are what give value to
a repository13.

As shown in Figure 6.1, there are two basic alternatives among which system archi-
tects can choose: As described in our fundamental work of VbDMF83, general models can
specify associations between certain special-purpose models. In the example, our view-
based data modeling framework (VbDMF) describes the associations between processes,
services, and underlying persistent data access. If domain models do not specify associ-
ations between the artifacts, the repository shall handle these associations by defining a
general association model as specified in the EbXML standard99. EbXML’s association
information model defines classes that enable artifact instances to be associated with
each other.

Architectural Decision: Select Data Sovereignty

In this decision, for each kind of repository artifact, system architects have to decide
whether to only store the data in the repository itself, or to store the data in the owner
repository without storing the data in the repository itself, or to redundantly store the data
in the repository and in the owner repository. System architects can select for storing the
data solely in the repository itself, if the data does not logically belong to another systems
or repositories. This is likely to be the case for models, because they are usually only
repository-internally-used, basically in order to specify the model instances. Otherwise,
if another repository owns the data, system architects can opt to both store the data in
the owner repository and store the data in the repository itself, or solely store the data in
the owner repository. When the owner repository does not support structured elements,
system architects can opt to store the data redundantly in both repositories, because
without structured elements, no sophisticated querying is possible. Another decision
driver, for whether to store data redundantly in both repositories or solely in the owner
repository, is the availability of the data in case the owner repository is temporarily not
available.

103

Select

Synchronizaton

Model

Pullalternative

alternative Push

Figure 6.6: Architectural Decision: Select Synchronization Model

Architectural Decision: Select Synchronization Model

When storing data redundantly to both the repository and its related repositories such
as the service repositories, system architects have to deal with synchronization problems.
In order to synchronize data between the repository and its owner repositories, the data
has to be replicated from the repository to the owner repositories and vice versa.

As shown in Figure 6.6, in order to synchronize data, system architects can choose
between two alternatives, namely the push-based and pull-based synchronization model.
When using a pull-based synchronization model, the data artifacts are sent from the
repository to the other owner repositories or vice versa without delegating the requests2.
For this, system architects have to integrate active monitoring mechanisms to transfer
changes e.g. from other repositories such as service repositories, in example UDDI25,
to the repository30. By these active monitoring mechanisms, the latest information of
UDDI can be found transparently and conveniently30. In order to implement a pull-
based synchronization model, system architects have to carefully balance the number of
data replications. On one hand, frequent data replications have to be done to synchronize
the repositories. However, these will be inefficient, if the repository data seldom change
during a certain interval. On the other hand, without frequent crawling, the repository
content may become inconsistent with the other repository1.

When deciding for the push-based model, the repository acts as a Push Model Data
provider to directly push the requests to other repositories such as to service repository
side.

An important decision driver is whether the owner repositories already implement a
synchronization model. If this is the case, system architects can exploit this model in
order to replicate and transform the data from the repository to the owner repositories.
However, often, repositories, in example service repositories such as UDDI25, implement
no synchronization model, neither the pull-based nor the push-based synchronization
model. Thus, in this case, in order to synchronize data, system architects have to
opt for the pull-based model to synchronize data from the owner repository to the
repository, and likewise, they decide for the push-based model to synchronize data from
the repository to the owner repository.

Furthermore, an important decision driver for using the push-based model is whether
the other repositories provide services that enable requesters to store artifacts in the
repository. A further decision driver for using the push-based model is the availability
of these provided services. When the services are not available twenty-four hours a

104

Select Repository
Type

Model and Metadata
Repository

Select
Metadata

Types

Select Modeling
Levels Stored

in the Repository

Select
Association Model

Select Basic
Repository
Technology

(XML-enabled)
Relational
Database

Select Support
for

Meta-Model

Select
XML to RDBMS

Mapping

Domain Model

XSD Model

Models

Model Instances

EMF Metamodel

Version
Metadata

Location
Metadata

Models
Change Log

Metadata

Security
Metadata

Life Cycle
Metadata

Identity Management
and Authentication

Metadata

Access Log Metadata

Authorization and
Access Control

Metadata

Ownership and
Affiliation Metadata

Assigning Life Cycle
State to Repository

Artifacts

Select Change Log
Metadata Types

Select Version
Metadata Types

Select Security
Metadata Types

Select Life Cycle
Metadata Types

Select Version
Granularity

Model Instance
Level

Figure 6.7: Case Study: Selected Decisions for a Data Access Service (DAS) Repository

day, seven days a week, system architects can decide for a pull-based synchronization,
provided that the owner repositories implement such a pull-based synchronization model.

6.4 Case Study

In this case study we illustrate major design decisions, that we made when setting-up
our own data access service (DAS) repository. During the design process of the DAS
repository we were faced with several fundamental architectural decisions. Here, we
reflect the decisions made to set-up our DAS repository by walking through the reusable
architectural decision model depicted in Figure 6.7 of Section 6.3.

Before we walk step by step through our reusable architecture decision model, we
would like to shortly motivate the use of a Data Access Service (DAS) model and meta-
data repository: Developers typically store DAS in local file systems and concurrent
versioning systems, such as CVS or SVN. However, especially as the number of DAS
grows, finding a particular DAS stored in a concurrent versioning system, in order to
reuse the DAS, can become rather time-consuming. Thus, developers need more sophis-
ticated query mechanisms to quickly locate existing DAS operations in order to increase
DAS reuse. For example, the DAS repository supports queries for retrieving desired
DAS by diverse search criteria, such as finding all DAS accessing a particular database,

105

all DAS operations inserting data into a particular table, or all DAS operations updating
a certain column of a table. Moreover, with the DAS repository, DAS developers are
able to query ownership information about a certain DAS and thus look for all DAS
registered by a certain user or department.

1. Select Basic Repository Technology: When setting-up our DAS repository, we de-
cided in favor of the (XML-enabled) relational database alternative. Our main
decision driver was that RDBMS are very common and hence, we can benefit from
tool support. We decided against using a NXD system, because our DAS repository
models have many associations between them, and thus many joins are necessary
when querying DAS data. Accordingly, they are the joins in NXD storages, that
can have longer response times compared to RDBMS. As searching a large number
of DAS could be rather inefficient, for us, a file system storage was out of question.

2. Select XML to RDBMS Mapping: We decided in favor of the domain mapping
model, because, in our object-oriented programming environment, it is less abstract
and better reflects the relationships between the objects.

3. Select Repository Type: Our DAS repository was designed to primarily manage
models and model instances, but also to be defined metadata. As a consequence
we opted for the model and metadata repository alternative.

4. Select Support for Meta-Model: We chose EMF128 as an explicit meta-model so
that we can specify our VbMF/ VbDMF models. Thus, we can benefit from
existing tool support such as the Eclipse Model To Text (M2T) project’s Xpand
language129 to generate source code from the models e.g. we can generate plain
old Java objects (POJOs)65 describing a WSDL140.

5. Select Modeling Levels Stored in the Repository: We decided to store both the
view model instances and the view models for the following reasons: We store
the view model instances because they contain the basic elements that can be,
in particular, applied to generate the runnable DAS. Our generated DAS source
is dependent on the specific object relational mapping (ORM) technology such
as HIBERNATE55 or IBATIS57. For this purpose, our DAS repository stores
technology- and platform-dependent model instances, that are used for source code
generation on the server side. We store the view models in the repository to
enable important development aspects such as validating the view model instances.
Another requirement was to automatically validate checked-in model instances. In
order meet this requirement, we settled for storing models in addition to model
instances.

Our repository centrally generates the source code from the model instances and
builds the runnable code by compiling the generated source code. Thus, our repos-
itory neither stores source code nor runnable code.

106

6. Select Metadata Types: As we opted for a model and metadata repository, we
also added metadata to our repository. Afterwards, we focused on those decisions
that are not covered by follow-on decisions: We settled for adding ownership and
affiliation metadata in order to being able to trace which user registers and/ or
publishes which artifact to the repository. Up-to-now, the repository does not
link to documentation or to source code stored in other repositories. Thus, the
repository does not manage location metadata. As our DAS repository still is a
prototype solution, at the moment, internationalization metadata is not provided.

7. Select Version Metadata Types: We opted for versioning support. Thus the follow-
ing decisions had to be made:

• Select Version Modeling Levels As the diversity of model instances in the DAS
repository is considerably low, we decided to solely manage model instance
versions. Accordingly, upgrading the DAS model instances to the newest
model version can be established with considerably low effort. Thus, we had
no need to decide the kind of model version compatibility.
• Select Version Granularity We wanted to save extra efforts, thus we did not
opt to version model elements. Thus, we decided in favor of adding version
information metadata to whole models and model instances.

8. Select Change Log Metadata Types: As this decision is based on the decision of
selecting version metadata types, we opted for adding change log metadata to
models and model instances in contrast to model and model instance elements.

9. Select Security Metadata Types: As we intend to provide our repository to industry,
we added basic security metadata for all three security options illustrated before,
namely access log metadata, identity management and authentication metadata and
authorization and access control metadata.

10. Select Life Cycle Metadata Types: Our repository incorporates a basic life cycle
manager , that manages basic actions such as insert, update, delete and validate.
As we required both a simple solution and the life cycle manager not necessarily
to be scalable related to new actions and states, we opted for assigning a life cycle
state to repository artifacts. We have decided against using a general process model,
because this solution seems a bit over-sized for our prototype repository solution.

11. Select Association Model: Our DAS models specify relationships between each
other. Thus, we use our own domain models to specify associations between DAS
model instances instead of using a general association model.

12. Select Data Sovereignty: Basic VbDMF models such as the Collaboration View
model and the Information View model specify a web service description language
(WSDL). Thus, these view models have to be owned by a service repository. Un-
fortunately, the service repository specification such as UDDI25 does not support
structured WSDL elements. For this reason we decided to store the view model

107

instances redundantly both in the owner repository and in the DAS repository
instead of storing the data solely in the service repository. We do not need to store
the view models redundantly, because they are only DAS repository internally
used.

13. Select Synchronization Model: Our DAS repository uses the push-based synchro-
nization model to directly push publication requests from the repository to service
repositories. Services repositories such as UDDI25 do not implement any synchro-
nization model, but provide services to enable requesters to store artifacts in the
repositories.

6.5 Summary
In this chapter we introduced a reusable architecture decision model (RADM) for setting-
up model and metadata repositories. These decisions in particular focus on database
design for model and metadata repositories. We provided a decision basis for funda-
mental choices such as selecting a basic repository technology, choosing appropriate
repository metadata, and selecting at which modeling levels information shall be stored
in the repository. Our experiences result from developing our own model repositories,
from researching on other works, discussions with other people involved in repository
projects, and applying our RADM to a case study.

108

CHAPTER 7
View-Based Model-Driven
Architecture for Enhancing

Maintainability of Data Access
Services

In this chapter we bridge the gap between the DAS and their implementation by pre-
senting a view-based, model-driven data access architecture (VMDA) managing models
of the DAS, DAOs and database queries in a queryable manner. Our models support
tailored views for different stakeholders and are scalable with all types of DAS implemen-
tations. Our view-based and model driven architecture approach can enhance software
development productivity and maintainability by improving DAS documentation. More-
over, our VMDA opens a wide range of applications such as evaluating DAS usage for
DAS performance optimization. Furthermore, we provide tool support and illustrate the
applicability of our VMDA in a large-scale case study. Finally, we quantitatively prove
that our approach performs with acceptable response times.

This chapter is organized as follows: First, Section 7.1 we motivate our approach.
Next, in Section 7.2 we present our view-based model-driven data access architecture
(VMDA). Section 7.3 looks deeper into the DAS repository by describing the underlying
DAS repository services and the data model. The following Section 7.4 presents our
prototype tooling and hence describes our VMDA from the user’s point of view. In
Section 7.5, we illustrate the applicability of our approach by a real-life case study in
the area of geographic information systems (GIS) in the context of web feature services
(WFS). Section 7.6 underlays our approach contributions with quantitative evidences.
Finally, Section 7.7 sums up.

109

7.1 Motivation
In service-oriented architectures, service providers publish their services to service repos-
itories in order to enable service consumers to dynamically locate and bind the services.
In a process-driven SOA, the process activities can query a service repository in order
to find suitable services for dynamic invocation (see Figure 7.1). As a result, the service
repository returns the required services running on a service provider.

Process flow

Service Repository

Database

Table

Service

Service

Table

Table
Table

Table

Table
Table

Service

Service

?

Figure 7.1: Missing Link between Services and Data

However, unfortunately, up-to-now there is no adequate managing solution for orga-
nizations in order to locate data access services (DAS) in process-driven SOAs. This is
because there still is a gap between the service repository and the physical data stor-
ages. In smaller environments, development techniques like naming conventions and
documentations may be also be useful to manage DAS in process-driven SOAs. How-
ever, in larger-scale environments, when the number of software components grows, more
sophisticated methods to manage traceability and maintainability are necessary. There-
fore, in this chapter we provide an architecture solution to enhance both maintainability
and reuse of DAS in process-driven SOAs.

7.2 Architecture Overview
In this section we present the big picture of our view-based model-driven data access
architecture (VMDA). Our VMDA unifies the following four contributions:

1. Using DAS to be independent of the underlying data sources

2. Specifying DAS models/ model instances making use of the advantages of MDD

110

3. Applying VbDMF/ VbMF to separate the DAS models/ model instances into
different view models/ views

4. Establishing a DAS repository to manage the DAS view models and views

Business Process
Application

Data Access Service Repository (DASR)

Query
Service

Database
Query Pre-/

Post-processor

View-Based Repository Client

GUI

DAO
View

ORM
View

Physical Data
View

DB
Connection

View

Data
Object
View

User
View

Service Repository

Database

Build/
Deploy
Service

Registration

WSDL

Collaboration View

Information View

models,
views,

versions

models,
views,

versions

Data Access
Service

Data Access
Service

Data Access Service (DAS) Provider

Database

Views,
Models,
Versions

Data

Query

views,
versions

View-to-Code
Transformator

Synchronization
Service

Publication
Service

Registration
Service

Figure 7.2: View-Based Model-Driven Data Access Architecture (VMDA)

There are many solutions of use based on model repositories to efficiently manage
structured elements69,17. In our work, we also take advantage of such a model and
metadata repository to manage both the DAS/DAO view models specifying the DAS/
DAO view model instances and the DAS/ DAO view model instances describing the
specific DAS and DAOs. Our data access service (DAS) repository is the main
part of our VMDA depicted in Figure 7.2. The DAS repository is used to manage the
view model instances and view models of the DAS, DAOs, the underling data storage
schemes, and the relationships between them.

In order to manage these view models and view model instances properly, the DAS
repository provides a query service to discover the DAS and the underlying DAOs
by different search criteria. Via the query service both view models and view model in-
stances can be retrieved. Our query service uses a query pre-/ post-processor to per-
form query transformations to translate proprietary query languages into valid database
queries. One of many possible implementations to translate proprietary, platform-
independent query languages into platform-dependent languages can be found in15. In

111

Section 7.4 we define our own platform-independent proprietary query language that
is used by our prototype implementation to query view models and views by different
search criteria.

The registration service stores the view models and view model instances in the
DAS repository. After registering a view model or view model instance, only a limited
group of persons is permitted to query the registered information. In order to enable this
group to test the registered views, the registration service can invoke the build/ deploy
service in order to make the DAS views available on a certain data access service
(DAS) provider. In order to give another few developmental aspects, the build/
deploy service uses a view-to-code transformator in order to generate source code
from the defined view model instances. For source code generation, we use the Xpand
language of the Eclipse Model To Text (M2T) project129. After source code generation,
the DAS can be automatically built and deployed on a certain DAS provider. The
DAS provider information can be either set by the repository client or by the DAS
repository’s build/ deploy service.

After successfully testing a DAS/ DAO, the views can be published to selected per-
sons, teams, departments, or companies. In order to accomplish this, DAS repository
clients have to publish the DAS views via the publication service. Once a DAS is
published, it can be queried by extended user groups. In addition, once deployed, users
of other repositories such as service repositories can be informed about the deployed
services. Besides views, users can publish view models in order to provide them to other
users and groups. The publication service invokes the synchronization service to pub-
lish the DAS views to other repositories. This will be the case, i.e. if a DAS endpoint
of a service model, stored redundantly in both the DAS repository and in a service
repository, changes. If so, there will be a need to replicate the new DAS endpoint from
the service repository to the DAS repository or inversely. The synchronization service
replicates view model instances, but no view models. The reason for this is that the
view models specify the view model instances and are thus dedicated only to the DAS
repository. In addition, besides publishing the views to the service repository, we could
also replicate views to other repositories. In example, storage schema relevant views
such as the Physical Data View could be synchronized with a schema repository16.

The business process application can invoke the deployed DAS running on a
specific DAS provider endpoint. Moreover, according to a process-driven SOA, a business
process can dynamically query suitable services from the service repository and invoke
these deployed services on a certain DAS provider. By the way, in this thesis we do not
focus on dynamic invocation of services, however, in order to describe our architecture
concept we keep the whole SOA in view. We use a view-based repository client
based on VbMF and VbDMF, in order to enable users to comfortably specify the view
models/ views and to access the repository services. The view-based repository client
exploits the concept of separation of concerns and hereby improves maintainability of the
data access in process-driven SOAs120. We present our prototyped view-based repository
client implementation in Section 7.4.

112

In this section we have given a basic overview of our VMDA. In the next section we
describe the central DAS repository in more detail.

7.3 The Data Access Service (DAS) Repository

As the DAS repository is the central component of our VMDA, firstly, we present the
services for querying, registering, publishing and synchronizing the DAS repository ar-
tifacts in more detail. Secondly, we focus on the entities of the repository’s view-based
data model.

Services

In the following we explain the DAS repository services in more detail. As illustrated
in the case study Section 6.4 of the precedent RADM chapter 6, all services of the DAS
repository support both view models and view model instances.

Query service The query service is the most powerful part of the DAS repository’s
service interface. If a column of a database table has to be modified, how to find out
which DAS will have to be redeployed? Typically, the modified column is part of the
object-relational mapping that in turn is encapsulated by a DAO invoked by a DAS.
Thus, in order to best-possibly connect the DAS, DAOs, the object-relational mappings,
and the columns and table of data storage schemes, a structured search is necessary. The
basic idea of the query service is to retrieve DAS by different search criteria. e.g. by the
query service we can query DAS not only by the DAS name, but by implementation, data
storage schema and metadata artifacts. Examples of these implementation artifacts are
the member variables of data objects that can be mapped to columns of database tables
by object-relational mapping (ORM) frameworks. Another example of implementation
artifacts are DAO operations that encapsulate the data access queries in object-oriented
languages. Examples of data storage schema artifacts include data storage components
such as columns, tables, and databases. Moreover, metadata artifacts such as affiliation
and version information can be used to enable better search results84. Furthermore, all
entities of the VbDMF model can be used as search criteria. Thus the query service
is flexibly extensible to view model changes. In Section 7.4 we present our lightweight
query language used by our prototype implementation in order to query view models
and view model instances.

Registration service Via the registration service, developers can register new view
models/view model instances and adapt existing view models/ view model instances.
Still, we use view model instances and views as synonyms. As shown in Figure 7.3(a),
the models and views are validated. In more detail, the views are validated against their
view models and the view models are validated against their view meta-models. After
successfully validating the views and models, they are stored in the DAS repository. In
case of registering view model instances, the registration service can invoke the build/

113

deploy service in order to being able to deploy and test the DAS view model instances
on a certain DAS provider.

Data Access Service
Repository

Database

Views,
Models,
Version

Model or
View?

Invoke
Build/ Deploy

Service

model view

Store

Validate

Data Access Service
Provider

Database

DataDAS

DAS

(a) DAS Repository Registration Service

Data Access Service

Repository

Database

Views,

Models,

Version

View is part of VbMF?

(e.g. Collaboration View,

Information View)

Invoke Synchronization Service

Mark as

„Published“

yes no

(b) DAS Repository Publication Service

Figure 7.3: Registration Service and Publication Service

Build/ Deploy service By using the build/ deploy service, DAS can be deployed
on a DAS provider. As shown in Figure 7.2, the passed view model instances can
be transformed to source code by a view-to-code transformator. Afterwards, by a build
process, the source code can be transformed to runnable code running on a DAS provider.
When developing DAS, developers should firstly register and deploy the service via the
registration service. After successfully testing the DAS, they should publish the DAS to
other users and repositories via the following publication service.

Publication service The view models and view model instances can be published
using the publishing service. During the publishing process, the view model instances
can be registered to other repositories as well as to selected persons, teams, departments,
or companies. The following Figure 7.3(b) depicts a basic activity workflow of our
publication service implementation. Moreover, it illustrates the relationships between
the DAS repository and the service repository: If the view is a service-related view that
is part of the VbMF, the view will have to be registered to the service repository. In
this case, the publication request is delegated to the synchronization service. Likewise,
the data-related views of VbDMF can be synchronized to a schema repository16. Again,
the service-related views of VbMF describe the DAS whereas the data-related views
of VbDMF describe the underlying DAOs, ORMs, data objects, physical data, and
database connection data. After this synchronization process, the DAS repository’s
internal view model instances are marked as synchronized and published.

114

Synchronization service The synchronization service is used to replicate view model
instances between the DAS repository and other repositories. Likewise, related data from
the other repositories need to be transferred to the DAS repository. This synchronization
is only done for view model instances, but not for view models. Again, we do not need
to store the view models redundantly, because they are only DAS repository internally
used basically in order to specify our DAS repository view model instances.

During the synchronization process, a view model instance version is transferred to
other repositories that are connected with the DAS repository. In case of the UDDI
service repository, we can store the versioning information in the instanceDetails entity
of the UDDI information model25. The instanceDetails entity is specified to store more
detailed information of a service and is related to the tModelInstanceInfo entity of the
basic tModel entity. Furthermore we support change log metadata about which user has
inserted or updated a certain repository model and view alternatively.

Above we have described the services from an architecture point of view. For how
to use the services from the user’s point of view please refer to our tooling Section 7.4.
Moreover, in our case study Section 7.5 we apply the DAS repository services using
concrete use cases.

The DAS Repository View Model

In Chapter 4, we have already given a basic overview of VbDMF. In this section we
present our DAS Repository View model with a decisive goal in the context of this
thesis: by supporting introspection of DAS model instance data, underlying DAO model
instance data, dependent ORM-specific model instance data and database configuration
model instance data, it enables to bridge the gap between these data in order to improve
documentation and maintainability.

In Figure 7.4 we display the relationships between the model entities and their re-
lated VbMF and VbDMF views in the DAS repository context. In the following we go
deeper into describing the model entities of the DAS Repository View model. As already
mentioned before, our VbMF/ VbDMF can be used to model arbitrary DAS implemen-
tations. However, in this thesis, we use DAOs as exemplary DAS implementation for
object-oriented environments.

• TheDatabase Connection class comprises a list of connection properties e.g. database
url and name. So we can query all DAS from the DAS repository that belong to
a database running on a certain location such as a host system. Furthermore,
a Database Connection consists of zero or more Tables that in turn holds a list
of Columns. These relationships allows us to query the DAS repository for all
database operations that read or write certain tables or columns.

• In object-oriented programming languages information is stored in data object
member variables. Our data model conforms to the object-oriented paradigm and
contains a class Data Object Type which holds a list ofMember Variables. As DAOs
typically use ORM frameworks to map data object types to database tables, our

115

Database Connection View

Physical Data View

Data
Object
View

Table

ConnectionProperties

Data Object Type

-tables

*

1

Column
1 -columns *

Member Variable

1

-attributes
*

1

-data objects
*

-columns
*

1
ORM Table

1

-tables
*

ORM Column

-attributes

*

1

ORM View

DAO ViewDAO

DAO Operation

1
-DAO operations *

InputparameterOutputparameter

1

0..1

1

-input parameters*

Parameter

Information View

Business Object

1

-type
1

Type
DataHandling

Transformation

ObjectReference

transformations 1..*

1

-target
1

1

-source

1

1

-businessObject
1

references

*

User View

Publication

Registration

1

-registrations
*

User

-publications

*

1

Affiliation

-affiliations
1..*

1
-publications

* 1

-output parameters
*0..1

-input parameters
*0..1

Operation

Service
-interfaces

1..*
-service

1

Interface

-operations

1..*

1
Channel

-in *

1

-out *
1

Message

-message1

-channel

1

1

-publications
*

1

-registrations
*

0..1

1

Collaboration View

1
1

1

1

1

-roles*
-interface

1

Role

InteractionPartner

1

-partner

1..*

1

1

1

1

UserConnectionProperty

*

-userConnectionProperty 1

Figure 7.4: DAS Repository View Model

model provides an object-relational mapping of the Data Object Type to a (Table)
using the mapping class ORM Table. The mapping class ORM Column allows for
a more specific mapping between Member Variable and Column of a table. Using
this additional ORM-specific information, we can generate the DAO source code.
Furthermore we can retrieve all DAS/ DAOs that are based on a certain ORM
framework.

• Each DAO consists of one or more DAO Operations. Each DAO Operation holds
an attribute that stores the type of SQL statement (select, insert, update, delete).
Furthermore it holds an Output Parameter and a list of Input Parameters. A
parameter (Input Parameter or Output Parameter) can either be associated with a
Data Object Type or with a simple type. A simple type is modeled as an attribute
in the superclass Parameter. As a consequence of these relationships, we can query
all DAO operations from the DAS repository that read or write certain data object
types and member variables.

• The Parameter class of the DAO View is associated with a Business Object, of the
Information View. Each Business Object has a Type and is an integration point,
that can be used to combine a specified Collaboration View with an Information
View and with a DAO View respectively. Business Objects of the Information View
might go through some Transformations that convert or extract existing data to

116

form new pieces of data. These Transformations are performed inside a DataHan-
dling object. The source or the target of a transformation is an ObjectReference
class that holds a reference to a certain BusinessObject. The Business Object can
be combined with the Message class of the Collaboration View model. The Mes-
sage class basically specifies a message, described by a service description language
e.g.140. The details of the Message class such as parameter types are not defined in
the Collaboration View but by a Business Object of the Information View. There-
fore the Message class becomes an integration point and can be combined with a
Business Object of the Information View.

• In the Collaboration View model, the Service class exposes a number of Interfaces.
Each Interface provides some Operations. An Operation represents an action that
might need some inputs and produces some outputs via correspondent Channels.
Each Channel holds a reference to a Message class. When an Operation of the
Collaboration View is related to a DAO Operation of the DAO View, the Operation
class acts as an integration point of the Collaboration View and the DAO View.
The Operation class of the Collaboration View specifies the operation from the
service point of view, whereas the DAO View specifies DAO Operations from the
DAO point of view with its DAO input and output parameters.

• As shown in Figure 7.4, each Service holds a list of Registrations and Publications.
The Registration class has a n:1 relationship with the User class because a user
typically registers more than one DAS at a time. After registering a DAS, the
user can publish it. As shown in the data model, the class Publication has a n:1
relationship with the class User and with the class Affiliation, respectively. Thus,
authorizations for a certain publication can be given to affiliations or/and users.
The class Affiliation can consist of zero or more User classes.

7.4 Tooling: The View-Based Repository Client

Our view-based repository client prototype, shown in Figure 7.5, has been implemented
as an Eclipse Plug-in to comfortably supporting developers in modeling DAS. In the
following we describe our view-based repository client in more detail.

Using the View-Based Repository Client

The view-based repository client accesses the DAS repository by invoking its services.
The UML activity diagram, displayed in Figure 7.6, illustrates the interaction of the
view-based repository client and the DAS repository in more detail. We present a typical
activity flow performed by stakeholders when modeling new or adapting existing models.
Our view-based repository client, depicted in Figure 7.5, consists of several Eclipse views.
In order to connect the Eclipse views in Figure 7.5 to the activities of Figure 7.6, the
Eclipse views and the activities are labeled with corresponding numbers. In the following,

117

Figure 7.5: View-Based Repository Client GUI (Eclipse Plug-in)

we describe each of the depicted activities from the view-based repository client’s point
of view.

• Retrieve views/ models manually: Usually, if stakeholders are not firm with the
DAS models and model instances, they first will have to acquaint themselves with
the models of the Eclipse DAS repository Model View (1), before they search
for a specific view. The Eclipse DAS Repository Model View (1) lists all view
models stored in the DAS repository. Stakeholders can find views and view models
manually by traversing the Eclipse DAS Repository Instance View (1), that lists
all views stored in the DAS repository.

• Retrieve views with search criteria: Alternatively, in order to more comfortably
query views for reuse, stakeholders can use the Eclipse Query View (2) that pro-
vides a query editor to express simple queries. On submit, a service operation
request is sent to the DAS repository query service. As a result, a response with
zero or more DAS repository views is returned. With our prototype implemen-
tation, the views are delivered as SOAP attachments from the DAS repository
to the view-based repository client. The resulting view is an Ecore XMI model
instance128. Up-to-now, our prototype view-based repository client only supports

118

View-based Repository Client DAS Repository

Retrieve
views with

search criteria by the
Eclipse Query View

Model
new views/ models by the

Sample Ecore Model Editor

Check result set
by the

Eclipse Query Result Set View

Request registration

Query

Adapt
views/ models by the

Sample Ecore Model Editor

Request publication

Register
(Store, Generate,

Build, Deploy)

Publish
(Authorize/
Register to

other repositories

search criteria

views

views/ models

OK/ NOK

OK/ NOK

views/ models

reuse

adapt

publish

create

reuse
„as it is“

successful

result set dissatisfiying

Test

requery

Retrieve
views/ models

manually by the
Eclipse DASR Instance View/

Eclipse DASR Model View

views/ models

2

3

44

1

do not publish

Test

successful

not successful

Figure 7.6: Activity Flow Diagram from the User’s Point of View

structured querying for views, because, from our experience in larger enterprises,
the number of view models is normally much lesser compared to the number of
views (< 0.5%). In order to quantify the number of view models and view model
instances in the DAS repository, as shown in Figure 4.2, in the current version
of VbMF/ VbDMF, a DAS can be described using 12 views, and each view is
described by a view model. Thus, in order to describe 500 DAS, 6000 views and
12 view models have to be stored in the DAS repository. In this case, the number
of view models stored in the DAS repository accounts for 0.5 % of the views.

• Check result set: After the views have been retrieved from the DAS repository,
stakeholders such as developers can consider and check the result set in the Eclipse

119

Query Result Set View (3). The view-based repository client features the Eclipse-
embedded Sample Ecore Model Editor (4) in order to view models and views. When
a desired view that best possibly meets their requirements is displayed within the
result set, developers can reuse it. Otherwise they either have to create a new view
by using the Sample Ecore Model Editor (4) or to search again for suitable views
using the Eclipse Query View (2) or the Eclipse DAS Repository Instance View
(1).

• Reuse: In order to reuse a view, developers have two possibilities:

– Adapt views/ models: In case of error corrections or to meet changing require-
ments, it may be necessary to adapt a view/ model. Editing existing views
and models can be comfortably done by the Eclipse-embedded Sample Ecore
Model Editor (4).

– Reuse ’as it is’: In case of developers find a desired view/ model, they can
reuse it without adapting it.

• Model new views/ models: If developers do not find a suitable view/ model, they
can model a new view/ model according to their requirements. An approach to
develop new models from user requirements and to apply model transformations as
a a base for the implementation can be found in86. The view-based repository client
features the Eclipse-embedded Sample Ecore Model Editor that allows developers
for comfortably specifying new view model instances. If developers do not intend
to model their own models, they can re-query for a desired view by the Eclipse
Query View (2), the Eclipse DAS Repository Instance View (1), and the Eclipse
DAS Repository Model View (1), respectively.

• Request registration: Developers can register new DAS/ DAO models and views
by sending a service operation request with a model/ view as a SOAP attachment
to the DAS repository (see Figure 7.2). Registering a model or view is possible
by right-clicking on the context-menu within the Eclipse-embedded Sample Ecore
Model Editor (4). Views neither adapted nor created are not subject for registra-
tion. After registering the DAS/DAO views/ models, they are persistently stored
in the DAS repository. We use the Xpand language of the Eclipse M2T project129
for source code generation from the defined model instances. The DAS themselves
are generated from the Information View, the Collaboration View, and the Core
View. The DAOs are generated from the various VbDMF views, the DAO View,
the ORM View, and the Data Object Type View. As the DAO interfaces con-
tain no ORM details, DAO interfaces are automatically generated simply from the
DAO View and the Data Object Type View.

• Test views/ models: In order to test the views, they have to be be deployed on a
test environment. After successfully testing the views, the deployed DAS can be
invoked by a business process application. In order to test the view models, de-
velopers can specify test cases written in a conceptual schema testing language131.

120

If the test fails, developers will have to re-adapt the views and models in order
to fulfill their test requirements for the views/ models. Afterwards, they can be
published to other users and repositories. If the test was not successful, the views/
models would have to be adapted to meet the test quality criteria. In this case,
consequently, the views and models have to be both re-registered and re-tested.

• Request publication: After registering a DAS/ DAO, it can be published to selected
persons, teams, departments, or companies so that they can query them. After
successfully publishing the views and models, the authorized employees can view
these DAS/ DAO views and models in the Eclipse DAS Repository Instance View
(1) and in the Eclipse DAS Repository Model View (1), respectively.

Using the Query Service

Finding models and model instances is a key functionality of the DAS repository. Hence,
in this section we focus on how to use the query service from the view-based repository
client’s point of view. For this, we, in particular, define the query language used by
our prototype implementation and secondly we analyze further support of a view-based
repository client required when querying the DAS repository.

Query Language

Traditional database query languages, such as SQL and XQuery, are highly expressive
but hard to learn. On the contrary, keyword queries are easy to use but lack the ex-
pressive power24. We chose to define our own language to query views and models by
certain key word elements. Our lightweight technology-independent query language does
not require stakeholders to be familiar with the specific characteristics of the underlying
modeling language. Likewise, in order to search for views, stakeholders need not to be
up-to-date with the Ecore meta-model elements. Though, they need an overview of the
view model elements and the relationships between them. For this, in the following
Section 7.4, we provide some GUI support.

We developed our Query Language using the Eclipse ANTLR Plug-in8. Figure 7.7
contains a visual presentation of our Query Language in BNF notation. Rules displayed
with a upper-case label are lexer rules, whereas the lower-case labeled rules are parser
rules.8. As shown, our language consists of simple conditions (see Figure 7.7(d)) and
boolean operators (see Figure 7.7(e)). As illustrated in Figure 7.7(c), these simple con-
ditions and operators can be used in sequence within an expression. An expression in
turn can be nested within a rule (Figure 7.7(b)). Finally, the rule rule_with_end of Fig-
ure 7.7(a) contains a rule and represents the root rule of our Query Language Definition
to be verified.

When such a query is transmitted to the DAS repository by the query service, the
service can return the relevant views and models matching the query. This lightweight
query language is very simple, requires minimum of training effort and fulfills the re-
quirement to find views and models by different search criteria.

121

(a)
rule_with_end

(b) rule

(c) expression (d) condition (e) operator

(f) MODELELEMENT_KEY (g) STRING (h) DIGIT (i) WHITESPACE

Figure 7.7: Query Language Definition in BNF Notation

Further support: Model Element Generator

In order to query views from the DAS repository by different search criteria, stakeholders
need to know the view model elements. A common problem when querying reusable
objects lies in the handling of misspelled words, synonyms and semantically equivalent
words110. One way of addressing these issues is to limit the vocabulary, and to only allow
queries drawn from this simple controlled vocabulary81. Hence, our DAS repository
client proposes using view model elements for querying. The following Table 7.1 shows
an extract of these view model elements. These view model elements are generated by
Function KeywordGenerator. The function recursively steps through a view and outputs
all elements from the view model itself, from its parent view models, and from its view
model references. The output gives an overview about all possible key words within a
view model.

Table 7.1: Model Element Generator: Extraction of Result Set
Key word

PhysicalDataView.table.prefix
PhysicalDataView.table.name
PhysicalDataView.table.column.primaryKey.name
PhysicalDataView.table.column.type.name
DaoView.dao.type.prefix
DaoView.dao.type.name
DaoView.dao.daoOperations.name
DaoOperations.daoOperation.inputParameter.name

122

Input: Document model
Input: Node currentNode
Input: String output

1 if (isEClassifier(currentNode)ORisRootNode(currentNode)) then
2 HashMap < String, Node > hashMapAllNodes =

getChildNodesAndInheritedChildNodes(model, currentNode);
3 StringoutputP refix = output;
4 foreach String elementName ∈ hashMapAllNodes do
5 NodechildNode = hashMapAllNodes.get(modelName);
6 if (NOT childNode.getNodeName().equals(““#text““)) then
7 if (NOT isReference(childNode)) then
8 if (NOT isEClassifier(childNode)) then
9 if (isRootNode(currentNode)) then

10 output = getNodeOutputString(outputP refix, childNode);
11 end
12 KeywordGenerator(model, childNode, output);
13 end
14 else
15 output = getNodeOutputString(outputP refix, childNode);
16 System.out.println(output);
17 end
18 end
19 else
20 output = getNodeOutputString(outputP refix, childNode);
21 NoderefNode = getReferenceNode(modelName, childNode);
22 if (NOT refNode == null) then
23 KeywordGenerator(getModelByName(modelName), refNode, nodeOutputName);
24 end
25 end
26 end
27 end
28 end

Function KeywordGenerator

In contrast to extracting elements from view models, extracting model elements from
the underlying Ecore meta-model of the Eclipse Modeling Framework (EMF)128 is much
simpler. The reason for this is, that the elements have to be only extracted from one
Ecore meta-model instead of from several related view models.

7.5 Case Study

In this case study we show how our approach can be applied to geographic information
systems (GIS)79. GIS are large-scale information systems making huge amount of spa-
tial as well as non-spatial data available over the internet135. A GIS data model usually
consists of a large number of entities79. There are several international standards pro-
duced by the ISO/TC 211 group that describe data models for geographic information,
information management and information services. In particular, the ISO 19119 specifi-
cation102 provides a framework for specifying individual geographic information services.
On top of this specification, the open geospatial consortium (OGC) establishes several
OGC web service (OWS) standards for spatial data. One example is the OGC web
feature service (WFS) specification103. WFS allow a client to retrieve and update spa-
tial and non-spatial geographic data, encoded in geography markup language (GML)105,
an XML grammar for expressing geographical features. Such geographical features are
e.g. restaurants, hotels, sights, indoor swimming pools, cinema, schools, gas stations,
shops etc. Examples of spatial data include coordinates, height and width. Examples

123

of non-spatial data are the school building type or the average water temperature of in-
door swimming pools. According to the OpenGIS WFS implementation specification103,
each WFS basically provides three operations: The operation GetCapabilities indicates
serviceable feature types, the operation DescribeFeatureService provides the structure of
serviceable feature types, and the GetFeature operation enables querying of certain fea-
ture instances by spatial and non-spatial search criteria. Optionally a WFS can provide
a Transaction operation in order to service feature modifications.

Applying our Approach to Web Feature Services

In the following we apply our architecture approach to WFS in order to enhance docu-
mentation, traceability and maintainability of data access of WFS.

At first, there is a need to relate WFS terminology to the DAS terminology of this
thesis:

1. WFS vs. DAS: A WFS can read and write spatial and non-spatial data from an
RDBMS. Consequently, we define WFS as specialization of DAS.

2. Web Catalogue Service vs. Service Repository: The service repository, defined in
this thesis, manages DAS metadata and provides a query service enabling business
process applications to find suitable DAS by different search criteria. Accordingly,
a web catalogue service is a service repository managing spatial and non-spatial
WFS metadata.

3. WFS Provider vs. DAS Provider: Whereas DAS are available on a DAS provider,
the more particular WFS are deployed on a WFS provider.

As shown in Figure 7.8, business process applications can find suitable WFS by
querying a web catalogue service104. The web catalogue service manages WFS meta-
data enabling business process applications to retrieve WFS by diverse search criteria.
After having found a suitable WFS from the web catalogue service, the business process
application can invoke this WFS. Each WFS can either process a request by its own or it
delegates the request to another WFS. In order to process a request by its own, the WFS
usually reads or writes spatial and/or non-spatial data from a geographic database.

WFS operations such as the GetFeature operation, can handle diverse feature re-
quests. In contrast, a DAS operation is more proprietary by processing one single data
access request. Moreover, a WFS will be able to delegate a request to another WFS, if
it cannot fulfill the request itself. As a result, we have to extend our VbDMF model by
defining new view model elements for WFS. In the following we illustrate the necessary
steps to extend VbDMF with new WFS view models and to create view model instances
from these new views:

• Model new views/ models: By using the Eclipse-embedded Sample Ecore Model Ed-
itor, developers can comfortably specify new WFS view models and views. In the
following, we extend VBDMF by creating a new view model, the WFS Information

124

Web Feature Service (WFS) Provider

Spatial data xy 01

Non-spatial data xy 0001

Non-spatial data xy 0002

...
Non-spatial data xy 9999

Spatial data xy 02

...

Spatial data xy 99

Web Catalog Service

Database

Registration

WSDL

Query

Web
Feature
Service

Web
Feature
Service

Web
Feature
Service

Business
Process

Application

Figure 7.8: Case Study: Applying WFS to the VMDA

View, shown in Figure 7.9, describing specific WFS features. This WFS Informa-
tion View consists of a WFS Feature Type List that is derived from the Business
Object entity of the Information View. Hence, like a Business Object entity, a Fea-
ture Type List entity corresponds to a Parameter of the DAO View. Each Feature
Type List consists of a list of Feature Type entities. Each Feature Type in turn
comprises zero or more Property Type entities and is related to a Parameter entity
of the DAO View. As WFS are able to delegate requests to another WFS, each
Feature Type entity is related to zero or one Service Operation entities. Based on
the VbMF and VbDMF view models, stakeholders can model new views in order
to describe specific WFS. During the modeling process the DAS repository’s view-
to-code transformator has to be extended in order to generate source code from
the specified WFS views. Moreover, the queries of a WFS feature request need
to be mapped to the SQL-based DAO operations138. This WFS Query-to-DAO
translation needs to be part of the resulting source code.

• Request registration: Developers can register the newly created WFS views/ models
by sending a service operation request to the DAS repository. After registering the
WFS/DAO views/ models, they are persistently stored in the DAS repository.
As a result, the view-to-code transformator generates WFS source code from the
views. Furthermore, the DAS repository’s build/ deploy service builds the WFS
source code and deploys the resulting WFS on a certain WFS provider.

• Test views/ models: Once the newly registered views and models have been suc-
cessfully tested on the WFS provider, they can be published.

• Request publication: After successfully registering new views/models, they can be
published to selected persons, teams, departments, or companies (see Figure 7.2)
so that they can query them.

125

Database Connection View

Physical Data View

Data
Object

View

Table

Data Object Type

-tables

*

1

Column
1 -columns *

Member Variable

1

-attributes
*

1

-data objects
*

-columns
*

1
ORM Table

1

-tables
*

ORM Column

-attributes

*

1

ORM View

DAO ViewDAO

DAO Operation

1
-DAO operations *

InputparameterOutputparameter

1

0..1

1

-input parameters*

Parameter

Information View

FeatureTypeList

1

-type
1

Type
DataHandling

Transformation

ObjectReference

transformations 1..*

1

-target
1

1

-source

1

1

-businessObject
1

references

*

User View

Publication

Registration

1
-registrations

*

User

-publications

*

1

Affiliation

-affiliations
1..*

1
-publications

*
1

-output parameters
*0..1

-input parameters
*0..1

Operation

Service
-interfaces

1..*
-service

1

Interface

-operations

1..*

1
Channel

-in *

1

-out *
1

Message

-message1

-channel

1

1

-publications
*

1

-registrations
*

0..1

1

Collaboration View

1

1

-roles*
-interface

1

Role

InteractionPartner

1

-partner

1..*

1

1

1

1

WFS Information View

1

1
FeatureType

PropertyType

1

-parameter0..1

-featuretypelist

1

-featuretype

0..*

-featuretypes
1

-propertytypes

0..*

1
1

FeatureTypeList

ConnectionProperties

UserConnectionProperty

*

-userConnectionProperty 1

Figure 7.9: Case Study: Extending VbDMF by a New WFS Information View

Making Use of the DAS Repository

GIS usually have to manage a very large number of WFS. Moreover, each WFS consists
of different features with specific spatial and non-spatial feature attributes. These fea-
ture attributes are stored in a geographic database. During our studies, we detected a
documentation gap between the DAOs, the underlying object-relational mappings and
the underlying data storage schemes. This makes it difficult for stakeholders such as sys-
tem architects and database administrators to inspect the relationships between these
different layers. As we provide a full-blown model of the WFS, we can use this informa-
tion to document the relationships between the data storage schemes, the DAOs, and
the WFS. Moreover, our approach provides the basis to view relevant parts of a WFS
tailored to the requirements of the stakeholders at first sight. By using our view-based
repository client, stakeholders can search for particular WFS by different search criteria
such as tables, columns, data objects etc.:

1. Retrieve views with search criteria: Developers can look for WFS by diverse search
criteria, e.g. they can query WFS that read or write a certain database table of

126

certain database schema. For this purpose, stakeholders can write a query within
the view-based repository client’s Eclipse Query View, in example: (PhysicalData-
View.table.name=schoolBuilding AND DBConnectionView.connectionProperties.-
schema=GIS). After entering the submit button, the view-based repository client
invokes the DAS repository query service.

2. Check result set: As a result, as shown in Figure 7.5, a DBConnectionView and
a PhysicalDataView matching the search criteria are returned and can be viewed
in the Eclipse Query Result View. The developer can acquaint himself with the
WFS and, for example, contact the WFS owner. If the desired PhysicalDataView
or DBConnectionView is in the result set, the WFS can be reused. Otherwise, a
new search can be started.

Next, we show, how the DAS repository’s query interface and the view-based repos-
itory client can be exploited in order to selectively adapt existing views. Let us assume
that the database connection settings of several WFS change, e.g. because the underly-
ing geographic database is transferred from one server to another server. Usually, these
database connection settings are part of the WFS/ DAO source code. With our ap-
proach, database administrators can adapt the settings without help of the WFS/ DAO
developers by performing the following steps:

1. Retrieve views with search criteria: Database administrators can ask the DAS
repository’s query service via the view-based repository client, if there exist any
WFS accessing a database running on a certain server. Hereto, they type the
following query in the Eclipse Query View:
(DBConnectionView.connectionProperties.server=http://192.168.1.11:8080)

2. Check result set Afterwards, the query service returns a list of DBConnectionView
views matching the query.

3. Adapt views: The database administrators use the view-based repository client to
adapt the existing view model instances. By using the Eclipse-embedded Sam-
ple Ecore Model Editor, they can change the value of the DBConnectionView.-
connectionProperties.server model element from http://192.168.1.11:8080 to
http://192.168.1.12:8080.

4. Request Registration: Afterwards, database administrators have to register, build
and deploy the adapted WFS by invoking the register service with the new DB-
ConnectionView as SOAP attachment.

5. Test: Then, the WFS with the newly configured database connection need to be
tested.

6. Publish new DAOs: After registering the successfully tested WFS, database ad-
ministrators publish the WFS views to the same group as before.

127

Hence, as by using DAS, by using WFS, applications can read and write data from
a higher level than the DAO layer. When an underlying technology changes, concerned
stakeholders can focus on the specific view and perform the adaption without the need
to involve other stakeholders. In the following Section 7.6 we illustrate further use cases
in order to quantitatively evaluate our approach.

7.6 Evaluation

In this section we describe illustrative use cases in order to quantitatively evaluate our
approach. In particular, each of these use cases looks for geographic web feature services
(WFS) by certain search criteria. We have already introduced WFS of large-scale GIS
applications in Section 7.5.

According to the analysis of Banker et al.12 who analyzed the evolving repositories
of two large firms, “programmers are willing to bear extremely low search costs before
choosing to just write their own objects“. Moreover, “the subject of quality engineering
and management is about reducing the variability in products and processes, quality
costs, and to provide maximum satisfaction to the customers through improved product
performance“91. Accordingly, developers that are not fully positive about the perfor-
mance of the DAS repository would not use it. Thus the response time of the DAS
repository is one of the key non-functional requirements that need to be fulfilled, so that
developers can gain the best-possible benefit from the DAS repository. As querying the
DAS repository is the key functionality in our VMDA, we quantify the response time
and the scalability of exemplary use cases invoking the DAS repository’s query service.

There are two main approaches in order to map models to an RDBMS84: an XSD
model mapping approach and a domain model mapping approach. According to the
architectural decision in Section 6.3, for performance reasons, it is the best to use an
XSD model mapping approach instead of a domain-based mapping approach. In our
example, this means, we should use an XMI-based mapping approach to map Ecore
elements to database tables. However, we will show that even a common domain-model-
based approach shows acceptable performance results. Thus, each entity of the VbDMF
models, displayed in Figure 7.4, is physically mapped to a database table. This basic
mapping from entities to tables is done both for the view model entities and for the
Ecore meta-model entities, so that we can both support structured querying for views
and view models.

In the following, we solely describe the cases frequently fulfilled by stakeholders
developing and maintaining geographic WFS when using our DAS repository. These use
cases firstly result from our study of analyzing persistent data access in service-oriented
environments in a large enterprise and secondly from analyzing WFS of commercial35
and open-source82 GIS. The use cases demonstrate how the relationships between the
WFS, the DAOs, and the data storage schemes can be exploited to query persistent data
access elements from the DAS repository.

A Java-based test client application performs each use case by invoking the DAS
repository’s query service by given search criteria. After invoking the query service,

128

our test client application receives the according result set. As we want to test the
scalability of our repository, for each exemplary use case, we invoke different query
service implementations, each accessing a certain repository database of 10, 100, 1000,
10000, and 100000 WFS view model instances respectively. We assume that each WFS
view consists of 10 WFS features. After each service invocation we restart the MySQL
Server service to avoid caching effects during our measurements.

Use cases For each use case, we describe the table joins performed by the query
service. We choose one representative use case query for each number of table joins.
Surely, there are other queries that might be useful to find appropriate WFS. However,
we chose those use cases that, according to our experiences and studies, are most likely
to be used by developers.

• Use Case Query 1 (Query by Database): If database administrators intend to
migrate a database from one database server to another server, they can use a
query by database connection to find all WFS modeling a relation to this database
connection. This type of query does not require a table join, because only the
Database table is selected.

• Use Case Query 2 (Query by Table, Column): If DAS developers need to know
which WFS access a certain column of a table, DAS developers can ask the DAS
repository. In order to perform this query, joining the Table and the Column table
is necessary. The two conditions should be concatenated with the boolean AND
operator.

• Use Case Query 3 (Query by Database, Table, Registration): In case a specific
database table fails, stakeholders such as system architects or database admin-
istrators might want to inform the relevant WFS providers about this failure.
However, only some WFS providers have registered to be kept informed of system
failures. In order to find the resulting WFS, the query service joins the tables
Database, Table and Registration. Again, the conditions could be concatenated
with the boolean AND operator.

• Use Case Query 4 (Query by FeatureType, PropertyType, ORM Table, ORM
Column): DAS developers use this query to understand which WFS features access
which database tables. In order to process this query, DAS developers insert both
the name of a certain FeatureType and of a certain PropertyType into the search
condition. In example, the feature type could be a bus station and the property
type could be a spatial data type that describes the distance from the current
position. The tables ORM Table and ORM Column define the mapping between a
FeatureType and a Table, and the mapping between a FeatureProperty and a table
Column, respectively. Thus, these mapping tables should also be included into
the join. The specific search conditions should be linked with the boolean AND
operator.

129

• Use Case Query 5 (Query by Registration, Publication, User, Affiliation, Feature
Type): By using this query, developers can find WFS, they have registered or
published within a certain time period. In particular, they use this query, when
they only know the name of the registered and published feature and the month
of registration/ publication date. Thus, developers have to find all published or
registered WFS at a certain date by a certain user of a certain affiliation with a
specific feature. Hereto, both the boolean OR and AND operator can be used to
join the tables involved, namely the Registration table, the Publication table, the
User table, the Affiliation table and the FeatureType table.

• Use Case Query 6 (Query by DAO, DAO Operation, Output Parameter, Input
Parameter, Data Object Type, ORM Table): Database developers and database
administrators can use this query in order to document which DAO operations
access which database tables. For this purpose, stakeholders specify the name of
the DAO, the DAO Operation, the Input Parameter, the Output Parameter, and
the Data Object Type. In order to map a data object type to a specific database
table, the ORM Table table has also be included into the join. As a result, they
get the database tables accessed by this DAO operation.

• Use Case Query 7 (Query by User, Registration, Publication, Affiliation, Feature-
Type, Operation, PropertyType): In addition to Query 5, stakeholders can add
the Operation table as additional search criteria in order to search for WFS with
specific operations e.g. for transaction WFS, that support the transaction opera-
tion. Moreover, if stakeholders know the specific PropertyType of a FeatureType of
features they have registered and published, they can add the PropertyType table
to the search condition by using the boolean operator AND or OR.

• Use Case Query 8 (Query by DAO, DAO Operation, Output Parameter, Input
Parameter, Data Object Type, ORM Table, Member Variable, ORM Column):
Developers use this query in order to find the database columns mapped to a
certain member variable as part of a certain DAO operation. In addition to Use
Case Query 6, stakeholders can add the Member Variable table as additional search
criteria. In order to map member variables to table columns, the query service has
to include the ORM Column table in the join.

• Use Case Query 9 (Query by User, Registration, Publication, Affiliation, Feature-
Type, Operation, PropertyType, Database, Table): If, in addition to the search
criteria in Query 7, the name of the database and table is known, developers can
put both the Database table and Table table into the table join.

Test requirements Table 7.2 shows the numbers of data rows imported into each
of the tables used for the measurement. According to Table 7.2, we define that a WFS
consists of 5 operations and of 10 Features. Each Feature comprises 10 Feature Properties
and corresponds to one DAO. We further assume the simple case that each DAO accesses
one Table. An ORM Table maps a Table to exactly one Data Object Type. A Table

130

Table 7.2: Experiment: Number of Table Rows Related to Number of WFS

Table 10 WFS 100 WFS 1000 WFS 10000 WFS 100000 WFS

Affiliation 20 200 2000 20000 200000
Column 1000 10000 100000 1000000 10000000
DAO 100 1000 10000 100000 1000000
DAO Operation 500 5000 50000 500000 5000000
Data Object Type 100 1000 10000 100000 1000000
Database 2 20 200 2000 20000
Feature Type 100 1000 10000 100000 1000000
Input Parameter 500 5000 50000 500000 5000000
Output Parameter 500 5000 50000 500000 5000000
Member Variable 1000 10000 100000 1000000 10000000
Operation 50 500 5000 50000 500000
ORM Column 1000 10000 100000 1000000 10000000
ORM Table 100 1000 10000 100000 1000000
Property Type 1000 10000 100000 1000000 10000000
Publication 1000 10000 100000 1000000 10000000
Registration 2000 20000 200000 2000000 20000000
Table 100 1000 10000 100000 1000000
User 10 100 1000 10000 100000

consists of 10 Columns. And ORM column maps each Column to exactly one member
variable. Each member Variable corresponds to one simple Data Object Type. Each DAO
contains 5 DAO Operations. Each DAO Operation in turn contains one Input Parameter
and one Output Parameter. Each Output Parameter and each Input Parameter are
always mapped to one possible complex data object type or a simple Data Object Type.
Simple Data Object Types are disregarded in Table 7.2 because for our measurements
the number of simple types is rather unimportant. We estimated that each user can
belong to two different affiliations during their employee membership. For this test, we
estimated further that a WFS is registered a 2000 times and published a 1000 times in
average, and 10 users publish and register one specific WFS.

Table 7.3: Experiment Settings

Processor: Intel(R) Core(TM)2 Quad CPU 2.4 GHz
RAM: 4 GB
Operating System: Windows 7 (64 bit)
Database: MySQL Server 5.1
Java Version: 1.6.0_10
MySQL Server Type: Developer Machine

In Table 7.3 we summarize the settings of our test machine. Please note that our
performance measurements are based on a fully normalized data model that does not
contain any redundant column data.

Results We measured the response times for queries related to the number of WFS
and the number of table joins necessary to perform the query. The following Figure 7.10
displays the use case queries on the x-axis and the response time in milliseconds on the
y-axis. The resulting curve is approximately proportional with the number of table joins.
However, the curve is not exactly linear. We think this non-linear functional behavior
results (among others) from the following reasons:

• Different queries are optimized to a different degree

131

2000

4000

6000

8000

10000

12000

t
 i

n
 m

s 10 WFS

100 WFS

1000 WFS

10000 WFS

0

2000

4000

6000

8000

10000

12000

t
 i

n
 m

s 10 WFS

100 WFS

1000 WFS

10000 WFS

100000 WFS

Figure 7.10: Experiment Result: Response Time Against Number of Table Joins

• Randomized search criteria can lead to faster or slower results

• Different queries with different tables joining various numbers of rows as described
in Table 7.2

As shown in Figure 7.10, our repository offers acceptable response times even for
a large number of WFS. To illustrate this, let us come back to our case study in Sec-
tion 7.5. GIS usually manage several thousand features provided by several hundred
WFS. As shown in Figure 7.10, the performance for querying views from 100000 WFS
and 1000000 available WFS features in the repository is acceptable. Fortunately, in
practice, the number of search criteria, and thus the number of table joins, is usually
low (approximately 1-4), therefore, resulting in a very good overall performance.

Our approach scales well with increasing numbers of WFS. Figure 7.11 and Fig-
ure 7.12 show the query response times and the logarithmic query response times re-
spectively with an increasing number of WFS. Again, the y-axis displays the response
time in milliseconds. In contrast to Figure 7.10, the x-axis displays the number of WFS.
As shown in Figure 7.12, from up to 1000 WFS, for all queries, the response time values
increase virtually linearly with increasing number of WFS. The reason why querying
10 WFS results in quicker response times than querying 100 WFS is that indices are
ignored by the database query optimizer when there are only very few rows in a table.
For numbers of at least 1000 WFS the optimizer uses the indices to perform the queries.

132

2000

4000

6000

8000

10000

12000

t
in

 m
s

Query09

Query08

Query07

Query06

Query05

Query04

Query03

0

2000

4000

6000

8000

10000

12000

10 100 1000 10000 100000

t
in

 m
s

Number of WFS

Query09

Query08

Query07

Query06

Query05

Query04

Query03

Query02

Query01

Figure 7.11: Experiment Result: Response time Against Number of WFS

0,5

1

1,5

2

2,5

3

3,5

4

4,5

lo
g

(t
)

in
 m

s

Query01

Query02

Query03

Query04

Query05

Query06

Query07

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

10 100 1000 10000 100000

lo
g

(t
)

in
 m

s

Number of WFS

Query01

Query02

Query03

Query04

Query05

Query06

Query07

Query08

Query09

Figure 7.12: Experiment Result: Logarithmic Response Time Against Number of WFS

133

7.7 Summary
In this chapter, we introduced our view-based model-driven data access architecture
(VMDA) for managing DAS in a process-driven SOA. Our approach improves docu-
mentation of the relationships between DAS, DAOs and data storage schemes and thus
contributes to a higher software development productivity and maintainability. For ex-
ample, our VMDA documents which user provides which DAS, which DAOs are related
to the DAS and which database tables are read and written by the DAS and DAOs.

Moreover, as the number of software components grows, data development complex-
ity increases with the number of DAS. So retrieving a particular DAS can be complex
and time-consuming. In order to tackle these issues and to enable better maintainabil-
ity, we specified a view-based model-driven data-access architecture (VMDA) managing
the views, models and relationships between them. This service-oriented architecture is
composed of well-known concepts such as a model-driven repository and a view-based
repository client. Though, we combine these concepts in order to efficiently develop,
maintain, trace and deploy DAS in a process-driven SOA. In order to reduce the com-
plexity of managing DAS, we separate the DAS into different views, namely the Collab-
oration View, the Information View, the ORM View, the DAO View, the Physical Data
View, the Database Connection View, and the User View. The DAS repository stores
DAS models and views, and consists of several services providing basic functionalities to
query, register, publish DAS. Due to the structured nature of the DAS views and models,
we can query DAS by implementation, data storage schema, and metadata artifacts.

134

CHAPTER 8
Conclusion

8.1 Summary of the Research Problems

In this thesis we identified current problems arised when developing and maintaining
persistent data access in process-driven SOA.

• Documentation lacks quality: One major problem, when developing and maintain-
ing DAS, is the documentation gap between the data access services (DAS), the
underlying DAS implementations such as data access objects (DAO), and the data
storage schemes.

• Insufficient stakeholders support: Stakeholders need to focus on different concerns
of persistent data access in a process-driven SOA. However, in hetereogenous devel-
opment environments, it is not easy to concentrate on specific interests of persistent
data access.

• No adequate tooling and language support for solving structural problems in busi-
ness processes: Current BPMS and business process modeling languages do not
provide proper support for solving structural business problems concerning persis-
tent data access e.g. deadlocks.

• Unsatisfied reuse and maintainability of DAS: Locating a specific DAS within
hundreds or thousands of DAS is a time-consuming task. In order to being able to
efficiently reuse and maintain DAS, they need to be effectively managed. However,
up-to-now, there exists no suitable DAS managing architecture to model, query,
retrieve, and publish DAS.

135

8.2 Summary of the Contributions

Our contributions focus on better modeling and managing persistent data access. We
provided a novel approach to improve maintaining, reusing, and tracing persistent data
access in process-driven SOAs from the service provider’s view. Our novel contributions
are based on the following basic concepts:

• Model-driven development to improve documentation of persistent data access in
process-driven SOAs

• Views to support different stakeholders to view their relevant piece of data access

• A repository architecture for better managing and maintaining persistent data ac-
cess

• A reusable architectural decision model to document basic architectural design
decisions

• Persistent data access flows to solve structural problems concerning persistent data
access in business process

In the following we summarize our novel contributions:

View-based data modeling framework In this thesis, we introduced VbDMF,
a view-based model-driven framework for modeling persistent data access in process-
driven SOAs. With VbDMF we can document the relationships between data access
services (DAS), the underlying data access objects (DAOs), the object-relational map-
pings (ORM), and the physical data storage schemes. Due to the model-driven approach,
stakeholders can model persistent data access from a higher level than the source code
level. In addition, due to the views concept, they can individually focus on their par-
ticular interests of persistent data access within the business process. Moreover, we can
reuse the high-structured DAS for model-to-code and model-to-documentation transfor-
mations.

Persistent data access flows We applied our view-based modeling concepts to solve
structural problems concerning persistent data access in business processes. In particu-
lar, in a number of use case scenarios, we illustrated, how persistent data access flows
can be applied to solve structural problems in business processes concerning persistent
data access. We present a novel view-based modeling solution to extract these persistent
data access flows from whole business processes. The feasibility and applicability are
shown in a case study. Finally, we evaluated the correctness and performance of the
used algorithms.

136

Reusable architectural decision model (RADM) for model and metadata
repositories In order to design and set-up model and metadata repositories, a se-
ries of architectural decisions have to be made. In this thesis, we presented a reusable
architectural decision model (RADM) for model and metadata repositories. This RADM
incorporates best practices in setting-up and developing model and metadata reposito-
ries. In a case study, we apply our architectural decisions to build a DAS repository
managing VbDMF models and views.

View-based model-driven data access architecture (VMDA) We introduced
a view-based model-driven architecture used to better manage, maintain, and reuse
data access services (DAS). Our VMDA uses VbMF/ VbDMF to specify the models
and views. In a large-scale case study, we show how our architecture approach can be
applied to web feature services (WFS) in geographic information systems (GIS). With
our performance evaluation, we proved the acceptable response times of the repository.

8.3 Future work
In this thesis we have presented a series of encouraging concepts to improve managing and
modeling persistent data in process-driven SOAs. During our research we have touched
many interesting research topics being worth further research investment, however being
out of scope of this thesis.

Repository requirements In our approach we have provided a lightweight technology-
independent query language to search for VbDMF views. Furthermore, advanced search-
ing capabilities, such as those that can be provided on top of our approach, are desirable.
The selective use of ontologies could improve the quality of the retrieved result set.

In addition, further work is necessary to coping with other important repository’s
requirements such as event notification, configuration control, and security.

Moreover, in order to synchronize data from other repositories to the DAS repository,
a sophisticated data re-engineering is necessary, that is also part of our future work.

Runtime aspects In this thesis we focused on improving managing and modeling
persistent data access at modeling time. Thus, runtime aspects such as dynamic invo-
cation of DAS need to be discussed and defined. In particular, further work can include
runtime statistics for measuring how often a DAS operation has been invoked, etc.

Reverse code engineering Furthermore, we will focus on source code re-engineering
in order to being able to exploit our approach when no view model instances are available.

Tool support Working with models in tools still lacks refinement70, we continue fo-
cusing on developing suitable tool chains for modeling persistent data access in process-
driven SOAs. In particular, We increasingly concentrate on server-client interactions
and repository client tools, that give value to the repositories.

137

Bibliography

[1] Xiaoming Liu 0005, Kurt Maly, Mohammad Zubair, and Michael L. Nelson. Repos-
itory synchronization in the OAI framework. In JCDL, pages 191–198, 2003.

[2] Swarup Acharya, Michael J. Franklin, and Stanley B. Zdonik. Balancing push and
pull for data broadcast. In SIGMOD Conference, pages 183–194, 1997.

[3] Asif Akram, David Meredith, and Rob Allan. Evaluation of bpel to scientific work-
flows. In CCGRID ’06: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid, pages 269–274, Washington, DC, USA, 2006.
IEEE Computer Society.

[4] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas,
and Divesh Srivastava. Structural joins: A primitive for efficient xml query pattern
matching. In Rakesh Agrawal and Klaus R. Dittrich, editors, ICDE, pages 141–
152. IEEE Computer Society, 2002.

[5] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web,
pages 1257–1258, New York, NY, USA, 2007. ACM.

[6] AndroMDA. EMF UML2 Repository. http://galaxy.andromda.org/docs-3.2/
andromda-repository-emf-uml2/index.html, Nov 2006.

[7] AndroMDA.org. EJB3 Cartridge. http://www.andromda.org/docs/andromda-
cartridges/andromda-ejb3-cartridge/, Copyright 2006-2011.

[8] ANTLR v3. ANTLR IDE. an eclipse plugin for ANTLRv3 grammars.
http://antlrv3ide.sourceforge.net/, Retrieved June, 2010.

[9] Apache Software Foundation. Axis2/Java. http://ws.apache.org/axis2/
index.html, 2004-2008.

[10] Mustafa Atay, Yezhou Sun, Dapeng Liu, Shiyong Lu, and Farshad Fotouhi. Map-
ping xml data to relational data: A dom-based approach. In Eighth IASTED
International Conference on Internet and Multimedia Systems and Applications,
Kauai, pages 59–64, 2004.

139

[11] Ahmed Awad and Frank Puhlmann. Structural detection of deadlocks in business
process models. In BIS, pages 239–250, 2008.

[12] Rajiv D. Banker, Robert J. Kauffman, and Dani Zweig. Repository evaluation of
software reuse. IEEE Trans. Software Eng., 19(4):379–389, 1993.

[13] Philip A. Bernstein. Repositories and object oriented databases. In BTW, pages
34–46, 1997.

[14] Philip A. Bernstein and Umeshwar Dayal. An overview of repository technology.
In VLDB ’94: Proceedings of the 20th International Conference on Very Large
Data Bases, pages 705–713, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[15] Shahid Nazir Bhatti and Asif Muhammad Malik. An XML-based framework
for bidirectional transformation in model-driven architecture (MDA). SIGSOFT
Softw. Eng. Notes, 34:1–5, May 2009.

[16] Hassina Bounif and Rachel Pottinger. Schema Repository for Database Schema
Evolution. In DEXA Workshops, pages 647–651. IEEE Computer Society, 2006.

[17] BrainML. Neurodatabase Construction Kit, Repository Server. http://
brainml.org, Retrieved April, 2011.

[18] Peter Brittenham. Web Services Inspection Language (WS-Inspection)
1.0. http://www-106.ibm.com/developerworks/webservices/library/ws-wsilover/
#resources, June 2002.

[19] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal
xml pattern matching. In SIGMOD Conference, pages 310–321, 2002.

[20] Mario Cannataro, Domenico Talia, and Paolo Trunfio. Distributed data mining on
the grid. Future Generation Computer Systems (FGCS), 18(8):1101–1112, 2002.

[21] J. Cardoso. Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. In 6th International Enformatika Conference, Transactions on Enfor-
matika, Systems Sciences and Engineering, Vol. 8, pages 213–218, 2005.

[22] Michael J. Carey, Panagiotis Reveliotis, Sachin Thatte, and Till Westmann. Data
service modeling in the aqualogic data services platform. In SERVICES I, pages
78–80, 2008.

[23] Silvana Castano, Alfio Ferrara, G. S. Kuruvilla Ottathycal, and Valeria De An-
tonellis. A disciplined approach for the integration of heterogeneous xml data-
sources. In DEXA ’02: Proceedings of the 13th International Workshop on
Database and Expert Systems Applications, pages 103–110, Washington, DC, USA,
2002. IEEE Computer Society.

140

[24] Yi Chen, Wei Wang 0011, Ziyang Liu, and Xuemin Lin. Keyword search on
structured and semi-structured data. In SIGMOD Conference, pages 1005–1010,
2009.

[25] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Ver-
sion 3.0.2, UDDI Spec Technical Committee Draft. http://www.uddi.org/pubs/
uddi_v3.htm, Oct 2004.

[26] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the Web Services Web: An Introduction to
SOAP, WSDL, and UDDI. IEEE Internet Computing, pages 86–93, 2002.

[27] Java SE Technologies Database. The java database connectivity (jdbc). http://
java.sun.com/javase/technologies/database/, 2001.

[28] G. Dedene and M. Snoeck. Formal deadlock elimination in an object oriented
conceptual schema. Data Knowl. Eng., 15(1):1–30, 1995.

[29] James Donahue. Integrating programming languages with database systems. In
Persistence and Data Types: Papers for the Appin Workshop, pages 331–341. Uni-
versities of Glasgow and St. Andrews, Departments of Computer Science, Aug
1985. Persistent Programming Research Report 16.

[30] Zongxia Du, Jinpeng Huai, and Yunhao Liu. Ad-UDDI: An active and distributed
service registry. In TES, pages 58–71, 2005.

[31] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical framework for
demand-driven interprocedural data flow analysis. ACM Trans. Program. Lang.
Syst., 19(6):992–1030, 1997.

[32] Eclipse. Eclipse CDO. http://wiki.eclipse.org/CDO, Copyright 2009.

[33] Erki Eessaar. Using metamodeling in order to evaluate data models. In AIKED’07:
Proceedings of the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intel-
ligence, Knowledge Engineering and Data Bases, pages 181–186, Stevens Point,
Wisconsin, USA, 2007. World Scientific and Engineering Academy and Society
(WSEAS).

[34] Mehdi Emadi, Masoud Rahgozar, Adel Ardalan, Alireza Kazerani, and Moham-
mad Mahdi Ariyan. Approaches and schemes for storing dtd-independent xml
data in relational databases. Trans. on Engineering, Computing and Technology,
13, May 2006.

[35] ESRI. esri ArcGIS. http://www.esri.com/software/arcgis/index.html, Retrieved
April, 2011.

[36] eXo. Java content repository (jcr - jsr 170). http://www.exoplatform.org/portal/
public/en/product/oemisv, Retrieved December, 2008.

141

[37] Sebastian Fischer and Herbert Kuchen. Data-flow testing of declarative programs.
In ICFP, pages 201–212, 2008.

[38] Daniela Florescu and Donald Kossmann. Storing and querying xml data using an
rdmbs. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[39] Fornax-Platform. Cartridges. http://fornax.items.de/confluence/display/fornax/
Cartridges, Retrieved April, 2011.

[40] Daniel Fotsch and Andreas Speck. Xtc – the xml transformation coordinator
for xml document transformation technologies. In DEXA ’06: Proceedings of the
17th International Conference on Database and Expert Systems Applications, pages
507–511, Washington, DC, USA, 2006. IEEE Computer Society.

[41] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[42] Robert B. France, James M. Bieman, and Betty H. C. Cheng. Repository for model
driven development (remodd). In MoDELS Workshops, pages 311–317, 2006.

[43] freebXML. OASIS ebXML registry reference implementation project. http://
ebxmlrr.sourceforge.net/, July 2007.

[44] Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An overview of
workflow management: From process modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2):119–153, 1995.

[45] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, Englewood Cliffs, 1991.

[46] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. John
Wiley & Sons, 2004.

[47] Object Management Group. MOF 2.0 / XMI Mapping Specification, v2.1.1. http:/
/www.omg.org/technology/documents/formal/xmi.htm, January 2010.

[48] Xiao guang Zhang. Model driven data service development. In ICNSC’08, pages
1668–1673, 2008.

[49] Dirk Habich, Sebastian Richly, Steffen Preissler, Mike Grasselt, Wolfgang Lehner,
and Albert Maier. Bpel-dt - data-aware extension of bpel to support data-intensive
service applications. In WEWST, 2007.

[50] N. Harrison, P. Avgeriou, and U. Zdun. Using patterns to capture architectural
decisions. IEEE Software, pages 38–45, July/Aug. 2007.

142

[51] Mary Jean Harrold. Testing: a roadmap. In ICSE ’00: Proceedings of the Confer-
ence on The Future of Software Engineering, pages 61–72, New York, NY, USA,
2000. ACM.

[52] S.C Haw and G.S.V. Radha Krishna Rao. Query optimization techniques for xml
databases. International Journal of Information Technology, 2(1):97–104, 2005.

[53] Carsten Hentrich and Uwe Zdun. Patterns for business object model integration
in process-driven and service-oriented architectures. In PLoP ’06: Proceedings of
the 2006 conference on Pattern languages of programs, pages 1–14, New York, NY,
USA, 2006. ACM.

[54] Carsten Hentrich and Uwe Zdun. Patterns for process-oriented integration in
service-oriented architectures. In EuroPLoP, pages 141–198, 2006.

[55] Hibernate. Hibernate. http://www.hibernate.org, Retrieved April, 2011.

[56] Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key con-
cepts and principles. IEEE Internet Computing, 9(1):75–81, 2005.

[57] Ibatis. Ibatis. http://www.ibatis.org, Retrieved April, 2011.

[58] IBM. WebSphere Service Registry and Repository. http://www-
01.ibm.com/software/integration/wsrr/, Retrieved April, 2011.

[59] IBM. Websphere mq workflow. http://www-
01.ibm.com/software/integration/wmqwf/, Retrieved January 2012.

[60] Intalio. Bpm. http://www.intalio.com/bpm, Retrieved January 2012.

[61] S.S. Isloor and T.A. Marsland. The deadlock problem: An overview. Computer,
13(9):58–78, 1980.

[62] A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In Proceedings of the 5th Working IEE/IFP Conference on Software
Architecture, WICSA, 2005.

[63] JBoss Community. Jboss messaging. http://www.jboss.org/jbossmessaging, Re-
trieved January 2012.

[64] JBoss Community. jbpm. http://www.jboss.org/jbpm, Retrieved January 2012.

[65] Rod Johnson. J2ee development frameworks. IEEE Computer, 38(1):107–110,
2005.

[66] Matjaz B. Juric. Business Process Execution Language for Web Services BPEL
and BPEL4WS 2nd Edition. Packt Publishing, 2006.

143

[67] Wolfgang Keller. Mapping objects to tables - a pattern language. In Proc. Of
European Conference on Pattern Languages of Programming Conference (Euro-
PLOP)1997, 1997.

[68] Latifur Khan and Yan Rao. A performance evaluation of storing xml data in
relational database management systems. In WIDM ’01: Proceedings of the 3rd
international workshop on Web information and data management, pages 31–38,
New York, NY, USA, 2001. ACM.

[69] Florian Kiefer, Konstantin Arnold, Michael Künzli, Lorenza Bordoli, and Torsten
Schwede. The SWISS-MODEL repository and associated resources. Nucleic Acids
Research, 37(Database-Issue):387–392, 2009.

[70] Jana Koehler, Rainer Hauser, Jochen Küster, Ksenia Ryndina, Jussi Vanhatalo,
and Michael Wahler. The role of visual modeling and model transformations in
business-driven development. Electron. Notes Theor. Comput. Sci., 211:5–15, April
2008.

[71] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2004.

[72] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger. Towards a semantic infrastructure supporting model-based tool
integration. In GaMMa ’06: Proceedings of the 2006 international workshop on
Global integrated model management, pages 43–46, New York, NY, USA, 2006.
ACM.

[73] P. Kruchten, P. Lago, and H. van Vliet. Building up and reasoning about architec-
tural knowledge. In C. Hofmeister, editor, QoSA 2006 (Vol. LNCS 4214), pages
43–58, 2006.

[74] Stefan Kurz, Michael Guppenberger, and Burkhard Freitag. A uml profile for
modeling schema mappings. In ER (Workshops), pages 53–62, 2006.

[75] Neil Lang. Schlaer-mellor object-oriented analysis rules. SIGSOFT Softw. Eng.
Notes, 18(1):54–58, 1993.

[76] Wei Le and Mary Lou Soffa. Refining buffer overflow detection via demand-driven
path-sensitive analysis. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages
63–68, New York, NY, USA, 2007. ACM.

[77] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. How software en-
gineers use documentation: The state of the practice. IEEE Softw., 20(6):35–39,
2003.

144

[78] Catherine M. Lloyd, James R. Lawson, Peter J. Hunter, and Poul F. Nielsen. The
cellML model repository. Bioinformatics, 24(18):2122–2123, 2008.

[79] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. Geo-
graphic Information Systems and Science. John Wiley & Sons; 3rd Revised edition
edition, August 2006.

[80] Simone A. Ludwig and S. M. S. Reyhani. Semantic approach to service discovery
in a grid environment. Web Semant., 4(1):1–13, 2006.

[81] Xiaogang Ma, Chonglong Wu, Emmanuel John M. Carranza, Ernst M. Schetselaar,
Freek D. van der Meer, Gang Liu, Xinqing Wang, and Xialin Zhang. Development
of a controlled vocabulary for semantic interoperability of mineral exploration geo-
data for mining projects. Comput. Geosci., 36:1512–1522, December 2010.

[82] David Masclet. Gisgraphy. http://www.gisgraphy.com/index.htm, Retrieved De-
cember, 2010.

[83] Christine Mayr, Uwe Zdun, and Schahram Dustdar. Model-driven integration and
management of data access objects in process-driven soas. In Proceedings of the
1st European Conference on Towards a Service-Based Internet, ServiceWave ’08,
pages 62–73, Berlin, Heidelberg, 2008. Springer-Verlag.

[84] Christine Mayr, Uwe Zdun, and Schahram Dustdar. Reusable architectural deci-
sion model for model and metadata repositories. In Frank S. Boer, Marcello M.
Bonsangue, and Eric Madelaine, editors, Formal Methods for Components and
Objects, pages 1–20, Berlin, Heidelberg, 2009. Springer-Verlag.

[85] Christine Mayr, Uwe Zdun, and Schahram Dustdar. View-based model-driven
architecture for enhancing maintainability of data access services. Data Knowl.
Eng., 70(9):794–819, September 2011.

[86] Jose-Norberto Mazón, Juan Trujillo, and Jens Lechtenbörger. Reconciling
requirement-driven data warehouses with data sources via multidimensional nor-
mal forms. Data Knowl. Eng., 63:725–751, December 2007.

[87] J. Melton and A.R. Simon. SQL:1999: understanding relational language compo-
nents. Morgan Kaufmann series in data management systems. Morgan Kaufmann,
2002.

[88] Jan Mendling, Hajo A. Reijers, and Jorge Cardoso. What makes process models
understandable? In BPM, pages 48–63, 2007.

[89] Nikola Milanovic, Ralf Kutsche, Timo Baum, Mario Cartsburg, Hatice Elmas-
günes, Marco Pohl, and Jürgen Widiker. Model&metamodel, metadata and doc-
ument repository for software and data integration. In MoDELS ’08: Proceedings
of the 11th international conference on Model Driven Engineering Languages and
Systems, pages 416–430, Berlin, Heidelberg, 2008. Springer-Verlag.

145

[90] Jun-Ki Min, Chun-Hee Lee, and Chin-Wan Chung. XTRON: An XML data man-
agement system using relational databases. Information & Software Technology,
50(5):462–479, 2008.

[91] Krishna B. Misra. Handbook of Performability Engineering – Quality Engineering
and Management. Springer London, 2008.

[92] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static dead-
lock detection. In ICSE ’09: Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 386–396, Washington, DC, USA, 2009.
IEEE Computer Society.

[93] Richi Nayak and Fu Bo Xia. Automatic integration of heterogenous xml-schemas.
In iiWAS, 2004.

[94] Matthias Nicola and Bert van der Linden. Native xml support in db2 universal
database. In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1164–1174. VLDB Endowment, 2005.

[95] Hans W. Nissen and Matthias Jarke. Repository support for multi-perspective
requirements engineering. Inf. Syst., 24(2):131–158, 1999.

[96] David Nuescheler, Peeter Piegaze, and other members of the JSR 170 expert group.
Content Repository API for Java Technology Specification, Java Specification Re-
quest 170. http://www.jcp.org/en/jsr/all, May 2005.

[97] Bashar Nuseibeh, Anthony Finkelstein, and Jeff Kramer. Method engineering
for multi-perspective software development. Information & Software Technology,
38(4):267–274, 1996.

[98] OASIS Web Services Business Process Execution Language (WSBPEL) TC.
Web services business process execution language version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.

[99] OASIS/ebXML Registry Technical Committee. Registry Services Specification
v2.0. http://www.ebxml.org/specs/ebrs2.pdf, Dec 2001.

[100] Object Management Group (OMG). Business process model and notation (bpmn)
version 2.0. http://www.omg.org/spec/BPMN/2.0, Release Date January 2011.

[101] Object Management Group (OMG). Unified modeling language. http://
www.uml.org/, Retrieved January, 2010.

[102] Open Geospatial Consortium, Inc. Topic 12: OpenGIS Service Architecture. http:/
/www.opengeospatial.org/standards/as, January 2002.

[103] Open Geospatial Consortium, Inc. OpenGIS Web Feature Service (WFS) Im-
plementation Specification. http://www.opengeospatial.org/standards/wfs, May
2005.

146

[104] Open Geospatial Consortium, Inc. OpenGIS Catalogue Services Specification.
http://www.opengeospatial.org/standards/specifications/catalog, Februrary 2007.

[105] Open Geospatial Consortium, Inc. OpenGIS Geography Markup Language (GML)
Encoding Standard. http://www.opengeospatial.org/standards/gml, August 2007.

[106] Oracle Corporation and/or its affiliates. Core J2EE Patterns - Data Ac-
cess Object. http://java.sun.com/blueprints/corej2eepatterns/Patterns/
DataAccessObject.html, Copyright 2010.

[107] Silke Palkovits and Maria Wimmer. Processes in e-government - a holistic
framework for modelling electronic public services. In Roland Traunmüller, ed-
itor, EGOV, volume 2739 of Lecture Notes in Computer Science, pages 213–219.
Springer, 2003.

[108] Michael P. Papazoglou. Web Services: Principles and Technology. Pearson, Pren-
tice Hall, 2008.

[109] M.P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Communi-
cations of the ACM, 46(10):25–65, 2003.

[110] Ken Q. Pu and Xiaohui Yu. Keyword query cleaning. PVLDB, 1(1):909–920, 2008.

[111] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill Higher Education, 2nd edition, 2000.

[112] Sandra Rapps and Elaine J. Weyuker. Data flow analysis techniques for test data
selection. In ICSE, pages 272–278, 1982.

[113] P. Krishna Reddy and Subhash Bhalla. Deadlock prevention in a distributed
database system. SIGMOD Rec., 22(3):40–46, 1993.

[114] Luciano Resende. Handling heterogeneous data sources in a soa environment with
service data objects (sdo). In SIGMOD ’07: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data, pages 895–897, New York,
NY, USA, 2007. ACM.

[115] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, 1
edition, 2007.

[116] Roberto Riggio, Domenico Ursino, Harald Kühn, and Dimitris Karagiannis. In-
teroperability in meta-environments: An xmi-based approach. In CAiSE, pages
77–89, 2005.

[117] Martin P. Robillard and Frédéric Weigand-Warr. Concernmapper: simple view-
based separation of scattered concerns. In eclipse ’05: Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange, pages 65–69, New York, NY,
USA, 2005. ACM.

147

[118] Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Workflow data patterns: Identification, representation and tool support. In
ER, pages 353–368, 2005.

[119] Wasim Sadiq and Maria E. Orlowska. Applying graph reduction techniques for
identifying structural conflicts in process models. In In Proceedings of the 11th
Conf on Advanced Information Systems Engineering (CAiSE’99, pages 195–209.
Springer-Verlag, 1999.

[120] Claudio Sant’anna, Alessandro Garcia, Christina Chavez, Carlos Lucena, and
Arndt v. von Staa. On the reuse and maintenance of aspect-oriented software:
An assessment framework. In Proceedings XVII Brazilian Symposium on Software
Engineering, 2003.

[121] Benjamin A. Schmit and Schahram Dustdar. Model-driven development of web
service transactions. In In Proceedings of the Second GI-Workshop XML for Busi-
ness Process Management,Mar, page 2005, 2005.

[122] Ali Shaikh Ali, Shalil Majithia, Omer F. Rana, and David W. Walker. Reputation-
based semantic service discovery: Research articles. Concurr. Comput. : Pract.
Exper., 18(8):817–826, 2006.

[123] Software AG. Webmethods bpms. http://www.softwareag.com/at/products/wm/
bpm/default.asp, Retrieved January 2012.

[124] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais. Supporting transpar-
ent model update in distributed case tool integration. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages 1759–1766, New York,
NY, USA, 2006. ACM.

[125] Luke Steller, Shonali Krishnaswamy, and Jan Newmarch. Discovering relevant
services in pervasive environments using semantics and context. In IWUC, pages
3–12, 2006.

[126] Chuanlong Xia Guangcan Yu Meng Tang. Mapping objects to tables - a pattern
language. In Computational Intelligence and Software Engineering, 2009. CiSE
2009, December 2009.

[127] The Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2009.

[128] The Eclipse Foundation. Eclipse Modeling Framework Project. http://
www.eclipse.org/modeling/emf/, Copyright 2011.

[129] The Eclipse Foundation. Model To Text M2T. http://www.eclipse.org/modeling/
m2t/, Copyright 2011.

[130] TIBCO. Bpm. http://www.tibco.com/products/bpm/, Retrieved January 2012.

148

[131] Albert Tort and Antoni Olivé. An approach to testing conceptual schemas. Data
Knowl. Eng., 69:598–618, June 2010.

[132] Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based and model-driven
approach for reducing the development complexity in process-driven SOA. In
Witold Abramowicz and Leszek A. Maciaszek, editors, Business Process and Ser-
vices Computing: 1st International Conference on Business Process and Services
Computing (BPSC’07), September 25-26, 2007, Leipzig, Germany, volume 116 of
LNI, pages 105–124. GI, 2007.

[133] Mark Turner, David Budgen, and Pearl Brereton. Turning software into a service.
Computer, 36:38–44, 2003.

[134] J. Tyree and A. Ackerman. Architecture decisions: Demystifying architecture.
IEEE Software, 22(19–27), 2005.

[135] Lorenzino Vaccari, Pavel Shvaiko, and Maurizio Marchese. A geo-service semantic
integration in spatial data infrastructures. International Journal of Spatial Data
Infrastructures Research, 4:24–51, 2009.

[136] Sekhar Vajjhala and Joe Fialli. The Java Architecture for XML Binding (JAXB)
2.0. http://jcp.org/aboutJava/communityprocess/final/jsr222/index.html, April
2006.

[137] Reind P. van de Riet. Twenty-five years of mokum: For 25 years of data and knowl-
edge engineering: Correctness by design in relation to mde and correct protocols
in cyberspace. Data Knowl. Eng., 67(2):293–329, 2008.

[138] Vânia Maria Ponte Vidal, Fernando Cordeiro Lemos, and Fábio Feitosa. Trans-
lating wfs query to sql/xml query. In GeoInfo, pages 174–190, 2005.

[139] Markus Völter and Thomas Stahl. Model-Driven Software Development: Technol-
ogy, Engineering, Management. Wiley, 2006.

[140] W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/
wsdl, March 2001.

[141] Jun Wang, AiRong Yu, XiaoYi Zhang, and Lei Qu. A dynamic data integration
model based on soa. In ISECS International Colloquium on Computing, Commu-
nication, Control, and Management, pages 196–199, Washington, DC, USA, 2009.
IEEE Computer Society.

[142] Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, 2007.

[143] U. Zdun and S. Dustdar. Model-driven and pattern-based integration of process-
driven soa models. In Int. J. Business Process Integration and Management, vol-
ume 2 Number 2, pages 109–119, 2007.

149

[144] Guanqun Zhang, Xianghua Fu, Shenli Song, Ming Zhu, and Ming Zhang. Process
driven data access component generation. In DEECS, pages 81–89, 2006.

[145] Ye Zhou and Edward A. Lee. A causality interface for deadlock analysis in dataflow.
In EMSOFT ’06: Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pages 44–52, New York, NY, USA, 2006. ACM.

[146] Fujun Zhu, Mark Turner, Ioannis Kotsiopoulos, Keith Bennett, Michelle Russell,
David Budgen, Pearl Brereton, John Keane, Paul Layzell, Michael Rigby, and Jie
Xu. Dynamic data integration using web services. In ICWS ’04: Proceedings of
the IEEE International Conference on Web Services, page 262, Washington, DC,
USA, 2004. IEEE Computer Society.

[147] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann, and N. Schuster. Reusable
architectural decision models for enterprise application development. In S. Over-
hage and C. Szyperski, editors, Quality of Software Architecture (QoSA) 2007, Lec-
ture Notes in Computer Science, Boston, USA, July 2007. Springer-Verlag Berlin
Heidelberg.

[148] Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann. Com-
bining pattern languages and reusable architectural decision models into a com-
prehensive and comprehensible design method. In WICSA ’08: Proceedings of the
Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
pages 157–166, Washington, DC, USA, 2008.

150

Christine Mayr received her master degree in computer science from the Vienna
University of Technology in 2002. She has more than 10 years of working experience
in the field of software analysis, design, development and management. Currently she
is working as an IT-analyst in the Federal Computing Centre of Austria. One major
part of her work is data modeling and database design for service-based applications. In
addition, she is an external Ph.D. student at the Distributed Systems Group of Vienna
University of Technology. Her research interests are model-driven development, service-
oriented computing, and architectural decisions.

Personal Information

Born: 16th May 1979 in Nuremberg, Germany
Citizenship: Austrian

Education

• 10/ 2007– 6/ 2012: PhD Studies in Computer Science, Vienna University
of Technology, Austria

• 10/ 1997– 6/ 2002: Studies in Computer Science, Vienna University of
Technology (graduation with distinction), Austria

Jobs

• 08/ 2006 – now: IT– Analyst, Federal Computing Centre of Austria, Vienna

• 07/ 2001 – 7/ 2006: IT– Consultant, Wincor Nixdorf GmbH, Vienna, Austria

• 10/ 2000 – 01/2001: Tutor, Vienna University of Technology, Institute of
Computer–Aided Automation for the course “Introduction into programming“

• 10/ 2000 – 07/ 2001: Working Student (part– time), Wincor Nixdorf
GmbH, Vienna, Austria

• 07/ 2000 – 09/ 2000: Working Student, Wincor Nixdorf GmbH, Vienna,
Austria

• 08/ 1999 – 09/ 1999: Working Student, Department for Information and
Communication, Siemens AG Munich, Germany

151

	List of Figures
	List of Tables
	Introduction
	Context
	Problem Statement
	Motivating Scenario
	Research Questions
	Scientific Contributions
	Previously Published Work
	Thesis Structure

	Related Work
	Managing Persistent Data Access in Process-Driven SOAs
	Modeling Persistent Data Access In Process-Driven SOAs

	Background
	Service-Oriented Architecture
	Model-Driven Development
	Persistent Data Access
	View-Based Modeling Framework

	View-Based Data Modeling Framework
	Motivation
	Overview
	VbDMF Models
	Case Study
	Discussion
	Summary

	Improving Traceability of Persistent Data Flows in Process-Driven SOAs
	Motivation
	Background
	Overview
	Solving Structural Problems in Business Processes
	Model-Driven Solution: Specification, Integration, Extraction
	Applicability of the Algorithms & Tooling
	Evaluation
	Discussion
	Summary

	Reusable Architectural Decision Model for Model and Metadata Repositories
	Motivation
	Background
	Architectural Decisions
	Case Study
	Summary

	View-Based Model-Driven Architecture for Enhancing Maintainability of Data Access Services
	Motivation
	Architecture Overview
	The Data Access Service (DAS) Repository
	Tooling: The View-Based Repository Client
	Case Study
	Evaluation
	Summary

	Conclusion
	Summary of the Research Problems
	Summary of the Contributions
	Future work

	Bibliography

