
Resource Management and
Elasticity Control in Edge

Networks

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Ilir Murturi, MSc
Matrikelnummer 11742795

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

Prof. Dr. Harald Gall Assoc.Prof. Dr. George Pallis

Wien, 20. Jänner 2022
Ilir Murturi, MSc

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Resource Management and
Elasticity Control in Edge

Networks

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Ilir Murturi, MSc
Registration Number 11742795

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

Prof. Dr. Harald Gall Assoc.Prof. Dr. George Pallis

Vienna, 20th January, 2022
Ilir Murturi, MSc

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ilir Murturi, MSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Jänner 2022
Ilir Murturi, MSc

v

TO MY PARENTS
for their endless love, support, and encouragement.

vii

Acknowledgements

I owe thanks to numerous people that helped me throughout my Ph.D. Looking back, I
realize how lucky I have been to join Distributed Systems Group (DSG) and have had
the chance to meet remarkable people who have helped me to develop professionally. I
am grateful to the DSG colleagues for making every day a pleasant working environment.
The work I have done would never be possible without their friendly support.

I would like to express my sincere and most profound gratitude to my supervisor Univ.Prof.
Dr. Schahram Dustdar, who gave me the opportunity to pursue my Ph.D. in his group
and then patiently guided me throughout the entire thesis. I am thankful for every
moment and the numerous pieces of advice he gave me during my Ph.D. His friendly
tips over the years did not just help me improve professionally but also helped me grow
personally. Furthermore, I would like to thank Assoc.Prof. Dr. George Pallis, and
Prof. Dr. Harald Gall for reviewing and helping improve this thesis. Many thanks to
Univ.Prof. Dr. Uwe Zdun and Univ.Prof. Dr. Wolfgang Kastner for agreeing to be in my
proficiency evaluation committee, giving me very valuable feedback in the earlier stages
of my research. Additionally, I would like to thank my collaborators for the knowledge
exchange and contributions.

Finally, my deepest and sincerest thanks are dedicated to my family for their unconditional
love and endless support. I am eternally grateful for everything they have done for me to
accomplish my life goals.

The research presented in this thesis was funded partially by the “Smart Communities
and Technologies (Smart CT)” and it has received funding from the EU’s Horizon 2020
Research and Innovation Programme under grant agreement No. 871525. EU web site
for Fog Protect: https://fogprotect.eu/

ix

Kurzfassung

Edge Computing wurde vor kurzem als zwischengeschaltete Computing-Einheit zwischen
Internet of Things (IoT)-Implementierungen und der Cloud eingeführt und stellt den
teilnehmenden IoT-Geräten Daten oder Kontrollmöglichkeiten bereit. An der Schnittstelle
dieser Domänen sind neue moderne Anwendungen entstanden, die einen Echtzeitzugriff
auf Sensordaten aus der Umgebung mit geringer Latenz erfordern. Traditionell erfolgt die
Ausführung solcher Anwendungen in ressourcenreichen Umgebungen wie der Cloud. Die
enorme Menge an Datenübertragungen, heterogenen Geräten und Netzwerken wirken
sich jedoch auf die Latenz aus, was wiederum zu einer hohen Latenz in IoT-Systemen
führt. Um diese Engpässe der aktuellen Cloud-zentrierten Systeme zu überwinden, haben
Forscher aus Wissenschaft und Industrie vorgeschlagen, IoT-Anwendungen mit strengen
Anforderungen näher am Rand des Netzwerks bereitzustellen, um so ihre unterschiedli-
chen Anforderungen wie Hochverfügbarkeit, Leistung oder Datenschutz besser zu erfüllen.
Dennoch ist ein zentralisiertes Ressourcenmanagement – typischerweise in der Cloud und
in den heutigen IoT-Cloud-Architekturen offensichtlich – eine Lösung, erfordert jedoch,
dass Cloud-Kontrollstrukturen immer verfügbar sind und eine geringe Latenz aufweisen.
Dies erfordert daher neuartige Ressourcenverwaltungstechniken, die in Edge-Netzwerken
bereitgestellt und ausgeführt werden und verschiedenen Endbenutzern helfen, eine An-
wendung im Ziel-Edge-Netzwerk bereitzustellen und zu verwalten. Dennoch wurden
Edge-Umgebungen als dynamisch, ressourcenbeschränkt, gekennzeichnet durch Unsicher-
heit und heterogene Computergeräte identifiziert. Insbesondere diese Eigenschaften von
Edge-Netzwerken haben tiefgreifende Auswirkungen auf die Ausführung und Verwaltung
von Anwendungsfunktionen zur Laufzeit.

Diese Dissertation bietet neuartige Methoden und Edge-basierte Ressourcenmanagement-
Frameworks zur Unterstützung und Verwaltung von Laufzeitaspekten von Anwendungen
(d. h. Edge-Anwendungen), die auf ressourcenbeschränkten Edge-Netzwerken ausgeführt
werden. Genauer gesagt entwickeln wir ein neuartiges Edge-basiertes System, das Res-
sourcenmanagementfunktionen basierend auf drei Perspektiven bereitstellt: (1) Ressour-
cenerkennung auf dezentrale Weise, (2) Kontrolle der Elastizität von Edge-Anwendungen
am Edge und (3) Ressourcenkoordination bei die Kante. Unser vorgeschlagenes Edge-
basiertes System ermöglicht und unterstützt die Ausführung von Edge-Anwendungen in
verschiedenen Edge-Netzwerken und behält ihre korrekte Funktionalität während der
gesamten Ausführungszeit bei. Das vorgeschlagene Edge-basierte System ist hinsichtlich
der Funktionalitäten skalierbar und erweiterbar und entworfen, um unter verschiedenen

xi

Umständen zu arbeiten, die in Edge-Netzwerken auftreten können (z. B. Dynamik). Wir
untersuchen und analysieren zunächst Edge-Szenarien aus mehreren Domänen, ermitteln
Anforderungen und argumentieren dann für die Notwendigkeit, Edge-basierte Systeme
zu dezentralisieren. Aufgrund der breiten Palette von Edge-Anwendungen und deren
Ressourcenanforderungen argumentieren wir, dass Edge-Geräte miteinander interagieren
und Ressourcen in einem Edge-Netzwerk automatisch erkennen müssen. Durch Expe-
rimente an dem von uns gebauten Prototyp zeigen wir zunächst die Machbarkeit der
Bildung eines Edge-Netzwerks mit leistungsarmen Edge-Geräten. Anschließend demons-
trieren wir die Möglichkeit, Ressourcen zu entdecken, indem wir Ressourcenmetadaten
zwischen Edge-Geräten auf dezentrale Weise replizieren. Anschließend erweitern wir
unsere vorgeschlagene Lösung um einen leichtgewichtigen Mechanismus, der es ermöglicht,
Edge-Anwendungen in einem Edge-Netzwerk bereitzustellen und deren Skalierbarkeit/-
Elastizität zur Laufzeit zu kontrollieren. Genauer gesagt findet die Planer-Komponente
geeignete Pläne zur Bereitstellung von Edge-Anwendungen, während dezentrale Elasti-
zitätskomponenten automatisch die Funktionalität der Anwendungen aufrechterhalten,
indem sie die zur Entwurfszeit festgelegten elastischen Anforderungen kontinuierlich
überwachen. Unser vorgeschlagener Elastizitätskontrollmechanismus berücksichtigt meh-
rere elastische Perspektiven (d. h. Qualität, Kosten und Ressourcen), um die korrekte
Funktionalität von Edge-Anwendungen zu gewährleisten. Durch Experimente an dem
von uns gebauten Prototyp zeigen wir die Machbarkeit der Ausführung von Elastizitäts-
merkmalen in einem ressourcenbeschränkten Kantennetzwerk. Darüber hinaus zeigen wir
die Möglichkeit, die korrekte Funktionalität von Edge-Anwendungen angesichts dyna-
mischer Belastungen zur Laufzeit zu kontrollieren und aufrechtzuerhalten. Schließlich
unterstützen wir Edge-Anwendungen oder Endgeräte mit einem Mechanismus, der ihnen
hilft, nicht triviale Ressourcen zu erhalten. Wir präsentieren ein neuartiges technisches
Framework für die Koordination von Engineering-Ressourcen für Edge-fähiges IoT. Unser
vorgeschlagener Ansatz garantiert die Optimalität und Korrektheit der generierten Pläne,
um nicht-triviale Ressourcen zu erhalten. Durch Experimente zeigen wir die Leistungs-
fähigkeit und Realisierbarkeit unseres Ansatzes auf ARM-basierten Edge-Geräten mit
geringem Stromverbrauch.

Abstract

Edge computing has been recently introduced as an intermediary computing entity
between Internet of Things (IoT) deployments and the cloud, providing data or control
facilities to participating IoT devices. New modern applications have emerged at the
intersection of these domains that require real-time access to sensor data from the
environment with low latency. Traditionally, executing such applications happens in
resource-rich environments such as the cloud. However, the massive amount of data
transfer, heterogeneous devices, and networks involved affect latency, which in turn
causes high latency in IoT systems. To overcome these bottlenecks of the current
cloud-centric systems, researchers from academia and industry have suggested deploying
IoT applications with stringent requirements closer to the edge of the network - thus,
better satisfying their various demands such as high availability, performance, or privacy.
Nevertheless, centralized resource management — typically in the cloud and evident
in today’s IoT-cloud architectures is one solution but requires cloud control structures
to be always available and within low latency. Therefore, this calls for novel resource
management techniques deployed and executed on edge networks and aids various end-
users in deploying and managing an application in the target edge network. Nonetheless,
edge environments have been identified as dynamic, resource-constrained, characterized
by uncertainty, and heterogeneous computing devices. Specifically, these characteristics
of edge networks have profound implications for execution and managing application
functionality at runtime.

This thesis provides novel methodologies and edge-based resource management frameworks
to assist and manage runtime aspects of IoT applications (i.e., edge applications) executed
on resource-constrained edge networks. More precisely, we develop a novel edge-based
system that provides resource management features based on three perspectives: (1)
resource discovery in a decentralized manner, (2) controlling elasticity of edge applications
at the edge, and (3) resource coordination at the edge. Our proposed edge-based system
enables and supports the execution of edge applications on various edge networks and
maintains their correct functionality throughout the execution time. The proposed
edge-based system is scalable and expandable in terms of functionalities and designed to
work under various circumstances that can appear in edge networks (e.g., dynamicity).
We first examine and extensively analyze edge scenarios from multiple domains, elicit
requirements, and then argue the necessity to decentralize edge-based systems. Because
of the broad range of edge applications and their resource demands, we argue that

xiii

edge devices need to interact with each other and automatically discover resources in
an edge network. Through experiments on the prototype we have built, we first show
the feasibility of forming an edge network with low-powered edge devices. We then
demonstrate the feasibility of discovering resources by replicating resource metadata
among edge devices in a decentralized manner. Afterward, we extend our proposed
solution with a lightweight mechanism that allows deploying edge applications on an
edge network and controlling their scalability/elasticity at runtime. More precisely, the
planner component finds eligible plans to deploy edge applications while decentralized
elasticity components automatically maintain applications’ functionality by continuously
monitoring elastic requirements specified at design time. Our proposed elasticity control
mechanism considers multiple elastic perspectives (i.e., quality, cost, and resources) to
guarantee the correct functionality of edge applications. Through experiments on the
prototype we have built, we show the feasibility of executing elasticity features on a
resource-constrained edge network. Furthermore, we show the feasibility of controlling
and maintaining the correct functionality of edge applications in the face of dynamic loads
at runtime. Lastly, we support edge applications or end devices with a mechanism to help
them obtain non-trivial resources. We present a novel technical framework for engineering
resource coordination for edge-enabled IoT. Our proposed approach guarantees regarding
optimality and correctness of generated plans to obtain non-trivial resources. Through
experiments, we show the performance and realizability of our approach on low-powered
ARM-based edge devices.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

Publications xvii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 4
1.3 Scientific Contributions . 6
1.4 Thesis Structure . 8

2 Towards Decentralized Edge-Based Systems 11
2.1 Introduction . 12
2.2 An Overview of Edge-Cloud Continuum 14
2.3 Edge-Based IoT Use Cases . 17
2.4 Towards Decentralized Edge-Based Systems 21
2.5 Resource Management and Edge Architectures 26
2.6 Summary . 32

3 Resource Discovery using Metadata Replication in Edge Networks 35
3.1 Introduction . 36
3.2 Related Work . 38
3.3 Edge Networks and Resource Modeling 39
3.4 A Decentralized Edge-to-Edge Resource Discovery 45
3.5 Evaluation . 49
3.6 Summary . 57

4 On Controlling Elasticity of Edge Applications 59
4.1 Introduction . 59
4.2 Running Example . 61
4.3 Related Work . 62

xv

4.4 Edge Modeling and Elastic Requirements 63
4.5 DECENT - Design and Processes . 66
4.6 Evaluation . 71
4.7 Summary . 79

5 Dependable Resource Coordination on the Edge at Runtime 81
5.1 Introduction . 82
5.2 Coordination at Runtime on the Edge 84
5.3 Domain Modelling and Methodology 86
5.4 Resources and Goals within IoT . 90
5.5 Dependable Resource Matchmaking 93
5.6 Evaluation . 97
5.7 Related Work . 102
5.8 Summary . 106

6 Conclusion and Future Work 107
6.1 Summary . 107
6.2 Research questions . 109
6.3 Limitations and Future Work . 112

List of Figures 117

List of Tables 119

List of Algorithms 121

Bibliography 123

Publications

The research presented in this thesis is partly based on the following peer-reviewed
publications (i.e., journals, conferences, and book chapters). A full list of publications
can be found in Google Scholar Profile1

• Ilir, Murturi, and Schahram Dustdar. "A Decentralized Approach for Resource
Discovery using Metadata Replication in Edge Networks." IEEE Transactions on
Services Computing, pages 1-12, 2021.

• Ilir, Murturi, and Schahram Dustdar. "DECENT: A Decentralized Configurator for
Controlling Elasticity in Dynamic Edge Networks." ACM Transactions on Internet
Technology (TOIT), pages 1-21, 2022.

• Ilir, Murturi, Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. "Edge-
to-edge resource discovery using metadata replication." In 2019 IEEE 3rd In-
ternational Conference on Fog and Edge Computing (ICFEC), pp. 1-6. IEEE,
2019.

• Ilir, Murturi, Mohammadreza Barzegaran, and Schahram Dustdar. "A decentralized
approach for determining configurator placement in dynamic edge networks." In
2020 IEEE Second International Conference on Cognitive Machine Intelligence
(CogMI), pp. 147-156. IEEE, 2020.

• Tsigkanos, Christos, Ilir Murturi, and Schahram Dustdar. "Dependable resource
coordination on the edge at runtime." Proceedings of the IEEE 107, no. 8 (2019):
1520-1536.

• Dustdar, Schahram, and Ilir Murturi. "Towards Distributed Edge-based Systems."
In 2020 IEEE Second International Conference on Cognitive Machine Intelligence
(CogMI), pp. 1-9. IEEE, 2020.

• Dustdar, Schahram, and Ilir Murturi. "Towards IoT Processes on the Edge."In
Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of
the Future, pp. 167-178. Springer, Cham, 2021.

1https://scholar.google.at/citations?user=OL_Y_mgAAAAJ

xvii

https://scholar.google.at/citations?user=OL_Y_mgAAAAJ

• Ilir, Murturi, Egyed, Adam, and Schahram Dustdar. "Utilizing AI Planning on the
Edge" in IEEE Internet Computing, vol. 26, no. 2, pp. 28-35, 1 March-April 2022,
doi: 10.1109/MIC.2021.3073434. (2022).

• Ilir, Murturi, Jia, Chao, Kerbl, Bernhard, Wimmer, Michael, Dustdar, Schahram,
and Tsigkanos, Christos. "On Provisioning Procedural Geometry Workloads on
Edge Architectures." In Proceedings of the 17th International Conference on Web
Information Systems and Technologies, ISBN 978-989-758-536-4, ISSN 2184-3252,
pages 354-359., 2021

• Alkhabbas, Fahed, Ilir Murturi, Romina Spalazzese, Paul Davidsson, and Schahram
Dustdar. "A goal-driven approach for deploying self-adaptive iot systems." In 2020
IEEE International Conference on Software Architecture (ICSA), pp. 146-156.
IEEE, 2020.

Furthermore, several topics were investigated together with students through their
Master’s and Bachelor’s thesis under my supervision. A full list of topics investigated
with students can be found in Distributed Systems Group website2

• Boris Sedlak, “Specification and Operation of Privacy Models for Data Streams on
the Edge”, Master Thesis (2022)

• Cem Bicer, “Design and Implementation of a Blockchain-based Zero Trust Archi-
tecture on the Edge”, Master Thesis (2022 - in progress)

2https://dsg.tuwien.ac.at/team/imurturi/

https://dsg.tuwien.ac.at/team/imurturi/

CHAPTER 1
Introduction

In recent years, the Internet of Things (IoT) has been diffused into society, and many
applications are constructed on top of IoT technologies in various industries such as
Industrial Manufacturing, Healthcare, Lifestyle, Automotive, and Smart Building, just
to name a few. Satisfying stringent requirements of IoT applications (i.e., low-latency
and high-availability) has become challenging for cloud-centric architectures, resulting
in latencies higher than the expected response for IoT applications. For instance, an
IoT application with stringent requirements running on the cloud may face high latency
since a massive amount of sensory data must be transferred to the cloud. In addition,
centralizing resource management — typically in the cloud and evident in today’s IoT-
cloud architectures is one solution, but requires cloud control structures to be always
available and within low latency. At the same time, it is well accepted that a centralized
architecture does not scale well regarding the enormous number of devices even though
the system infrastructure of central computers processing those data have improved by
cloud computing technologies. Furthermore, cloud environments are characterized by the
uncertainty of availability all the time.

To address these shortcomings of cloud-centric solutions, recent advancements within
distributed systems have resulted in the architectural placement of a computing entity
closer to the network edge. Available computing devices in proximity satisfy applica-
tions’ stringent requirements, such as high availability, low latency, performance, or
privacy [SCZ+16, SD16]. Such computation entities perceived as edge devices are used to
offer computation resources to local devices [RGXZ17] and to bridge the gap between the
cloud and IoT domain in order to facilitate low-latency and highly resilient applications.
Within a neighborhood, for example, IoT devices may utilize resources of a local edge
device, benefiting from high connectivity to it as well as its awareness of other IoT devices
within its scope. This allows edge devices to act as mediators among other IoT devices,
locally process incoming data and satisfy IoT device needs. Consequently, these devices

1

1. Introduction

reduce reliance on cloud-based environments while aiming to reduce network congestion,
high-latency, and enforce privacy by processing the data near end-users.

Research efforts associated with edge computing are still at a relatively early stage of de-
velopment. It is worth noting that researchers both from academia and industry proposed
two new paradigms, called fog computing [BMZA12] and edge computing [SCZ+16, SD16],
which bring the computational resources (i.e., storage, networking, and processing) closer
to the edge of the network. In general, the vision of the two paradigms overlaps to
make more computation resources available at the edge of the network. Both paradigms
have been proven to provide significant advantages for many various use cases such as
video stream analytics [YHZ+17], storage [LDMB17], deep learning for IoT [LOD18],
IoT application deployment [AD19], among others. Hence, a lot of studies have been
performed, leading to various computing platforms that strive to leverage the edge of the
network to meet application demands (e.g., latency and bandwidth) and enhance user
experience [DMB18].

We recognize that edge computing means different things to different people; we vision
edge computing as a bridge between IoT things and the nearest edge device to the user.
Moreover, we identify an edge device as a low-powered ARM-based computer with a
limited software stack and attached IoT resources. Nevertheless, heterogeneous edge
devices are increasingly added at the edge of a network to acquire faster response and
increased privacy [TNL+19]. Such edge environments bring seamless opportunities for
deploying edge applications1 (i.e., IoT applications) in proximity to IoT domains and
end-users. However, edge networks’ dynamicity and uncertainty bring new challenges
where resource management techniques and elasticity control mechanisms are needed to
fully utilize available resources and maintain edge applications’ functionality and desired
service quality at runtime. Thus, using various computational resources established by
multiple heterogeneous devices in edge networks requires novel resource management
techniques. In addition, the broad range of edge applications and their resource demands
requires introducing flexible and modular edge-based frameworks that allow adding
various functionalities at the edge.

1.1 Problem Statement
The vision of edge computing and IoT is a composite system where connected edge devices
provide and manage a massive number of resources in proximity to end-users. Accordingly,
the convergence between two concepts changes the way we conceptualize IoT as a large
number of things connected to the Internet, which are often distributed [TNL+19]. We
advocate that IoT needs to be thought of as an ecosystem of discrete computing resources,
where generated sensory data is processed in the nearest available device in the computing
infrastructure (i.e., the Edge-Cloud continuum). More precisely, IoT resources must
benefit from available computational resources to process sensory data streams with low
latency at the edge of the network [SD16, BM18]. This has opened up the development

1In this thesis, we use the terms edge applications and IoT applications interchangeably.

2

1.1. Problem Statement

of novel edge applications in different fields, such as building automation, transportation,
logistics, and healthcare [AIM10, GIMA10]. Thus, this led to a plethora of application-
specific solutions developed over the past few years. As a result, this intuition led us to
envision a world where general-purpose devices are sold to users and enable them to build
their edge networks (i.e., homes, factories, hospitals, etc.). In this context, edge networks
would allow users to customize their environment by deploying various edge applications
in their edge network. In addition, edge applications and their functionality dependencies
can be downloaded from a centralized IoT cloud platform [DAM19, MATD19].

This thesis aims to provide various resource management techniques executed on resource-
constrained edge networks. More precisely, we provide several resource management
functionalities to enable and support the execution of edge applications from differ-
ent domains on resource-constrained edge networks and maintain correct functionality
throughout execution time. We envision an ecosystem comprising a cloud-based IoT
platform and an edge-based framework to achieve such objectives. The former is an envi-
ronment where application developers or domain experts develop resource management
techniques and edge applications. The cloud-based IoT platform essentially provides
features for developers to specify high-level application requirements for their edge appli-
cations. The latter is an edge-based system2 that provides mechanisms and methodologies
to form an edge network, enable efficient resource discovery, efficiently utilize available
resources, and maintain applications functionality throughout their execution time. Edge
applications are executed in a runtime that considers the heterogeneity of edge resources
giving applications seamless access to the targeting edge network. Based on the runtime
reports (i.e., infrastructure and application metrics), the proposed edge-based system
re-configures edge applications as necessary to meet their specified application require-
ments. Nevertheless, research literature shows that edge solutions operate in isolation,
are mainly hard-coded, inflexible, and limited for future changes. However, we require a
flexible edge-based system that adds novel functionalities at runtime to support executing
a wide range of edge applications on an edge network.

In our envisioned ecosystem, edge computing is positioned as one critical architectural
layer/stack in addition to fog and cloud. Unlike in cloud computing, there is no clear
definition in research literature about what an edge infrastructure is precisely. The
research literature shows that the concrete infrastructure and network topology entirely
depend on the targeted use case and domain. Furthermore, edge devices within edge
infrastructures are more diverse and resource-constrained with limited resources, referring
to their different computational capabilities, including storage or processing facilities.
Accordingly, executing an edge application (e.g., image processing) on a single edge
device poses many limitations and a set of challenges in terms of processing capabilities,
storage, and communication bandwidth. As a result, the resource-constrained nature
of edge networks has led to the development of modern edge applications from a mono-
lithic architecture to edge applications comprised of a set of independently deployable

2In this thesis, we refer to this new system as an edge-based system since it aims to place resource
management features on an edge network.

3

1. Introduction

software components (i.e., microservices). Furthermore, research literature shows several
recommendations such that edge devices must collaborate with other edge devices in
proximity to fulfill resource demands for each edge application component. Currently, we
lack several proper mechanisms that will enable forming an edge network and discovering
available resources, maintaining the desired functionality of edge applications at runtime
while considering edge network characteristics.

Furthermore, research literature shows that recent edge solutions tend to operate with
centralized architecture. In this context, we currently lack a proper solution that deals with
edge networks characteristics (i.e., dynamicity, heterogeneity, and uncertainty). Taking
edge networks characteristics into account, enabling resource management techniques,
and executing edge applications introduces several challenging tasks. In this setting,
one critical task is to dynamically determine the most suitable edge device responsible
for the deployment process and maintain edge applications’ functionality throughout
their life cycle. Furthermore, research literature shows that edge applications can be
different and with complex requirements. Generally speaking, a plethora of point-to-point
solutions shows that edge applications may require various resource management features
or functionalities in order to run on an edge network. In this thesis, we consider some
of the critical functionalities not addressed by researchers and which are required for
operationalizing edge applications at the edge. For instance, some edge applications may
experience different workloads at their runtime. In other words, resource demands for a
specific edge application component may change over time. Therefore, it is a significant
challenge to detect when an edge application component requires more resources or less
such that resource demands are fulfilled at runtime. In this context, we currently lack
a proper solution that deals with multi-dimensional elasticity (i.e., resource, quality,
and cost) to guarantee the correct functionality of edge applications running on an
edge network, respectively, on the entire computing infrastructure. Furthermore, edge
applications may require a resource that cannot be trivially obtained from available
resources. To solve such complex tasks within the edge system, we require a proper
methodology and framework that combines readily available resources to achieve the
goal. In the following, we present investigated research questions and the appropriate
solutions to overcome non-addressed challenges in edge computing.

1.2 Research Questions
The research presented in this thesis is driven by three overarching research questions:

(RQ1) What are appropriate system architectures that enable resource management in
resource-constrained edge networks?
As previously mentioned, traditional edge solutions tend to operate in isolation
and with centralized architecture. Compared to cloud settings, the peculiarities of
edge environments enhance the total complexity of operating resource management
techniques. This is because edge networks are very volatile environments where

4

1.2. Research Questions

resource-constrained devices may fail easily. In cloud computing, complex func-
tionalities can operate on a single computing entity; meanwhile, such a claim is
hardly achievable in edge environments since low-powered edge devices have limited
resource capabilities. Furthermore, unlike the cloud, the literature lacks a clear
definition and consensus on what edge infrastructure is in concrete, how computing
devices are organized on the edge, and how they communicate. Nonetheless, it
is currently unclear (a) whether decentralized resource management techniques
can overcome challenges introduced by edge environment characteristics, (b) what
are essential resource management functionalities required to maintain the desired
edge application functionality throughout its entire execution, (c) which would
be the most suitable application runtime platform to run application software
components on resource-constrained edge networks, (d) which are the most suitable
approaches for resource coordination when a requested resource cannot be obtained
trivially, and (e) how modern edge-based systems can support a wide range of edge
applications to run correctly on edge networks.

(RQ2) What is an appropriate way to automatically discover and utilize heterogeneous
resources in resource-constrained edge networks?
A fundamental aspect of any modern edge-based system is resource discovery,
which is complex in heterogeneous edge networks and IoT settings. As previously
mentioned, there is no clear definition and consensus on what edge infrastructure
is precisely. We hypothesize that edge devices in proximity form an edge network,
or as we refer to it, as an edge neighborhood3. Accordingly, the resource discovery
process in such settings plays a crucial role in supporting other resource management
techniques (i.e., resource allocation, resource migration, and resource coordination)
to achieve their objectives. However, it is currently unclear (a) which would
be the most suitable communication protocol to enable forming edge networks
with resource-constrained edge devices, (b) which would be the most suitable way
to represent resources (i.e., IoT resources such as sensors, actuators, etc., and
edge devices), (c) which would be the most efficient way to enable automatically
discovering resources within an edge neighborhood, and (d) which would be the
most suitable network organization type (i.e., hierarchical, P2P, etc.) to support
scalability aspects.

(RQ3) How can elasticity features be executed on low-powered computational resources in
edge networks?
Over-provisioning or manual resource allocation in edge networks is highly unsatis-
fying concerning application performance and utilization of available resources at
the edge. As we may have various edge networks in different domains (e.g., smart
building, smart home, smart factory, smart city, drone network, etc.), elasticity
features at the edge would not target only just resources and their capacity to scale
but also their relations with the different types of costs and quality. The complexity

3In this thesis, we use the terms edge network and edge neighborhood interchangeably.

5

1. Introduction

increases furthermore when different metrics, stakeholders, and perspectives are
considered. However, it is currently unclear (a) whether elasticity features can be
executed on resource-constrained and low-powered edge devices, (b) which would
be the most suitable way to specify elasticity requirements for edge applications, (e)
which would be the level of granularity in edge applications to specify elastic require-
ments, and (d) which would be the most suitable way to control edge application
elastic requirements while taking into account edge network characteristics.

1.3 Scientific Contributions
This thesis aims to advance the current state of edge computing platforms that target
edge applications to enable more straightforward configuration, deployment, and man-
agement on heterogeneous and dynamic edge infrastructures. We do this by developing
novel resource management mechanisms with decentralized design, self-adaptation, and
resilience. Accordingly, the proposed mechanisms aim to significantly lower the barrier to
enable running edge applications in volatile edge networks. Furthermore, the proposed
mechanisms are evaluated through the experiments conducted on testbeds comprised of
low-powered ARM-based edge computers. Our contributions to state-of-the-art are by
addressing the research questions of this thesis. These contributions are:

(C1) Towards a decentralized edge-based system.
The broad range of edge application requirements concerning latency, software
and IoT resource dependencies combined with edge networks’ heterogeneous and
dynamic nature requires novel methodologies and flexible resource management
frameworks that allow deploying, executing, and managing such applications run-
ning on resource-constrained devices. The contribution in this stage is twofold:
(1) we introduce a conceptual platform that envisions developers to provide an
environment to design edge applications and specify their requirements, and (2) we
propose a decentralized edge-based framework capable of deploying and managing
edge applications at the edge. First, we identify the core resource management func-
tionalities required at the edge to efficiently utilize available resources and maintain
the desired application functionality throughout its entire execution. Then, we
investigate several aspects regarding edge system architectures, edge infrastructure
architectures, and application runtime platforms. Lastly, through the presented
arguments, we advocate the necessity to design modern edge-based systems into
a decentralized architecture that is scalable in numbers and flexible and easily
expandable in terms of its functionalities (i.e., C1.1, and C3 contributions). We
present the contribution originally in [DM20, DM21] and provide an extensive
description in Chapter 2.

6

1.3. Scientific Contributions

(C1.1) A methodology and technical framework for engineering resource coordination
for the edge-enabled IoT.
This contribution proposes a methodology and technical framework for en-
gineering resource coordination for the edge-enabled IoT. The contribution
is twofold: (1) we provide a design-time methodology to specify semantic
annotations to arbitrary resources, and (2) a boolean satisfiability problem
(SAT)/satisfiability modulo theories (SMT) solver placed on a low-powered
edge device leverages bounded model checking as the foundational technique
to compute coordination plans that satisfy device, edge, and system goals.
For the former, by introducing the semantic annotations, we enable specifying
what a resource requires to be operational and what effects its invocation
has on other resources. For the latter, each edge device active within the
edge-based system has its objectives captured in a goal model. Within our
proposed approach, we adopt a form of discrete goal-modeling to capture the
objectives of edge devices. As the primary coordinator within the system, the
edge device receives device requests seeking to achieve some goals that may
depend on other resources. The coordination process (i.e., resource matchmak-
ing) occurs on edge, which figures out how to combine available resources to
produce a plan for the requester device. We present the contribution originally
in [TMD19], and provide an extensive description in Chapter 5.

(C2) A technical framework to automatically discover resources in resource-constrained
edge networks.
Resource discovery is among five critical objectives of resource management in
edge-based systems [TNT18]. Resource allocation techniques (i.e., at the applica-
tion deployment phase) and resource migration techniques (i.e., at the application
runtime) require information regarding the edge infrastructure and available re-
sources. This led us to provide a twofold contribution to handle the complexity
to discover resources automatically in edge networks: (1) we propose a solution
to build edge networks as a flat model with edge devices organized into clusters,
and (2) we propose a decentralized resource discovery mechanism that enables
discovering resources by replication their metadata information in an automatic
manner in edge networks. For the former, the resource discovery complexity is han-
dled by introducing the configurator of the system and other cluster coordinators.
Assigning the configurator and coordinator roles dynamically overcomes challenges
with network scalability and uncertainty of edge networks. For the latter, available
resources are discovered by replicating resource metadata by participating edge
devices in an edge network. The proposed solution is characterized by the absence
of centralization, as edge devices exchange metadata about available resources
within their scope in a peer-to-peer manner. The resource discovery mechanism
also increases the number of eligible deployment plans generated by the resource
allocation mechanism for edge applications with IoT resource dependencies. The
contribution is a notable step towards a better understanding of edge computing

7

1. Introduction

requirements as well as edge infrastructure architecture requirements. We present
the contribution originally in [MD21b], and provide an extensive description in
Chapter 3.

(C3) A technical framework for controlling elasticity in edge applications running on
resource-constrained edge networks.
Edge application developers or domain experts must specify high-level operational
and non-functional application requirements to satisfy the QoS demands inherent
to a specific edge-based system. Developers must express the context in which
applications are allowed to run, resource requirements, and elasticity requirements
(i.e., resource, quality, cost) in a high-level way [DGST11]. To realize the underly-
ing premise of edge computing in IoT scenarios, we must develop a solution that
hides all internal complexities both from users and application developers.In this
contribution, we extend the prototype [MD21b] with a lightweight mechanism that
enables deploying and controlling elasticity in edge applications at the edge. Such a
mechanism allows for easy configuration, deployment, and operation of applications
on top of heterogeneous edge infrastructure. Edge applications are executed in a
runtime that considers the heterogeneity of edge resources giving applications seam-
less access to existing edge infrastructure. The proposed framework re-configures
edge applications as necessary to meet their specified requirements (i.e., elasticity
requirements). We present the contribution originally in [MD21a], and provide an
extensive description in Chapter 4.

1.4 Thesis Structure

This thesis is based on the contributions of the original research papers published in
journals, conferences, and book chapters. Some sections may have been extended or
reworked in order to fit the overall context of the thesis. The remainder of this thesis is
structured as follows:

• Chapter 2 investigates and discusses some of the research challenges in enabling
resource management in a decentralized manner at the edge. First, this section
explores resource management objectives and identifies those that are not yet
thoroughly researched in the literature. Then, through real-life use case scenarios,
three design goals that need to be established by modern edge-based systems are
identified. Lastly, this section proposes a platform and edge-based framework that
enables executing resource management functionalities in a decentralized manner
at the edge.

• Chapter 3 presents a decentralized approach for resource discovery in edge networks.
Furthermore, this section offers a feasible solution to build edge networks as a flat
model with low-powered edge devices organized in clusters.

8

1.4. Thesis Structure

• Chapter 4 presents a lightweight mechanism for controlling resource elasticity
in edge applications running at the edge. Furthermore, the proposed solution
enables developers to characterize their edge applications by specifying elasticity
requirements.

• Chapter 5 presents a methodology and framework for engineering resource coordi-
nation at runtime.

• Chapter 6 concludes this thesis, briefly discusses scientific contributions, discusses
limitations, and provides future research.

9

CHAPTER 2
Towards Decentralized
Edge-Based Systems

In the past few years, researchers from academia and industry stakeholders have suggested
adding more computational resources (i.e., storage, networking, and processing) closer to
end-users and IoT domains, respectively, at the edge of the network. Such computation
entities perceived as edge devices by processing IoT sensory data aim to overcome
high-latency issues between the cloud and IoT domains. Processing IoT data streams
closer to end-users and IoT domains can solve several operational challenges. Since
then, many application-specific IoT systems have been introduced, mainly hard-coded,
inflexible, and limited extensibility for future changes. Additionally, most IoT systems
maintain a centralized design to operate without considering edge networks characteristics
such as dynamicity, heterogeneity, and resource-constrained devices. In this chapter,
we investigate and discuss some of the research issues, challenges, and argue potential
solutions to enable: (1) resource management in a decentralized manner at the edge and
(2) deploying and scaling edge applications on-premises of Edge-Cloud infrastructure. We
present a comprehensive discussion of the three-tier Edge-Cloud architecture, edge-based
system architectures, infrastructure architectures, and application runtime platforms.
Then, we outline our vision by introducing a conceptual platform that aims to enable easy
configuration and deployment of edge applications on top of heterogeneous. In addition,
we present a decentralized edge-based system responsible for deploying, executing, and
managing edge applications at the edge. Furthermore, after careful analysis of various IoT
scenarios, we identify the core resource management functionalities required to support
the execution of various edge applications from different domains.

The rest of the chapter is structured as follows. Section 2.2 gives an overview of Edge-
Cloud architecture. In Section 2.3, we describe four use cases by emphasizing the
benefits of the Edge-Cloud continuum and the need for distributed edge applications at
the edge. Section 2.4, presents our conceptual framework to deploy and manage edge

11

2. Towards Decentralized Edge-Based Systems

applications in the Edge-Cloud infrastructure. In Section 2.5, we extensively discuss
resource management categories, edge system and infrastructure architectures, and edge
application runtime platform. The summary in Section 2.6 concludes the chapter.

2.1 Introduction

The Internet of Things (IoT) is becoming more prominent in our daily lives and today’s
society overall. Many services in various domains such as Industrial Manufacturing,
Healthcare, Lifestyle, Automotive, and Smart Building are built on top of IoT technologies.
At the same time, it is well accepted that a centralized architecture does not scale well
regarding the enormous number of devices. Even though central computers’ system
infrastructure processing those data has improved by cloud computing technologies,
satisfying edge applications’(i.e., IoT applications) stringent requirements has become
challenging for a cloud-centric architecture. Transfering continuously vast amounts of
sensory data for processing in the cloud results in high latency. In sharp contrast to a fully
distributed and decentralized architecture (e.g., peer-to-peer network), many IoT services
need to maintain a partially centralized design to operate the service. Research literature
shows that a significant portion of decentralization is often achieved by delegating several
functionalities from central servers to edge computing devices [SD16].

Edge computing has introduced edge devices as an intermediary entity between applica-
tions and IoT deployments, providing data or control facilities to the participating IoT
devices. Edge devices are essentially computers close to the edge of the network, hence,
closer to the sensors, which create the data streams to be processed later. Accordingly,
these edge devices can be utilized to process data streams promising to satisfy the strin-
gent requirements prevalent in IoT systems, including high availability, performance, and
privacy [LTJ+19]. However, edge devices are usually considered resource-constrained with
limited resources, referring to their different computational capabilities, including storage
or processing facilities. For instance, providing a service for image processing or deploying
edge applications (i.e., IoT applications) on a single edge device poses many limitations
and a set of challenges in terms of processing capabilities, storage, and communication
bandwidth. To this end, edge devices do not exist in isolation and must be able to
collaborate with other edge devices. Thereby, interaction with other edge devices enables
extending the scope of available resources and satisfying the computational requirements
of real-time edge applications at the edge of the network.

The heterogeneity of IoT components is another significant aspect of the IoT era. Many
IoT vendors provide different products across different layers and for the same type
of components. Essentially, different products may have different operating systems,
available support for programming languages, resource constraints, etc. In contrast to our
expectations, each edge device’s functions are hard-coded in most current implementations.
This causes inflexibility and limited extensibility for future changes. This leads to a
plethora of point-to-point solutions being developed based on proprietary protocols. For
instance, any change being made to one IoT component leads to many possible changes

12

2.1. Introduction

in many other components or in the whole IoT system [BM18]. Thus, leading to a
situation that resembles the state of software infrastructure in the age of enterprise
computing before the emergence of Web services and Service Oriented Architectures and
their respective middleware infrastructure, such as Enterprise Service Bus. This intuition
led us to design novel edge systems into a distributed, decentralized architecture that is
scalable in numbers and concerning its heterogeneity, expandability and enhancement in
terms of edge functionalities.

Nowadays, computer scientists and system engineers have been mainly focused on
proposing multiple resource management techniques (resource allocation [LB20, DS21,
PKBK20], resource discovery [MCB+21], or resource monitoring [FGB21]) at the edge.
Existing resource management techniques are often deployed on cloud entities or statically
placed on a powerful device such as a local server or a fog device residing at the edge
[SKR+18, YHZ+17, ATD19]. Generally speaking, cloud-centric resource management
solutions fail to satisfy stringent requirements of a latency-sensitive edge application
since high volumes of IoT data streams must be transferred to the cloud. In sharp
contrast to the cloud and fog devices which are considerably more powerful computation
entities, distributed edge devices with embedded resource management features enable
faster processing of such data streams as well as control applications’ runtime aspects.
However, executing complex resource management features on edge devices with limited
computing stacks causes device failures when their computation resources are overloaded.
To address such challenges, we identify three design goals that need to be established by
modern edge-based systems, respectively resource management techniques:

• Latency-aware and Proximity. The edge computing paradigm aims at providing
low-latency services for endpoint devices and end-users [GD18]. As we explore
modern edge-based systems and their operating environments, placing a set of
complex resource management functionalities statically on a low-powered edge
device is impractical and may produce higher latencies and easily cause edge
device failures. As a result, the decentralization aspects should be considered
when designing edge-based systems. Furthermore, dynamically placing resource
management functionalities in proximity to end-users becomes an increasingly
inevitable requirement.

• Expandability, Heterogeneity, and Dynamic Network. Edge networks are
scalable and dynamic environments consisting of heterogeneous devices that fre-
quently join/leave over time. Edge-based systems should be able to flexibly utilize
newly added resources at the edge. Furthermore, modern resource management
techniques must deal with the dynamicity and uncertainty of the edge environment,
as well as support expandability with new edge features (i.e., functionalities).

• Adaptability. Edge-based systems should be able to adapt to unexpected changes
that might occur in the edge network. Thus, the edge-based system components,
respectively resource management techniques deployed at the edge, should be

13

2. Towards Decentralized Edge-Based Systems

dynamically placed among available edge devices and continuously re-evaluated
their placement decisions.

Recent developments within distributed systems have led to emerging commercial cloud-
based IoT and cloud/edge integration solutions. Edge computing platforms such as
EdgeX Foundry1, AWS IoT Greengrass2, or Google IoT Edge3 promise to bridge the gap
between the IoT and the cloud by providing a flexible runtime for applications running at
the edge. However, these systems are extremely limited in their operational capabilities,
missing elasticity features, and lack of self-adaptive mechanisms required in dynamic
edge and IoT settings. Based on the discussion, we argue that decentralized and dynamic
resource management techniques are appropriate to overcome challenges introduced
by edge environment characteristics (i.e., edge network dynamicity, heterogeneity, and
resource-constrained devices). Nevertheless, we foresee several challenges in engineering
decentralized edge-based systems.

To that end, this chapter identifies some of the research issues and discusses challenges that
are not yet thoroughly investigated, such as (1) resource management in a decentralized
manner at the edge and (2) deploying and scaling edge applications on-premises of the
Edge-Cloud infrastructure. These derive mainly from the fact that many aspects of edge
computing require further investigation to realize edge computing’s underlying premise.
Thus, to assist in this process, we propose a conceptual platform and an edge-based
framework that aims to enable easy configuration, deployment, and execution of edge
applications on top of heterogeneous edge infrastructure. Our proposed approach shifts
resource management features closer to the edge and dynamically places them in the
most suitable edge devices. Furthermore, the proposed approach supports the systems
to cope with the environment’s dynamicity and uncertainty, including changes in their
deployment topologies. Finally, we identify and discuss two critical edge features required
to support edge applications execution properly.

2.2 An Overview of Edge-Cloud Continuum
In addition to fog and cloud, edge computing is seen as a critical architectural tier.
The model makes it easier to deploy distributed, latency-aware applications at the edge.
Furthermore, it can be considered as paramount to systems including (but not limited
to) IoT deployments and the cloud, providing data and control facilities to participating
IoT devices. So far, several surveys have been conducted to explain the model of edge
computing, and its challenges [SCZ+16]. However, recent studies emphasize three-tier
architecture as a useful way to enable more devices closer to IoT domains [AMD20]. To
that end, the Edge-Cloud architecture [DAM19] is split into three tiers: the cloud tier,
fog tier, and edge tier (as illustrated in Figure 2.1). In this section, a comprehensive
description of each tier is presented.

1EdgeX Foundry, https://www.edgexfoundry.org/
2AWS IoT Greengrass, https://aws.amazon.com/greengrass/
3Google IoT Edge, https://cloud.google.com/solutions/iot

14

2.2. An Overview of Edge-Cloud Continuum

La
te

nc
y

(m
illi

se
co

nd
s)

<
30

m
s

<
5m

s
<

10
 m

s

Million of devices

Hundreds of devices

Fo
g

Ti
er

Ed
ge

 T
ie

r

Smart City Smart FactoryIntelligent Transportation

Ed
ge

-C
lo

ud
 C

on
tin

uu
m

C
lo

ud
 T

ie
r

Cloud
Servers

Fog node
Service ProvidersFog Servers Fog Servers

Figure 2.1: An overview of Edge-Cloud architecture.

2.2.1 The Edge Tier

The edge tier represents the lowest tier of the three-tier architecture. In essence, this
tier represents the closest available computation entities called edge devices to IoT
domains. As can be denoted in Figure 2.1, various domains such as smart city, intelligent
transportation, or smart factories can benefit from available computation devices closer
to IoT domains. Essentially, this leads to having various edge networks formed for
different contexts. Generally speaking, edge networks are highly dynamic, heterogeneous,
and resource-constrained environments. Such environments are composed of a set of
low-powered edge devices with various computation capabilities (e.g., smartphones,
smartwatches, Raspberry Pis, etc.) and IoT resources (e.g., sensors, actuators, etc.)
connected to them or available in their surroundings.

Edge devices provide their computation and storing capabilities to process IoT data
streams within very low latency generated by IoT resources. Essentially, these devices
allow data streams to be processed as close as possible to data sources and to handle
the most significant network traffic that may occur. Resource-constrained edge devices,
however, cannot process large volumes of data. Consequently, processing such an amount
of data on a single edge device may cause device overloading, resulting in high latency
and poor overall performance. To address these challenges raised by resource-constrained
devices, distributing various processes (e.g., edge application tasks) among edge devices
at the edge is a critical requirement. More precisely, the placement of such processes

15

2. Towards Decentralized Edge-Based Systems

among edge devices becomes possible with the increased spectrum of resources provided
by peer-to-peer edge networks.

An edge network provides a seamless opportunity for deploying edge-based systems
(i.e., resource management techniques) and various edge applications closer to end-users.
Accordingly, placing resource management techniques at the edge results in creating more
autonomous environments and less dependent on the external settings (i.e., cloud or fog).
For instance, in a smart home, residents should control their devices and process data
locally without depending on cloud resources. This means that the edge-based system
must provide functionalities locally to achieve such a user goal. Furthermore, a user may
deploy an edge application (e.g., a smart health app) to provide services for processing
health data transmitted from their wearable devices. However, it is worth noting that
even though extending resource scope through edge-to-edge collaboration provides many
benefits, there are still many complex tasks that cannot be divided into sub-tasks and
processed at this tier. In such situations, edge devices must forward their processing to
the upper tiers (i.e., fog or cloud).

2.2.2 The Fog Tier

The fog tier includes a collection of powerful (physical or virtual) devices responsible for
managing, communicating, and exchanging resources between different edge networks.
The core component of the fog tier is a fog node. This tier essentially represents the
fog infrastructure (e.g., smart city network) where several fog devices are connected,
offering various services, including computation and storage resources for edge networks
and roaming end-devices in proximity. In sharp contrast to the edge networks, the fog
infrastructure appears to be composed of stationary and powerful devices (typically
managed and provided by Telco operators). This tier can handle more complex functions
like processing large data streams, caching, device management, and privacy protection.

According to [IFB+18], fog computing provides a similar service model implementation
as in the traditional cloud computing model. Thus, the following types of service models
can be implemented:

• Software as a Service (SaaS). Fog service providers may host various services
(i.e., similar to the cloud computing Software as a Service (SaaS)) on fog infras-
tructure. Essentially, a fog service end-users (i.e., customers) may use providers’
service running on fog infrastructure, specifically, on a cluster of federated nodes
managed by the provider.

• Platform as a Service (PaaS). Fog service providers allow end-users to deploy
their applications onto the platforms (i.e., similar to the cloud computing Platform
as a Service (PaaS)) on fog infrastructure. In essence, end-users control and
configure their deployed applications and running environment. However, they do
not control and manage fog platform(s) and infrastructure(s).

16

2.3. Edge-Based IoT Use Cases

• Infrastructure as a Service (IaaS). Fog service providers allow end-users to
provision processing, storage, and other infrastructure-specific resources available
on fog infrastructure (i.e., similar to the cloud computing Infrastructure as a
Service (IaaS)). A customer can essentially deploy and run various software, while
a consumer may control and manage the storage, operating system, and deployed
applications.

One can notice that edge and fog tiers provide almost similar features. Both paradigms
foresee enabling more computation resources in proximity to end-users and IoT domains.
However, the most significant difference between the two tiers is administrative differences
and responsibilities. Furthermore, fog nodes (e.g., deployed in base stations) may provide
their services for larger geographical areas. For instance, intelligent transportation
systems may benefit from connecting and processing vehicle data in fog infrastructure.
Nonetheless, both tiers provide low-latency services since the end devices are closer to
the source where the data is produced and consumed.

2.2.3 The Cloud Tier

The cloud tier provides "unlimited" computational and storage resources. This tier
includes cloud servers deployed far away from the end devices and IoT domains. In
essence, cloud-based servers perform computer-intensive operations obtained from the
architecture’s lower tiers. These environments have advanced features for both service
providers and service consumers. For instance, service consumers can configure their
runtime environment, configure deployed applications, security control, and so on. Along
these lines, the cloud computing utility has been seen as a critical component for designing,
deploying, and executing IoT platforms that promise to meet the general population’s
daily needs.

Despite the numerous resources and advanced features provided, this paradigm faces
increasing challenges in meeting new IoT applications’ stringent requirements. Specifically,
geographically distributed IoT devices with intensive data generation cannot efficiently
utilize resources available in cloud environments [DAM19]. On the one hand, transferring
such intense and large amounts of data to a centralized cloud over Wide Area Networks
(WAN) generates latencies. Additionally, service unavailability due to the non-persistent
connectivity or eventually scheduled system maintenance (i.e., cloud-side) is another
critical challenge that IoT systems may face during their runtime. On the other hand,
real-time distributed apps require quick response time, high-availability, and increased
privacy, often not met by a centralized environment such as the cloud.

2.3 Edge-Based IoT Use Cases
Understanding current and future requirements of edge applications from various domains
is a critical challenge for the success of any modern edge-based system. Thus, through
careful analysis of real-world IoT scenarios from multiple disciplines, we show the

17

2. Towards Decentralized Edge-Based Systems

importance of shifting various functionalities closer to the edge and dynamically placing
them in the most suitable edge device. Furthermore, we identify multiple resource
management features required at the edge by analyzing various use case scenarios.

2.3.1 IoT Safety Application

Consider emergencies such as natural disasters (e.g., earthquakes, fires, floods) in a city
[DM21]. Natural disasters such as earthquakes can affect various city areas, destroy
infrastructure, cause injury or death, and trap people under buildings. In such situations,
time is valuable, and drones could be used to analyze the situation and assist rescue
teams in locating and communicating with victims trapped under a collapsed building.
In such a scenario, multiple connected drones are essentially edge devices forming an
edge neighborhood. Drones flying over the city’s affected areas (i.e., neighborhoods) assist
rescue teams in locating people trapped under a collapsed structure. Each drone has
various computation capabilities and integrated sensors (e.g., radar sensors, infrared
cameras, electronic noses, etc.). We consider drones as multipurpose devices where the
rescue teams may deploy various services depending on the emergency. Furthermore, we
consider three-tier Edge-Cloud infrastructure (i.e., cloud, fog, and edge) [DM20]. Fog
devices (i.e., server-graded hosts) placed in base stations provide computational and
storage capabilities to edge neighborhoods. In addition to that, base stations may provide
docker charge stations for charging drones. Cloud hosts can be used to store data for
long terms.

E2

E3

E4

E1

Fog node
 Charge station

Deploy services

4G/5G

Rescue team

Use services

Cloud

Edge
neighborhood

(1)
(2)

(3)

(4)

En

(5)

(4)4G/5G

Figure 2.2: IoT safety application

We assume that drones are connected via a wireless connection provided by ground
users (i.e., rescue team) or by drones [MSBD18] covering a particular city area (e.g.,

18

2.3. Edge-Based IoT Use Cases

neighborhood). Based on the situation seen in Figure 2.2, we assume that the rescue
team deploys (1) a public safety IoT service that detects a dangerous zone in the affected
area (i.e., discovering cracks, smoke, hazardous gases, etc.). Such a service aims at
helping rescue teams (2) find a safe path and avoid danger zones. The service depends
on various resources such as multiple infrared cameras, radar sensors, and an electronic
nose integrated into different drones. Since each drone is a potential candidate to run the
service, it is evident that each edge device should automatically discover resources in a
decentralized manner and make them available at runtime. In such use case scenarios, we
cannot depend on the service availability [SUS14] offered from physically static entities
(3-4). Additionally, edge-based systems with centralized architecture cannot run properly
due to the network dynamicity (i.e., drones may join (5) and leave often). This use case
represents the motivation and running example used throughout Chapter 3.

2.3.2 Smart Health Application

The falling asleep problem has been discussed previously in many research papers [SCZY17,
FSH17, MBP13] and used as a motivating example for various proposed solutions. This
problem generally belongs to the scenarios categorized into residents’ comfort and conve-
nience category. Suppose a resident has a smart health application running on his phone
responsible for monitoring the resident’s vital signs. The health application essentially
collects data from a wearable ECG sensor attached to the human body through a smart-
watch [GD18]. Specifically, the health application monitors the incoming data generated
by the wearable device and reacts in real-time when a critical event occurs. Usually, a
system architecture composed of a smartwatch and a smartphone represents a reasonable
choice for this type of application. However, since smartphones have limited battery
energy, shifting data (i.e., health applications [PAG+19]) to the nearest edge device may
be required when the battery level decreases at a critical level. Nonetheless, transferring
data to the cloud consumes smartphone energy even faster.

In this scenario, it is assumed that a person in a living room, sitting on a sofa and watching
TV, gradually falls asleep. Multiple edge devices deployed in rooms are responsible for
changing surroundings accordingly to get a comfortable living. In this case, the edge
device’s responsibility in the living room is to alter its surroundings and ensure that
the resident can sleep comfortably. These changes include turning off the TV and
lights, changing air conditioner settings, and locking the entrance door (e.g., see resource
coordination [TMD19]). Meanwhile, as the resident forgets to plug the smartphone into
power, the battery nearly runs out. Therefore, the smartphone requests the nearest edge
device to handle and process the generated data from wearable devices (see Figure 2.3).

Our nearest edge device in the living room utilizes almost all its processing capabilities
to ensure that the resident sleeps comfortably (i.e., measuring room temperature, etc.)
as well as runs a similar health application A1. Since the health application at the edge
was idle, it requires more processing power and memory after the wearable device pumps
the data into the system. Nevertheless, the edge device doesn’t have enough computation
capabilities to execute both applications concurrently. Thus, the health application faces

19

2. Towards Decentralized Edge-Based Systems

E1

E4

E3

E5

E2

Data stream

A2 A3

A1

IoT Resources
(sensors, etc.)

Figure 2.3: Smart home health application.

higher latency in accepting and processing incoming data. Meanwhile, other edge devices
in the smart home may remain idle. To overcome such a gap, the health application
should create new instances (e.g., A2, and A3) and deploy them on other edge devices
or on-premises of Edge-Cloud infrastructure to meet application demands at runtime.
Thus, it is evident that bringing the elasticity features at the edge is crucial. This use
case represents the motivation scenario considered in Chapter 4.

2.3.3 Smart City Application

Consider a modern city containing various neighborhoods and parks where various devices
are embedded, providing intelligent functionalities. Naturally, waste bins are located in
neighborhoods as well as parks, and traffic lights may be deployed to facilitate municipal
vehicles; ambulances or recycling trucks should be presented with green traffic lights when
applicable. Moreover, irrigation facilities situated in city parks should automatically
be operational when the detected soil moisture is below a threshold of 20%. However,
this should not occur when the park is crowded with visitors. The city administration
may also impose other limits on the overall system’s operation; for example, to minimize
citizen interruption, irrigation and rubbish collection should not occur at the same time
while every neighborhood should have empty waste bins.

Notice that a smart city is an instance of an edge-based system; several sensing or
actuating devices are needed to realize it. Devices or certain scopes in the city (e.g.,

20

2.4. Towards Decentralized Edge-Based Systems

…

Park Context

Neighborhood

IoT Device

Edge Scope

…

Park

District

Neighbourhood
Context

Clean Neighborhoods
Parks Water Management

G

Irrigation
Waste Collection

GTransportation
Waste Collection

G

IoT Device

…

Edge Scope

…

Figure 2.4: Pervasive resources in a smart city.

neighborhoods or parks) have various goals, which, when the system is in operation, may
conflict (e.g., moisture may drop while a recycling truck arrives in a park). Moreover,
the particular conditions and configurations of IoT devices are unknown at design time;
we require no knowledge of recycling trucks, presence or not of irrigation in parks, for
example. It is then evident that coordination among IoT devices is required to fulfill their
various goals. Such goals can be achieved through utilizing various AI techniques (e.g.,
[TMD19]) which are well-known approaches developed to solve planning autonomously
and without human intervention. This use case represents the motivation scenario
considered in Chapter 5.

2.4 Towards Decentralized Edge-Based Systems

As we are acquainted with the requirements of various edge applications, in this section,
we introduce a conceptual platform that aims to enable easy configuration and operation
of edge-based systems on top of heterogeneous edge infrastructure. We present a decen-
tralized edge-based resource management mechanism called the configurator responsible
for deploying and managing edge applications at the edge. Finally, based on the analysis
of real-world scenarios, we identify and discuss two critical functionalities required for
edge-based systems to support the execution of applications at the edge.

21

2. Towards Decentralized Edge-Based Systems

2.4.1 A Platform and Runtime for Edge Computing in the Internet
of Things

Edge neighborhoods offer a seamless opportunity for end-users to customize their envi-
ronments with various services to support their daily activities and improve their living
comfort. As illustrated in Figure 2.1, we may have multiple edge networks (e.g., smart
building, smart home, smart factory, smart city, drone network, etc.). The end-users
may deploy various edge applications and customize their edge neighborhoods based on
their needs. For instance, in a smart home, residents may deploy an edge application
that provides them a service to back up their smartphones automatically when they’re
home. Or, in a smart building (e.g., museum environments), the system administrator
may deploy an edge application that provides a service for visitors to interact with their
surrounding objects through virtual reality (VR) [SSL20].

Even though the computation scope expands with forming edge neighborhoods, one
should note that edge neighborhoods cannot always provide enough resources to execute
edge applications (e.g., image processing tasks, etc.). Edge environments are resource-
constrained and with limited resources. Specifically, edge applications or their software
components may experience various workloads over time (i.e., periodically, continuously,
or unpredictable). For instance, an AI-based surveillance security application at the
airport may analyze numerous cameras at once and automatically detect passengers
with a fever. The number of passengers changes continuously as well as the application
resource demands. Consequently, the AI-based surveillance security application requires
to automatically maintain the desired service quality throughout its entire execution.
Thus, we need a lightweight framework that can be easily deployed on low-powered edge
devices and enable edge-based systems to expand with enhancements of new resource
management features (i.e., via edge modules).

To fill this technological gap, we propose a platform comprises of two main parts: (1) a
cloud-based IoT platform and (2) a decentralized edge-based framework (see Figure 2.5).
A cloud-based IoT platform provides several types of services and contains edge application
models that users can download to their edge neighborhoods. An edge application model
essentially describes in detail application components, their resource requirements (i.e.,
hardware requirements and edge functionality dependencies (i.e., edge modules), and
elastic requirements specified by the application developer at the design time 1©. We
assume that an edge module is a software component (i.e., serverless function [ATC+21] or
container-based) that adds a specific feature to an existing edge-based system at runtime.
For instance, the WebAssembly Runtime (Wasm)4 is a potential solution that enables
adding functionalities to an edge-based system at runtime. More specifically, Wasm is
lightweight, high-performance, and optimized for serverless function executions and the
execution of applications in a decentralized manner at the edge. Nevertheless, several
approaches have been proposed to engineer modular systems [BDW13]. Thus, we do not
explore this feature in this thesis, and further investigations remain as future work. In

4WebAssembly, https://developer.mozilla.org/en-US/docs/WebAssembly

22

2.4. Towards Decentralized Edge-Based Systems

Developer

Design Time

Edge
 Applications

Edge
Modules

User

Edge Application
Model

Application
Requirements

A

Elasticity
Requirements

E

IoT Platform

1

1

Smart Home Smart EnergySmart Health

2

3

Edge Runtime

C
on

fig
ur
at
or

Ed
ge

 n
od

es

Shared
Storage (DHT)

Monitoring
Agent

Edge
Module

Deployment
Planner Edge ModulesEdge ModulesEdge

 Modules

Edge neighborhood

Orchestrator

Edge Framework

4

...
C

Edge Application
Deployment Request

Fog Network
5

Elasticity

Resource Coordination

Figure 2.5: An overview of a conceptual IoT platform and edge framework.

this thesis, we investigate and provide our contribution to enable two edge-based system
functionalities such as (1) elasticity features (C3) and (2) resource coordination features
(C1.1). Furthermore, the cloud tier assists edge neighborhoods in identifying the closest
fog devices (e.g., location coordinates) as well as providing storing and computation
resources. In the smart city context, fog services enable sharing of resources among
nearby edge neighborhoods as well as authenticating them to the city’s edge network
backbone (i.e., fog network). For instance, a fog-based blockchain platform may provide
service to edge neighborhoods to share their available resources with others along with
the payment term 5©.

Within this thesis, our focus resides in the proposed decentralized edge-based framework
that enables easy system configuration, deployment, and operation of edge applications on
top of heterogeneous edge infrastructure. Because resource management is challenging in
dynamic environments with multiple heterogeneous edge devices, we advocate that each
edge device should provide resource management functionalities. Furthermore, deploying
an edge application requires real-time infrastructure-specific information. Accordingly, it
is computationally and network demanding to monitor resources from each edge device
throughout the network. Therefore, first, we need to determine which edge device must
take the responsibility to act as a control mechanism for controlling deployment aspects
and managing applications’ runtime aspects at the edge. We refer to this mechanism as the
configurator. The configurator is self-adaptable and configurable through the configuration
file which is shared system-wide. The system designer specifies and configures several
parameters specific to a particular edge-based system. We discuss the configuration
aspects continuously throughout the following two chapters.

As illustrated in Figure 2.5, the proposed edge-based framework equips edge devices

23

2. Towards Decentralized Edge-Based Systems

with the same functionalities such as (1) deployment planner, (2) orchestrator, (3) edge
monitoring agent, and (4) edge modules. There is one and only one edge device in an edge
neighborhood that operates as the configurator. The configurator is responsible for moni-
toring the edge infrastructure, deploying, managing, and monitoring edge applications at
the edge. The core component of the edge-based framework is the orchestrator component
which is enabled on all edge devices. The orchestrator’s first critical task is to determine
the most suitable edge device where the configurator should be placed (deployed) and
run (executed) at the edge. Second, the orchestrator enables the communication between
edge devices peer-to-peer, provides a resource discovery mechanism, resource manager to
monitor resources, and provides a gateway component to connect the edge neighborhood
with external networks (i.e., cloud and fog). The following chapter investigates and
shows our contribution (C2) on how to enable resource discovery and determine the most
suitable edge devices to run the configurator.

After the configurator is determined, the user may download 2©- 3© an edge application
from the cloud and deploy it to the edge neighborhood. The deployment planner is
responsible for analyzing application requirements and generating valid deployment plans.
The scheduler considers all the requirements mentioned above, get the resource manager’s
infrastructure state, and generates an eligible deployment plan (if it exists) 4©. Thus, it
determines where the edge application components and data must be processed to fulfill
their requirements. To generate such deployment plans in the Edge-Cloud infrastructure,
we consider the approach in [BF17]. Furthermore, the monitoring agents deployed at
each edge device periodically update the resource manager with infrastructure-specific
metrics (i.e., CPU, storage, etc.) and application-specific metrics (i.e., non-functional
parameters). Furthermore, some edge applications may require additional and specific
system functionalities. For instance, resource coordination service [TMD19] at the edge
requires specific functionalities (e.g., SMT [BCD+11a]) to generate valid coordination
plans that will enable the service to achieve its goals. Or, an edge application to run
properly may require an elasticity feature running in the edge neighborhood. Thus,
such edge modules are automatically downloaded after user approval to deploy an edge
application.

2.4.2 Elasticity as an Edge Feature

Future edge-based systems for the described Edge-Cloud architecture need to hide
their operational complexity from application developers as well as from end-users.
Specifically, application developers should not have to deal with the edge network
setting’s heterogeneity, dynamicity, and expandability. Developers should be able to
express the context in which edge application components are allowed to run, their
system dependencies, and their requirements (e.g., QoS, elastic requirements, etc.) in
a high-level way [DGST11]. For instance, an application developer may specify the
elastic requirements of an edge application (e.g., health application). To interpret these
requirements and enforce required operations in order to keep the desired service quality,
we require the elasticity feature at the edge. Specifically, the elasticity feature provides a

24

2.4. Towards Decentralized Edge-Based Systems

runtime mechanism that interprets elastic requirements specified by the developer. Such
feature is deployed and enabled automatically at the edge-based system after the user
requests to deploy an edge application with elasticity dependency.

Resource elasticity
Software / human-based

computing elements,
multiple clouds

Quality elasticity
Non-functional parameters e.g.,

performance, quality of data,
service availability, human

trust

Costs & Benefit elasticity
rewards, incentives

App1

2

1

Elasticity space

Figure 2.6: Elasticity space at the Edge-Cloud architecture.

Bringing elasticity properties to the edge is crucial for the future of edge applications. In
the Edge-Cloud architecture, elasticity targets not just resources and their capacity to
scale, but also their relations with the different types of costs and quality (as illustrated in
Figure 2.6) [DGST11]. In this context, various stakeholders may be involved in specifying
elastic requirements. For instance, the developer could specify that the latency between
application components must not reach 20ms without determining how many resources
should be used to achieve the desired state. The edge network provider could specify its
resource utilization schema; for example, when overall utilization at the edge is higher
than 90%, it enables scaling out the edge. As potential candidates for defining these
requirements are : Simple Yet Beautiful Language [CMTD13] and SLOC: Service Level
Objectives for Next-Generation Cloud Computing [NMP+20]. In this thesis, we consider
the SYBL language for specifying the elasticity requirements of edge applications. Chapter
4 shows our contribution (C3) on how to enable elasticity features to be executed on
low-powered computational resources in edge neighborhoods. We propose a methodology
and a framework to control application elasticity at runtime.

2.4.3 Resource Coordination as an Edge Feature

IoT has enabled objects and devices, such as sensors, actuators, and other appliances,
to connect and collaborate to achieve user goals. Accordingly, engineering edge-based
systems is a challenging task partly due to the dynamicity and uncertainty of the
environment, including the involvement of the human in the loop. Through resource

25

2. Towards Decentralized Edge-Based Systems

coordination techniques, users, edge applications, or IoT resources should achieve their
goals seamlessly in different environments.

Consider situations similarly as is presented in the smart city application (see Section
2.3.3). Suppose an edge application requests a nearby edge device for a resource that
cannot be trivially obtained from resources readily available. In that case, some com-
bination of resources of other IoT devices must be derived. This thesis proposes a
novel approach to achieve such objectives. The proposed approach utilizes SAT/SMT
solver [BT18] situated on a low-powered edge device which leverages bounded model
checking techniques [BCC+03] at runtime to fulfill the objectives of local IoT devices or
edge applications by coordinating available resources in its scope based on the currently
active context. A SAT/SMT solver is an efficient algorithm that determines whether
or not a formula (i.e., problem instance) is satisfiable or not. The biggest challenge is
modeling problem instances in boolean logic for SAT solvers and first-order logic for SMT
solvers [End00]. Chapter 5 shows our contribution (C1.1) on how to achieve resource
coordination for the edge-enabled IoT.

2.5 Resource Management and Edge Architectures
To achieve the goals mentioned in the proposed conceptual framework, we first discuss
resource management categories and investigate edge computing systems and infrastruc-
ture architectures. Then, we explore communication types among edge devices and open
challenges for developing and deploying edge-based systems in a decentralized manner
on edge networks. Afterward, we research application runtime platforms responsible for
executing edge applications on heterogeneous edge devices or in available devices within
the computing continuum. Finally, potential and feasible solutions are given for each of
the challenges this thesis addresses.

2.5.1 Resource Management

Resource management is a critical challenge for the overall edge application performance
and QoS. According to [TNT18], resource management is divided into five categories:

• Resource estimation: The first requirement in resource management is to estimate
how many resources are needed to execute a specific edge application. Resource
estimation is an essential feature to handle fluctuations in resource demand in
order to maintain the quality of service for end-users. However, the biggest
challenge in resource-constrained environments is that resources are often over-
provisioned to handle the possible incoming workload at any point in time. Thus,
introducing elasticity features at the edge solves several challenges in avoiding
undesired situations with resource over-provisioning or under-provisioning.

• Resource discovery: On the contrary to resource estimation, resource discovery
enables discovering resources that are available for use. Information about re-

26

2.5. Resource Management and Edge Architectures

sources, such as their availability, location, and status, is among the data that
edge-based systems require at their runtime. For instance, when deploying an edge
application at the edge, a management system needs to know where resources are
located and their availability status. Thus, resource discovery provides the core
information required during the application deployment phase. Nevertheless, due
to the system characteristics (i.e., dynamicity, heterogeneity, resource-constrained
devices), resource discovery is among resource management categories that are not
well-researched. In fact, a few research works that exist in literature employs a
locally centralized strategy for resource discovery at the edge [AV15, AADP15].

• Resource allocation: Two previously mentioned resource management categories
help us to gather information about available resources and the edge application
requirements. Based on this knowledge, the resource allocation techniques aim to
find the most suitable deployment plan to deploy edge applications at the edge.
Therefore, such methods aim to find where to place application components such
that their requirements are satisfied.

• Resource sharing: In this category, edge devices within the edge-based system are
assumed to collaborate to fulfill various application requirements or to achieve a
common goal. Nevertheless, resource sharing is not limited only to edge devices.
For instance, in a smart city, we may have various edge networks, respectively
edge-based systems. In such environments, edge-based system owners may allow
sharing their unused resources with the neighbor edge systems along with the
payment term.

• Resource migration: Edge-based systems are very volatile environments where
heterogeneous devices may join or leave without prior notification. The mentioned
system characteristics require methods to decide how to change initial application
deployment at runtime such that the deployment continues to satisfy the initial
application’s resource demands. Based on the literature review [TNT18], edge
application’s components are migrated based on the adaptation processes, which
rely on the context information or re-using the resource allocation techniques to
find new deployment plans.

This thesis combines resource discovery, resource allocation, and resource migration to
deploy and manage edge applications on top of a heterogeneous and resource-constrained
edge network.

2.5.2 Edge System Architectures

Researchers and computer scientists both in edge and fog computing have been mostly
focused on proposing multiple techniques for resource allocation problems aiming to
minimize various trade-offs such as latency, bandwidth, energy consumption, or maxi-
mizing the utilization of resources at the edge. In general, IoT systems can be deployed
according to the following models [ADS18, RRL+14]:

27

2. Towards Decentralized Edge-Based Systems

1. Everything in the cloud model: In this model, the software components of IoT
systems are placed in the cloud [Ray16]. It is suitable when the systems require
significant elastic processing and storage capabilities or when their constituents are
scattered in various areas. It has higher latency rates compared to the edge-based
model.

2. Everything in the edge model: The software components of IoT systems are placed
in networks of more constrained devices with respect to the cloud (e.g., local servers
and gateways) that are at the edge of the network [AMD20]. In this model, the
computational capabilities are lower than those within the cloud-based model.

3. Hybrid Edge-Cloud model: The software components of IoT systems are distributed
across the cloud and the edge of the network [MJK+21, MRB20, VFD+16]. Thus,
it enables exploiting the advantages of the other two models. For instance, it
supports deploying the components that should perform processes with low latency
in the edge of the network, and deploying those that perform resource-demanding
processes in the cloud.

These deployment models have different properties in terms of response time, availability,
privacy, and other quality characteristics [ADS18]. A common approach for resource man-
agement in edge-based systems is to assign components across the computing continuum
by considering several factors such as processing capability, bandwidth, or energy. For
instance, an edge-based system composed of a set of system components (i.e., controlling
module, scheduler, resource manager, etc.) can be deployed based on the above mentioned
models. Regardless of the deployment models, edge-based system control can be exerted
by just one entity or shared among several independent computing entities. Throughout
this thesis, we focus only on edge-based systems deployed based on everything in the
edge model. Thus, we analyze and discuss the pros and cons of three main edge system
architectures: (i) centralized, (ii) distributed, and (iii) decentralized.

Edge-based systems with centralized architecture have a single edge device that acts as
the master device for the entire system. The master device is usually responsible for
monitoring and distributing tasks among other available computation entities in the Edge-
Cloud continuum. Specifically, the master device may provide a set of functionalities such
as a gateway, monitoring resources, or scheduling algorithms for generating application
deployment plans. Based on the resource management taxonomy [TNT18] and surveyed
articles, resource management objectives (see Section 2.5.1) are deployed statically
on the edge servers [THL16, FAS17, RSNK16, FGRT16] or on the cloud [MCPR14,
LNST14, QLW+16]. Generally speaking, edge-based systems designed with central
architecture may be feasible in the context of small and non-dynamic edge networks
(e.g., smart homes)[YHZ+17]. For instance, Skarlat et al. [SKR+18, SS21] proposes a
framework called FogFrame, which aims to deploy and execute various workloads in the
fog infrastructure. The scheduler and monitoring components are placed statically in a
powerful device at the highest level of the system’s hierarchy. Similarly, in [CK18], fog
nodes in the network are organized hierarchically. However, such approaches determine a

28

2.5. Resource Management and Edge Architectures

coordinator statically, which resides in the cloud. Nevertheless, recalling the three design
goals for edge-based systems, building edge-based systems with centralized architecture
has many limitations, such as (1) systems do not scale easily (i.e., due to the resource-
constraints), (2) the master device is statically determined (i.e., dynamicity of the edge
network is neglected), and (3) the QoS between the master device and the other edge
devices are not considered (i.e., QoS may degrade due to the high-utilization or high
end-to-end latency between computing entities).

In sharp contrast to the centralized architecture, the distributed architecture treats
all edge devices equally in terms of their system responsibilities. In an edge network
without a master device, edge devices in proximity are coordinated and agreed upon
to some Service Layer Agreements (SLAs) to execute software components. Essentially,
the coordination among devices is achieved by using consensus-based algorithms. In
practice, distributed solutions may face latency issues when edge devices need consensus
to distribute software components. Due to the latency issues, edge-based systems with
distributed architecture consider a small number of edge devices in their network topology
(e.g., see [AD19]). Nevertheless, regardless of the approach, both solutions may have
plenty of advantages in various IoT scenarios.

In the decentralized architecture, the master device functionalities may be placed statically
(i.e., at design time) or dynamically (i.e., with a control device). In decentralized
edge-based systems, system control components are shared among several independent
computing entities. For instance, a decentralized approach [ATD19] inspired by the
functionality of an auction house has been proposed to enable IoT application deployment
at the edge of the network. The proposed solution focuses on application placement but
does not address how the system components are decentralized. The second category,
dynamic control devices or coordinator devices, are usually mobile devices with less
computational power and bandwidth. For instance, fog colonies solution [SNSD17] with
a control node enables to select edge coordinators in the system such that they offer
some edge functionalities. However, the selection process is dependent on a central
node. Nevertheless, recalling the three design goals for edge-based systems, we again
advocate that resource management components require a continuous re-evaluation of
their placement.

A feasible approach to overcome such a gap is placing functionalities dynamically at
the edge via leader-based algorithms [MWV00]. For instance, through initiating an
election between edge devices, the most suitable node (e.g., in terms of computation
power) is elected as a master device. By communicating election results, edge devices
in the edge network reach the same conclusion independently. Such a solution denotes
a very decentralized approach to elect the master device automatically. Moreover, the
elected master device must overcome several challenges, such as delegating various
functionalities to other edge devices to handle computation and network overheads. A
possible solution to the aforementioned challenges is to introduce new coordinators (i.e.,
superpeers [JMB06]) in the edge-based system. A coordinator can be responsible for a
set of edge devices within the system and provide resource management functionalities

29

2. Towards Decentralized Edge-Based Systems

such for instance assisting in the resource discovery process. As the network size expands,
new coordinators need to be introduced to the system; respectively, new clusters need
to be formed to handle the network and computing complexities introduced with the
scalability. Chapter 3 provides our contribution on how to determine system roles within
an edge network.

2.5.3 Edge Infrastructure and Communication Types

The architecture of cloud computing and the computational infrastructure is widely
researched and well understood. Powerful computers and storage appliances followed
by high-performance networking devices are placed within massive data centers. In
literature, there is no consistency on what edge infrastructure is when compared to cloud
computing. Usually, infrastructures and network topologies are determined based on the
use case scenario considered in research papers. For instance, in Mobile Edge Computing
(MEC) scenarios, telecom companies may place computation entities at base stations,
allowing cloud service providers to place services close to end-users [MB17]. Or, in
healthcare system scenarios, several edge devices placed near patients enable processing
and monitoring of IoT data streams generated from smart devices [HHI19]. Essentially,
edge networks can exist in different sizes and settings; thus, edge-based systems must be
configurable by the system designer or self-configurable when the network size changes.

Cluster 3

Cluster 1 Cluster 2

B

C

A

Figure 2.7: An example of an edge neighborhood comprised of twenty nodes organized in
three clusters.

A typical edge infrastructure includes heterogeneous, resource-constrained, and geograph-
ically distributed computing resources [AMD20]. Current literature in edge computing
recognizes and briefly discusses types of communication [MKB18]. Several approaches
have been proposed aiming to build and organize computation devices in the edge network

30

2.5. Resource Management and Edge Architectures

[Kar19, RSB+17, AV15]. Notably, P2P approaches have shown great potential to handle
edge infrastructures in a scalable manner [LPSD17]. In [KSL+19] for instance, edge
devices are equipped with a mechanism that allows themselves to organize into clusters
by considering the proximity aspect. We consider a similar organization type of the
edge network proposed in [KSL+19] where nodes are organized in clusters, and the edge
network can easily scale. We hypothesize that a group of edge devices in proximity form
a cluster, and multiple connected clusters create an edge network or, as we refer to it, an
edge neighborhood (see Figure 2.7). We advocate such a network organization since the
edge networks can be different in size and setting depending on the use case scenario.
Accordingly, grouping edge devices into clusters and assigning a coordinator to each group
prevents edge devices from storing information about the entire edge network. In terms of
the network responsibilities, coordinators maintain information about edge devices within
their cluster and other coordinators in the system. Implementing decentralized systems
requires decentralized protocols which are designed to scale by not relying on global
knowledge of the system [KTD06]. Chapter 3 briefly discusses our proposed approach to
build edge networks and enable automatic resource discovery within the system.

2.5.4 Edge Runtime Platform

The cloud infrastructures usually are comprised of enormous resources which are ab-
stracted by hardware virtualization using Hypervisors. The resources within the cloud
are easily managed and accessible as a utility by end-users or other management software
[HV19, EPM13]. Unlike cloud computing, edge networks are heterogeneous environments,
and executing software components (e.g., system components and edge applications) is
another significant challenge. An essential requirement is to enable the execution of
software components on a homogeneous runtime platform that follows the "run once, run
anywhere" model and technology agnostic. Furthermore, the platform must enable easy
interaction with other developed system components responsible for accessing, governing,
and managing edge applications.

To overcome challenges with resource-constrained edge networks and to fully utilize
available resources at the edge, edge applications (i.e., services) are divided into a set
of independently deployable software components (i.e.,microservices). Docker5 is one
of the containerization platforms that allows packaging software components or edge
applications and their dependencies in the form of containers. Docker is a platform
designed to create, deploy, run, and manage applications using containers. Unlike
traditional virtualization, containers are lightweight because they’re usually small in
size, fast, and easily portable between runtime environments. Additionally, containers
compared to virtual machines (VMs) have many benefits such as: (1) containers do
not need to include a guest OS in every instance (i.e., containers share the machine
OS kernel), (2) containers are platform-independent (i.e., containers contain all their
dependencies and they can efficiently run in Edge-Cloud computing continuum), and

5Docker, https://www.docker.com/

31

2. Towards Decentralized Edge-Based Systems

(3) containers support modern development and application patterns (i.e., microservices,
serverless, DevOps).

Another important aspect is the container orchestration tool. Docker Swarm6 and
Kubernetes7 are the most well known and widely used open-source container-management
tools. Both Docker Swarm and Kubernetes support the inclusion of multiple manager
nodes responsible for controlling and monitoring all resources in the cluster. Essentially,
multiple manager nodes are required to ensure high availability in case the leader manager
node fails. Along these lines, both platforms may have plenty of advantages when using
them in various IoT scenarios. Generally speaking, Kubernetes, compared to Docker
Swarm, provides more advanced features for the management of service deployment
to nodes. However, deploying a Kubernetes master on resource-constrained and low-
powered edge devices is challenging due to the resource requirements. Even though
there are few lightweight versions of Kubernetes dedicated to edge computing (e.g.,
KubeEdge8), running master functionalities at the edge remains challenging due to
the low processing capabilities in low-powered edge devices. Essentially, running these
functionalities on edge devices like Raspberry Pi 3 consumes high processing power,
while starting services may take longer. On the other hand, Docker Swarm is the native
orchestration tool for containers, and resource consumption remains within acceptable
limits for low-powered edge devices. Thus, considering the edge network’s dynamic
nature and resource-constrained devices, we advocate the Docker Swarm orchestration
tool is much more suitable for edge-based systems. Nevertheless, we do not claim that
running (i.e., executing) Kubernetes master or KubeEdge at the edge is unsuitable. As
we previously mentioned, edge computing means different things to different people;
therefore, edge devices at the edge can be more powerful processing capabilities than
devices considered within this thesis.

2.6 Summary

Edge computing is considered a fundamental enabler for the proliferation of IoT appli-
cations. Compute and storage resources placed at the edge of the network are used to
bridge the gap between the cloud and IoT domains. Such computation entities perceived
as edge devices can be used to analyze high-volume IoT data streams and, at the same
time, provide control facilities to participating IoT devices. A wide range of available
resources at the edge provides a seamless opportunity to deploy various edge applications
providing their services with low latency. However, different edge functionalities are
needed at the edge (e.g., elasticity, resource coordination, etc.).

We outlined the role and the importance of decentralizing the edge-based systems running
on the edge. We discussed some of the research issues, challenges, and potential solutions
for enabling resource management in a decentralized manner, controlling and managing

6Docker Swarm, https://docs.docker.com/engine/swarm/
7Kubernetes, https://www.kubernetes.io/
8KubeEdge, https://www.kubeedge.io/

32

2.6. Summary

edge applications and their dependencies. Specifically, we propose a self-adaptive and
decentralized configurator to allow easy configuration, deployment, and operation of
such applications on top of heterogeneous edge infrastructure. To achieve the mentioned
system objectives, in the remainder of the thesis, we investigate and evaluate three systems
aspects (1) enabling resource discovery in a decentralized manner and a configurator
that self-adapts to the dynamic and uncertain edge network, (2) enabling developers
to specify elastic requirements for edge applications followed by a technical framework
to control the elasticity at runtime, and (3) enabling resource coordination at runtime.
Nevertheless, to fully operationalize the introduced edge framework, we must further
investigate each module and develop additional functionalities.

33

CHAPTER 3
Resource Discovery using

Metadata Replication in Edge
Networks

Recent advancements in distributed systems have enabled deploying low-latency edge
applications (i.e., IoT applications) in proximity to end-users, respectively, in edge
networks. The stringent requirements combined with heterogeneous, resource-constrained,
and dynamic edge networks make the deployment process challenging. Besides that, the
lack of resource discovery features make it particularly difficult to fully exploit available
resources (i.e., computational, storage, and IoT resources) provided by low-powered edge
devices. To that end, this chapter proposes a decentralized resource discovery mechanism
that enables discovering resources in an automatic manner in edge networks. Through
replicating resource descriptions (i.e., metadata), edge devices exchange information
about available resources within their scope in a peer-to-peer manner. We propose a
solution for building edge networks as a flat model and organizing edge devices in clusters
to handle resource discovery complexity. Our approach supports the system in coping
with the dynamicity and uncertainty of edge networks. We discuss the architecture,
processes of the approach, and the experiments we conducted on a testbed to validate its
feasibility on resource-constrained edge networks.

The rest of the chapter is structured as follows. The related work is presented in Section 3.2.
Section 3.3 presents our approach to organize edge devices in edge neighborhoods and
resource modeling. Section 3.4 describes in detail the proposed algorithm in charge of
determining system coordinators and the framework for automatic resource discovery in
edge neighborhoods. Section 3.5 provides the experiment results to evaluate the proposed
solution followed by discussion in Section 3.5.4. Finally, Section 3.6 summarizes the
chapter.

35

3. Resource Discovery using Metadata Replication in Edge Networks

3.1 Introduction

In recent years, one prominent approach that has emerged to overcome latency delays,
especially in pervasive applications, suggests utilizing computation entities in proximity
to end-users. Edge computing is a distributed computing paradigm that places resources
(e.g., compute and storage) at the edge of the network [SD16]. Edge resources (i.e.,
perceived as edge devices) are typically resource-constrained and heterogeneous devices
that can process, store, and analyze data and deliver efficient and low-latency user-
facing services. Such edge devices can support contemporary applications by (1) running
decision functions close to data-producing end-users, (2) processing various computational
workloads, and (3) minimizing the need to transmit data to the cloud. A wide range
of available resources at the edge has introduced new opportunities such as deploying
low-latency, privacy-awareness, and resilient edge applications (e.g., IoT applications).
In this regard, many studies have been carried out to exploit edge networks for various
purposes (i.e., from processing sensory data streams to EdgeAI applications) [DM20].
Notably, we consider edge networks as resource-constrained, heterogeneous, and dynamic
environments where multiple low-powered edge devices in proximity are connected. In
this sense, we may have various edge networks (e.g., smart building, smart home, drone
network, etc.) where end-users may deploy different edge applications.

Computer scientists have been mostly focused on proposing multiple techniques for
resource allocation problems to minimize latency and maximize resource utilization at
the edge. Notably, today’s applications are not monolithic; they are divided into multiple
independent deployable tasks. Each task may have various resource requirements that
need to be fulfilled by available edge devices upon deployment. Tasks are characterized
by requirements such as computational (i.e., processing, memory, storage), energy, or
bandwidth. However, resource allocation approaches often overlook the dependence
between tasks and IoT resources (e.g., sensors and actuators)[AMD20]. Additionally,
despite the numerous advantages introduced by edge networks, communication between
edge nodes1 and the network organization has been neglected by many research papers
[AD18, TMD19]. According to the paper [Kar19], the communication and network
organization type of a platform affects the functionality of the final applications deployed
at the edge infrastructure.

In literature, very few research works consider IoT resources as an application requirement
that needs to be fulfilled when deploying them at the edge [BF17, ATD19]. For example,
computing a local weather forecast in a smart agriculture setting may require various IoT
resources such as temperature and humidity readings from available sensors across a crop
field [TMD19]. In such a scenario, application tasks dependent on particular IoT resources
must be deployed on edge devices providing those resources. Notably, edge devices are
not equipped with the same capabilities, and such a stringent constraint reduces the
number of eligible deployments at the edge. For example, the allocation technique [BF17]
tries to overcome the problem by enabling sharing of IoT resource information within

1In this thesis, we use terms edge nodes, nodes, and edge devices interchangeably.

36

3.1. Introduction

neighbor nodes. Similarly, the proposed solution [ATD19] acknowledges the problem;
however, it faces latency issues, and it considers a limited number of edge devices in the
network topology. Nevertheless, both approaches do not address issues related to the
communication between edge devices, network organization, and resource discovery.

To overcome these shortcomings, we discuss two major issues. First, edge networks should
be designated to handle the complexity of discovering resources in a decentralized and
automatic manner. Thus, we design edge networks in a flat model where edge devices in
certain proximity are connected in a peer-to-peer (P2P) way. A set of edge devices form
a cluster ; while multiple connected clusters form an edge network, respectively an edge
neighborhood. Besides that, we introduce system coordinators with their corresponding
functionalities to organize edge devices and support the resource discovery process in an
edge neighborhood. Second, resource management’s fundamental objective is to discover
resources available at the edge [TNT18]. Edge devices provide heterogeneous resources
and are equipped with many IoT resources. We refer to heterogeneous resources as
computational, sensing, context data, or other domain-specific resources. Naturally,
performing a resource discovery algorithm for each resource on the entire network is pos-
sible. However, such a process is computationally intensive, and resources are discovered
by querying the entire network based on a keyword [PP12]. Thus, we advocate that
exchanging information about available resources between edge devices in an automatic
manner enables: (1) sharing of resources across the whole system and (2) edge devices to
perform complex queries locally.

This chapter proposes a framework and a methodology to build edge networks as a flat
model and enable edge devices to be organized in clusters. Our proposed framework
enables discovering heterogeneous resources and making them available at the runtime.
A resource is described by providing certain core information about the functionality and
its properties. This type of description, known as the resource’s metadata, is replicated
among edge devices and stored in a decentralized manner. Furthermore, we treat privacy
aspects based on each edge device’s resource preferences, ensuring that not all resources
are advertised across the whole system. Specifically, our concrete contributions are as
follows:

• We develop a prototype enabling edge devices to be connected in a P2P manner
and form an edge network. Our approach is built on top of the Kademlia Protocol
[MM02] used as the communication protocol between edges devices. To enable
scaling of our approach, we propose a solution to break down edge networks into
clusters as well as introduce new coordinators to handle the complexity to discover
resources automatically.

• We advocate decentralization as the system can operate without a static entity for
discovering available resources. Essentially, coordinators are placed dynamically
and run on the most suitable edge devices providing various services. Our approach
supports the system in coping with the environment’s dynamicity and uncertainty
and continuously re-evaluates coordinators’ placements.

37

3. Resource Discovery using Metadata Replication in Edge Networks

• To validate the approach’s feasibility, we show that the prototype’s footprint is
limited to hardware resources and network bandwidth. We evaluate our prototype
on a testbed composed of low-powered ARM-based edge devices.

3.2 Related Work

We divide related work into two categories. First, we review P2P approaches and
communication types used at the edge. Afterwards, we review related techniques on
resource management as they apply to IoT.

3.2.1 Communication in Edge Networks

Many studies have been carried out, leading to different approaches aiming at exploiting
the edge and providing various allocation techniques to fulfill application requirements.
In this context, many platforms use different communication types to achieve particular
system goals. The current literature recognizes and briefly discusses communication
types at the edge [MKB18, BMZA12]. According to the paper[Kar19], three main types
of communications in edge computing are identified: hierarchical, P2P, and hybrid.

Notably, P2P approaches have shown great potential to handle edge infrastructures
in a scalable manner [LPSD17]. Therefore, a lot of research has been conducted in
this context, resulting in many approaches that aim at organizing edge devices using
different communication types [RSB+17]. Due to their fully distributed nature, P2P
architectures are both scalable, reliable [IM09], and fault-tolerant [SWVDT18]. Many
edge-based platforms use P2P to organize edge devices within the edge network [TBT18].
Similarly, Cabrera et al. [F+16] propose a P2P-based fog platform that enables storing
data generated from IoT devices. In the proposed approach, data is stored among fog
devices in a distributed manner. A fog device can restore corrupted data by asking other
fog devices in the network. In the mentioned works, devices are organized in a P2P
manner and are assumed to have a partial view [TBT17] or full view of the network (i.e.,
O(1) protocols). In contrast to the mentioned works, our approach is build on top of the
Kademlia Protocol and provides a decentralized mechanism to organize edge devices in
clusters. Our solution through the proposed algorithms determines the most suitable
edge devices to place coordinators in an edge network and adapts to the changes that
may occur. Nevertheless, the proposed solution makes edge neighborhood autonomous
environments less dependent on centralized nodes.

3.2.2 Resource Discovery

Performing a resource discovery algorithm for each resource on the entire edge neighbor-
hood is computationally demanding. For instance, queries like discovering all cameras in
a particular area are becoming highly desirable for IoT applications. In general, such
system behavior in decentralized DHT protocols is hardly achievable. Even though
some DHT-based approaches support discovering data through multi-attribute queries

38

3.3. Edge Networks and Resource Modeling

[ZCX+13]; however, such methods remain unsuitable in IoT systems and edge networks
due to the high content lookup latency. In addition to that, resource discovery is a critical
challenge for IoT application performance.

Service-based discovery has been widely studied [KL14, WC16]. Paganelli et al. [PP12]
introduce a DHT-based IoT service discovery that supports multi-attribute and range
queries. Furthermore, the proposed solution enables real-time monitoring of resource
positions since it updates resource locations periodically. Santos et al. [SWVDT18]
propose a resource discovery service for resource provisioning in fog environments. The
proposed solution is based on DHTs and enables exchanging information about the
available resources (i.e., performance metrics, workloads, etc.). However, in contrast to
our approach, the proposed solution does not address privacy aspects, does not consider
discovering IoT resources, and discusses no actual provisioning mechanisms.

Resource allocation and management have been widely studied both in the cloud and
fog computing [MKB18]. Up to now, many factors have been considered including
time (e.g., computation [ZGG+16]), data size [SCD15], cost (e.g., networking and
deployment[GZG+15], execution [HXWC15]), user-application context [HXWC15], etc.,
which have been found to play important roles in resource and service provisioning. Jain
et al. [JT17] propose a solution where the IoT application is divided into multiple tasks
annotated with location information. The application is decomposed into fragments
and deployed to the corresponding individual compute nodes based on the annotation.
In contrast to the mentioned research papers, the resource discovery aspect has been
mostly ignored. Furthermore, none of the papers have addressed privacy aspects when
considering resource discovery.

Our approach’s second novelty and contribution to state-of-the-art lie in the introduced
novel decentralized mechanism that enables automatic resource discovery in edge net-
works. Discovering resources at once represents a feasible and optimal solution for edge
neighborhoods. We enable end-users or edge applications to perform various complex
queries locally by replicating metadata between edge devices. Contrary to other works,
our resource discovery mechanism considers resource privacy preferences ensuring that
not all resources are advertised across the whole system.

3.3 Edge Networks and Resource Modeling
This section introduces our approach to organize edge devices in an edge neighborhood.
We describe basic definitions and then discuss communication protocol between edge
devices. Subsequently, we discuss architecture modeling and resource modeling in Section
3.3.4.

3.3.1 Definitions

We refer to an edge neighborhood as a resource-constrained edge network, which is
comprised of edge devices placed close to each other (see Figure 3.1). Edge neighborhoods

39

3. Resource Discovery using Metadata Replication in Edge Networks

E1

E4

E12

E3

E2

E7

E5

E10

E8

E9

E6

E11

E13

E16

E14

E15

Global Coordinator

Cluster Coordinator

Edge Device

Joining the network

Contact link

Routing table / DHT

Legend:

Start

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13) (14)

(15)

C1

C1

C1

C1

C1

C2

C2

C2

C2

C2

C3

C3
C3

C3

C3

C4

Cluster IDCn

Figure 3.1: An example of an edge neighborhood consisting of sixteen edge devices
organized in four clusters.

are formed in various geographical areas and within different contexts (i.e., smart
homes, drones network, etc.). Notably, they may vary in size and settings; thus, our
proposed system is configurable by the system designer through the configuration file. In
our conception, edge devices are low-powered, heterogeneous, and resource-constrained
computational entities in the system. Within the system context, edge devices may provide
multiple functionalities (e.g., act as a client device, server device, and bootstrap device).
Furthermore, edge devices are grouped in clusters to promote scaling, reduce bandwidth
consumption, and manage the difficulty of discovering resources in an automatic manner
in edge neighborhoods. Subsequently, edge devices within the same cluster are considered
neighbor devices, as well as clusters close to each other are considered as neighbor clusters.
Each cluster consists of a finite number of edge devices, and each device belongs to one
and only one cluster at a time.

In the system context, each edge device may serve specific roles such as i) cluster
coordinator and ii) global coordinator (i.e., configurator). Such roles are dynamically
assigned to the edge devices based on their resource capabilities (discussed in Section 3.4.1).
In Figure 3.1, each cluster has a coordinator device (i.e., with a green circle) and a
single global coordinator device (i.e., with red and green circles). We assume that
cluster coordinators act as superpeers [JMB06]. Each cluster coordinator keeps track
of the other coordinators and devices within the same cluster (i.e., IP addresses, port).
Similarly, edge devices in the same cluster store information for one another and are
always aware of their cluster coordinator and global coordinator. A cluster coordinator
may have various responsibilities for a subset of devices (i.e., monitoring, discovering
resources, etc.). The global coordinator is responsible for monitoring coordinators,
exchanging resource descriptions between clusters, and managing edge applications in
Edge-Cloud infrastructure (i.e., controlling elasticity, migrating tasks, etc.). However,
future work remains to provide a complete solution for the coordinators introduced in
this chapter. This thesis focuses on three main aspects: i) organizing edge devices in an
edge neighborhood, ii) determining the most suitable devices to place the global and

40

3.3. Edge Networks and Resource Modeling

cluster coordinators, and iii) enabling automatic resource discovery in heterogeneous and
dynamic edge neighborhoods.

Each edge device may serve as the entrance door into the edge neighborhood. Essentially,
edge devices provide core functionalities to assign newly added edge devices in the
available clusters or create new clusters in the edge neighborhood. We introduce three
functionalities to identify the maximum number of edge devices in a cluster. First, the
system designer may define a system-wide parameter to bound the maximum size of
clusters. Second, the system designer may configure cluster coordinators to generate
random cluster size (i.e., not higher than the system-wide parameter). And third, the
system designer may define a system-wide threshold value specifying the maximum CPU
utilization for cluster coordinators. As a result, depending on the functionality enabled,
we may have edge neighborhoods with different cluster sizes. The cluster number in an
edge neighborhood is not bounded.

3.3.2 Communication Protocol

The communication between edge nodes in the proposed architecture is realized through
implementing the Kademlia Protocol [MM02]. Our study revealed several distributed
hash table solutions to consider for our framework such as Chord [SMK+01], Pastry
[RD01], and Tapestry [ZKJ+01]. We suggest using Kademlia as the edge communication
protocol since it spreads contact information automatically and uses minimal Remote
Procedure Calls. Moreover, one of the most important features of the Kademlia network
is the O(log(n)) lookup time. Finding nodes and resource descriptions in this type of
network is fast and efficient.

Kademlia is a distributed hash table (DHT) for decentralized peer-to-peer computer
networks. A Kademlia network consists of nodes where each node has a unique 160-bit
ID as an identifier. Nodes in the Kademlia network communicate using User Datagram
Protocol. Moreover, the participating nodes exchange their information through node
lookups. An overlay network is formed where each node is identified by its node ID.
The provided ID will serve as a direct map to the file hashes and where to obtain the
requested resource. Besides the unique ID, it maintains a routing table and a DHT. A
routing table maintains a list for each bit of the node ID (e.g., node ID consists of 160
bits means that it will keep 160 such lists). A routing table is divided into created lists
known as buckets - each bucket contains contact information and the distance from the
current node. Contact information resides in one of the buckets in which it contains the
node ID, IP address, and port number of the other node. Buckets in the routing table
are updated when a new node joins the network. In addition, new edge nodes can be
bootstrapped by knowing basic contact information of any other reachable DHT nodes
in the network. The DHT segment stores key/value pairs where the key is the name of
the public metadata document and the value is the network location of the document

Furthermore, DHT is a data storage that is kept consistent between all edge devices
within the whole edge network. Essentially, when an edge device updates its local

41

3. Resource Discovery using Metadata Replication in Edge Networks

DHT, the changes are propagated to all other devices, allowing them to be queried and
manipulated again. Likewise, information about current cluster coordinators and the
global coordinator is stored in DHT. Each edge device implements a distributed routing
table and stores data in Kademlia buckets ordered by the local device’s distance. The
routing table size is bounded by O(log2(l/k)) where l is the number of edge devices
in the edge neighborhood, and k is the bucket size. Once a bucket is full, it replaces
unresponsive devices in favor of incoming devices. The routing table size in our proposed
approach is configurable through the configuration file, and it depends on the expected
edge neighborhood size. We consider edge devices as resource-constrained computers
(i.e., in terms of computational and storage capabilities); thus, edge neighborhoods’ size
is not expected to be massive.

3.3.3 Forming an Edge Neighborhood

Figure 3.1 shows an illustration of how our solution organizes edge devices in an edge
neighborhood. Initially, the edge neighborhood is formed with an edge device E1. Since
it is the only device in the edge neighborhood, it is automatically assigned to cluster C1
and determined as the cluster coordinator C1coord and the global coordinator Gcoord.
At the same time, E1 serves as an entrance door into the edge neighborhood. We assume
edge devices progressively join the edge neighborhood and each edge device also becomes
another bootstrap device Enb (i.e., n is a unique random ID). It is common to keep a list
of always-running edge devices to allow new edge devices to join an edge neighborhood. In
our case, E1 is the first device contacted by E2 to join the edge neighborhood. The edge
device E2 is assigned to cluster C1 by E1 in coordination with C1coord. Furthermore, E2
is supplied with DHTs and the complete routing table from E1. The process of adding
new edge devices in an edge neighborhood is presented in Algorithm 3.1.

The process continues with adding a new edge device Enew by contacting Enb. Once Enew
request to join the neighborhood, bootstrap device Enb initially provides a unique random
ID (i.e., 160-bit). Afterward, Enb retrieves information from its cluster coordinator
Cncoord where to assign Enew. A cluster coordinator Cncoord (i.e., referred as this)
maintain information regarding: i) own cluster maximum size CM (line 1), the current
cluster size CS (line 2), and other available clusters CN (line 3). CN provides clusters with
available places where Enew can be assigned.

The MaxClusterSize() function is configurable and enables the system designer to
define the maximum number of edge devices per cluster. In the configuration file, such
value can be determined by specifying (i) the system-wide parameter (e.g., five edge
devices per cluster or random value) and (ii) the CPU utilization threshold (e.g., CPU
utilization set to 35%). When the system-wide parameter is set, and random cluster
size is disabled, edge devices are grouped into clusters of the same size (as illustrated
in Figure 3.1). When a cluster exceeds the maximum allowed devices, more clusters
with corresponding coordinators should be designated to handle the resource discovering
complexity. Edge devices are grouped into clusters of different sizes when the CPU
utilization threshold is set. More specifically, when CM and CS are equal, Enew is assigned

42

3.3. Edge Networks and Resource Modeling

Algorithm 3.1: Process of adding a new edge device
Input :Enew
Output :Adding Enew to the edge neighborhood

1 CM = this.MaxClusterSize()
2 CS = this.CurrentClusterSize()
3 CN = this.OtherClusters()
4 boolean flag = false
5 if CM < CS then
6 Enb.addDevice(Enew,this.cluster())

7 else
8 if CN != null then
9 Cclo = this.findMostClosest(CN)

10 foreach c ∈ Cclo do
11 if c.size() < CN.cluster(c).maxSize() then
12 Enb.addDevice(Enew,c.cluster())
13 flag = true
14 break

15 end
16 end

17 end
18 end
19 if flag = false then
20 Enb.addDevice(Enew,new Cluster())
21 end
22 this.updateRoutingTable()
23 this.updateDHT()

to one of the existing clusters, or a new cluster is created. Nevertheless, both options
can be used at the same time. However, the violated option decides whether or not the
cluster can scale further. Furthermore, if the condition in (line 5) is not violated, Enew is
assigned to the current cluster of the Enb (line 6).

Neighbor clusters are found through using a system call (i.e., traceroute command), which
estimates proximity with other cluster coordinators (i.e., using hop count and latency).
The function findMostClosest(CN) uses traceroute command and returns the most
suitable clusters that Enew can be assigned (line 9). This is especially useful in edge
neighborhoods running on different networks. Finally, Cncoord provides information to
Enb to assign the Enew to the particular cluster if and only if condition in (line 11) is
not violated (lines 11-15). Otherwise, when there are no clusters with free places, then
Enew is assigned to a newly created cluster by Cncoord (line 20). Note that each cluster
in the edge neighborhood has a unique ID generated by Enb when the cluster is created.
Notably, the bootstrap device’s task is to cooperate with the cluster coordinator to assign

43

3. Resource Discovery using Metadata Replication in Edge Networks

a cluster ID to the newly joined devices. Finally, once Enew joins the edge neighborhood,
Cncoord updates the routing table and other DHTs (lines 22-23).

3.3.4 Resource Modelling

We assume that an edge device may contain multiple resources (i.e., computational,
sensing, or context data) represented as microservices [BSH+17]. When invoked re-
motely, such microservices yield resources; however, resource information must be shared
beforehand among edge devices in the edge neighborhood. An essential step towards
discovering these resources in the edge network is resource modeling at design time. To
ensure automatic resource discovery in an edge setting, two types of resources must be
modeled: i) IoT resources (i.e., sensors, actuators, etc.) and ii) edge devices. We propose
a resource representation structure that provides seven main properties as described
below:

• Resource identification provides essential information on the resource, such as
resource name, a unique resource identification ID, and the edge node ID, which
handles the resource description. Resources are described by several keywords,
which helps developers to search for resources within the edge node. For example,
knowing the location of the resources is a way for the user to locate resources.
For instance, the location parameter may be used to discover resources such as
temperature sensors in a certain area in smart cities. It also may provide a product
description (e.g., device brand, category, description, etc.).

• Resource connectivity provides information such as the IP address and port number
to reach the resource through the overlay network. In addition, it provides a piece
of information related to the connectivity status (e.g., connected or disconnected).
For example, a user application might request a specific available resource from the
edge node, which in turn gets the information on how to reach the desired resource.

• Resource capability describes the ability of a resource to perform some action
(e.g., a resource may provide storage capabilities to others). In addition, specific
resources may provide sensing operations to change the state of the resource (e.g.,
increasing/decreasing temperature).

• Resource accessibility provides information related to the resource access policy.
We define two types of resources that participate in the edge network: i) public
resources and ii) private resources. All edge nodes that join the network can discover
and replicate public resources. Private resources are not discoverable by other edge
nodes - such resources are accessible only locally.

• Resource output provides information related to the output data of the resource
(e.g., unit). For example, a specific user application might require a temperature
sensor that provides values only in Fahrenheit. However, we note that metadata
does not contain any real-time value of the resource. Resource location describes

44

3.4. A Decentralized Edge-to-Edge Resource Discovery

the properties of the resource where it is located. It can be described through a
given geographical position or a logical location. A resource can only have a link to
one location instance.

• The resource administration domain defines the resource’s owner shared in the edge
network. For example, the fire department can monitor the activity within the
administrative domain to ensure that the monitored resources remain consistent.

Representation of resources is mainly focused on representation models using ontologies.
We propose that a resource description needs to be formatted in a JavaScript Object
Notation (JSON). The rationale for exchanging metadata over JSON is:

• Metadata using JSON may have a very rich description of the resource while being
lightweight and machine readable.

• Metadata considered within a JSON file is very small; thus, the replication process
across many edge devices organized in clusters is feasible and does not degrade
the overall network performance. Hence, JSON documents considerably reduce
the network traffic between edge nodes compare to the other formats (e.g., XML
[SM12]).

Our resource structure is similar to the ontology-based structure proposed by Barnaghi
et al. [DBBM11]. Unlike the ontology-based approach, we format resource descriptions
in a JSON file. We advocate that exchanging metadata over JSON is a lightweight
process, machine-readable, and provides rich information about resources. We assume
that resource descriptions are constructed by the system designer or the manufacturer
itself.

3.4 A Decentralized Edge-to-Edge Resource Discovery
In this section, we discuss the process of determining the global coordinator and cluster
coordinators. Next, we explain the framework for sharing edge device resources based on
privacy preferences. Finally, we discuss edge device failures, dynamicity, and uncertainty
of edge neighborhoods.

3.4.1 The Process of Determining Coordinators

The process of determining coordinators in a distributed system should be carried out in
the system background, encapsulated from the end user’s perspective but indispensable
for the correct and efficient execution of distributed tasks. System coordinators’ role
is versatile and can range between managing applications, monitoring resources, or dis-
tributing data between devices. We define two leading roles, such as i) cluster coordinator
and ii) global coordinator (i.e., configurator). Such roles are dynamically assigned to edge
devices based on their resource capabilities. Determining new coordinators is triggered by

45

3. Resource Discovery using Metadata Replication in Edge Networks

an event when the global or a cluster coordinator experiences high utilization of specific
hardware resources (i.e., CPU, memory, or storage) and requests to transfer leadership to
other devices. Determining a new cluster coordinator occurs only between edge devices
within the same cluster. The process of determining a new global coordinator occurs
between cluster coordinators. The latter consists of two phases: first, cluster coordinators
are determined; second, new cluster coordinators determine the global coordinator. In
Algorithm 3.2, we present the process of determining system coordinators.

Algorithm 3.2: Process of determining coordinators
Input :φi , θ, σi
Output :Ccoord , Gcoord

1 t = 0
2 νthis = GetDeviceMetrics(φi)
3 round = Random()
4 Initial_Message(round,σi)
5 Parameter_Message(νthis, round,σi,γ)
6 I ← Receive_Parameter_Messages()
7 Solution_Found ← False
8 while t < θ or !Solution_Found do
9 ν = I.getBest()

10 if ν < νthis and ν.round = round then
11 Solution_Found ← True
12 Set(Ethis, EdgeMode)
13 Set(En, Coordinator, σi)

14 end
15 if !Solution_Found then
16 Set(Ethis,Coordinator, σi)
17 end
18 Ethis.updateDHT()

The proposed algorithm runs on each edge device separately. The algorithm takes three
inputs: i) an edge device hardware metrics denoted with φi, ii) the deadline to find
a solution denoted with θ, and iii) the process type denoted with σi. The process of
determining coordinators is designed by considering hardware metrics and the bandwidth
of edge devices. We consider hardware metrics both statically (e.g., CPU cores, storage
capacity, etc.) and dynamically (e.g., current CPU load, current storage, etc.). Such
hardware information can be monitored using Hyperic Sigar [sig] while Assolo [GRT09]
enables collecting bandwidth probes. Notably, the algorithm gets only the current device
metrics νthis specified at design time (line 2). In our case, we consider metrics θi related
to the CPU utilization degree. However, such a parameter is configurable based on
system requirements. The deadline θ is given at design time (e.g., θ = 50ms). The third
input σi specify the process type: i) determining the global coordinator (σ = global)
and ii) determining a cluster coordinator (σ = cluster).

46

3.4. A Decentralized Edge-to-Edge Resource Discovery

A unique random signature (i.e., SHA-1) called round is used to make each process
unique (line 3). In lines (4-5), we define two types of messages exchanged between
devices: i) initial message and ii) parameter message. First, the initiating coordinator
(i.e., process initiator device) probes which edge devices are up and running in the edge
neighborhood. Then, it sends an initial message only to the edge devices that responded
on time. The initial message essentially contains a list of all participating devices (i.e.,
only those edge devices that replied) and a unique round value assigned to a process
round. Second, once receiving an initial message and the list of participants, the process
initiator device sends a parameter message containing its local metrics to all participating
devices. The parameter message contains local hardware metrics, utilization values in
percentage, a process round value, and a timestamp when the process to determine the
new coordinator is started γ. The timestamp γ ensures that the metrics are not older
than the process initiation time. Each edge device responds to the initial message and
sends its parameter message to other edge devices, including the initiating coordinator
(line 6). Notice that the same proposed algorithm determines the global and cluster
coordinators.

After exchanging performance metrics, edge devices develop the same result independently.
Each device compares received parameter metrics and determines which device is most
suitable for a cluster/global coordinator (lines 8-14). To find the most suitable edge
device, we compare the number of CPU cores, clock speed, and current utilization (line 9).
Ethis changes the status to the EdgeMode (i.e., edge device only shares resources) only
when an edge device En with better performance metrics is found. Line 16 is executed
only when a solution is not found within the time θ, and the coordinator role remains in
the current edge device Ethis since no better edge device is found. Furthermore, each
edge device maintains a complete overview of all processes and saves the information in
a DHT. The result is propagated to all edge devices within the edge neighborhood using
the DHT. The last step is executed by all edge devices, which on the one side creates
some redundancy but also improves the stability of propagating results (line 18).

3.4.2 System Architecture and Resource Discovery

We propose a framework for enabling automatic discovery of heterogeneous resources in
edge networks [MATD19]. Figure 3.2 illustrates three main components of the frame-
work: Edge-to-Edge Communication, the Metadata Container, and the Local Search
Engine facility. The Edge-to-Edge Communication component implements communica-
tion between edge devices (i.e., Kademlia Protocol), organizes edge devices in clusters,
determines coordinators, and exchanges resource descriptions in an edge neighborhood
(1). The Metadata Container is responsible for analyzing resource descriptions based
on their privacy preference defined by the system designer at design time. Besides
that, the component is responsible for sharing resource descriptions system-wide (2),
processing received resource descriptions from other edge devices (3), and storing resource
descriptions locally (4). The Local Search Engine component (4) is based on CouchDB
document-oriented NoSQL database [Cou]. This component subsequently stores data

47

3. Resource Discovery using Metadata Replication in Edge Networks

locally and, through APIs, enables users to query stored content (6).

Edge-to-Edge

Metadata
Container

Search Engine
Local

Edge Device

Edge-to-Edge

Metadata
Container

Edge Device

4

1

23 23

4

User

6 6

Search Engine
Local

UserUsers
UserUserUsers

APIs APIs

5

C
C

G

Figure 3.2: Resource discovery through metadata replication: High-level architecture.

Referring to Figure 3.2, our resource discovery mechanism allows edge devices within the
same cluster to exchange metadata through their cluster coordinator. Once coordinators
are determined, edge devices are ordered to share their public metadata document with
their cluster coordinator (1). Other edge devices contact their cluster coordinator to
retrieve all public metadata documents contained within their cluster. This may happen
once a new edge device is connected to the edge neighborhood or when an edge device
wants to refresh its current storage. The frequency to refresh metadata documents is
also configurable at design time. Besides that, the global coordinator regularly exchanges
metadata documents with the cluster coordinators (5).

Local
resources

Search Engine
Local

Shared
 resources

Metadata
Component

Local resources

Network resources

1

2

Edge Device

3

4

JSON

JSON

Figure 3.3: Processing metadata on the edge.

In Figure 3.3, we present the process of analyzing resource descriptions and the process

48

3.5. Evaluation

of sharing them in an edge neighborhood. As mentioned before, we consider edge
devices as resource-constrained devices with a set of built-in sensors and actuators. Each
resource is described by providing certain core information about the functionality and
properties (see Section 3.3.4). We assume that edge device manufacturers provide JSON
format resource descriptions (i.e., metadata). The Metadata Container is responsible
for analyzing metadata in the edge device. The component stores resource descriptions
based on privacy preferences i) public resources (i.e., shared resources (4)) and ii) private
resources (i.e., local resources (2)). Public resource descriptions are merged into a single
metadata document and named with the edge device ID. The public metadata document
is shared with the corresponding cluster coordinator system-wide (3). The local search
engine component separates resource descriptions into private ones and those shared
system-wide.

3.4.3 Edge Device Failures

Consider a situation when a cluster coordinator triggers a new process to determine
the new coordinator in the cluster. An edge device under a high workload may fail to
determine cluster coordinators or the global coordinator. Even though edge devices do not
participate in a determination process, they continuously update their local DHTs with the
closest devices. Besides, those who have failed and re-joined the edge neighborhood may
contain some obsolete information (i.e., DHT is not up-to-date, coordinator information
is outdated). However, after joining the edge neighborhood, edge devices must update
their local DHTs with the closest devices.

Another situation may arise when a specific cluster coordinator fails. The global coordina-
tor is responsible for detecting such failure and triggering a new process to determine the
coordinator. As discussed previously, edge devices within the cluster decide on their new
coordinator. One of the cluster coordinators triggers a new global coordinator determina-
tion process when the global coordinator fails. Notably, each cluster coordinator verifies
whether the global coordinator has failed and responds to the determination process.
Furthermore, the resource discovery process is not repeated when edge devices frequently
leave and join the edge neighborhood (i.e., due to connectivity issues). Moreover, when
an edge device goes offline, the metadata documents remain stored in the other devices
for some time. This is especially useful in unstable edge neighborhoods (e.g., wireless),
prone to momentary loss of connection.

3.5 Evaluation

In this section, we first discuss our evaluation setup environment, prototype details,
and limitations. Next, we evaluate the approach’s effectiveness by running multiple
experiments and checking the proposed solution’s behavior in different situations. We
assess our proposed solution regarding hardware and bandwidth consumption during
runtime. Then, through a use case, we show how the proposed discovery mechanism

49

3. Resource Discovery using Metadata Replication in Edge Networks

increases the number of eligible deployments when deploying edge applications in an edge
neighborhood. Finally, we conclude with a discussion in Section 3.5.4.

3.5.1 Setup, Prototype Details, and Limitations

We developed a prototype that implements the Kademlia Protocol and core functionalities
to enable the automatic discovery of heterogeneous resources in edge networks to show
the feasibility of the proposed approach. The prototype is written in Java and tested
on a testbed composed of (a) edge devices (i.e., Raspberry Pi 3 Model B V1.2) with
4×ARM Cortex-A53 CPU at 1.2 GHz, 1 GB of RAM, and 16 GB disk storage, and (b)
virtual edge device instances. To evaluate our prototype, we exploited the testbed (i.e.,
edge neighborhood) composed of 60 edge devices placed close to each other. Edge devices
contain multiple resource descriptions generated randomly at design time. Furthermore,
edge devices in the testbed are connected through a wireless connection with a nominal
speed of 10 Mbps and 5 Mbps in download and upload. We assume that edge devices trust
all other devices in the edge network since they belong to the same local administrative
domain.

In distributed systems, discovering and adding devices automatically in an edge network
is a significant challenge. In our current implementation, edge devices have an open
designation port that listens for possible future connections. To join the edge neighbor-
hood, edge devices require to know at least one device (i.e., IP, port) currently up and
running. We acknowledge that the current implementation represents a limitation, and
further investigations are required to develop an advanced approach to discover running
edge devices. We acknowledge that IoT resources (e.g., sensors) can also be connected
to edge devices using various end-to-end communication protocols (e.g., Zigbee, etc.).
However, in this thesis, we treat communication and operational aspects of IoT resources
as orthogonal to our approach; we assume edge devices are equipped with a set of IoT
resources. Furthermore, we acknowledge that using the Java Virtual Machine (JVM)
environment is resource-expensive. However, this thesis shows the approach’s feasibility
in resource-constrained edge neighborhoods.

3.5.2 Experiments and Results

We evaluate our prototype on a testbed, whose size progressively increases to 60 edge
devices as presented in Table 3.1. The cluster coordinators can determine their cluster
sizes based on (i) the CPU utilization threshold (i.e., configured to 35%), (ii) the system-
wide parameter (i.e., configured to 30 devices per cluster), and (iii) the random value
(i.e., not bigger than the system-wide parameter). Furthermore, the routing table size
is set to k = 20. We monitor edge devices through the nmon tool [IBM] and retrieve
information regarding the hardware utilization and the data received and sent between
edge devices.

The goal of the first experiment is to assess the prototype’s footprint on hardware
resources and bandwidth usage. Notably, we focus on resource consumption to determine

50

3.5. Evaluation

Table 3.1: Edge neighborhood

Neighborhood Edge Devices (per cluster) Total

C1 15 15
C2 20 35
C3 15 50
C4 10 60

the system coordinators and discover resources in the edge neighborhood. We monitor
the global coordinator for each cluster for up to 60 seconds in the edge neighborhood (i.e.,
running on RPi3). We also monitor bootstrap devices (i.e., RPi3s) when a new request
arrives to join the edge neighborhood. Notably, we observe that the time required to join
the edge neighborhood and assign it to the existing cluster is between 0.07−0.2 seconds in
all test cases. However, when a new cluster is required to be created, the average latency
is slightly higher between 0.5− 1.02 seconds, but reasonable for the resource-constrained
edge neighborhood. Specifically, the overall CPU and memory utilization remains almost
similar. Concretely, the average CPU consumption stayed around 2.5%, while the overall
memory consumption stayed around 5 MB. In all test cases, edge devices have been
successfully assigned to the corresponding clusters, or new clusters are created when
required. Table 3.2 presents a detailed overview of the resource consumption and latency
for edge devices to join the neighborhood.

Table 3.2: Average latency and resource consumption to join the edge neighborhood

Clusters Latency (avg.) CPU (avg.) RAM (avg.)

C1 71.25 ms 2% 2 MB
C2 82 ms 2.5% 3 MB
C3 137.36 ms 2.5% 2 MB
C4 193.6 ms 3% 5 MB

Figure 3.4 plots the overall CPU utilization during the process to determine the global
coordinator (i.e., the global and cluster coordinators are determined) and synchronization
processes running in the background. Essentially, we simulate the situation when the
global coordinator is overloaded, and the function to determine the new global coordinator
is automatically triggered. We repeat the process more than ten times for each test case
(i.e., clusters). As shown in Figure 3.4, the overall CPU utilization is slightly increased
when adding more edge devices/clusters in the edge neighborhood. Specifically, the
average CPU consumption while determining the system coordinators is around 10%,
while the overall memory consumption is approximately 5 MB. The most important
aspect is the accuracy of assigning edge devices to a particular cluster or forming new

51

3. Resource Discovery using Metadata Replication in Edge Networks

clusters when needed (i.e., when the cluster size is exceeded). Creating new clusters was
successful in all test cases, including newly joined edge devices added to their adequate
clusters. Since the overhead imposed by our approach is small, the experiments show
that the proposed approach is feasible to operate on low-powered and battery-powered
edge devices. Notably, the proposed approach has shown a very contained impact on
hardware resources and bandwidth usage. To obtain consistent results, we calculated an
83% confidence interval of means for each experiment.

Figure 3.4: Analysis of the CPU utilization during the process to determine the system
coordinators.

Figure 3.5 and Figure 3.6 plot the overall maximum and minimum data transfer/received
by the global coordinator during the process to determine new system coordinators
and the synchronization process. We consider analyzing the bandwidth due to the
relationship between network traffic and the load on the memory system of an edge
device [MSBD18]. Furthermore, in resource-constrained edge neighborhoods, the energy
supply and bandwidth are among the main resource constraints of edge devices [BS07].
Therefore, it is necessary to know the total data size transferred/received (i.e., metadata
sharing, processes to determine coordinators, synchronizing processes, etc.) between edge
devices during the runtime. Notably, the maximum and minimum values vary depending
on the number of edge devices in the neighborhood. As shown in Figure 3.6, the data
transfer is slightly increased by adding more devices in the edge neighborhood. The slight
increase occurs due to the increased number of edge devices that impose new coordinators.
Thus, newly formed coordinators synchronize their routing tables and DHTs with the
global coordinator.

The goal of the second experiment is to assess the time complexity to determine coordi-

52

3.5. Evaluation

Figure 3.5: Analysis of the data received in kilobytes per second by the global coordinator.

Figure 3.6: Analysis of the data transfer in kilobytes per second by the global coordinator.

nators and place them on the edge neighborhood’s most suited edge devices. Concretely,
we show how the proposed mechanism discussed in Section 3.3 and Section 3.4 performs
to determine coordinators. The experiment results illustrated in Figure 3.7 show that

53

3. Resource Discovery using Metadata Replication in Edge Networks

the proposed approach in all test cases finds an edge device with the most suitable
computation resources to assign the global coordinator. Besides that, the proposed
approach successfully determines cluster coordinators for each cluster.

Figure 3.7: Time required to determine coordinators.

In Figure 3.8, we analyze the percentage of responsive edge devices during the process
to determine the cluster coordinator on an edge neighborhood with a single cluster and
different sizes (e.g., CS=15, etc.). We repeat the process more than five times for each
test case. Notably, we observe that the time required to join the edge neighborhood
and assign it to the existing cluster remains similar to the previous results (i.e., between
0.07− 0.2 seconds in all test cases). The number of edge devices that respond to this
process is critical since it enables us to find the most suitable edge device to place
the cluster coordinator. In clusters with more than 40 edge devices, the percentage of
responsiveness is decreased to 92%. In contrast, clusters up to 30 edge devices show
a higher responsiveness rate. To that end, we configure the system-wide parameter to
bound the maximum number of edge devices per cluster (i.e., 30 edge devices).

3.5.3 Use case: Deploying IoT safety application

The third experiment demonstrates the proposed mechanism’s function in the application
deployment process. For the demonstration purpose, we adapted and extended parts of the
FogTorchΠ simulator [BFGL19] to generate deployment plans in the edge infrastructure.
FogTorchΠ was originally proposed to support IoT designers in deciding where to deploy
application components at the edge. The approach allows specifying IoT resources as an
application requirement that must be met before applications can be deployed.

54

3.5. Evaluation

Figure 3.8: Percentage of responsive edge devices during the process to determine
coordinator on clusters with different sizes.

We assume edge devices contain a set of built-in IoT resources (i.e., cameras, radars, gas
sensors, etc.) that can be accessed remotely through APIs. Recalling our motivation
scenario, consider the IoT safety application that provides a service to rescue teams
(as discussed in Section 2.3.1). As illustrated in Figure 3.9, the IoT safety application
comprises three components: i) the insights backend component (ϕ0), ii) the monitoring
component (ϕ2), and iii) the processing component (ϕ1). The insights backend component
(ϕ0) enables users to interact with the service. The monitoring component (ϕ2) is
responsible for monitoring resources specified at design time. The processing component
(ϕ1) analyzes collected data into meaningful results and provides it to the end-users
through the insight component. We assume deploying IoT safety application in the edge
neighborhood as presented in Figure 3.1. Notice that only a single application component
can be executed in parallel on edge devices. The other application requirements depicted
in Figure 3.9 are assumed to be met by all edge devices.

In our given edge neighborhood, the edge device E2 provides the radar resource with
privacy preference set to private. This means that the ϕ1 can be deployed only in E2.
The rest of the IoT resources (e.g., cameras, gas sensors, etc.) are remotely accessible, and
their privacy preference is public. Through the metadata replication process, edge devices
exchange public resources in the edge neighborhood. To this end, each edge device is
considered a potential candidate to execute one of the two other components. Meanwhile,
each edge device shares private resources only with the global coordinator, responsible for
generating deployment plans for the IoT safety application. Figure 3.10 shows the total
number of eligible deployments plans generated through FogTorchΠ combined with our

55

3. Resource Discovery using Metadata Replication in Edge Networks

Insights Backend

Processing

Monitoring

50 ms, 3 Mbps

200 ms, 2 Mbps

200 ms, 2 Mbps

1 GB

1 GB 1 GB <camera, 3, location>
<gas_sensor,1, location>
<infra_camera,1, location>

<radar, 1, location>

φ0

φ1

φ2

Figure 3.9: IoT safety application.

resource discovery mechanism. It is evident that ϕ0 and ϕ2 components dependent on
particular resources can be executed on all other edge devices. More precisely, each edge
device knows how to access resources on other edge devices due to metadata replication.

C1 C2 C3 C4
0

100

200

12

72

182
210

El
ig
ib
le

de
pl
oy
m
en
ts

Figure 3.10: Generating deployments plans for the IoT safety application in an edge
neighborhood (see Figure 3.1).

Unlike our approach, FogTorchΠ does not support resource privacy preferences, does not
provide a mechanism to discover resources (i.e., supports resource sharing with neighbor
devices), and does not support the dynamic changes in their environments. Besides
that, evaluating the deployment mechanism is out of the thesis scope, as we use it to
demonstrate that the discovery mechanism allows us to completely exploit available
resources in edge neighborhoods.

56

3.6. Summary

3.5.4 Discussion

We have demonstrated that by using our resource discovery mechanism, discovering
heterogeneous resources in an edge setting increases the number of eligible deployments
for applications dependent on IoT resources. We showed that organizing edge devices in
clusters and discovering resources through the edge replication process is performant and
feasible on a testbed with low-powered ARM-based devices. Our results showed that the
overhead introduced by the proposed decentralized resource discovery mechanism is very
low for realistic edge neighborhood sizes.

Our approach within the given testbed can operate with larger cluster sizes. However,
edge devices may not react in time to participate in processes to determine coordinators
in large cluster sizes. In such cases, the Kademlia Protocol requires much more processing
capabilities to process faster incoming requests (i.e., updating routing tables, updating
DHTs, resource metadata, etc.). Nonetheless, we plan to improve and optimize the current
mechanism to form larger clusters in edge neighborhoods. We plan to investigate the
maximum edge neighborhood size and the routing table size acceptable for low-powered
edge devices.

Our approach does not provide a mechanism to detect which edge devices fail to send
their parameter metrics and ask them to resend their messages. In addition to that, since
multiple edge devices in an edge network come to the same result independently, it is
necessary to introduce an additional mechanism to verify the result. In our approach,
we overcome such an issue by distributing results using the DHT. This creates some
redundancy - but also improves the stability of propagating results. However, using
consensus algorithms where edge devices pick random participants to verify their final
result is highly desirable. Thus, some assumptions underlying our methodology must be
further explored.

3.6 Summary
Edge networks provide a seamless opportunity for deploying various edge applications
providing multiple services to the end-users and the surrounding IoT devices. However,
we require novel lightweight and decentralized mechanisms to automatically discover
heterogeneous resources at the edge to deploy edge applications dependent on IoT
resources. To that end, we introduced a decentralized mechanism that enables edge
devices to connect in a P2P manner, organize edge devices in clusters, and support
the automatic discovery of heterogeneous resources in edge networks. The proposed
approach support resource discovery based on resource privacy preferences. Furthermore,
we evaluated our approach in a testbed composed of a set of low-powered edge devices.
Throughout the experiments, we showed the feasibility of the proposed approach to run
on low-powered edge devices. We believe that the proposed approach paves the way for
utilizing available resources and accomplishing the promised high-quality and low-latency
services deployed in edge networks (i.e., edge neighborhoods).

57

CHAPTER 4
On Controlling Elasticity of Edge

Applications

The broad range of edge application requirements combined with heterogeneous, resource-
constrained, and dynamic edge networks make it particularly challenging to configure
and deploy them. Besides that, missing elastic capabilities on edge makes it difficult to
operate such applications under dynamic workloads. To this end, this chapter proposes a
lightweight, self-adaptive, and decentralized mechanism (DECENT) for (1) deploying
edge applications on edge resources and on-premises of Edge-Cloud infrastructure, and
(2) controlling elasticity requirements. DECENT enables developers to characterize their
edge applications by specifying elasticity requirements, which are automatically captured,
interpreted, and enforced by our decentralized elasticity interpreters. In response to
dynamic workloads, edge applications automatically adapt in compliance with their
elasticity requirements. We discuss the architecture, processes of the approach, and the
experiment conducted on a real-world testbed to validate its feasibility on low-powered
edge devices. Furthermore, we show performance and adaption aspects through an edge
safety application and its evolution in elasticity space (i.e., cost, resource, and quality).

The rest of this chapter is structured as follows. Section 4.2 gives an overview of the
platform along with a running example. Related work is considered in Section 4.3.
Section 4.4 describes the edge application and system modeling, along with describing
application requirements. In Section 4.5, we describe in detail the DECENT framework,
the processes, and details regarding prototype implementation. Evaluation and results
are presented in Section 4.6. Finally, Section 4.7 concludes the chapter.

4.1 Introduction
As the newly introduced paradigm, Edge Computing [SCZ+16] is a key enabler for
IoT proliferation. In contrast to cloud infrastructures, edge networks are resource-

59

4. On Controlling Elasticity of Edge Applications

constrained environments. However, a wide range of available resources at the edge
have introduced new opportunities such as deploying low-latency, privacy-awareness, and
resilient edge applications (e.g., IoT applications). Besides many benefits introduced
by edge devices, analyzing high-volume IoT data streams on a single device through
monolithic applications poses many limitations and challenges in terms of processing
capabilities, storage, energy, and communication bandwidth. To that end, modern
applications are no longer monolithic [ABL15]; such edge applications (i.e., services) are
divided into a set of independently deployable software components (i.e., microservices)
and distributed over edge resources or on-premises of Edge-Cloud infrastructure. Similarly,
resource management techniques must be designed as decentralized systems to run in
resource-constrained environments. Thus, this brings altogether new challenges where
novel lightweight resource management techniques are needed to fully utilize available
resources at the edge. Nonetheless, the broad range of requirements concerning latency,
Quality of Service (QoS), or fault-tolerance, combined with edge networks’ heterogeneous
and dynamic nature, make it particularly challenging to manage, configure, deploy, and
operate such applications.

Over the past few years, researchers have been widely focused on proposing multiple
resource allocation techniques at the edge [SCZY17]. However, less attention is given to
provide elastic features at the edge [HV19, MKB18]. In most cases, elasticity refers to
a system’s capability to adapt to workload changes by (de)provisioning resources in an
automatic manner [HKR13]. Resource demands for a particular running application or
component may change over time. Consequently, this may cause poor overall performance
and higher latency than the expected response time. For instance, consider a scenario
where a health application running in an edge network (e.g., smart home) monitors
residents’ health through processing data streams created by the users’ smartwatches.
At the time t0, a single edge device has sufficient resources to monitor only one resident’s
health. At the time t1, there is more than one resident, and the edge device may not have
enough resources to process produced data for all residents. To avoid such situations, edge
applications should scale over edge resources or on-premises of Edge-Cloud infrastructure.
Therefore, introducing elasticity features at the edge is crucial.

The elasticity concept is heavily related and used in cloud computing, and often is con-
sidered one of the main features of the cloud paradigm [DGST11]. In Edge Computing,
very few works propose methods for controlling application elasticity [TTT+18, FACP18,
NPP+20, FJFCSG+19]. Current approaches exhibit several limitations, such as they are
built as centralized systems, application-specific, and enabling application scaling only by
considering hardware resources and their capacity to scale. Furthermore, centralized ap-
proaches are sensitive to edge systems characteristics (i.e., resource-constrained, dynamic,
and uncertain). Thus, edge networks’ dynamic nature requires continuously re-evaluating
placement decisions for edge functions. Nevertheless, in our conception, besides resource
requirements, elasticity in three-tiered infrastructures should also target their relations
with the different types of costs and quality.

To address the aforementioned challenges, we propose a lightweight framework called De-

60

4.2. Running Example

centralized Configurator for Controlling Elasticity in Dynamic Edge Networks (DECENT)
and its runtime mechanism for controlling elasticity requirements in edge applications.
DECENT enables deploying and scaling edge applications in dynamic edge networks and
on-premise of Edge-Cloud infrastructures. Essentially, the developer defines application
requirements, elasticity requirements, and a scaling model for each edge application and
its components. The DECENT interprets these requirements, deploys components in the
three-tier architecture, and enforces various scaling operations at runtime to fulfill edge
application demands. The system we propose enables easy configuration, deployment, and
operation of edge applications on top of heterogeneous edge infrastructure. Furthermore,
DECENT is a self-adaptive and decentralized mechanism that can be easily deployed
and run on low-powered edge devices.

Our concrete contributions are as follows.

• We enable application developers or domain experts to specify high-level elasticity
requirements for their edge applications in a declarative way. Besides that, the user
specifies the deployment and scaling model inherent to a specific infrastructure
configuration. To specify edge application elastic requirements, we consider the
declarative language called Simple Yet Beautiful Language (SYBL) [CMTD13]. We
extend the language and focus on developing novel constraints and enforcement
strategies to support edge application characteristics. In our conception, besides
resource requirements, elasticity in three-tiered architectures should also target
their relations with the different types of costs and quality.

• We extend the prototype of [MD21b] with a lightweight mechanism that enables
deploying and controlling the elasticity of edge applications in a decentralized
manner at an edge network. Edge devices that run application components capture
and interpret their elastic requirement through Elasticity Interpreters and report
to the configurator device whether the requirements are violated. The configurator
device takes action and re-configures the application to meet the specified elastic
demands.

• To validate the approach’s feasibility, we perform an experimental evaluation that
shows that an edge application and its components can easily scale and be controlled
by the mechanisms deployed at the edge of a network. Our prototype is evaluated
on a real-world testbed comprising several low-powered edge devices.

4.2 Running Example
Referring to the situation illustrated in Section 2.3.1, respectively Figure 2.2, we assume
that a rescue team deploys (1) the lost-person service (i.e., edge safety application) in the
affected area. Such service aims at helping rescue teams solve missing person cases faster
by finding their location in the affected zones (2). The service is dependent on camera
resources, which are integrated into various drones. Specifically, the lost-person service

61

4. On Controlling Elasticity of Edge Applications

comprises components responsible for specific tasks (i.e., front-end, image processing,
generating results, storing results, etc.). The service takes as input images provided by
the flying drones in the affected area. Each drone every second generates various images
to be processed by the service. However, with the increasing number of drones, the
number of generated images is increased (5). To that end, application components may
require more computing resources to process images such that application requirements
are fulfilled. For instance, consider that the front-end component that accepts drones’
images has a response time requirement that should be less than 100 ms. When the
response time requirement is violated (e.g., 100 ms), the service component must scale
to multiple instances on edge or on-premises (3-4) to meet the desired service quality.
Thus, it is evident that to meet service demands at runtime and to avoid resource over-
provisioning/under-provisioning, we require a lightweight mechanism that dynamically
controls application elasticity at the edge.

4.3 Related Work
Research efforts associated with the elasticity at the edge are still at a relatively early
development stage. Elasticity features in edge infrastructures mostly have been fo-
cused on scaling up/down resources to meet application demands. In some approaches,
tasks/services are reallocated when devices are overloaded [SKR+18]. However, such
practices, in turn, incur an overhead of resource usage, increased cost, and increased
energy consumption. Even though resource over-provisioning can be considered feasible
in resource-rich environments such as the cloud, such an assumption is highly impractical
in resource-constrained edge networks. More specifically, reserving resources more than
needed to support the intended task workload wastes available resources.

Very few approaches address these challenges at the edge. Furst et al. [FACP18] introduce
a new framework that enables services to self-adapt and meet the current service demands
of their Service Level Objectives (SLOs). A novel programming model called Diversifiable
Programming (DivProg) uses function annotations as an interface between the service
logic, its SLOs, and the execution framework to achieve such an adaption dynamically.
Essentially, a third-party execution framework captures service configuration given by
the developer through DivProg, interprets, and scales services that conform to changing
SLOs. Tseng et al. [TTT+18] provide a lightweight autoscaling mechanism for fog
computing in industrial applications. Lujic et al. [LT19] propose a novel, holistic
approach for architecting elastic edge storage services, featuring three aspects such as
data/system characterization (e.g., metrics, key properties), system operations (e.g.,
filtering, sampling), and data processing utilities (e.g., recovery, prediction). The authors
[NPP+20] discuss how applications for a fog infrastructure can be packaged into containers
and act elastically. Their approach is built on top of the container orchestration tool
Kubernetes and extends it to the fog. In [ZFJB18], the authors investigate the benefits of
virtualization to move and redeploy mobile components to the fog devices closest to the
targeted end devices. By using geometric monitoring, the proposed approach dynamically
scales and provisions the resources for the fog layer.

62

4.4. Edge Modeling and Elastic Requirements

Any Edge-Cloud system’s goal is to hide the complexity of edge applications deployment
and operations in heterogeneous edge networks and enable developers to specify appli-
cation requirements in a declarative way. A domain-specific language (DSL) specifies
the high-level constraints of edge applications, such as QoS, application criticality, and
elasticity requirements. The DSL essentially makes it easy for users to develop these
specifications. Understanding the current and future requirements of edge applications
from various domains remains a prominent challenge. A platform for the described IoT
scenarios (e.g., as in our running example) needs to hide this operational complexity from
application developers. In particular, programmers should not have to worry about the
distribution of data and edge or cloud resources’ heterogeneous capabilities. Developers
should be able to express the context in which applications are allowed to run and the
elasticity requirements in a high-level way [DGST11]. The platform should then take
care of resource provisioning and data movement. However, this requires that the pro-
gramming model and API are intuitive for developers but expressive enough to help the
execution platform make runtime decisions on scheduling edge application components.

Finally, our work is an effort to advance edge computing platforms’ current state and
enable more straightforward configuration, deployment, and operation of edge applications
on top of heterogeneous edge infrastructure. The above-mentioned systems are extremely
limited in their operational capabilities and lack of self-adaptive mechanisms required in
dynamic edge and IoT settings. In essence, such systems assume static configurations
that do not change over time, provide no way to specify elasticity or QoS requirements,
and do not have a mechanism to enact them. Our proposed approach aims to bridge this
gap and ensure multi-dimensional elasticity control (i.e., cost, resource, and quality) for
fulfilling edge application demands deployed on Edge-Cloud infrastructure. It enables edge
applications and their components to adapt to dynamic changes in their workload. Finally,
we enable developers to easily define elasticity requirements captured and executed by
our lightweight mechanism in a decentralized manner.

4.4 Edge Modeling and Elastic Requirements
This section formally defines the concepts of edge applications, the edge system, deploy-
ment and scale policy, and elasticity requirements. First, we model edge applications and
the system. Then, we describe application deployment and scaling models in Edge-Cloud
architectures. Finally, we extensively explain application elasticity requirements, which
enable developers to characterize their edge applications.

4.4.1 Edge Application and System Model

A service-based edge application ai can be described as a set of components H={h1,
h2,..., hm} divided by the developer prior to deployment. In fact, to enable the
execution of such components on low-powered devices and for better utilization of
distributed resources dividing edge applications into small components is crucial. To
this end, edge application components may be distributed and executed on various

63

4. On Controlling Elasticity of Edge Applications

available devices such that their resource requirements are fulfilled upon deployment.
Each component hi can be modeled as a Directed Acyclic Graph (DAG) where vertices
represent components and edges represent their dependencies as given in Figure 4.1.

h1

h3

h2

h4 h5a1

H = { h1, h2, h3, h4, h5}

Figure 4.1: Edge application model.

Each component hi is a black-box, representing a set of instructions aiming to provide spe-
cific functionalities. Various hardware-related requirements characterize each component
(e.g., processing, memory, storage) and latency requirements between components [BF17].
Moreover, components are characterized by varying workloads, and their deployment
should also be properly adapted at runtime. To that end, for each component, we have
the following: (i) the edge application resource requirements, (ii) elasticity requirements,
and (iii) deployment and scaling policy. In the following subsections, we have discussed
both application requirements in detail.

The Edge-Cloud architecture consists of edge infrastructures (i.e., multiple edge devices
connected in a peer-to-peer manner form an edge infrastructure), fog infrastructure, and
cloud infrastructure. As mentioned in Section 3.2.1, our approach is built on top of an
edge network, which is built as a Distributed Hash Table (DHT) network [MM02]. We
assume that every edge device trusts all devices to establish a direct communication link;
they belong to the same local administrative domain. Furthermore, in this work, our
primary focus resides on edge infrastructures while we assume that the fog and cloud
infrastructures are considered Infrastructure as a Service (IaaS) [MS14]. We assume that
the system designer configures the edge network to connect to the IaaS services.

Executing components on heterogeneous environments (i.e., edge tier, fog tier, or cloud
tier) is crucial. For instance, an application with multiple components can scale on
multiple instances running on different locations in either edge or cloud, depending on
current demands and the application’s constraints. To overcome the challenges introduced
with heterogeneous environments, we consider Docker1 as our homogeneous application
runtime platform that follows the “run once, run anywhere” model. A docker platform
represents a lightweight, stand-alone, executable package that contains everything needed
to run the specifically added component. The application runtime is essentially responsible
for executing edge applications (i.e., container-based) on edge devices or on-premises.
Thus, to deploy edge applications in Edge-Cloud infrastructure, components are packaged
in individual docker containers.

1Docker, https://www.docker.com/

64

4.4. Edge Modeling and Elastic Requirements

4.4.2 Deployment and Scaling Models

In our conception, edge applications can be thought of as a set of deployable software
components running on-premises of the Edge-Cloud infrastructure. As mentioned in
Chapter 2, edge application components can be deployed and scaled according to the
following models: (1) Everything in the Cloud, (2) Everything in the Edge, and (3)
Hybrid Edge-Cloud.

4.4.3 Elasticity Requirements

Elasticity properties at the edge are crucial to execute edge applications and fulfill their
dynamic demands. In Edge-Cloud architectures, elasticity targets not only resources
and their capacity to scale but also their relationships with various forms of costs and
quality [DGST11]. In this context, multiple stakeholders may be involved in specifying
elastic requirements. For instance, the developer could specify that the latency between
application components must not reach 20ms without determining how many resources
should be used to achieve the desired state. An edge network provider could specify its
resource utilization schema; for example, when overall utilization at the edge is higher
than 90%, it enables scaling applications toward fog or cloud infrastructure. To enable
such a feature, we consider a declarative language called Simple Yet Beautiful Language
(SYBL) to allow users to specify an edge application’s elasticity requirements at the design
time [CMTD13]. We extend the language and focus on developing novel constraints and
enforcement strategies to support edge application characteristics running on Edge-Cloud
infrastructures. In addition, we extend and optimize the language runtime engine to
support controlling Docker-based edge applications and enable execution on low-powered
edge devices. We provide a time-based mechanism that analyzes workloads generated by
incoming requests to optimize and avoid unnecessary scaling operations. More specifically,
the time-based mechanism controls for a few seconds (i.e., a configurable value, e.g., 20
seconds) if the increased load on a particular component is handled without executing
any scaling operation. The feature mentioned above is useful when the increased or
decreased load in a component is occasionally and not persistent.

SYBL enables users (i.e., developer or system user) to specify application elasticity
requirements in a declarative way represented in the form of (i) monitoring (i.e., specifying
which metrics to monitor), (ii) constraints (i.e., specifying the limits in which the
monitored metrics can oscillate), (iii) strategies (i.e., specifying actions to be followed in
case the constraint is violated or becomes true), and priorities (i.e., specifying constraints
with higher priority than the other ones). The user can specify elastic requirements at
different levels of edge application. Thus, elasticity controls can be achieved at the (i)
edge application level (i.e., specifying high-level application elastic requirements), and (ii)
edge component level (i.e., specifying low-level application elastic requirements). Listing 1
shows an example of elasticity requirements specified by the user. At the edge application
level, the user may specify the maximum cost allowed for the entire edge application
executed in Edge-Cloud infrastructures. The user could specify that the application
needs to scale down when the cost is high, and CPU usage is below 20%. Or, when the

65

4. On Controlling Elasticity of Edge Applications

cost is below the predefined value (e.g., 5 euros) and the CPU usage is higher than 80%,
the application needs to scale up. At the edge component level, for instance, elasticity
requirements from the developer side can be applied regarding the quality, such that,
e.g., if the edge device battery is less than 10%, the component must scale up to avoid
application failure.

#ApplicationLevel.AppID
Mo1: MONITORING cpuUsage = cpu.usage
Mo2: MONITORING memUsage = mem.usage
Co1: CONSTRAINT totalCost > 5Euro AND cpu.usage < 20
Co2: CONSTRAINT totalCost < 5Euro AND cpu.usage > 80
St1: STRATEGY CASE Violated(Co1): ScaleIn
St2: STRATEGY CASE Violated(Co2): ScaleOut
#ComponentLevel.AppID.componentID
Co3: CONSTRAINT mem.usage < 80 AND cpu.usage < 20
Co4: CONSTRAINT battery.Level < 10
St3: STRATEGY CASE Violated(Co3): ScaleIn
St4: STRATEGY CASE Violated(Co4): ScaleOut
Pr1: Priority (Co4)>Priority(Co3)

Listing 4.1: An example of elastic requirements.

The SYBL elastic requirements can be easily injected/integrated into various description
languages. For instance, the elastic requirements can be easily integrated into cloud
application description language TOSCA standard 2, docker-compose files (i.e., YAML),
JavaScript Object Notation (JSON), or specified separately through XML descriptions.
In the current version of our prototype, we specify edge application elastic requirements
in a JSON file. Nevertheless, future work remains to provide a mechanism that will inject
elastic requirements easily in the YAML file (i.e., since our application runtime platform
considered is Docker).

4.5 DECENT - Design and Processes

This section provides an overview of our approach to deploying service-based edge
applications and controlling their elasticity on an edge network. We extensively outline
the main components of the DECENT and the interaction of its components during the
runtime.

2OASIS, Topology and Orchestration Specification for Cloud Applications (TOSCA), http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

66

4.5. DECENT - Design and Processes

4.5.1 System Overview

An overview of our approach at design time and runtime of the system is illustrated in
Figure 4.2. The developer defines the edge application model and its requirements at
design time, as described in the previous section. Afterward, the developer specifies each
component’s application structure and resource requirements. The elasticity requirements
and deployment policy can be determined by the developer as well as by the system user
(i.e., owner) before the deployment phase. The deployment process starts when the user
requests the system’s configurator device to deploy an edge application. Exploring the
module that enables users to interact with the system is beyond this thesis scope.

Edge Application

Application
Requirements

A

Elasticity
Requirements

E

Design Time Runtime
C
on
fig
ur
at
or

Ed
ge

 n
od

es

Shared
Storage (DHT)

Monitoring
Agent

Elasticity
Interpreter

Deployment
Planner

Elasticity
Enactment Orchestrator

Edge network

...
C

Figure 4.2: Overview of DECENT’s components and their interaction during the runtime.

Each edge device consists of similar system components, as illustrated in Figure 4.2.
However, the edge device that becomes the system’s configurator provides the main
features to control edge applications and runtime aspects. The architecture of the
approach comprises five main modules, as described in the following.

Deployment Planner(DP): This module aims to generate QoS-aware deployment
plans for deploying edge applications on-premises of Edge-Cloud infrastructure. The
DP module provides two main sub-modules: i) Planner and ii) Resource Manager. The
Planner generates deployment plans for a given edge application by considering both its
app requirements and deployment policy. The Planner is essentially responsible for finding
all possible eligible deployment plans by considering application hardware requirements
(i.e., CPU, RAM, and storage), bandwidth, and latency between components. Moreover,
deployment and scaling policies tell the Planner which infrastructures can be considered
when deploying application components. The Planner gets the current state of the

67

4. On Controlling Elasticity of Edge Applications

infrastructure(s) through the Resource Manager. The Resource Manager is responsible
for monitoring and storing the infrastructure-specific metrics such as resource capabilities
of edge devices (i.e., hardware), their current resource utilization, and link latencies
between devices. Such information is provided by Monitoring Agents deployed at each
edge device.

Monitoring Agent(MA): This module measures a set of infrastructure-specific metrics
and application performance metrics continuously. The infrastructure-specific metrics
are CPU, RAM, storage, battery levels (when applicable), and their current utilization.
Nevertheless, the MA module continuously measures application metrics such as hardware-
related resource consumption, response time, application status, etc. However, note that
our approach monitors only metrics specified in the elasticity requirements. The MA
module periodically sends information to the Resource Manager. Such data is temporally
stored locally on the configurator device, and it is regularly updated when an application
is deployed. This thesis does not investigate how the monitoring agents are implemented
in cloud and fog environments. Several studies [BFG19, FGB20] address relevant aspects
for monitoring agents as well as several monitoring tools exist for providing the necessary
information3,4.

Elasticity Enactment Engine (3E): This event-driven module handles the co-
ordination between the application’s desired state and the current application elasticity
state. In the DECENT runtime, elasticity requirements are interpreted by the Elasticity
Interpreter deployed on each edge device. When a component’s elasticity constraint is
violated, the Elasticity Interpreter communicates such information to the 3E module.
Afterward, the 3E module enforces required actions such that the component require-
ments are fulfilled. Thus, the 3E module is the central part of the runtime system, which
manages edge applications. In contrast, Elasticity Interpreters are local runtime engines
that capture application component elastic requirements, interpret and communicate
necessary actions to the enactment engine. The following section briefly outlines the
overall process of managing edge applications at runtime.

Orchestrator - This module provides several functionalities to support executing edge
applications in dynamic edge networks. The Orchestrator functionalities are mostly
addressed in Chapter 3 and are not evaluated in this Section. In addition to that, the
Orchestrator is responsible for creating, controlling, and managing the cluster of Docker
Engines called swarm. Essentially, the system’s configurator device simultaneously is the
swarm manager, and the other edge devices are worker devices. The swarm manager
maintains the swarm state through Raft Consensus Algorithm5. On the contrary, the
Orchestrator is responsible for keeping the quorum of managers in the system consistent.

At system design time, the Orchestrator is configured regarding the number of swarm
manager devices that should be consistent at runtime and the expected size of the edge

3Nagios, https://www.nagios.com/
4Ganglia, http://ganglia.sourceforge.net
5Raft Consensus Algorithm, https://raft.github.io/

68

4.5. DECENT - Design and Processes

network. The system designer should consider a trade-off between performance and
fault-tolerance when it defines the number of swarm managers. Having more swarm
manager devices makes the system more fault-tolerant while writing performance is
reduced (i.e., due to the network round-trip traffic). We configure an odd number of
swarm manager devices to take advantage of swarm mode’s fault-tolerance features. The
Orchestrator promotes new swarm manager devices whenever the edge network doubles
the expected network size. Notice that we may have a maximum of five managers in an
edge network.

Nevertheless, the Orchestrator periodically monitors the desired swarm manager number
(i.e., system designer perspective) and the current number of swarm managers. Thus,
if the desired state is violated, it takes the required actions to keep swarm managers’
quorum in the system. Notice that the Orchestrator configuration data (i.e., swarm
managers, swarm cluster joining key, etc.) is stored as DHT, meaning that it is shared
and kept consistent between all devices within the entire network.

4.5.2 The Process

Edge applications are multi-container Docker-based applications. This means that the
developer defines components that make up an edge application, including their hardware
requirements specified in the docker-compose file. Essentially, an edge application and
each component have their unique name when deployed. Furthermore, at design time,
the user specifies the deployment and scaling model and the elastic requirements (as
presented in Listing 1). Both these requirements are formatted and stored as a single
JSON file. Thus, we assume that the mentioned requirements are given at the design
time.

Deployment
Planner Orchestrator Elasticity

Enactment

Elasticity
Interpreter

3

4

2
5

7

5

6 8

Monitoring
Agent

Edge Nodes

1

User

Figure 4.3: The process at runtime.

69

4. On Controlling Elasticity of Edge Applications

The process starts when the user requests (1) the configurator device to deploy an
edge application at an edge network (as illustrated in Figure 4.3). At this phase,
the deployment planner interacts with the Orchestrator to get the current hardware
infrastructure status, available edge devices, resource information, resource utilization
rates, and latency of the communication links between devices (2)-(3). Afterward, it
gets the edge application docker-compose file and specified hardware requirements and
generates all eligible deployment plans (3). To generate such plans, it runs the algorithm
presented in [BF17]. In essence, for each application component, the DP module finds all
possible devices that fulfill the component’s hardware requirements. Furthermore, the DP
module notifies the user whether the edge application can be deployed at the specified
deployment and scaling model. For instance, if the deployment and scaling model is set
to the only edge, it means that all application components must be deployed at the edge
(if possible).

Suppose the DP module generates at least one or more deployment plans. For each
component, we have a list of compatible devices that can run them. Afterward, the
DP module gets the list and updates the docker-compose file by adding the placement
constraints. This means that for each component, it specifies devices where the component
can be deployed. After this process is finished, the configurator executes Docker-based
commands to deploy the edge application. Deploying and starting components (i.e.,
containers) can take several seconds and depend on edge device hardware capabilities.
However, in this thesis, we do not investigate performance aspects when deploying and
starting containers. A study that acknowledges the problem and addresses relevant
aspects is presented in [AP18].

Through the Orchestrator module, the configurator shares elastic requirements with
edge devices (5). Elastic requirements are shared by using DHT. Essentially, each edge
device automatically identifies when the configurator assigns a container (e.g., named
ϕ1) to them. Thus, when ϕ1 is running, elasticity interpreters on each device query
DHT to receive elastic requirements for the running applications. The user can change
elastic requirements at runtime. The changes made on elastic requirements (i.e., in the
configurator device) are automatically updated by other edge devices and captured by
corresponding Elasticity Interpreters. Afterward, before starting elasticity monitoring
(7), the elasticity interpreter first checks whether it is the only device running ϕ1. The
configurator device provides information (6), and such information is required to avoid
situations where multiple elasticity interpreters start monitoring ϕ1 (i.e., when ϕ1 runs on
several devices). Moving on, consider a situation when an elasticity interpreter monitors
a constraint that says the edge application component requires to scale up when it uses
80% of the edge device CPU (e.g., see Listing 1). Thus, when the specified constraint is
violated, the interpreter communicates it to the 3E module (8), which is responsible for
enforcing the scaling operation. Note that monitoring agents provide hardware-related
metrics and container-based metrics.

The 3E module is triggered when it receives information to enforce a specific strategy
in the particular application component. In essence, enforcement operation for the

70

4.6. Evaluation

violated constraint is specified in elastic requirements. Before executing the action, the
3E module checks whether the application component should scale up or down. If the
application component requires scale-up, it requests the DP module to check whether the
component can scale in the current infrastructure state. We apply this strategy to avoid
enforcing scaling operations in infrastructure with insufficient resources. Otherwise, the
Docker runtime environment will continuously try to scale the application component
without the mentioned strategy, causing network congestion and computation overload.
Moreover, the configurator device for each edge application periodically monitors elastic
requirements at the edge application level. The overall resource usage (i.e., for all running
components) is considered and analyzed to determine whether constraints are violated at
the application-level requirements.

In case the configurator device fails, edge devices hold an election to find a new configurator
device as presented in [MD21b]). Elasticity interpreters contact other swarm managers to
enforce scaling operations until a new configurator device is elected. Since all edge devices
keep consistent data through DHTs, the newly elected configurator is initialized quickly
by considering the locally stored data. Nevertheless, each device in the network knows the
system’s current configurator device at any time. Note that the aspects mentioned above
are primarily addressed in Chapter 3 and are not evaluated in this Section. Furthermore,
edge applications running at the edge network are not affected by possible configurator
failure.

4.6 Evaluation
This section first presents details about the prototype implementation, setup environment,
and limitations. Furthermore, we experimentally evaluate the approach’s effectiveness
and present the evolution of an edge application in elasticity space. We conclude with a
discussion in Section 4.6.3.

4.6.1 Prototype Implementation, Setup, and Limitations

To assess the proposed approach, we extend the prototype of [MD21b] with a lightweight
mechanism that enables deploying and controlling the elasticity of edge applications in a
decentralized manner at the edge. The prototype is partially developed and written in
Java. The prototype is tested in a realistic environment on edge devices (i.e., Raspberry
Pi 3 Model B V1.2) with 4×ARM Cortex-A53 CPU at 1.2 GHz, 1 GB of RAM, and
16 GB disk storage. The prototype is deployed on each edge device, and each edge
device runs the Docker Engine as the edge application runtime platform. To implement
the deployment generator, we refined and extended parts of the FogTorchΠ [BF17]
simulator to generate all eligible deployment plans for an edge application. In addition,
the simulator does not consider dynamic environments, runtime aspects, does not provide
elasticity features, does not implement monitoring tools, and does not implement any
communication protocol between computation entities at the edge. Thus, the extensions
we refer to are further functionalities developed to support the runtime aspects of edge

71

4. On Controlling Elasticity of Edge Applications

applications (e.g., elasticity, etc.) in a realistic testbed. Along these lines, the planner is
fully integrated into the prototype. It gets the infrastructure state (i.e., available devices,
network structure) and generates plans by considering real-time infrastructure-specific
metrics.

The 3E module is implemented as a thread that runs continuously and listens for requests
generated by elasticity interpreters. This module enforces various operations by Docker
Java API6 that allows building, controlling, updating, and running containers. Docker
Engine REST APIs allow us to configure and update containers (i.e., running services)
whenever it is needed. Additionally, some features that the mentioned APIs do not
support were implemented by executing docker commands using the command-line
interface. Elasticity Interpreters are deployed on each edge device, and for each running
container with its elastic requirements, a single thread is executed to interpret those
requirements. To implement the monitoring agent, we used Hyperic Sigar7 to collect
hardware information on edge devices. The network latency between devices is collected
by using ping command. Furthermore, Docker Java API is used to collect hardware
utilization data about running containers (i.e., state, CPU, memory, storage, etc.).
For each container with elastic requirements, a single thread is executed to monitor
specified elastic metrics. Thus, the thread number is dependent on the number of running
containers on an edge device.

To evaluate our prototype, we exploited the testbed edge network comprised of ten edge
devices placed close to each other. Edge devices in the testbed are connected through
a wireless connection with a nominal speed of 10 Mbps and 5 Mbps in download and
upload. Furthermore, the prototype’s main limitation is being executed in the Java
Virtual Machine (JVM) environment. We acknowledge the JVM is resource-expensive;
however, we aim to show the approach’s feasibility within this thesis.

4.6.2 Use Case, Experiments, and Results

We are considering an edge application (i.e., edge safety application) providing a service
as described in our motivation scenario (Section 2.3.1). The edge safety application is
partially developed, and it is made out of five components, with three of them written in
Python (as illustrated in Figure 4.4). The front-end component ϕ1 enables edge devices
(i.e., drones) to interact with service and continuously upload real-time images, including
location coordinates. The Redis component ϕ2 collects new images and stores them
in binary format. The processing component ϕ3 consumes data, processes (i.e., image
analysis), and stores them in the database component ϕ4 (i.e., Postgres). Finally, the
results component visualizes the safe path for the rescue team member residing in the
affected zone.

Software components are containerized (docker images). Each container is configured
with specific resource requirements (i.e., 1 CPU (1.2 GHz) and 60 MB memory) resources

6Docker Java API, https://github.com/docker-java/docker-java
7Hyperic Sigar, https://github.com/hyperic/sigar

72

4.6. Evaluation

Redis

Front-End

φ3

Results

Users

Database
φ5

Processing
φ4

φ1 φ2

images results

Figure 4.4: Edge safety application.

that containers can use on the hosting edge device. Notice that to reserve and use a
various number of CPU resources per container, the RPi3 must be upgraded to the latest
firmware8. Furthermore, we assume that the component images are already available on
each edge device. This assumption is made due to the latency issues introduced when
images are downloaded from centralized devices. In [AP18], the authors acknowledge the
problem and address relevant aspects to improve deployment time.

1 2 3 4 50

2

4

6

0.15s 0.17s 0.36s

1.40s

6.73s

Number of components

Av
er
ag

e
tim

e
(s
ec
on

ds
)

Figure 4.5: Edge safety application deployment at an edge network with ten low-powered
edge devices.

Figure 4.5 illustrates the average time required to generate all possible valid deployment
plans for each edge safety application component when needed to be deployed and scaled.
We simulate the generation of deployment plans ten times and illustrate their maximum

8Raspberry Pi, https://github.com/raspberrypi/firmware

73

4. On Controlling Elasticity of Edge Applications

Table 4.1: Number of eligible deployments plans (i.e., in a testbed with ten edge devices)

Edge Safety Application Generated Plans Time (seconds)

One Component 10 0.15 s
Two Components 100 0.17 s
Three Components 1000 0.36 s
Four Components 9720 1.40 s
Five Components 84,960 6.73 s

average time requirements. For the edge safety application with five components and
the given testbed, we may have up to 84,960 generated valid deployment plans (i.e., the
maximum average time is 6.73s). Nevertheless, once a single valid plan is founded, the
process is interrupted, and the application component(s) is deployed or scaled. Notice
that when the infrastructure changes, the DP module must generate all valid deployment
plans. Table 4.1 presents the maximum deployment plans generated for each software
component (i.e., container). Notice the maximum time requirement and the number of
generated valid plan changes based on the available resources at the edge as well as edge
application requirements specified at design time.

The edge safety application is configured to run and scale only at the available devices at
the edge. To simplify the scenario, we evaluate the front-end component and show the
adaption process in response to the component’s changing workload during its runtime.
The front-end is the first component that drones (i.e., edge devices) interact with the
edge application by uploading their images continuously (i.e., every 1 sec).

0 120 240 360 480 600 720 8400

50

100

150

200

Time (seconds)

R
eq
ue

st
s/
s

Figure 4.6: Workload used in the experiment.

Figure 4.6 illustrates the workload generated for the safety edge application and used in
the experiment. First, the workload increases linearly every three seconds. Afterward,

74

4.6. Evaluation

we stress-test our approach by creating concurrent requests (i.e., up to 30 requests/s)
and examine the front-end component behavior during its runtime. Such a workload is
generated by new edge devices that use the service. For instance, referring to Figure
4.6, when the component receives up to 50 requests per second, the component may
require to scale out to operate accurately since it may utilize the CPU more than 80%.
Or, when the component receives less than 50 requests per second, it may need to
scale-in to not overuse resources. Generally speaking, edge applications or their software
components may experience various workloads over time (i.e., periodically, continuously,
or unpredictable). The given workload is just an example used for testing purposes to show
our approach’s goal to automatically control edge application behavior in elasticity space.
To enable elastic behavior for the front-end component, we define elastic requirements in
Listing 4.2.

#ComponentLevel.EdgeApp01.Front_End
Co1: CONSTRAINT cpuUsage > 75
Co2: CONSTRAINT cpuUsage < 30 AND memUsage < 30
Co3: CONSTRAINT averageRes > 100
Mo1: MONITORING cost = cost.instant
Mo2: MONITORING cpuUsage = cpu.usage
Mo3: MONITORING memUsage = mem.Usage
Mo4: MONITORING averageRes = IO.response
St1: STRATEGY CASE Violated(Co1): ScaleOut
St2: STRATEGY CASE Violated(Co2): ScaleIn
St3: STRATEGY CASE Violated(Co3): ScaleOut
PR1: Priority(Co3) > Priority(Co2)
PR2: Priority(Co3) > Priority(Co1)

Listing 4.2: An example of elastic requirements: Front-end component.

Elastic requirements given in Listing 4.2 define the elastic behavior of the front-end
component. Strategy (St3) states that if the average response latency is higher than 100
ms, the component should scale-out to ensure the service’s quality. When Co1 or Co2
are violated, strategies St1 or St2 enforce specified actions to keep resource utilization in
acceptable ranges. As can be noted, the specified metrics are monitored continuously for
the front-end component. Furthermore, each constraint may have various priorities. For
instance, no matter how much the CPU is utilized, the front-end component must scale
if the provided service has high latency than a specified threshold. To that end, if both
constraints are violated, the Co3 is enforced since it is prioritized over Co2. Similarly,
Co3 is enforced first since it is prioritized over Co1.

The first graph of Figure 4.7 shows the CPU utilization by the front-end component
under the given workload (see Figure 4.6). The second graph of Figure 4.7 shows the

75

4. On Controlling Elasticity of Edge Applications

0 120 240 360 480 600 720 8400

20

40

60

80

100
Co1

Co2

C
PU

(%
)

0 120 240 360 480 600 720 840

1

2

3

4

5

St1

St1

St3 St2

St2

St2

Time (seconds)

C
on

ta
in
er
s

Figure 4.7: The CPU utilization and adaptation process.

front-end component adaption process in response to the workload. As noted, whenever
elastic constraints (i.e., Co1 and Co2) are violated, the front-end component scales up
or scales down. The adaption process occurs automatically in response to the current
workload. The front-end component scales on multiple instances (i.e., containers) to
provide the desired service quality. As can be noted, even with continually changing
the workload of the front-end component, the CPU utilization remains between elastic
boundaries. This ensures that the desired service quality is always guaranteed. The other
important aspect is to overcome resource over-provisioning. As can be noted, when the
front-end component’s workload decreases, the container number is decreased as well (see
the second graph of Figure 4.7). Besides, the front-end component’s memory utilization
remained within elastic boundaries and didn’t violate elastic constraints. The CPU of an
edge device may fluctuate up and down very quickly due to various workloads. This may
cause undesired scaling operations for the same workload. Thus, specified metrics are
monitored for five seconds to overcome the mentioned problem. The scaling operation is
enforced if the mean value violates elastic constraints. Furthermore, Figure 4.8 shows the
front-end component latency over time and the elastic constraint Co3 violation. However,
in this situation, both Co1 and Co3 constraints are violated. As noted from the elastic
requirement, the Co3 constraint is prioritized over the Co1. In this case, the strategy St3
will be enforced to keep the latency within the elastic boundary.

76

4.6. Evaluation

0 120 240 360 480 600 720 8400

50

100

150

200

Co3

Time (seconds)

La
te
nc

y
(m

s)

Figure 4.8: Front-end component latency and adaptation process.

A significant challenge remains the time required to start containerized components on
low-powered edge devices. In our case, starting safety edge application components takes
between 20 - 30 seconds. After the scaling operation is enforced, our approach checks
and waits for whether a container is started or shut down. Thus, we avoid undesired
situations such as enforcing multiple scaling operations for the same workload. Contrary
to the starting operation, the shutdown process occurs in a few seconds for all containers.
Nevertheless, edge application components can scale vertically and horizontally depending
on the available resources at the edge. The application runtime platform (i.e., Docker
Engine) manages this process and scales components within the list of eligible edge
devices generated by the DP planner.

In Figure 4.9, we show the evolution of the front-end component in the three-dimensional
space (cost, quality, and resources). The quality refers to the latency, the resources
refer to the allocated CPU (i.e., edge devices), and the cost is estimated based on the
resource allocated. In this case, the cost value is an assumption made to simulate
the price paid for resource usage. As can be noted from Figure 4.9, when the service
quality decreases (i.e., starting point with green dots), the front-end component scales by
increasing the number of resources used as well as the cost is increased. Furthermore,
the edge application scales down when the service is not used (i.e., red dot). To that
end, such an approach guarantees to meet edge application resource demands at runtime.
Other edge application components evolve in the elasticity space based on their load
during the runtime. Similarly, the configurator device monitors elastic requirements
specified at the edge application level. Thus, the configurator device considers the overall
resource consumption of edge application components. For instance, the user may specify
that a particular edge application cannot use more than 50% of available resources at
the edge.

77

4. On Controlling Elasticity of Edge Applications

Figure 4.9: Evolution of front-end component in the elasticity space.

4.6.3 Discussion

We have demonstrated through a running example that automatic scaling of edge
applications is easily achieved in the edge infrastructure with low-powered devices by
using DECENT. Furthermore, we showed that our approach helps avoid highly undesirable
situations, such as resource over-provisioning. This ensures that the available resources
are used whenever edge applications need them. Nevertheless, the elasticity features play
a key role in avoiding edge device failures due to resource over-utilization. For instance, a
low-powered edge device can easily fail when an edge application or a software component
fully utilizes device resources. Thus, specifying elastic requirements and the DECENT
mechanism helps avoid overloading edge devices.

Several assumptions inherent in our approach must be further investigated. In the current
prototype, elastic constraints do not conflict with each other. We focus on developing
novel constraints and enforcement strategies related to these applications. Simplifying
the development process of elastic specifications is among the future works we plan to
do. Thus, we plan to integrate the language into an IDE such as c-Eclipse. The c-
Eclipse framework provides a user-centric interface through which developers can describe
their applications for deployment over edge and cloud. The language integrated into a
development environment will make it easy for users to develop elastic specifications and
specify correct values to avoid the wrong configuration. Nevertheless, the following tool
will also help detect conflicting constraints that the user may select. Nonetheless, we
acknowledge that the user may specify conflicting elastic constraints, and thus, we plan
to investigate various techniques that would help identify and avoid such situations.

78

4.7. Summary

Within this thesis, our primary focus resided on enabling elasticity features at the edge
infrastructure; thus, we consider only edge applications where all components are deployed
on the edge (i.e., everything on the edge model). Accordingly, adding cloud or fog devices
will expand overall available resources and allow executing application components (i.e.,
containers) in these environments when insufficient resources are at the edge. In future
work, we will investigate performance aspects when moving edge application components
in large-scale Edge-Cloud infrastructures and controlling their elasticity from the edge.

4.7 Summary
Satisfying dynamic and stringent requirements of edge applications has become challenging
for resource-constrained edge networks. Even though edge applications can be modeled
as multi-components, dynamic workloads may cause unexpected latencies higher than the
expected response time between application components, IoT devices, and end-users. We
proposed an efficient solution that simplifies the deployment process and enables elasticity
controlling in edge applications deployed in Edge-Cloud infrastructure to overcome such
challenges. The developer and user can characterize edge applications by specifying
elasticity requirements captured and interpreted by DECENT. The DECENT runtime
mechanism then performs complex elasticity controls at the edge of a network.

Edge networks can be different in size and setting; thus, the proposed system is config-
urable by the system designer. In this thesis, we consider edge networks as resource-
constrained environments comprised of low-powered edge devices. The experiments
conducted in a realistic testbed showed the feasibility of executing elastic features on
low-powered edge devices and adapting edge application components at runtime at the
edge. Furthermore, edge applications are executed in a runtime that considers the
heterogeneity of edge resources. The proposed framework automatically re-configures
edge applications to meet their specified elastic requirements.

79

CHAPTER 5
Dependable Resource

Coordination on the Edge at
Runtime

Software components within heterogeneous devices of Internet of Things (IoT) systems,
use resources with various computational capabilities, including sensing or actuation
endpoints. However, components do not live in isolation and must be able to coordinate
with others to fulfill their goals. Satisfaction of requirements must persist in environments
that are changing, unpredictable, and potentially unknown at system design time. Edge
computers placed near IoT devices can be leveraged for this sort of control – providing
resource management for end devices within their operational context. We propose a
methodology and technical framework for engineering resource coordination at runtime,
tailored for decentralized, pervasive systems of today. Our approach represents a paradigm
shift in marrying distributed systems and formal aspects of software engineering. We
adopt goal modeling to capture objectives within the system and use bounded model
checking as the foundational technique to compute coordination plans which satisfy
device goals. This occurs opportunistically at runtime without any knowledge about the
operational status or presence of resources, but always in accordance to the edge’s own
goals. Our technical framework exhibits dependability guarantees regarding optimality
and correctness of generated plans. We evaluate resource coordination performance and
realizability on low-powered ARM-based edge devices.

The rest of the chapter is structured as follows. After a motivating example described
in Section 2.3.3, Section 5.2 gives an overview of our approach within edge computing.
Section 5.3 describes key modeling and methodological aspects, goal and modeling of
which are expanded on Section 5.4. Subsequently, Section 5.5 illustrates bounded model
checking for resource coordination. Section 5.6 provides an assessment of the realizability

81

5. Dependable Resource Coordination on the Edge at Runtime

of the proposed approach; related work is considered in Section 5.7, and Section 5.8
summarizes the chapter.

5.1 Introduction

Internet of Things (IoT) systems integrate heterogeneous devices, computing infras-
tructure, and cloud services with their ambient environments. New challenges and
opportunities arise as rapidly growing cloud computing, mobile devices, sensors, and
networks constitute larger ensembles of systems [DGC+16]. A neighbourhood, for ex-
ample, may be saturated with hundreds of networked devices providing information
to roaming humans, by combining information as they become available in the city
environment. Dynamic resource management [GBMP13] is essential to achieving such
pervasive behavior – it enables devices and services making up the Internet of Things
(IoT) to perceive available resources, configure them and utilize them. Such resources
may refer to computational, sensing or other types of domain-specific resources that
software-intensive devices may take advantage of to achieve their goals.

IoT applications differ in type and complexity, with multiple system components deployed
in diverse domains and environments which are often not known beforehand. Moreover,
software-intensive components within devices making up the system, do not live in isola-
tion and must be able to coordinate with others to fulfill application requirements [LC88].
Correct satisfaction of requirements must persist in environments that are changing,
unpredictable, and potentially unknown at system design time.

Resources within IoT applications can have various computational capabilities, includ-
ing sensing or actuation endpoints, storage or processing facilities. Often, those are
architecturally abstracted as software services [MLM+06], referring to some functionality
that different client IoT devices can reuse for different purposes. The concept of an IoT
resource amounts to blurring the lines between software services and sensor values or
actuation endpoints.

We are not concerned with mechanisms of accessing resources, their interfaces or policies
here, but with the fact that different interdependent resources may be required to fulfill
some objective of a software component residing in a device. Dependencies may be in the
form of certain constraints – a resource to be operationalized may require the output of
another, but its availability makes other resources additionally available. Dependencies
may be specified in an implementation- and language-agnostic manner, and annotated
over arbitrary resources that an application may use. We adopt an everything-as-a-service
(XaaS) abstraction to uniformly represent physical things, hardware and software resources
as microservices, irrespective of their specific nature [BSH+17, GTK+10, JCJL14].

Recent developments within distributed systems have led to the the architectural place-
ment of a computing entity closer to the network edge, close to IoT end-devices, thus
better satisfying system-wide goals such as high availability, performance, or privacy.
Such edge entities may offer computation and control to local devices [RGXZ17]. Within

82

5.1. Introduction

a neighborhood, for example, IoT devices may utilize resources of a local edge node
benefiting from high connectivity to it as well as its awareness of other IoT devices
in its scope. This allows an edge device to act as a mediator among devices, locally
coordinating them in order to satisfy their resource needs. We build on the foundational
edge concept, where edge computers are placed near IoT devices, within their local
administrative domain or wireless network. We further advocate decentralization, as
the edge is a first-class entity in our approach, responsible for IoT devices within its
scope but bearing no dependencies for coordination to other edge nodes or the cloud.
We recognize that edge computing means different things to different people; we identify
an edge node as a low-powered computer part of an IoT deployment. The edge node
is in the scope of connected devices whose software stacks are limited. We consider
low-powered edge devices which are ARM-based, and resource constrained IoT devices
such as microcontrollers populating the system as is the case in deployments of networked
actuators and sensors in smart cities.

In this thesis, we propose a methodology and technical framework for engineering resource
coordination for edge-enabled IoT. Our coordination approach targets decentralized multi-
edge systems, where IoT devices advertise and request resources at their local edge node.
If an IoT device requests an edge node for a resource objective which cannot be trivially
obtained from resources readily available, some combination of resources must be derived.
To solve this, coordination on the part of the edge node computes a plan, which the
requesting device can use to fulfill its goal, in accordance to the edge’s goals. Our concrete
contributions are as follows.

• We provide a methodology where semantic annotations are specified at design time
to arbitrary resources within an IoT system. Those record what a resource requires
to be operational, and what effects its potential operationalization has on other
resources or context values. Subsequently, objectives of entities within the IoT
system are specified – from a requirements engineering perspective, our approach is
goal-driven since we use edge and device goals to drive coordination of resources at
runtime.

• When the IoT system is operational, a SAT/SMT solver situated on a low-powered
edge device, leverages bounded model checking techniques at runtime to fulfill
objectives of local IoT devices by coordinating available resources in its scope based
on the active context.

We instrument coordination as a form of service composition [RS04], but tailored for the
IoT. While building upon the significant state of the art of traditional service composition,
our resource coordination technique differs for three key reasons:

1. We consider elementary IoT resources as microservices – instead of using a ser-
vice description language [ABH+02, CDK+02, MVH+04], we adopt a lightweight

83

5. Dependable Resource Coordination on the Edge at Runtime

approach suitable for microservices inherent in modern IoT architectures and
applications.

2. We allow quantifiers and integer linear arithmetic for specification due to the IoT
domain, and

3. We target low-powered ARM-based edge computers for deployment.

Our approach represents a paradigm shift in marrying distributed systems and formal
aspects of software engineering. Specifically, we adopt goal modeling to model objectives
within IoT. We use bounded model checking as the foundational technique to compute
coordination plans which satisfy device or edge goals. This occurs opportunistically at
runtime, without any knowledge about the operational status of the system or which
resources are present at the system’s design time. The resource coordination facilities we
provide are dependable because if there is a solution to a resource coordination problem
for a device, the technique we utilize will provide a plan for it, and the plan will be
optimal. This is in contrast to other approaches utilizing other coordination techniques
such as based on AI [ASD18a, HN01, GNT04]. We acknowledge that the technique we
adopt is computationally expensive, but offers dependability guarantees. To this end, our
evaluation targets resource coordination performance and realizability on low-powered
ARM-based edge devices.

5.2 Coordination at Runtime on the Edge
IoT applications can be of various types, software stacks, and complexities, with multiple
system components deployed in diverse domains and contexts. Those, however, do
not live in isolation and must be able to coordinate to fulfill application or end user
requirements [LC88]. A software component hosted on some device for instance, may
require a reading from a sensing endpoint in order to perform some computation and fulfill
its objective. This problem is exacerbated within IoT deployments, as applications need to
operate on diverse infrastructures and integrate heterogeneous components from various
providers in a long-running system, with possibly conflicting goals between components.

5.2.1 IoT Resources, Services and Goals

IoT software components provide data, sensing and actuation, as well as computational
resources to other software components, which can be abstractly represented with
the concept of an IoT resource [JCJL14] Within an IoT system, components can have
different software stacks but still interact – this is widely achieved by software services, the
architectural abstraction permeating many systems today [Erl05]. A systems’ development
is then based on writing custom business logic which utilizes services. As IoT components
are resource-constrained, services often take the form of loosely coupled microservices,
communicating with lightweight methods. Examples of this are typically found as
sensing or actuation endpoints – a temperature sensor responds with a temperature value

84

5.2. Coordination at Runtime on the Edge

when invoked for instance, or a smart door unlocks a door when the security system
requires it to. Such functionalities may be abstracted as resource microservices, that the
software-enabled devices make available over their local scope such as a wireless network.

Resources that an IoT device may need from others (nearby), need to be appropriately
composed and communicated to the device, in order for it to fulfill its objective. For
example, computing a local weather forecast (i.e., an objective) in a smart agriculture
setting may require temperature readings (i.e., resources) from available devices across
a crop field. In the general sense, resources available within an IoT scope –some local
context– need to be coordinated, with the IoT device’s goal in mind. This coordination
essentially amounts to planning as understood within self-adaptive systems: actively
setting in motion configuration changes to satisfy certain objectives, in this case the
goal of an IoT device which depends on other IoT devices’ resources in its local scope.
Satisfying an IoT component’s goal however is challenging, as devices are deployed in
changing and unpredictable (i.e., at design time) environments. Assumptions made at
system design time about the availability or location of resources that a device needs may
be violated. Thus, facilities providing control and coordination must be performed at
runtime and based on the current environmental configuration, by ensuring that the IoT
system can autonomously react to changes in different contexts in a dependable manner.

5.2.2 Coordinating Resources on the Edge

Centralizing computation of coordination – typically in the Cloud and evident in today’s
IoT-Cloud architectures is one solution but requires cloud control structures to be
always available and within low latency. However, novel functional and non-functional
requirements that have arisen in IoT systems dictate computation and control to be
situated locally near devices. We advocate that since the edge computing entity is
closer to end devices (and IoT application users), there is an opportunity for situating
coordination there – something realized by empowering an edge computer to actively
coordinate resources of IoT devices within its scope. We note that this fits the domain
particularly well; IoT devices are found within a local scope, such as a local wireless
network or a deployment within a limited geographical region (e.g., a city neighborhood).
As such, placing an edge computing entity close to a set of locally-scoped devices providing
coordination facilities is highly feasible.

Distributed systems mechanisms relevant to process coordination and control, such as
service engineering and resource management must be adopted to identify, discover
IoT resources. Methods developed within formal aspects of software engineering, such
as requirements reasoning, model-driven planning and self-adaptive systems are then
adopted in our approach to enable coordination of available resources at runtime. Models
kept at runtime, facilitate coordination and the determination of how control actions
can satisfy goals within the system. Regarding architectural deployment, the edge is a
first-class entity in our approach, acting as a manifestation of a control agent responsible
for receiving IoT device resource requests, observing contextual information and inducing
appropriate actions to satisfy them.

85

5. Dependable Resource Coordination on the Edge at Runtime

5.2.3 Instrumenting Coordination

Figure 5.1 provides a birds-eye view of our approach to coordination at runtime on
the edge. The capabilities offered by IoT devices’ software stacks are abstracted as
resources (i.e., microservices) and made available through the network, in accordance
to the state-of-the-art. In our approach, those are specified at design time for each
participating software-enabled device, together with possible goals that the device may
seek to achieve (1). The resource configuration of the system, as well as the environment
that the system may be found when operational is unknown at design time. At runtime,
IoT devices are found within some local scope, and may interact with others to utilize
their resources. However, device goals may have interdependent requirements on other
resources, so coordination is required to fulfill a requesting device’s functionality. An
edge node, situated close to the IoT end-devices and managing the local IoT scope is
responsible for coordinating available resources, at runtime (2). Participating devices
then interact according to the generated coordination plans such that their goals are
achieved (3).

Resource coordination occurs opportunistically at runtime, for which we propose a
technique based on bounded model checking, offering guarantees of correctness and
optimality of the generated plan which satisfies a requesting IoT device’s goal. The
resource coordination we propose extends traditional service composition [SQV+14] and
brings it into the IoT context; (i) we adopt a lightweight approach suitable for resource-
constrained IoT microservices, (ii) we allow quantifiers and integer linear arithmetic for
specification, and (iii) we target low-powered ARM-based edge computers for deployment.

5.3 Domain Modelling and Methodology

In this section, we provide basic abstractions and methodological principles necessary
to instrument coordination within an IoT domain we are situated in. For formalization
purposes, we assume a global set of names or key-value pairs Π that appear throughout
the system1. We begin by outlining key elements and assumptions of our approach, upon
which we define a methodology that the system designer follows to instrument resource
coordination at the edge.

IoT Resource. Architecturally, IoT devices are software components deployed in differ-
ent environments, each containing resources. Generally, [BSH+17, GTK+10, JCJL14]
we assume that an IoT system is architecturally composed of processes which are mi-
croservices. Such IoT microservices, when invoked yield resources; however, successful
invocation entails meeting the requirements of a microservice, which may depend on
others. We will refer to microservices and the resources that they yield interchangeably.
This may occur for several sequences of resource invocations, thus motivating the need
for coordination; knowledge of which resources are needed to operationalize a resource

1Without loss of generality, we take Π to be comprised of atomic propositions, essentially mapping
identifiers and their values to true statements.

86

5.3. Domain Modelling and Methodology

Edge Node

Io
T

R
es

ou
rc

es
ActuationSensing

Microservices

Coordination IoT Context

Interaction

Edge
Goals

G

IoT
Device
Goals

G

Coordination

IoT Devices
Runtime Edge Scope

…

…

(1)(2)

(3)

Figure 5.1: Runtime Resource Coordination on the Edge: Overview.

that an IoT device requires entails coordination. IoT resources within our approach
are implementation- and language- agnostic; what we require is modeling of their pre-
conditions (i.e., what they require to be activated), and their post-conditions (i.e. how
their successful activation changes some context).

For our example, we assume that three exemplar resources are present in the IoT system of
the city, highlighting different modelling aspects. A recycling truck has a recycling_truck
resource, which empties waste cans in a neighborhood when it is present. A smart
traffic_light ensures that municipal vehicles –such as the recycling truck– are met with
green lights, and an irrigation actuator in a park is responsible for watering it when
required. In depth treatment of resources will be described in Section 5.3.

Runtime Edge Context. In edge computing architectures, IoT end-devices interact
with their environment, where the edge device is by definition located within the local
domain of certain IoT devices – one can take that as the devices being in the logical scope
of the local edge node. The status of various devices, resources as well as environmental
information observed during system operation and that the edge node is aware of is
referred to as the runtime edge context. Edge context is assumed to be local to some edge
node (Figure 5.1). We identify as C ⊆ Π the runtime edge context, comprising of a set of

87

5. Dependable Resource Coordination on the Edge at Runtime

key-value pairs within an edge scope. A valuation of C refers to a specific moment in
time – key-value pairs reflect the runtime physical or logical environment. While keys are
unique identifiers, the domain of their values can range. Specifically, we allow booleans, a
domain of a finite set, or arbitrary integers. Valuation may change because of monitored
information (i.e., resulting in a change to a sensor value) or due to exogenous to the
system stimuli. However, it may also change due to resources of IoT devices (i) if a
resource is made available to others, this is reflected in C, and (ii) if it is operationalized,
it may change values it its context. We assume appropriate instrumentation for correct
accounting of the various values within the edge context.

For our example, neighborhoods and parks are edge scopes, in each of which an edge
node is placed, accounting for the current context and IoT devices that may be nearby,
and as we will observe later, coordinate their resources. We assume that waste_cans and
traffic_light are two identifiers within the edge context of a neighborhood, values of which
are populated by sensors in the waste cans and a traffic light IoT device, respectively
(Formula 5.1). In the park, we assume that a sensor detects soil_moisture and another
senses if the park is crowded. (Formula 5.2). Within a neighborhood context, we can
observe different domains for values of its identifiers: while waste_cans can be true or
false, a traffic_light can be either green or red. Differently, soil moisture in a park can be
some integer value:

Cneighd =
{

waste_cans : bool, traffic_light : {green|red}
}

; (5.1)

Cpark =
{

crowded : bool, soil_moisture : int
}
. (5.2)

IoT/Edge Goal: An objective which an IoT device or edge node seeks to achieve –
satisfaction of which may depend on available resources at its local environment. Goals
capture, at different levels of abstraction, the various objectives entities within the IoT
system under consideration should achieve, or constraints of various context values within
their control. A goal for an IoT or edge device is a logical formula over the set Π.

Back to our running example (shaded boxes within Figure 2.4), parks should be watered
but this should not occur when they are crowded with people – this entails an objective
of the edge node placed in the park. Similarly, a neighborhood edge node should ensure
that if municipal vehicles are present, it should be ensured that green traffic lights
allow them to pass. The overall city or district containing parks and neighborhoods,
imposes constraints, such as water management. Such goals will be modeled precisely in
Section 5.3.

Design Time Methodology. Our approach entails engineering resource coordination
tailored to IoT systems, and it methodologically spans both design-time and runtime.
Illustrated in Figure 5.2 by leveraging design time specifications, coordination is enabled
at runtime, by the following steps:

88

5.3. Domain Modelling and Methodology

Edge Goals

IoT Resources

ProvidesRequires

Microservice

Device Goals

Coordination
Configuration

Coordination
Parameters

...

Privacy
Policy

IoT
Resources

Goal Model
G

G

Resource
Coordination

Design Time

Runtime

Figure 5.2: Engineering Coordination: Design time Methodology.

1. Modelling IoT resources. Language-agnostic, semantic annotations to arbitrary IoT
resources of participating devices are specified. Such annotations record what a
resource requires to be operational, and what effects its invocation has on other
resources or context variables. This step will be described in Section 5.4.1.

2. Modelling Device and Edge Goals. Objectives of the various entities active within
the system are captured in a goal model, which facilitates goal refinement, resolution
of conflicts and goal interdependencies. This step will be described in Section 5.4.2.

3. Specification of runtime coordination parameters. The technique employed at
runtime to satisfy resource requests from IoT devices, is deployed on a resource-
constrained edge device. As such, depending on the particular deployment setting,
coordination parameters regarding performance aspects are specified per the overall
application requirements. The coordination technique is described in Section 5.5,
while useful insights about parameterization will be illustrated in Section 5.6.

A further necessary step –out of scope of thesis – are application-specific as well as
architectural deployment aspects. For a complete instrumentation of coordination, edge
nodes must be deployed and be responsible for certain scopes (e.g. neighborhoods in a
smart city). Communication and network management must be handled as well. Overall,
we consider such aspects as orthogonal to our approach, and we assume they are in place.

89

5. Dependable Resource Coordination on the Edge at Runtime

5.4 Resources and Goals within IoT

Resources in an IoT context may be arbitrary, provided by heterogeneous software
components deployed on devices from various vendors and architectural stacks. Within
the overall IoT collective, IoT devices and edge nodes alike, may have objectives that they
seek to achieve. In this section, we firstly describe how IoT resources can be generally
represented, particularly with respect to what they require to be operationalized, and
what their invocation entails for others. Secondly, we adopt requirements engineering
methods to capture objectives throughout the system by goal modeling.

5.4.1 Modeling Resources within IoT

To model resources within an IoT system, we advocate the principle of procedural
abstraction: capturing knowledge of IoT process internals is impractical in practice, but
considering the requirements and effects of IoT processes is feasible. For example, one
does not need to know how a sensor array calculates mean temperature based on a
spatial dispersion of IoT sensors, but only that by invoking some software service, the
current average temperature is obtained. To this end, as noted in Section 5.3, we assume
that a software-intensive IoT system is architecturally composed of processes which are
microservices. Such IoT microservices, once invoked, yield resources; however, successful
invocation entails meeting the requirements of a microservice, which in turn may depend
on others. This is where the use of pre-conditions and post-conditions is beneficial, which
we informally refer to as what an IoT microservice requires, and what it provides. Pre-
and post-conditions are first-order logical formulae as parameters, with propositions
in set Π. Quantifiers (over finite sets) and integer linear arithmetic may be used for
specification:

• Requires is a pre-condition directive that outlines what conditions should be true in
a given context for a resource to become operational, essentially its requirements.

• Provides refers to a post-condition directive that outlines what conditions are true
as a result of an operationalization of a resource.

More formally, a resource is a tuple λ =< Rλ,Pλ > where Rλ and Pλ are first-order
formulae of input and output parameters, respectively. Parameters themselves are sourced
from the global set of propositions Π, and without loss of generality, are assumed to be key-
value pairs. We slightly abuse notation and refer to parameter if parameter = >. Given
the above, when a resource λ is invoked with input Rλ, λ returns output p ∈ Pλ. Requires
and provides directives are specified at the system’s design time, for every resource. For
presentation purposes, we will write [Rλ] λ [Pλ] and λ =< Rλ,Pλ > interchangeably.

[
municipal_vehicle

]
allow_vehicle

[
traffic_light = green

]
. (5.3)

90

5.4. Resources and Goals within IoT

Given the above, we can model the resources of our smart city example. Recall that
traffic lights deployed facilitate municipal vehicles such as ambulances or recycling trucks,
so that they are presented with green traffic lights. This traffic light functionality can be
represented as a resource (i.e., that a traffic light IoT device offers), setting the traffic light
to green when applicable. Formula 5.3 intuitively states that when a municipal_vehicle
context value is true, the light turns green. The context value within Cneighd. is assumed
to be set by e.g. a truck when it is within the local scope of the traffic light. The
functionality of a recycling truck (i.e., as an IoT device) can be similarly represented in
Formula 5.4.

[
traffic_light = green
∧ waste_cans = full

]
recycling_truck[waste_cans = empty]. (5.4)

Quantitative values can also be captured in resource parameters – for this purpose, we
support integer linear arithmetic. For example, the irrigation resource present in the
park (i.e., due to an IoT device responsible for irrigation), should be activated when
detected soil moisture is below a certain threshold and when the park is not crowded.
The irrigation resource can then be modeled as in Formula 5.5. When some context value
crowded is false and some other soil_moisture is less than 20, irrigation – if activated –
will result in setting the latter to 20; those refer to Cpark.

[
¬ crowded ∧
soil_moisture < 20

]
irrigation

[
soil_moisture = 20

]
. (5.5)

In general, resource models in IoT [DBBM11] are widely established in literature and
can be utilized to model resources as the formulae tuples < Rλ, Pλ > we advocate, since
the model is quite generic. Within parameters, propositions of < Rλ, Pλ > formulae can
include (i) location, describing the logical physical domain where a resource resides, (ii)
administrative domain, describing a repository permitting authentication or authorization,
(iii) type, characterizing a resource instance as a sensor, actuator or a logical entity, or
(iv) capability, providing special abilities that a resource enjoys, based on some domain
ontology. All of those, including quantitative cases, can be encoded as < Rλ, Pλ >
parameters and exposed in the namespace of an edge context using the method previously
described.

5.4.2 Modelling Goals within IoT

Recall that both IoT devices as well as edge nodes may have goals; in our context, goals
are objectives within the system that various entities seek to achieve. The role of the
edge is to facilitate goal achievement for devices within its scope. Depending on the
general state of the system, other edge nodes’ goals may be affected in turn.

Goal-oriented modeling, widely used in requirements engineering [FFvLP98, vL09a,
CSBW09, LMSM10], is a technique that can capture, clarify, and enable analysis of

91

5. Dependable Resource Coordination on the Edge at Runtime

system requirements. The structured form of a goal model allows refinement of system
goals to subgoals, prioritization of requirements, as well as resolution of inconsistencies
that may be due to conflicting stakeholder viewpoints. Our intuition to model goals in
the IoT-edge context is that edge nodes in IoT systems are often arranged in a hierarchy,
where the cloud is the global or root entity representing the whole system, and edge
computers are found within that hierarchy with IoT devices as end nodes. Notice that
this structure is reflected in our running example, where a district may contain multiple
neighborhoods and parks each having a logical edge node. IoT devices are within the
scope of an edge entity leading to a tree arrangement where IoT devices are leaves.

AND

AND

…

 ∀neighborhood: waste_cans==empty
 ∧ ∃! park: park.irrigation

G

irrigation ⊕ recycling_truck
G

 allow_vehicle
GNeighborhood

Park

District

waste_cans==empty
GRecycling Truck

Figure 5.3: Goal model capturing objectives of edge and IoT devices.

In our approach, we adopt a form of discrete goal modeling to capture objectives of
devices, edge nodes as well as their relationships2. As shown in the goal model of
Figure 5.3 which encodes system concerns of the running example, each goal can be
refined into subgoals through an and-or decomposition. At the leaf-level of the goal
model reside IoT device goals – each leaf describes an objective of an IoT device. As
with specification of pre- and post-conditions, a goal for an edge device is an arbitrary
first-order logical formula E over the set of global set of names Π; for an IoT device, we
denote its goal as G. Quantifiers (over finite sets) and integer linear arithmetic may be
used for specification.

2Note that weights can be assigned to edge nodes if quantitative priorities are desired, leading to a
weighted goal model [VL09b] and further constraints.

92

5.5. Dependable Resource Matchmaking

Goal modeling is used to (i) provide an indication of satisfaction of the various system
objectives, (ii) provide a structured way of managing relationships within the edge-
intensive system and (iii) to coordinate appropriately devices within edge scopes. The
satisfaction status of each (sub-)goal in the goal model (e.g., Figure 5.3) can be determined
by observable run time information or by active operations of IoT devices. The current
context status on every edge node captures this. For example, the status of waste cans
in a neighborhood can either be monitored (e.g., by sensors in the waste cans) or set
to “empty” by a recycling truck. The goal model structure intuitively shows how other
sub-goals are affected – observe that if a recycling truck empties the waste cans in a
neighborhood, its respective goal will be affected. Values of subgoals are propagated
upwards the goal model (i.e., the edge structure), affecting satisfaction of parent goals.
Assuming a variable with values of a known finite set of neighborhoods in a district, the
district goal states that for every neighborhood, the waste cans should be empty, and
that there is exactly one park such that the irrigation is true. Similarly, a park goal
captures the fact that irrigation should not be true at the same time where a recycling
truck is present in its scope.

Edge goals govern how they coordinate resources for requesting IoT devices. Since the
runtime edge context is unknown and coordination occurs at runtime, goal satisfaction
happens opportunistically; edge nodes’ and devices’ goals may be satisfied depending
on presence of other devices and runtime context values. This in turn, may affect other
sub-goals of the system – for example, if the waste cans are emptied in a neighborhood
and this happens for every neighborhood in a city, the district’s goal may be satisfied
(first clause in the conjunction in Fig. 5.3). On the other hand, goal relationships between
edge nodes are not accounted for coordination as this would impair system performance
and incur centralization – each edge in a decentralized manner imposes its own goals
within its scope, but their resulting satisfaction is propagated to others as sub-goals.
Specification of a goal model is left to the system designer, which may specify arbitrary
goals for entities in the system.

5.5 Dependable Resource Matchmaking

As we observed, the edge as the coordinator within its active runtime context, receives
a request from a device seeking to achieve some goal which depends on other IoT
resources or context values. Coordination then amounts to figuring out how to combine
available resources or context values to produce a plan, which is then be returned to
the device. We call this process resource matchmaking, as it entails making a match
between the requesting device and other devices, such that their resource combination
can achieve a goal. Matchmaking as described is a complex problem as it amounts to
NP-completeness; in this section we present the technique we utilize, which results in
dependability guarantees; solutions are provided always correctly and optimally (if they
exist).

To tackle resource matchmaking, after first formally defining the problem we demonstrate

93

5. Dependable Resource Coordination on the Edge at Runtime

how it can be mapped to a state-transition structure capturing evolution of resources in
the system. Subsequently, we reduce the matchmaking problem to reachability within
this state-transition structure. Finally, we provide a conjunctive normal form (CNF)
encoding of the problem that is suitable as input to a solver, upon which bounded model
checking [BCC+99] is used to solve it, yielding an optimal solution.

5.5.1 Resource Matchmaking Problem

Recall that a resource is a tuple λ = < R,P > where R and P are first-order formulae of
input and output parameters, respectively. We assume that when a resource λ is invoked
with the input formula R, λ returns output P (i.e. resource microservices work correctly).
To decide an invocation relationship from resource λ1(R1,P1) to λ2 = (R2,P2), it is
necessary to compare outputs P1 of λ1 with inputs R2 of λ2. To establish a relationship,
the requirements R2 of λ2 must be met. Generally, given a set of available resources
and a request resource λreq, we seek to find a resource λ such that Rλreq ⊆ Pλ. However,
there might be the case that there is no single resource satisfying the requirement of the
requesting resource. In that case, we seek to find a sequence λ1 · · · λk of resources where
in each step invocation of a resource λi occurs and the desired objective is eventually
achieved. As there can be many such sequences, the optimal solution for the resource
matchmaking problem is to find one with the minimum value for k.

5.5.2 Resource Evolution and Device Goal Reachability

To enable automated reasoning, we represent the evolution of resources in a state-
transition system generally known as a (doubly) Labelled Transition System (LTS [CGP99])
which is a tuple K = (S,Π,Λ,L,A, I,G) where:

• Π is the global, finite set of atomic propositions,

• S is a set of states,

• L : S → 2Π is a function that labels each state with the set of propositions Π that
are true in that state.

• Λ is a set of transition labels capturing resources,

• A ⊆ S × Λ × S is a 3-adic accessibility relation. If p, q ∈ S and α ∈ Λ, then
(p, α, q) ∈ A is written as p α→ q,

• I ∈ S is an initial state and G ∈ S is a device goal state.

States of K capture values (or parameter instantiations) while transitions record how
those can change by moving from one state to its successors by operationalizing resources.
Each state declaratively represents an instantiation of resources and context values (i.e.,
of Π) at some moment of time. The accessibility relation A between states shows how

94

5.5. Dependable Resource Matchmaking

parameters instantiations and context values change moving from a state s to another s′;
it corresponds to the transitions of K. Intuitively, starting from an initial state of the
system representing an initial configuration, application of resources λi generates states
according to their Ri and Pi and context values.

Given an incoming request for G from a device, the initial state I ∈ S captures context
values at the edge node at the time of the resource request (i.e., at runtime). The goal
state G captures some configuration where G holds. Solving the matchmaking problem
as presented, amounts to reachability [EMB11] of G within dLTS K, illustrated in the
following.

5.5.3 Resource Matchmaking with Bounded Model Checking

As we observed, given a request for a goal G from a device, the desired outcome for
the matchmaking problem is to find a sequence of resource applications which starting
from an initial state, bring the system to a state where G is fulfilled. In the following,
we show how this reachability problem [EMB11] can be solved with bounded model
checking [BCC+99] through an encoding to a CNF formula.

To formalize the reachability problem, it is first necessary to introduce the following
definitions. Given that si ∈ S, 0 ≤ i ≤ n and αi ∈ Λ, a finite computation is defined as a
finite composition of transitions:

s0
α1·..·αn−−−−−→ sn =def s0

α1→ s1
α2→ ... sn−1

αn→ sn.

The concatenation α1 · α2 · . . . · αn of labels (representing resource invocations) is called
a trace originating from s0. The sequence of states s1 · ... · sn−1 is called the sequence of
traversed states. State s0 is the originating state of the sequence and state sn the end
state. Reachability entails the existence of a computation I · s1 · ... · sn−1 · G. Each state si
along the computation captures available values (or resource parameter instantiations) in
time instant i. The desired outcome is the respective trace; if the requesting IoT device
invokes the resources indicated by the trace in series, it can reach G, where its goal G is
fulfilled.

Recall that instantiated parameters and context values as propositions that live on states
S are drawn from set Π, while labels (corresponding to resources) from set Λ; a relation A
has the form S ×Λ×S. The fundamental intuition to obtaining the trace, is establishing
the relation A that represents accessibility from a state s to its subsequent state – let
s′ be this subsequent state. To do this, we exploit the fact that a resource application
operates on Rλ, in a way that yields Pλ in the next state s′. Let T be a helper function
yielding true if a label λ ∈ Λ and Pλ can be combined leading to Rλ. We represent as
sΠ the propositions describing state s ∈ S as a conjunction. E is the formulation of the
goal of the edge node where coordination takes place. Establishing A starting from the
initial state I, traversing states of the computation and eventually reaching the device
goal state G amounts to the following formula encoding the computation:

95

5. Dependable Resource Coordination on the Edge at Runtime

(IΠ ∧ E)
∧

0≤i<k
T (sΠi∧E,Λi+1, s′Πi+1∧E)

∧
GΠ ∧ E. (5.6)

Formula 5.6 starts with a conjunction of a set of propositions describing the initial state
conjuncted with the edge’s goals (recall that E itself is a first-order logical formula).
Subsequently, it encodes the existence of a computation whose transitions are labeled
according to resources Λ. Each state s ∈ S of the computation is a conjunction between
the edge goal formula E and propositions describing the state. Finally, a goal state (GΠ)
is reached while maintaining satisfaction of the edge goal E. The edge goal acts as a
further constraint on every computation state – it must be always fulfilled as resources
are invoked. The device’s goal is the final state reached, while the edge’s goal as well as
the resource invocations govern how it is reached.

Note that the index k represents the length of the trace. Formula 5.6 is true if and only
if there exists a computation of length k from state I to goal state G of the dLTS K.
Notice that the formula is a conjunction of a finite collection of literals, thus in CNF
form. Following the definition of Formula 5.6, a SAT/SMT solver can be used to check
its satisfiability [BCC+99], for incremental values of n. The smallest n where the formula
is satisfied, represents the optimal solution. The respective trace represents the solution
sequence of resource invocations.

traffic_light=red
waste_cans=full
 ...
allow_vehicle

a
traffic_light=green
waste_cans=full
 …
allow_vehicle

b
waste_cans=empty
 ...
 allow_vehicle

c

...
allow_vehicle recycling_truck

Device Goal Current Edge Context

k=2

Figure 5.4: dLTS fragment showing an evolution of resources to a device goal. The edge
goal is in bold, as a constraint through the states of the computation.

For our resource coordination purposes, we essentially ask for an assignment that satisfies
the constraints of each resource, leading to the fulfillment of the device goal. The values
of the transitions consist the coordination plan, consisting of the resource invocations
that the requesting device must perform to satisfy its goal. Formally, the plan returned is
the concatenation α1 ·α2 · . . . ·αn of labels (representing resource invocations) amounting
to the trace originating from I and leading to a goal state G where the device’s goal G is
satisfied. Certainly, if there exists no satisfiable solution, a plan cannot be computed. If a
plan exists however at a minimal length k, there are guarantees about optimality – there

96

5.6. Evaluation

is no plan at length less than k that satisfies the goal. Given a coordination problem,
computation of a plan in practice can be achieved by employing a SAT/SMT solver, from
which a satisfiable assignment of Formula 5.6 is requested.

Figure 5.4, shows the dLTS corresponding to our example; state (a) captures the current
edge context, where a recycling truck arrives. Recall that the goal of the truck is to
empty the waste cans, which it communicates to the local neighborhood edge node.
The plan computed at the edge node, shows that an invocation of allow_vehicle can
enable recycling_truck, which will lead to the satisfaction of the truck’s goal. Note how
allow_vehicle is present on every computation state as it is a constraint imposed by the
edge node.

5.6 Evaluation
For evaluating the proposed approach, we developed tool support and a proof-of-concept
implementation based on the CVC4 SMT solver [BCD+11b]. Noting the absence of
approaches utilizing SMT solving on the edge, we deployed the prototype on low-powered
ARM-based devices representative of edge nodes situated typically close to IoT devices
in wide area settings such as smart cities. The technique we advocate for resource
matchmaking is based on bounded model checking, a highly computationally expensive
operation which is usually performed at design time. However, we bring it to system
runtime. To this end, our evaluation goals target realization and feasibility of our
approach for coordinating resources at runtime for the edge-enabled IoT. Concretely, we
aim to:

• Investigate feasibility over concrete deployment on low-powered, ARM-based edge
devices;

• Assess performance of SMT-based matchmaking over hard matchmaking problem
instances.

Investigating the feasibility of the approach is crucial for showing the applicability of
the proposed framework in real-life scenarios. Therefore, we investigate solving problems
with different complexities, which results in different formula sizes, and coordination
times required to achieve user or device goals at the edge. Naturally, as problem size
increases, so does the formula and the coordination time. We present our evaluation
setup on Section 5.6.1, and experimental results obtained in Section 5.6.2. We conclude
with a discussion in Section 5.6.3.

5.6.1 Experiment Setup: Synthesized Resources

Our experiment setup entails (i) generating a suitable dataset and (ii) deploying the
prototypical framework on low-powered devices which serve as edge nodes. To obtain a

97

5. Dependable Resource Coordination on the Edge at Runtime

suitable matchmaking dataset for our experiments, we automatically generate problem
instances, each containing (i) a set of IoT resource specifications, (ii) some IoT context
assumed to be active when the procedure is invoked, and (iii) some resource goal
that a device is assumed to have requested. We synthesize matchmaking problem
instances, varying the number of resources available, resource pre-conditions, and number
of operators among them, given a global set of names Π, where |Π| = 100. Specifically,
our experimental dataset comprises of the specification of a set of randomized problem
instances in turn each comprising of:

• A set of resources X assumed to be available within an edge scope. Each is modeled
per Section 5.4, as < Rλ, Pλ >. The cardinality of X ranges from 10 to 50, yielding
different problem instances.

• For each problem instance I, cardinality of Rλi
sets for every resource i ∈ I ranges

from 5 to 15 of parameters, which are randomly combined with a number of
operators: 10 ≤ |Rλ| ≤ 15. Operators are inserted randomly within Rλi

. Resource
post-conditions are a conjunction of five parameters: |Pλ| = 5. Rλ, Pλ ⊆ Π.

• A context description, referring to the set of context values when the edge node
initiates the coordination process. We assume a conjunction of |C| = 20 such
context values, where C ⊆ Π.

• A random device goal G, which is a conjunction of five elements of Π.

From the synthesized problem instances, we select ones that are satisfiable, to ensure
coverability of the whole process of computing coordination plans presented in Section 5.5,
and to reduce noise in the results. Throughout the process, we use boolean operators
only, to simplify the automated resource configuration generation, since finding satisfiable
instances on random SMT propositions amounts to a random search. Moreover, to ensure
uniformity we consider instances where the optimal plan is found at a bound of 5 (i.e.,
k = 5 ref. Section 5.5). Subsequently, we deploy the reasoning machinery on an edge
device.

Our prototypical implementation employs the procedure described in Section 5.5 and is
deployed on a low-powered ARMv8 R-Pi3 device featuring a 1.2GHz CPU and 1GB RAM,
serving as the edge node. Given a resource configuration, the edge node’s functionality
– implemented in Python and C– consists essentially of the following steps: (i) the
appropriate bounded model checking formula representation (Formula 5.6) is encoded
depending on the problem instance, (ii) the CVC4 solver is invoked upon it, and (iii) the
plan is computed from the satisfiability assignment of the solver. Functionality is exposed
through lightweight REST, with which participating devices in the edge scope update
context values and request coordination plans. The procedure described is invoked for
every requesting device, resulting in the computation of a coordination plan. We ignore
network overhead. As we observed in Section 5.5.3, the coordination plan consists of the
resource invocations that the requesting device must perform within the edge scope to

98

5.6. Evaluation

satisfy its goal. Subsequently, we evaluate how such instances perform in practice by
simulating requests from devices to the edge node. Device requests are drawn from the
problem instance dataset of the previous step.

5.6.2 Experiment Results: Resource Coordination

To obtain experiment results based on the synthesized dataset, we simulate requests from
devices, to investigate performance of the various problem instances, and we account for
the time taken to coordinate the resources in every problem instance. We ignore network
overhead, and we report on the total computation performance of the coordination plans,
from a request to the plan response by the coordinating edge node.

In Figure 5.5a, the number of IoT resources (X) over time is illustrated – each data point
is a single problem instance (i.e. a resources-context-goal configuration). Additionally,
one can observe the number of operators used in the requires dependancies of (every)
resource in the configuration (shading in data points). Evidently, the more IoT resources
there are in a problem instance the more time it takes to coordinate. Due to the boolean
satisfiability solving [NLBH+04] that underlies the matchmaking process, SAT/SMT
problem instances with different number of operators perform differently, although the
number of resources is kept constant (i.e., within a vertical line in Figure 5.5a). For
example, one can observe that in the vertical line denoting 25 IoT resources, a problem
instance utilizing 14 operators per (every) resource is harder than a problem instance
with 10 operators. Hardness of SAT/SMT satisfiability [ABLM08] is beyond the scope of
this thesis. Due to the synthesized nature of our evaluation dataset, we did not consider
edge goals as those would be defined per application. However, those would not affect
results significantly due to the small expected size that their encoding would add as an
overhead.

Figure 5.5b captures mean |Rλ| size per matchmaking problem instance across time. Each
data point is a single problem instance – the same resources-context-goal configurations of
the previous Figure 5.5a. The size of the resulting SAT/SMT formulae (as per Formula 5.6
of Section 5.5) corresponding to the coordination problem encoding is represented by
the point size. Number of symbols within formulae range from 4k to 14k. Naturally, as
formula size increases, so does the coordination time. We can observe that again, certain
problem instances with small average cardinality |Rλ| lead to hard instances, and vice
versa. However, the formula size is a strong indicator of coordination time.

Based on the above results, a system designer can obtain insights depending on her
particular problem setting. Within a typical design process, a designer requires knowledge
of the performance of the system, due to the definition of some Service Level Agreement
(SLA). Our evaluation results show, that by selecting a number of IoT resources (e.g., 20
resources on Figure 5.5a) and an average number of operators per resource dependencies
(e.g., 10), a matchmaking performance at least 5 seconds is to be expected. Then, formula
size and average |Rλ| can also give an indication of expected time.

99

5. Dependable Resource Coordination on the Edge at Runtime

(a) Resource set cardinality (|X| of matchmaking prob-
lem instances over coordination time. Shading in points
indicates the average number of operators used in each
satisfiable problem instance.

(b) Mean resource dependencies in matchmaking problem
instances over coordination time. Points size indicates the
size of the SMT encoding of the respective bounded model
checking problem.

Figure 5.5: Matchmaking problem instances; coordination time, R operators and SMT
symbols on an ARMv8 edge device.

100

5.6. Evaluation

5.6.3 Discussion

We have demonstrated that by using our coordination framework, coordination of IoT
resources in an edge setting in a dependable manner can be performed. Furthermore, we
showed that our technique based on SMT-based bounded model checking at the edge
is performant and feasible for realistic problem sizes, even on low-powered ARM-based
devices. We especially note that our resource coordination technique guarantees correct
and optimal results due to its formal foundations.

We showed performance based on synthesized IoT resource problem instances. Our
results are actionable since a system designer can estimate performance of coordination
based on the problem space which is induced in her particular setting. This, combined
with testing resource configurations prior to deployment can drive design decisions during
system development. Essentially, given a number of IoT resources, propositions and
operators per resource (Figures 5.5a - 5.5b), one can estimate a time that coordination
computation can be achieved. The type of operators used within specification as well as
the formula structure obviously affects satisfiability. We plan to investigate what type
and mix of operators occurs in practice in IoT resources specification, and construct
guidelines and metrics relevant to the resource encoding arising from our coordination
technique.

Several assumptions inherent in our approach must be further investigated. We considered
a coordination plan of 5, suitable for the business logic of resource-constrained devices
participating within an IoT system; however there may exist settings where a higher
or lower plan length is desired. Moreover, operationalization of our approach with
optimality in mind, entails finding plans first on plan length 1, then if none is found on
plan length 2, etc. To optimize this step-wise search, the SAT/SMT problem encoded can
be incrementally introduced to a solver which makes use of past unfoldings to possibly
find satisfiable solutions faster. We identify this as future work.

Moreover, temporal aspects of both the specification as well as the overall process must
be investigated. Firstly. the planning time plus its execution (i.e. the device invoking the
resources described in the plan) must be faster than the rate of change of the environment
– as such, longer plans may not be advisable, and k should be largely kept small [TPGN18].
Secondly, temporal aspects regarding resource invocations are not captured in the model.
Algebraic operations upon countable parameters would also be useful, as invocation of
a resource microservice of a battery-powered actuator might consume energy. In our
example for instance, irrigation in the park may take time. We identify integrating
temporal aspects both regarding the model as well as planning and execution as a
significant avenue of future work.

Operationalization of our framework could also benefit from domain-specific adjustments
and heuristics. For example, previous plans may be stored (e.g., memoized) to avoid
computing them again. The depth of the solution search may be adjusted depending
on current edge computational load or other factors. On the problem level, grouping
IoT resources in an ontology can allow the underlying solver to disregard irrelevant or

101

5. Dependable Resource Coordination on the Edge at Runtime

unsatisfiable solutions faster, thus rendering our approach capable to consider a higher
number and more complex IoT resources. Finally, we note the absence of approaches
utilizing SAT/SMT solving at the edge, and underline the opportunities that this brings
for dependable edge-enabled IoT settings.

5.7 Related Work

We presented a methodology and technical framework to engineering resource coordination
for the edge-enabled IoT – touching upon several research areas. Consequently, we classify
related work into three categories. First, we discuss key approaches in the conception
of resources as services within IoT. Then, we review related techniques on service
composition, as they apply to IoT. Lastly, we discuss related engineering approaches from
the domain of self-adaptive systems, framing our approach within the overall software
engineering domain.

5.7.1 Resources as Services within IoT

The prevalence of internet-connected devices featuring various actuation and sensing
capabilities provides new means for development of composite software systems. So far,
cloud computing has been seen as a key component for the development, deployment,
and coordination of IoT collectives.

In recent years, the paradigm of Service-Oriented Architecture (SOA) [GTK+10, LCH14]
has received considerable attention in the field of IoT. Spiess et al. [SKG+09] proposed
an architecture for effective integration of IoT in enterprise services, where they are
used to implement business processes. Since the services are offered in a device level
with frequent changes, a traditional business process language like BPEL is not built to
support such dynamics. As result, an extended version of BPEL is provided to model
business processes at design time which supports dynamic changes of services during
process execution. Furthermore, to satisfy application needs or in response to unforeseen
context changes, it is possible to remotely deploy new services during runtime. Meyer
et al. [MRM13] investigate how an “IoT device” component and its native services can
be expressed as a resource in an IoT-aware process model. Cheng et al. [CZZC16]
propose a situation-aware IoT coordination platform based on the event-driven service-
oriented architecture (SOA) paradigm. The proposed system architecture effectively
utilizes SOA and EDA paradigms – SOA is used to resolve interoperability issues among
heterogeneous services and physical entities while EDA is used to address the problem of
the cross-business-domain. Furthermore, Zhang et al. [ZDC14] present an event-driven
service-oriented architecture for IoT services. Sarkar et al. [SSP+15] proposed a layered
and distributed architecture for IoT, which overcomes most of the obstacles in the process
of large-scale expansion of IoT.

In pervasive environments, selecting appropriate resources and services that satisfy user’s
requirements is a challenge. Due to their dynamic nature, efficient resource discovery

102

5.7. Related Work

is essential in order to achieve wide user acceptance. A significant number of works
within service discovery has been focused on context based approaches. Butt et al.
[BPGO13] provide a service selection technique to offer the appropriate service to a
user application depending on the available context information. Rasch et al. [RLS+11]
propose a proactive service discovery approach for pervasive environments, described
by a formal context model which effectively captures the dynamics of context and the
relationship between services and context. Wang et al.[WC16] propose an architecture
for service discovery in smart cities, focusing on taking a set of devices around a citizen
and proactively producing a list of services that surround the user using his preferences.
Jin et al.[JCJL14] describe device, resource, and service as the three core concepts in
a model which specifies relationships among them. Moreover, four quality of service
attributes are defined, which reflect features of physical services. Yang and Li[YL14]
propose an efficient strategy from the perspective of sensory and data selections and
aggregation, with genetic algorithms as the global optimization method. Since we adopt
the concept of everything-as-a-service (XaaS) abstraction to uniformly represent physical
things, hardware and software resources as microservice such discussed works are relevant
to our proposed approach.

Well-known approaches adopt semantic web technologies and matching techniques for
effective service discovery. Yue-an Zhu [ZM10] design service discovery in pervasive
computing using the description language OWL-S, matching services according to their
category, Input/Output parameters, and QoS. Mokhtar et al. [MPG+08] support efficient,
semantic, context- and QoS-aware service discovery [BMKGI06] on top of existing service
discovery protocols (SDPs) [ZMN05] – this operates at a higher, semantic abstraction
level, and is thus independent of the specific underlying SOA technology employed. In
addition, a language for semantic service description covers both functional and non-
functional service characteristics as well as a set of conformance relations and prescribes
the way for applying them in order to perform service matching. Approaches related to
the semantic web technologies used for service discovery are also relevant to our proposed
approach. Since semantic service description covers both functional and non-functional
they can be included also to the methodology that we propose for specifuying resources.

5.7.2 Service Composition and IoT

As service-oriented architecture (SOA) becomes widely used, providing the right services
that satisfy a user’s goal is becoming a big challenge in IoT environments. Due to
dynamicity, heterogeneity and function constraints, IoT services differ from traditional
services. In addition, IoT services are related more to the physical world by sensing state
by inducing operations that will cause a state change. A great number of approaches
have been proposed to deal with such service composition; we employ a SAT-based
technique similar to Kil et al. [KN13], where the semantic aspect is considered, helping
the composition engine to identify more correct, complete and optimal candidates as a
solution. However, we extend it to SMT, we use linear integer arithmetic and first-order
formulae, and deploy on resource-constrained edge devices instrumented at runtime.

103

5. Dependable Resource Coordination on the Edge at Runtime

Mayer et al. [MTS09] present a consistency-based service composition approach that
serves as a unified platform. The proposed framework is based on a declarative constraint
language to express user requirements, process constraints, and service profiles on a
conceptual level and also on the instance level. Pistore et al. [PRT05] propose a solution
for automated composition at the process level using OWL-S. A composition takes into
account that executing a web service requires interactions that may involve different
sequential, conditional, and iterative steps. A process level description of the composite
service is generated by using each individual description of services. However, the proposed
solution does not consider selecting the services that take part in the composition.

An architectural approach to enable the automated formation and adaptation of Emergent
Configurations (ECs) in the IoT have been proposed by [ASD18b]. An EC is formed by
a set of things, with their services, functionalities and applications, to realize a user goal.
ECs are adapted in response to (un)foreseen context changes e.g., changes in available
things or due to changing or evolving user goals. Hussein et al. [HLR17] propose a
model-driven approach to ease the development of adaptive IoT systems. A design model
is specified based on the system requirements as well as the system functionality and
adaptations. Furthermore, it is used to generate the system implementation, transformed
to an IoT platform-specific model. This model is used for generating code and a
deployment to a hardware platform. After adaption is triggered, the system changes its
state based on the designed model. Urbieta et al. [UGBM+17] propose an adaptive service
composition framework. The framework is based on an abstract service model representing
services and user tasks in terms of their signature, specification, and conversation.
Xinming and Yan [LS14] propose a service mining scheme based on semantic for IoT to
provide users with interesting composite services. Service composition is achieved by
combining and recommending to users according to the calculation of service similarity –
however, not including service composition QoS.

Ciortea et al. [CBZF16] propose a decentralized approach to IoT mashup composition that
considers flexibility and responsiveness of resulting applications. Goal-Driven software
agents are equipped with precompiled plans which cooperate with one another through
socio-technical networks (STNs) to compose IoT mashups at runtime in pursuit of their
goals. Various IoT devices are modeled as agents based on their capabilities. Agents
are goal-driven and rely on precompiled plans that specify how to achieve their goals.
Whenever the goal cannot be fulfilled by a single agent, agents cooperate with one
another through STNs to compose mashups which achieve the goals. In contrast, we
synthesize plans at runtime, and utilizing available resources opportunistically from the
runtime edge context. Mayer et al. [MVKM16] proposed service composition system that
enables the goal-driven configuration of smart environments for end-users by combining
semantic metadata and reasoning with a visual modeling tool – instead of using predefined
service mashups, creation of them in a dynamic manner fulfills the desired user goal.
This dynamicity is similar to our coordination approach. Such flexibility is achieved
through using embedded semantic API descriptions. Hence, service mashups can adapt
to dynamic environments and are fault-tolerant.

104

5.7. Related Work

5.7.3 Self-adaptive systems and IoT

Self-adaptive software becomes an inseparable part of systems characterized by uncertain
environments, evolving requirements, and unexpected failures. In order to meet strict
functional and non-functional requirements in applications within diverse areas, Calinescu
et al. [CWG+18] propose a methodology and instantiation of dynamic safety cases which
allows adjusting the system during execution while providing the intended functionality
and its requirements. Marrella et al. [MMS17] propose a model and prototype Process
Management System featuring a set of techniques providing support for automated
adaptation of knowledge-intensive processes at runtime. Such provided techniques are
able to automatically adapt and recover process instances when an exception occurs and
without the intervention of domain experts at runtime. Chen et al. [CLZ+15] propose a
runtime model-based approach to IoT application development. The initial step toward
the proposed approach is considering that sensor devices are abstracted as runtime
models that are automatically connected with the corresponding systems. Based on the
application scenario, a customized model is constructed and the synchronization between
the model and sensor device is achieved through model transformation. As result, the
application logic is mapped and executed on the customized model after some definition
are given such as group of meta-models, mapping rules, and model-level programs.

In the context of self-management architectures, a significant number of generic approaches
have been proposed. Kramer et al. [KM07] proposed a three-layer reference model to
support automatic (re)configuration of self-managed systems, consisting of a component
control layer, a change management layer and a goal management layer. The component
layer is responsible to provide change management which re-configures the software
components while the change management generates plans to achieve system goals.
An overall model relies on a set of plans which aims to achieve the desired system
goals. Whenever new goals are introduced to the system, the change management
layer is responsible to generate new plans for achieving desired goals. Thus, we follow
this methodology essentially targeting low-powered ARM-based edge computers for
deployment. In addition, the resource coordination facilities we provide are dependable to
each other. Weyns et al. [WIHM18] propose architecture-based adaptation approach to
solve the concrete problem of automating the management of IoT. The software system
utilizes a feedback loop that employs models@runtime and statistical techniques to reason
about the system and induce adaptation to ensure the required goals.

Software systems are deployed in dynamic environments that change over time and often
have to adapt to the changing conditions in order to meet system goals. Well-known
approaches have been developed for runtime monitoring for different kinds of systems.
Seiger et al. [SHHA17] present an approach for enabling self-adaptive workflows based on
the MAPE-K (Monitor, Analyze, Plan and Execute on a Knowledge Base) control loop
for self-adaptive workflows in cyber-physical systems. The proposed approach within
MAPE-K loop monitors and analyses the real-world effects through sensor and context
data which is used to check for faulty errors in the physical world. If an inconsistency
between the sensed physical world and the assumed cyber world can be detected, a

105

5. Dependable Resource Coordination on the Edge at Runtime

compensation strategy is chosen and the adapted process is executed. Cailliau et al.
[CvL17] proposes obstacle-driven runtime adaptation techniques for increased satisfaction
of probabilistic system goals. The propose approach is based on the MAPE cycle and
relies on a model where goals and obstacles are refined and specified in a probabilistic
manner. However, in contrast to the proposed approach we guarantee the optimality
and correctness of generated coordination plans. We identify quantitative extensions to
our goal modeling as future work. The resource coordination facilities we provide are
dependable because if there is a solution to a resource coordination problem for a device,
the technique we utilize will provide a plan for it, and the plan will be optimal. This is
in contrast to other approaches utilizing other coordination techniques such as based on
AI [ASD18a, HN01, GNT04].

5.8 Summary
Software components within pervasive IoT systems, make use of resources which can be
various computational capabilities, including sensing or actuation endpoints. Components
do not live in isolation and must be able to coordinate with others to fulfill their goals,
while edge computers placed near end-devices can be leveraged for control – providing
resource management for devices within their active context. To this end, we proposed a
methodology and technical framework for engineering resource coordination at runtime,
tailored for the decentralized, pervasive systems of today. Our approach represents a
paradigm shift in marrying distributed systems and formal aspects of software engineering.
We adopted goal modeling to capture objectives within the IoT and used bounded model
checking as the foundational technique to compute coordination plans which satisfy
device goals. This occurs opportunistically at runtime, without any knowledge about
the operational status or presence of resources in the system at the system’s design time,
but always in accordance to the edge’s own goals. Our technical framework exhibits
dependability guarantees regarding optimality and correctness of generated coordination
plans, and is realizable on edge nodes deployed on low-powered ARM-based edge devices.

106

CHAPTER 6
Conclusion and Future Work

This chapter concludes the thesis. In Section 6.1, we give a summary of the covered
topics and the presented contributions. In Section 6.2, we revisit the research questions
provided in the introduction. Finally, in Section 6.3, we discuss the limitations of our
work and provide a brief outlook for future research directions.

6.1 Summary
Within this thesis, our focus resided on providing feasible techniques for resource man-
agement at the edge. Such techniques aim to assist and manage runtime aspects of edge
applications running on a resource-constrained edge network. More precisely, we develop
a novel edge-based mechanism (i.e., configurator) that provides several resource manage-
ment features such as (1) resource discovery in a decentralized manner, (2) controlling
elasticity of edge applications at the edge, and (3) resource coordination at the edge.

In Chapter 2, we first hypothesized that the cloud-based IoT platform serves as an
environment where developers or domain experts design their edge applications and
define resource demands (i.e., application resource requirements, elasticity, etc.) and other
dependencies (i.e., resource management or domain-specific functionalities). Furthermore,
the cloud-based IoT platform allows developers to develop particular resource management
functionalities. These functionalities can be deployed manually or automatically when
an edge application with a specific functionality dependency is deployed in an edge
network. These functionalities aim to assist edge applications from different domains
to run correctly on an edge network. Nevertheless, developing the cloud-based IoT
platform remains out of the main focus of this thesis - the introduced challenges within
this platform require further investigation and future work to address all open research
challenges. Second, we introduced a decentralized edge-based system for (1) automatically
discovering heterogeneous resources in an edge network to make them available to the
runtime, (2) deploying and controlling elasticity in edge applications running in an edge

107

6. Conclusion and Future Work

network, and (3) enabling resource coordination at runtime. Through three resource
management perspectives and their operational mechanisms, we enable executing and
managing edge applications on heterogeneous edge infrastructures and beyond.

In Chapter 3, we presented a prototype that enables the automatic discovery of heteroge-
neous resources and makes them available to the runtime. The complexity of discovering
resources automatically in edge networks necessitated investigating the most suitable com-
munication model, resource modeling, and decentralized metadata management. For the
former, we proposed a solution on how to organize edge devices within an edge network.
Our edge-based system introduces the configurator and other cluster coordinators to
overcome challenges presented with the uncertainty of an edge network. With the scaling
of an edge network, new clusters are formed as well as new coordinators are created.
Both the configurator and other coordinators are dynamically placed in the most suitable
edge devices enabling the system to scale easily with the scaling of the edge network. At
this stage, the edge device with the configurator role is responsible for assisting cluster
coordinators in exchanging resource metadata information among them. The resulting
mechanism efficiently discovers heterogeneous resources in a resource-constrained edge
network.

In Chapter 4, we extend the configurator mechanism with novel functionalities such
that it enables deploying, managing, and monitoring edge applications at the edge
and beyond. More precisely, we propose a framework and its runtime mechanism for
controlling elasticity requirements in edge applications. On the deployment request for a
particular edge application, our runtime mechanism gets the resource requirements for
each component (i.e., including elasticity requirements) and deployment and scaling policy
for the overall application defined by the application developer or domain expert at design
time. Based on these requirements, edge application components are deployed such that
all requirements are fulfilled. After the successful deployment, each edge device that runs
an edge application component enables locally the elasticity interpreter. The elasticity
interpreter captures, interprets, and continuously monitors the elastic requirements for
the application component that runs locally. Because the environment we are taking into
account is highly dynamic and cannot be static, edge application components may face
various workloads. Thus, whether a violation occurs, the responsible elasticity interpreter
notifies the configurator to enforce the strategy specified in the elastic requirements.
The enforcement strategies aim to improve or keep constant the overall edge application
quality (i.e., response time, etc.), optimize the operating cost, and avoid situations such as
resource over-provisioning or under-provisioning on resource-constrained infrastructures.
The resulting mechanism efficiently adapts to varying load patterns by adjusting the
amount of provisioned resources to exactly match their current need and minimizing
hosting costs.

In Chapter 3 and Chapter 4, we showed three resource management techniques (i.e.,
resource discovery, resource allocation, and resource migration) to enable the operation
of edge applications in a resource-constrained edge network. In Chapter 5, we propose a
technical framework for engineering resource coordination at the edge. More precisely,

108

6.2. Research questions

executing SAT/SMT solver on a low-powered edge device enables coordinating available
resources to achieve users or edge applications goals (i.e., if possible). The resulting
mechanism guarantees regarding optimality and correctness of generated coordination
plans. Furthermore, the proposed framework is realizable on edge nodes deployed on
low-powered ARM-based edge devices.

6.2 Research questions

In Section 1.2, we presented three research questions that have driven the research
presented in this thesis. To conclude our thesis, we revisit research questions, summarize
our contribution, and discuss the limitations of our work.

(RQ1) What are appropriate system architectures that enable resource management in
resource-constrained edge networks?
We have addressed this question in Chapter 2 and partially in Chapter 5. We
can make the following observations from the analysis in Chapter 2 of existing
and emerging edge computing scenarios from different domains. We first advocate
that edge devices should not exist in isolation and must collaborate with other
edge devices to enable more complex tasks to be executed at the edge. Thereby,
interaction with other edge devices allows for extending the scope of available
resources. Accordingly, multiple heterogeneous edge devices will create computing
clusters, similar to how cloud data center servers reside together in racks. Such an
environment with numerous connected clusters forms an edge network within the
spatial boundaries. Such edge networks are characterized as dynamic, uncertain,
and resource-constrained environments. At the same time, they provide a seamless
opportunity for deploying and executing more complex tasks (i.e., edge applications)
and edge-based systems. Because edge networks are dynamic environments that
change over time, we therefore argued and extensively elaborated on the necessity
for designing and developing modern edge-based systems in a decentralized manner
and with self-adaptive capabilities. Furthermore, because edge networks can scale,
we argued that interaction between edge devices can be achieved through peer-
to-peer communication protocols (i.e., DHT) followed by mechanisms to organize
edge devices into clusters. Thus, Chapter 2 introduced a decentralized edge-based
system that provides a collection of resource management mechanisms to enable
deploying, executing, and maintaining the desired functionality of edge applications
running in an edge network.
Edge computing has introduced new opportunities for designing and developing mod-
ern systems in a decentralized manner. Geographically distributed edge networks
together with fog and cloud infrastructures will form the so-called Edge-Cloud
computing continuum. Efforts to utilize available resources at the edge of the
network and beyond have resulted in application-specific solutions ranging from
centralized architectures to decentralized systems. We foresee that edge networks

109

6. Conclusion and Future Work

will exist within different domains (i.e., healthcare, smart home, etc.); thus, the
edge-based systems must support a wide range of edge application requirements.
Our contribution has shown that a modular edge-based system is one way to add
functionalities to support the execution of different edge applications and fulfill
resource needs. Because edge applications may have various resource needs (i.e.,
goals), we argued and extensively elaborated a novel framework that enables re-
source coordination to obtain a resource that cannot be trivially acquired from
available resources, as shown in Chapter 5. It is worth noting that the coordination
process occurs in a decentralized manner and is executed on low-powered edge
devices.

(RQ2) What is an appropriate way to automatically discover and utilize heterogeneous
resources in resource-constrained edge networks?

Based on the analysis in Chapter 2 of existing and emerging edge computing
scenarios, we can make a general observation that edge-based systems need to
establish three design goals: (a) decentralization of the system components to
enable the execution of resource management features on resource-constrained edge
networks, (b) expandability of the system with novel resource management features
such that to fulfill resource demands for edge applications (c) self-adapting to
dynamic changes such that guarantees to provide reliable and low-latency services
in proximity to end-users. By considering (a) and (c) goals mentioned above,
we introduced a novel decentralized resource discovery mechanism in Chapter
3. Efficiently utilizing available resources distributed among multiple resource-
constrained edge devices required a technique capable of discovering resource
information. First, we referred to heterogeneous resources as computational (i.e.,
edge devices, etc.) and sensory (i.e., IoT sensors, actuators, etc.). Second, we
hypothesize that sensory resources are attached to edge devices or networked
IoT resources in the vicinity of an edge device. And third, we hypothesize that
manufacturers provide information about the functionality and properties of each
resource in JSON files stored in corresponding edge devices. Additionally, the
system designer manually sets resource information such as IP or access type
(i.e., private or public), or such information can be automatically assigned when
a resource is operational. We referred to such resource information as resource
metadata.

We have shown that exchanging resource metadata between edge devices in an
automatic manner enables sharing resources across the whole system. Because each
edge device replicates information about available resources in an edge network,
users or edge applications can request any edge device to discover resources by
performing complex queries locally. On the contrary, performing a resource discovery
algorithm (i.e., by querying the entire network based on multiple keywords) for
each resource is a network and computationally demanding process. We therefore
argued that using the replication process for discovering resources is feasible and
applicable even on resource-constrained edge networks.

110

6.2. Research questions

Through examples, we have shown that an edge network could be a dynamic
environment; as a result, we proposed that edge devices in proximity or within
an area are connected in a peer-to-peer way using a DHT-based communication
protocol. Even though peer-to-peer communication does not treat edge devices
heterogeneity, we advocate that enabling resource discovery in an automatic and
decentralized manner overcomes such an issue. Because edge devices can join
continuously, the automatic resource exchange process becomes a highly network-
demanding process and the scalability issue a critical challenge. Furthermore,
because edge devices can be resource-constrained and dynamic, decentralization
and self-adaptation become key requirements for reliable resource discovery. Thus,
this first calls for a feasible approach to organizing edge devices and then introducing
decentralization with self-adaptive capabilities in an edge network. We proposed a
solution that introduced two roles (i.e., the configurator and cluster coordinators)
dynamically assigned to edge devices. The proposed approach showed that scaling
and automatic resource discovery are possible. Dividing an edge network into
clusters, organizing newly joined edge devices into clusters, and decentralizing
responsibilities by introducing new roles avoided the necessity to have N x N
communication between edge devices. Our evaluation in a realistic testbed proves
that the proposed solution is feasible on resource-constrained and dynamic edge
networks.

(RQ3) How can elasticity features be executed on low-powered computational resources in
edge networks?

We have addressed this question in Chapter 4 by extending the previous approach
presented in Chapter 3 with a lightweight decentralized mechanism for controlling
the elasticity of edge applications in edge networks. In Chapter 3, our evaluation
proved that the proposed solution increases the number of eligible deployments on
edge applications with IoT resource dependencies. We proposed that the edge device
with the configurator role must provide mechanisms for deploying and managing
edge applications in an edge network. Because edge networks are dynamic and edge
applications are composed of microservices whose load may change over time, we
advocate the necessity to enable elasticity features to guarantee QoS throughout
their entire life cycle execution. Our proposed framework combines three different
resource management techniques to efficiently utilize the computational resources in
an edge network and maintain the desired edge application functionality throughout
its entire execution. More precisely, our approach captures and interprets edge
application requirements (i.e., including elastic requirements, deployment and scale
policy) specified by the developer or domain expert. Because edge applications
are composed of microservices, we allow elasticity requirements to be specified in
different granularity. Our elasticity framework operates in a decentralized manner.
The configurator provides the elasticity enactment engine to control and enforce
various actions on the application runtime platform (i.e., docker-engine). Each edge
device that executes application components captures, interprets, and monitors

111

6. Conclusion and Future Work

corresponding elastic requirements and notifies the elastic enactment engine in the
event of a violation. Our evaluation in a realistic testbed proves that the proposed
solution is feasible on resource-constrained edge networks. Furthermore, an edge
application operation may depend on specific IoT resources; thus, this challenges
scaling operations in an edge network. Therefore, we have demonstrated that
our approach by combining three resource management techniques (i.e., resource
discovery, resource allocation, and resource migration) enabled us to correctly scale
edge applications at runtime.

6.3 Limitations and Future Work
This section briefly discusses the limitations and future work of the proposed cloud-based
IoT platform and edge-based framework. Furthermore, we discuss the boundaries for
each proposed methodology to overcome the challenges discussed in this thesis.

6.3.1 Towards Decentralized Edge-Based Systems

Our decentralized technical framework is suitable for various use cases in different domains
where the number of edge devices is not expected to be massive. The proposed approach
allows system designers to create and configure their own edge network based on their
needs. Afterward, the proposed framework enables edge devices to be organized within
the edge network through the introduced techniques. The system and network can
easily scale while resources are automatically discovered. Furthermore, at the request
of the system designer, various edge applications can be deployed, while the elasticity
mechanism maintains the desired functionality of edge applications running on the edge
network.

Several aspects of the cloud-based IoT platform require further investigation since
the proposed approach is a conceptual framework rather than a technical approach.
Accordingly, this led us to hypothesize several aspects, such as the process when the system
designer or developer requests to deploy an edge application or extend the functionalities
of the configurator at the edge. Moreover, we assume that an edge application and its
requirements are given by a developer or a domain expert at design time. Nevertheless,
we address several crucial challenges for enabling resource management in a decentralized
manner at the edge. Despite this, there are still open challenges that must be addressed
to fully operationalize the configurator mechanism in an edge network. For instance,
our thesis does not consider privacy and security issues that remain a critical aspect of
edge-based systems. We hypothesized that edge devices within a newly formed edge
network are trusted. This assumption should be replaced with proper privacy and
security techniques to protect users’ data processed in an edge network. One possible
solution is to authenticate edge devices when they join an edge network as presented, for
instance, in [PON+18]. Since each edge device is an entrance door to an edge network,
this enforces that each edge device must provide such security mechanisms. Therefore,
the above-mentioned features are not trivial tasks, and they require careful analysis and

112

6.3. Limitations and Future Work

proper mechanisms to prevent attacks or unwanted traffic in an edge network [RLM18].
Furthermore, protecting data by guaranteeing confidentiality and integrity [MYAZ15] is
another critical challenge that must be addressed and further investigated in future work.

Additionally, integrating blockchain technology in the configurator, respectively, in the
orchestrator component will enable edge networks to collaborate with other edge networks
in the vicinity. The premise is simple: the edge owner installs a specific blockchain
feature (e.g., blockchain function) on its own edge network, which automatically connects
to the fog blockchain platform. The owner lists shareable resources and payment terms
and gets paid when other users in the platform utilize them. For instance, blockchain
platforms (e.g., distributed storage1,2 or distributed computation power3) deployed on
fog infrastructure enable edge network owners to earn money by renting their unused
storage and idle CPU cycles to those in need.

One another promising research direction is to develop novel decentralized resource
management techniques that target resource-constrained edge networks. Currently,
migrating and executing several well-known cloud-based resource management techniques
or AI algorithms to enable edge intelligence at the edge remains still a challenging task due
to the dynamicity, uncertainty, and resource-constrained edge networks. Thus, developing
novel and lightweight algorithms that target resource-constrained edge networks is crucial
for the future of edge-based systems.

6.3.2 Resource Discovery

In Chapter 3, respectively, in Section 3.5.1, we have shown several limitations of our
proposed approach. In this thesis, we do not treat communications aspects between IoT
resources and edge devices. We assume that these resources are attached or connected to
edge devices. Furthermore, the main limitation of our approach is that we developed
our prototype in Java which requires using the Java Virtual Machine as a runtime
platform. Running the JVM in resource-constrained devices is a resource-intensive
process. Nevertheless, our proposed technique aims to show the feasibility of discovering
resources.

After the systematic review of P2P protocols, we decided to use the well-known DHT-
based protocol called Kademlia protocol to enable communication between edge devices.
Thus, our proposed approach is built on top of Kademlia. However, we have observed
that our approach has several limitations when determining coordinators on clusters
of different sizes. Our evaluation shows that the percentage of responsive edge devices
during the process to determine coordinator on a cluster with more than 40 devices
decreases around to 92%. More precisely, on a cluster with 30 edge devices, we can
observe that all edge devices respond on time to the process of determining a cluster
coordinator. We acknowledge that we may have various edge scenarios where the number

1Storj (Distributed Storage), https://storj.io
2Filecoin (Distributed Storage), https://filecoin.io
3iExec (Distributed Computation), https://iex.ec/

113

6. Conclusion and Future Work

of edge devices within a cluster needs to be more extensive. Thus, further optimizations
are required as well as several assumptions described in Chapter 3 must be further
explored. Nevertheless, the evaluation on a realistic testbed with 60 edge devices (i.e.,
RPi3 and virtual instances) showed that the overall overhead introduced by our resource
discovery mechanism is very low and feasible in resource-constrained edge networks. In
future work, we plan to investigate techniques that will enable edge devices to discover
nearby devices that allow them to join an edge network in an automatic manner. In
addition to that, we plan to investigate additional components for monitoring the status
and availability of discovered resources at the edge.

6.3.3 On Controlling Elasticity of Edge Applications

In Chapter 4, we have shown several limitations of our approach, especially during
the design time and deployment stage of edge applications. We first assume that the
developer or a domain expert has basic knowledge of how to develop elastic specifications
and specify correct values. In the current prototype version, we assume that elastic
constraints do not conflict with each other. Nevertheless, the above-mentioned aspect
represents a limitation of our approach. We acknowledge that developers or domain
experts may specify conflicting elastic requirements, leading to a wrong configuration
and causing undesired and frequently scaling operations.

In the current version of our prototype, we specify elastic requirements in a JSON file.
Such a file for each edge application is accessible by any edge device by querying the
specific DHT. However, we must provide proper techniques such that the SYBL elastic
requirements can be quickly injected/integrated into various description languages, e.g.,
injecting into TOSCA files, docker-compose files (i.e., YAML), or XML descriptions.
Supporting various description languages is particularly important since edge applications
are designated to run on different computing infrastructures available within the Edge-
Cloud continuum. In future work, we intend to simplify the development process of
elastic requirements by integrating the language into an IDE such as c-Eclipse. One
way to integrate the language is through the c-Eclipse framework, which provides a
user-centric interface for developers to describe their applications for deployment over
edge and cloud. The language integrated into a development environment will make it
easy for users to develop elastic specifications and specify correct values to avoid the
wrong configuration. Nevertheless, the following tool will also help to automatically
detect conflicting constraints that the user may select.

We consider only an edge network with a single cluster in our evaluation. Our solution
supports controlling the elasticity of edge applications running on an edge network with
multiple clusters. However, since the configurator is the only node that enforces scaling
operations, performance issues may arise when the edge network continuously scales.
The performance can become even more critical when multiple edge applications are
deployed and numerous elastic violations occur concurrently. This, in turn, may generate
some latencies until the configurator takes action. Thus, further decentralization of
the elastic framework is necessary to allow the system’s scalability and improve the

114

6.3. Limitations and Future Work

overall configurator response time. Nevertheless, in future work, we plan to extend the
functionality of the cluster coordinators, which will support the configurator to enforce
various actions when several elastic violations simultaneously occur.

6.3.4 Resource coordination

We believe that enabling coordination at the edge, as presented in Chapter 5, paves the
way for situating control logic close to end-devices, leading to increased decentralization
in edge-based systems. We plan to investigate dealing with conflicting goals, where edge
nodes or devices have requirements that overlap but do not agree [NKF94] and which
may require negotiation to resolve. Although goals in our approach were assumed to be
functional, if non-functional requirements are considered, tradeoffs may need to be made
concerning, e.g., cost, performance, energy, etc. We identify integrating temporal aspects
regarding the model and planning and execution performance as a significant avenue of
future work. Furthermore, temporal aspects of both specifications, as well as the overall
coordination process must be further investigated. Resources may be countable, reflecting
some limited availability such as a cost – this requires extending the encoding. Moreover,
resource invocation timings can be captured in the model, as countable parameters
would be helpful for quantitative requirements specification related to, e.g., device SLAs.
Operational aspects that need to be investigated regarding the coordination process must
be faster than the rate of change in the environment. Finally, considering the perspective
of a complete realization of the dependable runtime coordination approach presented,
distributed systems aspects need to be treated.

Furthermore, our approach proposed within this thesis focuses only on enabling resource
coordination at the edge. Nevertheless, we investigated a different method and analyzed
different perspectives to allow resource coordination by considering a wide range of
computational resources within the Edge-Cloud infrastructure. Several resources should
temporarily cooperate to accomplish the requested goal to achieve user or edge application
goals. We refer to this process as dynamically forming a Goal-driven IoT System (GDS),
which utilizes available IoT resources and enables cooperation between resources to achieve
various goals requested at runtime. Each IoT resource may have several functionalities;
for instance, the intelligent light may have multiple functionalities like turning on, turning
off, or maintaining light levels. Accordingly, the number and types of the IoT resources
that constitute a GDS (i.e., goal) can differ from one environment to another. Therefore,
a GDS may have different performance requirements based on the requested goals. Thus,
we focus on the deployment aspect, such as where a GDS should be formed in Edge-Cloud
infrastructure. The resulting mechanism efficiently generates optimal plans where a
GDS should be formed. We analyzed two scenarios in a simulation environment to
show the feasibility and applicability of the proposed approach. Thus, this contribution
focuses on enabling dynamic deploying and adapting GDS in response to changes in
their constituents or deployment topologies. We present the contribution originally in
[AMS+20].

115

List of Figures

2.1 An overview of Edge-Cloud architecture. 15
2.2 IoT safety application . 18
2.3 Smart home health application. 20
2.4 Pervasive resources in a smart city. 21
2.5 An overview of a conceptual IoT platform and edge framework. 23
2.6 Elasticity space at the Edge-Cloud architecture. 25
2.7 An example of an edge neighborhood comprised of twenty nodes organized in

three clusters. 30

3.1 An example of an edge neighborhood consisting of sixteen edge devices
organized in four clusters. 40

3.2 Resource discovery through metadata replication: High-level architecture. 48
3.3 Processing metadata on the edge. 48
3.4 Analysis of the CPU utilization during the process to determine the system

coordinators. 52
3.5 Analysis of the data received in kilobytes per second by the global coordinator. 53
3.6 Analysis of the data transfer in kilobytes per second by the global coordinator. 53
3.7 Time required to determine coordinators. 54
3.8 Percentage of responsive edge devices during the process to determine coordi-

nator on clusters with different sizes. 55
3.9 IoT safety application. 56
3.10 Generating deployments plans for the IoT safety application in an edge

neighborhood (see Figure 3.1). 56

4.1 Edge application model. 64
4.2 Overview of DECENT’s components and their interaction during the runtime. 67
4.3 The process at runtime. 69
4.4 Edge safety application. 73
4.5 Edge safety application deployment at an edge network with ten low-powered

edge devices. 73
4.6 Workload used in the experiment. 74
4.7 The CPU utilization and adaptation process. 76
4.8 Front-end component latency and adaptation process. 77
4.9 Evolution of front-end component in the elasticity space. 78

117

5.1 Runtime Resource Coordination on the Edge: Overview. 87
5.2 Engineering Coordination: Design time Methodology. 89
5.3 Goal model capturing objectives of edge and IoT devices. 92
5.4 dLTS fragment showing an evolution of resources to a device goal. The edge

goal is in bold, as a constraint through the states of the computation. . . 96
5.5 Matchmaking problem instances; coordination time, R operators and SMT

symbols on an ARMv8 edge device. 100

118

List of Tables

3.1 Edge neighborhood . 51
3.2 Average latency and resource consumption to join the edge neighborhood . 51

4.1 Number of eligible deployments plans (i.e., in a testbed with ten edge devices) 74

119

List of Algorithms

3.1 Process of adding a new edge device . 43

3.2 Process of determining coordinators . 46

121

Bibliography

[AADP15] Hamid Reza Arkian, Reza Ebrahimi Atani, Abolfazl Diyanat, and Atefe
Pourkhalili. A cluster-based vehicular cloud architecture with learning-
based resource management. The Journal of Supercomputing, 71(4):1401–
1426, 2015.

[ABH+02] Anupriya Ankolekar, Mark Burstein, Jerry R Hobbs, Ora Lassila, David
Martin, Drew McDermott, Sheila A McIlraith, Srini Narayanan, Massimo
Paolucci, Terry Payne, et al. Daml-s: Web service description for the
semantic web. In International Semantic Web Conference, pages 348–363.
Springer, 2002.

[ABL15] Jean-Paul Arcangeli, Raja Boujbel, and Sébastien Leriche. Automatic
deployment of distributed software systems: Definitions and state of the
art. Journal of Systems and Software, 103:198–218, 2015.

[ABLM08] Carlos Ansótegui, María Luisa Bonet, Jordi Levy, and Felip Manya.
Measuring the hardness of sat instances. In AAAI, volume 8, pages
222–228, 2008.

[AD18] Cosmin Avasalcai and Schahram Dustdar. Latency-aware decentralized
resource management for iot applications. In Proceedings of the 8th
International Conference on the Internet of Things, page 30. ACM, 2018.

[AD19] Cosmin Avasalcai and Schahram Dustdar. Latency-aware distributed
resource provisioning for deploying iot applications at the edge of the
network. In Future of Information and Communication Conference, pages
377–391. Springer, 2019.

[ADS18] Majid Ashouri, Paul Davidsson, and Romina Spalazzese. Cloud, edge,
or both? towards decision support for designing iot applications. In
2018 Fifth International Conference on Internet of Things: Systems,
Management and Security, pages 155–162. IEEE, 2018.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:
A Survey. Computer Networks, 54(15):2787–2805, 2010.

123

[AMD20] Cosmin Avasalcai, Ilir Murturi, and Schahram Dustdar. Edge and fog:
A survey, use cases, and future challenges. Fog Computing: Theory and
Practice, pages 43–65, 2020.

[AMS+20] Fahed Alkhabbas, Ilir Murturi, Romina Spalazzese, Paul Davidsson, and
Schahram Dustdar. A goal-driven approach for deploying self-adaptive iot
systems. In 2020 IEEE International Conference on Software Architecture
(ICSA), pages 146–156. IEEE, 2020.

[AP18] Arif Ahmed and Guillaume Pierre. Docker container deployment in fog
computing infrastructures. In 2018 IEEE International Conference on
Edge Computing (EDGE), pages 1–8. IEEE, 2018.

[ASD18a] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Eco-iot: an
architectural approach for realizing emergent configurations in the internet
of things. In European Conference on Software Architecture, pages 86–102.
Springer, 2018.

[ASD18b] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Eco-iot: An
architectural approach for realizing emergent configurations in the internet
of things. In European Conference on Software Architecture, pages 86–102.
Springer, 2018.

[ATC+21] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman
Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill,
Raj Gaire, and Schahram Dustdar. Serverless edge computing: vision and
challenges. In 2021 Australasian Computer Science Week Multiconference,
pages 1–10, 2021.

[ATD19] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Decentral-
ized resource auctioning for latency-sensitive edge computing. In 2019
IEEE International Conference on Edge Computing (EDGE), pages 72–76.
IEEE, 2019.

[AV15] Priyanka Athwani and Deo Prakash Vidyarthi. Resource discovery in
mobile cloud computing: A clustering based approach. In 2015 IEEE UP
Section Conference on Electrical Computer and Electronics (UPCON),
pages 1–6. IEEE, 2015.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita,
and Yunshan Zhu. Symbolic model checking using sat procedures instead
of bdds. In Proceedings of the 36th annual ACM/IEEE Design Automation
Conference, pages 317–320. ACM, 1999.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. 2003.

124

[BCD+11a] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4.
In International Conference on Computer Aided Verification, pages 171–
177. Springer, 2011.

[BCD+11b] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the
23rd International Conference on Computer Aided Verification (CAV
’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah.

[BDW13] Wolfgang Beer, Bernhard Dorninger, and Mario Winterer. Flexible and
reliable software architecture for industrial user interfaces. In 2013 IEEE
18th Conference on Emerging Technologies & Factory Automation (ETFA),
pages 1–6. IEEE, 2013.

[BF17] Antonio Brogi and Stefano Forti. Qos-aware deployment of iot applications
through the fog. IEEE Internet of Things Journal, 4(5):1185–1192, 2017.

[BFG19] Antonio Brogi, Stefano Forti, and Marco Gaglianese. Measuring the fog,
gently. In International Conference on Service-Oriented Computing, pages
523–538. Springer, 2019.

[BFGL19] Antonio Brogi, Stefano Forti, Carlos Guerrero, and Isaac Lera. How to
Place Your Apps in the Fog-State of the Art and Open Challenges. arXiv
preprint arXiv:1901.05717, 2019.

[BM18] Xhevahir Bajrami and Ilir Murturi. An efficient approach to monitoring
environmental conditions using a wireless sensor network and nodemcu. e
& i Elektrotechnik und Informationstechnik, 135(3):294–301, 2018.

[BMKGI06] Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and Valérie
Issarny. Efficient semantic service discovery in pervasive computing envi-
ronments. In Proceedings of the ACM/IFIP/USENIX 2006 International
Conference on Middleware, pages 240–259. Springer-Verlag New York,
Inc., 2006.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13–16.
ACM, 2012.

[BPGO13] Talal Ashraf Butt, Iain Phillips, Lin Guan, and George Oikonomou.
Adaptive and context-aware service discovery for the internet of things.
In Internet of things, smart spaces, and next generation networking, pages
36–47. Springer, 2013.

125

[BS07] Changhun Bae and Wayne E Stark. A tradeoff between energy and band-
width efficiency in wireless networks. In MILCOM 2007-IEEE Military
Communications Conference, pages 1–7. IEEE, 2007.

[BSH+17] Athman Bouguettaya, Munindar Singh, Michael Huhns, Quan Z Sheng,
Hai Dong, Qi Yu, Azadeh Ghari Neiat, Sajib Mistry, Boualem Benatallah,
Brahim Medjahed, et al. A service computing manifesto: the next 10
years. Communications of the ACM, 60(4):64–72, 2017.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking, pages 305–343. Springer, 2018.

[CBZF16] Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Adina Magda
Florea. Responsive decentralized composition of service mashups for the
internet of things. In Proceedings of the 6th International Conference on
the Internet of Things, pages 53–61. ACM, 2016.

[CDK+02] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the web services web: an
introduction to soap, wsdl, and uddi. IEEE Internet computing, 6(2):86–93,
2002.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron A Peled. Model Checking.
MIT press, 1999.

[CK18] Djabir Abdeldjalil Chekired and Lyes Khoukhi. Multi-tier fog architecture:
A new delay-tolerant network for iot data processing. In 2018 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE,
2018.

[CLZ+15] Xing Chen, Aipeng Li, Xue’e Zeng, Wenzhong Guo, and Gang Huang.
Runtime model based approach to iot application development. Frontiers
of Computer Science, 9(4):540–553, 2015.

[CMTD13] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram
Dustdar. Sybl: An extensible language for controlling elasticity in cloud
applications. In 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, pages 112–119. IEEE, 2013.

[Cou] CouchDB. https://www.couchdb.com/. [Online accessed: January 2020].

[CSBW09] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A goal-based modeling
approach to develop requirements of an adaptive system with environmen-
tal uncertainty. In Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’09), pages
468–483, 2009.

126

[CvL17] Antoine Cailliau and Axel van Lamsweerde. Runtime monitoring and res-
olution of probabilistic obstacles to system goals. In Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2017 IEEE/ACM
12th International Symposium on, pages 1–11. IEEE, 2017.

[CWG+18] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman
Iftikhar, Ibrahim Habli, and Tim Kelly. Engineering trustworthy self-
adaptive software with dynamic assurance cases. IEEE Transactions on
Software Engineering, 44(11):1039–1069, 2018.

[CZZC16] Bo Cheng, Da Zhu, Shuai Zhao, and Junliang Chen. Situation-aware
iot service coordination using the event-driven soa paradigm. IEEE
Transactions on Network and Service Management, 13(2):349–361, 2016.

[DAM19] Schahram Dustdar, Cosmin Avasalcai, and Ilir Murturi. Edge and fog
computing: Vision and research challenges. In 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE), pages 96–
9609. IEEE, 2019.

[DBBM11] Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner. Service
modelling for the internet of things. In 2011 Federated Conference on
Computer Science and Information Systems (FedCSIS), pages 949–955.
IEEE, 2011.

[DGC+16] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, Soumya K
Ghosh, and Rajkumar Buyya. Fog computing: Principles, architectures,
and applications. In Internet of Things, pages 61–75. Elsevier, 2016.

[DGST11] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong.
Principles of elastic processes. IEEE Internet Computing, 15(5):66–71,
2011.

[DM20] Schahram Dustdar and Ilir Murturi. Towards distributed edge-based
systems. In 2020 IEEE Second International Conference on Cognitive
Machine Intelligence (CogMI), pages 1–9. IEEE, 2020.

[DM21] Schahram Dustdar and Ilir Murturi. Towards IoT Processes on the Edge,
pages 167–178. Springer International Publishing, Cham, 2021.

[DMB18] Vincenzo De Maio and Ivona Brandic. First hop mobile offloading of
dag computations. In Proceedings of the 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 83–92. IEEE
Press, 2018.

[DS21] V Divya and Leena R Sri. Fault tolerant resource allocation in fog environ-
ment using game theory-based reinforcement learning. CONCURRENCY
AND COMPUTATION-PRACTICE & EXPERIENCE, 2021.

127

[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementa-
tion of property directed reachability. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, pages 125–134.
FMCAD Inc, 2011.

[End00] Herbert B Enderton. A mathematical introduction to logic. undergraduate
texts in mathematics, 2000.

[EPM13] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud computing:
concepts, technology, & architecture. Pearson Education, 2013.

[Erl05] Thomas Erl. Service-oriented architecture (soa): concepts, technology,
and design, 2005.

[F+16] Frank HP Fitzek et al. On network coded distributed storage: How to
repair in a fog of unreliable peers. In 2016 International Symposium on
Wireless Communication Systems (ISWCS), pages 188–193. IEEE, 2016.

[FACP18] Jonathan Fürst, Mauricio Fadel Argerich, Bin Cheng, and Apostolos Papa-
georgiou. Elastic services for edge computing. In 2018 14th International
Conference on Network and Service Management (CNSM), pages 358–362.
IEEE, 2018.

[FAS17] Qiang Fan, Nirwan Ansari, and Xiang Sun. Energy driven avatar migration
in green cloudlet networks. IEEE Communications Letters, 21(7):1601–
1604, 2017.

[FFvLP98] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling
system requirements and runtime behavior. In Proceedings of the 9th
international workshop on Software specification and design, page 50.
IEEE Computer Society, 1998.

[FGB20] Stefano Forti, Marco Gaglianese, and Antonio Brogi. Lightweight self-
organising distributed monitoring of fog infrastructures. Future Generation
Computer Systems, 2020.

[FGB21] Stefano Forti, Marco Gaglianese, and Antonio Brogi. Lightweight self-
organising distributed monitoring of fog infrastructures. Future Generation
Computer Systems, 114:605–618, 2021.

[FGRT16] Christine Fricker, Fabrice Guillemin, Philippe Robert, and Guilherme
Thompson. Analysis of an offloading scheme for data centers in the frame-
work of fog computing. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (TOMPECS), 1(4):1–18, 2016.

[FJFCSG+19] Rafael Fayos-Jordan, Santiago Felici-Castell, Jaume Segura-Garcia, Adolfo
Pastor-Aparicio, and Jesus Lopez-Ballester. Elastic computing in the

128

fog on internet of things to improve the performance of low cost nodes.
Electronics, 8(12):1489, 2019.

[FSH17] Shuo Feng, Peyman Setoodeh, and Simon Haykin. Smart home: Cogni-
tive interactive people-centric internet of things. IEEE Communications
Magazine, 55(2):34–39, 2017.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future generation computer systems, 29(7):1645–1660,
2013.

[GD18] Marjan Gusev and Schahram Dustdar. Going back to the roots—the
evolution of edge computing, an iot perspective. IEEE Internet Computing,
22(2):5–15, 2018.

[GIMA10] Daniel Giusto, Antonio Iera, Giacomo Morabito, and Luigi Atzori. The
internet of things: 20th Tyrrhenian Workshop on Digital Communications.
Springer Science & Business Media, 2010.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

[GRT09] Emanuele Goldoni, Giuseppe Rossi, and Alberto Torelli. Assolo, a new
method for available bandwidth estimation. In 2009 Fourth International
Conference on Internet Monitoring and Protection, pages 130–136. IEEE,
2009.

[GTK+10] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess,
and Domnic Savio. Interacting with the soa-based internet of things:
Discovery, query, selection, and on-demand provisioning of web services.
IEEE transactions on Services Computing, 3(3):223–235, 2010.

[GZG+15] Lin Gu, Deze Zeng, Song Guo, Ahmed Barnawi, and Yong Xiang. Cost
efficient resource management in fog computing supported medical cyber-
physical system. IEEE Transactions on Emerging Topics in Computing,
5(1):108–119, 2015.

[HHI19] Morghan Hartmann, Umair Sajid Hashmi, and Ali Imran. Edge computing
in smart health care systems: Review, challenges, and research directions.
Transactions on Emerging Telecommunications Technologies, page e3710,
2019.

[HKR13] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In Proceedings of the
10th International Conference on Autonomic Computing ({ICAC} 13),
pages 23–27, 2013.

129

[HLR17] Mahmoud Hussein, Shuai Li, and Ansgar Radermacher. Model-driven
development of adaptive iot systems. In 4st International Workshop on
Interplay of Model-Driven and Component-Based Software Engineering
(ModComp) 2017 Workshop Pre-proceedings, page 20, 2017.

[HN01] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[HV19] Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms.
ACM Computing Surveys (CSUR), 52(5):1–37, 2019.

[HXWC15] Mohammed A Hassan, Mengbai Xiao, Qi Wei, and Songqing Chen. Help
your mobile applications with fog computing. In 2015 12th Annual IEEE
International Conference on Sensing, Communication, and Networking-
Workshops (SECON Workshops), pages 1–6. IEEE, 2015.

[IBM] IBM. Nmon. https://developer.ibm.com/technologies/systems/articles/au-
nmon_analyser/. [Online accessed: January 2020].

[IFB+18] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S
Goren, and Charif Mahmoudi. Fog computing conceptual model. Technical
report, 2018.

[IM09] Stratis Ioannidis and Peter Marbach. Absence of evidence as evidence of
absence: A simple mechanism for scalable p2p search. In IEEE INFOCOM
2009, pages 576–584. IEEE, 2009.

[JCJL14] Xiongnan Jin, Sejin Chun, Jooik Jung, and Kyong-Ho Lee. Iot service
selection based on physical service model and absolute dominance rela-
tionship. In Service-Oriented Computing and Applications (SOCA), 2014
IEEE 7th International Conference on, pages 65–72. IEEE, 2014.

[JMB06] Gian Paolo Jesi, Alberto Montresor, and Ozalp Babaoglu. Proximity-
aware superpeer overlay topologies. In IEEE International Workshop on
Self-Managed Networks, Systems, and Services, pages 43–57. Springer,
2006.

[JT17] Rakesh Jain and Samir Tata. Cloud to edge: distributed deployment of
process-aware iot applications. In 2017 IEEE International Conference
on Edge Computing (EDGE), pages 182–189. IEEE, 2017.

[Kar19] Vasileios Karagiannis. Compute node communication in the fog: Survey
and research challenges. In Proceedings of the Workshop on Fog Computing
and the IoT, pages 36–40. ACM, 2019.

130

[KL14] Jaeho Kim and Jang-Won Lee. Openiot: An open service framework for
the internet of things. In 2014 IEEE world forum on internet of things
(WF-IoT), pages 89–93. IEEE, 2014.

[KM07] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural
challenge. In 2007 Future of Software Engineering, pages 259–268. IEEE
Computer Society, 2007.

[KN13] Hyunyoung Kil and Wonhong Nam. Semantic web service composition
via model checking techniques. International Journal of Web and Grid
Services, 9(4):339–350, 2013.

[KSL+19] Vasileios Karagiannis, Stefan Schulte, Joao Leitao, et al. Enabling fog
computing using self-organizing compute nodes. In 2019 IEEE 3rd Inter-
national Conference on Fog and Edge Computing (ICFEC), pages 1–10.
IEEE, 2019.

[KTD06] Mohammed Ali Kaafar, Thierry Turletti, and Walid Dabbous. A locating-
first approach for scalable overlay multicast. In 200614th IEEE Interna-
tional Workshop on Quality of Service, pages 2–11. IEEE, 2006.

[LB20] Imen Ben Lahmar and Khouloud Boukadi. Resource allocation in fog
computing: A systematic mapping study. In 2020 Fifth International
Conference on Fog and Mobile Edge Computing (FMEC), pages 86–93.
IEEE, 2020.

[LC88] Victor R Lesser and Daniel D Corkill. Functionally accurate, cooperative
distributed systems. In Readings in Distributed Artificial Intelligence,
pages 295–310. Elsevier, 1988.

[LCH14] Jenq-Shiou Leu, Chi-Feng Chen, and Kun-Che Hsu. Improving het-
erogeneous soa-based iot message stability by shortest processing time
scheduling. IEEE Transactions on Services Computing, 7(4):575–585,
2014.

[LDMB17] Ivan Lujic, Vincenzo De Maio, and Ivona Brandic. Efficient edge storage
management based on near real-time forecasts. In 2017 IEEE 1st Inter-
national Conference on Fog and Edge Computing (ICFEC), pages 21–30.
IEEE, 2017.

[LMSM10] S. Liaskos, S. McIlraith, S. Sohrabi, and J. Mylopoulos. Integrating
preferences into goal models for requirements engineering. In Proceedings
of the 18th IEEE International Requirements Engineering Conference,
pages 135–144, 2010.

[LNST14] Wei Liu, Takayuki Nishio, Ryoichi Shinkuma, and Tatsuro Takahashi.
Adaptive resource discovery in mobile cloud computing. Computer Com-
munications, 50:119–129, 2014.

131

[LOD18] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep
learning for the internet of things with edge computing. IEEE Network,
32(1):96–101, 2018.

[LPSD17] Adrien Lebre, Jonathan Pastor, Anthony Simonet, and Frédéric Desprez.
Revising openstack to operate fog/edge computing infrastructures. In
2017 IEEE international conference on cloud engineering (IC2E), pages
138–148. IEEE, 2017.

[LS14] Xinming Li and Yan Sun. A service mining scheme based on semantic for
internet of things. Chinese Journal of Electronics, 23(2):236–242, 2014.

[LT19] Ivan Lujic and Hong-Linh Truong. Architecturing elastic edge storage
services for data-driven decision making. In European Conference on
Software Architecture, pages 97–105. Springer, 2019.

[LTJ+19] Nianyu Li, Christos Tsigkanos, Zhi Jin, Schahram Dustdar, Zhenjiang
Hu, and Carlo Ghezzi. Poet: Privacy on the edge with bidirectional data
transformations. In 2019 IEEE International Conference on Pervasive
Computing and Communications, PerCom 2019, Kyoto, Japan, March
11-15, 2019. IEEE, 2019.

[MATD19] Ilir Murturi, Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar.
Edge-to-edge resource discovery using metadata replication. In 2019 IEEE
3rd International Conference on Fog and Edge Computing (ICFEC), pages
1–6. IEEE, 2019.

[MB17] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on
architecture and computation offloading. IEEE Communications Surveys
& Tutorials, 19(3):1628–1656, 2017.

[MBP13] Stephen Makonin, Lyn Bartram, and Fred Popowich. A smarter smart
home: Case studies of ambient intelligence. IEEE Pervasive Computing,
12(1):58–66, 2013.

[MCB+21] Adriana Mijuskovic, Alessandro Chiumento, Rob Bemthuis, Adina Aldea,
and Paul Havinga. Resource management techniques for cloud/fog and
edge computing: An evaluation framework and classification. Sensors,
21(5):1832, 2021.

[MCPR14] Davide Mascitti, Marco Conti, Andrea Passarella, and Laura Ricci. Service
provisioning through opportunistic computing in mobile clouds. Procedia
Computer Science, 40:143–150, 2014.

[MD21a] Ilir Murturi and Schahram Dustdar. Decent: A decentralized configurator
for controlling elasticity in dynamic edge networks. ACM Transactions
on Internet Technology (TOIT), 2021.

132

[MD21b] Ilir Murturi and Schahram Dustdar. A decentralized approach for resource
discovery using metadata replication in edge networks. IEEE Transactions
on Services Computing, 2021.

[MJK+21] Ilir Murturi, Chao Jia, Bernhard Kerbl, Michael Wimmer, Schahram
Dustdar, and Christos Tsigkanos. On provisioning procedural geometry
workloads on edge architectures. In 17th International Conference on Web
Information Systems and Technologies (WEBIST), pages 1–6, 2021.

[MKB18] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog
computing: A taxonomy, survey and future directions. In Internet of
everything, pages 103–130. Springer, 2018.

[MLM+06] C Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,
Rebekah Metz, and Booz Allen Hamilton. Reference model for service
oriented architecture 1.0. OASIS standard, 12:18, 2006.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[MMS17] Andrea Marrella, Massimo Mecella, and Sebastian Sardina. Intelligent pro-
cess adaptation in the smartpm system. ACM Transactions on Intelligent
Systems and Technology (TIST), 8(2):25, 2017.

[MPG+08] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie
Issarny, and Yolande Berbers. Easy: Efficient semantic service discovery in
pervasive computing environments with qos and context support. Journal
of Systems and Software, 81(5):785–808, 2008.

[MRB20] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya.
Application management in fog computing environments: A taxonomy,
review and future directions. ACM Computing Surveys (CSUR), 53(4):1–
43, 2020.

[MRM13] Sonja Meyer, Andreas Ruppen, and Carsten Magerkurth. Internet of
things-aware process modeling: integrating iot devices as business process
resources. In International conference on advanced information systems
engineering, pages 84–98. Springer, 2013.

[MS14] Sunilkumar S Manvi and Gopal Krishna Shyam. Resource management
for infrastructure as a service (iaas) in cloud computing: A survey. Journal
of network and computer applications, 41:424–440, 2014.

[MSBD18] Mohammad Mozaffari, Walid Saad, Mehdi Bennis, and Mérouane Debbah.
Communications and control for wireless drone-based antenna array. IEEE
Transactions on Communications, 67(1):820–834, 2018.

133

[MTS09] Wolfgang Mayer, Rajesh Thiagarajan, and Markus Stumptner. Service
composition as generative constraint satisfaction. In Web Services, 2009.
ICWS 2009. IEEE International Conference on, pages 888–895. IEEE,
2009.

[MVH+04] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology
language overview. W3C recommendation, 10(10):2004, 2004.

[MVKM16] Simon Mayer, Ruben Verborgh, Matthias Kovatsch, and Friedemann
Mattern. Smart configuration of smart environments. IEEE Trans.
Automation Science and Engineering, 13(3):1247–1255, 2016.

[MWV00] Navneet Malpani, Jennifer L Welch, and Nitin Vaidya. Leader election
algorithms for mobile ad hoc networks. In Proceedings of the 4th interna-
tional workshop on Discrete algorithms and methods for mobile computing
and communications, pages 96–103, 2000.

[MYAZ15] Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualkernan.
Internet of things (iot) security: Current status, challenges and prospective
measures. In 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST), pages 336–341. IEEE, 2015.

[NKF94] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework
for expressing the relationships between multiple views in requirements
specification. IEEE Transactions on software engineering, 20(10):760–773,
1994.

[NLBH+04] Eugene Nudelman, Kevin Leyton-Brown, Holger H Hoos, Alex Devkar,
and Yoav Shoham. Understanding random sat: Beyond the clauses-to-
variables ratio. In International Conference on Principles and Practice of
Constraint Programming, pages 438–452. Springer, 2004.

[NMP+20] Stefan Nastic, Andrea Morichetta, Thomas Pusztai, Schahram Dustdar,
Xiaoning Ding, Deepak Vij, and Ying Xiong. Sloc: Service level objectives
for next generation cloud computing. IEEE Internet Computing, 24(3):39–
50, 2020.

[NPP+20] Nguyen Dinh Nguyen, Linh-An Phan, Dae-Heon Park, Sehan Kim, and
Taehong Kim. Elasticfog: elastic resource provisioning in container-based
fog computing. IEEE Access, 8:183879–183890, 2020.

[PAG+19] Pasquale Pace, Gianluca Aloi, Raffaele Gravina, Giuseppe Caliciuri, Gian-
carlo Fortino, and Antonio Liotta. An edge-based architecture to support
efficient applications for healthcare industry 4.0. IEEE Transactions on
Industrial Informatics, 15(1):481–489, 2019.

134

[PKBK20] Sharmila Patil-Karpe, SH Brahmananda, and Shrunoti Karpe. Review
of resource allocation in fog computing. In Smart Intelligent Computing
and Applications, pages 327–334. Springer, 2020.

[PON+18] Deepak Puthal, Mohammad S Obaidat, Priyadarsi Nanda, Mukesh Prasad,
Saraju P Mohanty, and Albert Y Zomaya. Secure and sustainable load
balancing of edge data centers in fog computing. IEEE Communications
Magazine, 56(5):60–65, 2018.

[PP12] Federica Paganelli and David Parlanti. A dht-based discovery service for
the internet of things. Journal of Computer Networks and Communica-
tions, 2012, 2012.

[PRT05] Marco Pistore, Pierluigi Roberti, and Paolo Traverso. Process-level com-
position of executable web services:” on-the-fly” versus” once-for-all” com-
position. In European Semantic Web Conference, pages 62–77. Springer,
2005.

[QLW+16] Qi Qi, Jianxin Liao, Jingyu Wang, Qi Li, and Yufei Cao. Dynamic resource
orchestration for multi-task application in heterogeneous mobile cloud
computing. In 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 221–226. IEEE, 2016.

[Ray16] Partha Pratim Ray. A survey of iot cloud platforms. Future Computing
and Informatics Journal, 1(1-2):35–46, 2016.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 329–350. Springer, 2001.

[RGXZ17] Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A
scalable iot architecture based on transparent computing. IEEE Network,
31(5):96–105, 2017.

[RLM18] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge com-
puting, fog et al.: A survey and analysis of security threats and challenges.
Future Generation Computer Systems, 78:680–698, 2018.

[RLS+11] Katharina Rasch, Fei Li, Sanjin Sehic, Rassul Ayani, and Schahram
Dustdar. Context-driven personalized service discovery in pervasive envi-
ronments. World Wide Web, 14(4):295–319, 2011.

[RRL+14] M Reza Rahimi, Jian Ren, Chi Harold Liu, Athanasios V Vasilakos,
and Nalini Venkatasubramanian. Mobile Cloud Computing: A Survey,
State of Art and Future Directions. Mobile Networks and Applications,
19(2):133–143, 2014.

135

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated web service com-
position methods. In International Workshop on Semantic Web Services
and Web Process Composition, pages 43–54. Springer, 2004.

[RSB+17] Federico Rizzo, Giovanni Luca Spoto, Paolo Brizzi, Dario Bonino,
Giuseppe Di Bella, and Pino Castrogiovanni. Beekup: A distributed
and safe p2p storage framework for ioe applications. In 2017 20th Con-
ference on Innovations in Clouds, Internet and Networks (ICIN), pages
44–51. IEEE, 2017.

[RSNK16] Tiago Gama Rodrigues, Katsuya Suto, Hiroki Nishiyama, and Nei Kato.
Hybrid method for minimizing service delay in edge cloud computing
through vm migration and transmission power control. IEEE Transactions
on Computers, 66(5):810–819, 2016.

[SCD15] Heng Shi, Nan Chen, and Ralph Deters. Combining mobile and fog
computing: Using coap to link mobile device clouds with fog computing. In
2015 IEEE International Conference on Data Science and Data Intensive
Systems, pages 564–571. IEEE, 2015.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE internet of things journal,
3(5):637–646, 2016.

[SCZY17] Yuvraj Sahni, Jiannong Cao, Shigeng Zhang, and Lei Yang. Edge mesh:
A new paradigm to enable distributed intelligence in internet of things.
IEEE access, 5:16441–16458, 2017.

[SD16] Weisong Shi and Schahram Dustdar. The promise of edge computing.
Computer, 49(5):78–81, 2016.

[SHHA17] Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aßmann. Toward a
framework for self-adaptive workflows in cyber-physical systems. Software
& Systems Modeling, pages 1–18, 2017.

[sig] Hyperic Sigar. "https://github.com/hyperic/sigar/wiki/overview". [Online
accessed: January 2020].

[SKG+09] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio,
Oliver Baecker, Luciana Moreira Sá De Souza, and Vlad Trifa. Soa-based
integration of the internet of things in enterprise services. In Web Services,
2009. ICWS 2009. IEEE International Conference on, pages 968–975.
IEEE, 2009.

[SKR+18] Olena Skarlat, Vasileios Karagiannis, Thomas Rausch, Kevin Bachmann,
and Stefan Schulte. A framework for optimization, service placement,
and runtime operation in the fog. In 2018 IEEE/ACM 11th International

136

Conference on Utility and Cloud Computing (UCC), pages 164–173. IEEE,
2018.

[SM12] Audie Sumaray and S Kami Makki. A comparison of data serialization
formats for optimal efficiency on a mobile platform. In Proceedings of the
6th international conference on ubiquitous information management and
communication, page 48. ACM, 2012.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. ACM SIGCOMM Computer Communication Review,
31(4):149–160, 2001.

[SNSD17] Olena Skarlat, Matteo Nardelli, Stefan Schulte, and Schahram Dustdar.
Towards qos-aware fog service placement. In 2017 IEEE 1st international
conference on Fog and Edge Computing (ICFEC), pages 89–96. IEEE,
2017.

[SQV+14] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia Szabo,
Scott Bourne, and Xiaofei Xu. Web services composition: A decade’s
overview. Information Sciences, 280:218–238, 2014.

[SS21] Olena Skarlat and Stefan Schulte. Fogframe: a framework for iot applica-
tion execution in the fog. PeerJ Computer Science, 7:e588, 2021.

[SSL20] Maria Shehade and Theopisti Stylianou-Lambert. Virtual reality in muse-
ums: Exploring the experiences of museum professionals. Applied Sciences,
10(11):4031, 2020.

[SSP+15] Chayan Sarkar, Akshay Uttama Nambi SN, R Venkatesha Prasad, Ab-
dur Rahim, Ricardo Neisse, and Gianmarco Baldini. Diat: A scalable
distributed architecture for iot. IEEE Internet of Things journal, 2(3):230–
239, 2015.

[SUS14] Yoshitaka Shibata, Noriki Uchida, and Norio Shiratori. Analysis of and
proposal for a disaster information network from experience of the great
east japan earthquake. IEEE Communications Magazine, 52(3):44–50,
2014.

[SWVDT18] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Towards
dynamic fog resource provisioning for smart city applications. In 2018 14th
International Conference on Network and Service Management (CNSM),
pages 290–294. IEEE, 2018.

[TBT17] Genc Tato, Marin Bertier, and Cédric Tedeschi. Designing overlay net-
works for decentralized clouds. In 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pages 391–396.
IEEE, 2017.

137

[TBT18] Genc Tato, Marin Bertier, and Cédric Tedeschi. Koala: Towards lazy
and locality-aware overlays for decentralized clouds. In 2018 IEEE 2nd
International Conference on Fog and Edge Computing (ICFEC), pages
1–10. IEEE, 2018.

[THL16] Ling Tang, Shibo He, and Qianmu Li. Double-sided bidding mechanism
for resource sharing in mobile cloud. IEEE Transactions on vehicular
technology, 66(2):1798–1809, 2016.

[TMD19] Christos Tsigkanos, Ilir Murturi, and Schahram Dustdar. Dependable
resource coordination on the edge at runtime. Proceedings of the IEEE,
107(8):1520–1536, 2019.

[TNL+19] Christos Tsigkanos, Laura Nenzi, Michele Loreti, Martin Garriga,
Schahram Dustdar, and Carlo Ghezzi. Inferring analyzable models from
trajectories of spatially-distributed internet of things. In Proceedings of
the 14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 100–106. IEEE Press, 2019.

[TNT18] Klervie Toczé and Simin Nadjm-Tehrani. A taxonomy for management
and optimization of multiple resources in edge computing. Wireless
Communications and Mobile Computing, 2018, 2018.

[TPGN18] Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nuseibeh.
On the interplay between cyber and physical spaces for adaptive security.
IEEE Trans. Dependable Sec. Comput., 15(3):466–480, 2018.

[TTT+18] Fan-Hsun Tseng, Ming-Shiun Tsai, Chia-Wei Tseng, Yao-Tsung Yang,
Chien-Chang Liu, and Li-Der Chou. A lightweight autoscaling mechanism
for fog computing in industrial applications. IEEE Transactions on
Industrial Informatics, 14(10):4529–4537, 2018.

[UGBM+17] Aitor Urbieta, Alejandra González-Beltrán, S Ben Mokhtar, M Anwar
Hossain, and Licia Capra. Adaptive and context-aware service composition
for iot-based smart cities. Future Generation Computer Systems, 76:262–
274, 2017.

[VFD+16] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv
Ranjan. Osmotic computing: A new paradigm for edge/cloud integration.
IEEE Cloud Computing, 3(6):76–83, 2016.

[vL09a] A. van Lamsweerde. Requirements engineering - from system goals to
UML models to software specification. Wiley, 2009.

[VL09b] Axel Van Lamsweerde. Requirements engineering: From system goals to
UML models to software, volume 10. Chichester, UK: John Wiley & Sons,
2009.

138

[WC16] Edward Wang and Richard Chow. What can i do here? iot service discov-
ery in smart cities. In 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pages
1–6. IEEE, 2016.

[WIHM18] Danny Weyns, M Usman Iftikhar, Danny Hughes, and Nelson Matthys.
Applying architecture-based adaptation to automate the management
of internet-of-things. In European Conference on Software Architecture,
pages 49–67. Springer, 2018.

[YHZ+17] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi,
and Qun Li. Lavea: Latency-aware video analytics on edge computing
platform. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, page 15. ACM, 2017.

[YL14] Zhen Yang and Deshi Li. Iot information service composition driven by
user requirement. In Computational Science and Engineering (CSE), 2014
IEEE 17th International Conference on, pages 1509–1513. IEEE, 2014.

[ZCX+13] Yawei Zhao, Fei Cai, Junjie Xie, Lailong Luo, Xiaoqiang Teng, Honghui
Chen, and Weijie Kong. A new dht supporting multi-attribute queries for
grid information services. In 2013 IEEE 10th International Conference
on High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, pages
1675–1680. IEEE, 2013.

[ZDC14] Yang Zhang, Li Duan, and Jun Liang Chen. Event-driven soa for iot ser-
vices. In Services Computing (SCC), 2014 IEEE International Conference
on, pages 629–636. IEEE, 2014.

[ZFJB18] Alessandro Zanni, Stefan Forsstrom, Ulf Jennehag, and Paolo Bellavista.
Elastic provisioning of internet of things services using fog computing: An
experience report. In 2018 6th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud), pages 17–22.
IEEE, 2018.

[ZGG+16] Deze Zeng, Lin Gu, Song Guo, Zixue Cheng, and Shui Yu. Joint optimiza-
tion of task scheduling and image placement in fog computing supported
software-defined embedded system. IEEE Transactions on Computers,
65(12):3702–3712, 2016.

[ZKJ+01] Ben Yanbin Zhao, John Kubiatowicz, Anthony D Joseph, et al. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing. 2001.

[ZM10] Yue-an Zhu and Xiao-hua Meng. A framework for service discovery in
pervasive computing. In Information Engineering and Computer Science
(ICIECS), 2010 2nd International Conference on, pages 1–4. IEEE, 2010.

139

[ZMN05] Fen Zhu, Matt W Mutka, and Lionel M Ni. Service discovery in pervasive
computing environments. IEEE Pervasive computing, (4):81–90, 2005.

140

	Kurzfassung
	Abstract
	Contents
	Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Thesis Structure

	Towards Decentralized Edge-Based Systems
	Introduction
	An Overview of Edge-Cloud Continuum
	Edge-Based IoT Use Cases
	Towards Decentralized Edge-Based Systems
	Resource Management and Edge Architectures
	Summary

	Resource Discovery using Metadata Replication in Edge Networks
	Introduction
	Related Work
	Edge Networks and Resource Modeling
	A Decentralized Edge-to-Edge Resource Discovery
	Evaluation
	Summary

	On Controlling Elasticity of Edge Applications
	Introduction
	Running Example
	Related Work
	Edge Modeling and Elastic Requirements
	DECENT - Design and Processes
	Evaluation
	Summary

	Dependable Resource Coordination on the Edge at Runtime
	Introduction
	Coordination at Runtime on the Edge
	Domain Modelling and Methodology
	Resources and Goals within IoT
	Dependable Resource Matchmaking
	Evaluation
	Related Work
	Summary

	Conclusion and Future Work
	Summary
	Research questions
	Limitations and Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

