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Kurzfassung

Urbane Sensorik ist die Grundlage für intelligente Städte. Es umfasst mehrere Domänen
wie öffentliche Überwachung, intelligente Gebäude, Smart Health, Crowdsourcing/Sensing
oder Umweltüberwachung. Aus jedem dieser Bereiche stammen digitale Dienste, die im
Idealfall die allgemeine Lebensqualität der Bürger verbessern. Prominente Beispiele für
solche Dienste sind z.B. die ferngesteuerte Klimatisierung eines intelligenten Zuhau-
ses, Lichtsteuerung in Gebäuden auf der Grundlage von Belegungserkennung, effektive
Navigation von Einsatzfahrzeugen durch Verkehrsüberwachungsdaten, automatische PH-
Steuerung für städtische Wasserquellen oder groß angelegte Bewegungsmusteranalyse der
Bürger, um nur einige zu nennen. Das Edge-Computing-Paradigma spielt eine wichtige
Rolle in der urbanen Sensorik, da es die Entwicklung, den Betrieb und die Optimierung
solcher Dienste erleichtert. Reduzierte Latenz, Skalierbarkeit, Bandbreitenentlastung oder
hohe Zuverlässigkeit sind herausragende Vorteile von Edge-Computing-basierten Diensten.
Viele dieser Dienste verarbeiten, übertragen oder speichern jedoch sensible Daten. Die
oft begrenzten Ressourcen im Edge-Computing stellen kritische Herausforderungen an
die Datenschutzaspekte solcher Dienste. Adaption ist ein wichtiger Faktor, um viele
dieser Herausforderungen abzumildern und zu bewältigen. Basierend auf der klassischen
Definition der Steuerungstheorie überwacht ein adaptives System seine eigene Leistung
und passt seine Parameter in Richtung einer besseren Leistung an. Im Rahmen des
Datenschutzes umfasst dies i) die Überwachung des Systems und seiner Umgebung, ii) die
Analyse, ob Änderungen die Erfüllung von Sicherheits- und Datenschutzanforderungen
gefährden, und iii) die Planung und Durchführung von Anpassungen, falls erforderlich,
um den Fortbestand zu gewährleisten das diese Anforderungen befriedigt werden. In
dieser Arbeit nutzen wir den Anpassungsraum, um den Datenschutz in ressourcenbe-
schränkten urbanen Sensorumgebungen zu verbessern oder zu erweitern. Zunächst stellen
wir ein Systemmodell vor, das die Grundlage für ein adaptives urbanes Sensorsystem
bildet, welches sich an irgendeine Form von Datenschutzbestimmungen halten muss. Das
Modell konzentriert sich auf Datenschutzaspekte, wie z. B. eine feingranulare Zugriffskon-
trolle, und unterstützt die Definition von Datenschutzrichtlinien und deren Umsetzung
innerhalb des Systems. Zweitens haben wir mehrere Datenschutzmechanismen evaluiert,
indem wir ihre Leistung und ihren Energieverbrauch auf repräsentativen Edge-Geräten
gemessen haben. Die evaluierten Datenschutzmechanismen umfassen kryptografische
Block- und Stream-Chiffren, sichere Hash-Algorithmen, digitale Signaturalgorithmen
und Algorithmen, die für Schlüsselaustauschprotokolle benötigt werden. Basierend auf
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den Ergebnissen haben wir ein Source Location Privacy (SLP)-System entwickelt, das
speziell für den Betrieb in Umgebungen mit eingeschränkten Ressourcen entwickelt wurde.
Drittens untersuchten wir Datenschutzbedenken im Bereich der KI-gestützten öffentlichen
Überwachung und wie man ihnen begegnet. Insbesondere interessieren wir uns für Video
Analysis Pipeline (VAP) und die Herausforderungen an den Datenschutz, mit denen
solche Systeme konfrontiert sind, i.e. das Durchsickern von personenbezogenen Daten
aus aufgezeichneten und übertragenen Videodaten. Als letzen Punkt haben wir eine
datenschutzorientierte Anpassungs-Engine für verteilte Videoanalyse-Pipelines entwickelt.
Es verwendet ein erweitertes Systemmodell und Anpassungsregeln, um die Anforde-
rungen von KI-unterstützten VAPs zu erfüllen. Darüber hinaus verfügt es über einen
Optimierungsalgorithmus zur Verbesserung der Leistung, des Energieverbrauchs und des
Datenschutzes eines verteilten VAP und seiner Funktionalitäten.



Abstract

Urban sensing is the foundation for cities to become smart. It comprises multiple domains,
such as public surveillance, smart buildings, smart health, crowd sourcing/sensing or
environment monitoring. From each of those domains stem digital services that, ideally,
elevate the overall life quality of citizens. Prominent examples of such services are e.g.,
remote climate control of a smart home, light control in buildings based on occupancy
sensing, effective routing of emergency vehicles through traffic monitoring data, automatic
PH-control for urban water sources, or large scale movement pattern analysis of citizens,
just to name a few. The edge computing paradigm plays a major role in urban sensing,
as it facilitates the development, operation and optimization of such services. Reduced
latency, scalability, bandwidth relief, or reliability are prominent advantages of edge
computing based services. However, many of those services process, transmit or store
sensitive data. The often constrained resources in edge computing pose critical challenges
to data protection aspects of such services. Adaptation is a key enabler to attenuate
and deal with many of those challenges. Based on the classical definition of control
theory an adaptive system monitors its own performance and adjusts its parameters in
the direction of better performance. In the context of protection of data, this involves i)
monitoring the system and its environment, ii) analyzing whether changes threaten the
satisfaction of security and privacy requirements, and iii) the planning and execution
of adaptations, if needed, to ensure the continued satisfaction of these requirements.
In this thesis, we exploit the adaptation space to improve or enhance data protection
in resource constrained urban sensing environments. First, we present a system model
that builds the foundation of an adaptive urban sensing system that has to adhere to
some form of data protection regulation. The model focuses on data protection aspects,
such as fine grained access control, and supports the definition of privacy policies and
how to enact them inside the system. Second, we evaluated several data protection
mechanisms by measuring their performance and energy consumption on representative
edge devices. The evaluated data protection mechanism include cryptographic block and
stream ciphers, secure hashing algorithms, digital signature algorithms, and algorithms
needed for key exchange protocols. Based on the evaluation results, we developed a Source
Location Privacy (SLP) system, specifically designed to operate in resource constraint
environments. Third, we investigated data protection concerns, and how to address
them, in the domain of AI-assisted public surveillance. Specifically, we are interested in
Video Analysis Pipeline (VAP) and the challenges to data protection such systems are
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confronted with, i.e., leakage of Personally Identifiable Information (PII) from recorded
and transmitted video data. Lastly, we developed a data protection focused adaptation
engine for distributed video analysis pipelines. It employs an extended system model and
adaptation rules to meet the requirements of AI-assisted VAPs at the Edge. Furthermore,
it features an optimization algorithm to improve performance, energy consumption and
data protection of a distributed VAP and its functionalities.
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CHAPTER 1
Introduction

Urban sensing is the key foundation for cities to become smart. It comprises multiple
domains, such as public surveillance, environment monitoring, smart health, crowd
sourcing/sensing or smart buildings, as depicted in Fig. 1.1. Each of those domains offers
services that, ideally, elevate the overall life quality of citizens. Prominent examples of
such services are e.g., remote climate control of a smart home, light control in buildings
based on occupancy sensing, effective routing of emergency vehicles through traffic
monitoring data, automatic PH-control for urban water sources, or large scale movement
pattern analysis of citizens, just to name a few. The edge computing paradigm plays a
major role in urban sensing. Depending on the definition, Internet of Things (IoT) and
Wireless Sensor Network (WSN) can be seen as an infrastructural part of edge computing.
In this thesis, IoT and WSN are treated as subsets of edge computing, thus allowing for
finer grained categorization if needed.

Typically, edge computing comprises a variety of different connected devices with minimal
to average computing power. Fig. 1.2 depicts exemplary compute hardware, which we
classify into three different tiers, based on their capabilities. In this thesis, we focus
on domains and respective use cases employing low tier to mid devices. These devices
continue to permeate deeper into our personal environment as well as in commercial and
industrial areas, by sensing, processing, and storing all kind of data [VF13a]. Releasing
data to centralized services is especially problematic for systems that handle sensitive
data, such as video data in public surveillance or patient data in e-Health systems, as
this loss of control can hinder data management workflows from complying to privacy
policies [DJP11, LRD19a] such as the General Data Protection Regulation (GDPR) or
Health Insurance Portability and Accountability Act (HIPPA). For many applications,
like in healthcare, home automation or infrastructure monitoring, these circumstances
call for privacy and security protection [DWK15a]. Integrity, confidentiality, availability,
undetectability, and unobserveability are the key elements of such protection mechanisms.
The overall risk that such a system is confronted with could be assessed by looking on
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Public Surveillance  
(2), (5), (6), (7)

Smart Buildings
(2), (3)

Environment 
Monitoring

(3), (4)

URBAN SENSING

Smart Health 
(2) Crowd Sensing

Other ...

Figure 1.1: The Different Domains in Urban Sensing

Figure 1.2: Device Categorization into Tiers based on its Capabilities

its various attack surfaces that are exposed to an adversary. For example, characteristic
threats to the confidentiality of a system are spoofing attacks, message altering, replay or
flooding attacks, just to name a few [FWKM15]. In general, data protection is a critical
non-functional aspect of edge computing based systems, and remains an active area of
research. It has to be noted, that the term data protection is not very well defined from
a global perspective. For example, according to the GDPR, data protection mechanisms
should prevent personal data breaches [Gen16]. However, throughout this thesis, the
term data protection is often used in a broader sense, i.e., not limited to personal data
only but sensitive data in general that needs to be protected.

4



1.1. Problem Statement

Application 
(4),(6),(7)

Policy 
(2)

Operator 
(3),(5),(6),

(7)

Cloud

Edge

In
cr

ea
si

ng
 C

ap
ab

ilit
ie

s

Secure Data Operations

Adapt & Optimize

Governance

Increasing H
eterogeneity

Figure 1.3: Secure Data Operations through Adaptation in Mid- and Low-Tier Edge
Computing Systems

Adaptive Systems bear great potential to enable flexible and context-aware data protection
for such systems, especially if resource constrained devices are incorporated. Based on the
classical definition of control theory an adaptive system monitors its own performance and
adjusts its parameters in the direction of better performance [NA12]. In the context of
protection of data, this involves i) monitoring the system and its environment, ii) analyzing
whether changes threaten the satisfaction of security and privacy requirements, and iii)
the planning and execution of adaptations, if needed, to ensure the continued satisfaction
of these requirements [KC03]. To enable such adaptations at run time, appropriate
adaptation rules have to be defined at design time, specifying what adaptation to perform
in which situation. While there are several existing approaches to creating self-adaptive
systems, they assume that the designer is able to define the appropriate adaptation rules
[ST09]. For defining adaptation rules, it is crucial to understand i) what changes in the
environment may happen, ii) what self-adaptations the system may perform, and iii) how
those changes and self-adaptations impact the relevant system properties. In this thesis,
we investigate the adaptation space to improve or enhance data protection in resource
constrained urban sensing environments. Specifically, as depicted in Fig. 1.1, we propose
solutions to tackle several problems from four urban sensing domains. The numbers
inside Fig. 1.1 reflect the actual chapters in this thesis. Each of those chapters deal with
one or more particular problems in the respective urban sensing domain (highlighted in
green), which is described in more detail in the following section.

5



1. Introduction

1.1 Problem Statement

The improvement of performance related functional requirements for urban sensing
applications, e.g., shorter computing times, optimizing data storage or reducing latency
is a popular area of research in edge computing. However, adaptations to increase
non-functional requirements, such as security and privacy, are often second to such
performance related characteristics of a system [MAM15]. This circumstance can hinder
data management workflows from complying to privacy policies [DJP11] or security
provisions such as HIPPA [oHS96]. Current research falls short of providing concrete
frameworks and solutions for modeling privacy constraints and enacting data processing
rules to meet privacy requirements [SCZ+16]. Additionally, internal and external run-time
parameters, reflecting the environmental context of a system, may heavily influence the
decision making processes regarding the relevant data protection mechanism that need to
be carried out in order for the system to adequately comply to a privacy policy. In chapter
2 we tackle this issue and present a novel model for defining and enacting privacy policies
based on context-aware edge computing. Our proposed approach is motivated by use case
of the smart health domain. Furthermore, well established countermeasures reducing
or eliminating the attack surface on a system are often not designed to be executed on
resource constrained devices or may perform poorly on those [SWZL12]. Many of widely
used, commercially available, resource constrained devices come with built in crypto
chips, i.e., specialized hardware to accelerate specific cryptographic applications. These
chips usually feature methods used by the Secure Sockets Layer (SSL) or Transport Layer
Security (TSL) standard, but they do not support the many other different algorithms
available used for data confidentiality and data integrity that could be needed to facilitate
the development of custom protocols, e.g., onion routing, relying on secure and privacy
preserving data transfer [LRD19b]. As technology advances, generalized statements
on performance of data protection mechanisms in smart home, such as:"Asymmetric
Cryptography is infeasible", should not be made. Therefore, it is necessary to continuously
(re-)evaluate those various mechanisms and to show whether such statements still hold true
or not. A thorough performance evaluation of such algorithms on representative devices
can aid developers and system engineers in designing a system that adheres to specific
security guidelines, yet maintains adequate performance[LD19a]. Additionally, systems
may encounter changes of several parameters during runtime, such as sensor reading
frequency, data size, or a specific means/levels of protection quality (e.g., encryption
strength) concerning sensitive data. The level of data protection could manifest itself
via changing security policies enforcing a minimal key size of an encryption algorithm
or ensuring data integrity using a message authentication code. Generally speaking,
strategies to protect data need to be appropriately designed and correctly implemented
in order to mitigate the associated risks. Therefore, we need a better understanding
of the main levers for performance and protection of data in edge computing systems
incorporating resource constrained devices. In chapter 3, we evaluate several data
protection mechanisms on a real world testbed, featuring typical resource constrained
smart home devices. This evaluation is viable for developers and system engineers
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to tackle the aforementioned problems. Based on our results, adaptation strategies
and adequately defined respective privacy policies can be designed and implemented in
various urban sensing domains, such as smart buildings or environment monitoring. Those
domains typically feature resource constrained devices and face challenges as mentioned
above. A concrete problem in urban sensing, e.g., in environment monitoring, is Source
Location Privacy (SLP). SLP, as the name implies, aims to keep the location private,
where data was originally collected. Referring to smart home, being an interconnected
network, this would in most cases result in efforts to keep the IP-address of a device
private. A well-known example in literature is the Panda-Hunter Game, where a WSN is
deployed in a forest to monitor pandas. Hunters take the role of an adversary, trying to
capture the panda. The goal is to prevent the hunter from locating the source, i.e., the
sensor attached to a specific panda [Kea05]. In chapter 4 we present a SLP mechanism
based on the onion routing principle specifically designed to meet the requirements of a
system incorporating resource constrained devices.
In the public surveillance, another concrete problem in urban sensing is the protection
of Personally Identifiable Information (PII), extracted from video data. For example,
PII could be inferred from recording persons (faces) or cars (licence plates) by a traffic
monitoring system. Recent research in particular has identified edge computing as a key
enabler for privacy-sensitive systems that deal with real-time video processing [SSX+15,
GHB18]. However, the increasing number of cameras in public spaces cause growing
concerns about the abuse of mass surveillance systems and the implications on personal
privacy and freedom [SMM+09]. Therefore, adequate protection of private data is an
increasing concern in all kinds of domains making use of public video streams, such as
health, financial, and social security. The most common straight forward generalized
approach to protect sensitive data is the installation of access control mechanisms
alongside with various encryption techniques, in order to protect data at rest and in
transit. An exemplary video analytics implementation at the edge might incorporate a
computing unit, connected to a camera, encrypting and transmitting a video feed via TSL
to a cloud server, where some form of e.g., Role Based Access Control (RBAC) ensures
that the decrypted video feed may only be processed by a entity with adequate permission
or role. Most existing approaches focus on privacy and security related operations of
the video stream itself or protecting its transmission. Instead of applying encryption or
privacy preserving image transformation techniques to a recorded video feed, the relevant
information from the feed could be extracted with the help of sophisticated machine
learning techniques [LRD21]. This information only is then transmitted and made
available, and, of course, also protected by similar mechanism as described in the previous
example. The (raw) video is never transmitted or persisted/distributed permanently.
This concept is presented in more detail in chapter 5. Recent advances in Artificial
Intelligence (AI), particularly in Machine Learning (ML), enable effective automatic
video processing [DA04, FBVC01, BZR+05, HBB+07]. The emerging Edge computing
paradigm facilitates the deployment of distributed AI-applications and hardware. AI-
assisted video analytics can provide valuable information and benefits for parties in
various domains. Face recognition, object detection, or movement tracing are prominent
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1. Introduction

examples enabled by this technology. Hence, AI can help in satisfying requirements for
adequate protection of data. For example, faces and license plates can be automatically
detected by appropriate ML-based object detection algorithms, and then anonymized by
further video manipulation methods. However, AI-assisted protection mechanisms are
often coupled with heavy computational costs. Furthermore, the capabilities of connected
devices as well as the properties of the videos to process can change over time. Usually,
processing videos is very resource-intensive, but the end devices producing the videos are
resource-constrained. Thus, video processing systems at the edge must be self-adaptive
to be able to react to changes at run time while maintaining an adequate protection of
data. In particular this becomes relevant for systems running a Video Analysis Pipeline
(VAP) which needs the end devices to be flexible concerning protection methods. To
some extent, video processing can be offloaded to the cloud to take advantage of the
virtually unlimited computational capacity offered by the cloud. However, offloading to
the cloud is associated with high latency and high network load. Hence, a better solution
is to deploy devices with sufficient computational capability near the network edge. End
devices can offload some video processing functionality to nearby edge nodes, thereby
benefiting from low-latency access to computational capacity without overloading the
core network. For video analytics at the edge, these questions are complicated, since there
are many different types of possible environment changes and self-adaptations, and they
have intricate implications on a variety of system properties [BFI19, BFGL20, VF13a].
In particular, environment changes may happen both at the infrastructure level and the
application level, and also self-adaptations are possible on both levels. Optimization
is either carried out during design-time or run-time of an application, by carrying out
adaptations on either the infrastructure or application level. Accuracy plays a crucial
role for applications incorporating data protection mechanisms, e.g., anonymization,
that have to adhere to specific privacy regulations like the GDPR. An application may
have to sacrifice potential performance benefits from optimization strategies to achieve
the necessary level of accuracy. The heterogeneous and dynamic environment in edge
computing greatly increases the complexity of such optimization strategies even more.
Thus, video processing systems at the edge must be self-adaptive to be able to react to
changes at run time.
First, in chapter 6 we explore the adaptation space for AI-assisted video analytics at the
edge and how to exploit it to improve the data protection aspect of such systems. Then,
in chapter 7, we present a concrete implementation for an adaptation engine that is
capable of automatically resolving issues related to either performance or data protection
(or both). We evaluated the adaptation engine based on an AI-assisted VAP in the public
surveillance domain, specifically on a traffic monitoring use case.
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1.2. Methodology

1.1.1 Research Questions

To summarize, the research presented in this thesis is driven by the four following research
questions:

(RQ1) How can edge computing based data protection policies be formulated and processed
in order to build the foundation for an adaptive urban sensing application?

(RQ2) What parameters need to be evaluated and considered for data protection focused
adaptation strategies and how can those be applied in low tier resource constrained
urban sensing environments?

(RQ3) What are the implications on the adaptation space regarding AI-assisted data
protection mechanisms in mid tier urban sensing applications?

(RQ4) How can we exploit the adaptation space in an edge based urban sensing application?

1.2 Methodology
In order to answer the proposed research questions, for each research question, we followed
the following academic methodological approach:

1. The state-of-the-art is analyzed and related work identified.

2. Challenges and shortcomings will be investigated.

3. Novel concepts will be theoretically elaborated and practically evaluated and
verified.

In the following, each of those steps is described in more detail.
Edge computing in general is seen as a potent enabler of urban sensing applications. The
complexity of these applications ranges from processing single environment information,
e.g., temperature readings, up to processing computationally heavy expensive machine
learning based tasks such as video analysis. However, many edge devices executing those
applications are limited in their capabilities, such as computing performance, energy
consumption or storage. Additionally, many of those applications also face challenges
related to data protection. In this thesis, it will be investigated how adaptation strategies
could potentially mitigate risks to data protection while still maintaining adequate
performance. The research conducted in this thesis will focus on low and mid tier
edge computing devices operating in the scoped urban sensing domains. Survey and
vision papers will provide a general overview on these challenges, while technical papers
will describe a detailed in-depth view on the specific research areas. Challenges and
shortcomings of these papers will then be investigated and novel solutions derived with
respect to the specific urban sensing domains covered by this theses. First, state-of-
the-art policy languages and definitions and how to apply them in edge based systems
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will be researched in order to answer RQ1. Second, special attention will be given to
research concerning performance evaluations of protection mechanisms at the edge. This
is particularly interesting for low tier devices, as well established protection mechanisms,
such as encryption, may not perform well or not at all on those devices. Third, literature
on adaptive systems in general will be investigated, followed by a thorough research on
adaptive systems featuring AI-assisted applications. Understanding the limitations and
specific capabilities and mechanisms of those areas is necessary to answer RQ2 and RQ3.
Lastly, adaptive system modeling strategies, concepts and tools will be investigated in
order to drive the research needed to answer RQ4.
Practical experiments conducted on representative state-of-the-art low and mid tier
edge hardware will on the one hand (partly) validate existing research and on other
hand produce up-to-date results. Furthermore, the experiments will be deliberately
designed to include the relevant data protection mechanisms that are needed to elaborate
sophisticated and viable adaptation strategies for each of the urban sensing domains in
scope of this theses.
Throughout the stages of this thesis, collaborations with students within and outside the
department were conducted.

1.3 Scientific Contributions

This thesis provides significant contributions to the field of performance analysis for
resource constrained devices and its adaptations space focusing on data protection for
urban sensing applications. Novel possibilities and optimization strategies for adaptation
management in AI-assisted edge computing paradigms were elaborated and their impact
on data protection techniques validated.
Regarding RQ1, we proposed a privacy policy model leveraging edge computing tech-
niques where sensitive data flow is handled closer to the user, because ensuring privacy is
not just a matter of authentication and authorization but a more complex task which
should take the environmental context in which data is managed into account. Regarding
RQ2, precise measurements conducted on state-of-the-art representative edge hardware
yield fundamental performance values that enable stakeholders to make accurate assump-
tions about data throughput and correlating energy consumption of an application that
i) incorporates resource constrained devices, and ii) needs to implement some sort of
data protection functionality. Additionally, systems may encounter changes of several
parameters during runtime, such as sensor reading frequency, data size, or a specific
protection level for data. The level of protection could manifest itself via changing security
policies enforcing a minimal key size of an encryption algorithm or ensuring data integrity
using a message authentication code. In particular this becomes relevant for adaptive
systems, e.g., edge nodes running an risk-assessment engine which needs the end devices
(e.g., resource constrained smart home/Edge devices) to be flexible concerning methods
to protect data. Algorithms supporting confidentiality, authenticity, and integrity are
of particular interest, whereas their limitations and throughput rates can be used to
calculate protection/performance/energy consumption trade-offs for a specific hardware
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configuration.
On top of such performance and energy consumption measurements, our results enable
the design and implementation of specific optimization strategies that enhance application
behavior, by monitoring and adapting critical system parameters that influence the pro-
tection of data and performance, thereby constantly reacting to potential environmental
changes. Such an optimization strategy should aim to balance performance, quality
of data-protection, and energy consumption is either performed during design-time or
run-time of an application, by carrying out adaptations on either the infrastructure or
application level. Furthermore, a concrete implementation of a source location privacy
protocol strategy is proposed, which is based on the previously gathered results presented
in this thesis. Regarding RQ3, the impact of artificial intelligence and machine learning
on edge based systems and its implications on the protection of data is evaluated. The
evaluation results presented in this thesis are particularly (but not exclusively) applicable
to video analytics on the edge, which can be significantly enhanced by incorporating
AI-based techniques and such systems are expected to be continuously deployed in e.g.,
smart cities. However, in many cases such systems face challenges like heterogeneous
deployment infrastructure and dealing with dynamic contextual changes in a recorded
videos nature such as varying number of people recorded over a given period of time.
Lastly, regarding RQ4, first, a privacy system for AI-assisted video analytics at the edge
is proposed. The system ensures that applications leveraging extracted data have no
access to the video stream. It extracts relevant information from video data and governs
the secure access to that information. An attribute-based authorization scheme allows
applications to only query a predefined subset of extracted data. Second, an adaptation
engine is proposed capable of modeling and exploiting the investigated adaptation space in
the domain of AI-assisted video analytics. The proposed engine leverages the application-
and infrastructure based adaptation space of a distributed VAP.
To briefly summarize, the presented results provide parameters, levers, guidelines, strate-
gies and concrete implementations that are useful for either developers, requirement
engineers, and software architects, but researchers as well They aid and facilitate the
design, implementation and deployment of urban sensing systems dealing with resource
constrained edge devices and that need to adhere to security and privacy rules.

1.4 Thesis Structure

The thesis is structured as follows: Chapter 2 presents a novel model for defining and
enacting privacy policies based on context-aware edge computing. The proposed approach
is motivated by use case of the smart health domain. The design choices of such policies
are ideally grounded in fundamental research specific to the urban sensing domain.
Hence, in Chapter 3 we present an evaluation of several data protection algorithms,
measuring their impact on resource constraint devices with regarding performance and
energy consumption. The presented results were conducted on a typical IoT devices
and build the foundation of a concrete solution to the source location privacy problem
in various urban sensing domains, such as environmental monitoring. This solution
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is based on the well-established onion routing principle and presented in chapter 4.
Chapters 5 - 7 shift the focus to another prominent domain of urban sensing, i.e., public
surveillance. Concretely, those chapters focus on AI-assisted video analytics pipelines.
Chapter 5 presents a privacy preserving system for AI-assisted video analytics, that
extracts relevant information from video data and governs the secure access to that
information leveraging the concepts of Attribute Based Encryption (ABE). In chapter 6
we explore the adaptation space of AI-assisted VAPs, i.e., we identify factors that can
be adapted in AI-assisted data protection for video analytics using the example of a
face blurring pipeline in a traffic monitoring system. A concrete implementation of an
adaptation engine for such systems is presented in chapter 7. The engine is evaluated
(but not limited to) based on the use case (i.e., traffic monitoring) as described in the
previous chapter. Lastly, the thesis is concluded in chapter 8. Furthermore, this chapter
provides an outlook on how the presented solutions will be integrated and applied in
future work.
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CHAPTER 2
Context-Aware Enforcement of

Privacy Policies in Edge
Computing

Privacy is a fundamental concern that confronts systems dealing with sensitive data.
The lack of robust solutions for defining and enforcing privacy measures continues to
hinder the general acceptance and adoption of these systems. Edge computing has been
recognized as a key enabler for privacy enhanced applications, and has opened new
opportunities. In this chapter, we propose a novel privacy model based on context-aware
edge computing. Our model leverages the context of data to make decisions about how
these data need to be processed and managed to achieve privacy. Based on a scenario
from the Smart Health domain (aka eHealth), we show how our generalized model can
be used to implement and enact complex domain-specific privacy policies. We illustrate
our approach by constructing real world use cases involving a mobile Electronic Health
Record that interacts with, and in different environments.

After a brief introduction, the remainder of this chapter is structured as follows. In
Section 2.2 we present a motivational scenario from the eHealth domain. Section 2.3
gives an overview of related work. In Section 2.4 we present our privacy model, and how
context-awareness is factored into this model. In Section 2.5 we discuss the enforcement of
privacy policies by our model based on context-aware edge computing. Finally, Section 2.7
concludes the chapter and gives an outlook on future work.

2.1 Introduction

Cloud computing and the continued centralization of computation and data management
has caused growing concern about data privacy [SD16]. Releasing data to centralized
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services is especially problematic for systems that handle sensitive data, such as patient
data in eHealth systems, as this loss of control can hinder data management workflows
from complying to privacy policies [DJP11] such as the GDPR or security provisions such
as HIPPA. Edge computing has been recognized as a key technology for enabling privacy-
aware IoT applications. However, the complexity inherent to edge computing architectures
makes it extremely difficult for application developers to implement mechanisms that can
guarantee privacy policy compliance, especially in complex domains with high amounts
of stakeholders, such as eHealth. Current research falls short of providing concrete
frameworks and solutions for modeling privacy constraints and enacting data processing
rules to meet privacy requirements [SCZ+16]. Data confidentiality, data integrity and
data privacy are the key concepts to meet those requirements. To avoid information
leakage, strict access policies must ensure the confidentiality and integrity of private data,
as well as handling data locality. This is commonly realized by defining roles according
to different stakeholders of a system, typically enforced by RBAC techniques [FCK95].
However, further data privacy agreements (e.g., data exchange between stakeholders),
that should also be adequately defined, established and implemented via privacy policies,
introduce additional architectural, conceptual, and performance related challenges. In
this chapter, we present a novel model for defining and enacting privacy policies based
on context-aware edge computing. By leveraging context-awareness of edge computers,
we enable runtime decision making for applications on how to enforce privacy policies
during data workflows. Compared to existing approaches, which are mostly tailored
to a specific use case or domain [XSSC06, KAB09, CRJS13, Klo17], our model focuses
on context-awareness and corresponding actions edge devices have to take. We thereby
enable flexibility in implementation, and aid system architects or developers in designing
and building decentralized systems that can make use of privacy-sensitive data, while
complying to complex privacy policies of a given domain. As part of our privacy model, we
define privacy levels to incorporate a finer formal description granularity. We demonstrate
our approach based on a scenario from the eHealth domain, where privacy is considered
a critical requirement.

2.2 Motivational Scenario

The National Committee for Vital and Health Statistics (NCVHS), a key advisory
committee to the US Department of Health and Human Services, defines privacy in
the context of health information as “an individual’s right to control the acquisition,
uses, or disclosures of his or her identifiable health data” [Coh06]. Hence, granting
patients control over their medical records, even if the data are owned by another party
(as is common in electronic health records) is fundamental for enabling privacy. The
concept of mHealth [KST11] can facilitate this by leveraging mobile platforms to monitor,
process, and store medical data in a so called Mobile Electronic Health Record (mEHR).
However, this decentralization increases complexity of data management workflows, in
particular when privacy policies need to be enacted by the system automatically at
runtime. We consider a typical scenario from the medical domain, where a patient is
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going into a hospital seeking medical consultation and is subsequently examined by a
physician. The patient has a mEHR as an application installed on their smartphone. This
record comprises personal data fields such as name, address, or gender; and medical data
fields arranged in sections such as diagnoses, prescriptions or therapies. Multiple other
stakeholders are also involved in further steps in this scenario. For example, consider a
pharmacist who hands out prescribed medication, or a biotechnological specialist (who is,
e.g., consulted for specialized artificial implants). These stakeholders can also be other
machines such as a drug dispensers or smart medical imaging devices. Furthermore,
in this scenario, diagnoses can also be done remotely, which requires a system to be
interconnected across different networks. These examples all require the sharing or
processing of sensitive data in different contexts between different stakeholders. A system
that supports this type of complex scenario requires not only standard role-based access
control mechanisms to ensure privacy, but has to react and adapt to different changes in
environmental context. Such reactions are operations or processes that ensure privacy of
data is preserved and carried out in a way that conforms to a corresponding policy.

2.3 Related Work

Securing the integrity and sharing of information is a critical requirement in complex
distributed systems that deal with sensitive data. Data encryption is a common tool
to hinder an unintended user to infer information of stored or transferred data. An
overview of different well researched encryption approaches and techniques is presented
in [AV16]. To protect data from alteration, modification or deletion in a distributed
system several data integrity strategies have been developed and established. These
include Provable Data Possession (PDP) [ABC+07], Proof of Retrievability (PoR) [JKJ07]
and Third Party Auditing (TPA) [WWRL10]. Nowadays, interconnected edge devices
like smart phones, sensors, Radio-Frequency Identification (RFID) tags, or smart home
devices are producing a huge amount of data. As these devices become more and more
integrated into our daily life, they significantly affect and change our way of living, social
behavior and life style [SCZ+16]. These data are then used to generate context-aware
information (e.g., tracking the commute duration from a person’s home to their work
location) [SKW15]. In this work we focus on data privacy per se, which deals with
safeguarding personal information. For instance, patients private data, diagnoses or
therapy plans may be misused by, e.g., insurance companies to adapt rates, and must
therefore be well protected. Enforcing privacy in software systems has mostly been
addressed by incorporating RBAC techniques. Standards like the eXtensible Access
Control Markup Language (XACML) [OftAoSIS] can be used to define policies and
handle access of data but do not take different environmental contexts into account nor
describe how and where these policies should be enabled. Furthermore, most of those
mechanisms are based on a centralized architecture with a complex constellation of roles
and sensitive data is often duplicated or distributed. Our model describes how such
well established RBAC approaches could be extended, by incorporating edge computing
techniques, to facilitate the development of decentralized privacy preserving systems.

15



2. Context-Aware Enforcement of Privacy Policies in Edge Computing

2.4 Privacy Model in Edge Computing

The privacy model we propose describes the circumstances under which an entity is
allowed to access specific parts of sensitive data. Defining a consistent model enables a
coherent definition of policies that ensure privacy of data, also handling data locality. Our
privacy model combines and correlates certain levels of privacy (e.g., visibility constraints
on specific data sets) with a given context. The determination of a specific context is
best handled closest to the according environment. Therefore, edge computing is well
suited for this task, where every edge device is exposed to a certain and specific context.

2.4.1 Privacy Policies

A common way to enable and enforce privacy in edge computing is to define policies
that specify the handling of sensitive data [YYSL12, RGP15]. One use case may be the
need for policies to correctly handle the collection, exchange and disclosure of patient
data (e.g., in medical consultation scenarios). Retaining data quality and accessibility
required for medical processing while respecting privacy aspects of all involved persons is
one of the key challenges when defining privacy policies in eHealth. A simple concrete
implementation of such a policy could describe which data fields of a given set of personal
information should be persisted and which data fields should be handled transiently.
The downside of such policies is that they are often tailored to specific use cases and
therefore lack flexibility and generality. In this work we distinguish between two different
types of policies. First, there are policies which define the data persistence modalities of
private data, and second, policies which describe how and where the data is modified
(e.g., anonymized or encrypted) for transport and inspection or further computation.
Therefore, we distinguish between logical and physical privacy boundaries. While logical
boundaries deal with role-based constraints, legal constraints, etc., physical boundaries
comprise location-based constraints, network constraints, or other involved devices.
After policies are defined, only a subset of those need to be deployed and stored on
relevant edge devices, based on the assumption that not every policy is applicable in
every context.

2.4.2 Privacy Levels

To incorporate more granularity into policies, we suggest to define different levels of
privacy. Regarding our example scenario, we divide privacy related data into (i) domain
specific data like anamnesis data, medical diagnoses, pharmaceutical prescriptions, etc.,
and (ii) personal data like full name, address, and other data of personal domain. An
example of a privacy policy in the eHealth domain could force a device or system to
decide between visibility levels of patient data. One level could define that all data
is visible (e.g., for personal usage), while a physician or pharmacist should only be
allowed to access specific data sections, like open prescriptions or medical diagnosis. If a
physician seeks consultation, another level could state that all personal information is
invisible and only medical data is visible. At last, the most restrictive level would be that
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all data is invisible to anybody, e.g., being encrypted for transmission. Our proposed
model presupposes that for every different level contextual information is incorporated.
Furthermore, these levels should be defined at a more granular level depending on given
system dependencies like domain specific, political, legal or architectural constraints and
operate either on holistic data sets, data sections or single data fields.

2.4.3 Context-Aware Decision Making

To achieve a higher degree of flexibility in implementing privacy policies we propose a
context-aware decision making process to dynamically adapt to changing environment
situations at the edge. In literature, the place where this decision making process
is carried out is commonly referred to as a Policy Decision Point (PDP). This PDP
typically relies on a so called Policy Administration Point (PAP), where your policies
are unequivocally defined (as will be described in Section 2.5.1 and stored. Context in
computer science can be interpreted in many different ways. In the focus of this chapter,
we use the term context as environmental information recognizable by edge devices. This
could be information about the network and its topology, connected devices, spatial
information, proximity, location or time. A context-aware system is able to interpret
changes in the environment and react to them in a predefined manner. After a decision
on such a reaction is made, the concrete action typically takes place at a so called Policy
Enforcement Point (PEP). In this work, the Policy Application Manager (PAM) (as
described in Section 2.5) can be seen as such a PEP. The decisions made and actions
carried out are typically monitored by a Policy Information Point (PIP), which can be
seen as a checkpoint to validate the correctness of the policy enforcement steps. While
a PIP is definitely a useful tool, it is basically a monitoring component and not closely
tied to our model. Hence, it is out of scope of this work.
One way of telling the system how to react to certain context changes is by defining
previously mentioned policies and enhance them with contextual parameters. Regarding
privacy, such context-aware systems are on the one hand able to anticipate potential risks
and provide recommendations to, e.g., a user which actions to take, and on the other
hand automate certain adaptations in data management and processing. However, in
real world scenarios such systems are not provided with holistic environment information
all the time, and sometimes they have to make decisions based on incomplete data.
This has to be taken into account when implementing privacy policies following either a
conservative strategy, i.e., disable controls or hide sensitive data on a user interface, or an
optimistic decision making strategy like allowing read access on partly obfuscated data.

2.5 Context-Aware Policy Enforcement on the Edge

By sticking to our motivating example, we illustrate how context-aware privacy policies
are defined and describe the corresponding decision processes that enable/enforce those
given a certain context using our model. The model comprises three essential encapsulated
parts that work together in a coherent way but can also be separately implemented
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Figure 2.1: Interaction of model components and edge devices operating in different
contexts

(e.g., using existing standards) if need be. Part one describes the process how to define
context-aware privacy policies for a certain system and how to describe them using
our privacy model. The second part defines an inference mechanism to obtain one or
more policies (depending on the policy definitions granularity grade) and the third part
describes a mechanism that determines the resulting actions after one or more policies
were identified.
Figure 2.1 illustrates the general principle of our model and how the distinct components
work together in three basic steps. First, a device requests access to (private) data on
another device. Context, Operation and Privacy Levels are transmitted to a Context
Operations (CO-OP) Processor. Second, the CO-OP Processor returns inferred policies
to the PAM implemented on each device, similar to a traditional PDP. Third, the PAM
triggers certain actions performed on corresponding data records to enforce the policies
returned by the CO-OP Processor. As mentioned in the previous section, this process
is similar to an action performed by a traditional PEP. Each of those elements will be
discussed in detail in the following.
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2.5.1 Policy Definition

Policies should be defined at an early stage during the system design phase, and comprise
fine-grained domains-specific parameters as it reduces ambiguity in implementation
details. The structural elements of our model are i) privacy levels, ii) data management
operations, and iii) context. The first thing to ascertain is the characteristic of either
logical or physical types of different contexts in the system. A typical example for a
logical form of context is the role of a user or device. A physical form of context could
be the current location of a user or the proximity of a device to an edge node. In
practice, context should be defined as fine-granular as possible. In this work, we suggest
different types or domains of context, as described in section 2.6. However, those types
do not comprise an exhaustive description or manifestation for every possible real world
scenario. Therefore, it is necessary that at design time, as good as possible, every context
is identified as such and, moreover, each of those identified contexts is described and
modeled as detailed as possible. The distinction between different types of context, allows
for a more structured elicitation of requirements as well as in decoupling corresponding
source code and re-usage capabilities of such code. The better the quality of this context
description, the better will be the accuracy and effectiveness of the inferred actions
taken as a response to e.g., change in context in the proposed system model. To achieve
this, precise measurements (e.g., quality of a Global Positioning System (GPS) signal to
determine the physical location of an object or user) have to be conducted as soon as
possible and carefully validated in order to achieve stable results.
After identifying different types of contexts, their manifestations have to be mapped
to certain data management operations (like classical CRUD operations, or persistence
constraints) that respect predefined privacy levels.

Table 2.1 shows exemplary privacy policies defined in the context of our motivational
scenario. These policies are based on typical use cases in the eHealth domain. In the
textual descriptions of the policy, we highlight the structural elements as defined by our
model. A policy defines one or more contexts ci, a privacy level l, and a data operation o.

2.5.2 CO-OP Processor

After several privacy policies are defined, an edge device needs to know if and when a
certain policy has to be applied. This task is implemented by the CO-OP Processor which
infers one ore more policies given domain-specific context parameters, privacy levels,
and a set of data operations. The corresponding inference function I can be formally
expressed as:

I : Cn ×O × L→ P m (2.1)

where C is the set of domain-specific context parameters {c1, c2, ...}, and O is a specific
operations (such as CRUD or persist), and L is the corresponding privacy level on which
should be operated on. The output is one or more policies p ∈ P that need to be enacted.
The CO-OP Processor should be implemented directly on an edge device.
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Policy Description
p1 A physician (c) may read (o) the personal section (l) of

an mEHR.
p1.1 A physician (c) may not persist (o) personal data (l) from

the mEHR.
p1.2 A physician (c) may create, read, update or delete (o)

the diagnoses and prescription part (l) of the mEHR.
p1.3 A pharmacist (c) may read (o) the prescription section

(l) of an mEHR.
p2 Drug dispensers (c) may read (o) the prescription section

(l) of the mEHR only if the user is in close proximity.
p3 Data access (o) on the medical section (l) is allowed only

after explicit user permission if a connection is established
across different networks (c).

p4 Data access (o) on the medical section (l) is allowed
only if the involved devices (c1) are located in the same
geofence (c2).

p5 After the creation (c1) of a prescription section (l) of
the mEHR, there is a predefined time window (c2) for
a device of type drug dispenser (c3) to access (o) this
section (l).

Table 2.1: Example of data privacy policies of an eHealth application based on domain-
specific context parameters, data management operations, and privacy levels

2.5.3 Policy Application Manager

The determination of a certain policy by the CO-OP Processor implies specific actions
for a device to be executed. The Policy Application Manager takes one or more such
policies p ∈ P as an argument and returns one or more actions a ∈ A that have to be
taken to enact the privacy policy. This function Af can be formally defined as:

Af : P n → Am (2.2)

where P is the set of policies determined by I, and A is the set of possible actions.

Returned actions include basic create, read, update or delete (CRUD) operations or
persistence tasks as well as more complex actions like triggering another decision process
delegated to the CO-OP processor or transferring, decrypting, or further computing
data. Formally described, an action operates within the privacy model of a given policy
accomplishing the enforcement of its purpose. The PAM should be implemented on a per
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device basis or on edge nodes, because triggered actions may differ between, e.g., device
types. Delegating actions to the corresponding devices is also performed by the PAM.

2.6 Types of Context

The following scenarios illustrate the practical application of our model by covering several
examples of context manifestations, data management tasks the resulting inference of
corresponding privacy policies and their practical application.

2.6.1 Role Based Context

To perform specific tasks on a mEHR, policies are defined which describe who is allowed to
perform these data management tasks. Our predefined policy P1.2 state that a physician
is allowed to create, update or delete diagnoses and prescription parts of the mEHR and
P1 that he is only allowed to read personal data fields. At a special point during the
consultation process a physician (e.g., via their PC) wants to establish a connection to the
patient’s smartphone to access the mEHR. He sends a request to the CO-OP processor at
the edge, providing the context in form of his role, the operation, in our case read, as well
as the privacy level personal and diagnoses section of the mEHR. The CO-OP processor
returns policy ID P1, P1.1 and P1.2 which will then be further processed by the Policy
Application Manager. Because of P1.1 personal data won’t be persisted on the physicians
PC, therefore treated as transient data as long as the connection is established (if not
stated otherwise by a policy). On the other hand the mEHR of the patient registers a
connection request being made by a physician and therefore also requests policies from
the corresponding edge node. It then applies the corresponding policy which allows
the connection to be established and the physician to access the patients data. On the
contrary, if a pharmacist wanted to do the same, no defined policy would allow him to
do so (P1.3 only allows read access on the prescription section). This RBAC strategy is
the foundation of our model. Exhaustive research have been conducted on this topic and
could therefore facilitate the base implementation of our model.

2.6.2 Proximity Related Context

Sticking to our motivating example, we assume the physician prescribed the patient
a certain medicament. The patient then connects his mEHR to a special drug dis-
penser [Mic95]. The patients mEHR application recognizes the drug dispenser as a
special device type and infers a corresponding policy (P2) which allows any device of this
certain type to read the prescription data part of the mEHR. Furthermore, the device
running the mEHR has to be in close proximity to the drug dispenser. While a specific
device could also be modeled as a role, proximity has to be sensed and processed by an
edge device near by. If both constraints are satisfied, the drug dispenser then reads the
prescription related data fields and hands out the patient his medicine.
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2.6.3 Network Related Context

Another privacy policy (P3) defines that incoming connections are only handled auto-
matically if the connecting device (e.g., physicians PC) is located in the same network as
the device with the mEHR application installed. As long as this is the case, resulting
actions are based on decisions made by defined policies as described above. However,
if for instance the patient is at home and a physician tries to access the mEHR from
the hospitals network, an edge node recognizes that the mEHR is not connected to its
network and therefore sends a notification on the user stating that someone or something
is trying to access his mEHR. Via permission dialog or a similar Graphical user Interface
(GUI) mechanism the patient is then able to allow or deny the incoming connection and
processing of data.

2.6.4 Location Based Context

Determining the physical location of the patient’s device is a common task in mobile
computing and especially on smartphones. Certain policies could be enforced based on
the patients current location. As an example we extend our use case and refer to policy
P4, that enforces the presence (e.g., at least inside the hospital) of the patient near a
specific device, similar to proximity based context. This could be realized by defining so
called geofences, which describe a virtual perimeter based on GPS data [NSS13]. This
could become relevant for e.g., management tasks like dynamic bed allocation performed
by nursing personnel, if patients are not restricted to stay in their room or hospital
permanently. In contrast to a proximity related context, this type of context is best used
if a location can be determined accurately. As an example, the drug dispenser problem
as described in section 2.6.2 could also be modeled by using a location based context.
However, in reality the accuracy of an indoor based geo-location used to determine if a
user is in close proximity to the drug dispenser will be significantly more prone to errors
than using a proximity related context based on e.g., RFID hardware or Bluetooth.

2.6.5 State Based Context

The last example of context-aware decision making uses an inferred state based on
previous actions that were executed on the patients mEHR. For instance it is reasonable
that after the physician prescribes the patient a medicine, the next logical step for the
patient would be to get to the drug dispenser and collect his prescribed medication. One
of our predefined policies (P5) defines, that after the prescription part of a mEHR is
altered there is a (for example 72h) time window for the patients smartphone to establish
a connection to a drug dispenser. However, those state based context processing could
potentially lead to a system incorporating many exception conditions.
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2.7 Summary
The Internet of Things with all its edge devices generate, process and store a huge
amount of data. A lot of these data include privacy sensitive information and can be
used to infer specific user behavior patterns or, in worst case scenarios, compromise a
user. Holistic approaches are facing architectural, conceptual, as well as performance
related challenges. Therefore, we propose a model leveraging edge computing techniques
where sensitive data flow is handled closer to the user, because ensuring privacy is not
just a matter of authentication and authorization but a more complex task which should
take the environmental context in which data is managed into account. Armed with
a variety of powerful sensors that are considered to recognize relevant environmental
information, these edge nodes take away workload from traditional centralized, cloud
based approaches while also aiding sensible data locality tasks. Our model can aid
architects and developers to identify these contexts a system is confronted with. By
defining policies at an early point in system design, privacy concerns can be mitigated
or even eradicated. Hence, privacy policies have to be tied to several contexts in form
of fine grained definitions. However, to assure the quality, accuracy and effectiveness
of the actions taken to handle those risks, precise measurements and a high quality of
those measurements have to be carried out. Thus, involved Edge Devices must be able
to sense a certain context as precisely as possible and developers must implement the
corresponding inference functions as fine granular as possible to enforce a certain policy.
We suggest that this can be achieved by enriching policies, based on well established
RBAC features, with contextual information. Therefore, the enforcement of such policies
is not limited to be executed only after specific requests of a device to a corresponding
edge node. Edge devices, being aware of the context, could anticipate potential risks
beforehand and automate certain adaptions in data management and processing.
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CHAPTER 3
A Performance Evaluation of Data

Protection Mechanisms for
Resource Constrained IoT Devices

Data Protection is a major research topic concerning the Internet of Things. IoT systems
continue to permeate deeper into our personal lives, where devices sense, process, and
store all kinds of data. This poses various challenges to security and privacy aspects,
especially to applications running on resource constrained devices. In this chapter we
evaluate selected, well established data protection mechanisms that enable confidentiality,
integrity and authenticity of data, as well as secure key exchange mechanisms. Specifically,
we look into the performance and energy consumption of different cryptographic block
and stream ciphers, secure hashing algorithms, digital signature mechanisms, and key
exchange protocols executed on state-of-the-art resource constrained devices. By providing
limitations and data throughput values and their respective energy consumption, our
obtained results ease the calculation of performance/data protection/energy consumption
thresholds and facilitate the design and development of secure self-adaptive IoT systems
in urban sensing environments. The results presented in this chapter are based on
research presented in [LD19a] Those results were then updated and enriched with energy
consumption measurements within a collaboration with Sebastian Kaindl and also used
in his diploma thesis [Kai21]. The support of Sebastian in gathering these results is
thankfully acknowledged.

After a brief introduction, the rest of the chapter is structured as follows: Section 3.2
provides an overview of related work. Relevant information on cryptographic background,
methodology, and experimental setup is given in Section 3.3. In Section 3.4 we present
the experimental results. Finally, in Section 3.6, we conclude the chapter and give an
outlook on future research.

25



3. A Performance Evaluation of Data Protection Mechanisms for Resource
Constrained IoT Devices

3.1 Introduction

Different interconnected devices with minimal to average computing power make up the
majority of the Internet of Things. They sense, process, and store various data from
different domains and have become an integral part of our daily lives [VF13a]. The
specific nature of data related to critical domains, such as healthcare, public surveillance
or home automation, requires tailored data protection mechanisms concerning security
and privacy aspects. Data Integrity, confidentiality, authenticity, anonymization and
source location privacy pose different, partly overlapping challenges for the design and
implementation of an IoT system. Those challenges become even more demanding
when dealing with resource constrained devices. In this chapter we refer to devices
that lack computing power, i.e., Microcontroller Unit (MCU)s with low CPU power
and limited memory. Furthermore, we distinguish between devices typically found in
Wireless Sensor Network, which could be seen as an infrastructural subset on the IoT, and
typical resource constrained IoT devices. Most of the devices found in WSN are sensors
and actuators mostly adhering to the IEEE 802.15.4 protocol, using communication
frameworks like ZigBee. We define a resource constrained IoT device as a device with
limited computational power but integrated Ethernet or WiFi capabilities and USB
connectivity for facilitated programming.
The design of an IoT system, dealing with sensitive data, is often accompanied with the
definition or followed upon a set of distinct data protection rules, e.g., in the form of
policies. The overall risk that such a system is exposed to could be assessed by looking
on its various attack vectors of an adversary. Concerning privacy, protecting the system
from attacks on confidentiality of the data is crucial. Other characteristic threats to those
system are spoofing attacks, message altering, replay, and flooding attacks [FWKM15].
Well established countermeasures reducing or eliminating the attack surface on a system
are often not designed to be executed on resource constrained devices or may perform
poorly on those [SWZL12]. However, as technology advances, generalized statements on
performance of data protection mechanisms in IoT, such as:"Asymmetric Cryptography
is infeasible", should not be made. Therefore, it is necessary to continuously evaluate
those various mechanisms and to show whether such statements still hold true or not. In
this work we evaluate the performance of different algorithms concerning data integrity,
authenticity, and confidentiality as well as their respective energy consumption. Our
testset of algorithms comprises well established standard implementations of encryption,
key exchange, signing, and hashing methods, as well as lightweight implementations,
respectively. Many of widely used, commercially available, resource constrained IoT
devices come with built in crypto chips, i.e., specialized hardware to accelerate specific
cryptographic applications. These chips usually feature methods used by the SSL or TSL
standard to facilitate secure data transmission, but they do not support the many other
different algorithms available used for data confidentiality and data integrity that could
be needed to facilitate the development of custom protocols, e.g., onion routing, relying
on secure and privacy preserving data transfer. Systems may encounter changes of several
parameters during runtime, such as sensor reading frequency, data size, or a specific level
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of data protection. The results gathered by our evaluation can aid developers and system
engineers in designing a system that adheres to specific security guidelines and privacy
policies, but also balances performance and energy consumption. The quality of data
protection could manifest itself via changing security policies enforcing a minimal key size
of an encryption algorithm or ensuring data integrity using a secure hashing algorithm.
In particular this becomes relevant for adaptive systems, e.g., edge nodes running an
risk-assessment engine which needs the end devices (i.e., our resource constrained IoT
devices) to be flexible concerning data protection methods.

3.2 Related Work

As IoT devices continue to permeate deeper into our personal lives, security and privacy
aspects have become a major research topic in this field. Suo et al. [SWZL12] divide
an IoT system into four layers. Bottom-up these are: Perception Layer, Network Layer,
Middleware Layer, and Application Layer. An overview of possible threats and adverse
scenarios on each of those layers is provided by Farooq et al. [FWKM15], concluding that
the majority of threats are located in the Network Layer. To mitigate or at least lower
the risk of these threats, trade-offs have to be made either at design time or runtime
of a system. Those trade-offs involve parameters like energy consumption, strength of
encryption or data throughput. Altering one of these parameters will most likely affect one
or many of the others. In the area of WSN, where energy consumption and management
is particularly of interest, security evaluations have been done by several researchers.
The majority of related work in this fields deal with lightweight implementations of
cryptographic algorithms. In [Den14], various security solutions were analyzed. They
provide an overview of the individual security characteristics, requirements, attacks, and
encryption algorithms, considered to be useful for designers of a secure WSN. Alharby et
al. [AHWR18] studied the security costs in terms of energy consumption focusing on the
IEEE 802.15.4 transmission protocol definition. In their simulation they demonstrate the
impact of security message overhead on data latency and throughput, followed by an
evaluation of the effects those overheads have on energy consumption and their memory
footprint. In this work we consider such network overheads as negligible, because of the
many others factors that affect network performance, like signal strength or available
bandwidth. Also evaluating the costs of security in WSN, but focusing on energy
consumption, Lee et al. [LKS10] measured and compared four lightweight encryption
algorithms on MicaZ and TelosB sensor motes. Those devices reside at the lowest end
of the WSN spectrum, regarding computing power. In typical IoT environments, such
as Smart Buildings, energy consumption may not be of primary concern, while data
protection and throughput is considered more important. Therefore, in this work we
solely focus on the evaluation of data protection mechanisms and their performance in
terms of computing power, based on measurements gathered from, what we classify as,
typical resource constrained IoT devices. While our classification is based on a devices’
computing capabilities, other classifications can be found in literature, e.g., Bormann et
al. [B+12] suggest a classification scheme based on the memory capacity of an IoT device.
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Rani et al. [RR16] studied literature on the performance of various lightweight encryption
algorithms, focusing on the medical domain. In their work they provide an overview of
addressed problems, methodology and outcome of different research articles. However,
the addressed papers deal with evaluating the performance of lightweight cryptographic
algorithms only, mostly implemented on a Field Programmable Gate Array (FPGA).
An overview of various security mechanisms in the IP-based IoT is provided by Cirani
et al. [CFV13]. In their work they discuss different algorithms located at the network,
transport, and application layer. They focus on a detailed description of each algorithm
and its properties like key size, code size, block size, etc., but do not evaluate their
performance in terms of processing speed or computational effort. Closely related to
our approach is the work of Ertaul et al. [EW17]. In their paper the performance of
lightweight stream ciphers is evaluated. Implementation of three different algorithms
were deployed on a NodeMCU development kit and their performance evaluated. Their
measurements include i) stream cipher throughput, ii) power consumption, iii) memory
utilization and iv) WiFi Round Trip Throughput. However, they solely focused on
lightweight stream ciphers and their most powerful device corresponds to the least
powerful one of our testbed. Another publication, closely related to our work is provided
by Sethi et al. [SAKR12] in RFC8387. They evaluate various symmetric and asymmetric
encryption algorithms with different key sizes on a 8-bit microcontroller. In their work
they state that: "It is important to state that 32-bit microcontrollers are much more
easily available, at lower costs, and are more power efficient. Therefore, real deployments
are better off using 32-bit microcontrollers that allow developers to include the necessary
cryptographic libraries. There is no good reason to choose platforms that do not provide
sufficient computing power to run the necessary cryptographic operations." In our work
the performance of algorithms related to both, integrity and confidentiality, is evaluated
using a testbed comprising only 32-bit microcontrollers.

3.3 Methodology

In this section we discuss our evaluation process. First, we present the constellation and
an architectural overview of the used testbed. Second, we briefly introduce selected, well
established data protection mechanisms which we chose for our test scenarios, and how
we conduct our experiments.
We remark that entropy generation for random number generation or specific system
watchdog timer restart implementations are out of scope of this evaluation.

3.3.1 Testbed

Our testbed comprises four representative resource constrained IoT devices. We chose only
commercially available and well established microcontrollers mounted on development
boards which integrate our desired capabilities. This decision is based on our goal to
facilitate the development of secure IoT systems, in a way that our obtained results can
be easily adjusted to real world use cases. Our main criteria for selecting appropriate
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Device CPU Architecture Clock Frequency SRAM
MKR1000 SAMD21 Cortex-M0+ 32 Bit 48 MHz 32 KB
Due AT91SAM3X8E 32 Bit 84 MHz 96 KB
ESP32 Xtensa® LX6 32 Bit 240 MHz 520 KB
Pi Zero BCM 2835 32 Bit 1 GHz 512 MB

Table 3.1: Testbed devices used to evaluate data protection mechanisms for Resource
Constraint IoT Environments

Algorithm Type Purpose

Advanced Encryption Standard (AES) Block Cipher Confidentiality
ChaCha Stream Cipher Confidentiality
P521 Elliptic Curve Operations Signatures
Secure Hash Algorithm (SHA) Hashing Algorithm Family Integrity
SHA-HMAC Message Authentication Codes Integrity
curve25519 Elliptic Curve Operations Key Exchange

Table 3.2: Overview on evaluated data protection mechanisms

devices, is i) limited CPU power and memory, ii) an integrated WiFi chip and iii) USB
connectivity. We see such devices residing at the lower end of the IoT spectrum, close to
WSN devices which we position at the lowest end. Out of this device set, we deliberately
pick only MCUs that differ from each other in terms of computing power and memory,
and which are prevalent on IoT development boards. Though there are a lot more devices
commercially available, the majority does not differ in terms of computing power, because
most of them come in the form of development boards, designed for various purposes,
but featuring the same MCU mounted on the board. Table 3.1 provides an overview of
the selected devices. All of those devices are programmed using either C or C++, while
the sourcecode is compiled and deployed using the Arduino IDE.

3.3.2 Test Scenarios

This subsection provides an overview on the various data protection mechanisms evaluated.
We are particularly interested in algorithms supporting confidentiality, authenticity, and
integrity. Confidentiality refers to mechanisms enabling the protection of data from
disclosure to parties not authorized to read or act on this data. Integrity mechanisms, on
the other hand, deal with the prevention of altering data, either stored or during transfer,
by unauthorized parties [Sch03]. Authenticity refers to authentication mechanisms used
to verify a data source. Table 3.2 gives an overview on the evaluated algorithms, their
type, and which purpose they fulfill.
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Encryption

Encryption is a fundamental technique to establish confidentiality, which can be divided
into two main categories, namely i) symmetric encryption and ii) asymmetric encryption.
Substitution and transposition are the key features of encryption algorithms. Those
algorithms are commonly referred to as ciphers. Symmetric ciphers use a (pre-)shared key
for both encryption and decryption, and are further classified into i) stream ciphers and ii)
block ciphers. A stream cipher algorithm encrypts one bit or byte of plaintext at a time
and uses an infinite stream of pseudorandom bits as the key. Block cipher algorithms,
on the other hand, encrypt plaintext with fixed blocks of n-bits size at one time [Sta17].
While block ciphers seem to be applicable to a broader range of applications and are
therefore much more researched and implemented, it has been shown that stream ciphers
in general perform better than block ciphers regarding CPU time [SM10] [Sta17]. In this
work, we are focusing on the Advanced Encryption Standard (AES) block cipher, and the
ChaCha stream cipher. There are also specific MCU variants of some well established
encryption algorithm, that are optimized towards execution on such resource constrained
devices, such as (multiple implementations of) tinyAES. A TinyAES algorithm written
in C is also considered in this work, in order to find out if there are benefits in terms of
energy consumption compared to its standard variant.
Asymmetric cryptography uses a pair of keys that are generated based on one-way
functions. A one-way function easily computes any input, e.g., calculate f(x), but it is
hard to compute its inverse function, i.e., given the value of f(x) it is hard to calculate x.
Such a key pair consists of a private key which should be known to its owner only, and a
public key which can be distributed and made freely available to anybody [KMVOV96].
Asymmetric cryptography can be used for both, encryption/decryption and digital
signatures. Encrypting a message can be done by anybody using the receiver’s public key,
but decryption of that message is only possible with the corresponding receiver’s private
key. Signatures work the opposite way. First, a message is hashed and the resulting hash
then encrypted with the senders’ private key which will be send to one or more recipients
alongside with the plaintext message. Authenticity and integrity of the message can then
be verified by everyone in possession of the senders’ public key [Lam79]. In recent years,
a special form of asymmetric cryptography, namely Elliptic Curve Cryptography (ECC),
has gained increased attention. It is based on the algebraic structure of elliptic curves
over finite fields. The main advantage of ECC is that it provides equivalent security,
compared to non-ECC techniques, but uses smaller keys [AS11]. Therefore, ECC in
general becomes particularly interesting in IoT scenarios, as corresponding applications
often operate on resource constrained devices. In this work we focus on signing and
verifying a message using ECC, specifically Ed25519. This technique uses SHA-512 and
the elliptic curve 25519.

Integrity

The concept of hashing functions is to transform a message of arbitrary length into an
output sequence of fixed length, usually much shorter than the input message. The
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ultimate goal for cryptographic hash functions is to create a unique value characteristic for
a specific message, commonly referred to as hash of the message. Hashing algorithms are
also based on previously described one-way functions, commonly used by data protection
mechanisms concerning integrity of data, or for efficient data persistence mechanisms,
i.e., usage of hash tables [NY89]. In our experiments we look into the performance of
the latest, well established SHA family, i.e., SHA2 and SHA3. To preserve message
integrity and authenticity during transfer, simply hashing a message and appending
the corresponding hash is not sufficient. An adversary with knowledge about the used
hashing algorithm could perform an active man-in-the-middle attack, by altering the
message and calculating a new hash for that message, being then forwarded to the
intended recipient. A Message Authentication Code (MAC) uses specific techniques that
offer protection against such attacks, by incorporating a (pre-)shared secret key into its
generation process. The values generated from a MAC are then verified by applying the
same secret key used to calculate the MAC, which poses the main difference to digital
signatures [RRG+91]. MAC algorithms can be implemented using either cryptographic
hash functions or cipher algorithms presented in this work. In this work we are focusing
on first one, by evaluating the SHA2- and SHA3-HMAC algorithms.

Key Exchange

For at least two parties to exchange confidential messages, a secret key needed for
encryption and decryption must be shared among all participants. This key exchange can
be seen as the weakest point, in terms of security, of symmetric cryptography. To tackle
this issue, Whitfield Diffie and Martin Hellman proposed a cryptographic protocol, namely
the Diffie-Hellman Key Exchange (DHKE). It leverages techniques based on asymmetric
cryptography, enabling communication parties to securely exchange a common key, even
if an adversary is eavesdropping the communication channel. A modern ECC variant of
the DHKE is called Elliptic-Curve Diffie-Hellman (ECDH). The ECDH protocol consists
of three basic steps for two parties that want to establish a shared secret key via an
insecure channel. First, each party must generate a private and public key pair based
on a common base point on the same elliptic curve on the same finite field. Second,
the public keys are exchanged between the two parties. Third, a common secret key
is derived from calculations that take the secret key of a communication partner and
the previously exchanged public key of the other partner as input [HM11]. In this work
we do not generate ephemeral key pairs, i.e., temporarily used key pairs, and evaluate
the key generation as a separate step, because a static key generation is usually done
only once when setting up a device. Furthermore, we do not evaluate step two to avoid
incorrect measurements which take network latency into account that could be affected
by environmental specific factors like signal interferences.

3.3.3 Experimental Setup

All measurements are based on open source implementations of each algorithm, separately
compiled and deployed for each device, by using the Arduino IDE v.1.8.7 running on
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64bit Linux Mint 19.1. We determine the performance and energy consumption of each
algorithm by taking the arithmetic mean of results obtained after 100 runs, respectively.
Performance results are expressed as Throughput. For block- and stream ciphers, as well
as for the SHA hashing algorithms, throughput describes how many kilobytes can be
processed in one second, denoted as (kB/s). For AES we measure the performance of
the algorithm with different keysizes (128bit, 192bit, and 256bit) and different block
modes of operation (CBC and CTR), respectively. Furthermore, three specific versions
(based on encryption rounds) of the ChaCha algorithm are evaluated, namely ChaCha8,
ChaCha12 and ChaCha20, both using a keysize of 256bit. Hence, for AES, we define a
benchmark configuration as a combination of a specific mode of operation and key size.
For the optimized tinyAES algorithm only the CTR mode of operation is evaluated, but
with different keysizes, i.e., 128 bit and 256 bit. For each SHA family, we evaluate two
different versions: The SHA2-256 and SHA3-256, which produce a hash with 256bit in
size, and second, the SHA2-512 and SHA3-512 algorithm, which produce a hash with
512bit in size.
Key generation for ECC asymmetric algorithms were measured separately, as their
throughput is measured in milliseconds, denoted as ms. ED25519 and P521 were
evaluated by performing corresponding operations on a base64 encoded JSON file, 1
Megabyte in size, which acts as typical information structure an IoT device would send
to the Edge or Cloud. Throughput measurements are all sent and processed and stored
by a connected dedicated benchmark module. In order to measure power and current
draw from the devices, we set up an additional dedicated energy measurement device.
This device comprises an INA219 current sensor chip that is connected to an Arduino
Uno Rev2 Wi-Fi and to the resource constrained device that is going to be evaluated.
The Arduino processes the reading from the current sensor by using an I2C connection
and sends the power values in watts to the benchmark-module.
For each benchmark run, a single data protection mechanism was evaluated. Each run
consists of an idle and a load phase. During the idle phase, current and power of the
device after startup and without processing anything were measured. In contrary, the load
phase represents the device while executing the respective data protection mechanism.
Power was measured in a timeframe of 120 seconds with a frequency of 100 milliseconds,
resulting in a total of 1200 values. The average of the measured performance and energy
consumption values were calculated accordingly. To ensure proper comparability of the
results across all devices and respective security methods, the energy needed to process 1
Megabyte was calculated using the following formula:

E1[mJ ] = PowerIdle[mW ]− PowerLoad[mW ] ∗ 1MB
P erformance[B/s]

Naturally occurring fluctuations were observed in base power consumption of the devices.
To account for that, we calculated the difference between the idle and load phase.
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MKR1000
Type Performance Power Idle Power Load Energy 1 MB

AES

CBC-128 93.13 kB/s 113.62 mW 113.84 mW 1222 mJ
CBC-192 78.14 kB/s 113.62 mW 113.53 mW 1453 mJ
CBC-256 67.17 kB/s 113.62 mW 113.64 mW 1692 mJ
CTR-128 90.51 kB/s 113.43 mW 113.51 mW 1253 mJ
CTR-192 75.18 kB/s 113.43 mW 113.51 mW 1510 mJ
CTR-256 65.77 kB/s 113.43 mW 113.44 mW 1725 mJ
tiny128-CTR 77.30 kB/s 112.17 mW 112.08 mW 1450 mJ
tiny256-CTR 56.48 kB/s 112.17 mW 112.05 mW 1984 mJ

ChaCha

chacha8 897.27 kB/s 113.55 mW 113.58 mW 127 mJ
chacha12 764.40 kB/s 113.55 mW 113.61 mW 149 mJ
chacha20 589.75 kB/s 113.55 mW 113.61 mW 193 mJ

Table 3.3: Performance and Energy Consumption Results for Confidentiality Algorithms
on the Arduino MKR1000

3.4 Results

This section provides our experimental results of evaluated data protection mechanisms
regarding performance and energy consumption. It is followed by a discussion on the
obtained values and how they can be interpreted. The results are put into corresponding
categories, namely i) confidentiality, ii) integrity, iii) authenticity, and iv) key exchange.
To increase readability we converted throughput rates to kB/s. A graphical representation
of the results for confidentiality, integrity and elliptic curve operations for all devices can
be found in Appendix A and are taken with permission from [Kai21].

3.4.1 Confidentiality

The following tables 3.3 - 3.6 display the results of evaluated configurations of AES
algorithms (block cipher), ChaCha algorithms (Stream Cipher) and the optimized tinyAES
(MCU optimized) variants for each device. Performance values in each row correspond
to throughput, i.e., how many kilobytes of data can be encrypted/decrypted within 1
second.

As expected, performance of encryption and decryption scales linearly with CPU frequency.
The immense increase in performance of AES ciphers on the ESP32 is due to the built-in
hardware acceleration for AES. The used tinyAES version is not supported by the ESP32
and therefore not measured. For the ESP32, CPU frequency could be adjusted easily via
the Arduino IDE if desired. This becomes particularly interesting if energy consumption
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ESP32
Type Performance Power Idle Power Load Energy 1 MB

AES

CBC-128 1813.04 kB/s 308.68 mW 323.67 mW 8.27 mJ
CBC-192 1736.13 kB/s 308.68 mW 324.58 mW 9.16 mJ
CBC-256 1667.84 kB/s 308.68 mW 324.57 mW 9.53 mJ
CTR-128 1133.36 kB/s 309.08 mW 324.85 mW 10.41 mJ
CTR-192 1255.52 kB/s 309.08 mW 324.66 mW 10.67 mJ
CTR-256 1411.05 kB/s 309.08 mW 325.22 mW 11.44 mJ

ChaCha

chacha8 5984.45 kB/s 308.22 mW 349.95 mW 6.97 mJ
chacha12 5218.02 kB/s 308.22 mW 350.63 mW 8.13 mJ
chacha20 4154.18 kB/s 308.22 mW 351.63 mW 10.45 mJ

Table 3.4: Performance and Energy Consumption Results for Confidentiality Algorithms
on the ESP32

Raspberry Pi Zero
Type Performance Power Idle Power Load Energy 1 MB

AES

CBC-128 727.61 kB/s 585.39 mW 915.14 mW 453 mJ
CBC-192 609.21 kB/s 585.39 mW 916.22 mW 543 mJ
CBC-256 522.42 kB/s 585.39 mW 916.72 mW 634 mJ
CTR-128 706.07 kB/s 574.08 mW 913.86 mW 481 mJ
CTR-192 591.21 kB/s 574.08 mW 918.70 mW 583 mJ
CTR-256 511.80 kB/s 574.08 mW 918.43 mW 673 mJ
tiny128-ctr 641.25 kB/s 591.77 mW 917.76 mW 508 mJ
tiny256-ctr 462.72 kB/s 591.77 mW 919.73 mW 709 mJ

ChaCha

chacha8 7193.61 kB/s 580.67 mW 938.51 mW 50 mJ
chacha12 5854.71 kB/s 580.67 mW 941.45 mW 62 mJ
chacha20 4271.43 kB/s 580.67 mW 943.23 mW 85 mJ

Table 3.5: Performance and Energy Consumption Results for Confidentiality Algorithms
on the Raspberry Pi Zero
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Arduino Due
Type Performance Power Idle Power Load Energy 1 MB

AES

CBC-128 145.16 kB/s 718.92 mW 725.73 mW 47 mJ
CBC-192 121.71 kB/s 718.92 mW 725.26 mW 52 mJ
CBC-256 104.13 kB/s 718.92 mW 724.78 mW 56 mJ
CTR-128 138.48 kB/s 719.31 mW 724.33 mW 36 mJ
CTR-192 116.56 kB/s 719.31 mW 724.36 mW 43 mJ
CTR-256 100.63 kB/s 719.31 mW 724.35 mW 50 mJ
tiny128-ctr 127.08 kB/s 720.16 mW 725.81 mW 44 mJ
tiny256-ctr 85.90 kB/s 720.16 mW 725.86 mW 66 mJ

ChaCha

chacha8 1556.27 kB/s 718.91 mW 741.82 mW 15 mJ
chacha12 1376.72 kB/s 718.91 mW 743.47 mW 18 mJ
chacha20 1118.60 kB/s 718.91 mW 747.03 mW 25 mJ

Table 3.6: Performance and Energy Consumption Results for Confidentiality Algorithms
on the Arduino Due

is of major concern in system design.

3.4.2 Integrity

Tables 3.7 - 3.10 show the results of integrity related data protection mechanisms. Similar
to AES configurations, we evaluated different configurations (i.e., hash sizes of 256bit
and 512bit) for SHA2 and SHA3 algorithms and their respective HMAC variants.

As for encryption and decryption speed of previously discussed algorithms regarding
confidentiality, hashing performance also scales linearly with CPU frequency. However,
the ESP32 is again remarkably faster than the other Arduino MCUs, which is also due
to its hardware acceleration for SHA.

3.4.3 Authenticity and Key Exchange

Tables 3.11 - 3.14 provide results regarding the performance and energy consumption
of authenticity and key exchange algorithms. For the purpose of better readability,
results of the P521-512 based digital signature (authenticity) and elliptic curve operations
needed for secure key exchange (curve25519 and P521) are combined into one table.
The result values do not incorporate measurements for timings of the actual exchange
process of a key, e.g., transmission over LAN or WLAN, as such timings would be prone
to fluctuations caused by many different environmental factors, such as interferences
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MKR1000
Type Performance Power Idle Power Load Energy 1 MB

SHA

SHA2-256 109.45 kB/s 114.04 mW 114.08 mW 1024 mJ
SHA2-512 67.83 kB/s 114.04 mW 114.01 mW 1681 mJ
SHA3-256 40.61 kB/s 113.88 mW 113.85 mW 2803 mJ
SHA3-512 40.42 kB/s 113.88 mW 113.89 mW 2818 mJ
SHA2-hmac-256 43.49 kB/s 113.04 mW 113.06 mW 2600 mJ
SHA2-hmac-512 17.21 kB/s 113.04 mW 113.15 mW 6574 mJ
SHA3-hmac-256 10.24 kB/s 112.20 mW 112.06 mW 10944 mJ
SHA3-hmac-512 10.26 kB/s 112.20 mW 112.07 mW 10927 mJ

Table 3.7: Performance and Energy Consumption Results for Integrity Algorithms on
the Arduino MKR1000

ESP32
Type Performance Power Idle Power Load Energy 1 MB

SHA

SHA2-256 1190.44 kB/s 309.47 mW 345.15 mW 29.97 mJ
SHA2-512 621.36 kB/s 309.47 mW 347.25 mW 60.80 mJ
SHA3-256 304.63 kB/s 309.43 mW 350.95 mW 136.30 mJ
SHA3-512 304.50 kB/s 309.43 mW 350.04 mW 133.37 mJ
SHA2-hmac-256 469.38 kB/s 308.41 mW 344.99 mW 77.93 mJ
SHA2-hmac-512 155.86 kB/s 308.41 mW 347.60 mW 251.45 mJ
SHA3-hmac-256 75.73 kB/s 308.71 mW 350.14 mW 551.04 mJ
SHA3-hmac-512 76.08 kB/s 308.71 mW 349.70 mW 542.70 mJ

Table 3.8: Performance and Energy Consumption Results for Integrity Algorithms on
the ESP32

or physical bandwidth limitations. Similarly, for the digital signature timings only the
actual sign operation on the device was measured.

As for confidentiality and integrity related results, Ed25519 and P521 operations also
scale linearly with CPU frequency. Also, hardware acceleration for ECC on the ESP32
and Raspberry Zero are causing the immense performance increase.

3.5 Discussion

In section, we briefly discuss the results of the conducted experiments. First, we discuss the
implications of more secure variants of the evaluated algorithms on energy consumption.
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Raspberry Pi Zero
Type Performance Power Idle Power Load Energy 1 MB

SHA

SHA2-256 1545.69 kB/s 571.65 mW 915.41 mW 222 mJ
SHA2-512 872.31 kB/s 571.65 mW 937.44 mW 419 mJ
SHA3-256 351.47 kB/s 574.96 mW 891.84 mW 902 mJ
SHA3-512 352.10 kB/s 574.96 mW 917.94 mW 974 mJ
SHA2-hmac-256 618.45 kB/s 569.38 mW 905.67 mW 543 mJ
SHA2-hmac-512 221.35 kB/s 569.38 mW 917.84 mW 1572 mJ
SHA3-hmac-256 87.88 kB/s 579.30 mW 909.42 mW 3757 mJ
SHA3-hmac-512 88.25 kB/s 579.30 mW 910.59 mW 3754 mJ

Table 3.9: Performance and Energy Consumption Results for Integrity Algorithms on
the Raspberry Pi Zero

Arduino Due
Type Performance Power Idle Power Load Energy 1 MB

SHA

SHA2-256 364.45 kB/s 720.08 mW 736.83 mW 46 mJ
SHA2-512 145.09 kB/s 720.08 mW 742.69 mW 156 mJ
SHA3-256 71.17 kB/s 716.39 mW 734.97 mW 261 mJ
SHA3-512 71.16 kB/s 716.39 mW 734.43 mW 254 mJ
SHA2-hmac-256 138.87 kB/s 722.28 mW 737,14 mW 107 mJ
SHA2-hmac-512 36.77 kB/s 722.28 mW 743,55 mW 579 mJ
SHA3-hmac-256 18.20 kB/s 719.23 mW 734.89 mW 861 mJ
SHA3-hmac-512 18.33 kB/s 719.23 mW 734.27 mW 820 mJ

Table 3.10: Performance and Energy Consumption Results for Integrity Algorithms on
the Arduino Due

Second, we discuss the implications on performance of those variants. Then, for both,
energy consumption and performance, we further discuss their potential impact on design
and development of a self-adaptive urban sensing system.

3.5.1 Implications on Energy Consumption

As expected, an increase in quality of the evaluated data protection mechanism (e.g., by
increasing AES key-size from 192bit to 256bit) also results in significant higher energy
demands of the device. For example, AES in Cipher Block Chaining (CBC) mode of
operation with a key size of 256bit leads to an overall increase of energy consumption of
38% on the Arduino MKR1000. In general, for all evaluated data protection algorithms
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MKR1000
Type Performance Power Idle Power Load

Key-Exchange

curve25519 1113 ms 112.19 mW 112.23 mW
P521 16494 ms 113.73 mW 113.57 mW

Digital-Signature

P521-512 10444 ms 112.96 mW 114.84 mW

Table 3.11: Performance and Energy Consumption Results for Authenticity and Key
Exchange Algorithms on the Arduino MKR1000

ESP32
Type Performance Power Idle Power Load

Key-Exchange

curve25519 52 ms 307.15 mW 345.34 mW
P521 675 ms 330.04 mW 404.29 mW

Digital-Signature

P521-512 437 ms 308.77 mW 310.01 mW

Table 3.12: Performance and Energy Consumption Results for Authenticity and Key
Exchange Algorithms on the ESP32

energy consumption did not vary a lot. This may well be due to the fact that the
evaluated MCUs most of the time execute the different data protection algorithms with
near 100% CPU usage. Most interestingly, the tinyAES variant did not offer the expected
savings in terms of energy consumption. However, we have to state that there are other
implementation variants of this optimized AES algorithm, hence such variants should
also be evaluated if energy consumption would be of top-most priority in system design.
Additionally, in a typical urban sensing system, there are often hundreds of such MCUs
deployed, gathering all kind of data. Hence, also tiny differences in energy consumption
will add up in the end and become increasingly significant.

3.5.2 Implications on Performance

In general, our results support the claim that the performance of stream ciphers is superior
to the performance of block ciphers. Interestingly, on the devices with lowest computing
power (i.e., Arduino Due and Arduino MKR1000), the tinyAES algorithm provides only
minor benefits to performance compared to standard AES implementations. However,
for increasingly powerful devices this difference becomes more significant, e.g., on the
Raspberry Zero the tinyAES variant is about 10% faster than its standard counterpart.
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Raspberry Pi Zero
Type Performance Power Idle Power Load

Key-Exchange

curve25519 64.65 ms 586.08 mW 940 mW
P521 585 ms 546.36 mW 883.66 mW

Digital-Signature

P521-512 387 ms 417.34 mW 932.55 mW

Table 3.13: Performance and Energy Consumption Results for Authenticity and Key
Exchange Algorithms on the Raspberry Pi Zero

Arduino Due
Type Performance Power Idle Power Load

Key-Exchange

curve25519 202 ms 730.32 mW 737.86 mW
P521 2714 ms 716.82 mW 728.27 mW

Digital-Signature

P521-512 1674 ms 640.20 mW 638.96 mW

Table 3.14: Performance and Energy Consumption Results for Authenticity and Key
Exchange Algorithms on the Arduino Due

Hardware acceleration plays a major role when interpreting the measured performance
values. On devices without hardware acceleration for a specific data protection algorithm,
performance significantly decreases if the data protection quality of the algorithm is
increased. For example, on the Arduino MKR1000, the performance decrease from
SHA2 with a hash size of 256bit to a hash size of 512bit is about 40%. On the ESP32,
the relative decrease in performance is roughly the same as for the Arduino MKR1000.
However, on the ESP32, due to it hardware acceleration for SHA2 the absolute difference
compared to the Arduino MKR1000 is close to 1 order of magnitude. This absolute
difference is even higher for AES variants, also due to the hardware acceleration support
for AES on the ESP32.

3.5.3 Implications on Self-Adaptive Urban Sensing Systems

In terms of security quality, i.e., how safely is sensitive data protected by a specific
data protection algorithm, we have to state that for most urban sensing systems that
incorporate MCUs like the ones we evaluated in this thesis, a key size of 128bit for AES
would be more than sufficient. A key size of 256bit mostly becomes increasingly relevant
for the so called post-quantum era, where quantum computers are used to break such
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a security algorithm. In general, the quality of popular security algorithms is based on
one of three hard mathematical problems: the integer factorization problem, the discrete
logarithm problem or the elliptic-curve discrete logarithm problem. However, all of these
problems can be easily solved on a sufficiently powerful quantum computer running Shor’s
algorithm [Ber09]. This concern has to be accounted for when defining the criticality of
data leakage in an urban sensing system and compared against the potentially significant
increases in energy consumption; assuming there may be hundreds of MCUs deployed in
such a system. As expected, data protection tasks based on asymmetric cryptography
take up a lot of execution time. However, prominent tasks, such as symmetric key
exchange, typically not occur frequently, e.g., once if a new connection to another node
is established. If the authenticity of data is of importance in an urban sensing system,
i.e., many signing tasks are executed frequently, our results strongly indicate using
devices with dedicated hardware acceleration, such as the ESP32, for those systems. In
general, an urban sensing system engineer should opt for MCUs with dedicated hardware
acceleration if data is processed frequently and data protection is prioritized over energy
consumption. However, our results also suggest that there is great potential for the
development and implementation of adaptation mechanisms for such systems, even if they
incorporate resource constrained devices, such as MCUs. This becomes especially relevant
for systems that deal with irregular data readings, e.g., more frequent readings at day
but less frequent readings at night. In such cases, data protection, for example, could be
increased during night, or, on the other hand, energy consumption could be reduced (e.g.,
on the ESP32) by throttling CPU speed. The recently emerged tinyML paradigm would
be a concrete example that could benefit from such adaptation mechanisms. In tinyML
resource constraint devices, e.g., microcontrollers as described in this chapter, are used
to analyze sensor data based on machine learning models executed on the device itself.
Depending on the particular use case, the transmission of either sensed or processed data
to e.g., a centralized edge computing node, for instance to aggregate data, should be
protected as well. Prominent urban sensing domains incorporating the tinyML paradigm
are for example:

• Manufacturing: Predictive maintenance potentially reduces downtime and costs
associated with equipment failure.

• Agriculture: tinyML devices can be used to get real-time data by monitoring crops
or livestock.

• Healthcare: Real-time health monitoring enabled by tinyML devices can deliver
better and more personalized patient care, for example in tele-medicine. A typical
example would be patient monitoring, where analyzed data is transmitted to e.g., a
doctor. Although this would not be considered a typical urban sensing application,
hearing aids would be a another concrete example.

In those examples it is quite likely that either sensed data (Machine to Machine (M2M)
communication) or analyzed data transmitted to a centralized compute node needs to
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protected. Hence, such systems would benefit by balancing their energy consumption
and performance.

3.6 Summary
In this chapter we presented an evaluation of selected, well established data protection
mechanisms, including cryptographic block and stream ciphers, secure hashing algorithms,
digital signature algorithms and algorithms needed for key exchange protocols, i.e.,
elliptic curve operations. Specifically, we measured how those algorithms performed, in
terms of computational effort and energy consumption, on representative state-of-the-
art resource constrained IoT devices. Our measurements provide results that can aid
the design and development of secure IoT systems incorporating resource constrained
devices. We provide values for different limitations regarding the configuration and
execution of several algorithms on certain devices. Furthermore, we provide results on
data throughput rates and energy consumption for each device. Those results can be used
to calculate data protection/performance/energy consumption trade-offs for a specific
hardware configuration. Our evaluation shows that an IoT system running applications
relying on certain data protection mechanisms will largely benefit from incorporating
microcontrollers that come with built-in hardware acceleration for several cryptographic
tasks. Especially for ECC related tasks, like signatures and key exchanges, hardware
acceleration has the most significant impact. The provided measurements and potentially
subsequently implemented adaptation mechanisms based on those measurements could
potentially increase the data protection aspects of many urban sensing applications.
TinyML is a concrete domain in which many use cases would most likely benefit from
such mechanisms, because most of them typically incorporate the exact same devices
used in the evaluation presented in this chapter.
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CHAPTER 4
ORIOT: A Source Location

Privacy System for Resource
Constrained IoT Devices

Privacy and Security are one of the major research topics regarding the Internet of Things
and urban sensing in general. Due to the vast amount of devices collecting and processing
sensitive data, anonymity and privacy mechanism are needed. Source Location Privacy
plays a key role in prohibiting adversaries from tracing back this kind of data to its
origin. In this chapter we propose a SLP preserving system that leverages techniques
from the well established Onion Routing paradigm. The system is specifically designed
for resource constrained IoT devices, i.e., devices lacking computing power. It features
combined encryption schemes and symmetric key exchanges via ECDH. Our performance
measurements, conducted on typical resource constrained IoT devices, show the feasibility
of ORIOT and facilitate the integration into existing or planned urban sensing systems,
depending on SLP features.

After a brief introduction, the rest of the chapter is organized as follows. Section 4.2
provides an overview about related work on IoT security and privacy. In Section 4.3,
we introduce our proposed implementation. We evaluate our approach and discuss the
results in Section 4.4. Finally, in Section 4.5 we conclude the chapter and give an outlook
on future research.

4.1 Introduction

The Internet of Thingss describes a heterogeneous network comprising a variety of
different connected devices with minimal to average computing power. These devices
continue to permeate deeper in our personal environment as well as in commercial and
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Figure 4.1: Layered encryption principle of Onion Routing1

industrial areas, by sensing, processing, and storing all kind of data [VF13b]. For many
applications, like in healthcare, home automation or infrastructure monitoring, these
circumstances call for privacy and security protection [DWK15b]. Integrity, confidentiality,
availability, undetectability, and unobserveability are the key elements of such protection
mechanisms. Though features of these elements overlap, according to [Fea15b], we place
integrity, confidentiality, and availability into the security domain; undetectability and
unobserveability into the privacy domain. Regarding privacy, we further distinguish
between data-anonymity and Source Location Privacy. Broadly speaking, (personal)
data provided by IoT devices can be used by adversaries to obtain or derive sensitive
information that could compromise users. Data-anonymization techniques offer a solution
to mitigate such privacy breaches. SLP, as the name implies, aims to keep the location
private, where data was originally collected. Referring to IoT, being an interconnected
network, this would in most cases result in efforts to keep the IP-address of a device
private. A well established approach to achieve this goal is Single Path Routing (SPR).
Data packets are routed to their final destination following a specific path inside a network
to make it harder for an adversary to trace back their origin. Mix-cascades and onion
routing are prominent concepts for SPR, where DC-nets and Tor are its most popular
implementations. In this work we leverage principles of onion routing, where data is
encapsulated in multiple layers of encryption, hence the analogy to an onion. Fig. 4.1

1https://en.wikipedia.org/wiki/Onion_routing#/media/File:Onion_diagram.svg
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Figure 4.2: Onion Routing path with decreasing encryption layers from client to destina-
tion server

displays the layered encryption principle of Onion Routing. The multiple times encrypted
data is then routed along a predefined path to its destination. Such a path consists
of various nodes called onion routers or relay nodes. Each intermediary node removes
one encryption layer and thereby only reveals the address of the next node in the route.
Therefore, each node only knows the location of its predecessor and successor node. This
mechanism facilitates sender anonymity. Fig. 4.2 displays a high level representation of
such a path, where a single encryption layer is removed at each intermediary server along
the path from client to the destination server. However, several weaknesses have been
found to break this anonymity, like Timing or Traffic Analysis. The design of ORIOT is
based on typical IoT systems, e.g., Amazon AWS IoT, where data is generated at various
nodes inside a network and sent to the cloud for further processing.
Many IoT devices are constrained by their available resources, i.e., in most cases computing
power, like microcontrollers, that are not running any operating system. Therefore, well
established implementations of Onion Routing, e.g., Tor, are infeasible for such devices.
The main contribution of this work is a SLP system, specifically designed for resource
constrained IoT devices, to address this issue. It is implemented in C, and therefore highly
compatible and portable to most IoT devices. Furthermore, we provide performance
results on different cryptographic mechanisms that are integral parts of our system.
Experiments have been conducted on typical resource constrained IoT devices, therefore
our results facilitate the design and development of IoT systems that rely on SLP features,
e.g., by implementing ORIOT.
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4.2 Related Work

With the increasing spread and usage of IoT devices, security and privacy aspects have
become a major research topic in the area of IoT data protection. Suo et al. [Sea12] state
that there are four abstraction layers in IoT. Bottom-up these are: Perception Layer,
Network Layer, Middleware Layer and Application Layer. In their summarizing paper,
Farooq et al. [Fea15a] give an overview about possible threats and scenarios on these
different layers, where the majority of threats are located in the Network Layer. Energy
consumption and management, as well as efficient computing algorithms (e.g., share of
workload among multiple devices) play a key role for resource constrained IoT devices.
Therefore, for the majority of use cases concerning privacy and security aspects, trade-offs
have to be made either at design time or runtime. An example of such a trade-off could
be a stronger encryption scheme resulting in lower data throughput. In this work we want
to tackle those issues and minimize such trade-offs. In the domain of Wireless Sensor
Network various solutions to problems dealing with SLP or anonymization have been
proposed. Most of the devices in WSN reside at the lowest end regarding computing
power and represent a subset of IoT devices. Commonly those devices adhere to the
IEEE 802.15.4 protocol, using communication frameworks like ZigBee. Besides being
part of a WSN, they are also integrated in smart objects such as smart phones, tablets,
smart watches, and many others gadgets [VF13b]. Security and privacy mechanism
often require considerable computing power that cannot be provided by such devices.
A typical pragmatic solution is the usage of IoT gateways that are placed between
(sensor) networks and the Internet, powerful enough to facilitate more compute-intensive
security and privacy mechanisms [Fea15b, HP15]. However, there may be situations
where such gateways are not desired or possible. A well-known example in literature
is the Panda-Hunter Game, where a WSN is deployed in a forest to monitor pandas.
Hunters take the role of an adversary, trying to capture the panda. The goal is to prevent
the hunter from locating the source, i.e., the sensor attached to a specific panda [Kea05].
Generally speaking, privacy can be either achieved by leveraging data-anonymization
techniques, SLP-mechanisms, or a combination of both. Researchers have investigated
several anonymization techniques, such as simple pseudonymization, attribute suppression,
or more sophisticated approaches like the k-Anonymization model [oS19, LL18, OPD16,
Cea11, ZO11]. However, most of these techniques do not incorporate SLP features,
especially not for resource constrained devices. Jebri et al. [JAB15] propose a generic
security and privacy model for IoT and WSN that includes SLP. Their work is based on
a lightweight key agreement protocol, Identity Based Encryption (IBE), and Pseudonym
Based Cryptography (PBC). To make use of an IBE system the authors had to incorporate
a Private Key Generator (PKG) that acts as a trusted central key authority. PBC is
a technique based on IBE, and is generally used to protect the identity of an entity.
The architecture comprises a base station, a sink node, and a set of nodes. The PKG
is integrated into the base station which stores the identities of the nodes. Before any
data is sent over the network, a setup phase takes place in which several encryption
and privacy mechanisms, e.g., generation of private and public keys, are configured. In
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order to transmit information, each node sends its data, protected by calculated session
keys, directly to the Sink Node (SN). Due to the use of PBC, the identity of the source
node stays anonymous. Another concept which requires less encryption overhead is
Anonymous Routing (AR). AR is a well suited concept to achieve SLP. There are many
ways to implement, integrate, and extend this concept for applications that operate
with sensitive data where the source has to stay anonymous. Palmieri et al. [PCM17]
proposed a protocol for AR between different interconnected networks. It is designed
specifically for IoT applications and is based on the Spatial Bloom Filter data structure.
Furthermore, all routing information is encrypted using an additive and multiplicative
homomorphic encryption scheme. However, as stated by the authors, this cryptographic
system may not be suitable for computationally constrained devices. Another protocol
that specifically targets resource-constrained mobile ad hoc networks, was proposed by
Moldovan et al [MIG13]. Their group-based anonymous on-demand routing protocol
works in a similar way to Tor. After detecting all nodes in network, a secret handshake
with all nodes is performed by a dedicated trusted network administrator. Afterwards, for
two neighboring nodes a secure common key is computed. Further cryptographic processes
ensure resistance against different attacks, e.g., Message Coding Attacks. Specific request
and response messages, which are partially broadcasted inside the network, are used
to establish a communication path between source and target nodes, comprising pairs
of securely linked nodes. Each node is known to others under a pseudonym, which is
used to forward a message along the path, while keeping private both source and target.
Referring to SLP in IoT, we assume that the source location relates to an IP-Address of a
device. Especially in WSN, SLP problems are closely tied to real geolocation privacy of an
entity, but the used techniques are similar and related to IP-Address privacy. To achieve
geolocation privacy, Mutalemwa et al. [MS18] proposed a strategic location-based random
routing approach. According to their scheme, data packets are encrypted and routed over
the network according to the physical location of a source node. To determine a routing
path, intermediary strategically positioned diversion nodes are randomly selected based
on their distance to the source node. Successive packets are routed through different
routing paths. Simulation results demonstrate that their approach makes it difficult
and confusing for an adversary to trace back the origin of such data packets. In IoT,
especially when dealing with resource constrained devices, such security and privacy
mechanisms require several trade-off decisions to be made, as stated earlier. Techniques
that leverage broadcasting mechanisms or rely on heavy network traffic in general will
automatically cause a higher energy consumption of all devices. Computational intensive
encryption mechanisms on the other hand are infeasible for scenarios where data is sent
over the network with high frequency.
In this work we combine several above mentioned security and privacy techniques and
incorporate them into an onion routing system, similar to Tor, targeted for resource-
constrained IoT devices, to address the above mentioned trade-offs. Compared to other
approaches, our system does not rely on heavy cryptographic algorithms to provide
anonymity. On the other hand, ORIOT avoids network broadcasting strategies as used
by different proposed SLP systems. By setting a specific path length for our message
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transfer, a well balanced trade-off between network load and SLP level is achieved.

4.3 Onion Routing System
In this section we describe our proposed onion routing system called ORIOT. First we
present an overview of the systems architecture. Second we explain the setup phase
that is performed by a device when integrated into the system. Third we describe the
path assembling strategy that is performed before sending data. Finally we present the
encryption and actual routing processes.

4.3.1 Overview

The architecture comprises multiple devices (nodes) which are constrained in their
computing power, and a single more powerful device acting as a central form of registry,
therefore simply called Registry. Figure 4.3 shows the overall architecture. We proceed
to explain each step, as marked by the corresponding number in blue circles.
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Figure 4.3: Overview of the ORIOT architecture

Devices that are part of a network are called nodes (depicted as n0, n1, ... in Figure
4.3), which collect or process data provided by various sources such as sensors or system
events. In our experiments we use various microcontroller development boards to act as
our typical resource constrained IoT devices. In our experimental setup, all devices are
part of a local network and are fully connected to each other. The systems’ architecture
focuses on mechanisms implemented for and operating on the Transportation Layer
of the OSI model. The idea is, that if a node wants to send a message to a specific
destination (e.g., the cloud), the data is encrypted several times (depicted as layered
circles in Figure 4.3) and sent to the destination via multiple hops (depicted as continuous
arrows in Figure 4.3) across the network. In our setup, each node sends its data to a
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specific destination, e.g., a cloud server or sink. In WSN terminology this would refer
to a sink node. Preliminary, nodes are provided with the public key of the cloud server.
All messages are initially encrypted in a way so that only the cloud server can read the
message (end-to-end encryption). However, our system design is not limited to sending
messages to only one particular destination. The first step for a node that wants to send
a message, is to ask the Registry for a designated IP-Pool. This IP-Pool comprises tuples
of IP-Address and corresponding public key of nodes in the network. After receiving the
IP-Pool, the node randomly selects a subset of the given tuples, which will represent the
path along data is subsequently routed and transferred to its final destination. Because
each node needs to be able to connect to any other (random) node in the network, it is
necessary that each node is fully connected to each other, as mentioned previously. There
may be deployment scenarios this may not be feasible or even possible. Technically, it
would be possible to implement ORIOT for not fully connected nodes also. However,
this would need specific implementation aspects to be considered and also decreases
security aspects (as the randomness of the path is constrained by this limitation) and
is out of scope of this work. A more detailed description of this IP-Pooling mechanism
will be provided in the path assembling section later on. Similar to Tor, the first node
of a routing path acts as Entry Node (the only node which is actually able to see the
source IP-Address) and the last node acts as Exit Node which sends the data to the final
destination. A layered encryption strategy ensures that every node along a routing path
only knows the IP-Address of its predecessor node and its successor node.

4.3.2 Setup Phase

The setup phase is a specific piece of code that is executed only once when a device is
started. It can be divided into two essential steps:

Encryption Setup

In our setup we incorporate an end-to-end encryption scheme, i.e., only our designated
destination cloud server is able to read a message in plaintext. Similar to TSL we use a
combination of asymmetric and symmetric encryption. First, a node generates a random
secret key which is later on used to encrypt the message. Second, the generated key is
encrypted with the public key of the cloud server. With its private key, the cloud server
is able to decrypt the shared secret which is then used to decrypt the actual message.
The next step in setup phase is the generation of a public and private key pair. As
described later, those are used for our layered encryption scheme.

Network Setup

After the encryption setup has finished, every node publishes its previously generated
public key to the Registry, which saves this information as a tuple of
< PublicKeyNode, IP -AddressNode > in a list. The Registry then randomly adds those
tuples to a specifically sized pool (e.g., 10 tuples stored in one pool), depending on the
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size of the network, and the available storing capacities of the device hosting the registry.
However, a pool must contain at least a minimum of three nodes. Three nodes is also the
standard used by the well established TOR project2 and stems from the fact that with
an n-relay onion routing path, every byte transmitted is encrypted n times by your entry
node, and every byte coming back from the sink is decrypted n times. While this would
increase security (better chance to compensate for rogue relay nodes) it also comes with
a hefty cost in terms of performance and energy consumption, which is both typically
limited in the domain tackled in this work. To further increase the level of anonymity we
recommend using one specific pool for each node in the network, although pools could be
reused if storage on the registry node is limited. Pools should be randomly reorganized,
based on a configurable staleness factor. The actual value of this staleness factor (e.g.,
10 minutes) is determined by the expected traffic over the network, i.e., how frequently
data will be sent from a node. After pools are created, every node in the network will be
assigned one pool.
After the encryption and pooling steps are completed, a node starts listening for incoming
data. To that end, the node opens a predefined common port and waits for specific
instructions. All communication (except for the key exchange described in the path
assembling section, which is based on TCP) is ideally based on, but not limited to, UDP
because of three major reasons:

• A node only sends data and never expects an answer (except during the key
exchange).

• UDP has a noticeable network performance advantage over TCP.

• UDP uses less energy than TCP mostly due to the decreased amount of data that
need to be transmitted.

However, the usage of UDP also comes with downsides, most notably it is less reliable
as the delivery of data to the destination is not guaranteed and UDP also only comes
with basic error checking mechanisms using checksums. Moreover, there is no sequencing
of data in UDP, hence reordering data (if required) has to be done by the application.
Regarding energy consumption, adding a security for both protocols (TSL for TCP
and DTSL for UDP) increases overall energy consumption, where DTSL requires a
more significant amount of additional energy compared to TSL. However, there are also
lightweight alternatives proposed in literature, such as [BWJ+19, HASW17, MEB16],
that could be used as transport layer for ORIOT.

4.3.3 Path Assembling

A routing path comprises five nodes in total. We refer to the first node as the source node
and the last node as the cloud server. Intermediary nodes are called relay nodes. Though

2https://www.torproject.org/
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it would be possible to add more than three relay nodes to a path, we advise against it,
as this increases network load without providing any more security or anonymity [Pro19].
In our example the IP-Address of the cloud server is known to each node, therefore
it is not a part of the path assembling scheme. If a node wants to send a message, it
opportunistically starts building a transfer route. Opportunistically means, that to this
end, a node building a path will not know if another node, that will be selected as part
of this path, is actually online or working properly. When assembling a routing path,
the node randomly selects exactly three tuples out of its stored IP-Pool. These tuples
correspond to our relay nodes and will form the intermediary path to the cloud server.
For each relay node, the source node starts a key exchange (depicted by dashed arrows
in Figure 4.3) by sending a InitiateKeyExchange request. If an addressable relay node
receives this request, the process of generating a common symmetric key is initiated.
If no response is received by the source node after a predefined timeout, it removes
the corresponding tuple out of its IP-Pool and notifies the Registry about the faulty
node. If there are too many faulty nodes (this threshold can be adjusted at design
time), a node requests a new pool from the registry. However, if the node receives
a response, the common symmetric key generation is established via the ECDH key
exchange protocol [DH76]. All calculated symmetric keys are stored for each relay node
for the layered encryption process later on. It is up to the developer if and how long
previously negotiated symmetric keys are cached on the source node and the relay nodes
for later reuse or not. This becomes particularly interesting if a node in the network is
replaced, possibly resulting in an IP-Key (either asymmetric or shared) mismatch. The
corresponding pseudocode is shown in Algorithm 4.1, but does not cover any caching
mechanism or requests for a new entire pool.

Algorithm 4.1: Path Assembling
Input: pool [T0, T1, T2, ...Tn]
Result: path[3]< T, sharedKey > of tuples Tx where x ∈ [0..n], and

corresponding shared keys, respectively
1 while count(path) < 3 do
2 rT = getRandomTupleFromPool;
3 if path !contains(rT) then

// perform ECDH key exchange
4 sharedKey = InitiateKeyExchange(rT);
5 if sharedKey then

// save established key to corresponding tuple
6 keyAdd(path, sharedKey);
7 else

// handle timeout and maxFaults
8 end
9 end

10 end
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4.3.4 Encryption and Routing

After a routing path has been determined, the message encryption process is initiated.
The corresponding pseudocode, denoted in Algorithm 4.2 covers the encryption layering
process. First the message M is encrypted with the key K generated in the setup phase
resulting in the message MK .

The encrypted message for the cloud server, i.e., the inner-most layer of the onion L0,
will be in the form of:

L0 = {MK , KEC} (4.1)

where KEC is K encrypted with the public key of the cloud previously done in the setup
phase.

After that the first layer L1 of encryption is added to L0 in Form of:

L1 = EncKN2{L0, IPCS} (4.2)

Subsequently, for each remaining node, an additional corresponding encryption layer will
be added in form of

L2 = EncKN1{L1, IPN2}
L3 = EncKN0{L2, IPN1}

(4.3)

where EncKNi is an encryption function with the symmetric key previously exchanged
with node Ni and IPNi is the IP-Address of the successor relay node, with i ∈ [0, 1, 2].

Algorithm 4.2: Layered Encryption
Input: msg, path[3], cloudPubKey, rndKey, cloudIP
Result: Multiple Encrypted Message (Onion)
// encrypt message for cloud server

1 mk = encryptCloudMessage(msg, rndKey);
2 kec = encryptKey(rndKey, cloudPubKey);
3 lyr = composeCloudMessage(mk, kec);
4 ip = cloudIP;
// add encryption layers

5 for i = count(path) - 1 .. 0 do
6 key = getKeyFromNodeInPath(path, i);
7 if i != 2 then
8 ip = getIPFromNodeInPath(path, i+1);
9 end

10 addLayer(lyr, ip, key);
11 end
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Device Name Processor CPU Speed SRAM Flash Memory

Arduino MKR1000 Cortex-M0+ 32-Bit 48 MHz 32 KB 256 KB
Wemos ESP8266 Xtensa LX106 32-Bit 80-160 MHz 160 KB 4 MB
Espressif ESP32 Xtensa LX6 32-Bit 160-240 MHz 512 KB 4 MB

Table 4.1: Testbed Overview of Resource Constrained IoT Devices

ECDH_1 ECDH_3 AES-256 ChaCha20-256

MKR-1000 0.492s 0.501s 68.04kB/s
(14.35µs/B)

543.94kB/s
(1.80µs/B)

ESP8266 0.082s 0.097s 211.56kB/s
(4.62µs/B)

3,149.09kB/s
(0.31µs/B)

ESP32 0.026s 0.027s 1,859.84kB/s
(0,53µs/B)

4,078.84kB/s
(0,24µs/B)

Table 4.2: Performance Results of Cryptographic Algorithms on a single Node

The final multiple encrypted message will be sent from the source node to the first relay
node via a specific ForwardMessageRequest. If a relay node receives such a request it will
then be able to decrypt one layer with its symmetric key and will forward the message to
the next relay node, respectively, or in case of the last relay node, to the cloud server.

4.4 Performance and Boundaries
This section presents performance measurements and resulting boundaries of ORIOT.
Our testbed comprises three microcontroller development boards with integrated WiFi
capabilities, acting as typical resource constrained IoT devices. Table 4.1 provides an
overview of the selected hardware.

A prototypical implementation was developed in C using the Arduino IDE v.1.8.7 running
on 64bit Linux Mint 19.1. Code execution on such microcontrollers is divided in a setup
phase (where code runs only once), and a loop phase. We are particularly interested
in the performance of cryptographic functions, rather than round trip times or data
transfer (e.g., pools) which are heavily prone to network latency affected by various
unstable environmental factors like signal strength or interferences. In the setup phase, we
investigate key generation, specifically a 256bit private and public key pair via Ed25519
elliptic-curve cryptography. Symmetric Key exchange (ECDH) and encryption layering
is done in the loop phase. The first phase of ECDH is the generation of a public and
private key (ECDH_1), already done in the setup phase. In the second phase of ECDH
the public keys are exchanged between the two parties. The performance of this step
relies solely on network traffic, therefore it is not covered by our measurements. In the
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third phase (ECDH_3), a common secret key is derived from calculations that take the
secret key of a communication partner and the previously exchanged public key of the
other partner as input. Due to the nature of the algorithm, the third phase of ECDH
performs similar to the first phase, but for better readability we measure and present it
separately.
All symmetric encryption, i.e., creating the onion, is done using the AES block cipher
with a 256bit key in Counter (CTR) mode of operation. Additionally, we measured the
layering process using the ChaCha20 stream cipher with a 256bit key, as a lightweight
alternative. However, we remark that modern microprocessors, like the ESP32, come
with built in hardware acceleration capabilities for AES and ECC.
Table 4.2 displays the obtained results. The performance of symmetric ciphers is expressed
as limitation and throughput. Limitation corresponds to the time it takes for an algorithm
to process one byte of data, given in µs per byte (µs/B), while throughput describes
how many bytes can be processed in one second (B/s). With provided throughput and
limitation values, boundaries for a specific network can be then calculated individually.
If energy consumption is a concern, many corresponding values can be obtained from the
results presented in chapter 3, section 3.4. For symmetric ciphers, values outside brackets
correspond to limitation, while values in brackets correspond to throughput. Each of
those values correspond to adding one layer of encryption. To get a close approximation
of the time needed to create all layers of encryption, i.e., the whole onion, the results
need to be multiplied by the number of layers. Due to the nature of the used symmetric
ciphers, time needed for encryption is almost exactly the same as for decryption. Values
of asymmetric operations represent the time needed in seconds for the whole operation
to finish, be it either key generation or deriving a common symmetric key.
The execution time of the cryptographic algorithms scale linearly with CPU frequency.
This becomes particularly interesting if energy consumption is a critical design aspect
of an IoT system using ORIOT. Devices like the ESP8266 and ESP32 can easily be
underclocked, i.e., running the CPU at a lower frequency, hence consuming less energy.

4.5 Summary

This chapter presents a source location privacy preserving network system and its archi-
tectural concepts, specifically designed to operate on resource constrained IoT devices.
Similar to Tor, it leverages techniques of the onion routing principle. Symmetric and asym-
metric cryptography are combined with a path assembling strategy to realize anonymity
of a node transmitting messages in a network to a specific destination. In contrast to
other proposed solutions, ORIOT does not rely on either heavy cryptographic operations
(that may not even be supported by a device) or broadcasting strategies, as stated in
section 4.2. However, ORIOT (while not strictly limited to) relies on a fully connected
network of nodes, which could be a limitation for some applications. Depending on the
specific nature of an application, a developer may also opt to use TCP over UDP and/or
its security layers TSL and DTSL respectively. However, this also significantly influences
energy consumption and performance as the amount of data that will be transmitted

54



4.5. Summary

increases or decreases. We evaluated the performance of incorporated cryptographic algo-
rithms on a set of typical resource constrained IoT devices. Similar to Tor, performance
mainly depends on the latency and computing power of relay nodes. Our results provide
insights on the performance limitations and throughput, which can facilitate the design
and development of an IoT system implementing ORIOT. Additionally, from those results
it is clearly visible that devices with hardware acceleration for security operations are
best suited for such applications. As seen in chapter 3, section 3.4, hardware acceleration
is also beneficial regarding energy consumption. However, as most security algorithms
scale with CPU frequency, if the transmission rate of data required by an application is
low (e.g., every other hour), devices that do not feature hardware acceleration or come
with lower CPU performance may be better suited for such applications if they also
consume less overall energy either in idle mode and during operation. This can also be
achieved by underclocking specific devices. We deliberately chose to not measure overall
round trip time or individual data transfer timings, because those values are typically
heavily prone to network latency affected by various unstable environmental factors
like signal strength or interferences. Furthermore, such values would also heavily differ
depending on the connection type used, for example wired versus bluetooth versus wireless.
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CHAPTER 5
A Privacy Preserving System for

AI-assisted Video Analytics

The emerging Edge computing paradigm facilitates the deployment of distributed AI-
applications and hardware, capable of processing video data in real time. AI-assisted video
analytics can provide valuable information and benefits for parties in various domains.
Face recognition, object detection, or movement tracing are prominent examples enabled
by this technology. However, the widespread deployment of such mechanisms in public
areas is a growing cause of privacy and security concerns. Data protection strategies need
to be appropriately designed and correctly implemented in order to mitigate the associated
risks. Most existing approaches focus on privacy and security related operations of the
video stream itself or protecting its transmission. In this chapter, we propose a privacy
preserving system for AI-assisted video analytics, that extracts relevant information
from video data and governs the secure access to that information. The system ensures
that applications leveraging extracted data have no access to the video stream. An
attribute-based authorization scheme allows applications to only query a predefined
subset of extracted data. We demonstrate the feasibility of our approach by evaluating
an application motivated by the recent COVID-19 pandemic, deployed on typical edge
computing infrastructure.

After a brief introduction, the rest of the chapter is structured as follows: In Section 5.2
we investigate and compare our approach to related work in the field, and describe the
major differences to proposed solutions. Section 5.3 describes the exemplary scenario
motivating our approach. The following Section 5.4 gives a detailed overview of our
system. An exemplary implementation showcasing and evaluating the system is presented
in Section 5.4.1. Finally, Section 5.5 concludes the chapter.
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P1: Preprocessing P2: Inferencing (Face detection) P3: Anonymization

Figure 5.1: Parts of a Video Analysis Pipeline featuring a face-anonymization application

5.1 Introduction

Real-time video feeds from urban areas in combination with AI-based processing tech-
niques provide exciting opportunities for novel smart-city applications [SSX+15, RD19].
The emerging edge computing paradigm empowers these applications even more, where
high-resolution cameras deployed in public spaces are complemented by specialized edge
computing devices that can detect, process, and interpret various features of video streams.
Such features include, e.g., motion detection, object detection, or face recognition. Besides
potentially improving security in specific domains, this information extraction process
can also act as an enabler for application developers to provide valuable services to
potential customers. Applications leveraging such information include e.g., biometric
authentication (smartphone unlocking), locomotive systems (autonomous driving), fitness
related applications (detecting and correcting movements during an exercise), traffic
monitoring, law enforcement (tracking of fugitives e.g., drivers escape), and many more.

The process of AI-assisted video data analysis is typically composed of three major tasks.
First, the video data has to be prepared for an AI-application to be able to work with
such data. Second, one or more features have to be detected in a video frame (basically
an image). Third, post-processing actions take place. A real-world application for a data
protection-centered VAP is face-anonymization, i.e,. detected faces on each frame of the
input video have to be made unrecognizable in each frame of the output video. Fig. 5.1
illustrates these three steps (P1-P3) based on the face-anonymization example.

The increasing number of cameras in public spaces cause growing concerns about the
abuse of mass surveillance systems and the implications on personal privacy and free-
dom [SMM+09]. Therefore, adequate protection of private data is an increasing concern
in all kind of domains making use of public video streams, such as health, financial,
and social security. The most common straight forward generalized approach to protect
sensitive data is the installation of access control mechanisms alongside various encryption
techniques, in order to protect data at rest and in transit. An exemplary video analytics
implementation at the edge might incorporate a computing unit, connected to a camera,
encrypting and transmitting a video feed via Transport Layer Security (AI) to a cloud
server, where some form of e.g., Role Based Access Control ensures that the decrypted
video feed may only be processed by an entity with adequate permission or role.

In this work, we follow an orthogonal approach to the provided example. Instead of
applying encryption or privacy preserving image transformation techniques to a recorded
video feed, we focus on the extraction of relevant information from the feed with the help
of sophisticated machine learning techniques. This information only is then transmitted
and made available, and, of course, also protected by similar mechanisms as described
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in the previous example. The (raw) video is never transmitted or persisted/distributed
permanently.

We propose a secure system design, that leverages state-of-the-art access control mech-
anisms featuring a Key-Policy Attribute Based Encryption (KP-ABE) scheme. Fur-
thermore, we present in more detail a use case for analyzing the use of protective face
masks in public areas, which, given the global pandemic situation due to the Coronavirus
Disease 2019 (COVID-19), is highly plausible and relevant. The performance of a sample
use case implementation is evaluated, aiming to demonstrate the feasibility of such a
system running on typical edge computing hardware.

5.2 Related Work

Privacy and security are critical non-functional aspects of video analytics systems,
and remain active areas of research. Recent research in particular has identified edge
computing as a key enabler for privacy-sensitive systems that deal with real-time video
processing [SSX+15, GHB18]. We discuss both frameworks for privacy for video analytics
and surveillance in general, as well as specific methods of edge computing that enable
our approach.

In the broad context of privacy in video-based media spaces, Boyle et al. [BNG09] proposed
a framework – a descriptive theory – that defines how one can think of privacy while
analyzing media spaces and their expected or actual use. The framework explains three
normative controls: solitude, confidentiality and autonomy, yielding a vocabulary related
to the subtle meaning of privacy. A more technical introduction to video surveillance
in general is given by Senior in [Sen09]. The paper briefly summarizes the elements in
an automatic video surveillance system, including architectures, followed by the steps
in video analysis, from pre-processing to object detection, tracking, classification and
behavior analysis. Our proposed system builds on the high-level architecture described
in this paper. We improve this architecture by considering AI-based video processing
capabilities, and incorporate advanced security mechanisms. Furthermore, we suggest
concrete hardware and software, proven to run with adequate performance in edge
computing scenarios. Previous research on privacy mechanisms of video analytics systems
often focuses on protecting the source video streams. For example, Upmanyu et al.
proposed a privacy preserving video surveillance framework [UNSJ09]. Their approach
follows a more ’traditional’ strategy, i.e., image (frame) transformation. They split each
frame into a set of random images, where each image by itself does not convey any
meaningful information about the original frame. They implemented a secret sharing
scheme based on the Chinese Remainder Theorem, thereby enabling distributed secure
processing and storage of image data. A blockchain-based approach was introduced
by [LP20]. They exploit the blockchain technology to ensure the integrity and security
of a cloud-based intelligent surveillance system. Reducing bandwidth requirements, a
novel Merkle-Tree method is used for efficient transmission of video data. Chattopadhyay
et al. demonstrate how the practical problem of privacy invasion can be successfully
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Figure 5.2: Schematic overview of our proposed privacy preserving system for AI-assisted
video analytics

addressed through Digital Signal Processor (DSP) hardware in terms of smallness in size
and cost optimization [CB07]. This is particularly useful for edge computing scenarios,
where computational resources may be scarce. Their access control scheme is based on a
asymmetric key exchange mechanism, while regions of interest in the image are encrypted
via AES. The work of [EFG+09] also focuses on encryption of an individual images.
They use two semantically secure additively homomorphic public-key encryption schemes,
namely the Paillier and the DGK cryptosystem.

There is a lot more research focusing on encryption and anonymization strategies of image
and video data. Of course, we have to notice that there are applications, for which our
approach may not be feasible, and the transmission of (raw) video data is necessary. Other,
more application-specific approaches, often involve the pre-processing of video streams to
anonymize or obscure specific parts of a frame, i.e. denaturing. An example is the work
of Schiff et al. [SMM+09] that proposes Respectful Cameras, i.e., cameras that respect the
privacy preferences of individuals. Their practical real-time approach preserves the ability
to monitor activity while obscuring individual identities. This is achieved by identifying
colored markers such as hats or vests, which are automatically tracked by their system.
The identities of people wearing, e.g., a colored vest, are obscured by adding a solid
overlay over the face on every image frame. Satyanarayanan et al. [SSX+15] proposed
GigaSight, an Internet-scale repository of crowd-sourced video that also enforces privacy
preferences and access control, and leverages edge computing technology. GigaSight
runs on a federated system of VM-based cloudlets that run the video analytics, which
apply individual denaturing rules on all collected video feeds. Closer related to our
approach is the work done by [GHB18]. They focus on camera-based digital manhunts
of law enforcement agencies. Their approach leverages the inherent geo-distribution
of fog computing systems to preserve privacy of citizens. Their architecture is divided
into a cloud backend and edge devices. In the cloud, a specific facial recognition model

60



5.3. Motivating Scenario

is trained on images of an individual (e.g., a fugitive) and then distributed across the
edge devices. If a camera system, mounted on the edge device, detects a face it sends a
notification to the cloud. Though the authors state that an authorization mechanism is
implemented, in order to access manhunt related data, they do not provide any specific
details.

To summarize, these closer related approaches all focus on protecting or denaturing the
source video stream. Our system is different in that it ensures that no frames are ever
transmitted, therefore requiring new system design considerations. This novel design is
motivated by the fact that, many applications do not require analyzing or recording the
raw video feed, but instead only require filtered frames or extracted metadata processed
by other video analytics components.

5.3 Motivating Scenario
In different countries across the globe, cities have partnered with academic and industrial
parties, deploying and testing edge infrastructure. Prominent examples are the Array
of Things in Chicago (USA), the Smart City project in Aveiro, or the Padova Smart
City project in Padova (ITA), to name just a few [CBSG17, Nun05, CZVZ14]. The
most common infrastructure deployment is based on multiple sensor and compute
units, typically mounted on e.g., lamp posts that are distributed across (a part of) the
city. Adding video analytics capabilities to such an infrastructure can aid in various
applications. The smart city project in Aveiro leverages video information to implement
a modern traffic monitoring system, aiding governmental entities like law enforcement,
fire department, ambulance service, or traffic control management. In combination
with artificial intelligence capabilities, the extraction of relevant information from video
regarding various domains can be processed in a more accurate and accelerated fashion,
than being done by a human only [DA04, FBVC01, BZR+05, HBB+07]. The global
COVID-19 pandemic brings new opportunities for AI-assisted video analytics in urban
areas, potentially facilitating medical or social science research, as well as law enforcement.

5.3.1 Mask Detection Use Case

Due to the recent pandemic situation caused by COVID-19, many countries imposed an
obligation for people to wear facial masks in certain (mostly public) areas. Detecting if
people adhere to such obligations may not only be of interest to law enforcement but
also for virus transmission research and medical analysis. Public surveillance distributed
at the edge, supported by adequate machine learning techniques (models and prediction
accuracy), is capable of aiding in the detection and provision of relevant information, i.e.,
identifying clusters or numbers of people not wearing facial masks at a given location.
However, despite its potential beneficial use, privacy aspects still have to be considered and
the protection of sensitive data ensured. Applications, whether law enforcement related
or for academic or societal purposes, do not necessarily need to store (raw or compressed)
video feed, neither must they have access at any time to (live) video data, in such given
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use case described above. By implementing our system, relevant extracted information
could in the simplest case be the number of people without masks per area, e.g., three
people per 10 square meters. Combined with geodata of the surveyed area, interested
parties would be able to get valuable insights and knowledge of peoples’ behavior and
adherence to possible obligations, and may take appropriate countermeasures. However,
this is just a simplified example to demonstrate that there are real world use cases, where
(governing) parties do not need to access a video feed directly in order to extract valuable
information.

5.4 System Design

In this section we explain our proposed system design in detail, focusing on hardware
and architecture. Section 5.4.1 will provide a view on the software side of the system.
The foundation of our system is the architecture described in Section 5.1. Fig. 5.2 gives
an overview of the involved components and mechanism incorporated. The proposed
system assumes a processing and sensing unit (a), mounted at the edge of the network,
e.g., on a smart lamppost. This unit comprises a high-resolution digital video camera, a
computing device optimized for AI operations (e.g., NVIDIA Jetson TX2 [NVI20]), and
a computing device (from now on referred as caching device) that caches the extracted
video information. Additionally, the latter can also persist video data if needed. This is a
typical hardware setup and environment for urban sensing applications featuring a VAP.
Concretely, the smart city project in Aveiro mentioned previously, for example, uses a
nearly identical hardware setup and environment for their traffic monitoring system, as
used in the evaluation of this work. If prolonged caching or persistent storing of video
data is needed, we strongly suggest writing the data to a secure drive (e.g., on a security
module like [Zym20]), where it is additionally protected from physical access. As soon as
the camera starts recording, video data is directly passed to the AI accelerated device. In
order to enable extraction of information from the video feed in real time, we recommend
that the video processing is done by a highly specialized AI-accelerated device. For
simplicity reasons, we assume that one or more adequate pre-trained machine learning
models are already deployed on this device. Complex machine learning training scenarios
like federated learning as well as specifications for model architectures are out of scope of
this work.

After the information is extracted, subsets of this data are labeled according to a
specification provided by, e.g., a service provider or governing entity. A simple example
may be the number of people in a certain area not wearing a mask, according to the
motivating use case described in Section 5.3. The specific extracted information is an
integer value, and the corresponding label could be peopleWithoutMasks. Notice that
the extracted information could be the number of people per 1m2 or 10m2. Regardless
of the area, the label for both types of information could be peopleWithoutMasks.
An adequate and sophisticated labeling procedure may play a more important role when
dealing with more complex scenarios.
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The extracted and labeled information is then passed to the caching device, where it
gets transmitted further to the information database (b). The information database
can run anywhere in the compute continuum, and facilitates both protected real-time
access as well as access to historic data for batch analytics. The transmission of all
extracted information is protected by the well established AI standard, ensuring the
integrity, authenticity, and confidentiality of data. Additionally, we suggest that a
pinning mechanism [WSM+20] via modern HTTP extensions, e.g., HPKP [BHW17],
is implemented. These mechanisms, though in case of HPKP controversial, provide
additional authentication features for secure and trusted client-server communications.

The information database, once extracted information is received, is then being encrypted
using the KP-ABE technique [GPSW06]. In this cryptosystem, ciphertexts are labeled
with sets of attributes, i.e., our previously assigned labels. Furthermore, private keys are
associated with access structures that control which ciphertexts a user is able to decrypt.
Specific, fine grained access policies, define which user is allowed to access a certain
labeled ciphertext for decryption. A user is able to decrypt a ciphertext if the attributes
associated with a ciphertext satisfy the key’s access structure. For instance, if Alice has
the key associated with the access structure “X AND Y”, and Bob has the key associated
with the access structure “Y AND Z”, they are not able to decrypt a ciphertext whose
only attribute is Y by colluding. The KP-ABE system further allows deriving keys from
other keys, based on their restriction hierarchy and access structure, i.e., each user’s key
is associated with a tree-access structure where the leaves are associated with attributes,
allowing any user that has a key for access structure X to derive a key for access structure
Y, if and only if Y is more restrictive than X.

In a KP-ABE, the encryptor exerts no control over who has access to the data they
encrypt, except by their choice of descriptive attributes for the data. Rather, they
must trust that the key-issuer issues the appropriate keys to grant or deny access to
the appropriate users. In our case, users would be applications that may only need a
specific subset of the extracted video information. A simplified example of access to
encrypted data via policy defined access structure in a KP-ABE system is shown in
Fig.5.3. Accessing only this subset of data is reflected in the application’s private key
(c), determined by a policy. An application, firstly when deployed, is issued with such
a key and is notified by the policy database if its key is modified. This allows for a
seamless fine-grained management of access control for any application without the need
of a re-deployment. The policies are stored and managed at a dedicated independent
location at the edge or in the cloud (d). Managing those policies could be done by
governing parties for example; but in this work we do not further address this issue.
Furthermore, we notice that if features not specified at design time are needed by an
application, those unsupported feature extraction has to be re-implemented and deployed
by e.g., a service provider or governing party. Once the extracted information is correctly
encrypted, it is possible for applications to access this information via a well defined
separate Application Programming Interface (API), via a corresponding Attribute-Based
Access Control (ABAC) mechanism. The API never allows by design for an application
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Figure 5.3: Access to encrypted data via policy defined access structure in a KP-ABE
system

to directly communicate with a video processing unit at the edge, thereby prohibiting
theoretical access to the video feed. An application is now able to further process the
extracted information depending on their specific needs.

5.4.1 Sample Implementation

In this section we showcase a concrete exemplary implementation of our proposed system
based on the scenario described in Section 5.3. Systems for face or object detection
are well understood, as they have been broadly studied, implemented and evaluated
over the recent years. Since the outbreak of COVID-19, machine learning models and
their applications for mask detection have gained increased attention of researchers and
developers world-wide.

The detection accuracy for real-time systems mostly depends on external factors like,
lightning conditions, view angle and even skin color of observed persons. Video resolution
only plays a minor role in detection accuracy but more in image processing perfor-
mance [MCW+15]. In our example, we adapted the code from [Deb20] to run on the
different hardware nodes of our evaluation testbed. We found that real-time performance

64



5.4. System Design

is achieved by averaging an accuracy of about 98%. The extracted information, i.e.,
probability of a mask being detected alongside with the count of people in a given
frame, is labeled and transferred over the internet, encrypted via standard TSL, to the
information database. On the information database runs a KP-ABE scheme [Agr20],
which is responsible of the re-encryption of initial ciphertexts, i.e., incorporating the
attribute groups into the ciphertext. In previous research, we have shown the feasibility
of running data protection mechanisms on resource constrained IoT devices [LD19a].
The information database hosts a simple REST-API providing access to the extracted
information, given proper authentication. A sample Android application is then able
to query only information for labels which are reflected in the private key deployed on
the smartphone. A potential limiting factor in this application chain is the network
latency, which depends on multiple environmental factors. Therefore, we did not include
measurements regarding network related performance into our evaluation. This sample
application aims to showcase the scenario executed on dedicated edge computing hardware
and evaluate the core systems tasks, i.e., AI-assisted object detection and encryption.

5.4.2 Evaluation

In our experiments, we focused on the AI-assisted information extraction process and the
corresponding encryption tasks. Therefore, we deliberately executed the video processing
tasks and the information database on the same device.
Our testbed comprises a heterogeneous set of typical edge computing hardware. First, a
laptop with an Intel i7-7700 CPU@4.2GHz and 16GB RAM. Second, a Nvidia Jetson TX2
Developer Board with a ARM Cortex-A57@2GHz CPU and Pascal GPU and 8GB RAM.
Third, a Raspberry Pi4 with a ARM Cortex-A72@1.5GHz CPU and 4GB RAM. The
AI-assisted information extraction process, i.e., detecting the number of people wearing
a mask, is computational expensive, but also (depending on the AI-model used; in our
case Tensorflow) highly parallelizable. Therefore, we deliberately configured our system
to use the GPU of the Nvidia Jetson board in the respective test run for the extraction
part. Simply speaking, the many computing cores of a GPU, or even further specialized
hardware like a Tensor Processing Unit (TPU), highly facilitate the inference tasks of
AI-based processes, like e.g., object recognition. The experiments executed on the other
devices are purely CPU bound, i.e., the GPU (even if available) is not used at all. For
the evaluation, we chose three short publicly available video sequences, showing varying
numbers of people wearing a mask. The first video shows a single person putting a mask
on an off. The second video footage (labeled Multiple Persons in Fig 5.4) constantly shows
five people taking on and off their masks, while the third video (labeled Crowd in Fig
5.4) shows a large amount of people (>10; some wearing a mask, some do not) constantly
varying in number. These videos are the input for our system, where the number of people
wearing a mask is extracted and encrypted on a Frames per Second (FPS) basis. If the
FPS processed by our system matches the FPS the input video is recorded with (e.g., 25
FPS), real-time performance is achieved, i.e., a user could potentially read the extracted
information in real-time, but obviously this still also depends on the network conditions.
We have to notice that our mask detection implementation is a chaining process of a
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Figure 5.4: Performance of information extraction and encryption of different video input

face detection algorithm and a mask detection algorithm, each working with its own
dedicated model, implemented in Python 2.8. The AI inference part is implemented
using TensorflowLite for devices with ARM based architecture (Raspberry Pi and Jetson)
and Tensorflow for x64 based devices (Intel i7). While the point of this work is not to
implement a performance optimized mask-detection framework, this chaining procedure
obviously greatly affects the overall performance of the system. Fig. 5.4 shows the
results of our experiments. The overall performance is mainly affected by the AI-specific
tasks and furthermore on the conditions and specifics of the information that needs
to be extracted, e.g., an increase in number of people leads to a massive decrease in
performance. The encryption tasks are commonly CPU-bound, scaling linearly with
CPU-speed and/or are also dependent on the available specific encryption algorithm
based hardware instruction of a given CPU, like e.g., the AES instruction set which is
integrated into many modern processors [LD19b]. The extracted plain text information,
concerning our scenario, is rather small (compared to e.g., encrypting the whole raw video
data), hence the computational effort to produce ciphertext minimal. Therefore, the
overall contribution to the performance capabilities of our system is neglectable compared
to the information extraction process. Research has shown that modern edge computing
devices are capable of executing AI-assisted video processing, without significant loss in
performance [RF17, HRS+17, RCZ+18, LRCLP17]. Hence, in order to achieve real-time
performance, the suggested KP-ABE-based encryption scheme is not a bottleneck in the
system performance-wise, but rather the combination of used hardware and the nature of
the AI-assisted feature extraction task. To address this problem, strategies like lowering
the sampling rate of the video for feature extraction, reducing the input size, etc. could
be incorporated. These kind of adaptation strategies and its impact on performance are
presented in the following chapter 6.
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5.5 Summary

Video cameras deployed in urban areas provide enormous value for novel smart cities
applications, but at the same time, cause legitimate privacy concerns. These concerns
are mostly related to the unrestricted access and recording of the raw video feed, and
potential abuse for mass surveillance. We have found, however, that many applications
do not require this access in the first place. Instead, we argue that video analytics should
be pushed to the extreme edge, and direct access to the video feed should be avoided. To
that end, we have presented a privacy preserving system for AI-assisted video analytics.
It features a decoupling architecture that effectively hinders applications from directly
accessing the underlying video feed, and instead allows them to advertise what type
of information they require. Our system then extracts the information using existing
AI-based video processing techniques, ensures that privacy preferences are met, and
facilitates the secure access to the extracted information for both real-time and batch
applications. A ciphertext (i.e., the encrypted information extracted from video data) is
labeled with certain attributes, which only allows applications with a matching private
key (i.e., the attributes corresponding to the labels of the ciphertext are encoded in
the key) to decrypt and access the data. A KP-ABE security scheme ensures that only
authorized parties have access to this extracted information. To allow for a more fine
grained access control, security policies determine which application is able to decrypt
specific subsets of the encrypted extracted data. The policies are stored and managed
at a dedicated policy database, located at the edge or in the cloud. Furthermore, it
is responsible for issuing keys to an application, as well as notifying applications if a
key’s attributes change. Hence, a seamless fine-grained management of access control
for any application without the need of a re-deployment is achieved. In contrast to
typical RBAC-based systems, the KP-ABE security scheme allows for a much more finer
definition of who has access to what specific sets of data. However, such RBAC-based
system are well established and dedicated software readily available, while KP-ABE is
not as prominent which could potentially increase development effort when implementing
the proposed system.
We showed that our system is able to run on typical edge computing hardware, by imple-
menting and evaluating a simple, yet due to the recent pandemic situation highly relevant
scenario. By pushing the video analysis to the edge and encrypting the data locally,
a significant increase in data protection quality can be achieved. However, depending
on the needs of the application and many other factors (which will be detailed in the
upcoming chapter 6), local execution of such tasks (mainly AI-based tasks) potentially
negatively affects the overall performance of a system, if compared to a traditional
cloud-offloading scenario. However, we have to state that the KP-ABE security scheme
does not significantly affect the overall performance of a VAP on its own. This is mainly
due to the fact that the majority of computation time is taken by AI-based tasks, such
as object detection. We deliberately chose to not measure overall round trip time or
individual data transfer timings, because those values are typically heavily prone to
network latency affected by various unstable environmental factors like signal strength
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or interferences. Furthermore, such values would also heavily differ depending on the
connection type used, for example wired versus bluetooth versus wireless.
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CHAPTER 6
Towards Understanding the

Adaptation Space of AI-Assisted
Data Protection for Video

Analytics at the Edge

Edge computing facilitates the deployment of distributed AI applications, capable of
processing video data in real time. AI-assisted video analytics can provide valuable
information and benefits in various domains. Face recognition, object detection, or
movement tracing are prominent examples enabled by this technology. However, such
mechanisms also entail threats regarding privacy and security, for example if the video
contains identifiable persons. Therefore, adequate data protection is an increasing concern
in video analytics. AI-assisted data protection mechanisms, such as face blurring, can
help, but are often computationally expensive. Additionally, the heterogeneous hardware
of end devices and the time-varying load on edge services need to be considered. Therefore,
such systems need to adapt to react to changes during their operation, ensuring that
conflicting requirements on data protection, performance, and accuracy are addressed
in the best possible way. Sound adaptation decisions require an understanding of the
adaptation options and their impact on different quality attributes. In this chapter, we
identify factors that can be adapted in AI-assisted data protection for video analytics
using the example of a face blurring pipeline. We measure the impact of these factors
using a heterogeneous edge computing hardware testbed. The results show a large and
complex adaptation space, with varied impacts on data protection, performance, and
accuracy.

After a brief introduction, the rest of the chapter is structured as follows: Section 6.2
describes the exemplary scenario motivating our approach. The adaptation space, divided
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into different phases of an application, as well as for infrastructural considerations,
is presented in Section 6.3 An Evaluation based on a face-anonymization pipeline is
presented in Section 6.4 In Section 6.5 we investigate and compare our approach to
related work in the field. Finally, Section 6.6 concludes the chapter.

6.1 Introduction

Video feeds generated by distributed devices enable a variety of applications. For example,
in smart cities, videos from cameras can be used for traffic monitoring, accident reporting,
and law enforcement applications, among others [CBSG17, Nun05, CZVZ14]. In some
cases, also user-generated content may be available. E.g., in the case of an accident, videos
taken by passers-by with their smartphones may also aid the work of first responders.

Videos from public spaces may contain sensitive data associated with special security or
privacy requirements [MAM15, SWZL12]. For example, people’s faces or cars’ license
plates are personally identifiable information, and processing such information is subject
to data protection regulations, such as the GDPR in the European Union [AJL+21].

Recent advances in artificial intelligence, particularly in machine learning, enable effective
automatic video processing [DA04, FBVC01, BZR+05, HBB+07]. AI can also help in
satisfying data protection requirements; e.g., faces and license plates can be automatically
detected by ML-based object detection algorithms, and then anonymized by further video
manipulation methods.

Usually, processing videos is very resource-intensive, but the end devices producing
the videos are resource-constrained. Video processing may be offloaded to the cloud
to benefit from the virtually unlimited computational capacity of the cloud. However,
offloading to the cloud is associated with high latency and high network load. A better
solution is to deploy devices – called edge nodes – with sufficient computational capability
near the network edge. End devices can offload some video processing functionality to
nearby edge nodes, thereby benefiting from low-latency access to computational capacity
without overloading the core network. With the appropriate distribution of functionalities
between end devices, edge nodes and the cloud, optimal performance can be achieved
[Man19].

A challenge for such systems is the dynamic variability of their run-time environment
[BFI19, BFGL20, VF13a]. For example, the number of smartphones offloading video
processing to an edge node may change at run time. Also the capabilities of the connected
smartphones and the properties of the videos to process can change over time. Thus, video
processing systems at the edge must be self-adaptive to be able to react to changes at
run time. Self-adaptation involves monitoring the system and its environment, analyzing
whether changes threaten the satisfaction of the requirements, and the planning and
execution of adaptations if needed to ensure the continued satisfaction of requirements
[KC03]. For example, a smartphone may be able to perform face anonymization locally
as long as the video contains only one face, but when the number of faces in the video
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increases, the processing may have to be offloaded to ensure proper operation. This
requires an automatic run-time adaptation of the face-anonymization pipeline.

To enable adaptations at run time, appropriate adaptation rules have to be defined
at design time, specifying what adaptation to perform in which situation. Existing
approaches to creating self-adaptive systems assume that the designer is able to define
the appropriate adaptation rules [ST09]. For defining adaptation rules, it is crucial to
understand i) what changes in the environment may happen, ii) what self-adaptations
the system may perform, and iii) how those changes and self-adaptations impact the
relevant system properties [SMM18]. For video analytics at the edge, these questions are
complicated, since there are many different types of possible environment changes and self-
adaptations, with intricate implications on a variety of system properties. Environment
changes may happen both at the infrastructure level and the application level, and also
self-adaptations are possible on both levels.

This work presents the first detailed study on the adaptation space of AI-assisted data
protection for video analytics at the edge. We use the example of a ML-based face-
anonymization pipeline which can be distributed between end devices and edge nodes.
Our contributions are as follows:

• We identify relevant parameters of the environment that can change, possible
self-adaptations that the system can perform, and key system metrics.

• We perform extensive measurements in a heterogeneous testbed to determine the
effect of different environment changes and self-adaptations on the identified metrics.

Such results are needed to have a solid basis for designing the adaptation logic for
AI-assisted data protection for video analytics at the edge. Our work is a first step in
this direction and the results are potentially applicable to a wide field of other possible
scenarios beyond face anonymization.

6.2 Motivating Scenario
We consider a use case of traffic monitoring in a smart city. Cameras are installed
across the city to monitor the traffic on the streets. The video feed of each camera is
streamed to a nearby edge node, as shown in Fig. 6.1. Edge nodes are computational
resources deployed throughout the city, for example in a Road-Side Unit (RSU) or a smart
lamppost. The video feeds from the cameras are anonymized in the edge nodes before
they are forwarded to the cloud. Traffic control experts use a cloud-based application to
identify and analyze potential traffic incidents, such as traffic jams.

In addition to the statically deployed cameras, also citizens’ smartphones may connect
to a nearby edge node and stream their video feeds to the edge node. In this case, the
anonymization of the video feed may happen either in the smartphone or in the edge
node. The anonymization of video feeds is performed by a Video Analysis Pipeline, as
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End devices

Edge nodes

Cloud

Observed traffic

Figure 6.1: Edge infrastructure in the considered use case

schematically depicted in chapter 5, Fig. 5.1. This face-anonymization pipeline consists
of three phases, where i) the video is pre-processed, ii) faces are detected in the video
frames, and iii) faces are made unrecognizable.

During the operation of the system, many changes are possible. For example, assume
that a smartphone is taking a video feed and anonymizing it using a face-blurring
technique in real time. As more people join the scene, more faces need to be detected and
blurred in the video, which increases the computational needs of the face-anonymization
pipeline. If the computational capacity of the smartphone is not sufficient anymore,
an adaptation is needed. One possibility is to offload one or more phases of the face-
anonymization pipeline to a nearby edge node. Another possibility is to resort to a
less resource-consuming anonymization technique (e.g., drawing a black rectangle over
the faces instead of Gaussian blurring). Which of these potential adaptations is most
appropriate has to be decided on the fly, depending on the given situation and on the
implications of potential adaptations.

6.3 Adaptation Space for Data Protection

Feature Extraction, Object Detection or Motion Tracking are prominent examples of
AI enhanced video analytics, usually designed, implemented and integrated into a VAP.
Optimizing the performance of a VAP operating at the edge is a major research topic. The
concept of edge computing in combination with the increasing potential of AI, becomes

72



6.3. Adaptation Space for Data Protection

P1: Preprocessing P2: Inferencing (Face detection) P3: Anonymization

Figure 6.2: Parts of an exemplary face-anonymization application

Adaptation Phase Data protection Performance

Compiled Programming Language P0 / +
Greyscaling P1 - +++
Adequate Video Resolution P1 + -
Frame Skipping P1 - +
Adequate AI-Model P2 +++ +
Batching P2 / ++
AI-Inference Chaining P2 ++ - - -
Sophisticated Anonymization P3 + -
Enable Dedicated Hardware * / +++
Overclocking * / ++
Migration * +/- ++
Offloading * - ++

Table 6.1: Impact of adaptations on data protection and performance

increasingly relevant for this area of research. Various optimization objectives can be
considered, including execution time, latency, and inference accuracy. Optimization
is carried out during either design time or run time of an application, resulting in
adaptations on the infrastructure or application level. Accuracy plays a crucial role for
applications incorporating data protection mechanisms, e.g., anonymization, that have to
adhere to specific privacy regulations like the GDPR. An application may have to sacrifice
potential performance benefits from optimization strategies to achieve the necessary level
of accuracy. The heterogeneous and dynamic environment in edge computing greatly
increases the complexity of such optimization strategies. Therefore, we need a better
understanding of the main levers for performance and data protection in each of the
three phases of the VAP. To ease reading and correlating each phase with the respective
adaptation levers, the Fig. 5.1 in chapter 5 is shown here again as Fig. 6.2.

Table 6.1 displays the most relevant adaptations we identified and their impact on data
protection and performance. For application adaptations, the relevant phase of the
VAP (P1-P3) is indicated in the table. P0 is a special case of a pre-runtime phase.
Infrastructure adaptations can relate to any phase, indicated by a *. The impact of
an adaptation on data protection and performance is shown by + (positive impact), -
(negative impact), or / (no significant impact).

The trigger for such adaptations can be a change on the application level or on the
infrastructure level. Application-level triggers include changes in video content (e.g., the
number of people in the video, the size of their faces in the video, the angle of faces
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to the camera, lightning conditions), changes in the number of video feeds to process,
or changes in application requirements (e.g., different frame rate required depending
on the purpose of the video feed). Infrastructure-level triggers include changes in the
available hardware (e.g., mobile end devices connecting to or disconnecting from an edge
node) and in the trustworthiness of hardware (e.g., a camera becoming compromised by
a physical attack).

In the following, we describe the identified possible adaptations of each phase in more
detail and reason about their impact based on the example of Section 6.2.

6.3.1 Adaptations of the pre-processing phase (P1)

Video data needs to be prepared for processing by a face detection framework. This
may involve encoding, decoding, or transcoding the video, greyscaling the frames, or
resizing each frame. Greyscaling is needed since most object recognition frameworks (e.g.,
TensorFlow) take greyscaled images as input. Transforming the video can be a heavy
computational task, depending on how the video is recorded (frame rate, resolution, codec,
etc.). Manufacturers like Nvidia (NVEnc) integrate dedicated chips into their hardware
to facilitate this task. Encoding, decoding or transcoding may have a significant impact
on overall performance of a VAP, but do not affect data protection quality directly. While
resizing and greyscaling are computationally not very expensive (in the sub-millisecond
range per frame even on a Raspberry Pi4), adaptations concerning resizing an image
could negatively affect data protection. This is because face detection may produce less
accurate results on the resized video, leading to undetected and thus non-anonymized
faces in the output video.

Adaptations changing the frame rate of an input video should take the context and
nature of the input video into account. If (near-)real-time performance (and experience
of a user) is the goal, the frame rate should not go below 24 FPS. However, if this is
not possible due to computational limitations, skipping a given number of frames, i.e.,
providing only each k-th frame to the face detection step, provides a viable option for
videos without abrupt changes. Frame skipping assumes that a face detected in frame
n is in the same location in frames n + 1, . . . , n + k − 1 as well. Thus, anonymization
operates for each of these frames on the location where a face was detected in frame n.
For videos with abrupt changes, this may degrade anonymization quality.

6.3.2 Adaptations of the inference phase (P2)

The performance of the second phase of the pipeline is heavily dependent on the face-
recognition framework itself as well as on the inference model used by the framework. In
the context of AI-based inference tasks, performance is not only related to processing
speed but also to the accuracy with which an object like a face is detected in an image.
To detect faces in a video, a framework looks at every frame of the video, trying to infer
if a face is present in the given frame. The accuracy is mostly dependent on factors
like face-angle or lightning conditions in the picture [MCW+15]. A well-trained model
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embedded in modern frameworks like e.g., TensorFlow will generally allow for high
inference speed with high accuracy. In some cases, inference may take significantly longer
if more than one face is present in the frame. Such frameworks are not necessarily available
and/or optimized for each system architecture like e.g., ARM, x86, x64. Differences in
performance and accuracy can also occur due to the usage of legacy versions of such AI
frameworks.

There are several possibilities for adaptations concerning inference that aim to improve
accuracy and/or performance. The most common practice in AI-based VAPs is batching.
Modern AI frameworks provide an API, allowing an application to send multiple frames
in one request and process them in parallel. Adapting the batch size and frequency can
be considered viable adaptations because they do not negatively affect data-protection
quality, but may improve performance. Changing the pre-trained model for inference is
another possibility. This adaptation becomes relevant if the analyzed video is prone to
dynamic changes as it may increase accuracy and/or performance, but may also decrease
data protection quality if accuracy drops due to the model change.

In a scenario as described in Section 6.2, accuracy may also be improved if multiple
inference steps are chained, e.g., first, persons are detected in a video frame, then on
the resulting regions of the frame, face detection is performed. Such strategies heavily
affect overall performance, but may be necessary to adhere to data protection regulations
and policies. Another adaptation is switching between implementations in different
programming languages. For example, Python is heavily used for AI applications in the
research community, but being an interpreted language, applications written in Python
generally perform worse than using a compiled language like C or C++.

6.3.3 Adaptations of the anonymization phase (P3)

The third phase involves the actual anonymization of detected faces in a video frame, i.e.,
a graphic overlay is drawn over the face in the image. A face-detection framework returns
a bounding box (an area inside an image) that corresponds to, or covers the face detected
inside a frame. This bounding box is then used to draw an overlay onto the image.
Although it is well researched that making a face unrecognizable in visual data does not
fully guarantee the anonymity of a person, it still facilitates such anonymization task to
a high degree, mostly by making the de-anonymization process significantly harder for
an attacker.
Both performance and data protection quality depend on the desired graphic nature of
the overlay. One possibility is blurring the face in an image by applying a Gaussian Blur
Transformation function to the image part cropped using the previously described bound-
ing box. Pixelating the face area can be considered an improvement in anonymization:
the area is divided into an n ×m image-tile matrix and each tile is transformed with
e.g., Gaussian Blur. A simple alternative, with minimal performance impact, maybe a
more blunt approach, where the cropped image part is just painted with a single color,
resulting in e.g., a white circle drawn ’over’ the face. This approach may from a GUI
perspective of an application not be considered as beautiful as the Gaussian blur, but is
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significantly less constraining on computing performance. However, similar to resizing
and greyscaling described in Section 6.3.1, the differences in execution times between
these anonymization strategies are small compared to the inference time. Adaptations to
improve data protection quality, specifically anonymization, most likely have a greater
impact on user experience than on performance.

6.3.4 Adaptations of the infrastructure

The execution time of a task often heavily depends on the capabilities, e.g., CPU speed,
architecture (ARM, x64, etc.), or type of hardware (CPU, GPU, etc.) available, of the
device the task is running on. Executing all three phases on the same device may limit
the overall performance of the VAP. A common approach is to decouple the phases of a
VAP and execute them separately on different devices. Offloading tasks to the cloud or
powerful edge nodes bears great potential to minimize execution time, but comes with
the downside of increasing latency [RCLC17, LQB18]. Data locality requirements may
hinder offloading, potentially forcing a task that operates on sensitive data, to run on
specific premises [MMPS19].

Infrastructure adaptations may be useful in any of the three phases. Phase 2 can
benefit the most from infrastructure adaptations in terms of performance, but may also
suffer from downsides like additional energy costs and/or laborious human intervention.
Infrastructure adaptations typically do not directly influence accuracy, hence they can
increase performance without compromising data protection quality. Activating (pre-
installed and available on demand) dedicated hardware like a GPU or a Tensor Processing
Unit (TPU) are viable infrastructural adaptations. In virtualized environments, migrating
the inference component to a more powerful device can be a beneficial adaptation.
However, data locality aspects and privacy policies need to be considered. Overclocking
hardware may also be a possible adaptation that should be carried out carefully. Dedicated
AI hardware like e.g., an Nvidia Jetson device, provides interfaces and scripts to change
performance profiles (e.g., CPU voltage, fan speed, clock speed) on the fly. However, these
adaptations may also increase energy consumption and potentially decrease hardware life
expectancy. A further adaptation possibility is to execute the inference task on CPUs
with different instruction sets. Modern CPUs provide a lot of low-level instructions,
besides the usual arithmetic and logic, known as CPU extensions. Examples of such
extensions are Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX),
see [Int16, AMD12] for details. In particular, AVX introduces Fused Multiply-Accumulate
(FMA) operations, which speed up linear algebra computation, namely dot-product,
matrix multiply, convolution, and more. Almost every AI-based application involves many
of those operations, hence will be faster on a CPU that supports AVX and FMA [AS20].
AI frameworks, like TensorFlow, support special instruction sets (Single Instruction
Multiple Data) and other features that increase performance. However, in the case of
Tensorflow for example, the default distribution is built without including such CPU
extensions. Hence, if a system developer relies on a CPU (e.g., in the absence of a GPU
or TPU), they have to manually compile it for their given architecture.
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Table 6.2: Devices used for the experiments

Name CPU GPU RAM

Desktop PC AMD Ryzen 5600X@3.7GHz not used 32GB
Laptop Intel i7-7820HQ@2.9GHz not used 16GB
Intel NUC Intel i5-7260U@1.5GHz not used 16GB
Raspberry Pi4 ARM Cortex-A72@1.5GHz not used 4GB
Nvidia Jetson TX2 ARM Cortex-A57@2GHz Nvidia Pascal, 256

cores
8GB

6.4 Evaluation

We implemented the face-anonymization pipeline described in Section 6.2 using Python
3.6, OpenCV 3.4 and TensorFlow 1.14. Parameters can be used to choose between
different versions of each phase of the pipeline. We performed a series of experiments to
evaluate the impact of different factors on the performance of the face-anonymization
pipeline. We performed the experiments on a heterogeneous testbed consisting of several
different types of devices, shown in Table 6.2. The source code and the results are
available online1.

Overall, the empirical findings reinforced the results of the theoretical analysis of Section
6.3. In the following, we present some of the quantitative findings from the experiments.

Fig. 6.3 shows the impact of the used hardware on the VAP’s performance. The fastest
device (desktop PC) offers roughly 30 times higher performance than the slowest one
(Raspberry Pi). Thus, offloading computations to a more powerful device offers huge
potential for improving performance. Additionally, dedicated hardware like a GPU has
huge potential for performance gains. The Raspberry Pi used in our evaluation features
a similar CPU like our used Nvidia Jetson board. However, due to the availability of
outsourcing the inference task to the GPU of the Jetson board (instead of running it on
the CPU like the Raspberry Pi did), overall it performed nearly 10 times better than
the Raspberry Pi, and even slightly outperformed the Intel NUC, which has a far more
powerful CPU that the Jetson board.

Fig. 6.4 shows the impact of the number of faces in the video on the VAP’s performance.
The results for the NUC are shown; the results for the other devices are similar. Processing
a video with many faces leads to a performance loss of about 5% compared to a video
containing a single face. This is an example of the impact of an environmental factor.
The system has no influence on the number of faces in the video, but the system may
have to adapt to react to changes in the number of faces in the video, to counteract the
performance loss. This becomes especially important for mainly performance oriented
systems that have to deal with a dynamic and mostly heterogeneous (video) environment.
Obviously, an increased number of faces in a video stream also increases the chances

1https://github.com/clemenslachner/EdgeAIAdaptations
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of faces to remain undetected, thus not anonymized. In such situations swapping the
inference model may yield better results, however there is no empirical method available
to determine that. Hence, such an adaptation would have to be verified, e.g., at design
time where different models could be tested, by a (human) system operator.

Fig. 6.5 shows the impact of different anonymization methods on the performance of the
face-anonymization pipeline. The performance difference between the fastest and slowest
anonymization method is about 2.8%. The difference is small because the anonymization
method only affects the performance of the last phase of the face-anonymization pipeline.
The execution time of the face-anonymization pipeline is dominated by the second phase
(face detection), hence accelerating the third phase has only limited effect. Across all
devices, we could observe that the execution time of tasks located in P3, such as blurring
is similar to P1 tasks (resizing and greyscaling) as described in Section 6.3.1, ranging
in the sub 10ms area. This highlights the importance of P2 levers, as main driver for
performance gains. However, if maximum performance is desired/required in a system,
and e.g., UI-aspects are secondary, P3 levers also offer marginal performance gains.

Fig. 6.6 shows the impact of frame skipping on the performance of the face-anonymization
pipeline. If face detection is performed only for every 5th frame, this also leads to
roughly a 5 times performance increase for the whole face-anonymization pipeline. Hence,
activating frame skipping or changing the number of skipped frames is a very effective
adaptation.

Fig. 6.7-6.8 show the impact of resizing the frames on the measured performance and
the accuracy reported by the AI framework. Scaling the video to smaller sizes leads to a
slight increase in performance, but may lead to a dramatic loss in accuracy. The figure
clearly shows that the effect of resizing on the throughput of the VAP is minimal. This
also holds true for all other devices in our testbed, which underlines the importance of
understanding the effect of different adaptations on key metrics. Hence, we argue that
the observed minor increase in performance of resizing an image is neglectable, especially
considering the possible negative effects on accuracy.

6.5 Related Work
Privacy and security are critical aspects of video analytics systems. Recent research
identified edge computing as a key enabler for privacy-sensitive systems dealing with
real-time video processing [SSX+15, GHB18]. Today’s hardware capabilities potentially
enable real-time video processing at the edge where, typically, data originates. In
the context of privacy in video-based media spaces, Boyle et al. [BNG09] proposed a
framework – a descriptive theory – that defines how one can think of privacy while
analyzing media spaces and their expected or actual use. The framework explains three
normative controls: solitude, confidentiality and autonomy, yielding a vocabulary related
to the subtle meaning of privacy. A more technical introduction to video surveillance is
given by Senior in [Sen09]. The paper briefly summarizes the elements in an automatic
video surveillance system, including architectures, followed by the steps in video analysis,
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from pre-processing to object detection, tracking, classification and behavior analysis.
Our implementation builds on the high-level architecture described in that paper, and
adds AI-based video processing capabilities. Chattopadhyay et al. demonstrate how the
practical problem of privacy invasion can be successfully addressed through DSP hardware
in terms of smallness in size and cost optimization [CB07]. This is particularly useful for
edge computing, where computational resources may be scarce. Much research focuses
on encryption and anonymization of image and video data. Other, more application-
specific approaches, often involve pre-processing of video streams to anonymize or obscure
specific parts of a frame. An example is the work of Schiff et al. [SMM+09] that proposes
Respectful Cameras, i.e., cameras that respect the privacy preferences of individuals. Their
real-time approach preserves the ability to monitor activity while obscuring individual
identities. This is achieved by identifying colored markers such as hats or vests, which are
automatically tracked by their system. The identities of people wearing, e.g., a colored
vest, are obscured by adding a solid overlay over the face in every frame.

Several authors proposed using adaptations to cope with dynamic changes of edge
computing systems. Breitbach et al. combine different data placement and task scheduling
policies to adaptively react to changes in the system context [BSEB19]. Gand et al.
introduce a fuzzy controller for self-adaptive container orchestration for edge devices
[GFEI+20]. Samir and Pahl propose using adaptations for self-healing of edge cluster
systems [SP19]. Wang and Xie develop an algorithm for the adaptive choice of parameters
in mobile augmented reality systems [WX20]. All those approaches rely on only carefully
selected parameters, with focus on a particular problem in the video analytics domain.
However, the big picture was missed, and some of the potential solutions to a problem
presented in their work may introduce another problem related to either data protection
or performance. As we have seen, identifying the parameters and their impact for AI-
assisted data protection for video analytics at the edge is a non-trivial task, which has
not been solved yet. Our generalized work and more holistic approach thus paves the way
towards effective adaptation algorithms for AI-assisted privacy-preserving video analytics
at the edge.

6.6 Summary
This chapter presents preliminary results of the first systematic study of the adaptation
space of AI-assisted data protection for video analytics at the edge. Using a face-
anonymization pipeline as running example, we identified several possible adaptations
and analyzed their impact on performance and data protection. We also implemented
and empirically evaluated several of the considered adaptations. The results show a
wealth of different adaptation options on both the infrastructure and application level.
The results also show that the impact of these adaptations varies significantly. In general,
adaptations that deal with the inference part of a VAP have the most significant impact
on performance, most notably the incorporation of dedicated AI hardware such as a
GPU or TPU. Choosing an appropriate machine learning model for a given task, on the
other hand, yields the best results in terms of data protection, due to a significantly
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increased accuracy with which objects are identified in video frame. There are several
adaptations that potentially increase performance, but negatively impact data protection.
For example, frame skipping provides a significant boost for performance. However, this
adaptation could potentially lead to losses in anonymity. For example, in a dynamic
video situation (parts of) a face could not be entirely covered by an e.g., blurring effect,
because the location of the effect (the inferred location of a face) was determined based
on a (four times) earlier frame. Swapping an AI model on the other hand, may lead to
better accuracy, hence increased data protection, but comes at the price of performance.
A limitation every AI-assisted VAP faces is determining the level of accuracy, as there is
(yet) no empirical method available to check if e.g., a face was correctly detected in a
video frame or not. Hence, we argue that adaptations, such as model swapping are best
extensively tested (with appropriate test video material) at design time. Overall, we could
show the variety of different adaptation possibilities and their impact on performance and
data protection, which potentially aids developers and system designers of an AI-assisted
VAP in optimizing the software.
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CHAPTER 7
A Data Protection Focused

Adaptation Engine for Distributed
Video Analytics Pipelines

The design, development, deployment and operation of a distributed Video Analysis
Pipeline (VAP) at the edge of the network is highly complex. Concrete specifications of
various infrastructural parts may not be fully known at design-time of a VAP and an
application’s part of the VAP may be executed on different hardware that may also change
during run-time. Additionally, a VAP may use many different software components to
fulfill its concrete task. Those software components may also be distributed across different
nodes that may be maintained by different parties. Hence, software characteristics, such
as efficiency, reliability or functionality, could also VAP greatly. Those circumstances
heavily influence system requirements such as data protection, performance and energy
consumption. Hence, determining an optimal system configuration during design- and
runtime of a VAP becomes a tremendous challenge. The concept of adaptation aims
to mitigate this problem. In the domain of adaptive systems, several solutions are
proposed in literature to optimize either one particular performance aspect of a VAP,
e.g., execution time or latency, or focus on minimal energy consumption, or calculate a
trade-off including some of those aspects. However, nowadays, most systems utilizing
a VAP that records personally identifiable data have to adhere to some form of data
protection regulation, such as the GDPR. Still, adaptations to increase aspects that
are not related to performance, such as data protection requirements, are often second
to previously mentioned performance or energy consumption characteristics of a VAP.
While there is state of the art literature dealing with data protection related adaptations,
most of them solely focus on increasing certain security or privacy aspects of a system,
but leaving previously mentioned performance or energy consumption characteristics
out of scope. To the best of our knowledge, there is no solution that covers all of these
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aspects. In this chapter, we present a data protection focused adaptation engine that
leverages the application- and infrastructure based adaptation space of a distributed
VAP. It features an optimization algorithm to improve data protection, performance and
energy consumption characteristics of a distributed VAP. The engine employs an extended
system model and adaptation rules that are based on previous research.The approach
builds upon two well established paradigms in adaptive systems, namely the Monitoring-
Analysis-Planning-Execution (MAPE) loop principle and Event-Condition-Action (ECA)
rules.

After a brief introduction, the chapter is structured as follows: First, we state the problems
and challenges a distributed VAP faces with respect to data protection, performance and
energy consumption in Section 7.2. Furthermore, we describe a real world use case, that
is derived from a use case from FogProtect, motivating our approach and illustrating
the associated challenges to data protection. Section 7.3 gives the essential background
information that is needed to understand our approach. Details on the implementation
of the engine are described in Section 7.4. In Section 7.5 we evaluate the feasibility and
applicability of our approach. Research related to this work is discussed in Section 7.6.
Section 7.7 discusses our findings and concludes the chapter.

7.1 Introduction
Edge Computing comprises a variety of different connected devices with minimal to
average computing power. These devices continue to permeate deeper into our personal
environment as well as in commercial and industrial areas, by sensing, processing, and
storing all kind of data [VF13a]. The design, development, and deployment of distributed
edge applications, e.g., AI-assisted Video Analysis Pipeline, is highly complex [Dea07].
Due to the heterogeneous hardware environment of such systems, concrete specifications
of various infrastructural parts may not be fully known at design-time of a distributed
application. Furthermore, various application parts (e.g., microservices) will be executed
on different infrastructures and could be migrated during run-time. While the cloud
is to be expected, mainly due to virtualization and containerization techniques, to
have virtually unlimited computing power and storage, the capabilities of edge nodes
may VAP widely. This heterogeneity of capabilities increases even more in the area of
IoT, where energy consumption becomes an additional important factor. Hence, not
knowing the exact infrastructural details on where a distributed application will be
deployed and executed on becomes a tremendous challenge [BFI19, BFGL20, VF13a].
Additionally, a VAP may use many different software components to fulfill its concrete
task. Those software components may also be distributed across different nodes that may
be maintained by different parties. Hence, software characteristics, such as efficiency,
reliability or functionality, could also vary greatly. Another problem a VAP may likely
face, is the handling of sensitive data, such as PII, in order to allow its workflow to comply
to privacy policies [DJP11, LRD19a] or security provisions such as the GDPR of the EU.
For such applications, these circumstances call for data protection [DWK15a] to be the
topmost priority, while performance and energy consumption come second. Integrity,
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confidentiality, availability, undetectability, and unobserveability are the key elements of
such protection mechanisms. The overall risk that such a system is confronted with could
be assessed by looking on its various attack surfaces that are exposed to an adversary. For
example, in the context of AI-assisted video analytics, the potential leakage of PII (e.g.,
recorded faces) from video data, e.g., due to unencrypted transmission of images (frames),
is a characteristic threat to data protection of such a system [FWKM15]. However,
implementing adequate mechanisms to fulfill data protection requirements is often second
to improvements for performance characteristics of a system, especially in the area of Edge
Computing and IoT [MAM15, SWZL12]. The concept of adaptation aims to support
tackling this challenge. Based on the classical definition of control theory an adaptive
system monitors its own performance and adjusts its parameters in the direction of better
performance [NA12]. Computing time, data storage or latency are concrete exemplary
manifestations of this classical understanding of performance. For defining adaptation
rules, it is crucial to understand (i) what changes in the environment may happen, (ii) what
self-adaptations the system may perform, and (iii) how those changes and self-adaptations
impact the relevant system properties. Hence, adaptations in the system have to be
designed in a way so that this heterogeneous infrastructural and software environment is
also taken into account. Regarding performance related adaptations, several solutions are
proposed in literature to optimize either one particular performance aspect of a VAP, e.g.,
execution time or latency, or focus on minimal energy consumption, or calculate a trade-off
including some of those aspects [ZSL+18, ZSYM17, HM20, Kim20]. While there is state
of the art literature dealing with data protection related adaptations, most of them solely
focus on increasing certain security or privacy aspects of a system, leaving previously
mentioned performance characteristics out of scope [BSG+18, BGR+15, TPGN16]. To
the best of our knowledge, there is no solution that covers all of these aspects. In
this work, we present a data protection focused adaptation engine that leverages the
application- and infrastructure based adaptation space of a distributed VAP. The engine
employs an extended system model and adaptation rules that are based on previous
research from a collaborative H2020 project[AJL+21], namely FogProtect1. The model
was specifically extended and enhanced to meet the requirements of AI-assisted VAPs at
the Edge. The adaptation rules cover the application layer, as well as the infrastructure
layer of a VAP system. Furthermore, the engine now features an optimization algorithm
to improve performance, energy consumption and data protection of a distributed VAP
and its functionalities.
Based on a real-world use case, we can show that our approach efficiently and effectively
mitigates data protection risks in a running system. Additionally, it opts to find the most
suitable system configuration based on an operators preferences regarding performance,
energy consumption, and available functionalities (Quality of Service (QoS)).

1https://fogprotect.eu/
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7.2 Problem Statement

In this section we describe the challenges for data protection and performance for
each major task a VAP comprises. Performance in context of a VAP is not only
related to computational capabilities of the system. It also covers qualitative aspects
of the analysis part, i.e., the accuracy with which desired features can be inferred from
video data. Accuracy is typically determined by the used AI-model and respective
framework. The computational performance of each task is tightly coupled to the
hardware capabilities of the device executing those tasks. Running all of the three
major tasks on a single computing device can have a significant impact on the overall
performance of a VAP. If performance on a single device becomes an issue, a common
approach is to decouple the three main tasks of the face-blurring pipeline and execute
them separately on different devices. However, this pragmatic approach may often pose
a non-trivial challenge to edge computing use cases, considering distributed applications
running in a heterogeneous hardware and software environment. Therefore, in [LMD21],
we got a better understanding of the main drivers decreasing performance in each of
the three major tasks of a VAP, in order to develop adaptation strategies to enhance
performance and/or data protection quality. Hence, the approach presented in this
chapter builds on top of that, enabling us to incorporate the important aspects into the
proposed solution.

7.2.1 Motivating Example

To better illustrate the problems and challenges of a VAP we describe a real world use
case from a FogProtect partner, motivating our approach. The use case takes place in
the smart cities domain and featuring a modern urban monitoring system2. In general,
the use case scenario can be considered as a multi-tenant system with a highly dynamic
device setup. Smart lampposts, equipped with computing nodes and various sensors, are
installed and distributed across the city. The heterogeneous capabilities between nodes
stem from the fact that (in our specific real world use case) in an urban environment
smart lamppost can be manufactured, equipped and mounted by different vendors. These
smart lampposts sense and process data and share this data across the network. Data
may be transferred from one lamppost to another node or directly to the cloud for further
processing and/or storage. Traffic monitoring is one concrete exemplary scenario in our
use case. A smart lamppost records or streams video data from a mounted camera to a
computing node, where the data is further processed, streamed or stored. Various parties
may access this data for further analysis. For example, this enables traffic controllers to
identify and analyze potential incidents and problems regarding traffic, such as a traffic
jam or a car accident, which then inform potential first responders to act accordingly.
Imagine a smart lamppost records a car incident and the data gets transmitted to a
traffic controller. Such data flow, as well as its content, is prone to many security and
privacy threats, such as wiretapping and personal data leakage. It may not be beneficial

2See: https://urbanplatform.city/
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Traffic Monitoring

1 2 3

Figure 7.1: Smart lampposts recording video data that potentially contains PII. Depending
on a users access rights, either anonymized or raw video is transmitted.

or desired for a traffic controller to see potentially recorded faces of people nearby the
accident or even license plates of cars involved in the accident or also nearby. However,
a first responder, like law enforcement, may be interested to actually identify people
(as potential witnesses) or license plates of cars (in cases of e.g., hit and run scenario).
Hence, depending on e.g., access rights, specific adaptations on nodes have to be triggered.
A concrete example of such an adaptation is to activate an object blurring algorithm
manipulating a recorded video stream. Fig. 7.1 shows an overview of the scenario.

The box with label 1 displays smart lampposts, distributed across the city, each equipped
with a camera and a computing node that acts as a video gateway. A lamppost records
it’s environment, e.g., people and cars on the street, and transmits the video to another
computing node, where it can be further processed, or viewed by a user. However, as
depicted in the box with label 2, depending on the user’s access rights, the video is either
anonymized or not upon request. The box with label 3 displays exemplary roles of users,
a traffic operator, a law enforcement officer and a normal end user, each with different
access rights. While the law enforcement officer would have access to the raw video, the
other two users would only be allowed to watch the anonymized version of the video.

7.2.2 Challenges to Data Protection and Performance

From a high level perspective, an AI-assisted VAP faces similar data protection challenges
as any other distributed application that stores, processes and transmits sensitive data.
Sticking to the information security principle of the Parkerian Hexad [Par12], such
systems have to be protected against security breaches affecting one or more of the
fundamental attributes of information, namely: Confidentiality, Possession or Control,
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Integrity, Authenticity, Availability and Utility. Identifying the risks associated with those
security breaches and how to mitigate them is typically a design-time activity carried out
by information security experts following standards like the ISO27000 [Int18]. A concrete
implementation of the scenario described in Section 7.2.1 makes heavy usage of AI-based
tasks in order to provide additional services like automatic license plate detection, but also
enable or enhance data protection mechanisms. A simple, yet not easy task to ensure and
respect the privacy of people recorded by a system like we described, is the anonymization
of personally identifiable features like faces of people or license plates of cars. Furthermore,
the actual physical location where (personal) data is processed plays an important role
in regulations like e.g., the GDPR in Europe. Additionally, a distributed VAP needs
to take care of secure data transmission as well. A secure data transmission may not
only cover encrypted communication, but could also leverage cutting edge AI-techniques
like model splitting[ZCL+19] to further enhance privacy. Basically, each phase of the
VAP faces specific challenges to either performance and/or data protection. In the first
phase (P1), the system is typically concerned with video pre-processing tasks, such as
encoding or up/downsampling. Such tasks are commonly done if the camera records
with different parameters (e.g., framerate or resolution) than the desired output video,
i.e., the video data that will be transmitted to, and analyzed by, a component of P2.
However, transforming video data to a specific format is a heavy computational task,
hence significantly affecting the performance of P1. Therefore, manufactures like Nvidia
integrate dedicated chips into their hardware and offer dedicated SDKs to facilitate this
task3. The performance of the second task of the pipeline is heavily dependent on the
used AI-framework as well as on the underlying infrastructure it operates on. In the
context of AI-based inference tasks, like stated previously, performance is not only related
to processing speed but also to the accuracy with that e.g., an object was detected in an
image. A well pre-trained model embedded in modern sophisticated frameworks like e.g.,
TensorFlow or YOLO will generally allow for higher inference speed with high accuracy.
However, such frameworks are not necessarily available and/or optimized for each system
architecture like e.g., ARM, x86, x64, but developers constantly aim to port a framework
to another architecture or provide lightweight alternatives such as TensorFlow Lite or
YOLOv3-tiny. Furthermore, differences regarding performance can also stem from the
usage of legacy versions of such machine learning frameworks. Executing this second
major task of the pipeline on devices featuring hardware like a GPU or even dedicated
AI-hardware like TPUs (Google) or Neural Processing Unit (NPU) (Microsoft) do also
heavily contribute to performance gains. This stems from the fact that inference tasks are
parallelizable to a high degree and TPUs or NPUs are custom ASIC chip-designed from
the ground up for machine learning workloads. The aforementioned heterogeneity of the
underlying hardware infrastructure makes deployment, migration or offloading inference
based tasks or components increasingly complex. The third task involves potentially
multiple post-processing activities. Regarding the example of face-anonymization, this
would be the anonymization process of recognized face in a video frame, i.e., a graphic
overlay is drawn over the face in the image. Although it is well researched that making a

3https://developer.nvidia.com/nvidia-video-codec-sdk
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face unrecognizable in visual data does not fully guarantee the anonymity of a person,
it still facilitates such anonymization task to a high degree, mostly by making the
de-anonymization process significantly harder for an attacker. However, other typical
post-processing steps could include again transcoding or encoding tasks, sampling rate
conversions, resolution alterations, etc. to e.g., facilitate and optimize for streaming the
output video.
Another important aspect of a VAP is QoS. Due to hardware or software constraints of
the node executing (parts of) a VAP, the processing of data protection mechanisms of the
application may not keep up with a reasonable output video quality, i.e., the frames per
second (FPS) of the output video are far too low compared to the input video. Hence,
a person viewing the output video would experience a significant loss in QoS using the
application.

7.3 Background Information

In this section we provide background information that is needed to understand the
approach and additionally builds the foundation of our work. First, we will give a short
description on the term data protection from a legal perspective according to the GDPR.
Our approach is not limited to that kind of data only (i.e., personal data, as explained
later), but is rather capable of operating with any kind of sensitive data. Second, we give
a brief overview on previous work, i.e., the main components from RADAR [MKL+21],
which we extended, updated and enhanced for our approach. Third, we explain what
kind of adaptations are possible within our approach.

7.3.1 Data Protection

The term data protection is not very well defined from a global perspective. It is related
to information security but not the same. The ISO 27000:2018 standard describes
information security as the “preservation of confidentiality, integrity and availability of
information” [Int18]. Furthermore, it states that other information security aspects, such
as authenticity, accountability, non-repudiation, and reliability, should also be considered.
According to the GDPR, data protection mechanisms should prevent personal data
breaches [Gen16]. Personal data means “any information relating to an identified or
identifiable natural person”, e.g., name, address or location data. A personal data
breach means “a breach of security leading to the accidental or unlawful destruction, loss,
alteration, unauthorised disclosure of, or access to, personal data transmitted, stored or
otherwise processed”. Hence, data protection includes information security aspects such
as confidentiality or integrity concerning personal data. However, data protection goes
beyond information security, for example by defining specific roles as well as their rights
and obligations related to personal data. Our approach is able to handle the following
roles according to the GDPR:

• Data Subject: A data subject is “an identified or identifiable natural person . . .
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who can be identified . . . by reference to an identifier such as a name . . . or to
one or more factors specific to the . . . identity of that natural person”.

• Data Controller: A data controller “determines the purpose and means of the
processing of personal data”.

• Data Processor: A data processor “processes personal data on behalf of the data
controller”.

• Third Party: A third party is authorized to process personal data under the direct
authority of the controller or processor.

From a legal point of view, data protection must be ensured in an edge computing
system processing personal data. Therefore, several information security aspects need
to be taken into account when operating a system that processes sensitive data, hence
adhere to the GDPR. In order to model and operate such systems with RADAR, we
decided to enrich the basic approach with information security aspects from the Parkerian
Hexad [Par12]. The Parkerian Hexad adds three additional attributes to the traditional
security attributes of the CIA triad (confidentiality, integrity, availability). This enables
our updated approach to cover the following aspects of information security:

• Confidentiality

• Possession or Control

• Integrity

• Authenticity

• Availability

• Utility

7.3.2 Foundation of our approach

This work is based on the so called RADAR (Run-time Adaptations for DAta pRotec-
tion) approach presented in [MKL+21]. RADAR aims at ensuring data protection in
dynamically changing cloud-based systems and other related system concepts such as
edge or fog computing. RADAR is deployed as a central control unit that manages the
self-adaptive system. It is assumed that both monitoring of the system and execution of
adaptations in the system are carried out by the system itself or components between
the system and RADAR. The Eclipse Modelling Framework (EMF)4 combined with
Henshin5 is used to enable model-based runtime adaptations, specifically optimized
towards data protection. Details on the adaptation rules, their format and underlying

4https://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/henshin/
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Figure 7.2: Overview of the RADAR approach

RARAD Adaptation language can be found in [MKL+21]. As shown in Fig. 7.2, RADAR
consists of multiple components that are described now.

Meta-Model

RADAR includes a meta-model that defines the modelling constructs that can appear
in the run-time model, a language to specify problematic configuration patterns (Prob-
lematic Configuration Pattern (PCP)s), and adaptation rules to mitigate problematic
configurations. Thus, the meta-model ensures compatibility between the problematic
configuration patterns, adaptation rules, and the run-time model. Previous research
has shown that using established modelling languages from the area of security, such
as UMLsec or SysML-Sec, is not sufficient to model neither edge computing systems
nor data protection aspects related to edge computing systems [Lau21]. Therefore, an
independent framework is needed.

The meta-model is created by using the Eclipse Modelling Framework (EMF) and its
graphical editor. In general, the meta-model is similar to UML class diagrams. Nodes
are represented as classes, edges are represented as relations between classes. Properties
of nodes are represented as attributes and object-oriented concepts like inheritance are
supported. The meta-model extends the well established TOSCA standard, a modeling
language defined by the Organization for the Advancement of Structured Information
Standards (OASIS) 6. In the RADAR meta-model nodes can be any kind of entity of
a system, like a compute node or a GDPR role as described in section 7.3.1. From a

6https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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high level perspective, a compute node typically comprises various software components.
These components are also modeled as nodes. Which hardware and software components
belong to a certain type of compute node is modeled via relations.

Problematic Configuration Patterns

A PCP describes a pattern that exists in the run-time model if the system is in a
problematic state. A run-time model represents relevant aspects of the system and its
environment in the style of an Unified Modeling Language (UML) object model. It is
fully based on the meta-model and gets continuously updated by a system monitoring
component at run-time. PCPs are defined at design-time and specifically focus on
configurations that threaten data protection or QoS aspects of the system or lead to high
overall costs. By cost, we mean, for example, the cost of cloud rental that Infrastructure
as a Service (IaaS) providers incur. At run-time, instances of PCPs can be detected by
using RADARs pattern-based algorithms. The goal is to avoid as many PCP instances
inside of the run-time model as possible. To design PCPs a graphical modeling language,
called PCP Language, was created. Similar to the run-time model it is in the style
of UML object diagrams. To create PCPs the PCP Language is mapped to Henshin
transformation rules. Henshin also enables graphical modelling by providing a GUI tool.

Adaptations

Whenever the run-time model changes, an algorithm is checking whether instances of
PCPs can be found in that model (see problematic configuration identification in Fig.
7.2). If this is the case, RADAR uses adaptation rules to identify possible solutions
to mitigate the PCP instance (see Reconfiguration in Fig. 7.2). Adaptations rules are
created at design time. They are associated with the PCP that they should mitigate.
For each PCP multiple adaptations can exist. Each adaptation rule captures a potential
type of adaptation in a well-formed manner. An adaptation involves adding or removing
objects and relations as well as changing attribute values according to the specific rule.
Each adaptation rule is split into three parts, namely (i) a PCP and its instance that
have to exist in the run-time model, (ii) a precondition that adds further constraints
on the run-time model, and (iii) the adaptation action that describes changes to the
run-time model. A graphical Adaptation Language was defined to design adaptation
rules and was mapped to Henshin transformation rules as well.

If RADAR cannot find any PCP instances, it tries to detect improvement / optimization
adaptations that increase the amount of working functions (see Functionality analysis in
Fig. 7.2) and lower the overall costs (see Cost analysis in Fig. 7.2) without creating new
threats to data protection. After RADAR has found the optimal adaptation (in the best
case all PCPs are mitigated, the amount of available functions is at its highest and the
overall costs at their lowest) the adaptation will be executed on the system. However, a
predefined prioritisation defines whether the amount of available functions or the overall
costs are more important.
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It has to be noted that there may be multiple PCP instances in the run-time model,
there may be multiple adaptations to mitigate a given PCP instance, and an adaptation
to mitigate a PCP instance may also mitigate or create other PCP instances. Hence, a
sequence of adaptations may be needed to mitigate all PCP instances. In this sequence,
the order of adaptations may be important because an adaptation may become applicable
only after another adaptation was carried out.

In [LMD21] we investigated the adaptation space of AI-assisted data protection for
resource constrained VAPs. These findings build the foundation of the modeled adaptions
designed, implemented and evaluated in this work and described in the following sections.

7.4 Adaptation Engine Extensions

In this section, we describe the basic functionality of our proposed data protection focused
adaptation engine. Furthermore, we explain how the underlying concepts of previous
research were improved in order to tackle the challenges faced by an edge computing
based distributed VAP, as described in section 7.2.

The meta-model, as described in section 7.3, was neither able to tackle detailed infras-
tructural aspects of an edge computing based system, nor was it capable of modeling
fine-granular security and privacy controls that are vital for many systems, e.g., a Video
Analysis Pipeline, that need to adhere to some sort of data protection regulation such as
the GDPR. Moreover, it was not possible to consider additional metrics like energy con-
sumption or performance of a system while finding the optimal adaptation. In addition,
it was also not possible to change the order of the prioritization of such metrics while
solving data protection concerns in the first place. Therefore, we made several extensions
and enhancements to our previous work.

7.4.1 Conceptual extension

We started by developing conceptual extensions and enhancements of the RADAR meta-
model to address the gaps mentioned above. The extensions made to the meta-model
can be seen in Fig. 7.3. It has to be noted that this figure only shows newly added
classes and relations. A full representation of the meta-model in the style of an UML
class diagram can be found online7. In the following, the changes and newly added model
constructs are explained in detail.

Infrastructure and Application Aspects

To enable the modeling of infrastructural details we enhanced the RADAR meta-model
by adding new nodes, relations and attributes. Especially the concepts of the so called
“compute” and “software component” node were thoroughly revised. First, we now
employ inheritance to distinguish between different types of compute nodes based on

7See https://git.uni-due.de/fogprotect/vap-adaptation-engine
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Compute

jurisdiction: Jurisdictions = BE
compromised: EBoolean = false
costincurred: EBoolean = false
transferCostPerGB: EDouble = 0.0
capacity: EInt
usageCostPerDay: EDouble = 0.0

HardwareComponent

[0..*] comprises

[0..*] partOfCompute

CPU

clockSpeed: EDouble = 0.0
architecture: EString
coreCount: EInt = 0

GPU

clockSpeed: EDouble = 0.0
capacityInGB: EDouble = 0.0

HardDrive

capacityInGB: EDouble = 0.0

RAM

capacityInGB: EDouble = 0.0
frequency: EDouble = 0.0

AcceleratingComponent

applicationType: EString

CloudCompute

FogCompute

IoTDevice

PerformanceProfile

load: EDouble = 0.0
evaluationPeriodInSec: EInt

[0..*] hasPerformanceProfile

[0..1] belongsToHardwareComponent

EnergyProfile

maxLoadConsumptionWatt: EDouble 
avgLoadConsumptionWatt: EDouble 
idlLoadConsumptionWatt: EDouble 
evaluationPeriodInSec: EInt

[0..*] hardwareComponentProducesEnergyProfile

[0..1] producedByHardwareComponent

Application

[0..1] hostedByCompute

[0..*] hostsApplication

[0..*] applicationProducesEnergyProfile[0..1] producedByApplication

SoftwareComponent

neededCapacity: EInt

AIModel

version: EDouble = 0.0
sizeInMB: EDouble = 0.0
splittable: EBoolean = false
precisionInBit: EInt
category: AIModelCategory

QoSMetrics

avgFPS: EInt
evaluationPeriodInSec: EInt
avgAIAccuracyInPercent: EInt

[0..1] boundToSoftwareComponent

[0..*] hasQoSMetrics

[0..1] usedBySoftwareComponent

[0..*] usesAIModel

[0..*] optimizedBy

[0..*] acceleratesAIModel

[0..1] partOfApplication
[0..*] containsSoftwareComponent

Figure 7.3: The reworked and extended part of the RADAR meta-model

the three layers of edge computing architecture. The new types are called “IoTDevice”,
“FogCompute” and “CloudCompute”. This enables modeling more precise PCPs and
adaptation rules while also keeping the possibility to model generic compute nodes.

Second, each compute node can now comprise hardware components. This concept
enables modeling of detailed hardware information that may be relevant when the engine
is trying to identify PCP instances or trying to find the optimal adaptation, especially
with regards to performance and energy consumption variables as described in section
7.4.2. Again, inheritance is used to represent different types of hardware components,
namely “CPU”, “GPU”, “AcceeleratingComponent”, “HardDrive” and “RAM”. They
differ on the basis of certain attributes like e.g., “clockspeed” or “capacityInGB”.

Third, each hardware component may have a performance and energy profile assigned. We
introduced those profiles to the meta-model to allow energy consumption and performance
to be considered when running the adaptation algorithm. We assume that at runtime a
monitoring component provides the required information as average values for a selected
evaluation period.

Lastly, we also rethought the concept of software components. Prior to our changes,
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each compute node was able to host multiple software components. Now, we added a
node called “application” that is hosted by a compute node, and a software component
describes a dedicated part of an application, for example an API or a processing algorithm.
Therefore, software components take over specific tasks like communication. To represent
the communication between software components we are using the following chain of
nodes: software component - data flow (consisting of one or multiple data records) -
software component. Thus, an application does not replace a software component, it
rather comprises and clusters multiple software components. Additionally, an application
can also be linked to an energy profile, similar to hardware components, to e.g., identify
and handle the main drivers of total energy consumption of a node.

To store additional details that can be used to evaluate the overall performance of the
managed system when searching for adaptations, each software component is related to
the nodes called “QoSMetrics” and “AIModel”. Currently, QoS metrics only consider
metrics that are relevant for VAPs (average frames per second, average AI accuracy
in percentage). However, further metrics can easily be added when using the engine
in other environments. The AI model that may be used by a software component is
represented by a new node storing information like the precision, the AI-model category
(e.g. face detection or dedicated object detection) and whether the model is splittable
or not. Furthermore, an AI task, leveraging a specific AI-model, can be accelerated by
an accelerating hardware component, such as a GPU or TPU. An example run-time
model consisting of all newly added or reworked concepts can be found online in our git
repository. The run-time model is based on the use case described in section 7.2.1 and
will be discussed in detail in section 7.5.

Data Protection Aspects

We also extended the meta-model to enable modeling of security features. A security
feature represents the bridge between a data record that needs to be stored or transferred
in a secure way, and hardware or software components that are securing the data record.
Our model covers confidentiality, integrity, availability, possession control, authenticity
and utility as types of a security feature based on the Parkerian Hexad described in
section 7.3.

In addition, we enhanced the PCP language. Prior to our extensions, it was only possible
to check whether an attribute value is equal to a reference value that has to be defined at
design time. Now, PCPs can also check whether an attribute value is lesser or greater than
a reference value. This enables the coverage of specific VAP data protection aspects and
QoS metrics, such as meeting the minimum requirements of FPS or AI model accuracy.
The changes made to the PCP language and the mapping to the Henshin language are
shown in Fig. 7.4 and are highlighted in green. It can be seen that a Henshin condition
has to be used to compare an attribute to a given value.

Furthermore, reference values can now be changed at runtime which allows reacting to
changing expectations from the environment. For example, additional software could
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PCP Language 
Notation

Explanation Henshin Notation

Object that has 
to exist to create 
a match

attribute == 
value

Value that an 
attribute must 
have to create a 
match

<<preserve>> 
attribute = value

attribute != 
value

Value that an 
attribute must 
not have to 
create a match

<<forbid>> 
attribute = value

attribute > 
value

attribute < 
value

Attribute has to
be bigger / 
smaller than a 
given value to 
create a match

Relation that has 
to exist to create 
a match

Relation that 
must not exist to 
create a match

relation name

:Object <<preserve>>
:Object

<<preserve>>

relation name

<<forbid>>

relation name

<<does not exist>>

relation name

<<preserve>>

:Object

attribute=attributeValue

=>RuleConditionRule(var attributeValue:EInt)

attributeValue>24

?ConditionconditionName

Figure 7.4: Extensions to the PCP language and mapping to Henshin

be used to calculate a minimum FPS value that needs to be met by an object blurring
software component to ensure that data protection and QoS requirements are fulfilled.

7.4.2 Algorithmic Improvements

The main goal of each adaptation is to ensure adequate data protection. However, as
stated in section 7.3 multiple solutions to mitigate data protection risks and therefore
ensuring data protection may exist. These adaptations may have a different impact on
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metrics such as energy consumption, performance, costs, and available functionality. In
order to adapt the system in the best possible way, it is therefore necessary to include
both data protection and above-mentioned metrics in the adaptation planning algorithm.
However, because protecting personal data is a priority, it is not possible to balance data
protection and system metrics. By improving the algorithms of RADAR, we enable the
evaluation of further metrics, namely energy consumption and performance. Additionally,
we reworked the way available functions and total costs are calculated for a run-time
model or proposed adaptation model. Lastly, the order of the metrics is no longer
predefined but dynamically changeable at runtime by exposing a dedicated API.

First, functionalities can now be modeled similar to PCPs by using the same notation
as the PCP language and the same modeling tool provided by Henshin. Therefore, a
functionality can, for example, be modeled by a system architect who defines what a
functionality in the given system represents. Therefore, a functionality is now represented
as a sub-graph and will be identified by using graph-pattern-matching. The amount of
available functions can be understood as a QoS metric. The overall goal is to opt for
a high amount of available functions. It should be noted that the calculation of the
amount of available functions, costs, energy consumption and performance follows a
global approach. A run-time model may consist of context nodes that are not part of
the managed system and thus should not be considered when calculating global values.
Hence, we are only considering values to be part of the calculation if they are part of a
functionality instance that was found by our graph-pattern-matching algorithm.

Second, by using the information from the newly added nodes “EnergyProfile”, “Perfor-
manceProfile”, “AIModel” and “QoSMetrics” it is now possible to calculate the total
energy consumption and the performance value of a model. To calculate total energy
consumption, all EnergyProfile nodes that are part of a functionality instance are consid-
ered. The average load consumption in Watt of each energy profile is used to calculate
the overall sum. To calculate a performance value, we are using an equation that results
in a numeric value. It combines different attribute values that use different scales like
FPS (natural numbers) or AI model accuracy (percentage). Therefore, those different
attribute values need to be normalized first. However, considering FPS as an example,
a linear transformation to normalize values between 0 FPS and 60 FPS would not be
feasible and accurate in order to compare two nodes. For the human eye every video
with a frame rate around 24 FPS is perceived as fluid. Differences in frame rates above
24 FPS are significantly harder to notice, than the differences below that value. In
terms of QoS a human may not see the difference between 50 and 60 FPS. However, the
perceived difference between 14 and 24 FPS is significant. Internally our engine expects
such metrics as scalar values between 0 and 1 to combine them with other performance
related metrics to calculate an overall performance value. Therefore, we used a logistic
function to normalize the FPS value where the slope grows steep for values between 0
and 24, but flattens out for values above 24. Equation 7.1 represents the mathematical
notation of the logistic function.

To calculate the global performance value, we first identify all QoSMetric objects and

97



7. A Data Protection Focused Adaptation Engine for Distributed Video
Analytics Pipelines

AIModel objects that are in relation to a software component that is part of an identified
function. Second, we normalize the FPS value stored in the QoSMetrics objects. After-
wards, the normalized FPS value and the percentage value of the AI model accuracy
are summed up in a distribution of α = 50% as shown in Equation 7.2. However, our
approach can be extended to use any kind of function that is appropriate for a specific QoS
metric, as long as the output values are between 0 and 1. The newly added performance
metric has been added to Equation 7.2 and α needs to be adjusted to achieve the desired
weighting for overall QoS.

f(x) = ( (a− b)
(1 + e−c∗(x−d))))

+ b) = A (7.1)

and
P = A ∗ α + B ∗ (1− α) (7.2)

where:

a = the curve’s top asymptote value
b = the curve’s bottom asymptote value
c = the logistic growth rate of the curve
d = the x value of the sigmoid’s midpoint
x = input FPS value
A = normalized FPS
B = AI model accuracy in percent
P = performance value
α = performance metric weight

Algorithm 7.1 shows the model analysis algorithm. The algorithm is given a model M
as an input to perform the model analysis (line 1). At first, two empty sets to store
the PCPs and available functionalities found in M are created (line 2-3). Afterwards,
placeholders to store the global numeric cost, energy consumption and performance value
are created (line 4-6). By using graph-pattern matching, the engine is searching for
PCP instances in M using a set of all PCPs designed at design time. Whenever a PCP
instance is found, it is stored in PCPM (line 7-12). The same procedure is used to identify
instances of predefined functionality patterns. Whenever an available functionality is
found, it is stored in FM . By using the functionality instance costs, energy consumption,
and performance are calculated and the result is added to the global placeholders CM ,
EM , PM . (line 13-21). Finally, the PCP instances (PCPM ), the functionality instances
(FM ), and the calculated system metrics are stored in M (line 22-24).

To determine whether a possible adaptation is better than another, we are comparing
models. As stated in Section 7.3, the engine is searching for the best possible system
configuration by evaluating sequences of adaptations that are reachable from the current
run-time model. To do so, a search tree is constructed. A child node represents the run-
time model obtained from the run-time model of the parent node through an adaptation.
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Algorithm 7.1: Model analysis algorithm
1 Input: M ; // model to be analysed
2 PCPM ← {} ; // set of PCP instances in M
3 FM ← {} ; // set of available functions in M
4 CM ← 0 ; // global costs of M
5 EM ← 0 ; // global energy consumption of M
6 PM ← 0 ; // global performance value of M
7 PCPA ← getPCPs() ; // set of all designed PCPs
8 foreach pcp ∈ PCPA do
9 if pcp exists in M then

10 add pcp to PCPM

11 end
12 end
13 FA ← getFunctions() ; // set of all designed functions
14 foreach f ∈ FA do
15 if f exists in M then
16 add f to FM

17 CM += calcCosts(M , f)
18 EM += calcEnergyConsumption(M , f)
19 PM += calcPerformance(M , f)
20 end
21 end
22 M .setPCPs(PCPM )
23 M .setFunctions(FM )
24 M .setMetrics(PCPM .length, FM .length, CM , EM , PM )

The search tree is built up during the search, by iteratively adding unexplored child
nodes to the nodes already visited. An evaluation of different strategies has shown that
a best-first search approach leads to the best results [MKL+21]. The model comparison
takes the prioritization of the comparison metrics into account. By using an API, a
human operator can decide which metric should be used first to optimize the VAP after
ensuring adequate data protection.

Algorithm 7.2 explains how the best model is determined. First, the algorithm keeps
track of the best solution and the path from the root node to the respective solution
(line 1-2). Moreover, the current prioritization order of the metrics list is queried (line
3). As long as unexplored nodes exist (set of nodes S is not empty, starting with the
current run-time model MRT, line 4-5), the algorithm is searching for the best node.
While evaluating nodes from S, a selected node M out of S is first analyzed with regard
to the amount of PCP instances, the amount of available functions, the overall energy
consumption, the overall performance value and the total costs (line 6-7). Afterwards, M
is compared to the actual best node by comparing both models. Whenever two models
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Algorithm 7.2: Model comparison algorithm
1 best ← NULL ; // best solution found so far
2 bestPath ← NULL ; // path from root to best solution
3 ML ← getListOfMetrics() ; // sorted list of metrics
4 S ← {MRT} ; // set of nodes that are being explored
5 while S ̸= ∅ do
6 M ← selectNode(S);
7 AnalyzeModel(M);
8 i← 0;
9 CM ← ML(i) ; // comparison metric from ML

10 while CM ̸= ∅ do
11 CompareModels(M ,best,CM);
12 if M is better than best in regard to CM then
13 best ←M ;
14 bestPath ← path from MRT to M ;
15 break
16 end
17 if M is worse than best in regard to CM then
18 break
19 end
20 i++ ; // M and best are equal in regard to CM

21 end
22 T ← generateChildren(M);
23 S ← S \ {M} ∪ T ;
24 if termination criterion then
25 break
26 end
27 end
28 return bestPath

are compared, the algorithm picks a metric in a defined order from the list of metrics (line
8-9). As long as there are further comparison metrics (line 10), the selected comparison
metric is used to compare M to the best solution (line 11). If the calculated values for a
metric are equal the next metric is used for comparison, otherwise M is either better or
worse than the best solution (line 12-21). If M is better than the best solution in regard
to a specific comparison metric, the best solution is replaced by M , the path to the best
solution is stored, and the comparison ends (line 12-16). The comparison also ends if M
is worse than the best solution (line 17-19). It is important to state that the amount of
PCP instances will always be the first metric that will be used for comparison (line 9).
In the end it should be possible to state which of the two models is optimal. After the
current node has been evaluated, it is removed from S and the children of the node are
added to S instead (line 22-23). To avoid an endless search in the potentially unbounded
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space of possible solutions, the search is aborted when a predefined termination criterion
is met (lines 24-26). Such a termination criterion could be for instance a maximum
allowed time budget for the execution of the algorithm. Finally, the algorithm returns
the adaptation sequence leading to the best found solution (line 28), which should then
get executed in the real system.

As already stated, the algorithm is capable of using different prioritization orders for
the list of comparison metrics. The order of the metrics can be changed at runtime by
using an API while the engine keeps the amount of PCP instances (i.e., threats to data
protection) always as the metric with the highest priority to optimize towards.

7.4.3 Summary

To summarize, we highlight the most important additions and upgrades to RADAR in
order to fulfill the needs of a data protection focused edge computing system, particularly
for a distributed AI-assisted VAP:

• Added security and privacy features to the meta-model according to the Parkerian
Hexad model.

• Added machine learning entities to the meta-model to enable the modeling of
AI-based systems.

• Enhanced the meta-model to allow for fine grained modeling of infrastructural
aspects of a system.

• Added energy consumption and performance as part of optimization goals.

• PCPs can now handle set operators, thereby enabling the algorithm to dynamically
compare either monitoring variables or static variables. This is for example needed
to enable software compatibility or version checks.

• The adaptation algorithm is now able to change the prioritization of different
metrics namely costs, QoS (available functions), energy consumption, performance,
while always aiming for the lowest amount of PCP instances.

7.5 Evaluation

In this section we demonstrate how the engine behaves with different configurations
and correctly solves PCPs, based on a simplified example implementation of the traffic
monitoring use case as described in Section 7.2. The runtime behavior of RADAR has
been evaluated in previous work [MKL+21]. Additional information on the evaluation of
the pattern-matching algorithm can be found on the Henshin website8.

8https://www.eclipse.org/henshin/publications.php
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Figure 7.5: Descriptive problem representation of the traffic monitoring use case model

7.5.1 Evaluation of the considered Use Case

In order to evaluate our approach we modeled a system configuration comprising five
heterogeneous compute nodes and defined a scenario typical for the considered traffic
monitoring use case. The system configuration can be seen as a part of the traffic
monitoring system, e.g., a large crossing with five smart lampposts. Initially, the system
is configured so that low energy consumption is prioritized. As long as only trusted
actors access the monitoring component, an unanonymized video is transferred.

Fig. 7.5 displays a descriptive simplified model representation that reflects our considered
system configuration and use case scenario. It can be seen that the different edge nodes
differ in their video processing performance (frames per second), their AI model accuracy
(object detection accuracy in per cent), their average energy consumption (in watt),
and their security features (trusted / untrusted). The nodes model real world edge
computing nodes, highlighted by their factory naming, e.g., a RaspberryPi 4B, and their
respective capabilities. Solid lines represent the initial situation. Dotted lines represent
possible offloading solutions that are not taken into account due to data protection and
optimization reasons. Dashed lines represent possible offloading solutions depending on
the prioritization of performance vs. energy consumption. In the following, the different
scenarios are described in detail.

In the use case scenario, we handle a request from an untrusted user wanting to access
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Figure 7.6: Adaptation rule that activates video anonymization

video data that is recorded by a smart lamppost. This actor is only allowed to access
anonymized video data. The access of the untrusted actor is detected by our engine as
a PCP instance, highlighted in Fig. 7.5 with a thunderbolt. Therefore, the goal is to
mitigate this PCP instance while maintaining low energy consumption. As described in
section 7.4, the algorithm combines several possible adaptations and compares different
system configurations.

The best solutions consist of two adaptations that need to be both carried out subsequently.
First, an anonymization software component needs to be activated, and a data flow
transferring video data with blurred faces and number plates needs to replace the data
flow transferring the unanonymized video. The associated adaptation rule modeled with
Henshin is shown in Fig. 7.6. Concretely, it shows that whenever a personal record is
transferred via a data flow to a software component that is controlled by an untrusted
data controller (precondition), the particular data flow is removed and a new data flow
transferring a new non-personal video from a software component called “Anonymization”
to the software component used to access the video is created (adaptation action).
The corresponding PCP is not represented separately because it is already part of the
adaptation rule as its precondition.

It has to be noted that another solution would be to adapt the system in a way in which
the video stream would be stopped. However, this adaptation implies a drastic decrease
in available functionality and should therefore only be used as a last resort.

In this particular use case, the adaptation that activates video anonymization is the best
choice. However, another PCP instance is created when enabling video anonymization
at Node1 because Node1 is not capable of processing the video fast enough (output
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Figure 7.7: Adaptation rule that reallocates data flows

video FPS < 25) to ensure QoS at an acceptable level. Hence, a second adaptation
that offloads the video processing from Node1 to another node has to be carried out.
Fig. 7.7 shows the corresponding adaptation rule. Again, the PCP instance is already
part of the adaptation rule as its precondition: Whenever the avgFPS of an QoSMetrics
object is below 25 and a software component called “Anonymization” is transferring
video data to another software component that is not part of the same application a
PCP instance exists. In this case, the adaptation rule stipulates the following adaptation
action: reallocate all existing data flows, starting at an IoT device and ending at software
components that are not part of the edge nodes application. When reallocating, switch
from each software components used before to software components that have the same
name and are hosted on another edge nodes application.

Four different system configurations have to be compared by the engines’ algorithm, each
related to one of the four existing nodes shown in Fig. 7.5. All four nodes are capable
of processing the video adequately, allowing for an continuous video anonymization.
However, in this particular use case only Node3 and Node4 are reasonable possibilities
because an offloading to these nodes mitigates all PCP instances and optimizes the
system configuration based on the desired metric prioritization.

When prioritizing optimal energy consumption, Node2 should be selected due to its low
energy consumption. However, the algorithm always considers data protection the top
most priority before optimizing the system configuration towards a QoS goal. Reallocating
the video processing from Node1 to Node2 leads to a new PCP instance because Node2
is untrusted. Therefore, Node2 is not taken into consideration when comparing possible
system configurations in terms of improving the system configuration.

A reallocation to Node3, Node4, or Node5 does not lead to a new PCP instance. When
comparing the remaining possible system configuration options in terms of energy con-
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Figure 7.8: Adaptation rule that deactivates video anonymization

sumption, Node3 represents the best choice. Therefore, both adaptations –activating
object blurring and reallocating the video processing– are carried out at once to enable
video access to an untrusted actor. This is represented by the dashed line from Node1 to
Node3 and from Node3 to the Monitoring Component in Fig. 7.5.

When changing the prioritization from low energy consumption first to high performance
first, our engine detects a possible improvement adaptation by comparing different system
configurations that are created by using the adaptation rule described in Fig. 7.7. Three
out of four possible system configuration changes lead to newly arising PCP instances or
worse performance. Only the reallocation of the video processing to Node4 does improve
the overall system performance because Node4 can process the video with the highest
amount of FPS combined with a high AI model accuracy. Therefore, this adaptation
is carried out. The dashed line from Node4 to the Monitoring Component in Fig. 7.5
shows this scenario.

Should the untrusted actor quit accessing to the monitoring component, object blurring
is not longer needed. The engine detects a possible improvement and uses the adaptation
rule shown in Fig. 7.8 to change the system configuration accordingly. The respective rule
does the opposite of the rule shown in Fig. 7.6, i.e., removing the data flow transferring
an anonymized video record and reactivating a data flow transferring an unanonymized
video record. Depending on the selected prioritization order, the video processing remains
at node4 (highest performance) or an adaptation based on the adaptation rule shown in
Fig. 7.7 (lowest energy consumption when no object blurring is needed) is carried out,
reallocating the video processing to Node1.

In Fig. 7.9 the impact of the selected adaptations is shown. S1 represents the initial
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Figure 7.9: Changes in the metric values after the described adaptations

situation where video blurring is deactivated and energy consumption is prioritized.
The VAP system consumes a low amount of energy while the performance is sufficient.
S2 represents the system metric values after video blurring was activated. Due to
offloading video processing from Node1 to Node3, an increase in performance and energy
consumption can be seen. However, due to the activation of video blurring, the amount of
available functionality has decreased, because seeing an unanonymized video was designed
as part of a functionality pattern. After changing the prioritization from low energy
consumption first to high performance first, both performance and energy consumption
increase substantially. This is due to the migration from Node3 to Node4. Node4 does
support video processing and AI-Task offloading to a dedicated video card, which affects
both performance and energy consumption. The system metrics in this situation are
represented by S3. When video blurring is no longer needed and therefore deactivated, the
amount of available functions increases (see S4) again. If, in addition, the prioritization
is changed back to low energy consumption first, then the original situation S1 is adopted
due to the migration from Node4 to Node1.

A detailed version of all described scenario steps in the style of a graphical run-time
model (similar to an UML object diagram) as well as graphical representations of PCPs
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and adaptation rules can be found online9. Moreover, the code base and an instruction
how to run this example use case are included there.

7.6 Related Work
Broadly speaking, the mitigation of threats to data protection of a system is a two-
dimensional problem. First, a mitigation concept comprises either design-time activities
or run-time activities or a combination of both. Second, it is typically specific to the
system domain and underlying infrastructure. Research dealing with risk analysis, e.g.,
[PMM18, AHF+15, PHMN16, Lau21], as a design time activity is related to our work, i.e.,
it would be needed to identify and model PCPs (and how to resolve them) as suggested
by our approach. Our approach is agnostic to a specific risk analysis approach, therefore
it could be seen as complementary research. However, research that aims to mitigate
data protection threats via run-time adaptations is closer related to our approach.

A generic approach was proposed by Bürger et al., which handles Essential Security
Requirements. This is achieved by triggering Security Maintenance Rules if changes
in the Security Context Knowledge are detected [BSG+18, BGR+15]. Another generic
mechanism by Tsigkanos et al. describes a model checking approach to analyze threats and
plan adaptations to mitigate those [TPGN16]. They use bigraphs to model the topology
and security requirements of the system. Their approach takes a lot of execution time,
while our approach builds upon RADAR, which we could show is well performing even with
larger system models. Additionally, both of the above mentioned proposed adaptation
mechanisms focus solely on the mitigation of data protection threats, but do not take
other parameters into account, such as QoS, performance or energy consumption. We
identified several other papers related to our work that take such parameters into account.
[GGAM+16, GGDM+18, KPIM19] take into account various types of costs, response time
and/or performance. However, they mostly focus on specific mitigation strategies and/or
approaches dedicated to specific attack vectors. For example, Nostro et al. solely deal with
attacks performed by insiders and how to prevent those[NCBB14]. Nguyen et al. proposed
a mitigation strategy that only involves migration of virtual machines[NSD18]. Our
proposed solution is able to process arbitrarily complex adaptations that are optimized
to also provide the desired QoS, performance and energy consumption.

In the context of privacy in video-based media spaces, Boyle et al. [BNG09] proposed
a framework – a descriptive theory – that defines how one can think of privacy while
analyzing media spaces and their expected or actual use. The framework explains three
normative controls: solitude, confidentiality and autonomy, yielding a vocabulary related
to the subtle meaning of privacy. A more technical introduction to video surveillance is
given by Senior in [Sen09]. The paper briefly summarizes the elements in an automatic
video surveillance system, including architectures, followed by the steps in video analysis,
from pre-processing to object detection, tracking, classification and behavior analysis.
In [UAT+19], the authors introduce a video analytics framework to process real-time

9See https://git.uni-due.de/fogprotect/vap-adaptation-engine
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video streams and also do batch video analytics. However, they focus on the performance
aspect of a distributed VAP, in terms of scalability, effectiveness and fault-tolerance,
leaving data protection out of scope. Sada et al. proposed an edge computing based video
analytics architecture [SBM+19]. Their solution leverages federated learning strategies
in order to reduce the computational load of cloud infrastructure. Additionally, their
training data remains on the edge servers, thereby increasing privacy. In contrast to
our proposed solution, their approach incorporates federated learning, while we focus
on local execution of AI-based tasks and protecting data agnostic to specific security
and privacy mechanisms. Furthermore, we focus on the heterogeneity aspect in edge
computing based VAPs, and the adaptation aspect of the system, hence increasing the
flexibility and applicability of our approach.

Our proposed solution is specifically tailored to meet the requirements of a self-adaptive
data protection aware VAP. Hence, we also identified research in the domain of self-
adaptive (distributed) AI-assisted VAPs. As stated in section 7.2, the inference tasks of
an AI-assisted VAP is computationally expensive. Hence, as well as in other domains
than VAPs, many authors propose offloading those computationally expensive tasks
to the cloud. However, executing inference in the cloud, especially for real-time video
analysis, often incurs high bandwidth consumption, high latency, reliability issues, and
privacy concerns. Therefore, many researchers follow the edge computing paradigm, i.e.,
processing data closer to the data source. For example Liu et al. proposed EdgeEye, which
enables developers to transform models trained with popular deep learning frameworks
to deployable components with minimal effort [LQB18]. In [JAB+18], they introduced a
controller that dynamically picks the best configurations for existing Neural-Network-
based Video Analytics Pipeline. Their aim is to achieve higher accuracy with the same
amount of resources, or achieve the same accuracy but utilizing less of the available
resources. Zhang et al. propose a flexible serverless-based approach to facilitate fine-
grained and adaptive partitioning of cloud-edge workloads for multiple concurrent video
query pipelines. Their goal is to achieve real-time responses given a highly dynamic
input workload. In contrast to our approach, those papers focus solely on improving one
specific performance aspect (either accuracy or latency) of an AI-assisted VAP.

To summarize, to the best of our knowledge there is no approach in literature that allows
for data protection focused run-time adaptations in the domain of AI-assisted Video
Analytics Pipelines, that also takes performance, QoS and energy consumption into
account.

7.7 Summary

Operating a distributed VAP comes with many associated challenges. Adhering to data
protection regulations, dealing with changes in computational load, targeting low energy
consumption or facing a heterogeneous hardware and software environment are prominent
examples of those challenges. In order to provide an adequate QoS and comply to data
protection policies, a VAP has to react and adapt to face those challenges. While there
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is state of the art literature dealing with either performance or data protection related
adaptations, most of them solely focus on increasing certain security or privacy aspects
of a system, leaving previously mentioned performance characteristics out of scope or the
other way round. To the best of our knowledge, there is no solution that covers data
protection, computational performance and energy consumption aspects.

In this chapter, we presented a data protection focused adaptation engine that leverages
the application- and infrastructure based adaptation space of a distributed VAP. The
engine employs a system model and adaptation rules that are based on previous research.
The model was specifically extended and enhanced to meet the requirements of AI-assisted
VAPs at the Edge. Furthermore, the engine features an optimization algorithm to improve
performance, energy consumption and data protection of a distributed VAP and its
functionalities. Using a traffic monitoring use case as running example, we demonstrated
how the engine behaves with different configurations and correctly solves problematic
configurations during design- and runtime.

In previous work, scalability experiments have shown that the engine is capable of
handling models with up to 200 nodes in a given time frame of 10 seconds [MKL+21].
In our considered use case scenario the engine is not limited by the size of the run-time
model. Thus, the engine is capable of always finding the best solution in minimal time.
To test how long it takes for the engine to determine the best solution in this kind of
scenario we measured the time between the change of the run-time model using the
monitoring API until the engine found the best solution. The tests were executed on a
typical edge node equipped with an Intel Core i5-4690K processor with 3.5GHz clock
frequency and with 16 GB DDR3 memory. The node was running the Windows 10 OS
and JDK14.0.1 as the Java environment. After hundred rounds of testing, an average
evaluation time of round about 1.4 seconds was measured. It should be mentioned that
this measured time does not equal the interval between a real world system change
causing a PCP instance and the final system change caused by the call to execute the
optimal adaptation by our engine. We tested our engine independent from the managed
self-adaptive system, as this system could be a limiting factor that we cannot influence.

Thus, our solution is mainly limited by monitoring and adaptation execution capabilities
of the self-adaptive system. On the one hand, the possible frequency of monitoring reports
as well as the quality and level of detail of the monitoring reports will influence our
proposed approach. For example, if details are missing, our engine may not detect a PCP
instance or possible adaptation. If the report frequency is too low, it takes longer for a
PCP instance to be detected and thus until the self-adaptive systems system configuration
is adapted. Furthermore, the adaptation execution capabilities of the self-adaptive system
may limit our approach because only supported system adaptations can be taken into
account when then engine is searching for adaptations. Moreover, an adaptation selected
for execution may not be carried out successfully. In this case, our engine can only try to
carry out the proposed adaptation again or try to carry out the next best adaptation.

Our evaluation has shown that the adaptation engine is capable of solving data protection
risks in a Video Analysis Pipeline while also finding the optimal system configuration
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regarding global energy consumption, system performance and available functionalities.
However, our approach is not limited to VAPs. Systems that face similar challenges,
such as surveillance applications, can also implement our meta-model, PCP language,
and adaptation language. If extensions to the meta-model are needed, this changes do
not affect existing run-time models, PCPs, or adaptations. Therefore, our approach
is transferable to many edge systems dealing with data protection and optimization
problems at runtime. Additionally, our previous research [MKL+21] has shown that
data protection risks related to location and jurisdiction restrictions are also covered by
our approach. Therefore, the range of different data protection problems this approach
can handle is not limited to the content of the data but also handles geospatial or
environmental constraints, such as data locality requirements.
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CHAPTER 8
Conclusion and Future Work

This chapter concludes the thesis and provides an outlook on future work. Concretely,
Section 8.1 summarizes the main scientific contributions made throughout this thesis
to the urban sensing domain. Section 8.2 revisits the research questions formulated in
the beginning of the thesis and explains how those questions were addressed. Lastly,
Section 8.3 discusses the limitations of our findings and provides a detailed outlook how
each of the concepts and mechanisms presented in this theses will be further improved or
enhanced.

8.1 Summary of Contributions

Urban sensing comprises multiple domains, such as public surveillance, environment moni-
toring, smart health, crowd sourcing/sensing, smart buildings and many more. Stemming
from those domains, challenges to data protection are a major concern, as the various
services offered by an urban sensing application often process sensitive data such as
personally identifiable information or environmental parameters needed to guarantee the
smooth operation of the service. Tackling those challenges becomes inherently important
as the majority of urban sensing applications incorporate resource constrained devices
operating at the edge of the network. These constraints often hinder system designers
and developers to adequately comply to security and privacy regulations, such as the
GDPR. The concept of self-adaptation can be seen as a potent enabler to tackle those
challenges. In this thesis, we exploit the adaptation space to improve and enhance data
protection in resource constrained urban sensing environments.
The scope and constraints of adaptations performed in a system typically stem from
policies. Hence, we first present a system model that builds the foundation of an adaptive
urban sensing system that has to adhere to some form of data protection regulation.
The model focuses on data protection aspects, such as fine grained access control, and
supports the definition of privacy policies and how to enact them inside the system.
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As part of our privacy model, we define privacy levels to incorporate a finer formal
description granularity. Furthermore, it leverages the context of data to make decisions
about how these data need to be processed and managed to achieve an adequate level
of data protection. We thereby enable flexibility in implementation, and aid system
architects or developers in designing and building decentralized urban sensing systems
that can make use of privacy-sensitive data, while complying to complex privacy policies
of a given domain. Compared to existing approaches, which are mostly tailored to a
specific use case or domain [XSSC06, KAB09, CRJS13, Klo17], our model focuses on
context-awareness and corresponding actions edge devices have to take. We demonstrate
our approach based on a scenario from the Smart Health domain, where privacy is
considered a critical requirement.
Second, we need to get a better understanding on the main drivers and limitations of
the adaptation space for data protection in urban sensing systems. With respect to the
previously mentioned infrastructural characteristics of such systems, those drivers and
limitations typically correspond to performance and energy consumption and how those
two aspects impact data protection. Therefore, we evaluated several data protection
mechanisms by measuring their performance and energy consumption on representative
low tier edge devices. The evaluated data protection mechanism include cryptographic
block and stream ciphers, secure hashing algorithms, digital signature algorithms and
algorithms needed for key exchange protocols. Our measurements provide results that
can aid the design and development of secure urban sensing systems, incorporating
resource constrained devices, thus facilitating an appropriate design of privacy policies
and respective adaptation space. In particular this becomes relevant for adaptive systems,
e.g., edge nodes running an risk-assessment engine which needs the end devices (i.e.,
our resource constrained IoT devices) to be flexible concerning data protection methods.
The recently emerged tinyML paradigm would be a concrete example that could benefit
from such adaptation mechanisms, with its applications in the domains of agriculture,
healthcare or smart manufacturing.
Third, based on those measurements, we implemented ORIOT, a Source Location Privacy
(SLP) System for resource constrained devices, specifically micro controllers. SLP is a
problem, commonly found in the environment monitoring domain, where the origin of
sensed data needs to be protected or undisclosed to certain parties. Well established
SLP mechanisms, such as TOR, perform poorly or not at all on such MCUs, hence a
system in need of SLP has to be adapted to overcome those constraints. Our performance
measurements, show the feasibility of integrating ORIOT into existing or planned urban
sensing systems. Similar to Tor, it leverages techniques of the onion routing principle.
Compared to other approaches, our system does not rely on heavy cryptographic algo-
rithms to provide anonymity. On the other hand, ORIOT avoids network broadcasting
strategies as used by different proposed SLP systems. By setting a specific path length
for our message transfer, a well balanced trade-off between network load and SLP level is
achieved.
ORIOT is applicable to applications that need to ensure source location privacy. A
well-known example in literature is the Panda-Hunter Game, where a WSN is deployed
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in a forest to monitor pandas. Hunters take the role of an adversary, trying to capture
the panda. The goal is to prevent the hunter from locating the source, i.e., the sensor
attached to a specific panda. Fourth, we investigated data protection concerns, and how
to address them, in the domain of public surveillance. Specifically, we are interested
in Video Analysis Pipelines and the challenges to data protection such systems are
confronted with, i.e., leakage of PII from recorded and transmitted video data. Arguably,
not transferring video data at all provides a major benefit in terms of protecting PII.
However, many systems in this domain need to aggregate or process the information
contained in the video data at some central location, e.g., in the cloud, in order to
provide some added value in the form of services or to enhance an application. Hence,
we proposed a privacy preserving system for AI-assisted video analytics that extracts
relevant information from video data and governs the secure access to that information.
It features a decoupling architecture that effectively hinders applications from directly
accessing the underlying video feed, and instead allows them to advertise what type
of information they require. Our system then extracts the information using existing
AI-based video processing techniques, ensures that privacy preferences are met, and
facilitates the secure access to the extracted information for both real-time and batch
applications. A ciphertext (i.e., the encrypted information extracted from video data) is
labeled with certain attributes, which only allows applications with a matching private
key (i.e., the attributes corresponding to the labels of the ciphertext are encoded in
the key) to decrypt and access the data. A KP-ABE security scheme ensures that only
authorized parties have access to this extracted information. To allow for a more fine
grained access control, security policies determine which application is able to decrypt
specific subsets of the encrypted extracted data. The policies are stored and managed
at a dedicated policy database, located at the edge or in the cloud. Furthermore, it
is responsible for issuing keys to an application, as well as notifying applications if a
key’s attributes change. Hence, a seamless fine-grained management of access control
for any application without the need of a re-deployment can be achieved by adapting
those policies at run-time. We demonstrate the feasibility of our approach by evaluating
a face detection application, deployed on typical edge computing infrastructure. Such
an application may be part of any public surveillance system in a e.g., smart city. A
concrete example would be traffic monitoring where several parties may not necessarily
need to store (raw or compressed) video feed, neither must they have access at any
time to (live) video data containing PII. However, there are applications that still rely
on transmitting video data where our system may not be feasible. Hence, we further
explored the adaptation space of AI-assisted data protection for a VAP operating at
the edge. We identified factors that can be adapted in AI-assisted data protection for
video analytics using the example of a face blurring pipeline. We measured the impact
of these factors using a heterogeneous edge computing hardware testbed. The results
showed a large and complex adaptation space, with varied impacts on data protection,
performance, and accuracy. Our work thus paves the way towards effective adaptation
algorithms for AI-assisted privacy-preserving video analytics at the edge.
Lastly, to actually exploit the application- and infrastructure based adaptation space of
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AI-assisted data protection in AI-assisted video analytics, we developed a data protection
focused adaptation engine for distributed VAPs. It employs an extended system model
and adaptation rules to meet the requirements of AI-assisted VAPs at the Edge. Further-
more, it features an optimization algorithm to improve performance, energy consumption
and data protection of a distributed VAP and its functionalities.
Additionally, it opts to find the most suitable system configuration based on an operators
preferences regarding performance, energy consumption, and available functionalities
(QoS). Using a traffic monitoring use case as running example, we demonstrated how the
engine behaves with different configurations and correctly solves problematic configura-
tions during design- and runtime.
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8.2 Research Questions Revisited
In the beginning of this thesis, the following research questions were formulated:

(RQ1) How can edge computing based data protection policies be formulated and processed
in order to build the foundation for an adaptive urban sensing application?
In chapter 2 we addressed this question by proposing a novel model that supports the
definition and enactment of privacy policies based on context-aware edge computing.
Defining a consistent model enables a coherent definition of policies that ensure
privacy of data, also handling data locality. Our privacy model combines and
correlates certain levels of privacy (e.g., visibility constraints on specific data sets)
with a given context. The determination of a specific context is best handled closest
to the according environment. Therefore, edge computing is well suited for this task,
where every edge device is exposed to a certain and specific context. To achieve a
higher degree of flexibility in implementing privacy policies we propose a context-
aware decision making process to dynamically adapt to changing environment
situations at the edge. Context in computer science can be interpreted in many
different ways. In the focus of this chapter, we use the term context as environmental
information recognizable by edge devices. This could be information about the
network and its topology, connected devices, spatial information, proximity, location
or time. We argue that a context-aware system is then able to adequately interpret
changes in the environment and react to them in a predefined manner.

(RQ2) What parameters need to be evaluated and considered for data protection focused
adaptation strategies and how can those be applied in low tier resource constrained
urban sensing environments?
We addressed the first part of this question in chapter 3. Regarding the second part
of the question, we developed an adapted SLP system, based on the previously gained
insights, in chapter 4. Urban sensing systems continue to permeate deeper into our
personal lives. IoT devices sense, process, and store all kinds of data which poses
various challenges to security and privacy aspects, especially to applications running
on resource constrained devices. Hence, we evaluated selected, well established
data protection mechanisms that enable confidentiality, integrity and authenticity
of data. Specifically, we looked into the performance and energy consumption
of different cryptographic block and stream ciphers, secure hashing algorithms,
digital signature mechanisms, and key exchange protocols executed on state-of-
the-art resource constrained devices. Our results ease the calculation of thresholds
incorporating performance aspects, data protection criteria and respective energy
consumption values, thus facilitating the design and development of secure self-
adaptive systems in low tier urban sensing environments.
We applied those evaluation results by developing an adapted source location privacy
(SLP) system, namely ORIOT. ORIOT is a SLP preserving system that leverages
techniques from the well established Onion Routing paradigm. It is specifically
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designed for low tier devices, i.e., devices lacking computing power. Symmetric and
asymmetric cryptography are combined with a path assembling strategy to realize
anonymity of a node transmitting messages in a network to a specific destination.

(RQ3) What are the implications on the adaptation space regarding AI-assisted data
protection mechanisms in mid tier urban sensing applications?

In this thesis we focused on use applications running in the public surveillance
domain. Specifically, we looked into Video Analysis Pipelines and investigated data
protection challenges such systems are confronted with. However, our results are
applicable to other domains incorporating AI-assisted data protection mechanisms
as well. In chapter 6 we presented preliminary results of the first systematic
study of the adaptation space of AI-assisted data protection for video analytics at
the edge. Using a face-anonymization pipeline as running example, we identified
several possible adaptations and analyzed their impact on performance and data
protection. We also implemented and empirically evaluated several of the considered
adaptations. The results show a wealth of different adaptation options on both the
infrastructure and application level. The results also show that the impact of these
adaptations varies significantly. We categorized these results into either application
based adaptations or infrastructure based adaptations. Such results are needed to
have a solid basis for designing the adaptation logic for AI-assisted data protection
for video analytics at the edge. Our work is a first step in this direction and the
results are potentially applicable to a wide field of other potential use cases.

(RQ4) How can we exploit the adaptation space in an edge based urban sensing application?

In chapter 5, we proposed a privacy preserving system for AI-assisted video analytics
that extracts relevant information from video data and governs the secure access to
that information. The system ensures that applications, leveraging extracted data,
have no access to the video stream. An attribute-based authorization scheme allows
applications to only query a predefined subset of extracted data. Security policies
determine which application is able to decrypt specific subsets of the encrypted
extracted data. Hence, run-time adaptations made to those policies allow for a
dynamic and fine grained access control to sensitive data.
In chapter 7, we present a data protection focused adaptation engine for AI-assisted
urban sensing applications. The engine features an optimization algorithm to
improve data protection, performance and energy consumption characteristics of
the system. Specifically, it leverages the application- and infrastructure based
adaptation space of a distributed VAP, but it is easily extendable, hence it can be
also implemented for many other urban sensing applications. Based on a real-world
traffic monitoring use case, we showed that our approach efficiently and effectively
mitigates data protection risks in a running system.
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8.3 Future Work

In this theses, we investigated how adaptation strategies could enhance urban sens-
ing applications to mitigate risks to data protection while still maintaining adequate
performance. In the context of urban sensing, this is necessary because many edge
devices executing those applications are limited in their capabilities, such as computing
performance, energy consumption or storage. Obviously, within the scope of this thesis,
we cannot address all of the problems associated with data protection and constrained
resources at the edge in an urban sensing environment. Hence, there are still several
open challenges that we intend to address in future work. In this section, we outline the
identified shortcomings and discuss possibilities for future research.

8.3.1 Privacy Policy Model

Part of our future work will be further investigation in the field of context-aware privacy
enforcement and prototypical implementations of policy enforcing techniques for different
kinds of edge devices. Currently, our proposed model focuses mostly on data access
controls. Hence, we plan to enhance our model by incorporating other data protection
related controls as well. Specifically, our intent is to integrate the findings presented in
chapter 3 into the model. Furthermore, we plan to incorporate the updated model into
a adaptation strategy for resource constrained devices, we have already developed in
[Kai21]. Incorporating AI-based mechanisms into the decision process is another future
action point that will be investigated.

8.3.2 Adaptation Strategies

There are still data protection mechanisms that we have not evaluated for their usability
in resource constrained urban sensing environments in terms of performance and energy
consumption. Future work will include further measurements on performance and energy
consumption of asymmetric encryption algorithms, like RSA or El-Gamal. This results
will also be incorporated into the development of ORIOT. Additionally, regarding ORIOT,
we will include packet padding and noise generation to mitigate attacks like timing/traffic
analysis. We will also revisit and improve the strategy to balance performance, energy
consumption and data protection presented in [Kai21]. Currently, this balancing strategy
relies on adaptations based on pre-calculated threshold values for energy consumption and
performance and pre-defined so called security stages. Those stages represent different
configurations for data protection algorithms, which in turn are based on the STRIDE
risk model from Microsoft. Currently these configurations reside on a central controlling
device (triggering the adaptations on a device) in the form of simple text files. First,
we want to investigate the potential of distributing (parts of) the adaptation logic to
the end-devices. Second, as described in section 8.3.1 we want to get rid of the text file
representation of adaptation policies, and instead employ our developed privacy model.
Third, simulation experiments are planned in order to make concrete statements on
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scaling aspects and how much potential for e.g., energy savings there may be in large
scale system such as smart grids or similar.

8.3.3 AI-Assisted Video Analytics Pipelines

In the future, we intend to extend our research to further types of edge AI analytics
applications and devices in general, as well as with further relevant metrics. In addition,
we plan to transform the results to performance models that can be used to automatically
reason about possible adaptations at run time. Those models will feed into the adaptation
engine, presented in chapter 7. Additionally, regarding our proposed adaptation engine,
future work will focus on applying the adaptation engine to other urban sensing domains.
This makes perfect sense, since our approach is extendable by adjusting the meta-model
and by adding further PCPs and corresponding adaptations. However, based on the
respective domain, additional metrics, such as business metrics, will be taken into
account. Furthermore, due to the nature of edge systems, decentralizing our approach
and deploying it multiple times in the edge network of a self-adaptive system may enable
better performance and faster responses to PCPs. Therefore, further research is needed to
find a suitable way of coordinating multiple adaptation engines. Regarding our proposed
privacy preserving system for AI-assisted video analytics, we plan to encapsulate the
system into a framework, where a user is able to simply plug in a desired machine
learning model and specify the information that will be extracted alongside with the
corresponding labels via an easy-to-use markup language. Additionally, we plan to look
into coral.ai, which offers a complete toolkit to build products with local AI on-device
inference capabilities [Res20]. Furthermore, we plan to evaluate this framework on
additional edge computing hardware varying in performance related capabilities like CPU,
RAM, HDD, etc., also incorporating and implementing more complex scenarios. We plan
to do simulation experiments in order to evaluate the feasibility and practicability of
our approach in large scale systems. Furthermore, the approach is also planned to be
integrated into our adaptation engine, e.g., by supporting run-time adaptations to the
KP-ABE related key policies.
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A. Performance and Energy Consumption Graphs of Data Protection Mechanisms
for Resource Constrained IoT Devices

Figure A.1: MKR1000: Performance and Energy Consumption of different AES configu-
rations

Figure A.2: MKR1000: Performance and Energy Consumption of different ChaCha
configurations
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Figure A.3: MKR1000: Performance and Energy Consumption of different elliptic curve
operations

Figure A.4: ESP32: Performance and Energy Consumption of different AES configurations
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A. Performance and Energy Consumption Graphs of Data Protection Mechanisms
for Resource Constrained IoT Devices

Figure A.5: ESP32: Performance and Energy Consumption of different ChaCha configu-
rations

Figure A.6: ESP32: Performance and Energy Consumption of different elliptic curve
operations
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Figure A.7: Raspberry Pi Zero: Performance and Energy Consumption of different AES
configurations

Figure A.8: Raspberry Pi Zero: Performance and Energy Consumption of different
ChaCha configurations
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A. Performance and Energy Consumption Graphs of Data Protection Mechanisms
for Resource Constrained IoT Devices

Figure A.9: Raspberry Pi Zero: Performance and Energy Consumption of different elliptic
curve operations

Figure A.10: Arduino Due: Performance and Energy Consumption of different AES
configurations
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Figure A.11: Arduino Due: Performance and Energy Consumption of different ChaCha
configurations

Figure A.12: Arduino Due: Performance and Energy Consumption of different elliptic
curve operations
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