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Abstract

Rapid technological developments in Information Technology (IT) and ubiquitous Internet ac-
cess are causing serious challenges in service provisioning and resource management landsca-
pes. Cloud computing is proving to be a reliable technology to address these challenges. Service
provisioning in the Cloud relies on Service Level Agreements (SLAs) representing a contract
signed between the customer and the service provider including non-functional requirements
of the service specified as Quality of Service (QoS) and penalties in case of violations. Flexible
and reliable management of resources and SLA agreements are of paramount importance to both
Cloud providers and consumers. On the one hand, providers have to prevent SLA violations to
avoid penalties and on the other hand, they have to ensure high resource utilization to prevent
costly maintenance of unused resources.

Although, there is a large body of work considering development of flexible and self-manage-
able Cloud computing infrastructures, there is still a lack of adequate monitoring infrastructures
capable of predicting possible SLA violations. Most of the available monitoring systems rely
either on Grid or service-oriented infrastructures, which are not directly compatible to Clouds
due to the differences in resource usage models, or due to heavily network-oriented monitoring
infrastructures.

Furthermore, to achieve high resource utilization and more revenue, the providers must be
able to schedule resources and deploy different user applications complying with the SLA ob-
jectives, and at the same time optimizing the performance of the applications. The current sche-
duling approaches in Clouds are tailored toward the usage of single SLA objectives, such as exe-
cution time in decision making. The design of a generalized scheduling algorithm for optimal
mapping of an application with multiple SLA parameters to resources is yet to be investigated.
Nevertheless, the idea of scheduling and deploying multiple applications on the same host brings
a new set of challenges to the Cloud provider because he must enforce the SLA terms of each
customer application independently.

In this thesis, we propose a novel Cloud management infrastructure, which is based on ho-
listic monitoring techniques and mechanisms for low-level resource metrics to high-level SLA
mapping, application scheduling and deployment, and the ability to monitor multiple application
executing on the same host. We present the design and implementation of these techniques. In
a case study, we show the integration of knowledge management techniques into Cloud mana-
gement infrastructures realizing autonomic behaviour and providing reactive action to prevent /
correct the SLA violation situations. Finally, we present some evaluations to show the novelty
of the contributed solutions.
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Kurzfassung

Die enormen technologischen Entwicklungen in der Informations-Technologie (IT) und der uni-
versale Zugang zum Internet stellen eine große Herausforderung für das Bereitstellen von Diens-
ten und das Ressourcenmanagement dar. Cloud Computing erweist sich als zuverlässige Techno-
logie, um genau diesen Herausforderungen zu begegnen. Dienstleistungen in der Cloud bauen
auf Service Level Agreements (SLAs) auf, die einen Vertrag zwischen dem Kunden und dem
Dienstanbieter darstellen. Dieser Vertrag beinhaltet unter anderem nicht funktionale Anforde-
rungen an die Dienste, welche als Quality of Service (QoS) definiert sind, und Strafzahlungen
im Falle von Verletzungen dieser Anforderungen. Das flexible und zuverlässige Management
der Ressourcen und SLA Übereinkommen sind für beide Parteien, den Cloud Anbieter sowie
den Konsumenten, von großer Bedeutung. Anbieter müssen einerseits SLA Verletzungen vor-
beugen, um Strafzahlungen zu vermeiden, andererseits müssen sie eine hohe Ausnutzung der
Ressourcen gewährleisten, um die teure Erhaltung von ungenutzten Ressourcen zu verhindern.

Obwohl bereits viel im Bereich der Entwicklung von flexibler und selbstverwalteter Cloud
Computing Infrastruktur erarbeitet wurde, besteht noch ein Mangel an angemessenen Überwa-
chungsinstrumenten, welche fähig sind mögliche SLA Verletzungen vorherzusagen. Die meisten
der verfügbaren Überwachungssysteme basieren entweder auf Grid oder Service-orientierter In-
frastruktur, welche, aufgrund von Unterschieden im Ressourcen-Nutzungsmodell, oder aufgrund
von stark Netzwerk-orientierten Überwachungssystemen, mit Clouds nicht direkt kompatibel
sind.

Damit die Anbieter eine bessere Ressourcenausnutzung und einen höheren Ertrag erreichen
können, müssen sie, unter Einhaltung der SLA Ziele, in der Lage sein Ressourcen entsprechend
zu verteilen und gleichzeitig für unterschiedliche Nutzeranwendungen die beste Performance
zu gewährleisten. Die gängigen Verteilungsstrategien in Clouds sind an die Erfüllung einzelner
SLA Zielvorgaben, wie etwa Ausführungszeit der Entscheidungsfindung, angepasst. Das Design
eines generalisierten Verteilungsalgorithmus, welcher eine Anwendung mit multiplen SLA Zie-
len auf Ressourcen optimal verteilt, ist jetzt noch nicht erforscht. Nichtsdestotrotz bedeutet die
Idee, multiple Anwendungen einem Host zuzuordnen, entsprechend zu verteilen und auszufüh-
ren, mehrere Herausforderungen für den Cloud Anbieter, denn er muss die SLA Zielvorgaben
einer jeden Kundenanwendung unabhängig voneinander erfüllen.

In dieser Dissertation führen wir eine neue Cloud Management Infrastruktur ein, die auf An-
wendungszuordnung und -verteilung, ganzheitlichen Überwachungsverfahren und -mechanismen,
welche Basisressourcen auf SLA Übereinkommen abbilden, sowie der Fähigkeit, mehrere, am
gleichen Host laufende Anwendungen zu überwachen, basiert. Wir präsentieren sowohl das De-
sign als auch die Implementierung dieser Techniken. In einem Fallbeispiel zeigen wir die In-
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tegration von Methoden des Wissensmanagement in die Cloud Management Infrastruktur, um
autonomes Verhalten und reagierende Maßnahmen, die SLA Verletzungen verhindern bzw. kor-
rigieren sollen, zu erlangen. Abschließend präsentieren wir Evaluierungen, um den Neuigkeits-
wert der vorgebrachten Lösungen zu zeigen.
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CHAPTER 1
Introduction

In recent years, and with rapid development of Information Technology (IT), many organizations
and enterprises are seeking ways to save operation cost, achieve scalability, good application per-
formance, and high efficiency in resource utilization [167]. With the introduction of compact
computing devices such as smart phones and the ubiquitousness of broadband Internet connec-
tions, enterprises/customers are focusing on accessing their data and launching applications at
any time and from any location [196]. The means of deploying customer application and provid-
ing them with enough computational resources to facilitate and guarantee desirable performance
has become a challenge.

Many technologies have evolved over the years, such as Distributed Systems, Parallel Com-
puting, Grid, Virtualization, etc. [17, 75, 141, 153, 197] addressing the issues of resource provi-
sioning and application deployment. In today’s business requirements, these technologies are
less efficient due to their inflexiblity, cost, and lack of scalability. Cloud computing has emerged
in the recent time to supplement these technologies and add new features to resource and appli-
cation provisioning.

There are different definitions and concepts of Cloud computing [43, 176, 201]. However,
according to NIST [136], Cloud computing can be defined as a model for enabling convienent
on-demand network access to a shared pool of configurable computing resources such as CPU,
networks, storage, and memory, which can be quickly provisioned and released with minimal
management effort or Cloud provider assistance.

The fundamental features and characteristics of Cloud computing powering its attractiveness
to the consumers are as follows: i) on-demand self-service, ii) rapid elasticity, iii) measured
service (pay-as-you-go), iv) ubiquitous network access, and v) resource pooling. These features
account for the scalability and cost-effective service provisioning in Cloud environments. There
are different delivery and deployment models in Cloud computing. The basic delivery models
include the following [20, 113, 126, 140, 158]:

1. Software as a Service (SaaS): In this delivery model, the consumer uses a Cloud applica-
tion but, he does not control the operating system, hardware, and network devices of the
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environment provisioning the application.

2. Platform as a Service (PaaS): Here, a hosting environment is made available to the con-
sumer for their applications. He has the capability of controlling the applications in the
host environment. However, the consumer has a limited control of the operating system,
hardware, and network devices of the hosting environment.

3. Infrastructure as a Service (IaaS): In this model, the consumer has full access and uses
fundamental computing resources such as CPU, storage, memory, network devices. The
consumer has the ability to control the operating system, hardware, networking infrastruc-
ture, and the deployed applications.

The deployment models in Clouds are the different ways of using Cloud infrastructures and
services. The following are some of the deployment models [124, 158, 191, 198]:

1. Public Cloud: A public Cloud can be described as a means to make services available to
all consumers through the Internet. The term ’public’ does not necessarily mean that the
services are free but they can be fairly inexpensive to use. Furthermore, it does not mean
that the consumer’s data is publicly visible to others. Public Cloud providers use access
control mechanism for their consumers. They offer elastic and cost effective services for
application deployment.

2. Private Cloud: This deployment model is used by organizations for their private appli-
cation deployments. It offers many of the features of public Cloud such as elasticity to
the organization. The difference to the public Cloud is that access is being granted only
to the members of the organization, and there are no restrictions on network bandwidth,
security or legal issues. Also in this model, the consumers have greater control of the
Cloud infrastructures as in public Cloud.

3. Hybrid Cloud: This is a combination of public and private Cloud in different fashions. In
this model, organizations can outsource low-risk applications to the public Cloud to save
cost or energy.

Having given a brief overview of the Cloud computing technology, we would like to state
that the contributions of this thesis are realized in the course of the Foundations of Self-governing
ICT Infrastructure (FoSII) research project funded by the Vienna Science and Technology Fund.
This project aims to develop an autonomic infrastructure for Cloud management and service
level agreement enforcement based on some techniques like monitoring, scheduling, and knowl-
edge management. This thesis concentrates on the monitoring and scheduling challenges in the
project. In the next section, we describe these challenges in detail.

1.1 Problem Statement

With the ever growing interest in Cloud computing from both, industry and academia, and the
rapid growth of Cloud computational infrastructure resources, the management of the infras-
tructures to efficiently provision resources and services to customers is now a challenging task.
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Cloud management systems consist of components such as, monitoring techniques, scheduling
and deployment mechanism, and resource allocation and de-allocation strategies.

The provisioning of services in Clouds is in compliance to a set of predefined non-functional
properties specified as Quality of Service (QoS) and negotiated by means of Service Level
Agreements (SLAs) [11, 121]. SLA considers obligations, service pricing, and penalties in case
of agreement violations. In the Cloud market today, SLAs now form the basis for doing busi-
ness between the Cloud providers and consumers. Flexible and reliable management of SLA
agreements is of paramount importance for both Cloud providers and consumers. On the one
hand, prevention of SLA violations avoids costly penalties providers have to pay and on the
other hand, based on flexible and timely reactions to possible SLA violations, user interaction
with the system can be minimized, which enables Cloud computing to take roots as a flexible
and reliable form of on-demand computing.

Furthermore, another important aspect for the usage of SLAs is the required elasticity of
Cloud infrastructures. Thus, SLAs are not only used to provide guarantees to end user, they are
also used by providers to efficiently manage Cloud infrastructures, considering competing priori-
ties like energy efficiency and attainment of SLA agreements [18,19] while delivering sufficient
elasticity. Moreover, SLAs are also recently used as part of novel Cloud engineering models
like Cloud federation [39, 41]. Current monitoring infrastructures lack appropriate solutions for
adequate SLA monitoring. The first challenge is to facilitate mapping of measured low-level
resource metrics to the form of application based SLA parameters. The second challenge is to
determine appropriate monitoring intervals at the application level keeping the balance between
the early detection of possible SLA violations and the intrusiveness of the monitoring tools on
the whole system.

Although, there is a large body of work considering development of flexible and self-manage-
able Cloud computing infrastructures [23,33], there is still a lack of adequate monitoring infras-
tructures able to predict possible SLA violations. Most of the available monitoring systems
rely either on Grid [48, 107, 117, 151] or service-oriented infrastructures [52], which are not di-
rectly compatible to Clouds due to the differences in resource usage models, or due to heavily
network-oriented monitoring infrastructures [86].

Moreover, to achieve high resource utilization and increased revenue, the providers must be
able to schedule resources and deploy different customer applications complying with SLA ob-
jectives and, at the same time optimizing the performance of the applications. Currently, there
exist numerous work considering scheduling of applications in Clouds [80, 143, 156]. These
approaches are usually tailored toward one single SLA objective such as execution time, cost of
execution, etc. The design of a generalized scheduling algorithm for optimal mapping of appli-
cation workload with multiple SLA parameters to resources in Clouds is still an open research
issue. In related areas, such algorithms are considered to be NP-hard due to their combinatorial
nature [182]. Thus, viable solutions are based on the use of heuristics.

Nevertheless, the idea of scheduling and deploying multiple applications on the same host
brings a new set of challenges to the management infrastructure. Each of the applications is
being provisioned based on its separate SLA terms. Therefore, the applications have to be
monitored separately to enforce the agreed SLA objectives. In this case, carrying out only
resource monitoring is not sufficient because at the resource level, one cannot distinguish the
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resource consumption behaviours of the applications. Thus, there is a need for application-level
monitoring techniques. Although some existing research work [21, 77, 106] are considering this
issue, there is still a lack of efficient application monitoring tools that are capable to adequately
monitor and detect SLA violations of different customer applications.

In addressing these problems, we strive to realize a sophisticated Cloud management infras-
tructure that is able to schedule, deploy application, and monitor both, at infrastructure-, and
application-levels.

1.2 Research Questions

In this section, we concretize the research questions addressed in this thesis. Nevertheless,
Section 1.1 has presented the overview of the challenges motivating the research work carried
out. Therefore, we concretely address the following questions:

Research Question 1
How can a Cloud provider enforce high-level application SLA objectives based on low-level

resource metrics?

The fulfillment of the agreed application SLA objectives, while provisioning in Clouds, de-
pends on the available provider resources in the Cloud environment. In order to determine the
resource availability in the Cloud environment, there is a need for an efficient resource monitor-
ing framework. Furthermore, monitoring the low-level resource metrics is not sufficient because
of the difference between the low-level resource metrics and the high-level SLA objectives. To
resolve these differences, the provider has to map the low-level metrics (e.g., uptime, downtime)
to an equivalence of the high-level SLA objectives (e.g., availability). Thus, adequate monitor-
ing and mapping techniques are necessary.

Research Question 2
How can a Cloud provider determine the optimal measurement interval for cost-efficient

monitoring and detection of SLA violations?

With the monitoring of the Cloud infrastructure resources, the provider gains information
about the usage of the resources and the current resource availability status. The rate of acquiring
this information is an important factor consigning the overall performance of the system and the
profit of the provider. On the one hand, monitoring at a high rate delivers fast updates about
the resource status to the provider but, it can cause lots of overhead, which eventually degrades
the performance of the system. On the other hand, monitoring at a low rate causes the miss of
information such as missing to detect SLA violation, which results in paying of SLA penalties by
the provider. Therefore, to address this issue, techniques to determine the optimal measurement
intervals to efficiently monitor to detect SLA violations are required.
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Research Question 3
Are there possibilities to efficiently deploy applications in Clouds, ensure their

performance, and thereby achieve high resource utilization?

One of the basic reasons of opting for Cloud solutions by customers is to minimize the cost
of maintaining resources and applications locally. Most of the customers are only interested in
the execution and performance of their application. These applications have different resource
consumption characteristics and, therefore, are not capable of fully utilizing the resources of a
virtual machine if deployed alone. In order for the provider to achieve high resource utilization
and save the cost of maintaining large number of running virtual machines in the Cloud envi-
ronment, it is necessary to device a means of scheduling and deploying the applications using
minimal number of virtual machine. Furthermore, this scheduling strategy should ensure the
performance of the applications based on the agreed SLAs. To the best of our knowledge, none
of the existing scheduling algorithms consider multiple SLA objectives in making scheduling
decisions.

Research Question 4
How can a Cloud provider manage and guarantee individual SLA objectives of applications

executing on the same host?

The guaranteeing of individual customer SLAs for applications being provisioned on the
same host is an important management task for the Cloud provider. To achieve this goal, the
provider has to monitor the resource consumption behaviour and the performance of each single
application differently to ensure that the agreed SLA objectives are not violated. Therefore, the
provider requires efficient application-level monitoring techniques for this purpose. The moni-
toring technique should be capable of automatically determining optimal measurement intervals
for the different application monitoring, be less intrusive to the system, and support large scale
Cloud environments. None of the existing monitoring framework we studied so far posses these
capabilities.

Research Question 5
How can we prevent/correct SLA violation situations in Clouds?

With the monitoring techniques, the Cloud provider can acquire information about the avail-
able resources, the application performance status, and predict/detect SLA violation situations.
However, he can not prevent or correct the SLA violations. To address this issue, there are needs
to integrate knowledge management techniques into the Cloud management infrastructure to
provide reactive actions and autonomic behaviours.
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1.3 Scientific Contributions

According to the research questions presented in Section 1.2, we highlight in this section the
scientific contributions to the state-of-the-art in autonomic Cloud management and SLA en-
forcement. Our contributions in this thesis have been published in different journals, confer-
ences, workshops, and books. We specify for each contribution, the references where it has been
published.

Contribution 1
Low-level resource metrics monitoring and mapping framework

The monitoring of low-level Cloud infrastructure resource metrics and mapping them based
on predefined mapping rules to form the equivalence of the high-level SLA parameter objectives
are very essential for the management of resources and application provisioning in Clouds. As
the core of a Cloud management infrastructure, we designed and implemented the Low-level
Metrics to High-level SLA monitoring and mapping (LoM2HiS) framework, which monitors
resource metrics and maps the metric values to the equivalence of the high-level SLA parameter
objectives in order to guarantee the performance of user applications. Details of this framework
are presented in Section 3.1. Contribution 1 has been previously published in [60, 61, 65, 172].

Contribution 2
Architecture for finding optimal measurement intervals for monitoring single application

deployment and detecting SLA violations

To efficiently guarantee the Cloud customer applications’ performance through monitoring,
there is a need for scalable monitoring architecture to detect SLA objective violations. Further-
more, it is important to determine an optimal measurement interval so as not to degrade the
system performance with excess monitoring activities or to incur SLA penalties due to missed
SLA violation detection. For these purposes, we designed the Detecting SLA Violation Infras-
tructure (DeSVi) architecture, which consist of components to setup virtual machines, deploy
task, and it uses the LoM2HiS framework as a monitoring tool. We present the details of this
architecture in Section 3.5. Contribution 2 has been previously published in [62, 66–68].

Contribution 3
SLA-aware application scheduling and deployment mechanism

To further enhance the capability of the Cloud management infrastructure with the ability
of scheduling and deploying applications based on multiple SLA terms, we designed and im-
plemented a scheduling heuristic, which integrates a load balancing mechanism to balance the
application deployments among the running virtual machines. The scheduling heuristic has the
ability to start new virtual machines for further deployments as long as the physical resources in
the Cloud environment can accommodate them. The descriptions of this scheduling heuristic is
presented in Chapter 4. Contribution 3 has been previously published in [59].
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Contribution 4
Application-level monitoring architecture

In order to realize a holistic monitoring technique capable of monitoring at the different lay-
ers of Cloud environment and to supplement the Cloud management infrastructure, we designed
and implemented an application-level monitoring architecture, which is capable of monitoring
the resource consumption behaviours and the performance of each application executing on a
shared host. We also implemented an automatic mechanism for determining the optimal mea-
surement intervals for the application monitoring. Details of this application monitoring archi-
tecture is presented in Chapter 5. Contribution 4 has been previously published in [63, 130].

Contribution 5
The integration of knowledge management techniques into Cloud management infrastructure

We present in a case study the integration of the knowledge management techniques into the
Cloud management infrastructure to achieve autonomic behaviours and to react to detected SLA
objective violations. The knowledge management techniques provide reactive actions based on
the monitored information. We utilize a scientific workflow application in the case study to
demonstrate how to monitor and manage the execution of an application in Clouds. The case
study is presented in Section 6.3. Contribution 5 has been previously published in [64].

Contribution 6
The evaluation of the contributions using a real Cloud testbed

We developed a real private Cloud testbed environment for the evaluation of some of the
scientific contributions in this thesis. We use different application types to evaluate the designed
and implemented framework and architectures. Our developed Cloud testbed is located at the
High Performance Computing Lab at Catholic University of Rio Grande do Sul (LAD-PUCRS)
Brazil. Chapter 7 presents the different evaluation scenarios and the achieved results respec-
tively. Contribution 6 has been previously published in [60–62, 68].

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents some background information on important concepts and about the
research project by which course, the work in this thesis is carried out. We first present the
Foundations of Self-governing ICT Infrastructure (FoSII) research project. After which,
we define and describe the concept of service level agreement. We also discuss the concept
of autonomic behaviour.

• In Chapter 3, we discuss the Cloud infrastructure monitoring techniques. In particular,
we describe the LoM2HiS framework, its design, implementation, and present its appli-
cation in a traffic management system. Furthermore, we provide details of the design and
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implementation of the DeSVi architecture, which utilizes the LoM2HiS framework as a
monitoring component.

• Chapter 4 describes the SLA-aware application scheduling and deployment heuristic. In
the chapter, we first present the motivations for the scheduling approach and describe the
basic resource provisioning and deployment models in Clouds. In the next step, we present
the design of the scheduling heuristic and the load balancing mechanism after which, we
discuss their implementations.

• The Cloud application monitoring architecture is presented in Chapter 5. We discuss the
motivation scenario for the development of this monitoring architecture. The design of
the architecture and its implementation choices are presented afterwards.

• In Chapter 6, we explain the concept of holistic monitoring and introduce the knowledge
management technique, which provides reactive actions to manage resources and avoid
SLA violations in a Cloud environment. Furthermore, we present a case study using scien-
tific workflow applications to demonstrate the usage of an autonomic Cloud management
infrastructure consisting of the integration of monitoring with knowledge management
techniques.

• Chapter 7 presents the evaluations of the achieved framework and architectures in this
thesis. It also presents the evaluation of the traffic management system, which utilizes the
LoM2HiS framework. For each of the evaluations, we first describe the evaluation testbed
configuration and the applications used for the evaluation. Furthermore, we present the
evaluation of the case study using bioinformatic workflow application.

• The related work is presented in Chapter 8. We divide the related work into four cate-
gories: i) Cloud infrastructure monitoring, ii) Scheduling Mechanism, iii) Cloud Appli-
cation monitoring, and iv) SLA enforcement and management. We analyze the existing
work in each categories and differentiate them to our contributions in this thesis.

• Chapter 9 discusses the conclusion of the work presented in this thesis. We first summarize
the work and in the next step, we present the limitations of our proposed solutions. And
finally, we describe possible future work arising from the research contributions of this
thesis.
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CHAPTER 2
Background

This chapter describes some background information on essential concepts necessary for easy
understanding of the research work presented in this thesis. We first present the research project
by which course, the work in this thesis is carried out in Section 2.1. We discuss the concept
of service level agreement in Section 2.2 and finally present some introduction of autonomic
behaviour in Section 2.3.

2.1 FoSII Research Project

The acronym FoSII stays for Foundations of Self-governing ICT Infrastructures [74].
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This project is funded by the Vienna Science and Technology Fund known in german as
Wiener Wissenschafts-, Forschungs und Technologiefonds (WWTF), which fosters solid re-
search on Information Communication Technology (ICT) in Vienna. The FoSII infrastructure
proposes models and concepts for autonomic SLA management and enforcement in Clouds. It
relies on sophisticated monitoring techniques and advanced knowledge management strategies
to achieve these goals.

Figure 2.1 depicts the components of the FoSII infrastructure. It is made up of two core
aspects. The first part comprises the monitoring aspect and its objective is to provide monitored
information to the second part that comprises the knowledge management aspect, which ana-
lyzes the monitored information and provide reactive actions to manage the Cloud environment.
The FoSII infrastructure implements different interfaces such as: (i) application management
interface necessary to start the application, upload data, and perform similar management ac-
tions and (ii) self-management interface necessary to devise actions in order to prevent SLA
violations.

The self-management strategy in FoSII, as shown in Figure 2.1, consist of sensors for detect-
ing changes in the desired state and for reacting to those changes [23]. The host monitor sensors
continuously monitor the infrastructure resource metrics (input sensor values arrow a in Figure
2.1) and provide the autonomic manager with the current resource status. The run-time monitor
sensors sense future SLA violation threats (input sensor values arrow b in Figure 2.1) based on
resource usage experiences and predefined threat thresholds. These monitored information are
passed to the knowledge management for further processing.

The knowledge management receives the monitored information in the analysis phase and
analyzes it to determine the resource allocation or preventive action to take. In the planning
phase, the selected action is scheduled for execution considering the timing of the execution and
strategies to avoid oscillation in applying the actions. The execution phase carries out the exe-
cution of the proposed actions on the Cloud environment with the help of actuators. The whole
process executes continuously to efficiently manage the Cloud infrastructure and the application
SLA objectives. The knowledge management aspect in FoSII is based on knowledge databases
for its operations. Currently, we are investigating different knowledge database techniques such
as Case Based Reasoning (CBR) [131, 132] and rule-base approaches [133] for this purpose.
Here, we present an overview of our research work on CBR.

Case-Based Reasoning was first built on top of FreeCBR [76], but is now a completely
independent Java framework taking into account, however, basic ideas of FreeCBR. It can be
defined as the process of solving problems based on past experiences [1]. In more detail, it tries
to solve a case, which is a formatted instance of a problem by looking for similar cases from the
past and reusing the solutions of these cases to solve the current one.

Figure 2.2 presents an overview of the CBR process. The ideas of using CBR in SLA
management are to have rules stored in a database that engage the CBR system once a threshold
value has been reach for a specific SLA parameter. The notification information are fed into the
CBR system as new cases by the monitoring component. Then, CBR prepared with some initial
meaningful cases stored in DB2 (Figure 2.2), chooses the set of cases, which are most similar to
the new case based on various factors as described in [132]. From these cases, we select the one
with the highest utility measured previously and trigger its corresponding action as the proposed

10



Rules	  to	  
Engage	  
CBR	  

Case	  
Based	  

Reasoning	  

Measure	  
Results	  

Trigger	  
Selected	  
Ac7on	  

No7fica7on	  
Message	  

DB1	   DB2	  

Thresholds 

Figure 2.2: Case-Based Reasoning Process Overview

action to solve the new case. Finally, we measure in a later time interval the result of this action
in comparison to the initial case and store it with its calculated utilities as a new case in the
CBR. Doing this, we can constantly learn new cases and evaluate the usefulness of our triggered
actions [61].

1. (
2. (App, 1),
3. (
4. ((Incoming Bandwidth, 12.0),
5. (Outgoing Bandwidth, 20.0),
6. (Storage, 1200),
7. (Availability, 99.5),
8. (Running on PMs, 1)),
9. (Physical Machines, 20)
10. ),
11. "Increase Incoming Bandwidth share by 5%",
12. (
13. ((Incoming Bandwidth, 12.6),
14. (Outgoing Bandwidth, 20.1),
15. (Storage, 1198),
16. (Availability, 99.5),
17. (Running on PMs, 1)),
18. (Physical Machines, 20)
19. ),
20. 0.002
21. )

Figure 2.3: Case Based-Reasoning Example.

In general, a typical CBR cycle consists of the following phases assuming that a new case
was just received:
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1. Retrieve the most similar case or cases to the new one.

2. Reuse the information and knowledge in the similar case(s) to solve the problem.

3. Revise the proposed solution.

4. Retain the parts of this experience likely to be useful for future problem solving. (Store
new case and corresponding solution into knowledge database.)

Furthermore, we present here a practical demonstration of a CBR system, showing the man-
agement of SLA objectives as depicted in Figure 2.3. A complete case consists of (a) the ID
of application being provisioned (line 2, Figure 2.3); (b) the initial case measured by the moni-
toring component and mapped to the SLAs including the application SLA parameter values and
global Cloud information like number of running virtual machines (lines 4-9); (c) the executed
action (line 11); (d) the resulting case measured some time interval later (lines 13-18) as in (b);
and (e) the resulting utility (line 20). We discuss more about knowledge management in Section
6.2. However, Knowledge management is not the focus of this thesis. Full details on this topic
can be found in [131–133].

The work carried out in this thesis concentrates on the monitoring aspect of the FoSII in-
frastructure. We show in Chapter 6 using a case study how the monitoring and the knowledge
management aspects are integrated together to realize an autonomic Cloud management infras-
tructure.

2.2 Service Level Agreement

Service Level Agreement (SLA) is a term widely used in the telecommunication and networking
area to specify Quality of Service (QoS) objectives [42, 46, 148, 168, 188]. It is now adopted in
the field of computer science to serve the same purpose of specifying quality of service for
Internet offered services. In Cloud computing, services and resources are provisioned through
the Internet. Thus, SLA forms the basis for managing the business aspect of Cloud computing
technology [28–30].

Table 2.1: SLA Agreement Example.

SLA Parameter SLA Objective
Availability ≥ 99 %
Response Time > 5 ms
Storage > 100 GB
Memory > 3 GB
Network Bandwidth > 100 Mbit/s

A service level agreement can be defined as a contract signed between a Cloud provider and
a customer describing functional and non-functional characteristics of a service including QoS
requirements, penalties in case of violations, and a set of metrics, which are used to measure the
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provisioning of the requirements [53, 111, 144]. The goal of an SLA parameter is described as
its objective popularly known as Service Level Objective (SLO). Table 2.1 presents an example
of SLA agreement specifying some objectives in Clouds.

The management of SLAs [163, 185] is made up of different aspects such as i) SLA speci-
fication, ii) SLA negotiation, iii) SLA monitoring, and iv) SLA enforcement. SLA specification
details the strategy and processes of specifying the agreement terms in a specific format. There
are many existing work in this area such as [22, 51, 57, 127]. The negotiation of SLA deals with
the technique of setting up the agreement between the provider and the customer. There are lots
of effort going on in this area to address this issue like [25, 146, 190, 195, 202]. The areas of
SLA specifications and negotiations are not the focus of this work. In this thesis, we focus on
developing techniques and mechanisms for SLA monitoring and enforcement. We describe in
Chapters 3 and 5 our approach for SLA monitoring to detect violation situations at the different
Cloud layers.

2.3 Autonomic Behaviour

Autonomic behaviour is characterised by capabilities such as self-configuration, self-diagnosing,
and self-healing, focusing at allowing the system to manage failures of its components and to
facilitate continuous functioning in the presence of errors. Autonomic behaviour is a concept
derived from autonomic computing [9, 119], which aims to provide means of automatical man-
agement of computing resources [89, 122]. Autonomic computing is inspired by the functions
of the human nervous system and is aimed at designing and building systems that are self-
managing. Autonomic systems are being adopted for self-management of complex large scale
distributed system that have become manually unmanageable [7, 47, 54].

In autonomic systems, humans do not control the system. Moreover, they define the general
policies and rules that serve as input for the self-management process. Such systems constantly
adapt themselves to changing environmental conditions like workload, hardware, and software
failures [99, 105]. Nowadays, the concepts of autonomic system are being applied in all aspects
of sciences to provide intelligent decision making, and to realize automations relieving humans
from routine or complicated tasks.

An important characteristic of an autonomic system is an intelligent closed loop of control
where an autonomic manager manages the elements’ states and behaviours. Typically, con-
trol loops are implemented following MAPE (Monitoring, Analysis, Planning, and Execution)
steps [23, 134]. The control loop with its components and the Knowledge database makes the
autonomic manager to be self-manageable. The managed resources can be software or hardware
resources that are given autonomic behaviour in accordance with an autonomic manager. Thus,
the managed resources can be operating systems, wired or wireless network, CPU, database,
servers, routers, application modules, Web services or virtual machines, etc [199].

Autonomic computing is to promote self-manageable goals of various components in a
whole system. Autonomic computing system involves service-oriented technology, agent tech-
nology, adaptive control theory, machine learning, optimization theory, and many more [70,103,
199]. The aim of introducing this concept in this thesis is to achieve autonomic behaviour in our
proposed Cloud management infrastructure, whereby appropriate actions are taken, based on the
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monitored information to prevent/correct SLA violation situations, and to allocate or de-allocate
resources to achieve high resource utilizations and avoid resource wastage. We demonstrated in
Chapter 6 the usage of this concept.
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CHAPTER 3
Cloud Infrastructure Monitoring

Cloud computing promises on-demand and scalable resource provisioning to its customers based
on pre-agreed service level agreement objectives. The management of Cloud resources and the
guaranteeing of the SLA objectives are challenging. In this chapter, we present the Cloud infras-
tructure monitoring techniques, which are the basis for the Cloud management infrastructure.
We first discuss the metrics monitoring and mapping framework, after which we describe the
usage of this framework in a traffic management system. Towards the end of the chapter, we
present the DeSVi architecture.

3.1 Metrics Monitoring and Mapping Motivation

In order to guarantee an agreed SLA in Clouds, the Cloud provider must be capable of monitor-
ing its infrastructure (host) resource metrics to enforce the agreed service level objectives. How-
ever, most of the existing monitoring technologies are designed for Grid environments [48,151],
which makes their usage in Clouds inappropriate due to the differences in resource usage mod-
els. In Grids [107], resources are mostly owned by different individuals/enterprises, and in some
cases, as desktop Grids for instance, resources are only available for usage when the owners are
not using them [117]. Therefore, resource availability varies much and this impacts its usage
for application provisioning, whereas in Cloud computing, resources are owned by an enterprise
(Cloud provider), provisioning them to customers in a pay-as-you-go manner. Therefore, avail-
ability of resources is more stable and resources can be provisioned on-demand. Hence, the
monitoring strategies used for detection of SLA violations in Grids cannot be directly applied to
Clouds.

This problem motivates the development of the Low-level Metric to High-level SLA (LoM2HiS)
monitoring and mapping framework to address the challenges in enforcing the agreed SLA ob-
jectives and managing resources in Clouds. These challenges can be described using a use case
scenario presented in the next section.
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Use Case Scenario

The essence of using SLA in Cloud business is to guarantee customers a certain level of quality
for their services. In a situation where this level of quality is not met, the provider pays penalties
for the breach of contract. Figure 3.1 presents the use case motivation scenario. In a Cloud
environment, services and applications are being executed on the physical and virtual resources.
However, the quality of service objective to determine the performance of the application is
described as a high-level SLA parameter for example availability, throughput, etc. But, the
applications are running on physical or virtual resources, which are characterized with low-level
metrics such as CPU, memory, uptime, downtime, etc.
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Figure 3.1: LoM2HiS Motivation Scenario.

Thus, there is a gap between the low-level resource metrics and the high-level SLA parame-
ters. To cover this gap and enforce the agreed SLA terms, we propose and develop the LoM2HiS
framework. We present the conceptual design of the framework including the run-time and host
monitors, and the SLA mapping database. We discuss our novel communication model based on
queuing networks ensuring the scalability of the LoM2HiS framework. Moreover, we demon-
strate sample mappings from the low-level resource metrics to the high-level SLA parameters.
The LoM2HiS framework represents a major step towards achieving the goals of the FoSII in-
frastructure project [74].
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3.2 LoM2HiS Design Details

In this section, we give the details of the LoM2HiS framework [60, 61] and describe its compo-
nents and their designs.

Framework Overview

In this framework, we assumed that the SLA negotiation process is completed and the agreed
SLAs are stored in the repository for service provisioning. Beside the SLAs, the predefined
threat thresholds are also stored in a repository. The concept of detecting future SLA violation
threats is designed by defining more restrictive thresholds known as threat thresholds that are
stricter than the normal SLA objective violation thresholds. For this framework, we assume
predefined threat thresholds.
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Figure 3.2: LoM2HiS Framework Overview.

Figure 3.2 presents the architecture of our LoM2HiS framework. The service component
including the run-time monitor represents the application layer where services are deployed
using a Web Service container e.g., Apache Axis. The run-time monitor is designed to monitor
the services based on the negotiated and agreed SLAs. After agreeing on SLA terms, the service
provider creates mapping rules for the LoM2HiS mappings (step 1 in Figure 3.2) using Domain
Specific Languages (DSLs). DSLs are small languages that can be tailored to a specific problem
domain. Once the customer requests the provisioning of an agreed service (step 2), the run-time
monitor loads the service SLA from the agreed SLA repository (step 3). Service provisioning is
based on the infrastructure resources, which represent the hosts and network resources in a data
centre for hosting Cloud services. The resource metrics are measured by monitoring agents, and
the measured raw metrics are accessed by the host monitor (step 4). The host monitor extracts
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metric-value pairs from the raw metrics and transmits them periodically to the run-time monitor
(step 5) and to the knowledge component (step 6) using our designed communication model.

Upon receiving the measured metrics, the run-time monitor maps the low-level metrics based
on predefined mapping rules to form the equivalence of the agreed SLA objectives. The map-
ping results are stored in the mapped metric repository (step 7), which also contains the pre-
defined mapping rules. The run-time monitor uses the mapped values to monitor the status of
the deployed services. In case future SLA violation threats occur, it notifies (step 8) the knowl-
edge component for preventive actions. The knowledge component also receives the predefined
threat thresholds (step 8) for possible adjustments due to environmental changes at run-time.
This component works out appropriate preventive actions to avert future SLA violation threats
based on the resource status (step 6) and defined rules. The knowledge component‘s decisions
(e.g., assign more CPU to a virtual host) are executed on the infrastructure resources (step 9).

The LoM2HiS framework is designed to be scalable. In its design, the separation of the
host monitor and the run-time monitor makes it possible to deploy these two components on
different hosts. This decision is focused toward increasing the scalability of the framework and
facilitating its usage in distributed and parallel environments.

Host Monitor

This section describes the host monitor component, which is located at the Cloud infrastructure
resource level. We explain its design strategy and later present the implementation details.

The host monitor is responsible for processing monitored values delivered by the monitoring
agents embedded in the infrastructure resources. The monitoring agents are capable of measur-
ing both hardware and network resources. Figure 3.3 presents the host monitoring system.
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Figure 3.3: Host Monitoring System

As shown in Figure 3.3, the monitoring agent embedded in Device 1 (D1) measures its re-
source metrics and broadcasts them to D2 and D3. Equally, the monitoring agent in D2 measures
and broadcasts its measured metrics to D1 and D3. Thus, we achieve a replica management sys-
tem in the sense that each device has a complete result of the monitored infrastructure. The host
monitor can access these results from any device. It can be configured to access different devices
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at the same time for monitored values. In case one fails, the result would be accessed from the
others. This eradicates the problem of a bottleneck system and offers fault-tolerant capabilities.
Note that a device can be a physical machine, a virtual machine, a storage device, or a net-
work device. Furthermore, it should be noted that the above described broadcasting mechanism
is configurable and can be deactivated in a Cloud environment where there are lots of devices
within the resource pools to avoid communication overheads, which may consequently lead to
degraded overall system performance.

The decision to separate the monitoring agents from the data processing units aims to make
this framework scalable and less intrusive. Processing the monitored data in a separate node
frees the resources on the computing nodes for computational tasks thereby reducing the mon-
itoring effects on these node to a minimum and allowing the computational tasks achieve high
performance.

Run-Time Monitor

The run-time monitor component is an integral part of the application deployment mechanism.
In this section, we present the detailed description of this component.

The run-time monitor carries out the low-level metrics to high-level SLA mappings. Thus,
based on the mapped values, the SLA objectives, and the predefined thresholds, it continuously
monitors the customer application status and performance. Its operations are based on three
information sources: (i) the resource metric-value pairs received from the host monitor; (ii) the
SLA parameter objective values stored in the agreed SLA database; and (iii) the predefined threat
threshold values. The metric-value pairs are low-level entities and the SLA objective values are
high-level entities, so for the run-time monitor to work with these two values, they must be
mapped into common values.

Mapping of low-level metrics to high-level SLAs: As discussed previously, the run-time
monitor chooses the mapping rules to apply based on the application being provisioned. That
is, for each application type, there is a set of defined rules for performing their SLA parameter
mappings. These rules are used to compose, aggregate, or convert the low-level metrics to form
the high-level SLA parameter. We distinguish between simple and complex mapping rules. A
simple mapping rule maps one-to-one from low-level to high-level, as for example mapping
low-level metric disk space to high-level SLA parameter storage. In this case, only the units of
the quantities are considered in the mapping rule. Complex mapping rules consist of predefined
formulae for the calculation of specific SLA parameters using the resource metrics. For the
evaluations in Section 7.1, we execute simple mapping rules. Nevertheless, Table 3.1 presents
some complex mapping rules.

In the mapping rules presented in Table 3.1, the downtime variable represents the mean time
to repair (MTTR), which denotes the time it takes to bring a system back online after a failure
situation and the uptime represents the mean time between failure (MTBF), which denotes the
time the system was operational between the last system failure to the next. The unit of the
availability equation is in percentage. In this equation, we assume that the uptime and downtime
variables are greater than or equal to zero. Rin is the response time for sending a request in
the inwards communication direction and is calculated as packetsize

bandwidthin−inbytes in seconds. The
packetsize is the size of the query sent in and its unit is in megabit. The bandwidthin is the total
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Table 3.1: Complex Mapping Rules.

Resource Metrics SLA Parameter Mapping Rule
downtime, uptime Availability (A) A =

(
1− downtime

uptime+downtime

)
∗ 100

inbyte, outbytes, packetsize,
bandwidthin,
bandwidthout Response Time (Rtotal) Rtotal = Rin (s) + Rout (s)

bandwidth for communicating in the inwards direction and its unit is in megabit per second.
The inbytes is the amount of bandwidth already in use on this channel and its unit is in megabit
per second. Rout is the response time for receiving an answer in the outwards communication
directions and is calculated as packetsize

bandwidthout−outbytes in seconds. The meaning of the variables in
this equation are similar to those in the Rin equation and their units are the same. The response
time equation shown in Table 3.1 considers only the data transfer time values. It does not include
computational time values because in our experiments with web applications, these values are
small and negligible. Therefore, our response time equation is custom to web application and
does not represent a generalized formula for other application types. The mapped SLAs are
stored in the mapped metric database for usage during the monitoring phase.

Monitoring SLA objectives and notifying the knowledge component: In this phase, the
run-time monitor accesses the mapped metrics’ database to get the mapped SLA parameter val-
ues that are equivalent to the agreed SLA objectives, which it uses together with the predefined
thresholds in the monitoring process to detect future SLA violation threats or real SLA violation
situation. This is achieved by comparing the mapped SLA values against the threat thresholds
to detect future violation threats and against SLA objective thresholds to detect real violation
situations. In case of detection, it dispatches notification messages to the knowledge component
to avert the threats or correct the violation situation. An example of SLA violation threat is
something like an indication that the system is running out of storage. In such a case the knowl-
edge component acts to increase the system storage. Real violations occur only if the system is
unable to resolve the cause of a violation threat notification. In such a case, appropriate data are
logged for calculating the amount of penalty the provider pays for the violations.

3.3 LoM2HiS Implementation Choices

The LoM2HiS framework implementation targets the fulfilment of some fundamental Cloud
requirements such as scalability, efficiency, and reliability. To achieve these aims, the framework
is based on well-established and tested open source projects.

Host Monitor Implementation

The host monitor implementation uses the GMOND module from the GANGLIA open source
project [129] as the monitoring agent. The GMOND module is a standalone component of the
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GANGLIA project. The monitoring agents are embedded in each of the computing nodes and
we use them to monitor the resource metrics of these nodes. The monitored results are presented
in an XML file and written to a predefined network socket. We implemented a Java routine to
listen to this network socket where the GMOND writes the XML file containing the monitored
metrics to access the file for processing.

The processing of the monitored data is carried out in a separate host. For this purpose,
we implemented an XML parser using the well-known open source SAX API [159] to parse
the XML file to extract the metric-value pairs. The measured metric-value pairs are sent to the
run-time monitor using our implemented communication mechanism. These processes can be
done once or repeated periodically depending on the monitoring strategy being used.

Communication Mechanism

The components of a Cloud management infrastructure exchange large numbers of messages
with each other, and within the components. Thus, there is a need for a reliable and scalable
means of communication.

To satisfy this need of communication means, we designed and implemented a communi-
cation mechanism based on the Java Message Service (JMS) API, which is a Java Message
Oriented Middleware (MOM) API for sending messages between two or more clients [97]. In
order to use a JMS, there is a need for a JMS provider that is capable of managing the sessions
and the queues. In this case, we use the well-established open source Apache ActiveMQ [3] for
this purpose.

The implemented communication model is a sort of queuing network. It realizes an inter-
process communication for passing messages within the Cloud management infrastructure and
between the components of the LoM2HiS framework, due to the fact that the components can run
on different machines at different locations. This queue makes the communication mechanism
highly efficient and scalable.
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Host	  Monitor	  

Queue In  
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Figure 3.4: Communication Mechanism Overview

Figure 3.4 presents an example scenario expressing the usage of the communication mecha-
nism in the LoM2HiS framework. The scenario of Figure 3.4 depicts the processes of extracting
the low-level metrics from the monitoring agents embedded in the computing nodes, processing
the gathered information in the host monitor, and passing the derived metric-value pairs to the
run-time monitor for mapping and SLA objective monitoring.
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Run-Time Monitor Implementations

The run-time monitor receives the measured metric-value pairs and passes them into the Esper
engine for further processing. Esper is a component of Complex Event Processing (CEP) and
Event Stream Processing (ESP) applications, available for Java as Esper, and for .NET as NEsper
[69]. CEP is a technology to process events and discover complex patterns among multiple
streams of event data while ESP deals with the task of processing multiple streams of event data
with the goal of identifying the meaningful events within those streams, and deriving meaningful
information from them.

We apply Esper because the JMS system used in our communication model is stateless
and as such makes it hard to deal with temporal data and real-time queries. From the Esper
engine the metric-value pairs are delivered as events each time their values change between
measurements. This strategy reduces drastically the number of events/messages processed in the
run-time monitor. We use an XML parser to extract the SLA parameters and their corresponding
objective values from the SLA document and store them in a database. The LoM2HiS mappings
are realized in Java methods and the returned mapped SLA objectives are stored in the mapped
metrics database.

For data management, we introduce MySQL database in this framework for storing and
querying information. We use Hibernate to realize an interface between the run-time monitor
classes and MySQL database. Hibernate is a high-performance Object/Relational persistence
and query service. The most flexible and powerful Object/Relational solution on the market.
Hibernate takes care of mapping from Java classes to database tables and from Java data types
to SQL data types. It provides data query and retrieval facilities that significantly reduce de-
velopment time [91]. With this database, the Cloud provider now has the capability to create
a graphical interface for displaying the monitored metric values and the SLA objective status
including the reported violation threats and real violation situations.

The performance evaluation of the LoM2hiS framework and the explanation of the achieved
results are presented in Section 7.1.

3.4 Applying LoM2HiS to Traffic Management Systems

In this section, we present the application of the LoM2HiS framework in a traffic management
system as done in [172]. We first discuss background details of the traffic management system
and it challenges after which, we describe the integration of the monitoring framework into this
system.

TMS Background

Traffic Management Systems (TMS) are manifold in terms of complexity and functionality but
share the common objective of information retrieval from the field (through detectors like induc-
tive loops) as well as information propagation to the traffic participant (through actuators such as
Variable Message Signs (VMS)). They consist of numerous subsystems built up in a hierarchi-
cal structure of components (e.g., sensors, actuators, outstations, or routers). Depending on the
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system’s aim, it incorporates different levels of control [81] ranging from fixed time operation
to smart control strategies.
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Figure 3.5: Components of a Traffic Management System.

As shown in Figure 3.5, which is gotten from [172], at the highest level of the TMS, a Traffic
Management Center (TMC) collects data from Sub-Stations (SS) and forwards the information
to its users for global strategies concerning road traffic monitoring and control. The SS collects
intermediate data for controlling particular motorway lines via actuators using the collected
data. Furthermore, the SS aggregates the data of specific areas and sent it to the TMC [104].
Nevertheless it also gathers environmental data.

The SS are interconnected to one or more Local Control Units (LCU) that are in turn wired
to sensors (e.g., loop detectors, radar detectors) and actuators (e.g., gates, traffic lights, VMS).
They are responsible for data processing and autonomous control tasks. Several detection-
and/or actuation-sites may be assigned to an LCU. The minimum system configuration of a
TMS can be composed of an autonomously acting LCU controlling a single VMS. The maxi-
mum system configuration may consist of multiple levels of control and monitoring facilities,
where each level is designed for autonomous operation as a kind of fallback in case of breakdown
of a higher order level facility [171].

As discussed in [170], communication facilities differ throughout the hierarchical structure
of the TMS depending on the levels involved. Different regions are restricted (but de-facto) stan-
dards are dedicated to specific communication levels (e.g., A – D in Figure 3.5), which is similar
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to the approach in [110]. We assume that the levels A and B support IP-based communication
whilst levels C and D may use field-bus based master-slave communication. In the remainder
of this work, we assume TLS 2002 [79] as the appropriate protocol for communication on the
field-bus level.

Today system operators often demand for a certain availability of the TMS. For this reason,
maintenance contractors and component vendors need to provide guarantee for a certain avail-
ability of the overall system and its components to fulfill the requirements. As shown in Figure
3.5, the overall availability of a TMS depends on the availability of each node in the system. In
order to be able to automatically enforce the availability SLA objectives, the required low-level
metrics need to be monitored for every node on each level of control in the system architec-
ture. This means the components of the system must be instrumented for feeding back these
metrics that can then be mapped to high-level application specific SLA-parameters. As differ-
ent communication technologies might be involved, the assumption of IP-based communication
throughout all levels of hierarchy (as made for Cloud Environments in [60]), is not applicable.
Therefore, like the monitoring agents for IP-based nodes, monitoring gateways are needed to
bridge the gap to non IP-based nodes in the TMS.

LoM2HiS for TMS-Infrastructures

In this section, we describe the application of the LoM2HiS framework to the TMS-Infrastructures.
We describe the process of extending and integrating the monitoring components in the traffic
management system.

Applying the LoM2HiS Framework to TMS

As described in Section 3.2, the LoM2HiS framework consists of some components like: the
Host Monitor gathering information from the deployed monitoring agents and the Run-time
Monitor that processes information and performs SLA enforcement.

As shown in Figure 3.5, communication facilities differs among the hierarchy levels. The
monitoring agents can not be directly applied to the nodes at each level. Thus, in Figure 3.5,
levels A and B support IP-based communication while levels C and D use field-bus based com-
munication. Therefore, only nodes above levels C and D can be supervised using monitoring
agents.

The nodes on the field-level can be observed by extending the LCU operation with the help
of a monitoring gateway. The monitoring gateway functions as the LCU’s monitoring agent
as well as a proxy for the nodes, which includes sensors and actuators connected to it. These
slave-nodes are distinguished by adding an additional unique digit (e.g., 1.0.0.1.1) to the IP of
the master-node (1.0.0.1). Figure 3.6 shows the application of the LoM2HiS framework.

There are different means of deriving the important metrics indicating the liveliness of a
specific node from the field-bus communication, which include the following: i) Physical check
of communication (i.e., the response of the node to (OSI-2) requests), ii) Syntactical check of
communication (i.e., interpretation of the protocol-specific data (OSI-7) exchanged over the
field-bus), and iii) Semantical check of communication (e.g., throughput by the means of the
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Figure 3.6: Applying LoM2HiS to TMS.

number of PDU’s sent and received per unit of time, response-rate by the means of the number
of correct responses on requests).

By applying monitoring agents to IP-based nodes and covering non IP-based nodes by cus-
tom monitoring gateways, the traffic management system is prepared for delivering the low-level
metrics required for SLA enforcement.

As mentioned earlier, the host monitor processes monitored values delivered by the moni-
toring agents and the monitoring gateways embedded in the nodes of the TMS. It extracts the
metric-value pairs from the raw metrics and transmits them periodically to the Run-time Mon-
itor. The Run-time Monitor chooses the mapping rules to apply based on the type of service
being provisioned. The mapping rules are used to compose, aggregate, or convert the low-level
metrics to form the equivalence of the high-level SLA parameters.

The whole information flow from the sensor/actuator nodes up to the LoM2HiS framework
is shown in Figure 3.7. The Host-Monitor transmits its data periodically (e.g., every 30 seconds)
to the Run-time Monitor. The Run-time Monitor in turn inserts the metrics with the actual
timestamp into the database. We utilize these characteristics in the following assumptions:

1. timestamps for the raw metrics on the Sensor/Actuator or monitoring gateway level re-
spectively may be omitted since the host monitor assures a database-entry every specified
interval of time,
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2. for each node, we calculate the uptime by multiplying the number of entries indicating
”alive” in each interval of time,

3. for each node, we calculate the downtime by multiplying the number of entries not indi-
cating ”alive” in each interval of time.

The uptime and downtime metrics are represented by views stored in the database. These
views are designed as complex mapping rules for example to derive the high-level SLA-parameter
”Availability” as shown in Table 3.1. In the mapping rule, the downtime variable represents the
mean time to repair and the uptime represents the mean time between failures.

Through the application of these changes to the framework, we extended the run-time moni-
tor from monitoring services to monitoring of nodes, which is the core requirement to guarantee
high availability in traffic management systems.

We present in Section 7.2 some evaluations of the adoption of LoM2HiS framework in traffic
management system. We show the scalability of the monitoring framework and discuss the
achieved result.

3.5 DeSVi Architecture Motivation

The importance of efficient SLA violation detection for both Cloud providers and consumers
cannot be over emphasized. Currently, there are some existing body of work considering the
development of flexible management infrastructures for large-scale systems [33], nevertheless,
there is a lack of adequate monitoring infrastructure to detect possible SLA violations. More-
over, the available infrastructures are not capable of setting up virtual machines in Clouds and
deploying customer tasks.

Furthermore, the determination of optimal measurement intervals for monitoring the low-
level metrics is still an open research issue. Too frequent measurement intervals may negatively
affect the overall system performance, whereas too infrequent measurement intervals may cause
heavy SLA violations.

The DeSVi architecture [62, 68] aims to address these challenges of efficiency in monitor-
ing resources and detecting application SLA violations in Clouds. The architecture utilizes the
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LoM2HiS framework for resource monitoring and low-level metrics mapping. In the next sec-
tion, we present a motivating use case scenario for the development of this architecture.

Motivating Use Case Scenario

This use case scenario describes the essence of the DeSVi architecture. In this use case and the
setup for DeSVi, we assume the deployment of one application per virtual or physical machine.
Figure 3.8 presents the motivating scenario.
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Figure 3.8: DeSVi Motivating Scenario.

As previous explained, Cloud providers can enforce application SLA objectives by monitor-
ing the resource metrics and mapping them to the equivalence of the high-level SLA parameters.
However, the questions now are how often should the providers monitor? And how can they
determine the optimal measurement intervals in order to achieve efficiency in monitoring? Be-
cause monitoring at high rate causes overheads, which degrades the overall system performance
and at the same time, monitoring at low rate risks missing the detection of SLA violations.

To address this question, we propose and develop the DeSVi architecture, which consists of
different components for the deployment and management of application provisioning.
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3.6 DeSVi Design Details

This section describes in detail the Detecting SLA Violation infrastructure–DeSVi architecture,
its components, and how the components interact with one another (Figure 3.9). The proposed
architecture is designed to handle the complete service provisioning management lifecycle in
Cloud environments. The service provisioning lifecycle includes activities such as service de-
ployment, resource allocation to tasks, resource monitoring, and SLA violation detection.
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Figure 3.9: Overview of the DeSVi Architecture and Component’s Interaction.

The topmost layer represents the users (customers) who place service provisioning requests
through a defined application interface (step 1 in Figure 3.9) to the Cloud provider. The provider
handles the user service requests based on the negotiated and agreed SLAs with the users. The
application deployer, which is located on the same layer as the run-time monitor, allocates nec-
essary Virtual Machine (VM) resources for the requested service and arranges its deployment
on the Cloud environment (step 2). The deployment of VMs and environmental configurations
are performed by the AEF (Automated Emulation Framework) [33] (step 3). The host moni-
tor observes the metrics of the resource pool comprising virtual machines and physical hosts
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(step 4). The mapping between the resource metrics (monitored by the host monitor) and SLAs
(monitored by the run-time monitor) is managed by the LoM2HiS framework.

The arrow termed Failover as presented in Figure 3.9 indicates redundancy in the monitoring
mechanism. The host monitor is designed to use monitoring agents as mentioned in Section 3.2,
which are embedded in each node in the resource pool to monitor the metrics of the node. Such
monitoring agents broadcast their monitored values to the other agents in the same resource
pool, creating the possibility of accessing the whole resource pool status from any node in the
pool. The metric broadcasting mechanism is configurable and can be deactivated if necessary
but it can obviate the problem of a bottleneck master node for accessing the monitored metrics
of the resource pool.

The DeSVi architecture is designed to monitor and detect SLA violation in a single Cloud
data center. To be able to manage a Cloud environment with multiple data centers, we intend to
apply a decentralization approach where the proposed system would be installed on each data
center. The LoM2HiS component in our system is already designed with a scalable communi-
cation mechanism, which can be easily utilized to allow communication between data centers.
In the following sections we explain all components of our system in detail.

Application Deployer

The Application Deployer is responsible for managing the execution of user applications; sim-
ilar to brokers in the Grid literature [2, 58, 108]. However, compared to brokers, the Applica-
tion Deployer has more knowledge and control of the application tasks, being able to perform
application-level scheduling, for example, for parameter sweeping executions [37]. It provides
an application interface to the users and simplifies the processes of transferring application input
data to each VM, starting the execution, and collecting the results from the VMs to the front-end
node. The mapping of application tasks to VMs is performed by a scheduler located in the Ap-
plication Deployer. After deploying application on the VMs, the application deployer stores the
VM IDs, which is used by the monitoring component to identify the VMs to monitor.
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Figure 3.10: Application Deployer.

Figure 3.10 illustrates the main modules of the Application Deployer. The task generator
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integrated with the application interface receives from the user the application and its parameters,
and at the same time the VM deployer generates a machine file based on user requirements (step
1). The scheduler uses this machine file and a list of all tasks (step 2) to map tasks to VMs (step
3). Each VM contains an executor, which requests tasks from the task manager whenever the
executors are idle and there are tasks to be executed, thus allowing a dynamic load balancing
(step 4). The task manager is also responsible for triggering the task executions on VMs (step
5) and collecting the results when tasks complete.

Automated Emulation Framework

The Automated Emulation Framework (AEF) was originally conceived for automated configu-
ration and execution of emulation experiments [33]. Nevertheless, it can also be used to set up
arbitrary virtual environments by not activating the emulated wide-area network support. In the
latter case AEF works as a virtualized infrastructure manager, similar to tools such as OpenNeb-
ula [166], Oracle VM Manager [142], and OpenPEX [177].
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Figure 3.11: Automated Emulation Framework Overview.

Figure 3.11 depicts the architecture of the AEF framework. AEF input consists of two
configuration files providing XML description of both the physical and virtual infrastructures.
Using this information, AEF maps VMs to physical hosts. AEF supports different algorithms
for VM mapping. The algorithm used in this work tries to reduce the number of hosts used by
consolidating VMs as long as one host has enough resources to host several VMs. At the end of
the mapping process, the resulting mapping is sent to the Deployer, which creates VMs in the
hosts accordingly.

If network configuration is required in the environment (e.g., to create virtual networks),
the Network Manager component of AEF performs this activity. Execution of the applications
may be triggered either by the user, in case of interactive applications, or directly by AEF in
case of non-interactive applications. In the experiments presented in Section 7.3, we opted for
the former approach where the execution is triggered by the application deployer. VMs can
be deployed via cluster front-end and then users can log in the machine and interact with the
application.
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3.7 DeSVi Implementation Strategies

In this section, we describe the implementation choices for each DeSVi component. To realize
the components, we incorporated, whenever possible, well-established and tested open source
tools in the implementations.

Application Deployer

The Application Deployer is written in Java and has as input a machine file (in plain ASCII
format), which contains the list of hostnames or IPs of the VMs allocated to the user application
and a task generator Java class to split the work to be done into a lists of tasks. For a rendering
application, for instance, such a class includes a list of frames and the command to render them.
The division of tasks per VM is performed by the Application Deployer’s scheduler as described
in Section 3.6.

The Application Deployer uses scp, a standard tool for copying files among multiple ma-
chines, in order to transfer the application-related files from the front-end node to VMs respon-
sible for executing tasks. The ssh command is responsible for triggering an executor on each
VM specified in the machine file. Each executor requests tasks to be executed from the task
manager. During the user application execution, the Application Deployer generates log files
with the time required to execute each task. After tasks executions are completed, the results are
transferred back to the front-end node via scp. This model was chosen because it provides a reli-
able mechanism for file transferring ( scp) together with persistent logging information that does
not depend on a DBMS to archive results. The overall result of the approach is a reliable and
lightweight mechanism for managing tasks that has an insignificant overhead on the platform,
which is a requirement of a system aiming at managing QoS of resources.

Virtual Machine Deployer and Configurator

The automated emulation framework used to deploy and configure the virtual machines is im-
plemented in Java. The framework inputs are XML files describing the characteristics of both,
the required virtual machines and the cluster. Once these files are parsed, the Mapper component
maps the virtual machines to the cluster nodes. During this stage, AEF ensures that the resources
required by all virtual machines assigned to a cluster node do not exceed the node’s available
resources.

Once the mapping is finished, the resulting configuration is applied in the cluster by the VM
Deployer component. Here, a parallel standalone deployer, which is part of the AEF core, is
used. This parallel deployer module does not require external tools or systems for its operation,
and it works as follows. First, a base image file of the virtual machines is copied, via scp, to
each cluster node (as determined by the Mapper) simultaneously. This image contains all the
software and configuration required by the application. After the base image is copied to each
physical machine, it is replicated there to achieve the number of virtual images intended to be
deployed on this specific physical machine. This step is also carried out simultaneously on each
physical machine.
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The replicated images are configured with VM-specific settings, such as hostname and static
IP address. Finally, virtual machines are simultaneously created on each host from each image
file replicated in the previous step. Furthermore, the deployer checks if an image is already
present in a host before performing the transfer. Thus, if the image is already present in the host,
the transfer process is skipped in such a host, saving bandwidth for the transfer of images in other
hosts. Moreover, if the replicated VM images on each host are newer than the base image in use,
the replication process is skipped. AEF is lightweight and supports deployment of systems
based on Xen with negligible overhead. Moreover, its parallel transfer of VMs and selective
replication of images reduces the amount of time required for building, and the deployment of
virtual environments.

We present the evaluations of the DeSVi architecture in Section 7.3. We show in the evalu-
ation the efficiency of the architecture in detecting SLA violations and in determining optimal
measurement interval.
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CHAPTER 4
SLA-Aware Application Scheduling

In the previous chapter, we addressed the issue of enforcing the SLA of application executing
alone on a Cloud infrastructure. However, deploying one application per virtual machine is
costly and might cause under-utilization of resources. Considering that one of the basic fea-
tures attracting customers to the Cloud is low cost of application provisioning. Thus, the Cloud
provider needs more appropriate scheduling and deployment strategies to achieve low cost, avoid
resource wastage, and ensure the application performance.

In this chapter, we extend the Cloud management infrastructure with an SLA-aware applica-
tion scheduling heuristic. We present a motivating scenario for the development of the schedul-
ing heuristic after which, we present the detail design and implementation of the heuristic.

4.1 Scheduling Approach Motivation

Currently, many Cloud customer are interested in cost-effectively deploying single applications
in Clouds. This is a situation common in the Software as a Service (SaaS) delivery model.
Numerous commercial Cloud providers such as salesforce.com [157] are offering the provision
of single applications based on agreed SLA terms. However, these commercial providers use
custom techniques, which are not open to the general public. Therefore, to foster competitive
Cloud market and reduce cost, there are need for open solutions. In the next section, we present
a use case scenario showing the motivation for our open source scheduling solution.

Use Case Scenario

Figure 4.1 presents a motivating scenario for the development of our scheduling and deployment
heuristic.

The use case scenario shows a Cloud provider and a pools of customers who wish to deploy
their applications on the Cloud resources based on the pre-agreed SLA objectives. The challenge
now is how to deploy these application on the available virtual machines in the Cloud to ensure
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Figure 4.1: Scheduling Motivation Scenario

their performance and enforce the agreed SLA objectives. Furthermore, another challenge is
how to manage resources to achieve high utilizations and maximum deployments.

To address these challenges, we present a novel scheduling heuristic considering multiple
SLA parameter objectives, such as amount of required CPU, network bandwidth, and storage
in deploying applications on Clouds. The heuristic includes a load-balancing mechanism for
efficient distribution of the applications’ execution on the Cloud resources. We also present a
flexible on-demand resource allocation strategy included in the heuristic for automatically start-
ing new virtual machines (VM) when a non-appropriate VM is available for application deploy-
ment. We discuss the concept and detailed design of the heuristic including its implementation
in the CloudSim simulation tool [32, 34].

The scheduling strategy proposed in this section is integrated into the LoM2HiS framework
as shown in Figure 4.2.
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Figure 4.2: LoM2HiS with Scheduling Strategy

4.2 Resource Provisioning and Application Deployment Models

The idea of Cloud computing is to provide resources as a service in a flexible and scalable
manner [31]. There are three well known types of resource provisioning [90, 147] in Clouds:
i) Infrastructure as a Service (IaaS) that offers bare hardwares such as the physical machines,
storage devices, and network infrastructures as a service. Amazon EC2 [6] is an example of
IaaS offering; ii) Platform as a Service (PaaS), which delivers platform for application develop-
ment and deployment as a service. It typically utilizes virtualized resources in form of virtual
machines that are capable of provisioning resources to applications. A typical example of PaaS
service is the Google App Engine [85]; and iii) Software as a Service (SaaS) offering resources
for the provisioning of single applications in a Cloud environment. Vendors of SaaS include
salesforce.com [157].

The Cloud provisioning and deployment model presented in Figure 4.3 shows a scenario
combining the three different types of resource provisioning to host service requested from cus-
tomers. The customers place their service deployment requests to the service portal (step 1 in
Figure 4.3), which passes the requests to the request processing component to validate the re-
quests (step 2). If the request is validated, it is then forwarded to the scheduler (step 3). The
scheduler selects the appropriate VMs through the provisioning engine in PaaS layer for de-
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Figure 4.3: Cloud Provisioning and Deployment Model.

ploying the requested service and the load-balancer balances the service provisioning among
the running VMs (step 4). The provision engine manages the VMs on the virtualization layer
and the virtualization layer interacts with the physical resources via the provision engine in IaaS
layer (step 5).

The low-level resource metrics of the physical resources at the IaaS layer are monitored by
the LoM2HiS framework [60] (step 6). We use the knowledge management component [131]
to provide reactive actions in case of SLA violations (step 7). The service status and the SLA
information are communicated back to the service portal (step 8).

Although, the scenario described above is a possible way of combining the three types of re-
source provisioning, there exist other scenarios like provisioning of virtual machines alone (step
9) and provisioning of physical resources alone (step 10), which are possibilities of provisioning
at the single layers alone.

However, our approach aims to provide an integrated resource provisioning strategy. Thus,
our proposed scheduling heuristics considers the three layers. Efficient resource provisioning
and application deployments at these layers are not trivial considering their different constraints
and requirements. At the IaaS layer the physical resources must be managed to optimize uti-
lizations. At the PaaS layer, the VMs have to be deployed and maintained on the physical host
considering the agreed SLAs with the customer. Deploying single applications at SaaS layer is
challenging due to the fact that each application demands the fulfillment of its SLA terms. In the
next section we discuss our proposed scheduling heuristic aimed to address these challenges.
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4.3 Scheduling and Load Balancing Mechanisms

The proposed scheduling heuristic [59] aims at deploying applications on virtual machines based
on the agreed SLA objectives. With this strategy, the possibility of violating the SLA objectives
are highly reduced thereby optimizing the performance of the applications, and increasing the
profits of the Cloud provider, since he does not need to pay costly SLA violation penalties. More-
over, the integrated load-balancer in the heuristic ensures high and efficient resource utilization,
consequently saving the provider the cost of maintaining unused resources.

In this work, we assume that the SLA terms between the customer and the Cloud provider are
already established. Thus, the processes of SLA specification, negotiation, and establishment are
out of scope for this work, but there are ongoing research work where the VieSLAF framework
[24] is used to address the issues.

1: Input: UserServiceRequest
2: get globalResourcesAndAvailableVmList;
3: // find appropriateVMList
4: if AP (R, AR) ! = ∅ then
5: //call the load balancing algorithm
6: deployableVm = load-balance(AP (R, AR))
7: deploy service on deployableVm;
8: deployed = true;
9: else

10: if globalResourceAbleToHostExtraVM then
11: start newVMInstance;
12: add VMToAvailableVMList;
13: deploy service on newVm;
14: deployed = true;
15: else
16: queue serviceRequest until
17: queueTime > waitingTime
18: deployed = false;
19: end if
20: end if
21: if deployed then
22: return successful;
23: terminate;
24: else
25: return failure;
26: terminate;
27: end if

Algorithm 4.1: Scheduling Heuristic

According to the pseudocode presented in Algorithm 4.1, the scheduler receives as input the
customers’ service requests (R) that are composed of the SLA objectives (S) and the application

37



data (A) to be provisioned (line 1 in Algorithm 4.1). The request can be expressed as R = (S,
A). Each SLA agreement has a unique identifier id and a collection of SLA Objectives (SLOs).
The SLOs can be defined as predicates of the form:

SLOid(xi, comp, πi) with comp ∈ {<,≤, >,≥,=} (4.1)

where xi ∈ {Bandwidth,Memory, Storage,Availability} represents sample SLA parame-
ters, comp the appropriate comparison operator, and πi the values of the objectives.

The output of the scheduler is the confirmation of successful deployment or error message
in case of failure. In the first step, it extracts the SLA objectives, which forms the basis for
finding the virtual machine with the appropriate resources for deploying the application. Next, it
gathers information about the total available resources (AR) and the number of running virtual
machines in the data center (line 2). The SLA objectives are used to find a list of appropriate
virtual machines (AP ) capable of provisioning the requested service (R). This operation can be
expressed as

AP (R,AR) = {VM : VM ∈ AR, capable(VM,R)} (4.2)

where capable(VM,R) is a predicate that returns true if the virtual machine is capable of pro-
visioning the particular request or false otherwise (lines 3-4). Once the list of VMs are found,
the load-balancer decides on which particular VM to deploy the application in order to balance
the load in the data center (lines 5-8).

In case there is no VM with the appropriate resources running in the data center, the sched-
uler checks if the global resources consisting of physical machines can host new VMs (lines
9-10). If that is the case, it automatically starts new VMs with predefined resource capacities to
provision service requests (lines 11-14). When the global resources cannot host extra VMs, the
scheduler queues the provisioning of service requests until a VM with appropriate resources is
available (lines 15-16). If after a certain period of time, the service requests cannot be scheduled
and deployed, the scheduler returns a scheduling failure to the Cloud admin, otherwise it returns
success (lines 17-27).

The load-balancer is presented in Algorithm 4.2. Its working strategy is similar to that of the
Next-Fit algorithm [92], which in an array of boxes fills each box one after the other and never
goes back to the filled boxes. The load-balancer as shown in Algorithm 4.2 is not an extension
of Next-Fit algorithm and has two core differences to it: i) it does not fill a box to the full before
starting to fill another one and ii) it goes back to the half filled boxes to add new items. Their
similarity lies in the fact that in each iteration, it does not put items in the last filled box unless
there is no other appropriate box among all the boxes.

As shown in Algorithm 4.2, the load balancer receives as input the appropriate VM list (line 1
in Algorithm 4.2). In its operations, it first gets the number of available running VMs in the data
center in order to know how to balance the load among them (line 2). In the next step, it gets a
list of used VMs, i.e., VMs that are already provisioning applications (line 3). If this list is equal
to the number of running VMs, it clears the list because that means all the VMs are currently
provisioning some applications (lines 4-7). Therefore, the first VM from the appropriate VM
list can be selected for the deployment of the new application request. The selected VM is then
added to the list of used VMs so that the load-balancer does not select it in the next iteration
(lines 8-15).
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1: Input: AP (R, AR)
2: globalvariable availableVmList
3: globalvariable usedVmList;
4: deployableVm = null;
5: if size(usedVMList) == size(availableVmList) then
6: clear usedVmList;
7: end if
8: for vm in AP (R, AR) do
9: if vm not in usedVmList then

10: add vm to usedVmList;
11: deployableVm = vm;
12: break;
13: end if
14: end for
15: return deployableVm;

Algorithm 4.2: Load Balancing Strategy

The load-balancer tries to place one application on each VM running in the data center in
the first phase after which it goes back again to place new applications on the VMs. The idea
is that VMs executing less number of applications perform better than ones executing many
applications while the others are running empty.

The load-balancer alone has a total worst-case complexity of 0(n2) in load-balancing and
selecting the specific VM for application deployment. This worst-case complexity is attributed
by two processes: i) by the processes of selecting the specific VM, which has a worst-case
complexity of 0(n) because the load balancer in worst case has to go through the appropriate
VM list of n size to select a specific VM; and ii) by the processes of balancing the load among
the VMs, which has a worse-case complexity of 0(n). As shown in Algorithm 4.2 lines 8-14,
this process is a sub-process of selecting the specific VM. Thus, the total worst-case complexity
is of 0(n2).

The scheduling heuristic without the load-balancer has a worst-case complexity of 0(m+n).
This complexity is defined by the processes of finding out the resource capacities of the m
physical machines and n available virtual machines in the data center. Other operations of the
heuristic have constant complexity (0(1)) except the process of checking for available resources
on the physical machines in order to start new VMs, which has a worst-case complexity of 0(m).

Therefore, the total worst-case complexity of the proposed heuristic is a result of the sum of
the scheduling heuristic complexity and the load-balancer complexity, which can be expressed
as follows

0(m+ n) + 0(n2) = 0(n2 +m). (4.3)

As shown by Equation 4.3, the proposed scheduling heuristic is polynomial at runtime.
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4.4 Implementation Issues

The proposed scheduling heuristic is implemented as a new scheduling policy in the CloudSim
simulation tool for the purpose of evaluation. CloudSim is a scalable simulation tool offering
features like: i) support for modeling and simulation of large scale Cloud computing environ-
ments including data centers, on a single computing machine; ii) a self-contained platform for
modeling Clouds, service brokers, resource provisioning and application allocation policies; iii)
capability of simulating network connections among simulated components; and iv) support for
simulation of federated Cloud environment able to network resources from both private and
public providers. Furthermore, CloudSim posseses two unique features: i) availability of virtu-
alization engine that aids in creation and management of multiple, independent, and co-hosted
virtualized services on a data center’s physical machine; and ii) ability to switch between space-
shared and time-shared allocation of CPU cores to virtualized resources. The above mentioned
features of CloudSim help accelerate development of new application provisioning algorithms
for Cloud computing. Further information about CloudSim can be found in [34].

In the next section, we describe the scheduling heuristic implementation together with the
custom extensions made to the CloudSim tool.

Custom Extensions and Scheduler Implementation

We extended CloudSim with the components shown in the custom extensions layer as presented
in Figure 4.4. The infrastructure level services are modeled by the core layer representing the
original CloudSim data center, which encapsulates sets of computing hosts that can either be
homogeneous or heterogeneous with respect to the configuration of their hardware (CPU cores,
bandwidth, storage, memory). Each data center instantiates a resource provisioning component
that implements a set of policies that allocates resources to computing host and virtual machines.

Core Layer

CloudSim

VM VM VM.........
Virtualization 

SLAAwareScheduler

DatacenterBroker

ServiceRequest DatacenterModel

Control Policy

Simulation Specific

Custom Extensions Layer

Figure 4.4: CloudSim Extension Architecture.
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Our extensions to CloudSim is divided into two groups of Java classes: i) the control policy
classes; and ii) the simulation specific classes. The control policy classes include the implemen-
tations of a new data center broker for interfacing with the data center and our proposed schedul-
ing heuristic. The data center broker is responsible for mediating negotiations between cus-
tomers and Cloud providers in respect of allocating appropriate resources to customer services
to meet their application’s QoS needs and to manage the provider resources in the CloudSim.
Our extended data center broker includes the capability of running dynamic simulations thereby
removing the burden of statically configuring the whole simulation scenario before starting the
simulation. With this feature one can generate and send in new events (service requests) during
the simulation runtime.

The proposed scheduling heuristic provides policies used by the data center broker for al-
locating resources to applications. The implementations of the heuristic and that of the load-
balancer are realized with Java methods in a class named SLAAwareScheduler as shown in Fig-
ure 4.4. This class is used by the DatacenterBroker class to schedule, deploy applications, and
manage the data center resources.

The simulation specific classes are used in realizing simulation scenarios. This group in-
cludes two Java classes named DatacenterModel and ServiceRequest as shown in Figure 4.4.
The DatacenterModel class presents methods for flexible instantiation of different data center
scenarios for scalable simulations. We used this class in our evaluations to easily configure and
evaluate different scenarios. The ServiceRequest class represents a customer service request. It
encapsulates information about the SLA parameter objectives agreed between the customer and
the provider and the application data to be provisioned in the Cloud.

We present in Section 7.4 the evaluation of the scheduling heuristic. The evaluation demon-
strate the achievable resource utilization efficiency and we explained the obtained results.
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CHAPTER 5
Cloud Application Monitoring

In the previous chapter, we discussed the scheduling heuristic to schedule and deploy multiple
applications on single virtual machines based on their service level agreement objectives. The
application behaviour at runtime might change at any point in time making it difficult to en-
sure the agreed SLA objectives. To address this issue the provider needs advanced monitoring
capabilities.

In this chapter, we extend the Cloud management infrastructure with application monitoring
techniques. We first describe the motivation scenario for the development of the monitoring
architecture. In the next step, we discuss the design concepts and the implementation of the
architecture.

5.1 Application Monitoring Motivation

To establish Cloud computing as a reliable state of the art form of on-demand computing, Cloud
providers have to offer scalability, reliable resources, competitive prices, and minimize interac-
tions with the customers in case of failures or environmental changes. However, ensuring SLA
for different Cloud customers at the application layer is not a trivial task. Monitoring at this
layer is necessary as several applications may share the same VMs ( e.g., to reduce energy con-
sumption and cost) or one application may run on multiple VMs ( e.g., large scale distributed
or parallel applications). In the next section, we present a motivating use case scenario for the
development of this monitoring architecture.

Use Case Scenario

The use case scenario describes a Cloud environment where multiple customer applications are
being consolidated and provisioned on the same virtual machine. Figure 5.1 present a graphical
overview of the scenario.

In the use case scenario, each application is being provisioned based on the individual
agreed SLA objectives. Thus, how can the provider guarantee these SLA objectives respec-
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Figure 5.1: CASViD Motivating Scenario.

tively to avoid violations and the payments of penalties via monitoring? Furthermore, how can
the provider automatically determine the optimal measurement intervals for efficient monitoring
of the applications?

To solve this problem, we propose CASViD (Cloud Application SLA Violations Detection)
architecture for efficient monitoring and SLA violation detection at the application provisioning
layer in Clouds. Its core component is the application-level monitor, which is capable of mon-
itoring application metrics at runtime to determine their resource consumption behaviours and
performance. The research contributions of this architecture are: (i) the conceptual design of
the application monitoring techniques, (ii) the build-up, design, and integration of the CASViD
components, (iii) description of the implementation choices for the architecture, and (iv) the
presentation of an algorithm for investigating the optimal measurement interval for monitoring
different application types.

5.2 CASViD Design Concept

CASViD (Cloud Application SLA Violations Detection) architecture is capable of monitoring
single customer application to determine its performance status and thereby check for SLA vio-
lation situations (Figure 5.2).

Customers place their service requests through a defined interface to the front-end node
(step 1, Figure 5.2), which acts as the management node in the Cloud environment. The VM
configurator sets up the Cloud environment by deploying preconfigured VM images (step 2) on
physical machines and making them accessible for service provisioning. The customer request is
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Figure 5.2: CASViD Architecture Overview.

received by the service interface and delivered to the SLA management framework for validation
(step 3), which is done to ensure that the request comes from the right customer. In the next
step the service request is passed to the application deployer (step 4), which allocates resources
for the service execution and deploys it in the Cloud environment (step 5). After deploying
the service application, CASViD monitors the application execution and sends the monitored
information to the SLA management framework (step 6) for processing and detection of SLA
violations.

The VM configurator and application deployer are components for allocating resources and
deploying applications on our Cloud testbed. They are included in the architecture to show our
complete solution.

The proposed CASViD architecture is generic in its usage as it is not designed for a particular
set of applications. The service interface supports the provisioning of transactional as well as
computational applications. The SLA management framework can handle the provisioning of
all application types based on the pre-negotiated SLAs. Description of the negotiation process
and components is out of scope of this thesis and is discussed by Brandic et al. [23].

System and Application Monitor

CASViD architecture contains a flexible monitoring framework based on the SNMP (Simple
Network Management Protocol) standard [38]. It receives instructions to monitor applications
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from the SLA management framework and delivers the monitored information. Its design is
based on the traditional manager/agent model used in network management. Figure 5.3 presents
the monitor architecture. The manager, located in the management node, polls periodically each
agent in the cluster to get the monitored information. In order to enhance its scalability, the
monitor uses asynchronous communication with all cluster agents. It is composed of a library
and an agent. The monitor agent implements the methods to capture each metric defined in
the CASViD monitor MIB (Management Information Base). At the manager side, the monitor
library provides methods to configure which metrics should be captured and which nodes should
be included in the monitoring. The SLA management framework in the system architecture uses
this library to configure the monitoring process and retrieve the desired metrics.

Management System

Monitor Library

Management Node

SNMP Protocol

SNMP Agent

Monitor Agent

Monitor
MIB

/proc

Application
Folder

Application
Folder

Processing Node

Metrics
Metrics ...

Figure 5.3: CASViD Monitor Overview.

Similar to other monitoring systems [72, 129], CASViD monitor is general purpose and
supports the acquisition of common application metrics, and even system metrics such as CPU
and memory utilization. The application metrics (SLA parameters) to be monitored depends on
the application type and how to ensure its performance.

SLA Management Framework

The service provisioning management and detection of application SLA objective violations are
performed by the SLA management framework component. This component is central and inter-
acts with the Service Interface, Application Deployer, and CASViD monitor. In order to manage
the SLA violations, it receives the monitored information from the monitoring agents embedded
in the computing nodes where the applications are executing. The management framework is de-
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signed to access the SLA database containing the originally agreed SLAs between the customer
and the provider. It retrieves from this database the SLA objectives, which are used together
with predefined thresholds to detect SLA violation situations.

The strategy of detecting SLA violations is based on the use of predefined violation thresh-
olds. A violation threshold is a value indicating the least acceptable performance level for an
application. For example Response time ≤ 2ms. In this case, 2ms is the violation threshold.

Exceeding the violation threshold values indicates the occurrence of SLA violations. With
this information the system can react quickly to avert the violation threat and save the provider
from costly SLA violation penalties. In case the violation threat cannot be averted and the
real violation situation persists, the system logs the necessary information for calculating the
appropriate SLA violation penalties.

Algorithm for Obtaining Optimal Intervals

The proposed CASViD architecture can be used in several Cloud management scenarios. For
example to facilitate the execution of multiple applications on a single computing node to reduce
cost and save energy in a Cloud environment. CASViD can also assist management systems to
migrate applications between computing nodes in order to shutdown some nodes to save energy.
The applications normally belong to different customers and are provisioned based on their
agreed SLA objectives. The architecture measures the resource consumption and performance
of each application to detect SLA violations. In order to achieve this, there is a need of finding
an interval for optimal measurements.

The optimal measurement interval depends on the application and its input and such interval
has to be determined automatically. Thus, the provider can automatically select the optimal
measurement interval for each independent application by sampling different intervals until the
provider utility gets stable. Algorithm 5.1 presents the pseudo-code for obtaining the optimal
measurement interval.

intervalList← set list of possible intervals1

optimalInterval← intervalList[0]2

maxTime←MAXTIME3

netUtility← 04

for ∀interval ∈ intervalList do5

tmpNetUtility← monitorApp(maxTime)6

if tmpNetUtility > netUtility then7

netUtility← tmpNetUtility8

optimalInterval← interval9

end10

end11

return optimalInterval12
Algorithm 5.1: Pseudo-code for Obtaining Optimal Measurement Intervals.

As presented in Algorithm 5.1, the variables are first initialized (lines 1-4). Then the algo-
rithm evaluates each interval to find the optimal one (line 5). The algorithm uses each interval
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to monitor the application for a maximum specified time (line 6) after which it checks if the net
utility gained with the current interval is higher than the highest net utility so far (line 7). If
yes, this net utility gain becomes the highest net utility (line 8) and this interval is set to be the
current optimal interval (line 9). If no, the previous highest net utility is retained. The algorithm
goes back to step 5 and checks the other interval using the same procedure. At the end, the in-
terval with the highest net utility is returned as the optimal measurement interval (line 10). The
calculation of the net utility is described in Section 7.5.

5.3 Implementation Choices

This section presents the implementation choices and decision for the CASViD architecture. The
implementation aims at fulfilling some of the Cloud computing requirements such as scalability,
efficiency, and reliability.

CASViD Monitor

The CASViD monitor uses the SNMP protocol for the communication between the manager
and the agent in each cluster node. It is composed of a library and an agent. The monitor
library is implemented in Java and uses the SNMP4J library1, which provides access to all
functionalities of the SNMP protocol for Java applications. The monitor uses version 2c of
the SNMP protocol to communicate with the agents. The communication is performed using
asynchronous requests to enhance the scalability. Each request to an agent creates a listener
process, which is automatically called when the message arrives.

The CASViD monitor agent is implemented in Python and receives the SNMP request
through the net-snmp daemon2 that is installed in each node. The net-snmp daemon forwards
all requests for the metrics defined in the CASViD monitor MIB to the monitor agent. The
monitor agent periodically processes the requests, which are instructions to probe the applica-
tion metrics. These metrics are obtained through the standard /proc directory, which enables the
gathering of kernel information regarding the underlying system including current configuration
and performance metrics. The capture of application metrics is performed by identifying the
process ID executing the application and its log files. The monitoring agent accesses the files to
get the application specific metrics and the obtained results are packaged in an SNMP message
and sent back to the manager by the net-snmp daemon.

We used SNMP in the CASViD monitor to realize a generic solution deployable in various
platforms and operating systems. SNMP is well established, and even many hardware devices
today are being managed based on SNMP protocol.

CASViD SLA Management Framework

The whole framework is implemented in Java language. To realize the SLA violation detection,
it interacts with the monitor through a defined interface where it receives a data structure holding

1SNMP4j - Free Open Source SNMP API for Java - http://www.snmp4j.org/
2Net-SNMP - http://www.net-snmp.org
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the metric-value pairs monitored by the monitor agents. With the metric-value pairs, it builds
a message buffer for the Java Messaging Service (JMS) [97]. The JMS is used together with
Apache ActiveMQ [3] to realize a scalable communication mechanism for the framework.

The message passes through ESPER engine [69], which filters out identical monitored values
so that only changed values between measurements are delivered for the evaluations against the
predefined violation thresholds. The filtering reduces the number of messages to be processed
in order to increase the scalability of the framework. We use MySQL DB to store the processed
messages. In this respect, we use HIBERNATE to map our Java classes into DB tables for easy
storing and retrieving of information.

This framework is implemented to be highly scalable. JMS and ActiveMQ are used because
they are platform independent and due to the scalability of the underlying ActiveMQ queues.
Furthermore, the application of ESPER to filter out identical monitored information reduces
drastically the number of messages to be processed. Especially in situations where the agents
are monitoring in short intervals.

The evaluation of the CASViD architecture is presented in Section 7.5. It shows the ability of
the architecture to monitor and detect application SLA violations. Furthermore, it demonstrate
the strategy of automatically determining the optimal measurement interval for application mon-
itoring.
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CHAPTER 6
Holistic Monitoring and Management

of Provisioning Lifecycle

In this chapter, we discuss the usage of the proposed Cloud management infrastructure with
the help of a case study. We first discuss the holistic monitoring concept. In the next step,
we introduce the knowledge management techniques, which provide the autonomic behaviour
capabilities to our management infrastructure. And finally, we present the details of the case
study, which include an overview of scientific workflows and RNA sequencing in bioinformatics.

6.1 Holistic Monitoring Concept

The term ’holistic’ expresses the importance of a whole solution rather than part solutions. This
concept is being applied in different areas such as in business process engineering [128, 173],
e-government [125, 183, 184], health [16, 100], and engineering [4, 82].

In this thesis, we apply this concept to the monitoring techniques to express the coverage
and ability of our contributed monitoring solutions. Because, in this work, we designed and
implemented two monitoring techniques to monitor at infrastructure- and application-layers in
Clouds. As we have discussed earlier, monitoring alone, at the infrastructure layer or at the
application layer, is not sufficient for the efficient management of Cloud environments. Thus,
the combination of the two monitoring techniques to achieve a holistic monitoring solution for
the proposed Cloud management infrastructure.

6.2 Knowledge Management techniques

In this section, we present knowledge management techniques that utilizes the monitored infor-
mation to provide proactive actions for resource and application management operations. The
knowledge management techniques are used for the autonomic execution of operations such as
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resource allocation, resource deallocation, and virtual machine migration. It provides autonomic
behaviours for the proposed Cloud management infrastructure.

The term knowledge management (KM) in our context, means intelligent usage of measured
data, obtained by monitoring, for the decision making process to satisfy application performance
goal defined in SLA agreements while optimizing the computational resource usage. Apart from
the monitoring phase (as shown in Figure 6.1), the knowledge management consist of three other
phases namely analysis, plan, and execute. The core of the KM is a knowledge database that
interacts with these phases in the management process.

Figure 6.1 presents an overview of our knowledge management approach. The monitor-
ing phase delivers the monitored information, which include details about the actual resource
allocation status, the utilization of the resources by the workflow applications, and the applica-
tions’ performance goal defined in the SLA. The analysis phase processes the monitored data.
It provides an interface for receiving the monitored information from the monitoring phase. It
analyzes the received information to determine the exact application SLA violation threshold
that is violated, and then decides on the exact reactive action to carry out in order to prevent a
future SLA violation. The plan phase plans the execution of the recommended actions and pre-
vents oscillation effects (i.e., allocating and deallocating the same resource interchangeably) in
the operations. This phase is divided into two parts: plan I and plan II. Plan I is responsible for
mapping actions onto physical and virtual machines in the Cloud environments and managing
those machines. Plan II is in charge of planning the order and timing of the actions. The execute
phase is the final one. It executes the recommended actions on the computational devices with
the help of software actuators.

Monitor:	  	  
New	  monitored	  
informa0on	  

Quality	  of	  
recommended	  ac0ons	  
(decisions)	  =	  Viola0ons	  
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(1)	  What	  do	  we	  
allocate?	  

(2)	  What	  does	  the	  
applica0on	  u0lize?	  

(3)	  What	  is	  the	  
performance	  goal?	  
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Knowledge	  base:	  
Recommends	  ac0on	  
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Plan	  I:	  Map	  ac0ons	  onto	  
computa0onal	  devices	  

Plan	  II:	  Schedule	  
execu0on	  of	  ac0ons	  

Figure 6.1: Knowledge Management Overview

We have successfully applied different techniques such as Case-Based Reasoning (briefly
described in Section 2.1), rule-based, etc for knowledge management in Cloud environments
[131–133]. In the next section, we show how we integrated monitoring with knowledge man-
agement techniques in a case study to optimize workflow application execution.
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6.3 Case Study: Integrating Monitoring with Knowledge
Management

This section presents a case study where we apply the proposed Cloud management infrastruc-
ture, which consist of monitoring- and knowledge management aspects to facilitate the execution
of bioinformatic workflow application. The objectives of this case study are: i) the application
of Cloud management techniques to workflow applications; ii) the management of scientific
workflow application execution to support their successful completions using Cloud features;
and iii) the evaluation of our approach, which is demonstrated using TopHat [175], a typical
scientific workflow application from the field of bioinformatics that exemplifies the challenges
in the complex analysis of large data sets from modern high-throughput technologies.

In this case study, we first present an overview of scientific workflow and its challenges.
In a further step, we give some background information on bioinformatic research area, RNA
sequencing, and the TopHat workflow application after which, we present the monitoring of
workflow execution and the application of resource management techniques. This case study is
based on our work presented in [64].

Scientific Workflow Overview and Challenges

A workflow can be defined as a composite task that comprises coordinated human and machine
executed sub-tasks [109]. In computer aided scientific work, a scientific workflow application is
a holistic unit that defines, executes, and manages sub-task processes with the help of software
artifacts [93].

Scientific workflow applications have become an empowering tool for large-scale data anal-
ysis in bioinformatics [154,165], providing the necessary abstractions that enable effective usage
of computational and data resources. They also strive to manage their operation complexities
to free researchers to focus on guiding the data analysis, interpretation of results, and taking
decisions whenever human inputs are required [109].

Considering the fast development of high-throughput technologies, which generate huge
amounts of data, scientific workflow applications can be instrumental in achieving automation
and breaking down extended complexity in the life sciences [174]. The execution of workflow
applications can be computationally intensive and requires reliable resource availability. More-
over, scientific workflow applications should be highly flexible to accommodate changes of input
data and dynamical parameter modifications, even during execution.

The efficient management of such flexible workflow applications seeking to guarantee the
availability of resources and the achievement of their performance goals is a challenging task.
Often, resource availability decides the successful execution of a complex and expensive work-
flow application. Thus, there is a need for advanced techniques to monitor at runtime, the re-
source consumption behaviours and to inform about resource shortages, so that the management
system can take adequate resource allocation decisions to support the successful completion of
each workflow application.

Traditionally, a workflow application can be executed using local and distributed compute
resources. Such resources are basically limited and, traditionally, cannot be dynamically reallo-
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cated. Considering that workflow applications are resource intensive and can take hours if not
days to complete, provisioning them in an environment with fixed resources leads to poor perfor-
mance and possible execution failures due to the lack of a flexible allocation of extra resources.
The Cloud is proving to be a valuable complement to the compute resources, traditionally used in
bioinformatics research laboratories [139]. Cloud computing technology promises on-demand
and flexible resource provisioning that can be realized autonomically [31, 99]. The execution of
workflow applications in a Cloud environment allows for easier management and guaranteeing
of their performance goals.

Bioinformatics Background

Bioinformatics is the research discipline in which scientists, with the use of computational meth-
ods, seek to gain insights from data gathered in the life sciences [109]. An example is the
discovery of interesting patterns in data obtained from laboratory experiments and/or from ear-
lier results stored in databases that can be online, located in storage sites spread around the
world. Bioinformatics is both applying established computational tools to new data, as well
as new tools to well characterized data sets, seeking to improve on earlier methods. Thus, in
bioinformatics, like in many modern research disciplines, scientific workflow applications em-
power advanced and more complex analysis. Previously, some management systems have been
developed to facilitate the execution of workflow applications that use data and services from
distributed sources [5, 55, 83, 96].

As a result of the proliferation of new high-throughput technologies in the life sciences that
generate massive amounts of data, the retrieval, storage, and analysis of data face great technical
challenges [152, 169]. In particular, often, bioinformatics tools, many of which are available
only through web-based interfaces, are not suited for the analysis of newly generated large-scale
data sets due to their computational intensiveness [35,145]. In general, existing workflow appli-
cation management systems cannot handle the massive amounts of data and execute workflow
applications on these efficiently either [120]. New analysis software, workflow applications,
monitoring, and management approaches are required that can take advantage of more powerful
infrastructure such as compute clusters or Cloud environments.

Considering the Next Generation Sequencing (NGS), a recently introduced high-throughput
technology for the identification of nucleotide molecules like RNA or DNA in biomedical sam-
ples. The output of the sequencing process is a list of billions of character sequences called
‘reads’, each typically holds up to 35-200 letters that represent the individual DNA bases deter-
mined. Lately, this technology has also been used to identify and count the abundances of RNA
molecules that reflect new gene activity. We use the approach, called RNA-Seq, as a typical
example of a scientific workflow application in the field of bioinformatics.

At first, in the analysis of RNA-Seq data, the obtained sequences are aligned to the reference
genome. We apply the TopHat [175] aligner, consists of many sub-tasks, some of them executing
sequentially, whereas the others run in parallel (Figure 6.2). These sub-tasks can have different
resource-demand characteristics: needing extensive computational power, demanding high I/O
access, or requiring extensive memory size.

In Figure 6.2, the nodes marked with * represent simplified sub-tasks of the workflow ap-
plication, whereas the nodes marked with # represent the data transfered between the sub-tasks.
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Figure 6.2: Overview of the TopHat Aligning Approach

The first sub-task aligns input reads to the given genome using the Bowtie program [112]. Un-
aligned reads are then divided into shorter sub-sequences that are further aligned to the reference
genome in the next sub-task. If sub-sequences coming from the same read were aligned success-
fully to the genome, it may indicate that this read was straddling a ‘gap’ in the gene, falling on a
so-called splice-junction. After verification of candidate reads falling on splice junctions, these
and the reads that were aligned in the first sub-task are combined to create an output with a
comprehensive list of localized alignments.

Workflow Application SLA Objectives

The provisioning of workflow application in a Cloud environment is to achieve certain perfor-
mance goals as required by the bioinformatic scientist. As discussed in Section 6.3, bioinfor-
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matic workflow applications are resource intensive and take considerable time to complete their
execution.

In this case study, we specify the performance goals for the bioinformatic workflow as SLA
objectives, which are used by the management infrastructure to manage the execution of the
TopHat workflow application used to analyze the RNA-Seq data. Table 6.1 depicts the service
level agreement showing the performance objectives for the workflow application.

Table 6.1: Workflow SLA Objectives.

SLA Parameter SLA Objective
CPU 90 %
Storage 19 GB
Memory 9 GB
Execution Status Successful Completion

Table 6.1 shows the SLA objective requirements for the execution of the workflow applica-
tion. The CPU, memory, and storage are the computational resource necessary for the execu-
tion and analysis of the RNA sequence data. The execution status objective for the workflow
application is very essential. As discussed earlier, the execution time of the workflow applica-
tion depends on the size of the RNA sequence data and the amount of computational resource
available. Restarting the execution of failed RNA sequence data analysis due to lack of com-
putational resources is highly time consuming and costly to bioinformatic scientist, therefore, it
is very important to them to guarantee the continuous execution of the workflow application to
reach successful completion.

Workflow Execution Monitoring

In this section, we present the holistic monitoring technique to monitor the execution of the
workflow application and to report the resource and performance status. Scientific workflow ap-
plications are resource intensive and can take considerable amount of time to complete. The suc-
cessful completion of data analysis using workflow applications in the life sciences is paramount
to the scientist. To facilitate this objective, we apply our developed holistic monitoring tech-
niques to monitor the workflow application executions in order to supervise the computational
resource status.

Normally, workflow applications are composed of other applications (sub-tasks) linked to-
gether to achieve a common goal (as shown in Figure 6.2). A workflow application can be
executed in a distributed system using multiple computational nodes in which case some parts
of the application might execute on a different node. Thus, the successful completion of a work-
flow application depends on the completion of its composed parts.

To demonstrate our approach, we apply the Cloud management infrastrucuture to support
scientific data analysis processes as shown in Figure 6.2. For simplicity and ease of understand-
ing, we use a reduced version of Figure 6.2 in this demonstration.

As described in the early chapters, our monitoring techniques consist of components such

56



as: i) the Monitoring agents that monitors single computational nodes; ii) the Host monitor that
gathers and processes monitored information from the Monitoring agents; and iii) the Run-time
monitor that maps metrics and monitors application SLAs. Figure 6.3 presents how we applied
the monitoring components to efficiently manage the scientific data analysis processes.
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Figure 6.3: Applying Monitoring to Workflow Application

The TopHat workflow application execution is composed of different applications (sub-
tasks) running sequentially and in parallel (as shown in Figure 6.2). Thus, it is necessary to
monitor the computational node used to execute each of these sub-tasks in order to dynamically
allocate resources if needed. As depicted in Figure 6.3, we integrate a Monitoring agent in each
of these computational node used for the execution of the workflow application. The monitoring
agents monitor the low-level resource metrics’ status (e.g., CPU, memory, disk space, through-
put, etc.) of each node and communicate the monitored information (arrow a in Figure 6.3) to
the holistic monitoring model for processing.
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The monitored information consists of unique IDs for each of the computational node and
their resource metrics. Thus, the holistic monitoring model is capable of determining the spe-
cific node and the exact resource metric that might be lacking in the near future. It passes this
information to the knowledge management component (arrow b in Figure 6.3) to take appro-
priate actions to ensure the availability of this resource for continuous execution and successful
completion of the workflow (arrow c in Figure 6.3).

On-Demand Resource Allocation

This section describes how we apply the knowledge management techniques to allocate re-
sources on-demand based on the monitored information. The aims of applying these techniques
are to efficiently manage computational resources to support the execution of the workflow ap-
plication.

To achieve these aims, we introduce a speculative knowledge management technique utiliz-
ing rule-based approach [133]. This approach ensures that at every point in time the computa-
tional nodes posses enough resources for the workflow application. Furthermore, it ensures that
resources are not wasted by reducing the amount of resources allocated to a node, if necessary.

In the life sciences, it has been identified that CPU, storage, and memory are the crucial
computational resources for workflow execution. To demonstrate our speculative approach, we
utilize the defined SLAs in Table 6.1 to enforce the workflow application performance goals.
The SLA specifies objective values for the required computational resources. Enforcing these
objectives guarantees the application performance and its successful completion. The initial size
of a computational node in the Cloud environment is determined based on the predefined SLAs
of the workflow application to be executed.

In a further step, we introduce three notions for resource management: allocated, utilized,
and specified – allocated means the amount of resources allocated to a computational node,
utilized means the amount of resources used by the application executing on the computational
node, and specified means the assumed amount of resources required for successful comple-
tion of the workflow application. An SLA violation occurs, if less resource is allocated than
the application utilizes (or wants to utilize) with respect to the specified objective in the SLA.
Consequently, we try to allocate less than specified, but more than utilized in order to avoid SLA
violations on the one hand and on the other hand to prevent resource wastage.

We define allocating more or less than utilized to be called over-provisioning or under-
provisioning, respectively. In order to know whether a resource r is in danger of being under-
provisioned or is already under-provisioned, or whether it is over-provisioned, we calculate the
current utilization utr = user

prr × 100, where user and prr signify how much of a resource r was
used and allocated, respectively, and divide the percentage range into three regions using Threat
Thresholds (TT). In this case we define two threat thresholds TT rlow and TT rhigh representing the
higher and the lower boundaries as shown in Figure 6.4:

• Region −1: Danger of under-provisioning, or under-provisioning (> TT rhigh)

• Region 0: Well provisioned (≤ TT rhigh and ≥ TT rlow)

• Region +1: Over-Provisioning (< TT rlow)
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Figure 6.4: Example Behaviour of Actions at Time Intervals t1-t6

The idea of this rule-based design is to maintain an ideal value that we call target value tv(r)
for the utilization of a resource r, in exactly the centre of region 0. So, if the utilization value
after some measurement leaves this region by using more (Region -1) or less resources (Region
+1), then we reset the utilization to the target value, i.e., we increase or decrease allocated
resources so that the utilization is again at region 0 using Equation 6.1.

tv(r) =
TT rlow + TT rhigh

2
%. (6.1)

As long as the utilization value stays in region 0, no action is required to be executed. E.g.,
for r = storage, TT rlow = 60%, and TT rhigh = 80%, the target value would be tv(r) = 70%.
Figure 6.4 presents the regions and measurements (expressed as utilization of a certain resource)
at time steps t1, t2, . . . , t6. At t1 the utilization of the resource is in Region −1, because it is
in danger of a violation. Thus, the knowledge database recommends to increase the resource
such that at the next iteration t2 the utilization is at the center of Region 0, that is, the target
value. At time steps t3 and t4 utilization stays in the center region 0 and consequently, no action
is required. At t5, the resource is under-utilized and so the knowledge database recommends
the decrease of the resource to tv(r), which is attained at t6. A large enough span between the
thresholds TT rlow and TT rhigh helps to prevent oscillations of repeatedly increasing and decreasing
the same resource.

Based on these techniques, we can efficiently manage Cloud resources to provision scientific
data analysis processes with enough resources to achieve high performance and to ensure their
successful completion. In Section 7.6, we present the evaluations of this case study.
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CHAPTER 7
Evaluation

In this chapter, we present the evaluations of our contributions, which address the challenges
listed in this thesis. The evaluations are described in different sections corresponding to the
framework and architectures presented in the earlier chapters.

7.1 Metrics Monitoring and Mapping Evaluation

We carried out stress tests and performance evaluations as a proof of concept for the LoM2HiS
framework described in Section 3.1.

Environmental Setup

Figure 7.1 presents our designed evaluation testbed.
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Figure 7.1: LoM2HiS Evaluation Testbed.

The aim of the presented testbed is to test the scalability and performance of the communi-
cation model and to produce a proof of concept for the LoM2HiS framework. Our evaluation
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testbed considers one physical host where GMOND version 3.1.2 is embedded for measuring
the resource metric values. From this host we simulate up to 150 virtual hosts. The virtual hosts
are simulated with Java threads. Each of the threads becomes a copy of the measured raw met-
rics from GMOND. The host monitor is a Java class running on a different thread. It accesses
the measured raw metrics from the virtual host threads, extracts them from their XML files and
transmits them as messages (via Queue In) into the communication model. The essence of us-
ing many virtual hosts is to test the efficiency of the host monitor to process inputs from large
number of hosts. This is equivalent to a real environment where the host monitor processes the
measured metric-value pairs from different hosts.

In the evaluation of the run-time monitor, we defined an SLA agreement for an online web
shop as shown in Table 7.1. The SLA parameter objective values in the table show the quality
of service required by the web shop. Furthermore, in Table 7.1 we defined the threat threshold
values that guide the enforcement of these SLAs. The used test system consists of an Intel
Pentium Core 2 Duo 2.26 GHz, 4GB DDR3 memory, and 3Mb L2 Cache. Mac OS X 10.5
Leopard is the installed operating system and parallel desktop 4.0 is the installed virtualization
environment.

Evaluation Results

This section presents the achieved results of the performance test for the host monitor, commu-
nication model, and the run-time monitor components.

Host Monitor and Communication Model Evaluation Results

Figure 7.2 presents the evaluation settings and the evaluation results of the host monitor and the
communication model. In the evaluation settings, we define four experimental scenarios that
are made up of numerous hosts generating large numbers of messages. Each scenario uses one
defined queue. As shown in Figure 7.2, the y-axis represents time values and x-axis represents
the number of hosts used, and the number of messages generated and sent through the com-
munication model. The host monitor performance (Hperf ) is determined considering the three
internal functions responsible for: i) measuring the infrastructure resource metrics (Tmeasure),
ii) extracting and aggregating the measured metric values (Tprocess), and iii) sending the ex-
tracted metric values into the communication model (Tsend). The overall performance result is
then given by Equation 7.1.

Hperf = Tmeasure + Tprocess + Tsend (7.1)

The communication model performance is equal to the average execution time of the under-
lying queue (Tqueue).

From the results presented in Figure 7.2, it can be noticed in the four scenarios that the
host monitor spends most of its time measuring the infrastructure metrics. This shows that this
function is critical for the overall performance of the host monitor and should be the point of
concentration in any further developments. The achieved results by the communication model
for the different scenarios are relatively stable compared to the number of messages processed.
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Figure 7.2: Host Monitor and Communication Model Results.

Run-Time Monitor Evaluation Results

As already discussed in Section 7.1, the evaluation of the run-time monitor is based on the
settings presented in Table 7.1.

Table 7.1: Run-Time Monitor Evaluation Settings.

SLA Parameter SLA Objective Threat Threshold
Availability 98 % 98.9 %
Response Time 500 ms 498.9 ms
Storage 100 GB 102 GB
Memory 3 GB 3.9 GB
Incoming Bandwidth 100 Mbit/s 102 Mbit/s
Outgoing Bandwidth 50 Mbit/s 52 Mbit/s

The purpose of this evaluation is to test the overall performance of the run-time monitor.
Figure 7.3 depicts the achieved performance result. The y-axis represents time values and the
x-axis the number of hosts. The results are derived from the performances of its core functions
responsible for: i) receiving metric-value pairs, passing them into ESPER engine, and query-
ing ESPER (Trec), ii) extracting the stored SLA from the agreed SLA repository (Tprocess), iii)
applying mappings of low-level metrics to high-level SLA parameters (Tmap), and iv) monitor-
ing and enforcing agreed SLA objective for services (Tmonitor). The overall run-time monitor
performance (TRperf ) is calculated by the Equation 7.2.

TRperf = Trec + Tprocess + Tmap + Tmonitor (7.2)
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Figure 7.3: Run-Time Monitor Results.

According to the results presented in Figure 7.3 the run-time monitor‘s overall performance
depends highly on the performance of the function to extract the agreed SLA parameters from
the SLA repository (Tprocess). This problem can be addressed by using decentralized SLA repos-
itories that make them local and fast accessible to each run-time monitor instance monitoring a
specific service SLA.

In general, the results show that the LoM2HiS framework is scalable and could perform well
in large scale Cloud environment.

7.2 Traffic Management System Monitoring Evaluation

This section presents the evaluation results of the LoM2HiS framework adopted to address the
demands of traffic management systems. The goals of the evaluation are to show the scalability
of the monitoring framework by means of i) the number of nodes connected to a monitoring
gateway and ii) the rate by which the Lom2HiS framework requests metrics from the monitoring
agents or the monitoring gateways.

The evaluation is done through simulations as presented in [172] whereby, we target the
following two questions: i) How many nodes could be handled by a single monitoring gateway
with a reasonable impact on network load and performance of the LCU? and ii) How often is the
LoM2HiS framework allowed to retrieve metric information from a single monitoring gateway
or monitoring agent with acceptable impact on the network load?

In our test-system, the impact on the traffic on the network (level 2 in Figure 7.4) and the
performance of the node hosting the monitoring gateway software (level 3 in Figure 7.4) is
shown by changing the parameters: i) number of hosts; and ii) frequency of retrieval.
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An overview of the testbed is presented in Figure 7.4. It consists of a node simulating the
TMC that hosts the LoM2HiS framework (level 1 in Figure 7.4). The node is made up of an
Intel Pentium 4 Dual-core with 2.8 GHz and 2 GB of RAM. Its operating system is OpenSUSE
11.3. The host used for simulating the LCU-node (level 3) hosting the monitoring gateway is
made up of a 2 GHz AMD Turion 64 X2 Mobile processor with 2 GB of RAM. Its operating
system is MS-Windows XP Professional SP3.

Considering the fact that the main focus of the simulations is on the impact of running the
monitoring system on an existing TMS infrastructure, the performance of the node hosting the
LoM2HiS framework (i.e., the TMC) is not further considered in this work. Furthermore, the
simulation does not consider traffic of ”horizontal communication” between monitoring agents
for backup reasons.

Communication Results

Figure 7.5 shows the evaluation results of the communication between the LoM2HiS framework
and the monitoring gateway. The x-axis represents the number of hosts and the y-axis the average
network traffic in Mbit/sec. The bars colored blue, red and green indicate different frequencies of
retrieval, that is how often the framework retrieves the metric data from the monitoring gateway.
The blue color indicates a request every second, the red color for every 10 seconds, and the green
color for every 30 seconds.

According to the results in Figure 7.5, it can be noticed that the transmission of data for 100
hosts takes approximately 15–20 times the bandwidth of information for one host independent of
the frequency of retrieval. This generally means, the monitored data of many hosts packed in one
output XML document is transferred more efficiently than sending them in single documents. It
is obvious, that the required bandwidth is directly related to the frequency of retrieval, i.e., 30
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Figure 7.5: LoM2HiS Communication Evaluation Result.

retrievals each second result in 30 times the bandwidth required and therefore, have no further
impact on our considerations. It is more interesting to note that a retrieval interval of one second
already results in a notable bandwidth consumption. Consequently a system with 10 LCUs leads
to a total bandwidth consumption of about 1.2 Mbit/s which is equal to a load of 12% in a 100
MBit network (not considering overheads).

We conclude that it is more efficient to incorporate the monitored information of as many
host as possible into one XML document for transport through the network while keeping the
frequency of information retrieval at an appropriate level. A 30 seconds interval still leads to an
accuracy of 99.999905% over a reporting-period of 1 year which shall be sufficient for most use
cases. However, in case higher resolution is needed, extensions to the metric packing strategy
would be necessary.

Monitoring Gateway Performance Results

In Figure 7.6, we show the evaluation results of the time consumed on the LCU in the course
of preparing the metric-data and sending them to the TMC. The preparation of data includes
feeding the metrics of each node into the XML document that is in turn sent over the TCP-
connection to the LoM2HiS framework on the TMC-node. The status retrieval from each node
(i.e., sensors and actuators) is not considered as the data, and is assumed to be constantly fed into
the metric node variables (level 4 in Figure 7.4) when communication on the field-bus occurs.
The x-axis have the same meaning as in Figure 7.5, but the y-axis represents the time consumed
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Figure 7.6: Monitoring-Gateway Performance Evaluation Result.

The results presented in Figure 7.6 indicate that the time consumed for preparation of metric-
data is independent of the frequency of retrieval. The important fact to note is that the preparation
of the XML document has direct impact on the time for measurement while preparation of the
byte-stream and sending the data over the TCP-channel is negligible. However, preparing the
XML data for more nodes at once is generally more time-efficient.

7.3 Resource and SLA Monitoring Evaluation

This section discusses the evaluation of the DeSVi architecture described in Section 3.5 using
two use-case scenarios. The use-case scenarios represent the most dominant application do-
mains provisioned in Clouds today, namely (i) high performance computing applications, which
include image processing and scientific simulations; and (ii) transactional applications, which
include web applications, social network sites, and media sites. The first use-case scenario com-
prises three types of ray-tracing applications based on POV-Ray, and the second one comprises
executions of TPC-W, which is a well-known web application benchmark that simulates a web
server for on-line shopping. The goal of our evaluation is to determine the efficiency of the
proposed architecture in detecting SLA violations at runtime and, based on its output, suggest
optimal measurement intervals for monitoring applications considering the application resource
consumption behaviour.

67



In the following sections, we describe the experimental environment setup. Next, we present
the definition of a cost function, which is used to analyze the achieved results of the two use-
case scenarios. Finally, we discuss in separate sections the two experimental use-case scenarios
including their achieved results and the analysis of the results.

Experimental Environment

The capacities of our private real Cloud experimental testbed is shown in Table 7.2. The table
shows the resource capacities of the physical and the virtual machines being used in the experi-
mental testbed. We use Xen virtualization technology in the testbed, precisely, we run Xen 3.4.0
on top of Oracle Virtual Machine (OVM) server.

Table 7.2: Cloud Environment Resource Setup Composed of 36 Virtual Machines.

Machine Type = Physical Machine
OS CPU Cores Memory Storage

OVM Server AMD Opteron 2 GHz 2 8 GB 250 GB

Machine Type = Virtual Machine
OS CPU Cores Memory Storage

Linux/Ubuntu AMD Opteron 2 GHz 1 1024 MB 5 GB

We have in total nine physical machines and, based on the resource capacities presented in
Table 7.2, we host four VMs on each physical machine. The automated emulation framework
deploys the VMs onto the physical hosts, thus creating a virtualized Cloud environment with
up to 36 computing nodes capable of provisioning resources to applications. We reserve one
front-end node, which is responsible for the management activities.

The front-end node serves as the control entity. It runs the automated emulation framework,
the application deployer, and the LoM2HiS framework, which are the core components of the
DeSVi architecture. The first two components are the supporting blocks of the experiments,
whereas the third is the main component responsible for the results obtained in this section.
Nevertheless, their integration is required in order to enable the experiments. Our private Cloud
testbed is located at the High Performance Computing Lab at Catholic University of Rio Grande
do Sul (LAD-PUCRS) Brazil. We use this virtualized environment to evaluate the two use-case
scenarios presented in two later sections.

Cost Function Definition

To determine an optimal measurement interval for detecting applications’ SLA objective viola-
tions at runtime, we suggest the following two determining factors i) cost of making measure-
ments; and ii) the cost of missing SLA violations. The acceptable trade-off between these two
factors defines the optimal measurement interval.

Using these two factors and other parameters, we define a cost function (C) based on which
we can derive an optimal measurement interval. The ideas of defining this cost functions are
derived from utility functions discussed by Lee et al. [115]. Equation 7.3 presents the cost
function.
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C = µ ∗ Cm +
∑

ψε{cpu,memory,storage}

α (ψ) ∗ Cv (7.3)

where µ is the number of measurements, Cm is the cost of measurement, α (ψ) is the number
of undetected SLA violations, and Cv is the cost of missing an SLA violation. The number of
undetected SLA violations are determined based on the results of the reference measurement
interval, which is assumed to be an interval capturing all the violations of an application SLA
objectives.

This cost function now forms the basis for analyzing the achieved results of our two use-case
scenarios in the later sections. Regarding the values of the two determining factors, we explain
for each use-case scenario how we obtained these cost values.

Image Rendering Application Use-Case

We developed image rendering applications, based on the Persistence of Vision Raytracer (POV-
Ray), which is a ray tracing program available for several computing platforms. In order to
achieve heterogeneous load in this use-case scenario, we experiment with three POV-Ray work-
loads, each one with a different characteristic of time for rendering frames, as described below
and illustrated in Figures 7.7 and 7.8:

• Fish: rotation of a fish on water. Time for rendering frames is variable.

• Box: approximation of a camera to an open box with objects inside. Time for rendering
frames increases during execution.

• Vase: rotation of a vase with mirrors around. Time for processing different frames is
constant.

(a) Fish. (b) Box. (c) Vase.

Figure 7.7: Example of Images for Each of the Three Animations.

Three SLA documents are specified for the three POV-Ray applications. The SLA docu-
ments specify the level of Quality of Service (QoS) that should be guaranteed for each appli-
cation during its execution. Table 7.3 presents the SLA objective thresholds for each of the
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(c) Vase.

Figure 7.8: Behaviour of Execution Time for Each POV-Ray Application.

applications. It should be noted that we are not addressing the issues of SLA definition and
formalization, rather we specify SLA parameters relevant to the Cloud provider in order to man-
age the users’ applications. These SLA objective thresholds are defined based on historical data
and experiences with these specific type of applications in terms of resource consumption [160].
With the historical data, the Cloud provider can determine the amount and type of resources
the application requires. Thus, the provider can make better resource provisioning plan for the
applications.

Based on these SLA objective thresholds, the applications are monitored to detect SLA
violations. These violations may happen either because of unforeseen resource consumptions or
because SLAs are negotiated per application and not per allocated VM considering the fact that
the service provider may provision different application requests on the same VM.

Table 7.3: SLA Objective Thresholds for the Three POV-Ray Applications.

SLA Parameter Fish Box Vase
CPU 98.5 % 97.5 % 99.3 %
Memory 1.28 GB 1.32 GB 1.31GB
Storage 2.16 GB 2.169 GB 2.157 GB

Figure 7.9 presents the evaluation configurations for the POV-Ray applications. We instanti-
ate 36 virtual machines that execute POV-Ray frames submitted via Application Deployer. The
virtual machines are continuously monitored by Gmond. Thus, LoM2HiS has access to resource
utilizations during the execution of the applications. Similarly, information about the time taken
to render each frame in each virtual machine is also available to the LoM2HiS framework. These
information are generated by the applications themselves and are sent to a location where the
LoM2HiS can read them. As described in Figure 7.9, users supply the QoS requirements in
terms of SLOs (step 1 in Figure 7.9). At the same time the images with the POV-Ray applica-
tions and input data (frames) can be uploaded to the front-end node. Based on the current system
status, SLA negotiator establishes an SLA with the user. Description of the negotiation process
and components is out of scope of this paper and is discussed by Brandic et al. [23]. Thereafter,
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VM deployer starts configuration and allocation of the required VMs whereas application de-
ployer maps the tasks to the appropriate VMs (step 3). In step 4, the application execution is
triggered.
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Figure 7.9: Pov-Ray Evaluation Configuration.

Image Rendering Application Use-Case Results

We defined and used seven measurement intervals to monitor the POV-Ray applications during
their executions. Table 7.4 shows the measurement intervals and the number of measurements
made in each interval. The applications run for about 30 minutes for each measurement interval.

Table 7.4: Measurement Intervals.

Intervals 10s 15s 20s 25s 30s 60s 120s
Nr. of Measurements 180 120 90 72 60 30 15

The 10 seconds measurement interval is a reference interval meaning the current interval
used by the provider to monitor application executions on the Cloud resources. Its results show
the present situation of the Cloud provider.

Figure 7.10 presents the achieved results of the three POV-Ray applications with varying
characteristics in terms of frame rendering as explained earlier in this section. We use the 36 vir-
tual machines in our testbed to simultaneously execute the POV-Ray frames. The load-balancer
integrated in the application deployer ensures that the frame executions are balanced among the
virtual machines.

The LoM2HiS framework monitors the resource usage of each virtual machine to determine
if the SLA objectives are met and reports violations otherwise. Since the load-balancer balances
the execution of frames among the virtual machines, we plot in Figure 7.10 the average numbers
of violations encountered in the testbed for each application with each measurement interval.
We analyze and interpret these results in the next section.

71



 0

 50

 100

 150

 200

 0  20  40  60  80  100  120

N
r. 

of
 D

et
ec

te
d 

SL
A

 V
io

la
tio

ns

Measurements Intervals (sec)

Fish Pov-Ray Result
CPU

Memory
Storage

(a) Fish.

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120

N
r. 

of
 D

et
ec

te
d 

SL
A

 V
io

la
tio

ns

Measurements Intervals (sec)

Box Pov-Ray Result
CPU

Memory
Storage

(b) Box.

 0

 50

 100

 150

 200

 0  20  40  60  80  100  120

N
r. 

of
 D

et
ec

te
d 

SL
A

 V
io

la
tio

ns

Measurements Intervals (sec)

Vase Pov-Ray Result
CPU

Memory
Storage

(c) Vase.
Figure 7.10: POV-Ray Experimentation Results.

Image Rendering Application Use-Case Results Analysis

The POV-Ray results presented in Figure 7.10 show that as the measurement interval increases,
the number of detected SLA violation decreases. This effect is straightforward because with
larger measurement intervals, the system misses detection of some SLA violations. The figures
also reflect the resource consumption behaviour of the POV-Ray applications.

We carried out an intrusiveness test in our testbed to find out the processing overhead of a
measurement. This determines the cost of taking measurements. The Measurement processing
includes monitoring of all the virtual machines, processing of monitored data, mapping of low-
level metrics to high-level SLA, and the evaluation of SLA objectives. Figure 7.11 presents the
achieved result.

72



 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120

O
ve

rh
ea

d 
(s

ec
)

Measurements Intervals (sec)

Measurement Intrusiveness graph

Figure 7.11: Intrusiveness Test Results.

Figure 7.11 shows the amount of overhead found in the system and how they decrease as the
measurement intervals increases. This means high cost for measurements with small intervals
and low cost for measurement with larger intervals.

The cost of missing SLA violation detection is an economic factor, which depends on the
SLA penalty cost agreed for the specific application and the effects the violations might have on
the provider for example in terms of reputation or trust issues.

By applying the cost function presented in Equation 7.3 to the achieved results of Figure
7.10, with a measurement cost of $0.6 and missing violation cost of $0.25, we achieve the moni-
toring costs presented in Figure 7.12. These cost values are example values for our experimental
setup. They neither represents nor suggests any standard values. The approach used here is
derived from the cost function approaches presented in literature [114, 194].

It should be noted in interpreting the results of Figure 7.12 that the reference measurement
interval is assumed to capture all SLA violations for each application, thus it only incurs mea-
surement cost. From the figures, it can be noticed on the one hand that the lower the frequency of
measurements, the smaller the measurement cost and on the other hand, the higher the number
of undetected SLA violations, the higher the cost of missing violations. This implies that to keep
the detection cost low, the number of undetected SLA violations must be low.

Considering the total cost of monitoring the fish POV-Ray application in Figure 7.12a, it can
be seen that the reference measurement is not the cheapest although it does not incur any cost of
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(c) Vase.
Figure 7.12: POV-Ray Application Monitoring Cost Relations.

missing SLA violation detection. In this case the 60-second interval is the cheapest and in our
opinion the most suited measurement interval for this application. In the case of box POV-Ray
application the total cost of monitoring, as depicted graphically in Figure 7.12b, indicates that
the lowest cost is incurred with the 25-second measurement interval. Thus we conclude that this
interval is best suited for this application. Also from Figure 7.12c, it is clear that the reference
measurement by far is not the optimal measurement interval for the vase POV-Ray application.
Thus, from the experiments the 30-second measurement interval is considered best suited for
this application group.

Based on our experiments, it is observed that there is no single best suited measurement
interval for all applications. Depending on how steady the resource consumption is, the mon-
itoring infrastructure requires different measurement intervals. Notwithstanding, definition of
these intervals is important to allow estimation of the impact of missed violations in applica-
tions. Note that the architecture can be configured to work with different intervals. In this case,
specification of the measurement frequencies depends on policies agreed by customer and Cloud
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providers.

Web Application Use-Case

As a web application, we performed experiments using the Java implementation1 of the TPC-W
Benchmark [137]. This application simulates the activities of a business oriented transactional
web server. The workload used in the server exercises system components related to several
issues commonly found in web environments, such as multiple on-line browser sessions, dy-
namic page generation with database access and update, transaction integrity, and simultaneous
execution of multiple transaction types.

...
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Figure 7.13: Web Application Evaluation Configuration.

We configured TPC-W to run on the 36 VMs in our setup environment. One VM is used as
the server and the other 35 VMs are used as clients as shown in Figure 7.13. The clients generate
requests that are handled by the server. We use the LoM2HiS framework to monitor the server
and to detect SLA violations.

The quality of service requirement of the web application depends on the amount of available
CPU and memory resources. Thus, we define two SLA objectives for these resource parame-
ters to ensure the performance of the application during its execution. The values of the SLA
objectives are learned based on historical data and sample runs to examine the behaviour of the
application in terms of resource consumptions. For the CPU, we set a 10% threshold and for
memory we set a 12% threshold. The rise of the resource utilization above these thresholds
indicates an SLA violation situation.

1http://tpcw.deadpixel.de/
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Web Application Use-Case Results

The resource usage of the web application server in processing the requests generated by the
clients is monitored by the LoM2HiS framework in order to detect and report the SLA violations.
Like in the case of POV-Ray application, we experiment here with five measurement intervals to
monitor the SLAs during the application executions. The web application is allowed to run for a
total length of seven minutes. In this case, small measurement intervals are chosen considering
the fact that web applications’ behaviour can change drastically within a period of seconds.
Table 7.5 presents the achieved results.

Table 7.5: TPCW Experimentation Results.

Intervals 5s 10s 15s 20s 30s
Nr. of Measurements 84 42 28 21 14

Nr. of CPU violations detected 77 26 14 12 7
Nr. of Memory violations detected 75 41 26 19 12

Table 7.5 shows the number of measurements made with each interval and the number of
SLA violations detected for the CPU and memory resources. Based on these results, we apply
the cost function in the next section to analyze and determine the optimal measurement interval.

Web Application Use-Case Results Analysis

As presented in Table 7.5, the number of SLA violations detected decreases as the mea-
surement interval frequency grows. This is an expected logical behaviour. Therefore, to find
the optimal measurement interval we apply the cost function of Equation 7.3 on the achieved
results.

In this use-case scenario, the cost of measurement is low considering the experimental setup
shown in Figure 7.13. With the setup, the processing of client requests are performed on the
TPC-W server, thus only this server is monitored to detect SLA violations. Therefore, there is
a low overhead in monitoring this single machine. On the other side, the cost of missing SLA
violation is high because the web application performance degrades very fast once the SLA
objectives are violated, which can frustrate a customer waiting for a response of the application.
e.g., waiting for a browser to load.

On the basis that the cost of measurement is low and the cost of missing SLA violation de-
tection is high, we use $0.15 as the measurement cost and $0.30 as the cost of missing violation.
Note that the 5s measurement interval is a reference interval, which means that it detects all SLA
violation and acts as the current default measurement interval. Thus, it incurs only measurement
cost and no cost for missing SLA violation detection. Applying these values to the cost function,
we achieve the results depicted in Figure 7.14.

The results show the total cost incurred by each of the measurement intervals. The cost
of missing SLA violation detection increases as the measurement interval frequency decreases.
This is caused by the fact that the larger the measurement interval, the lower the number of
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Figure 7.14: Web Application Cost Relations.

measurements made and the higher the number of missed SLA violations. Failure to detect SLA
violations means costly SLA penalties for the provider and poor performance of the application.

Therefore, from our experiments we could not find a larger, better measurement interval than
the 5 seconds reference measurement interval, what confirms our assumptions that web appli-
cations are highly sensitive and should be monitored at small intervals to ensure their quality of
service. Furthermore, there can be a surge in clients request of a web application within short
periods of time, thus the monitoring mechanism should be able to detect such situations.

The whole set of experiments presented in this section clearly demonstrate the need for
fine-tuning of monitoring systems to the specific requirements of Cloud applications. However,
different applications have needs for different measurement intervals, and even though some
applications are more stable than other in terms of resource requirements, defining automatic
methods for finding the optimal measurement interval of each application is a non-trivial prob-
lem, which we addressed with the application monitoring architecture described in Chapter 5.

7.4 SLA-Aware Scheduling Evaluation

In this section, we discuss the evaluation of the scheduling heuristic presented in Chapter 4.
The evaluation demonstrates the resource utilization efficiency achievable by the scheduler. It
further shows the higher application performance obtainable while compared to an arbitrary task
scheduler. The evaluations presented here are realized using the CloudSim simulation tool [34].
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We start with the experimental setup and configuration descriptions.

Basic Experimental configurations

The experimental testbed is setup as described in Figure 7.15. It demonstrates the processes of
placing service request by customers and how our proposed scheduler deploys the service on
appropriate Cloud resources.

Cloud Resources

Physical Machine

Service Interface

Scheduler

Service Request

Schedule
Request

Virtualization

VM VM ... VM

Application
Provisioning

Figure 7.15: Scheduling Evaluation Testbed.

The Cloud resources comprises physical and virtual machines. Table 7.6 shows the resource
capacities of the physical machines and the configuration parameters of the virtual machines.
Based on the capacities of the physical machine resources and the sizes of the virtual machines,
we can start several virtual machines on one physical host in the CloudSim simulation engine.

To achieve a reasonable application deployment scenario, we use two types of applications
each with its own SLA terms to realize heterogeneous workloads. The first workload is extracted
from a Web Application (WA) for an online shop and the second workload is a trace of High
Performance Computing (HPC) application represented by an image rendering applications such
as POV-Ray 2.

2www.povray.org
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Table 7.6: Cloud Environment Resource Setup

Machine Type = Physical Machine
OS CPU Core CPU Speed Memory Storage Bandwidth
Linux 6 6000 MIPS 3.072 GB 30000 GB 3 Gbit/s

Machine Type = Virtual Machine
OS CPU Core CPU Speed Memory Storage Bandwidth
Linux 1 1000 MIPS 512 MB 5000 GB 500 Mbit/s

Table 7.7 presents our experimental SLA objective terms for the two application types. The
web application generally requires less resources while executing and its performance is ensured
by the specified SLA objectives. The HPC applications are resource intensive in execution and
their performance are safeguarded by the specified SLA objectives. Guaranteeing these SLA
terms ensures the good performance of the application executions.

Table 7.7: Heterogenous Application SLA Objectives

Application Type CPU Power Memory Storage Bandwidth
Web 240 MIPS 130 MB 1000 GB 150 Mbit/s
HPC 500 MIPS 250 MB 2000 GB 240 Mbit/s

Deployment Efficiency and Resource Utilization

In this experiment, we evaluate the efficiency of the proposed scheduler for deploying customer
service requests and utilizing the available Cloud resources. Furthermore, we test the essence
of the on-demand resource provisioning feature. We simulate a large data center made up of 60
physical machines and 370 virtual machines. We generate and use 1500 service requests for the
experiment.

To evaluate the capabilities of the scheduler, we divide our evaluation into two groups: i)
fixed resource and ii) on-demand resource. In the fixed resource group the on-demand resource
provisioning feature is deactivated while in the on-demand resource group, it is activated. The
essence of these two groups is to demonstrate the advantages of the on-demand resource provi-
sioning feature. Each group runs three scenarios:

• The first scenario handles the deployment of only web applications’ service requests.

• The second scenario deals only with HPC applications.

• The third scenario deals with a mixture of web and HPC applications.

The three scenarios are intended to cover real world deployment situations in the sense that
they handle applications from different categories, which exhibit different behaviours in terms of
resource consumption. In the scenarios, the service requests are randomly generated and sent to
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the scheduler for scheduling and deployment. In the next step, we describe the achieved results
of these two groups.

Fixed resource group: In this case, the scheduler schedules and deploys the applications
on the available running VM in the data center without the flexibility of starting new VMs when
required. The results achieved by the three scenarios of this group are presented in Figure 7.16.
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Figure 7.16: Scheduling and Deploying With Fixed Resources.

As shown in Figure 7.16, scenario 1 presents the results of the first evaluation scenario,
which handles only web applications. The first bar shows the total resource utilization level
achieved among the running VMs in the data center. The resource utilization is measured by
checking the number of service applications the scheduler can deploy on each virtual machine in
relation to the resource capacity of the virtual machine. In this scenario, the scheduler achieved
100% resource utilization meaning that the resources on each VM were adequately utilized. The
second bar shows the total deployment efficiency achieved by the scheduler. The deployment
efficiency is calculated by counting the total number of deployed service applications in relation
to the total number of requested services. In this scenario a total of 1480 service applications are
deployed whereas a total of 1500 service requests were made. This gives a deployment efficiency
of 98,67%. About 20 service requests could not be provisioned due to lack of resources on the
available VMs.

The results of the second evaluation scenario dealing with only HPC applications are pre-
sented as Scenario 2 in Figure 7.16. The first bar shows the resource utilization achieved by the
scheduler, which is in this case 100%. That means the scheduler was able to fully utilize the
resources of the available VMs. The second bar represents the deployment efficiency achieved,
which is in this scenario 49.67%. The low deployment efficiency is caused by lack of available
resources. Considering the heavy resource consumption of the HPC applications, they require
much larger resources thereby easily consuming the available resource in the data center.
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The results of the third evaluation scenario are presented as Scenario 3 in Figure 7.16. This
scenario deals with a mixture of web and HPC applications’ service requests. Approximately
an equal number of service requests for both application types are generated. The scheduler
achieved about 94.05% resource utilization in this scenario as shown by the first bar. The inabil-
ity to achieve 100% resource utilization is caused by the heterogenous nature of the workload
whereby some HPC applications cause some resource fragmentation leaving some resource frag-
ments that are not usable by the scheduler. The second bar represents the deployment efficiency
of this scenario, which is 61.73%. This is significantly better than the deployment efficiency
achieved in the second scenario. This increase in deployment efficiency is attributed by the het-
erogenous workload whereby the number of HPC applications’ requests is smaller than in the
second scenario.

On-demand resource group: In this group, it is possible for the scheduler to flexibly start
new VMs when necessary as far as there are available resources on the physical machines. This
feature allows for higher service request deployment and better usage of the resources at the
data center. The results obtained by the three evaluation scenarios of this group are depicted in
Figure 7.17.
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Figure 7.17: Scheduling and Deploying With On-demand Resource Provisioning Feature.

The first scenario handles only web applications. Its results are presented as Scenario 1 in
Figure 7.17. The first bar shows that the scheduler achieved 100% utilization in this case. The
interesting observation in this scenario compared to the first scenario of the fixed group, is the
100% deployment efficiency achieved, which is shown by the second bar. The scheduler made
advantage of the flexible on-demand resource provisioning feature to start extra four virtual
machines to fully deploy the whole service requests.

The second evaluation scenario results are presented as Scenario 2 in Figure 7.17. This
scenario deals with only HPC applications. The scheduler achieved 100% resource utilization
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in scheduling and deploying the HPC applications as depicted by the first bar. That means the
available resources are fully utilized. Although the resources were fully utilized, the scheduler
could only achieve 80% deployment efficiency. This is a far better result than 49.67% achieved
by the equivalent scenario in the fixed group. The scheduler created extra 229 VMs for the
applications deployments thereby reaching the limits of the physical machines. The scheduler
could not achieve 100% deployment efficiency due to an ultimate lack of resources in the data
center. This problem could be addressed with Cloud federation paradigm.

Scenario 3 as shown in Figure 7.17 depicts the results of the third evaluation scenario deal-
ing with a mixture of web and HPC applications. The scheduler achieved 98% resource utiliza-
tion due to resource fragmentations caused by the heterogenous workload and resource over-
provisioning. The last two VMs started on-demand were under-utilized. A 100% deployment
efficiency was achieved in this scenario by starting 215 VMs on-demand.

Comparing the results achieved by the former group scenarios (Figure 7.16) against those
of the later group (Figure 7.17), it can be clearly seen that the later group obtained much better
resource utilization rates and deployment efficiencies. This demonstrates the effectiveness and
relevance of our proposed scheduling approach in a Cloud environment.

Application Performance Comparison

In this section, we discuss the performance of the applications being provisioned in the Cloud
simulation testbed. The application performance is evaluated in two aspects using the scenarios
of the previous section: i) response time for the web applications and ii) completion time for the
HPC applications. We compare the result achieved by our proposed scheduler with that achieved
by an arbitrary task scheduler.

Table 7.8: Scheduler Comparison

Without On-demand Resource Provisioning Feature
SLA-aware Scheduler Traditional Task Scheduler

Scenario Response Time Completion Time Response Time Completion Time
1 8sec - 20sec -
2 - 10sec 22sec
3 10sec 14sec 25sec 30sec

With On-demand Resource Provisioning Feature
SLA-aware Scheduler Traditional Task Scheduler

Scenario Response Time Completion Time Response Time Completion Time
1 5sec - 15sec -
2 - 7sec - 18sec
3 8sec 10sec 19sec 24sec

Table 7.8 presents the applications performance results. The results show the average re-
sponse time and completion time of the applications while deployed by the two schedulers. It
can be clearly seen that our proposed scheduler is two times better than the task scheduler. The
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good performance of our scheduler is attributed to the fact that it considers multiple perfor-
mance objectives before deciding on which resource to deploy an application thereby finding
the optimal resource combination for the application best performance, whereas the task sched-
uler considers mainly single objectives in its deployment, which can not provide the optimal
resources for the application best performance. Note that in Table 7.8 the on-demand resource
provisioning feature applies only to our proposed scheduler.

7.5 Application Monitoring Evaluation

The primary goal of this evaluation is to provide a proof of concept for the CASViD application
monitoring architecture presented in Chapter 5. In this regard, we evaluate two aspects: (i)
the ability of the architecture to monitor applications at runtime to detect SLA violations and
(ii) the capability of automatically determining the optimal measurement interval for efficient
monitoring. We carry out these evaluations using real world applications provisioning scenarios
executed on a real Cloud testbed and discuss the applicability of the CASViD architecture in
large-scale Cloud environments. We also show results on monitoring intrusion of the CASViD
monitor.

For this evaluation, we utilize the private Cloud testbed described in Section 7.3 and pre-
sented in Figure 7.9. In the next section, we discuss the utility function to determine the optimal
measurement interval for application performance monitoring.

Utility Function Definition

The optimal measurement interval is an economic factor. The goals of the provider are i) to
achieve the maximal profit; and ii) to maintain the agreed SLA objectives for the applications
while efficiently utilizing resources. The trade-off between these two factors determines the
optimal measurement interval. To derive such an interval, we define a utility function (U) for
the provider, which is based on experiences gained from existing utility functions discussed by
Lee et al. [115]. The utility function considers on the one hand the provider profit and on the
other hand the cost associated with the effort of detecting SLA violations and the penalty cost of
the violations. Equation 7.4 presents the utility function.

U =
∑

βε{customer}
Pc(β) ∗ Pt(β)− (µ ∗Mc +

∑
ψε{RT,TP}

α(ψ) ∗ Vp) (7.4)

where Pc is the service provisioning cost, Pt is the provisioning duration in minutes, µ is the
number of measurements, Mc is the measurement cost, α (ψ) is the number of detected SLA
violations of the SLA objectives, RT is the response time, TP is the throughput, and Vp is the
SLA violation penalty. Pc * Pt is equal to the provider profit. Defining the service provisioning
cost is subject to negotiations between the customer and the service provider. In our experiments,
we defined service provisioning costs based on experiences from existing approaches [114,194].
This utility function is not a configuration for the experimentations rather it is used to analyze
the achieved results. The values of the parameters are different for each customer/application
type.
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Experimental Application Workload

We use variants of the POV-Ray application presented in Section 7.3 for the evaluations in this
section. For the experiments, we designed three workload applications that can be executed
sequentially or simultaneously on our Cloud testbed environment. With the three workloads, we
cover different application behaviours thereby realizing heterogeneous load in the experiments.
The workloads are based on three POV-Ray applications with different characteristics of time
for rendering frames. The POV-Ray application workload used are variants of the following:

• Fish application workload,

• Box application workload, and

• Vase application workload.

Each workload contains approximately 2000 tasks. Each task has an execution time that
varies from 10 to 40 seconds.

Our architecture handles simultaneous customer provisioning. Therefore, the experiments
contain three scenarios, where each scenario has a given number of customers. These scenarios
represents real world provisioning situations where a provider is simultaneously provisioning
one or multiple customer applications using his Cloud resources. Furthermore, it shows the
ability of the CASViD architecture to independently monitor the application performance of
each customer.

Each customer has a distinct SLA document for his/her workload application. The SLAs
must be guaranteed for each application to avoid costly SLA penalties. Table 7.9 presents the
SLA objectives for the applications. These SLA objectives are defined based on historical data
and experiences with these specific application types. The response time is expressed in seconds
and the throughput in frames per second (f/s). The customer application stack to be provisioned
on the Cloud environment is made up of i) the SLA document specifying the quality of service
for the application and ii) the application files to be executed.

Achieved Experimental Results

We defined and used five measurement intervals to monitor the application workloads in this
experiment. Table 7.10 shows the achieved results of the three scenarios for each measurement
interval. The applications run for about 12 minutes in scenario 1, 22 minutes in scenario 2,
and 30 minutes in scenario 3. The different execution length of the scenarios is necessary to
investigate the application behaviours in each case.

The applications in scenario 2 & 3 are simultaneously executed on our Cloud testbed. The
load-balancer integrated in the application deployer ensures that the application execution is
distributed among the virtual machines. The SLA management framework uses the CASViD
monitor to monitor the application metrics in order to determine if the SLA objectives are en-
sured and reports violations otherwise.

Table 7.10 shows the number of SLA violations detected with each measurement interval
for the two SLA parameters - Response Time and Throughput. These two SLA parameters are
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Table 7.9: SLA Objective Thresholds Specification.

Scenario 1
SLA Parameter Customer1
Response Time 265s
Throughput 2.75 f/s

Scenario 2
SLA Parameter Customer1 Customer2
Response Time 430s 540s
Throughput 3.99 f/s 1.35 f/s

Scenario 3
SLA Parameter Customer1 Customer2 Customer3
Response Time 795s 430s 1030s
Throughput 0.965 f/s 2.31 f/s 0.709 f/s

monitored in this evaluation because they define the desirable quality of service for the POV-Ray
applications. In case of different application types, the parameters to be monitored might differ.

In Table 7.10, the five seconds measurement intervals is a reference interval meaning the
current interval used by the provider to monitor application executions. To explain the results in
the table for example in scenario 1, the customer application provisioning length was 12 minutes.
With 10 seconds interval, we made 72 measurements within this provisioning time length. With
these measurements, 51 response time SLA violations and 16 throughput SLA violations were
detected.

As shown in Table 7.10, the number of detected SLA violations decreases as the measure-
ment interval increases. This is due to the missed SLA violation detection in between the mea-
surement interval. It illustrates the risk involved with larger measurement intervals. We analyze
these results in a different section to determine the optimal measurement intervals.

CASViD Monitor Intrusion

One of the issues that are typically evaluated in a monitoring system is its intrusion, i.e., what is
the overhead incurred in the system when the monitoring is used. The intrusion of a monitoring
system is usually related to the sampling or measurement frequency used. Higher frequencies
result in a higher intrusion.

In order to evaluate the intrusion of CASViD monitor, we execute the three POV-Ray work-
loads (Box, Fish and Vase), measure the total execution time without monitoring, and compared
against the total execution time using the monitoring system with different sampling frequen-
cies. The sampling frequencies were 1, 2, 3, 6 and 12 samples per minute, which corresponds to
60, 30, 20, 10 and 5 seconds of interval between samples.

The chart in Figure 7.18 shows the intrusion with each workload. We can observe that the
intrusion in all workloads presented a linear behaviour in relation to the sampling frequency.
In all cases, the sampling frequency of 3 samples per minute (20-second interval) produced an
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Table 7.10: Number of Detected SLA Violations.

Scenario 1
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 144 72 36 24 12
Customer1 Nr. of Violations

Response Time 112 51 17 9 4
SLA Parameter Throughput 54 16 4 3 1

Scenario 2
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 264 132 66 44 22
Customer1 Nr. of Violations

Response Time 49 20 11 5 3
SLA Parameter Throughput 128 54 27 16 4

Customer2 Nr. of Violations
Response Time 120 93 31 19 8

SLA Parameter Throughput 90 49 14 8 2
Scenario 3
Intervals 5s 10s 20s 30s 60s

Nr. of Measurements 360 180 90 60 30
Customer1 Nr. of Violations

Response Time 165 109 39 19 9
SLA Parameter Throughput 141 73 14 7 2

Customer2 Nr. of Violations
Response Time 128 80 40 27 13

SLA Parameter Throughput 137 92 42 26 12
Customer3 Nr. of Violations

Response Time 219 167 98 24 12
SLA Parameter Throughput 190 87 77 14 6

intrusion smaller than 1%, resulting in a small impact in the workload performance. Due to the
linearity in the monitor’s intrusion, the sampling frequency can be easily tuned to reach a desired
intrusion boundary.

In the next section, we analyze the achieved monitored results whereby we consider the
monitoring intrusiveness in defining the cost of measurement to be used in the utility function
presented in Equation 7.4 for the analysis.

Results Analysis

In this section, we first manually analyze the achieved results to determine the optimal mea-
surement interval using the utility function defined in Equation 7.4. Then, we demonstrate the
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Figure 7.18: CASViD Monitor’s Intrusion with Different Sampling Frequencies.

method to automatically determine this interval using Algorithm 5.1 in Section 5.2. The experi-
mental scenarios are analyzed separately.

The first scenario (Table 7.9) deals with provisioning and monitoring of one customer appli-
cation. In this case the customer pays a provisioning cost of $0.6 per minute (i.e., the service
price) and the provisioning time length is 12 minutes. The SLA penalty cost is $0.04 and the
cost of measurement is $0.02. Note that the cost values are experimental values. The idea is
derived from existing approaches presented in literature [114, 194].

Figure 7.19 presents the analyzed results of scenario 1. The 5-second interval is the reference
measurement interval to capture all SLA violations for the applications in each case.

The analyzed results show the net utility (in dollar) of the provider with each measurement
interval. The net utility translates into the profit of the provider in provisioning the customer
application. The 10-second measurement interval has the highest net utility and is considered
the optimal one. The later intervals miss several SLA violations and thereby incur high penalty
cost.

In Scenario 2, the provider provisions and monitors two customer applications using their
specified SLA objectives as shown in Table 7.9. The first customer pays a provisioning cost of
$0.5 per minute while the second customer pays $0.4 per minute. SLA penalty cost of $0.045
was agreed for customer 1 and $0.038 for customer 2. The measurement cost is the same for
both applications and is specified to be $0.037. Applying these values in the utility function of
Equation 7.4 we achieve the results presented in Figure 7.20.
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Figure 7.19: Scenario 1 Analyzed Results.
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Figure 7.20: Scenario 2 Analyzed Results.

As depicted in Figure 7.20, for customer 1, the 60-second measurement interval has the
highest net utility and in our opinion the optimal measurement interval for the provider to ad-
equately monitor the application of this customer. The other intervals provide lesser utility for
the provider. For customer 2, the 10-second measurements interval proves to be the optimal
one with the highest net utility. In this case it can be seen that the reference measurement inter-
val provides a negative utility meaning that the provider loses revenues in his current situation.
Therefore, finding another measurement interval is essential for the business continuity of the
provider.

Scenario 3 consists of the provisioning and monitoring of three different customer applica-
tions based on their respective SLA objectives. Customer 1 pays a provisioning cost of $0.5
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Figure 7.21: Scenario 3 Analyzed Results.

per minute and customer 2 pays $0.6 per minute while customer 3 pays $0.4 per minute. The
agreed SLA penalty for customer 1 is $0.035, for customer 2 is $0.038, and for customer 3 is
$0.025. The customer applications executes simultaneously on the testbed, thus there is only
one measurement cost of $0.03.

Figure 7.21 presents the analyzed results of this scenario. As shown in Figure 7.21, for
customer 1 and 2, the 10-second measurement interval provides the highest net utility and there-
fore, is the optimal interval for the provider to cost-efficiently monitor the application of these
customers at runtime. In the case of customer 3, the 20-second interval provides the highest net
utility and is considered the optimal measurement interval for this customer applications.

Generally, the optimal measurement interval determined by the total net utility is a trade-
off between the monitoring cost and the number of detected SLA violations at runtime (see
Equation 7.4). The monitoring cost represents the efforts and overheads in monitoring the appli-
cations while the number of detected SLA violations determines the amount of penalty cost the
provider has to pay to the customer. Thus, these two parameters express the efficiency and cost
of monitoring an application execution.

Based on our experiments, the proposed architecture proved to be efficient in monitoring and
detecting application SLA violation situations. As described in Section 5.2, the optimal measure-
ment interval depends on the application and its input and has to be determined automatically.
Figure 7.22 presents the behaviour of the provider net utility for the 10-second measurement
interval over the execution of the entire application of scenario 1. This demonstrates the method
to automatically find the optimal measurement interval. From the figure, it can be observed that
after 5 minutes, the metric gets steady. As the net utility reaches this stability, it is possible to
have a good prediction on this metric for this interval. Therefore, by doing so for other intervals,
it is possible to automatically find the one that provides best cost-benefit value for measuring
and detecting SLAs. The basic idea is that a user would specify a range of possible intervals
(based on personal experience with the application/environment) and the monitoring architect
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Figure 7.22: Behaviour of Provider Net Utility for the 10-sec Measurement Interval.

would detect the suitable measurement interval via Algorithm 5.1.

Applying CASViD in Large-Scale Environments

The experiments so far were performed in a real testbed for a small scenario. To apply the
CASViD architecture in a large-scale Cloud environment, there are two challenges to be ad-
dressed: (i) large number of users and (ii) many application types. The issue of large number
of users is not trivial for monitoring and detecting SLA violations in large-scale Clouds. This
problem has been addressed with the design of our monitoring framework. The separation of
the monitoring activities from the analysis of the monitored results as described in our testbed
setups, where we explained the functions of the front-end node to be the entity controlling and
analyzing the monitored data; and the computing node to be the entity where the application task
are executed. We employ monitoring agents on the computing node to monitor the application
metrics and communicate back the monitored data to the front-end node for analysis. This design
strategy makes our architecture scalable and capable of usage in large-scale environments.

The efficiency of automatically determining the optimal measurement interval for many ap-
plication types depends on the number of concurrent request at each period of time. This issue
has been addressed with Algorithm 5.1 presented in Section 5.2. This algorithm is capable of
quickly selecting appropriate measurement intervals for monitoring the provisioning of different
customer application in large-scale Cloud environments.

This claim of applying CASViD in large scale environment is still in theory, we have not
carried out practical evaluations.

7.6 Case Study Evaluation

In this section, we present the evaluation of the case study integrating monitoring with knowl-
edge management as described in Section 6.3 to realize an autonomic Cloud management in-
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frastructure. The goals of the evaluation are to show the applicability of the holistic monitoring
model to monitor workflow application executions and the usage of the knowledge manage-
ment techniques to efficiently manage resources to prevent SLA violations. We start with the
discussion of the environmental setups.

Experimental Setup

The evaluation is carried out in a virtualized Cloud environment. The workflow application
is executed using virtual machines and each of them can have its capacity increased up to the
values presented in Table 7.11.

Table 7.11: Computational Node Capacity

OS CPU Cores Memory Storage
Linux/Ubuntu Intel Xeon(R) 3 GHz 2 9 GB 19 GB

The virtual machines (VMs) represent computational nodes for the execution of the work-
flow applications. The VMs in our evaluation environment are created using VMWare tools.
Figure 7.23 presents an overview of the evaluation testbed. The testbed represents a setup for ef-
ficient management of application execution in a Cloud environment. The purpose of the testbed
is to present a proof of our concept and to demonstrate how workflow application executions
could be efficiently managed in a Cloud environment.

On the testbed, one of the nodes acts as the control entity. It hosts the holistic monitoring
model, the knowledge management component, and provides an interface for deploying work-
flow applications.

Monitoring Agent

Workflow 
Application
Execution

COMPUTING NODE

Workflow 
Interface

Holistic 
Monitoring

CONTROL NODE

Knowledge
Management

CLOUD 
ENVIRONMENT

Figure 7.23: Evaluation Testbed

The evaluation of our approach is based on the bioinformatic workflow application TopHat,
which was described in Section 6.3. It aligns RNA-Seq reads to mammalian-sized genomes
using the ultra high-throughput short read aligner Bowtie [112], and then analyses the mapping

91



results to identify splice junctions between exons. Furthermore, it uses the Sequence Align-
ment/Map (SAM) tools in its execution. SAM tools provide various utilities for manipulating
alignments in the SAM format, including sorting, merging, indexing, and generating alignments
in a per-position format [118].

We analysed a set of RNA-Seq data using the TopHat workflow application, and the achieved
results are presented in the next sections.

Monitoring Results

As outlined in Section 6.3, we use the holistic monitoring model to monitor the TopHat work-
flow application while analyzing RNA-Seq data for the duration of three hours execution. We
monitored the status of the resource metrics CPU, memory and storage at runtime with a mea-
surement interval of one minute. The achieved results are presented in the figures below. Note
that the monitored results presented are from one of the computational node and not the entire
Cloud environment. The resource consumption behaviours on the different computational nodes
are similar, thus, we present the results from one node for simplicity and ease of understanding
our approach.

The aim of the monitoring processes is to timely detect the unavailability of computational
resources. To realize this, our holistic monitoring model utilizes monitoring agents to monitor
the resource status and compares them against the threat thresholds, which are defined values to
signal the shortage of computational resources, in its monitoring operations. The threat thresh-
olds can be dynamically or statically defined. In this approach, the knowledge management
dynamically updates the initial predefined threat thresholds.
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Figure 7.24: Monitored CPU Utilization

Figure 7.24 presents the monitored results for the CPU usage. From the results, it can be
observed that the TopHat workflow application in some time intervals is very CPU intensive. For
example from the execution time 52 to 80. These time intervals where the CPU usage is 100%
are the critical ones that need to be managed. The monitoring model is configured in this case
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with a threat threshold value of about 80% CPU utilization. This means, once the CPU utilization
exceeds this threshold, it sends a notification message to the knowledge management to provide
preventive actions to avoid reaching 100% utilization, because at that point the performance of
TopHat degrades and there might be risk of failures.
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Figure 7.25: Monitored Memory Utilization

The monitored results of the memory usage are depicted in Figure 7.25. As shown in the
figure, the memory consumption increases along the execution line of the TopHat workflow ap-
plication. It is difficult to predict the total amount of memory the application might require in the
next time interval or to successfully complete the data analysis. Thus, we define a threat thresh-
old value that is about 2GB less than the current allocated memory. That is, once the memory
utilization exceeds the threat threshold value, a notification message is sent to the knowledge
database for resource allocation decisions.

Figure 7.26 shows the utilization of storage resource by the TopHat workflow application.
According to the figure, the storage utilization increases along the execution line. In this case,
one can notice some jumps in the utilization lines. These jumps can be high depending on the
size of the data set to be analyzed. Therefore, the threat threshold value for managing storage
resource is set to about 4GB less than the current allocated storage, in order not to risk failure
situations before the knowledge management can react to allocate more storage resources.

Generally, the threat thresholds are defined to accommodate reaction time for the knowledge
management so that the resource allocation procedures are carried out early enough before the
system runs out of resources. In the next section, we discuss how the knowledge management
deals with the notification messages.

Ensuring Resource Availability

This section shows via simulations how the knowledge management approach reacts to the mon-
itored data and enables seamless workflow application execution, as well as an economically
efficient use of resources. In order to demonstrate our approach, we simulate three scenarios,
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Figure 7.26: Monitored Storage Utilization

where we set up and manage our virtual machines (VMs) differently. In the first scenario, we
assume a static configuration with a fixed initial resource configuration of the VMs. Normally,
when setting up such a testbed as described in Section 7.6, an initial resource specification is
done based on previously monitored data and earlier experiences.

The first ten measurements of CPU, memory, and storage lie in the range of [140, 12500]
MIPS3, [172, 1154] MB, [15.6,15.7] GB, respectively. So we initially configured our VMs with
resource values greater than the maximum of the respective intervals, i.e., with 15000 MIPS
of CPU, 4096 MB of memory, and 17.1 GB of storage. In the second scenario, we apply our
knowledge management approach to these initial configurations. The third scenario presents
a best case scenario, where we assume to have an oracle that predicts the maximal resource
consumption that we statically set our VM configuration to. We use this scenario to compare the
wastage in resource utilization.

The results presented in this section describe the number of resource violations, the achieved
resource utilizations, as well as the number of reconfiguration actions, respectively, for every
parameter in the different scenarios. These results are achieved by applying the scenarios to the
monitored results of Figures 7.24, 7.25, and 7.26.

As shown in Figure 7.27, we experience violations in almost half of the cases for scenario 1.
This is especially crucial for parameters memory and storage, where program execution would
fail, if the system runs out of memory or storage, whereas for a violation of the CPU parameter,
it would “only” degrade the performance and delay the successful termination of the workflow
application. With scenario 2 we can reduce the SLA violations to a minimum. In this case,
we completely avoid violations for memory and storage, and only encounter three violations for
CPU. For scenario 3, we encounter no violations. However, this scenario wastes resources due
to over-provisioning.

Figure 7.28 shows the resource utilization levels. It is clearly highest when a lot of violations

3The conversion of CPU utilization into MIPS is based on the assumption that an Intel Xeon(R) 3 GHz processor
delivers 10000 MIPS for 100% resource utilization of one core, and linearly degrades with CPU utilization.

94



75	   75	  
89	  

239	  

3	   0	   0	   3	  0	   0	   0	   0	  
0	  

50	  

100	  

150	  

200	  

250	  

300	  

CPU	  	   Memory	   Storage	   Sum	  

#	  
V
io
la
(
on

s	  

Parameters	  

Scenario	  1	   Scenario	  2	   Scenario	  3	  

Figure 7.27: Number of Resource Violations in the Scenarios.
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Figure 7.28: Resource Utilization Levels.

occur, so for Scenario 1. This holds because when a parameter is violated, then the resource is
almost used up, meaning more of the resource would be needed to fulfill the needs. A huge
advantage of Scenario 2 is that it does not run into any crucial SLA violation, but achieves a
higher resource utilization (about 7% better on average) as compared to Scenario 3.

The numbers of autonomic resource reallocation actions are shown in Figure 7.29. Of
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Figure 7.29: Reconfiguration Actions to Allocate Resources.

course, Scenarios 1 and 3 do not execute any reallocation action, but for the operations of the
knowledge management in Scenario 2, the amount of executed reallocation actions stays very
low, which means it does not affect the overall system performance.

According to our findings in [133], we set the threat thresholds TTlow = 50% and TThigh =
75% as discussed in Section 6.3.

Based on these observations, we conclude that by using the suggested Cloud management
techniques we can guarantee the performance and successful completion of workflow applica-
tions. Furthermore, we can efficiently manage resources to avoid considerable wastage, extra
maintenance costs, and CO2 emissions due to the unnecessary energy consumption of unused
resources.

The scientific workflow application used in this case study is simply an example. The re-
alized autonomic Cloud management infrastructure is capable of supporting and managing the
provisioning of different application types.
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CHAPTER 8
Related Work

The related work presented in this thesis, shows the state of the art in Cloud management sys-
tems, especially on the monitoring, scheduling, and SLA management components. In this
chapter, we divide and present the related work in four categories namely: i) Cloud infras-
tructure monitoring, ii) scheduling mechanism, iii) Cloud application monitoring, and iv) SLA
enforcement and management. The following sections present their descriptions.

8.1 Cloud infrastructure Monitoring

In this section, we present the related work on infrastructure resource monitoring including
mapping of low-level metrics to high-level SLA parameters. In analyzing the state-of-the-art lit-
eratures in this area, we also consider concepts in the related areas of Grid and Service-Oriented
Architecture (SOA) based systems.

Fu et al. [78] propose GridEye, a service-oriented monitoring system with flexible architec-
ture that is further equipped with an algorithm for prediction of the overall resource performance
characteristics. The authors discuss how resources are monitored with their approach in Grid en-
vironment but they consider neither SLA management nor low-level metric mapping. Gunter et
al. [86] present NetLogger, a distributed monitoring system, which can monitor and collect in-
formation of networks. Applications invoke NetLogger’s API to survey the overload before and
after some request or operation. However, it monitors only network resources. Wood et al. [186]
developed a system, called Sandpiper, which automates the process of monitoring and detecting
hotspots and remapping/reconfiguring VMs whenever necessary. Their monitoring system is
reminiscent of our in terms of goal: avoid SLA violation. Similar to our approach, Sandpiper
uses thresholds to check whether SLAs can be violated. However, it differs from our system by
not considering the mapping of low level metrics, such as CPU and memory, to high-level SLA
parameters, such as response time.

Katsaros et al. [98] present the architectural design and implementation of a service frame-
work that monitors the resources of physical machines as well as virtual infrastructures. The
proposed solution approaches the mentioned challenges through a service-oriented architectural
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perspective, which offers the required level of flexibility and scalability to the monitoring infras-
tructure. But, their approach does not consider the mapping of low-level resource metrics. Baker
et al. [10] propose GridRM - an open source generic resource monitoring architecture specifi-
cally designed for Grid. GridRM is designed to monitor resources rather than the applications
that execute on a Grid. It is based on the Global Grid Forum monitoring architecture and it con-
sists of components, such as SQL databases and SNMP agents. The architecture is implemented
using Java technologies. However, their approach is focused only on Grid and does not consider
resource monitoring in Clouds.

Mehrotra et al. [135] present an effective event based monitoring framework for distributed
system hosted in virtualized environment. The authors aim to use the monitored information
to control the distributed system in an autonomic manner to achieve or maintain the multi-
dimensional QoS requirement of the deployed system while keeping minimal overhead and
latency. Their approach uses Data Distribution Service (DDS) to realize publisher-subscriber
communication model, which overcomes the traditional client-server model by offering exten-
sive QoS configuration options. Nevertheless, their approach does not consider the definition of
mapping rules and the mapping of low-level metrics to high-level SLA parameters. Viratanapanu
et al. [178] discuss on-demand fine grained resource monitoring system for server consolidation.
They describe the key information missing in the existing monitoring systems and present the
design of Pantau - a monitoring system for capturing information necessary for server consolida-
tion. However, they did not explain their resource monitoring strategy and how virtual machine
resources are being mapped to monitor applications. Xiang et al. [189] propose VMDriver - a
general and fine-grained approach for virtualization monitoring. In the design of their approach,
the authors separated the event interception point in virtual machine monitor level and rich guest
operating system reconstruction in the management domain. With this design, different monitor-
ing drivers in the management domain can mask the differences of the guest operating systems
in a large-scale distributed environment like Clouds. Their approach however, does not consider
finding optimal measurement intervals for the monitoring of the virtual machine resources.

Huang et al. [95] discuss a combined push-pull model for resource monitoring in Cloud
computing environments. Their approach is based on an extension of the prevailing push and
pull model monitoring methods in Grids to Cloud computing. Their objective is to devise a
monitoring framework capable to manage shared resources in Clouds. The motivation for this
combination lies on the complementary characteristics of the two models. The push model
has high consistency but low efficiency, whereas the pull model has low consistency but high
efficiency. Thus, the authors combine these models by intelligently switching between them
according to customer application requirements. Their approach however, does not deal with the
determination of optimal measurement interval and the mapping of low-level resource metrics.
Brandt et al. [26] propose resource monitoring and management with OVIS to enable HPC in
Cloud computing environments. The aim of the authors is to enable high performance computing
in Cloud environments through sophisticated resource allocation mechanisms. The authors argue
that intelligent resource utilization is a key factor for enabling HPC applications. Resources are
heterogeneous in Clouds, and are shared among users (particularly in virtualized environments)
but there is a limited knowledge of the resource status. This leads to overheads and resource
contention among VMs, which brings down the overall performance. In their approach, the
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authors address this issue by using an advanced monitoring tool to dynamically characterize
the resource and application state, and use the resulting information to optimally assign and
manage resources. Nevertheless, their approach does not consider monitoring of SLA objectives
to ensure the performance of applications.

Andreolini et al. [8] present an assessment of overhead and scalability of system monitors
for large data centers. The authors argue that there are several infrastructure monitoring tools
designed to scale to very high numbers of physical machines, but such tools either collect perfor-
mance measure at low frequency (missing to capture the dynamics of short-term task) or are not
suitable for usage in Cloud environments. Therefore, with such tools monitoring the correctness
and efficiency of live migration is very difficult. Thus, the authors focus on the assessment of the
scalability limits of a realistic monitoring infrastructure and to identify the bottlenecks in mon-
itoring large-scale Cloud environments. To this effect, they designed and tested a monitoring
infrastructure prototype. However, their approach does not consider the scalability of mapping
low-level resource metrics to high-level SLA parameter in Clouds. Voith et al. [179] propose
a path supervision framework for service monitoring in Infrastructure as a Service (IaaS) plat-
forms. Their approach considers network applications and the monitoring of their metrics. The
proposed framework takes measurements during the application execution to monitor the per-
formance and detect SLA violations. To achieve high scalability, the measurement strategy is
structured into stages for monitoring specific parts of the infrastructure. The authors however,
does not consider the monitoring of Cloud computational infrastructure resource metrics.

Rosenberg et al. [155] deal with QoS attributes for Web services. They identify important
QoS attributes and their composition from resource metrics. They present mapping techniques
for composing QoS attributes from resource metrics to form SLA parameters for a specific do-
main. However, they do not deal with monitoring of resource metrics. Bocciarelli et al. [52]
introduce a model-driven approach for integrating performance prediction into service compo-
sition processes carried out by BPEL. In their approach, service SLA parameters are composed
from system metrics using mapping techniques. Nevertheless, they consider neither resource
metric monitoring nor SLA violation detection.

To address these open research challenges, we designed and implemented in this thesis, the
Low-level Metrics to High-level SLA monitoring and mapping (LoM2HiS) framework, which
monitors Cloud infrastructure resource metrics and maps the metric values to the equivalence
of the high-level SLA parameter objectives in order to guarantee the performance of the user
applications. Furthermore, we designed and implemented the Detecting SLA Violation Infras-
tructure (DeSVi) architecture, which is made up of components to setup virtual machines, deploy
tasks, and monitor resources to detect service level objective violations. The architecture is also
capable of determining optimal measurement interval for the monitoring operations.

8.2 Scheduling Mechanisms

The existing application scheduling strategies in Clouds are based on approaches developed in
related areas such as distributed systems and Grids. Scheduling in these areas is mainly tailored
towards ensuring single application SLA objectives. In the Cloud environments on the one hand,
applications require guaranteeing numerous SLA objectives to achieve their QoS goals and on
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the other hand, resource utilization is of paramount importance to the Cloud provider.
Salehi et al. [156] propose market-oriented scheduling policies that consider resource prices

and application deadlines. In their concept, they present two market-oriented scheduling algo-
rithms. Their first algorithm known as time optimization policy aims at completing application
execution as quickly as possible using available resources. The second algorithm known as cost
optimization policy attempts to complete the application execution as economically as possible
within the deadline. Their approach is limited to single task applications with single SLA ob-
jective and do not consider heterogenous applications requiring to ensure multiple SLA param-
eters. Pandey et al. [143] discuss a particle swarm optimization-based heuristic for scheduling
workflow applications in Cloud computing environments. They focus on minimizing the total
execution cost of applications on Cloud resources thereby achieving low computational cost and
low data transmission cost. They do not consider resource utilization efficiency and moreover,
their approach is targeted only at workflow applications. Garg et al. [80] present time and cost
trade-off management for scheduling parallel applications on utility Grids. Their main goal is
to manage the trade-off between time and cost such that applications can be executed most eco-
nomically within a minimum time. They propose two scheduling heuristics for choosing the best
Grid resources to achievie low cost while keeping to the application execution deadline. Their
approach targets Grid applications in Grid-like environments.

Cao et al. [36] propose an optimized algorithm for task scheduling based on ABC (Activity
Based Costing) in Clouds. They investigate the cost of scheduling different applications and
the overhead the applications cause in resource allocation. Their approach considers cost as the
only SLA objective for scheduling task in a Cloud environment. Lee et al. [116] discuss service
request scheduling in Clouds based on achievable profits. They propose a pricing model using
processor sharing for composite services in Clouds. In their work, two algorithms are devised
whereby the first explicitly takes into account not only the profit achievable from the current
service, but also the profit from other services being processed on the same service instance.
The second algorithm attempts to minimize cost of renting resources from other infrastructure
vendors. The approach of this work is similar to ours in the sense that it schedules service
requests but it differs in the aspect that they only consider profit objectives for the provider and
furthermore, they do not consider resource utilization, like in our case.

Wang et al. [180] present a load balancing algorithm for scheduling resources in Clouds ac-
cording to task properties. The proposed scheduler combines OLB (Opportunistic Load Balanc-
ing) [102] and LBMM (Load Balance Min-Min) [187] scheduling algorithms that can efficiently
utilize resources and maintain the load balancing of systems. The proposed scheduler aims to
balance resource provisioning in a Cloud environment but does not consider the SLA objectives
of the task being provisioned. Lu et al. [123] propose a load-adaptive Cloud resource scheduling
model based on ant colony algorithm. Their approach uses real-time monitoring of virtual ma-
chine performance parameters and the ant colony algorithm strategies to schedule and balance
workload among nodes in a Cloud environment. The goals of the authors are to meet changing
load requirements and to improve efficiency of the resource utilization. However, their approach
focuses on balancing the load among running nodes in Clouds and does not consider the SLA
objectives of the executing applications in making decisions. Bo Yang et al. [192] discuss a
utility-based job scheduling algorithm for Cloud computing considering reliability factors. The
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authors introduce failure and recovery scenarios in Cloud computing devices and propose a re-
enforcement based learning algorithm to make job scheduling fault tolerable while maximizing
the utilities achieved in the long term. Their goals are to consider future system state and hard-
ware/software failures in scheduling jobs, thus, they do not deal with guaranteeing of application
performance objectives.

Yang et al. [193] present a cost-based resource scheduling paradigm in Clouds by leveraging
market theory to schedule compute resources to fulfill customer requirements. It assigns a set
of computing resources to customers according to resource availability and price. The authors
describe a two-phase pattern for Cloud resource scheduling. In the first phase, resources are re-
served for the virtual machines and in the second phase, the scheduling decisions are committed
with those resources. They argue that these two phases must be atomic to avoid complexities and
to increase performance. There approach, however, does not consider application scheduling and
deployment. Hu et al. [94] propose a scheduling strategy on load balancing of virtual machine
resources based on genetic algorithm in Cloud computing environments. The scheduling strat-
egy computes ahead based on historical data and current state, the influence, deploying virtual
machines would have on the system and chooses the least adverse effective solution. Through
this means, it achieves load balancing and avoids dynamic migration cost. This strategy deals
with the scheduling of virtual machines and does not consider the scheduling and deployment of
applications. Zhong et al. [200] present an approach to optimized resource scheduling algorithm
for open-source Cloud systems. In their approach, the authors investigate the possibility of allo-
cating virtual machines in a flexible way to allow maximum usage of physical resources based
on Improved Genetic Algorithm (IGA). With IGA, they use the idea of shortest genes and div-
idend policy in economics to select an optimal allocation for the virtual machines request. The
most important step in the scheduling strategy is to find the fitness allocation using IGA where
virtual machines would be deployed. This approach does not consider application scheduling
and the guaranteeing of SLA objectives.

In this thesis, we addressed the application scheduling issues by designing and implementing
a scheduling heuristic utilizing multiple SLA parameters in scheduling and deploying applica-
tions in Clouds. The scheduling heuristic is integrated with a load balancing mechanism to
balance the application deployments among the running virtual machines. It also posses the
ability to start new virtual machines for further deployments as long as the physical resources in
the Cloud environment can accommodate them.

8.3 Application Monitoring in Clouds

The ability to monitor at application layer in Clouds provides the opportunity for efficient and
cost-effective Cloud management. In this section, we analyze the exiting literatures in this area.
In this analysis, we consider also Grid and service-oriented based systems, since they are related
areas to Cloud computing.

Balis et al. [15] propose an infrastructure for Grid application monitoring. Their approach
is based on OCM-G, which is a distributed monitoring system for obtaining information and
manipulating applications running on the Grid. They aim to consider Grid-specific requirement
and design a suitable monitoring architecture to be integrated into the OCM-G system. How-
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ever, their approach considers only Grid specific applications. Bubak et al. [14] discuss the
monitoring of Grid applications with Grid-Enabled OMIS monitor, which provides a standard-
ized interface for accessing services. In their approach, they described the architecture of the
system and provides some design details for the monitoring system to fit well in the Grid en-
vironment and support monitoring of interactive applications. Their monitoring goal is focused
toward application development and they do not consider detecting application SLA violations.
Kacsuk et al. [13] propose application monitoring in Grid with GRM and PROVE, which were
originally developed as part of the P-GRADE graphical program development environment run-
ning on Clusters. In their work, they showed how they transformed GRM and PROVE into a
standalone Grid monitoring tool. However, their approach does not consider automatic finding
of optimal measurement intervals. Balaton et al. [12] discuss resource and job monitoring in
the Grid. They presented a monitoring architecture with advanced functions like actuators and
guaranteed data delivery. Their motivations toward application monitoring are to understand its
internal operations and detect failure situations. They do not consider the monitoring of appli-
cation resource consumption behaviours.

Rellermeyer et al. [150] propose the building, deploying, and monitoring of distributed ap-
plications with Eclipse. In their approach, they first analyse applications using Eclipse to de-
termine the best way to deploy them in a distributed manner. After deploying the applications,
they apply a tool to visualize the distributed execution of the applications and identify bottle-
necks and failures. With this information they enforce the performance goals of the applications.
However, they do not describe the usage of their approach in a large scale Cloud environment and
moreover, their approach depends heavily on Eclipse framework. Kilpatrick et al. [101] present
ChaosMon, an application for monitoring and displaying performance information for parallel
and distributed systems. ChaosMon supports application developers in specifying performance
metrics and to monitor these metrics visually to detect, analyze, and understand performance
bottlenecks. This tool is a distributed monitor with a central control. It includes local monitors
that reside on the target machines and communicate the monitored information to the central
control. However, this tool has not been applied in Cloud environments and it does not support
SLA violation detection. Wang et al. [181] discuss a scalable run-time correlation engine for
monitoring in a Cloud computing environment. Their approach is based on the use of log files
to determine the behaviour of distributed applications. Thus, they developed a framework for
run-time correlation of distributed log files in a scalable manner for enterprise applications in
a Cloud environment. The correlation engine is capable of analyzing and performing symptom
matching with large volume of log data. But, it does not consider automatic determination of
intervals for measuring/logging the application behaviours.

Clayman et al. [49] present Lattice framework for Cloud service monitoring in the RESER-
VOIR EU project. It is capable of monitoring physical resources, virtual machines and cus-
tomized applications embedded with probes. Compared to our approach, the Lattice framework
is not generic because its application monitoring capabilities are restricted to applications pre-
configured with probes and it does not consider measurement intervals in its operation. Ferrer et
al. [71] present the fundamentals for a toolkit for service platform architectures, which enable
flexible and dynamic provisioning of Cloud services within the OPTIMIS EU project. The focus
of the toolkit is aimed at optimizing the whole service lifecycle including service construction,
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deployment, and operation. It does neither detail the application monitoring strategy nor con-
sider the determination of optimal measurement intervals. Xu et al. [45] propose an architecture
for monitoring of multi-tenant systems whereby they aim to monitor QoS at tenant level to detect
aggressive tenants consuming more resources as agreed. However, their architecture is theoret-
ical. It is not yet implemented and there are no explanations of how to realize monitoring of
resources consumed by a single tenant.

Shao et al. [161] present a performance guarantee for Cloud applications based on moni-
toring. The authors extract performance model from runtime monitored data using data mining
techniques, which is then used to adjust the provisioning strategy to achieve a certain perfor-
mance goals. They do not consider finding optimal measurement intervals in their approach.
Rak et al. [149] propose Cloud application monitoring using the mOSAIC approach. In a first
step, the authors describe the development of customized applications using mOSAIC API to be
deployed on Cloud environments. For these applications, they propose in a second step some
monitoring techniques. Their interest is only to gather information that can be used to perform
manual or automatic load-balancing, increase/decrease the number of virtual machines or cal-
culate the total cost of application execution. Their approach does not consider the detection of
SLA violations to avoid SLA penalty cost and moreover, it is not generic since it monitors only
applications developed using the mOSAIC API.

Jin et al. [162] discuss a performance guarantee approach based on a performance model,
which is extracted from actual runtime monitoring data using data mining techniques. It con-
siders two QoS metrics: availability and response time. To build the performance model, they
analyze several attributes including number of CPU, number of application deployed on the
same virtual machine, resource consumption, etc. However, their approach is not yet imple-
mented and there are no evaluation results. Meng et al. [138] present REMO - a resource-aware
application state monitoring for large-scale distributed system, which produces a forest of opti-
mized monitoring trees through iterations of two procedures. The first procedure explores the
chances of sharing per message processing overhead based on performance estimation while
the second procedure refines the monitoring plan produced by the first procedure. The authors
argue that careful planning of multiple application state monitoring task, by jointly consider-
ing multi-task optimization and resource-constrained monitoring tree construction, can facilitate
much gain in scalability and performance. However, their approach do not consider automatic
finding of optimal measurement interval for efficient application monitoring.

We addressed the open research challenges in application monitoring in this thesis, by
proposing and implementing an application level monitoring architecture to monitor individ-
ually the resource consumption behaviours and the performance of each application executing
on a shared host. In this approach, we also implemented an automatic mechanism for determin-
ing the optimal measurement intervals for the application monitoring. The ability to monitor
at application level provides the opportunity of fine-grained management of Cloud application
provisioning.
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8.4 SLA Enforcement and Management

The management and enforcement of Service Level Agreement (SLA) in Clouds is not a trivial
task. SLAs have become the basis for service provisioning in Cloud markets and therefore,
an inevitable aspect of Cloud computing. In this section, we present existing concepts for the
management of SLAs.

Boniface et al. [21] discuss dynamic service provisioning using GRIA (a Service Oriented
Architecture framework) SLA. The authors explore how web service management using SLA
and dynamic service provisioning can maximise resource utilization while fulfilling the QoS
commitments to the existing customers. In their approach, they propose two possible policy
enforcement strategies for handling SLA violation: i) prevention before violation and ii) reac-
tion after violation. The prevention strategy is based on prediction of possible future violations,
which can be obtained by monitoring predefined prevention thresholds. These prevention thresh-
olds have to be defined on per SLA basis. With dynamic provisioning, when the prevention
threshold is exceeded, a new service instance is started so that new requests are redirected to the
new instance to ensure their SLA. The reaction strategy is only acceptable if the violation does
not result in complete service failure. The service provider allows the violation of an SLA in
order to enforce others. In such cases, it specifies priority for different SLAs based on business
impact. Moreover, they do not detail how the low-level metric are monitored and mapped to
high-level SLAs to enforce the application SLA objectives at runtime.

Koller et al. [106] discuss autonomous SLA management using a proxy-like approach. They
implemented an architecture that can be exploited to define SLA contracts. The architecture al-
lows autonomous management of such contracts, once service providers and customers explic-
itly provide the requirements for the contracts. Based on the architecture, they outlined some
guidelines on how such a system can be setup and reused. Their strategy is based on WS-
Agreement. Moreover, their approach is limited to Web services and does not consider other
applications types. Frutos et al. [77] discuss the main approach of the EU project BREIN [27]
to develop a framework that extends the characteristics of computational Grids by driving their
usage inside new target areas in the business domain for advanced SLA management. BREIN
applies SLA management to Grids, whereas we target SLA management in Clouds. Dobson et
al. [56] present a unified QoS ontology applicable to QoS-based Web services selection, QoS
monitoring, and QoS adaptation. However they do not consider the enforcement of other service
application types. Comuzzi et al. [50] present an approach for establishment and monitoring of
SLAs in complex service-based systems. They asserted that a service-provisioning infrastruc-
ture should allow the establishment of SLA contracts through coordinated negotiation among
service providers and customers. In their approach, they define the process of SLA establish-
ment adopted within the EU project SLA@SOI framework. They use WS-Agreement as the
specification language and show the processes of negotiating electronic SLA between interested
stakeholders. But they do not consider monitoring of low-level metrics and mapping them to
high-level SLA parameters for ensuring the SLA objectives.

Ferretti et al. [73] propose QoS-aware Clouds. In their approach they discuss the design
and evaluation of a middleware architecture that enables SLA-driven dynamic configurations
to respond effectively to the QoS requirements of the Cloud customer applications. The pro-
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posed architecture is proactive. It uses continuous monitoring and dynamic resource allocation
to enforce the agreed SLA objectives for the customer applications. However, they do not con-
sider optimal monitoring interval for efficient monitoring and enforcement of SLA objectives.
Skalkowski et al. [164] present the application of the ESB architecture for distributed mon-
itoring of the SLA requirements. The authors identified some issues affecting efficient SLA
enforcement processes such as different technologies for the evaluation of the SLA documents,
complex deployment processes, and scalability issues. Their SLA enforcement strategy is based
on the continuous monitoring of the system to identify violation situations. But they did not
address the issues of individually enforcing customer SLAs for applications executing on the
same host. Chen et al. [44] discuss Aspect Oriented Programming (AOP) based trustable SLA
compliance monitoring for web services. The authors propose a novel trustable mechanism to
monitor and evaluate SLA compliance based on the Aspect Oriented Programming paradigm. In
their approach, authoritative monitoring features are supplied by a trustable SLA manager and
by focusing the aspects into susceptible service runtime, provider can accurately monitor and
report their service status. However, their approach targets only web services.

In our approach in this thesis, we addressed the issue of SLA management and enforcement
through monitoring. We developed holistic monitoring techniques to monitor and detect SLA vi-
olation situations at different layers in Clouds. Furthermore, we developed mapping techniques
and mapping rules to guide the mapping of the low-level resource metrics to the equivalence of
high-level SLA parameters in order to enforce the agreed SLA objective. The correction of SLA
violation situations in our approach, is realized with knowledge management techniques, which
determine corrective actions based on the monitored information.
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CHAPTER 9
Conclusion

This chapter presents the conclusion of the research work carried out in this thesis. We summary
the contributions of this thesis and their implication to the advancement of autonomic resource
and SLA management in Cloud computing. We present in Section 9.1 the summary of the thesis
contributions and in Section 9.2, we discuss the issues not covered by our proposed solutions.
Section 9.3 discusses the potential future work based on the limitations of the proposed solutions
in this thesis.

9.1 Summary

In the course of this thesis, we have developed and implemented resource monitoring frame-
work, application scheduling and deployment heuristic, and application monitoring architecture
as basic components of a Cloud management infrastructure.

The contributed LoM2HiS framework provides infrastructure resource metrics monitoring
and mapping features. It is capable of monitoring the low-level resource metrics and mapping
them to the equivalence of the high-level SLA parameters using predefined mapping rules. The
mapped SLA values together with predefined threat threshold forms the basis for monitoring ap-
plication executions on virtual machines to guarantee their performance. The LoM2HiS frame-
work has been applied in different areas of discipline including traffic management systems to
monitor nodes in order to ensure their availability. Furthermore, we presented DeSVi—the novel
architecture for monitoring and detecting SLA violations in Cloud computing infrastructures. It
posses the capability of finding optimal measurement interval for application monitoring. The
main components of the architecture are the automatic VM deployer, responsible for the alloca-
tion of resources and for mapping of tasks, application deployer, responsible for the execution
of user applications, and the LoM2HiS framework, which monitors infrastructure resources and
translates low-level metrics into high-level SLAs in order to monitors the execution of appli-
cations. Nevertheless, it features strategies for finding optimal measurement intervals for ef-
ficient resource and application monitoring. We evaluated the architecture using two use-case
scenarios consisting of an image rendering application and a transactional application. From
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our experiments with these applications, we observed that there is no particular optimal suited
measurement interval for all application types. It is easier to identify optimal intervals for ap-
plications with steady resource consumption, such as the ‘vase’ POV-Ray animation. However,
applications with variable resource consumption require dynamic measurement intervals.

Scheduling and deployment strategies are means of achieving resource provisioning in Cloud
environments. A further contribution of this thesis is the development of a novel scheduling
heuristic considering multiple SLA objectives in deploying applications in Cloud environments.
The heuristic includes load-balancing mechanism for efficient distribution of the applications’
execution among the Cloud resources. We also presented a flexible on-demand resource usage
feature included in the heuristic for automatically starting new VMs when non-appropriate VM
is available for the application deployments. We discussed in details the design of the heuristic
and its implementations. We evaluated the proposed scheduling heuristic using the CloudSim
simulation tool.

In order to manage the deployment of multiple applications on a single virtual machine, we
proposed an application monitoring architecture (CASViD), which monitors and detects SLA vi-
olations at the application layer in Cloud environments. We evaluated the architecture on a real
Cloud testbed using three types of image rendering application workloads with heterogeneous
behaviours necessary to investigate different application provisioning scenarios and to auto-
matically determine the optimal measurement intervals to monitor the application provisioning.
From our experiments, the proposed architecture is efficient in monitoring and detecting individ-
ual application SLA violation situations. Furthermore, we observed that one can automatically
find the optimal measurement intervals by sampling different ones and checking their net utility
values. With the realization of CASViD, we achieved the capabilities of monitoring and de-
tecting SLA violations of single customer applications being provisioned in a shared host. And
thus, in addition to our previous resource monitoring techniques, we realized a holistic monitor-
ing model capable of monitoring at different layers in Clouds.

Apart from our investigations on monitoring strategies and SLA violation detection, we inte-
grated knowledge management techniques into the Cloud management infrastructure to achieve
autonomic behaviour and to propose reactive actions to prevent or correct the SLA violation
situations. Monitoring capabilities facilitate best reactive actions, which leads to the realization
of our goal of achieving an autonomic Cloud management infrastructure.

9.2 Contraints on Thesis Contributions

In this section, we describe the limitations of the research contributions achieved within this the-
sis as stated in Section 1.3. These issues are important for proper understanding of the proposed
solutions and they highlight things that are out of scope in our considerations. The following
points describe the constraints on the proposed solutions.

• The proposed LoM2HiS framework includes small number of mapping rules. At the cur-
rent state, it covers only few applications such as POV-Ray, Online Web shop application,
and scientific workflows. It is not fully generic and does not posses mapping rules for other
application types. In the design of the LoM2HiS framework, we used relational database
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such as MySQL. We did not try NoSQL databases such as Hadoop. Furthermore, we did
not investigate on models to automatically generate the threat thresholds used in the de-
tection of future SLA violation threats. We manually derived the threat threshold values
based on the predefined SLA objectives.

• The DeSVi architecture is currently capable of monitoring only single Cloud data centers.
It is not capable of monitoring federated Cloud environment where multiple Cloud data
centers are involved. The SLA objectives used to guide the performance of the applica-
tion are defined based on some sample runs. This method alone might not be sufficient
for defining SLA objectives for dynamical applications. Other methods should be investi-
gated.

• The proposed scheduling heuristic integrated with load balancing mechanism considers
only computational resource SLA objectives in scheduling and deploying applications. It
does not directly consider non-functional SLA parameters like response time in its oper-
ation. It implicitly assumes fulfilling the resource requirements of applications implies
the guaranteeing of their performance. This scheduling heuristic does not consider energy
efficiency objectives in scheduling and deploying applications in Clouds. This aspect is
very essential as providers are now seeking for ways of reducing the energy consumption
of their Cloud environments.

• The application monitoring architecture (CASViD) is only tested in a Cloud environment
with about 36 virtual machines. We assume that it could be applied in a large scale Cloud
environment based on its design concept. However, it has not been tested in a large scale
Cloud environment. Furthermore, in our evaluations, we monitored only computational
intensive applications. The architecture has not been applied to monitor transactional
applications.

9.3 Future Work

As discussed in Section 9.2, it can be observed that some important issues are out of scope
regarding our proposed monitoring and scheduling solutions in this thesis. These issues imply
open research challenges in this area. Further research efforts might consider the following:

• The mapping of the low-level metrics to the equivalence of the high-level SLA parameters
proves to be a useful strategy for guaranteeing the performance of applications in Clouds.
However, the definition of the mapping rules is not straight forward. To support the broad
usage of this strategy, there are need to develop database of mapping rules covering differ-
ent types of applications. In this process, one could create groups of applications using the
same mapping rules in order to avoid complexities. Another interesting issue to be inves-
tigated is the generation of threat thresholds for the prediction of future SLA violations.
Automatic models should be designed to address this issue.

• Cloud computing promises high scalability and the support of large number of users ac-
cessing services concurrently. The use of relational database in Clouds has been prob-
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lematic in terms of scalability and performance [88]. Potential solutions to this challenge
is the use of NoSQL databases [87]. Extending the LoM2HiS framework with NoSQL
database will help improve its scalability and its usage in large scale Cloud environment.
Furthermore, it will help create basis for interoperation with commercial Cloud providers
such as Amazon EC2.

• To fully utilize the features of Cloud computing and to further reduce cost, there are needs
for collaboration among Cloud providers in the form of federation [84]. The Cloud fed-
eration mechanism avoids the problem of owning a limited amount of resources by Cloud
providers, which empowers a provider to outsource resources to other providers in case
of variation in demand. The management of Cloud federations requires appropriate mon-
itoring techniques and communication channels [40]. Thus, it is necessary to extend the
proposed monitoring techniques to address these challenges.

• The proposed scheduling heuristic can be further improved by integrating monitoring
techniques into its operations. Through this means, the scheduler will acquire the cur-
rent resource status and will have the capability of making decisions at runtime. Further-
more, monitoring technique will provide the scheduler with information about the non-
functional performance objectives of the executing applications in order to make better
future decisions. Another aspect of scheduling to be investigated is on energy efficiency,
where models and strategies for conserving energy in a Cloud environment will be studied.
Nevertheless, the scheduling and deployment of applications in federated Cloud environ-
ment considering different outsourcing strategies are still open research challenges.

• Based on the developed monitoring techniques in this thesis, one can investigate security
issues in Cloud environment. That is, one can use the monitoring techniques to monitor
security relevant components in Clouds. This can lead to the study of security models and
strategies in Clouds.

We anticipate that further research work on Cloud monitoring and application scheduling
will in general be related to these open research challenges.
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Glossary

ActiveMQ Apache ActiveMQ - A powerful open source message broker, which fully imple-
ments the java message service. 21

AEF Automated Emulation Framework - A tool originally designed for automated configu-
ration and execution of emulated experiments. However, it works also as a virtualized
infrastructure manager to set up virtual machines in virtualized environments. 28

CASViD Cloud Application SLA Violation Detection - An architecture capable of monitoring
single customer applications to determine their performance status and thereby check for
SLA violation situations in an environment, where multiple customer applications are
deployed on the same host. 44

CEP Complex Event Processing - is a technology to process events and discover complex pat-
terns among multiple streams of event data. 22

Cloud Cloud Computing - facilitates the implementation of scalable on-demand computing in-
frastructures combining concepts from virtualization, Grid, and distributed system. It pro-
visions resources and applications in a pay-as-you-go manner, where the customer pays
only what it consumed. 1

CloudSim Cloud Simulation tool - is a scalable simulation engine that supports the modeling
and simulation of large scale Cloud computing environments including data centers on
single computing machine. It also supports the modeling of service brokers, resource
provisioning, and application allocation policies. 40

CPU Central Processing Unit - The brain of a computer, which contains the circuitry necessary
to interpret and execute program instructions. 18

DeSVi Detecting SLA Violation infrastructure - An architecture for monitoring Cloud resources
and detecting SLA violations of applications executing alone on virtual machines. It is
also capable of determining optimal measurement interval for carrying out the monitoring
operations. 26

DSL Domain Specific Language - is a small language used to define specific domain problems.
17
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ESP Event Stream Processing - deals with the task of processing multiple streams of event
data with the goal of identifying the meaningful events within those streams and deriving
meaning information from them. 22

FoSII Foundations of Self-governing ICT Infrastructures - A research project funded by the Vi-
enna Science and Technology Fund known in german as Wiener Wissenschafts-, Forschungs
und Technologiefonds (WWTF). It proposes models and concepts for autonomic SLA
management and enforcement in Clouds. 9

Grid Grid Computing - combines computers from multiple administrative domains to reach a
common goal, such as to solve a single task, and may then disappear just as quickly. 1

HPC High Performance Computing - is the use of parallel processing for running advanced
computation intensive application programs efficiently, reliably, and quickly. 78

IaaS Infrastructure as a Service - is a Cloud delivery model where the customer has full access
and uses fundamental computing resources such as CPU and storage. The customer can
fully control the operating system and hardware devices. 2

JMS Java Message Service - A Java message oriented middleware API for distributed commu-
nication of messages between clients. 21

KM Knowledge Management - In our context, it means intelligent usage of measured data
obtained by monitoring for the decision making process to guarantee application perfor-
mance goals defined in SLA agreement while optimizing computational resource usages.
52

LoM2HiS Low-level Metric to High-level SLA - A novel framework for monitoring Cloud in-
frastructure resources and mapping the low-level resource metrics to the equivalence of
the high-level SLA parameters. 15

MAPE Monitoring, Analysis, Planning, Execution - An intelligent closed loop of control used
by autonomic managers to manage devics’ states and behaviours in autonomic environ-
ment. 13

MIB Management Information Base - a text file in the standard SNMP format that defines the
individual objects one can manage with common SNMP tools. 46

MIPS Millions Instruction Per Second - is a unit used to simulate the utilization of CPU. Its
conversion is based on the assumption that an Intel Xeon(R) 3 GHz processor delivers
10000 MIPS for 100% resource utilization of one core. 93

MTBF Mean Time Between Failure - It denotes the time the system was operational between
the last system failure and the next. 19
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MTTR Mean Time To Repair - It denotes a time it takes to bring a system back online after a
failure situation. 19

MySQL A relational database management system that can run as a standalone server providing
access to multi-users and multiple databases. 22

NGS Next Generation Sequencing - A recently introduced high-throughput technology for the
identification of nucleotides molecules like RNA in biomedical samples. 54

PaaS Platform as a Service - A Cloud delivery model that provides a hosting environment for
the customer application. The customer has the ability to fully control its applications.
However, it has limited control of the operating system, hardware, and network devices of
the hosting environment. 2

POV-Ray Persistence of Vision Raytracer - A ray tracing program available for a variety of
computer platforms. It can be used to create high-quality three-dimension graphics. 67

QoS Quality of Service - A collection of metrics to specify the performance requirements of a
service. 12

RNA Ribonucleic Acid - It is a nucleic acid molecule similar to DNA but containing ribose
rather than deoxyribose. 51

SaaS Software as a Service - is a Cloud delivery model where customers use a Cloud appli-
cation but cannot control the operating system, hardware, and network devices in the
environment. 1

SAM Sequence Alignment/Map - A tool used to provide various utilities for manipulating RNA
sequence alignment including sorting, merging, indexing, and generating alignments in a
per-position format. 91

SAX Simple API for XML - A simple parser that provides mechanism for reading out data from
an XML document. 21

SCP Secure Copy Protocol - It is a protocol based on secure shell that uses a simple Public Key
infrastructure and Encryption to allow users to exchange files securely between unix host.
31

SLA Service Level Agreement - can be defined as a contract between a Cloud provider and a
customer describing functional and non-functional characteristics of a service including
QoS requirements, penalties in case of violations, and a set of metrics, which are used to
measure the provisioning of the requirements. 12

SLO Service Level Objective - specifies the objectives of the service level agreement parame-
ters. 13

131



SNMP Simple Network Management Protocol - It is a standard TCP/IP network protocol used
to monitor and control data traffics. It uses agents to collect data, which are then passed
to the manager. 45

SQL Structured Query Language - is a programming language designed for managing data in
relational database management systems. It was initially developed at IBM in the early
1970s 22

SSH Secure Shell - It is a unix-based commandline interface protocol that allow data to be
transferred using a secure channel between two networked devices. 31

TMS Traffic Management Systems - are tools used to retrieve information from traffic fields as
well as propagate information to traffic participants. They consist of many subsystems
built up in a hierarchical structure of components. 22

TopHat is a fast splice junction mapper for RNA-Seq reads. It aligns RNA-Seq reads to
mammalian-sized genomes using the ultra high-throughput short read aligner Bowtie, and
then analyzes the mapping results to identify splice junctions between exons. 53

TPC-W is a transactional web performance benchmark. Its workload is performed in a con-
trolled internet commerce environment that simulates the activities of a business oriented
transactional web server. 67

TT Threat Threshold - is a value that is more stricter than the service level objective value.
Exceeding this value indicates a threat of violating the real SLA objective values. 58

VM Virtual Machine - is a software implementation of a computer that executes programs like a
physical machine. It does not physically exist but it provides the same resource interfaces
as physical machines however, they vary in performance. 28

Xen is a virtualization technology for creating virtual machines on physical machine and man-
aging their deployments. 68

XML eXtensible Markup Language - is a metalanguage that allows users to describe structured
data. 21
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