
Adaptation and Evolution of
Service-Based Applications in

Cloud Computing Environments
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Christian Inzinger
Matrikelnummer 0225558

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Schahram Dustdar

Diese Dissertation haben begutachtet:

(Univ.Prof. Schahram Dustdar) (Prof. Luciano Baresi)

Wien, 03.02.2014
(Christian Inzinger)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Adaptation and Evolution of
Service-Based Applications in

Cloud Computing Environments
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Christian Inzinger
Registration Number 0225558

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Schahram Dustdar

The dissertation has been reviewed by:

(Univ.Prof. Schahram Dustdar) (Prof. Luciano Baresi)

Wien, 03.02.2014
(Christian Inzinger)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Inzinger
Gruschaplatz 2/9, 1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

The research leading to this thesis has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement 257483 (INDENICA), and from
the Austrian Science Fund (FWF) under grant P23313-N23 (Audit 4 SOAs).

iii

Danksagung

Zuallererst möchte ich meinem Betreuer, Prof. Schahram Dustdar, für seine Unterstützung und
die Chance danken, meine Dissertation in der Distributed Systems Group (DSG) in einer Ar-
beitsgruppe mit exzellenter Arbeitsatmosphäre zu schreiben, in der ich meine Forschungsideen
eigenständig verfolgen und entwickeln konnte. Weiters danke ich Prof. Luciano Baresi für viele
interessante Diskussionen und für die Zweitbegutachtung dieser Arbeit.

Ich bedanke mich auch bei allen Kollegen in der DSG, die mich über die letzten Jahre mit
großartiger Zusammenarbeit begleitet haben. Eine Dissertation ist nie die Leistung nur einer ein-
zelnen Person, deshalb geht an dieser Stelle besonderer Dank an Waldemar Hummer, Benjamin
Satzger und Philipp Leitner, die am Großteil meiner Forschungsarbeiten beteiligt waren, und
durch Ihren Einsatz die vorliegene Arbeit mitgeformt haben.

Ganz besonders möchte ich mich auch bei meiner Familie und all meinen Freunden bedanken,
die mich über die Jahre durch alle Höhen und Tiefen begleitet haben, und mich zu dem Menschen
machten, der ich heute bin.

v

Abstract

The emergence of the Service Oriented Architecture (SOA) paradigm enabled software architects
to efficiently design applications based on the composition of loosely coupled services. However,
maintaining such Service-Based Applications (SBAs) over time still poses several challenges.
SBAs are expected to successfully perform business tasks in changing environments. Unexpected
problems need to be handled gracefully by application control policies. Hardware failures, soft-
ware issues, and changes in execution environments, such as modifications of partner services,
should not lead to service disruptions. Hence, SBAs must be designed for continued functional
evolution to account for changing business and technical requirements. The utility-oriented cloud
computing paradigm opens up novel possibilities for applications reacting to changes in their
environment. The possibility to quickly and easily provision computing resources relieves appli-
cation architects and operators from having to statically provision infrastructure for peak usage.
This allows for the implementation of elastic applications that dynamically adjust their resource
usage to current demand given appropriate control policies. The on-demand nature of cloud of-
ferings makes even significant evolutionary changes to an application’s architecture feasible. To
successfully implement SBAs that can predictably react to changes in their environment and can
be safely evolved, practitioners must be able to effectively model, monitor and control relevant
application aspects to properly document and execute application adaptation and evolution.

This thesis contributes a set of novel approaches for SBA evolution and adaptation in cloud
environments. We introduce a holistic framework for enabling structured evolution and adapta-
tion of SBAs throughout the complete software development process. A novel evolution lifecycle
model and accompanying strategies allow for unified handling of change requests in any lifecycle
phase, and facilitate the propagation of necessary changes between phases in a controlled manner.
We present a method for provider-managed adaptation that enables customers to leverage provider
experience managing complex distributed systems without requiring large upfront investments.
Using a novel Domain-Specific Language (DSL) to model applications and their control struc-
ture, SBAs can effectively and efficiently react to changes in their environment without operators
needing to implement custom solutions. To mitigate the effects of unexpected changes in appli-
cation execution environments, we present an approach based on machine learning techniques to
incrementally improve adaptation policies. Finally, we introduce a method for automated iden-
tification of service implementation incompatibilities using pooled decision trees for localizing
faulty service parameter and binding configurations, explicitly addressing transient and changing
fault conditions. The results of our investigations are evaluated based on multiple case studies
and show that our approaches can significantly contribute to facilitate structured evolution of
SBAs and increase system robustness by autonomically improving adaptation policies.

vii

Kurzfassung

Serviceorientierte Architektur (SOA) hat sich in den vergangenen Jahren als beliebtes Paradigma
zur effizienten Entwicklung von Anwendungen etabliert, basierend auf der Komposition von
lose gekoppelten Komponenten. Die Verwaltung solcher Servicebasierten Anwendungen (SBAs)
stellt Anwender jedoch weiterhin vor einige Herausforderungen, da SBAs im Allgemeinen über
lange Zeit im Einsatz bleiben, und deren Funktionalität trotz Veränderungen in deren Umgebung,
oder auftretenden Fehlern, zur Verfügung stellen müssen. Daher müssen SBAs für die funktio-
nelle Weiterentwicklung, oder Evolution, entworfen werden, um sich ändernden Geschäftspro-
zessen und technischen Anforderungen anpassen zu können. Das Cloud-Computing-Paradigma
eröffnet neue Möglichkeiten für SBAs, um auf Veränderungen in ihrer Umgebung zu reagieren.
IT-Infrastruktur muss nicht mehr im Vorhinein beschafft und für Spitzenlasten dimensioniert
werden, sondern kann, mit Hilfe entsprechender Kontroll-Logik, einfach und schnell an aktuelle
Anforderungen angepasst werden. Cloud-Dienste machen auch signifikante evolutionäre Verän-
derungen der Architektur einer SBA möglich. Um SBAs, die einfach weiterentwickelt und auf
Änderungen reagieren können, erfolgreich zu implementieren, müssen Anwender in der Lage
sein, relevante Aspekte der SBA einfach zu modellieren, zu überwachen und zu steuern.

In dieser Arbeit werden neuartige Ansätze zur Adaptierung und evolutionären Anpassung
von Anwendungen in Cloud-Umgebungen vorgestellt, die den gesamten Softwareentwicklungs-
prozess betrachten. Das Evolution Lifecycle-Modell ermöglicht vereinheitliche Behandlung von
Änderungsanforderungen in jeder Phase des Anwendungsentwicklungsprozesses und erleichtert
den Austausch von relevanten Information zwischen Entwicklungsphasen. Weiters wird ein Sys-
tem zur Realisierung von adaptiven Systemen vorgestellt, bei dem die Adaptierung von SBAs
durch Cloud-Betreiber verwaltet wird, um deren Erfahrungen mit der Verwaltung komplexer
verteilter Systeme ohne große Vorabinvestitionen nutzen zu können. Mit Hilfe einer domänenspe-
zifischen Sprache können adaptive SBAs und deren Kontrollstruktur effizient modelliert werden,
ohne dass Anwender maßgeschneiderte Lösungen implementieren müssen. Um die Auswirkun-
gen von unerwarteten Änderungen in Laufzeitumgebungen von SBAs zu minimieren, wird ein
Ansatz vorgestellt, der Kontrolllogik schrittweise, mit Hilfe von Techniken des maschinellen
Lernens, verbessern kann. Schließlich wird ein Verfahren zur automatischen Identifikation von
Implementierungs-Inkompatibilitäten vorgestellt, das mit Hilfe von Entscheidungsbäumen feh-
lerhafte Parameter-Kombinationen und Partner-Service-Zuordnungen erkennen kann. Die Ergeb-
nisse unserer Untersuchungen werden anhand mehrerer Fallstudien ausgewertet und zeigen, dass
unsere Ansätze die strukturierte Weiterentwicklung von Anwendungen wesentlich erleichtern
können, und deren Robustheit durch autonome Verbesserung von Adaptierungslogik signifikant
erhöht werden kann.

ix

Contents

Acknowledgements iii

Danksagung v

Abstract vii

Kurzfassung ix

List of Tables xv

List of Figures xvii

List of Publications xix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Scientific Contributions . 4
1.4 Organization of this Thesis . 5

2 Background 7
2.1 Cloud Computing . 7
2.2 Software Evolution . 10
2.3 Autonomic Computing . 12
2.4 Reinforcement Learning . 13

3 A Lifecycle Model for the Evolution of Service-Based Applications 15
3.1 Overview . 15
3.2 Scenario . 16
3.3 Evolution Lifecycle Model . 19
3.4 Adaptation and Escalation Strategy . 25
3.5 Related Work . 26
3.6 Discussion . 28
3.7 Summary . 32

xi

4 Model-Based Adaptation of Cloud Computing Applications 35
4.1 Overview . 35
4.2 Models in Cloud Computing . 36
4.3 A Case for Model-based Adaptation . 37
4.4 The Meta Cloud Abstraction Layer . 40
4.5 Summary . 45

5 Generic Event-based Monitoring and Adaptation Methodology for Heterogeneous
Distributed Systems 47
5.1 Overview . 47
5.2 Scenario . 48
5.3 Architecture . 49
5.4 MONINA Language . 51
5.5 Deployment of Monitoring Queries and Adaptation Rules 58
5.6 Implementation . 63
5.7 Related Work . 65
5.8 Summary . 67

6 Non-intrusive Policy Optimization for Dependable and Adaptive Systems 69
6.1 Overview . 69
6.2 Scenario . 70
6.3 Adaptive Policy Optimization . 71
6.4 Evaluation . 77
6.5 Related Work . 80
6.6 Summary . 80

7 Identifying Incompatible Service Implementations 83
7.1 Introduction . 83
7.2 Scenario . 84
7.3 Fault Localization Approach . 86
7.4 Implementation . 93
7.5 Evaluation . 94
7.6 Related Work . 98
7.7 Summary . 100

8 Conclusion and Future Research 103
8.1 Summary of Contributions . 103
8.2 Research Questions Revisited . 104
8.3 Future Work . 105

Bibliography 107

A Glossary 123

B MONINA Language Grammar 125

xii

C Curriculum Vitae 129

xiii

List of Tables

6.1 Parameters Defining the Travel Itinerary System Configuration 71

7.1 Description of Variables . 88
7.2 Example Traces for Scenario Application . 88
7.3 Fault Probabilities for Exemplary SBA Model Sizes 94

xv

List of Figures

2.1 Layers of the Cloud Computing Stack . 8
2.2 Simple Staged Model for the Software Lifecycle 10
2.3 Versioned Staged Model for the Software Lifecycle 11
2.4 MAPE Cycle . 12
2.5 Reinforcement Learning Interaction Loop . 13

3.1 Service-Based Scenario Application . 17
3.2 Scenario Implementation Variants for a Single Provider 18
3.3 Application Lifecycle Overview . 21
3.4 Lifecycle Evolution Model . 22
3.5 Architectural Decision Model . 23
3.6 View-based Model . 24
3.7 Deployment Model . 24
3.8 Runtime Model . 25
3.9 Artifacts of Use Case C1 . 29
3.10 Artifacts of Use Case C2 . 30
3.11 Artifacts of Use Case C3 . 31

4.1 Traditional Cloud Application Architecture . 37
4.2 Cloud Application Architecture using Provider-Managed Adaptation 38
4.3 Conceptual Overview of the Meta Cloud. 42

5.1 VSP Runtime Architecture . 49
5.2 Sample MONINA System Definition . 52
5.3 Simplified Event Grammar in EBNF . 53
5.4 Simplified Action Grammar in EBNF . 54
5.5 Simplified Fact Grammar in EBNF . 54
5.6 Simplified Component Grammar in EBNF . 55
5.7 Simplified Monitoring Query Grammar in EBNF 56
5.8 Simplified Adaptation Rule Grammar in EBNF 57
5.9 Simplified Host Grammar in EBNF . 58
5.10 Graphs generated from a MONINA description 59
5.11 Cost-Efficient Optimization and Re-Configuration in Cloud Environments 62
5.12 Sample Screenshot of MONINA Editor . 63

xvii

6.1 Architecture of the Travel Itinerary Application 70
6.2 SOA without optimized policy . 72
6.3 SOA with optimized policy . 72
6.4 Functionality of the Policy Optimizer . 73
6.5 Functionality of the Log Adapter . 74
6.6 Generation of states, actions and transition model 74
6.7 Illustrative example of our reward function . 76
6.8 Service Method Definition: HRS “find hotel” . 77
6.9 Evaluation result summary . 78
6.10 Experiment Results . 79

7.1 eTOM Scenario Application Architecture . 85
7.2 Data Flow in the Scenario Process . 85
7.3 Exemplary Decision Tree in Two Variants . 90
7.4 Maintaining Multiple Trees to Cope with Changing Faults 92
7.5 Prototype Implementation Architecture . 93
7.6 Number of Traces Required to Detect Faults of Different Probabilities 95
7.7 Fault Localization Accuracy for Dynamic Environment with Transient Faults . . . 96
7.8 Noise Resilience . 97
7.9 Localization Time . 97
7.10 Localization performance . 98

xviii

List of Publications

The work presented in this thesis is based on research that has been published in the following
conference papers, journal articles, and technical reports. For a full publication list of the author
please refer to the website at http://dsg.tuwien.ac.at/staff/inzinger.

• Christian Inzinger, Waldemar Hummer, Ioanna Lytra, Philipp Leitner, Huy Tran, Uwe Zdun,
and Schahram Dustdar. Decisions, models, and monitoring – A lifecycle model for the
evolution of service-based systems. In Proceedings of the 17th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC ’13, pages 185–194, Washington,
DC, USA, 2013. IEEE Computer Society. doi:10.1109/EDOC.2013.29

• Christian Inzinger, Benjamin Satzger, Philipp Leitner, Waldemar Hummer, and Schahram
Dustdar. Model-based adaptation of cloud computing applications. In Proceedings of
the International Conference on Model-Driven Engineering and Software Development
(MODELSWARD ’13), Special Track on Model-driven Software Adaptation, MODA ’13,
pages 351–355. SciTePress, 2013. doi:10.5220/0004381803510355

• Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and Schahram
Dustdar. Winds of change: From vendor lock-in to the meta cloud. IEEE Internet Comput-
ing, 17(1):69–73, 2013. doi:10.1109/MIC.2013.19

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Generic event-based monitoring and adaptation methodology for heterogeneous
distributed systems. Software: Practice and Experience, 2014. doi:10.1002/spe.2254. (to
appear)

• Christian Inzinger, Benjamin Satzger, Waldemar Hummer, and Schahram Dustdar. Specifi-
cation and deployment of distributed monitoring and adaptation infrastructures. In Proceed-
ings of the International Workshop on Performance Assessment and Auditing in Service
Computing, co-located with ICSOC ’12, PAASC ’12, pages 167–178, Berlin, Heidelberg,
2012. Springer. doi:10.1007/978-3-642-37804-1_18

• Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram
Dustdar. Non-intrusive policy optimization for dependable and adaptive service-oriented
systems. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 504–510, New York, NY, USA, 2012. ACM. doi:10.1145/2245276.
2245373

xix

http://dsg.tuwien.ac.at/staff/inzinger/#publications
http://dx.doi.org/10.1109/EDOC.2013.29
http://dx.doi.org/10.5220/0004381803510355
http://dx.doi.org/10.1109/MIC.2013.19
http://dx.doi.org/10.1002/spe.2254
http://dx.doi.org/10.1007/978-3-642-37804-1_18
http://dx.doi.org/10.1145/2245276.2245373
http://dx.doi.org/10.1145/2245276.2245373

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Towards identifying root causes of faults in service-based applications. In
Proceedings of the 31st IEEE International Symposium on Reliable Distributed Systems,
SRDS ’12, pages 404–405, Washington, DC, USA, 2012. IEEE Computer Society. doi:10.
1109/SRDS.2012.78

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible implementations of industry standard service interfaces
for dependable service-based applications. Technical Report TUV-1841-2012-1, Vienna
University of Technology, 2012

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible service implementations using pooled decision trees. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
485–492, New York, NY, USA, 2013. ACM. doi:10.1145/2480362.2480456

xx

http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1145/2480362.2480456

CHAPTER 1
Introduction

Over the last decade, the Service Oriented Architecture (SOA) paradigm [49, 122] found wide-
spread adoption as a popular way to implement enterprise applications. Business concerns are
modeled as self-contained services that expose their functionality via platform-independent in-
terfaces and protocols to enable clear separation of concerns and increase reusability. The use of
SOA assists software architects in creating enterprise applications by providing access to a vari-
ety of loosely-coupled services, both developed in-house as well as by external third parties, that
can be easily reused and composed [45] to create complex Service-Based Applications (SBAs),
or Service-Based Systems (SBSs)1. This loosely-coupled, service-based approach to application
design is well suited for (and often mandates) distributed deployment topologies comprising
multiple machines to properly handle resource load and isolate failure domains. In recent years,
the SOA principles provided the basis for cloud computing [8], a service-based approach for
deploying and executing large-scale distributed applications on managed infrastructure. Cloud
computing relieves users from provisioning and maintaining dedicated infrastructure. Under the
cloud computing umbrella term, a number of offerings are now available for consumption in a
service-based manner, such as computing resources, storage, and databases.

The utility-driven, on-demand nature of cloud offerings [29] allows customers to easily and
quickly provision the exact type and amount of resources needed for a given task at a given time,
a concept also known as elasticity [46]. Applications created according to SOA design principles
are a natural fit for deployment on cloud environments, as the service-based approach employed
by cloud computing offerings integrates into and extends the already available service stack,
allowing for new ways to efficiently orchestrate and manage service deployments. Using cloud
techniques, SBAs can dynamically react to varying request loads by provisioning additional
resources when necessary to fulfill established Service Level Agreements (SLAs), and releasing
superfluous resources when they are not needed, thereby reducing operating costs. Furthermore,
ready-made application components, such as databases or messaging infrastructures, can now be

1In the context of this thesis, we use the terms SBA and SBS synonymously to denote software systems that are
designed and implemented based on SOA principles.

1

provisioned on demand, and, since they are usually managed by the provider, significantly reduce
operational management efforts. This allows software teams to focus on creating value for their
customers instead of dealing with the intricacies of deploying, configuring, and maintaining such
components.

The cloud computing paradigm moreover serves as enabling technology for iterative and
agile software development methods such as the Rational Unified Process [90] and Scrum [151].
Iterative and agile software development methods focus on improving communication with
relevant stakeholders by producing runnable software artifacts in short time intervals to gather
feedback, identify arising problems as early as possible, and to ensure that customer requirements
are properly addressed by the created application. Cloud environments are well suited for such
methods since application developers can easily adjust the infrastructure necessary to execute
an application without large upfront expenses, as well as use cloud offerings in their application
design to reduce development effort [24].

1.1 Problem Statement

Enterprise SBAs are expected to continuously retain successful operation, even when facing
unexpected problems and changes in their environment. Applications need to be able to adapt
in the face of issues such as unavailable partner services, interrupted network links, or hardware
failures in the hosting infrastructure. Problems at runtime must be handled gracefully with as
little customer-facing impact as possible. Moreover, SBAs must be designed for evolution, as
they are expected to remain in service for extended amounts of time. Customer requirements,
business processes, or infrastructure constraints can change over time, necessitating fundamental
changes to the application implementation, its architecture, or deployment topology. Application
management and design methods need to account for these issues and assist practitioners in
creating reliable, fault-tolerant applications that are able to dynamically adapt to changes in their
runtime environment, as well as support them in realizing evolutionary changes in the application
structure.

Cloud computing environments allow for novel ways of efficient execution and management
of complex distributed systems, such as elastic resource provisioning and global distribution
of application components. However, it also introduces challenges not previously encountered
in traditional application design and development. Cloud applications are typically spread over
a large number of virtual machines, requiring an application management infrastructure that
is able to cope with complex control logic distributed on multiple machines. Furthermore, as
the number of involved resources increases, failures of single components become more and
more likely. Applications must be able to tolerate these component failures, for instance by
gracefully degrading service quality until additional resources are provisioned to reduce SLA
violations [100]. This can be achieved by rerouting requests to other components in the system,
only serving high-priority requests, or using an external third-party service to (partially) fulfill
consumer requests.

Management of enterprise SBAs deployed in the cloud requires comprehensive monitoring
of the current state of the complete system, i.e. all its functional components, the supporting
infrastructure, as well as relevant partner services, along with effectors to influence the system

2

to react to changes. The advent of cloud computing presents an opportunity for establishing and
implementing novel best practices for unified management and control of applications at runtime,
as well as managing their deployment and evolution over time. This applies to both, consumers
as well as providers of cloud offerings. While consumers can establish processes, methods and
structures for standardized use within their company to improve internal practices, providers have
the possibility of significantly improving the quality of applications for a multitude of customers
by offering their expertise in application development and management as part of their products.

In literature and practice, these issues are currently not sufficiently addressed. Current ap-
proaches mostly focus on improving single phases of the application development lifecycle,
such as architectural design [13, 107, 145, 167] and runtime adaptation [32, 81, 85], but do
not consider important inter-phase relationships and their influence on application design and
management as part of a comprehensive application control framework spanning the complete
application lifecycle required for cloud applications.

1.2 Research Questions

The problems identified in Section 1.1 serve as motivation for the research conducted throughout
this thesis. Specifically, this work addresses the following research questions.

Research Question I:
How can software evolution and adaptation be explicitly incorporated

in cloud application design and management?

As discussed in Section 1.1, the cloud computing paradigm allows for the incorporation of
novel mechanisms in enterprise SBA design. Application design should exploit the dynamic
nature of cloud offerings by incorporating well-defined methods to document and implement
changes in SBAs at any stage of the application lifecycle, whether they are made at design time,
during development, deployment, or runtime. Existing work mostly tackles different stages in iso-
lation, but no approach exists that incorporates documentation and management of evolutionary
changes across the complete application lifecycle. Application management infrastructures allow
for defining monitoring and adaptation concerns to enable deployed SBAs to react to changes
in their environment with as little customer-facing impact as possible. Traditional application
management is mostly implementing using centralized controllers that gather relevant monitoring
data and effect the underlying application based on specified adaptation rules, but no approach
exists that explicitly considers the dynamic, distributed nature of cloud environments, assisting
practitioners in effectively designing and managing cloud applications and their management
infrastructure.

Research Question II:
How can explicit cloud application design and management be

autonomously improved in the face of changes in their environment?

In addition to explicit management of desired application behavior over time, complex SBSs
need to be able to cope with unexpected issues that occur in their execution environment. Ap-

3

plication management policies for deployed components might become unsuitable for the SBS
as a whole when the execution environment changes, or incompatibilities might arise due to the
complex interactions between multiple components, possibly from different vendors. Such issues
need to be handled with as little operator intervention as possible to prevent, or at least minimize,
service disruptions and SLA violations.

1.3 Scientific Contributions

The work conducted during the course of this thesis, guided by the research questions posed in
Section 1.2, has lead to the following contributions to the state of the art in SBA design and
management.

Contribution I:
A lifecycle model for documenting and implementing evolution of SBAs

throughout the complete application development lifecycle.

An essential task for enabling controlled evolution of complex SBAs is to model application
design decisions, their impact on software architecture, relationships between identified compo-
nents, and behavior goals governing their functional operation. We present an evolution lifecycle
model to support these tasks and enable structured documentation and partial automation of ap-
plication evolution decisions and procedures. Details are presented in Chapter 3. Contribution I
was originally presented in [76].

Contribution II:
An approach for model-based adaptation of cloud applications,

both provider-managed as well as using a mediation layer.

Modeled application behavior goals are well suited for establishing best practices in appli-
cation adaptation. We introduce a method for provider-managed adaptation in cloud computing
infrastructures, enabling practitioners to leverage provider experience managing complex dis-
tributed systems without large initial investments. To ease migration to provider-managed adapta-
tion infrastructures, we also present a concept for a provider-independent meta-cloud middleware
that prevents vendor lock-in and acts as intermediary until providers support managed adaptation.
Details are presented in Chapter 4. Contribution II was originally presented in [78, 141].

Contribution III:
A language and method for specification and optimized deployment of

distributed application monitoring and adaptation infrastructures.

To effectively model and deploy runtime management infrastructure realized in a framework
as proposed in Contribution II, we introduce a Domain-Specific Language (DSL) to represent

4

application structure, monitoring queries, and adaptation rules, along with a distributed manage-
ment runtime to execute the modeled control infrastructure. Furthermore, we present an algorithm
for optimal deployment of monitoring and adaptation operators aimed at minimizing unneces-
sary network traffic while keeping cost overhead for management infrastructure low. Details are
presented in Chapter 5. Contribution III was originally presented in [74, 79].

Contribution IV:
A method for autonomically improving application management policies

based on log data analysis without explicit domain knowledge.

Complex SBSs are comprised of multiple components, each with their own partial control
logic. While these control policies might very well be suitable for individual components or
certain sets of components, the complex interactions in real-world systems can cause issues in
combined application management policies. To alleviate adverse effects of unintended interac-
tions between component management policies, we present a novel approach to incrementally
improve runtime adaptation policies without explicit domain knowledge by using machine learn-
ing techniques to analyze and act based on application log data. Details are presented in Chapter 6.
Contribution IV was originally presented in [75].

Contribution V:
An approach for identifying incompatibilities between implementations of

collaborating services using pooled decision trees.

While one of the claims of the SOA paradigm is simplified interoperability by employing
services with well-defined interfaces, problems still arise in practice. Different implementations
of the same interface, while syntactically identical, can significantly differ in terms of semantics,
due to issues like different interpretations of the service’s intended functionality, or bugs in
the implementation. While each service implementation might work well in isolation, complex
composition and interaction structures in enterprise SBSs can trigger these issues and produce
faults that are hard to identify and debug. We present a method for automatically detecting such
incompatible service implementations to aid in the discovery and prevention of faults leading to
reduced service quality or SLA violations. Details are presented in Chapter 7. Contribution V
was originally presented in [72, 73, 77].

1.4 Organization of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides background infor-
mation on basic concepts used throughout thesis. Specifically, the topics of cloud computing
(Section 2.1), software evolution (Section 2.2), and autonomic computing (Section 2.3) are intro-
duced. The main matter of this thesis, contributions I-V, is presented in chapters 3 to 7. Chapter 3
discusses the application evolution lifecycle model that allows for structured documentation and
realization of evolution decisions throughout the software development lifecycle. In Chapter 4,

5

we make a case for managed adaptation of cloud applications to reduce required implementation
and management efforts while encouraging best practices, along with the meta cloud approach
for transitional, provider-independent management of application deployment and runtime man-
agement. Chapter 5 introduces a language and tool set for specification and deployment of
distributed application management infrastructures, along with an approach for optimized place-
ment of monitoring and adaptation operators within available infrastructure. To assist application
management at runtime, we present an approach for non-intrusive policy improvement based on
log data analysis in Chapter 6. In Chapter 7, we introduce our fault localization method based on
pooled decision trees that allows to identify service implementation incompatibilities to prevent
faults in complex SBSs. Finally, Chapter 8 provides conclusions, discusses the presented con-
tributions in light of the posed research questions, and offers an outlook for ongoing and future
research.

6

CHAPTER 2
Background

In this chapter, we introduce several basic concepts that are used in the remainder of this thesis.
First, we illustrate the fundamental properties of the cloud computing paradigm, followed by
an introduction of the notion of software evolution, as these topics represent the context and
motivation of the work conducted as part of this thesis. Then, we cover the basics of autonomic
computing and machine learning that form the foundation for realizing adaptive and evolvable
SBSs.

2.1 Cloud Computing

Cloud computing [7, 8, 25, 29, 50, 165] is a paradigm that emerged in recent years “for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider interaction” [109].

The foundational properties of cloud offerings as compared to traditionally provisioned data
center infrastructure are (1) on-demand provisioning, allowing customers to quickly and easily re-
quest an arbitrary, apparently unbounded, number resources, (2) pay-as-you-go pricing, charging
customers only for actual resources consumed, without requiring long-term contracts or upfront
investments, made possible by (3) economies of scale through consolidation of computing re-
sources in large data centers, increasing utilization and thereby reducing unnecessary energy
and maintenance overhead. These properties enable the realization of elastic applications that
dynamically adjust the amount and type resources required to perform business tasks to current
demand. As the utility-driven nature of cloud computing [29] is inherently service-oriented, cloud
offerings are generally based on SOA principles and offered as services that can be consumed
without mandatory user interaction.

Services offered by providers vary in their granularity from low-level infrastructure offerings,
such as Virtual Machines (VMs), storage, networking, and load balancing, over partially managed
platforms shifting some of the application management process to the provider, to fully-managed

7

Cloud Application
(e.g. SaaS)

Cloud Software Environment
(e.g. PaaS)

Firmware/Hardware (HaaS)

Software Kernel

Cloud Software Infrastructure

Computational
Resources (IaaS)

Storage
(DaaS)

Communications
(CaaS)

Figure 2.1: Layers of the Cloud Computing Stack (from [162])

services, that are designed to be consumed by end users. These different levels are often cate-
gorized into Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS) [25, 104, 162], as illustrated in Figure 2.1. The three categories of cloud services
can (mostly) be mapped to the distribution of management tasks between provider and consumer,
as discussed in the following.

Low-level infrastructure products, or IaaS offerings, allow for the provisioning of VMs that
are subsequently under complete control of the cloud user. Operating system maintenance, appli-
cation installation and management, as well as security updates are managed by the cloud user,
while provisioning of physical hardware, network links, power, and data center are managed by
the cloud provider. The IaaS model offers a high degree of flexibility to customers (as they basi-
cally manage their own “virtual data center” in the cloud), but – unsurprisingly – requires them to
have the necessary expertise to actually manage the provisioned resources, as mentioned above.
Notable examples of IaaS offerings include Amazon Elastic Compute Cloud (EC2)1, Google
Compute Engine2, VMware vCloud3, Rackspace Cloud Servers4, DigitalOcean5, and Microsoft
Windows Azure Compute6. In addition to IaaS products for deploying VMs, several providers
also offer infrastructure-level services for storing and retrieving data, i.e., Data as a Service
(DaaS), such as block storage (e.g., Rackspace Cloud Block Storage7) object stores (e.g., Ama-
zon Simple Storage Service (S3)8), in-memory caches (e.g., Amazon ElastiCache9), Relational

1http://aws.amazon.com/ec2/
2http://developers.google.com/compute/
3http://vcloud.vmware.com/
4http://www.rackspace.com/cloud/servers/
5http://digitalocean.com/
6http://www.windowsazure.com/en-us/services/virtual-machines/
7http://www.rackspace.com/cloud/block-storage/
8http://aws.amazon.com/s3/
9http://aws.amazon.com/elasticache/

8

http://aws.amazon.com/ec2/
http://developers.google.com/compute/
http://vcloud.vmware.com/
http://www.rackspace.com/cloud/servers/
http://digitalocean.com/
http://www.windowsazure.com/en-us/services/virtual-machine s/
http://www.rackspace.com/cloud/block-storage/
http://aws.amazon.com/s3/
http://aws.amazon.com/elasticache/

Database Management Systems (RDBMSs) (e.g., Rackspace Cloud Databases10, Amazon Rela-
tional Database Service (RDS)11, Heroku Postgres12), and NoSQL databases (e.g., Cloudant13).

To reduce the administration overhead of managing virtual infrastructure, PaaS products
were created that provide pre-configured software environments for cloud users to simplify de-
ployment, management, and scaling of their applications [92]. When using PaaS products, cloud
users sacrifice some of the flexibility of IaaS for the convenience and simplicity of relying on
provider-managed infrastructure. Cloud providers offer PaaS products with a variety of different
levels of managed behavior. On the most basic level, PaaS products assist application developers
by offering a set of pre-configured components that can be assembled and then deployed into
separate (mostly unmanaged) containers to ease development setup (e.g., Red Hat OpenShift14).
Somewhat more advanced, some products offer managed VM containers, with operating system
and software development stack maintenance tasks handled by the provider, while still offering
developers certain freedom to customize and modify application execution environments (e.g.,
Heroku15, and Amazon Elastic BeanStalk16). Finally, there also exist solutions that, in addition
to fully managing the underlying VMs, performing operating system maintenance and security
updates, only provide a restricted (often domain-specific) software environment for cloud users
to create their applications in (e.g., Google App Engine17, Salesforce118). PaaS offerings are
aimed at increasing developer productivity and reducing software costs [92] for customers, while
providers can leverage information about deployed applications, which would not be available in
IaaS-based applications, to improve management policies, optimize deployment topologies, and
consolidate infrastructure.

In contrast to the previously discussed infrastructure and platform layers, SaaS, the topmost
layer in Figure 2.1, denotes offerings that are targeted at end users as opposed to application
developers and operators. SaaS products are usually created to meet certain business needs in a
special domain, and are often designed for human interaction via web or native Graphical User
Interfaces (GUIs), Notable examples of SaaS offerings include storage solutions, such as Drop-
box19 and Google Drive20, business productivity tools, such as Google Docs21 and Basecamp22,
streaming services, such as Pandora23 or Netflix24, and various others.

The cloud computing paradigm offers new possibilities for managing and deploying SBSs,
such as dynamic resource provisioning and distributed deployment of application components,

10http://www.rackspace.com/cloud/databases/
11http://aws.amazon.com/rds/
12https://www.heroku.com/postgres/
13http://www.cloudant.com/
14http://www.openshift.com/
15http://www.heroku.com/
16http://aws.amazon.com/elasticbeanstalk/
17http://developers.google.com/appengine/
18http://force.com/
19http://www.dropbox.com/
20https://drive.google.com/
21http://docs.google.com/
22http://www.basecamp.com/
23http://www.pandora.com/
24http://www.netflix.com/

9

http://www.rackspace.com/cloud/databases/
http://aws.amazon.com/rds/
https://www.heroku.com/postgres/
http://www.cloudant.com/
http://www.openshift.com/
http://www.heroku.com/
http://aws.amazon.com/elasticbeanstalk/
http://developers.google.com/appengine/
http://force.com/
http://www.dropbox.com/
https://drive.google.com/
http://docs.google.com/
http://www.basecamp.com/
http://www.pandora.com/
http://www.netflix.com/

but also poses new challenges, since application are executed on “foreign” infrastructure, need
to properly scale according to changes in demand while considering infrastructure and manage-
ment costs. These possibilities and challenges are the fundamental motivation for the research
presented in this theses. In this work, we address several challenges of effective application
management in cloud environments to ease cloud application management and deployment.

2.2 Software Evolution

Software evolution, or software maintenance, is an important part of the software development
lifecycle, addressing the fact that applications need to be able to evolve over time to adjust to
changes in their requirements, as well as their environment [110]. Early software development
processes, such as the well-known waterfall model [134], consider software maintenance as a
process to be performed after it has been released or deployed in production to correct bugs and
make minor adjustments. However, scholars and practitioners soon realized that software evolu-
tion should not just be treated as an after-thought but needs to be incorporated in the software
production process. applications are expected to be in service for extended periods of time, dur-
ing which business requirements, application execution environments, or external dependencies
might change. The observations formalized in Lehman’s laws of software evolution [93, 94, 95]
clearly illustrate that software will need to be modified over time to react to changes in its envi-
ronment, and that the necessity for adapting software is inevitable and not a result of bad planning
or implementation.

first running
version

Evolution changes Servicing patches

Loss of
evolvability

Servicing
discontinued

Switchoff

Phaseout Closedown
Initial

Development
Evolution Servicing

Figure 2.2: Simple Staged Model for the Software Lifecycle (adapted from [21, 131])

One of the early works addressing the necessity of explicitly modeling the evolution stage as
integral part of the software lifecycle is the staged model [21, 22, 131], as shown in Figure 2.2.
After initial development the application under development enters the evolution stage, where
any kind of modification to the code can be performed, given that architectural integrity is main-
tained [110]. When this condition can no longer be satisfied, the software has encountered loss
of evolvability and enters the servicing stage. In this stage, only small changes to the software
are performed to keep it running. When it is no longer financially feasible to continue servicing
an application it transitions to the phase out stage that leads to the eventual closedown of the
application. A variation of this model is the versioned staged model, as shown in Figure 2.3. This
model extends the simple staged model by treating evolution as the backbone of the software

10

first
running
version

Evolution changes Servicing patches

Loss of evolvability Servicing discontinued Switchoff

Evolution changes Servicing patches

Loss of
evolvability

Servicing
discontinued

Switchoff

Evolution of
new version

Evolution of
new version

Phaseout
Version 1

Closedown
Version 1

Initial
Development

Evolution
Version 1

Servicing
Version 1

Phaseout
Version 2

Closedown
Version 2

Evolution
Version 2

Servicing
Version 2

Evolution
Version ...

Figure 2.3: Versioned Staged Model for the Software Lifecycle (adapted from [21, 131])

lifecycle [131]. Software versions are produced according to the simple staged model introduced
above, but new versions evolve from the codebase at regular intervals to release updated versions
to customers. This allows for handling one of the realities of traditional software development,
namely that multiple versions of the software will be deployed with customers at any given time.

Building on the principles of evolutionary development processes such as the staged model
discussed above, iterative and agile software development methods, such as the Rational Unified
Process (RUP) [90], Goal-driven Software Development [143], Feature Driven Development
(FDD) [121], Extreme Programming (XP) [19], and Scrum [151], embrace the notion of constant
change and acknowledge the need for software to evolve by splitting the software development
process into small iterations, aimed at producing tangible results in predictable intervals that can
be tested and validated by stakeholders to guide further progress, facilitate early identification of
problems, and quickly react to changing requirements [130]. Recent research in software evolu-
tion supplements these development models and addresses various important aspects to increase
software quality and maintainability, such as predicting bugs by mining bug repositories [168],
analyzing software repositories to gather relevant information about application evolution [47],
migrating legacy systems to SOA [61], as well as managing evolution of software at the archi-
tecture level [13]. In this thesis, we focus on challenges encountered in the development and
evolution of SBS and address the need for a well-defined method to handle changes, whether
they are made at runtime, deployment, development, or design time in Chapter 3.

11

2.3 Autonomic Computing

The vision of autonomic computing is to create “computing systems, that can manage themselves
given high-level objectives from administrators” [88]. In day-to-day operations, human interven-
tion should not be required to keep a software system operational and performing according to
specifications. Administrators interact with systems using high-level goals, representing target
states a system should be in, as opposed to concrete, detailed steps required to reach these states.
To enable this vision of self-managed applications, a number of self-* properties have been iden-
tified [65]. The four properties discussed in IBM’s original work [63] are: (1) self-configuration:
systems should automatically configure, install and deploy components according to high-level
policies; (2) self-optimization: applications constantly strive to improve their own performance;
(3) self-healing: systems automatically detect, mitigate, or fix problems that occur in its com-
ponents or runtime environment; (4) self-protection: systems are able to automatically defend
against malicious attempts to circumvent security measures or deny service to legitimate users.

Autonomic Element

Managed Element

Autonomic Manager

knowledge
Monitor

Analyze Plan

Execute

EffectorsSensors

Figure 2.4: MAPE Cycle (adapted from [88])

The usual approach to implement self-* behavior is to model application components as
autonomic elements that govern their own behavior. As illustrated in Figure 2.4, an autonomic
element consists of a managed element supervised by an autonomic manager. The managed
element represents a regular application component that will be controlled by the autonomic
manager using data gathered from sensors and actions executed using effectors. The autonomic
manager monitors and controls the managed element using a four-step process forming the
well-known Monitor, Analyze, Plan, Execute (MAPE) cycle [65, 88], along with a common
knowledge base accessible to all process stages. In the monitor step, data is gathered from the
managed element through sensors, that are subsequently processed and enriched in the analyze
stage. Analyzed data is then used to construct a plan for how to get the managed element into
a more desirable state. Finally, the constructed plan is executed using the managed element’s

12

effectors that realize concrete changes in the application logic. In Chapter 5 of this thesis, we
build on the concepts discussed above and introduce an autonomic manager for cloud application
deployment and management that allows operators to define desired application behavior using
a simple DSL.

2.4 Reinforcement Learning

Reinforcement learning describes a branch of the wider field of machine learning, itself a part
of the area of artificial intelligence research. Reinforcement learning tackles “the problem faced
by an agent that must learn behavior through trial-and-error interactions with a dynamic envi-
ronment” [87]. Figure 2.5 shows how reinforcement learning can be used to realize an agent

Agent

System

State
Reward

Action

Figure 2.5: Reinforcement Learning Interaction Loop (adapted from [152])

adaptively controlling a system. The system issues information about its current state and pro-
vides feedback in the form of rewards, which is used by a reinforcement learning algorithm to
improve the agents policy. This policy recommends which action to take based on the system
state defining a system controller.

2.4.1 Markov Decision Process

In this section, we provide an introduction to Markov Decision Processes (MDPs) [135], a
mathematical framework for decision making, which serves as basis for our adaptive control
mechanism. MDPs deal with decision making in an uncertain world, where performance depends
on a sequence of decisions. At any point in time a decision making agent chooses among a
number of available actions. The execution of an action affects the current state and a reward
is given to the decision maker as feedback. How the state is affected probabilistically depends
on the current state and the chosen action, but not on previous states. An MDP (S,A,T,R) is
formally defined by a set of states S, a set of actions A, a transition model T : S×A×S→ [0,1],
and a reward function R : S→ R. The transition function T (s,a,s′) determines the probability of
reaching state s′ ∈ S when executing action a ∈ A while being in state s ∈ S. The utility of a state
s is defined by the reward function R(s).

13

The main problem for MDPs is to find a policy π that specifies which action to take for any
state. In particular, π(s) gives the action recommended by the policy for state s. An optimal
policy is one that maximizes the expected rewards over time. Some algorithms, such as value
iteration and policy iteration [135], are able to compute an optimal policy if transition model
and reward function are known in advance. Reinforcement learning on the other hand solves the
online variant of an MDP, where transition model and rewards are initially not known. Additional
knowledge gathered by observations of transitions and rewards are used to iteratively improve
a policy. Prominent reinforcement learning algorithms include Q-Learning [135] and Dyna-
Q [150]. A core contribution of the work presented in Chapter 6 is to show how MDPs, a
mathematically sound and well understood model, can be leveraged to manage and improve
complex real world control policies of SBSs.

14

CHAPTER 3
A Lifecycle Model for the Evolution of

Service-Based Applications

The process of engineering and provisioning SBAs follows a complex and dynamic lifecycle
with different phases and levels of abstraction. In this chapter, we tackle the problem of making
this lifecycle explicit, providing development time and runtime support for evolutionary changes
in such systems. SBSs are modeled as integrated ecosystems consisting of four conceptual layers
(or phases): design, implementation, deployment, and runtime. Our work is driven by the notion
that identifying the right changes (monitoring) and effecting of these changes (adaptation) usually
takes place individually on each layer. While considering changes on a single layer (e.g., runtime
adaptation) is often sufficient, some cases require systematic escalation to adjacent layers. We
present a generic lifecycle model that provides an abstracted view of the problem domain and
can be mapped to concrete artifacts on each individual layer. We introduce a real-life scenario
taken from the telecommunications domain, which serves as the basis for discussion of the
challenges and our solution. Based on the scenario and our experience from a research project
on Virtual Service Platforms, we evaluate three concrete use cases which illustrate the diversity
of evolutionary changes supported by the approach.

3.1 Overview

Current enterprise applications are usually built on the notion of a SOA, i.e., they use and reuse
existing infrastructure assets and platform services while themselves providing services to be used
by other applications. Such SBSs are typically built for the long haul. Consequently, adapting
SBSs to changing environments, or simply improving SBSs to eliminate problems of earlier
versions, become central.

While the overall development process of SBSs is by now well-understood, the design of
adaptive systems that evolve automatically or semi-automatically along with the environment
they live in is still rather uncharted. Specifically, little research work exists that feeds runtime

15

monitoring data back into the artifacts of previous phases of the development process. There are
existing approaches in the field of self-adaptation that enable explicit feedback-loops in order to
help software systems adjusting their behaviors according to their perception of the surrounding
environment [37, 136]. A number of studies in the area of log mining aim at supporting the extrac-
tion of off-line log information for analysis and verification [156]. To the best of our knowledge,
none of the existing approaches targets the reflection of runtime data to early development phases
in order to support the continuous evolution of software systems. Examples of the reflection are
to validate the configuration options selected during system modeling or deployment or to verify
the assumptions and rationale of architectural decisions. Without adequate links between runtime
monitoring and design-time artifacts, targeted improvement and evolution of SBSs become much
more difficult.

In this chapter, we present a novel approach to support a continuous development lifecycle
of SBSs. Our approach is a realization of the model-driven development paradigm that extends
the traditional development process with feedback loops that can feed runtime information to
the corresponding artifacts of the adequate phase. During the course of the development phases,
software architects and developers use different models to capture various types of development
artifacts, such as architectural design decision, component models, or monitoring rules. Based
on these models, deployment configurations, monitoring directives, and adaptation rules can be
automatically generated. At the heart of our approach, we introduce a lifecycle evolution model
to formally represent the relationships between monitoring information and the development
artifacts. The evolution model can be (semi-)automatically achieved with reasonable efforts
by extending model-to-model and model-to-code transformation rules. Monitoring information
collected from the running code can be fed back into the artifacts of each phase to support on-
line or off-line analysis and evolution of all artifacts of the SBS. The evolution model, on the
one hand, can help to identify which particular artifacts at which phase may influence a certain
unexpected or undesired incident, for instance, performance reducing, policy violation, and so
forth. On the other hand, the trace links recorded in the evolution model can significantly enrich
the context of the incident for better understanding and analysis. For instance, if monitoring
unveils a performance problem at runtime, it is non-trivial to decide if the best way of coping
with this situation is to simply reconfigure the system, or to improve system design or even
architecture.

3.2 Scenario

In this section, we present a motivating scenario from the telecommunications services domain.
The enhanced Telecom Operations Map (eTOM) [154], which forms part of the Frameworx1 pro-
gram, is a widely adopted industry standard for implementation of business processes promoted
by the TM Forum (TMF). Our scenario is condensed from the TMF’s Case Study Handbook [153]
as well as two eTOM-related IBM publications on practical application of SOA in such systems
[52, 58]. Figure 3.1 depicts the service delivery process in Business Process Modeling Notation
(BPMN). It consists of six activities i1, . . . , i6 (referred to as interfaces or abstract services). Each

1http://www.tmforum.org/TMForumFrameworx/1911/home.html

16

abstract service activity has alternative sub-activities which we denote as concrete service imple-
mentations (denoted c1, . . . ,c12 in the figure). At runtime the process selects and executes one
concrete service for each service interface.

Customer Relation-
ship Management

Service Management
and Operations

Resource Management
and Operations

F
ul

fil
lm

e n
t

A
ss

ur
an

ce
B

ill
in

g

i1: Handle
Customer Order

i2: Configure
Service

c3: Conf. IPTV

c4: Conf. VoIP

i3: Allocate
Resources

i6: Perform Billing

c11: Internal Billing

c12: Partner Billing

c7: Setup Devices

i5: Handle
Problem Report

c1: Standard

i4: Adjust Quality

c8: Set URIs

c5: Cloud Host

c6: Storagec2: Premium

c9: Standard

c10: Premium

Figure 3.1: Service-Based Scenario Application

The process is initiated by the abstract service i1 (Handle Customer Order) which is offered
in two variants for standard and premium users. Depending on the order input, the process then
configures a particular service (IPTV or VoIP). The third abstract service allocates the resources
required for delivering the service (e.g., a cloud host or storage). Telecommunication services are
typically associated with Quality of Service (QoS) attributes, which are fine-tuned by abstract
service i4. For instance, this activity configures parameters in the VoIP device or sets the location
URI (Uniform Resource Identifier) of IPTV endpoints, in correspondence with QoS requirements.
If a problem is detected at runtime, the optional reporting service is executed in activity i5. Finally,
the process terminates after storing billing information, either for paying partner providers or for
internal accounting if the service was delivered in-house. Besides regular termination, the process
may also be interrupted by exceptions at any stage of execution (not depicted in Figure 3.1). We
assume that the information whether the execution has terminated regularly or exceptionally is
available for each instance of the process.

17

Load Balancer

Worker Pool
(Standard QoS)

Users

VM VM

Elastic Pool
(Premium QoS)

VM
VM

Monitoring Infrastructure

Load Balancer

Worker Pool
(Standard QoS)

Users

VM VM

Elastic Pool
(Premium QoS)

VM
VM

Im
pl

em
en

ta
tio

n
Va

ria
nt

 1
Im

pl
em

en
ta

tio
n

Va
ria

nt
 2

Monitoring Infr.

Message-Oriented Middleware

Monitoring Infr.

Figure 3.2: Scenario Implementation Variants for a Single Provider

3.2.1 Service Variants and Evolution

When the abstract business process in Figure 3.1 is mapped to a concrete infrastructure, several
implementation variants are possible. Two variants are illustrated in Figure 3.2. In variant 1,
the clients access a load balancer, which forwards requests to selected VMs. A fixed pool of
worker machines supports the standard QoS, and additional VMs are requested from an elastic
pool to serve premium clients. A centralized monitoring infrastructure collects performance
metrics from VMs in both pools. As the system evolves, we anticipate that the load balancer
becomes a bottleneck and hence gets replaced in variant 2 by a Message-Oriented Middleware
(MOM) to achieve stronger decoupling. Moreover, the infrastructure becomes decentralized to
achieve better locality of the monitoring components within the VM pools. Providing support for
implementation variants reflects architectural decisions made at design time or runtime based on
given requirements and desired goals.

One defining characteristic of eTOM and the presented scenario is process decomposition,
which means that business processes are modeled at different levels of abstraction, from the
high-level business goals view down to the technical implementation level. In our scenario this
is illustrated by the distinction between abstract and concrete services, though in fact the number
of abstraction levels can be higher than two.

18

3.2.2 Challenges for Service Delivery and Evolution

The scenario outlined in Section 3.2 entails the following challenges that are typically encoun-
tered when engineering service-based applications:

Architectural Decisions. The process of developing service platforms follows recurring archi-
tectural design decisions [106], which should be explicit, systematic, and reusable.

View-Based Modeling. The platform models need to capture the architectural components and
processes, thereby distinguishing multiple external (e.g., service interfaces) and internal
(e.g., monitoring infrastructure) views for different stakeholders [155].

Cross-Provider Platform Integration. The scenario integrates service platforms from differ-
ent providers, hence requiring well-defined communication interfaces as well as shared
application models.

Platform Monitoring. The service platform is subject to fluctuations in request load, hence the
service delivery process is governed by monitoring of QoS metrics [112].

Lifecycle and Adaptation. Based on the monitoring information and changes in the environ-
ment, the platform needs to support short-term adaptation [78] (e.g., scale-out due to load
bursts) and long-term evolution (e.g., architectural reconfiguration).

Interface standardization per se does not guarantee compatibility of services originating from
different partners. The interactions among services contain complex dependencies and data flows.
The number of variations, i.e., possible instantiations of the process, grows exponentially with
the combination of concrete services as well as the provided user input. Hence, comprehensive
upfront verification and validation in terms of integration testing is not always feasible and can
only cover a certain percentage of the possible instantiations. Therefore, in addition to rigorous
testing methods, reliable operation of business-critical SBSs requires proactive monitoring to
analyze and avoid incompatible configurations at runtime. We present an approach to detect such
service incompatibilities in Chapter 7.

3.3 Evolution Lifecycle Model

In this section we present a novel application evolution lifecycle model to allow for runtime
adaptation of service-based applications, as well as their controlled evolution over time in a
unified manner.

3.3.1 Application Lifecycle Overview

First, we discuss the application development lifecycle phases usually implemented by iterative
and agile development processes, such as the RUP [90], Goal-driven Software Development [143],
and Scrum [151]. These approaches facilitate the necessary flexibility required for implementing
complex SBSs. Complementary to these approaches we suggest to adapt existing software models
and artifacts based on the feedback from monitoring and adaptation rules at runtime. Figure 3.3

19

summarizes the application development phases at design time and runtime into Architectural
Design, Modeling/Implementation, Deployment/Configuration, and Monitoring/Adaptation. Be-
fore getting into the details of the feedback propagation between and across the different phases
during software evolution, we briefly discuss each phase in the lifecycle process.

An emerging practice in architectural design is to not only document solution structures,
but explicitly record architectural decisions that led to these structures [82]. Recurring architec-
tural decisions can be documented in architectural decision models, thus increasing reuse and
minimizing documentation effort [167].

In practice, in order to describe software architectures various architectural views for dif-
ferent stakeholders’ needs are used [16]. Model-driven techniques allow us to transform actual
architectural decisions into architectural views automatically in a reusable manner [107]. In the
modeling phase, high level views—such as the component-and-connector view—can be refined
and enriched to generate lower level technology and platform-specific views using techniques
such as the View-based Modeling Framework (VbMF) [155]. The view models are used to gener-
ate code skeletons, configuration and implementation artifacts for common boilerplate constructs.
The generated code is then augmented with hand-written code by developers to complete the
application implementation.

After development leads to an application release, a deployment plan is derived, according
deployment descriptors are created, and configuration files are prepared. Deployment descriptors
contain information about where to physically deploy the application, which dependencies need
to be satisfied for a successful deployment, and how to actually instantiate the application code.

At runtime, the SBS is controlled using previously defined monitoring queries and adaptation
rules that allow the application to react to changes in the environment in order to maintain desired
behavior. In our approach we extend the notion of adaptation not only to the deployed application
and its configuration, but also to the view models and architectural decisions from the earlier
phases of software development.

The lifecycle allows for iterations across phases to address necessary changes in architecture,
modeling, implementation and runtime management according to the used development method.
In the following, we introduce an evolution lifecycle meta model that augments the artifacts
produced during each lifecycle phase to assist application evolution.

3.3.2 Lifecycle Model Overview

The lifecycle model is designed to assist application adaptation decisions using relevant data from
artifacts in each phase to enable reasoning over costs and benefits of possible application changes.
This model contains the required links between the artifacts of the aforementioned phases for
propagating the feedback and enabling the appropriate adaptation. Results from monitoring are
used to automatically perform adaptations. If automatic adaptation is not possible, the model
provides the system operators with recommendations about possible escalation strategies to
achieve a given goal. The feedback propagation and adaptation actions can apply to different
phases of the application lifecycle. For example, configuration files may change or an alternative
application version needs to be deployed at runtime. If the given goals are still not achieved this
way, a refactoring of the architectural design and a reconsideration of the existing architectural

20

G
en

er
ic

 L
ife

cy
cl

e
M

et
a

M
od

el

R
un

tim
e

D
es

ig
n

Ti
m

e

Modeling/Implementation

Execution

Architectural Design

Deployment/Configuration

SCA View

Monitoring
View

Adaptation
Rules

Monitoring
Rules

Architecture
Description

Configuration
files

Deployment
descriptors

Architectural
Decision Models

Component
View

refine

refine

Figure 3.3: Application Lifecycle Overview

decisions will have to take place. In the following, we present the evolution lifecycle model in
more detail and discuss relevant properties and instances in each lifecycle phase.

An overview of the proposed model is shown in Figure 3.4. System state information aggre-
gates observed metrics from various application artifacts to represent relevant status information.
Application goals are specified along with actions that can be taken to achieve these goals.
Artifacts from all lifecycle stages are represented along with their adaptation and monitoring
capabilities. Adaptation capabilities represent assets of artifacts that can be modified externally.
Similarly, monitoring capabilities provide information about artifact assets. Actions aggregate
possible steps necessary to achieve a given application goal, specifying required adaptation capa-
bilities for execution, as well as monitoring capabilities to verify goal fulfillment.

In the following, we discuss the model elements presented in Figure 3.4 in more detail.

State. This class represents possible application states, composed of state properties and their val-
ues. If (and only if) a State entity accurately reflects the current system state, the activated
attribute is set to true; The data is gathered from monitoring capabilities of artifacts, and

21

bdd Evolution Lifecycle Model

Artifact

properties
activated

Adaptation Capability

properties
costs

Monitoring Capability

properties
metrics : List<Metric>

Action

properties
costs

Decision

Artifact

Architectural Artifact

Pattern

Goal

properties
importance

Goal2

Activate Artifact

Adaptation Capability

Deactivate Artifact

State

Architecture Description

Constraint

-activated
Artifact

Relationship
Mutual

Exclusion

Dependency

-metrics : List<Metric>
Monitoring Capability

-costs
Adaptation Capability

State

0..*

0..*

0..*

0..*
0..*

0..*
1..*

0..*

0..*

0..*

from

0..*

0..*

0..*

0..*

0..* 0..*
0..*

0..*1..*

0..*

-importance
Goal

0..*

-costs
Action

0..*

0..*1..*

0..*

to

Binding

«influences»
«requires»

«achieved by»

«triggers»

«depends on»

«depends on»

«depends on»

«depends on»

«has»

«triggers»

«requires»

«has»

«achieved by»

«reports»

«influences»

«composes»

«composes»

«represents»

«has»

«has»

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.4: Lifecycle Evolution Model

low-level monitoring information is aggregated into higher-level representations suitable
for triggering adaptation decisions.

Goal. Application goals are derived from requirements and represent system behavior objectives.
These objectives are gathered from nonfunctional requirements and represent concerns
such as response time or service quality. Application goals modeled in the evolution lifecy-
cle model augment the functional requirements implemented in the traditional development
process.

Action. Actions encapsulate high-level measures for achieving goals. A goal such as ‘minimize
response time’ can have multiple actions associated with it, e.g., add additional resources,
reduce service quality, or change application architecture. For any given action multiple
adaptation capabilities offered by application artifacts might be suitable.

Adaptation capability. Artifacts in the lifecycle model can have adaptation capabilities associ-
ated, representing means of changing them. Adaptation capabilities contain indicators for
cost of performing adaptations as well as the supported degree of automation.

Monitoring capability. Monitoring capabilities represent relevant properties of artifacts that
can be observed and are aggregated in system states to represent high-level application
status information.

Artifact. All relevant artifacts produced during the application lifecycle are represented in the
model, along with indicators representing their value for the application, cost of changing
them, as well as their name. These indicators are used to improve adaptation decisions.
Artifacts may be related to other artifacts, which allows us to introduce dependencies
between the artifacts of the different phases, e.g., between architectural decisions and
views, between design views and deployment descriptors, etc.

22

In the following, we discuss specific artifacts used in different lifecycle stages.

3.3.3 Architectural Design

Architectural decision models and architectural decisions are the basic artifacts produced during
the architectural design phase. An architectural decision model contains reusable architectural de-
cisions addressing recurring design issues. An architectural decision contains alternative options
which can be realized using design patterns. One or more architectural decisions get reflected
on the elements of the architectural design view. The links between architectural decisions and
designs allow us to trace back affected decisions from a monitoring rule. These links can be
(semi-)automatically established using the mapping techniques presented in [107] for bridging
architectural decisions and design models.bdd ArchitecturalModel

Architectural Decision

Artifact

Architectural Decision Model

PatternOption

*

*

*

*«related to»

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.5: Architectural Decision Model

In addition, one or more architectural decisions might have various adaptation capabilities.
Imagine, for instance, the case of a selected option of a low-level decision for satisfying low
response time. The triggering of an adaptation rule will switch to an alternative option.

3.3.4 Modeling and Implementation

In this stage, the design models are created according to the architecture decision that have been
made in the previous stage. The initial creation of design models can be performed automatically
using the transformation in [107] based on the architectural decision model and/or manually
manipulated by the developers. We show in Figure 3.6 an excerpt of the view-based design
models and their relationship with the architectural decisions. View models are composed of
view elements representing application subsystems, components, and their interactions. Views
are used to capture various perspectives of modeling software systems and help the developers
focusing on particular aspects of the system under consideration [155].

The links between view models or view elements and architectural decisions described in
Figure 3.6 are based on the mapping techniques mentioned above and actually derived from
the association “related to” shown in Figure 3.5. Artifacts created in this phase (i.e., views and

23

bdd ViewModeling

Artifact

View View Element

Architectural Decision

element

1..*

*

*

*

*

«map»«map»

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.6: View-based Model

view elements) can furthermore expose appropriate adaptation capabilities, specifying the cost of
changes as well as the supported degree of automation. Mature applications can benefit from all
previously implemented design decisions and model elements by (semi-)automatically reusing
components derived in earlier iterations.

View models can be used to generate code artifacts that comprises monitoring capabilities
to observe all relevant aspects of the developed application along with adaptation capabilities
to modify behavior at runtime. The modeled capabilities are mapped to according actions in
the lifecycle evolution model, signifying their influence on the fulfillment of actions leading to
desired goals.

3.3.5 Deployment and Configuration

In this stage, the physical deployment structure, as well as the configuration of the application
instance to be run are created. As shown in Figure 3.7, code artifacts are bundled in deployable
packages, and deployment descriptors are populated with information necessary to instantiate
the created application on physical infrastructure.

bdd Evolution Lifecycle Model

Artifact3

Artifact

Model ViewView Element

Architectural Artifact

Artifact

Deployable Deployment Descriptor

View Element

Artifact

Monitoring Query Adaptation Rule

0..*

0..*
0..*

«influences»
«requires»

«achieved by»

«triggers»

«depends on»

«depends on»

«depends on»

«depends on»

«has»

«triggers»

«requires»

«has»

«achieved by»

«reports»

«influences»

«composes»

«composes»

«represents»

«has»

«has»

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.7: Deployment Model

The created artifacts are represented in the lifecycle model. Deployable packages include
dependency relations to model elements implemented in the previous phase. Deployment de-

24

scriptors encapsulate relevant information about component configuration, dependencies, as well
as deployment structure. Deployment-specific monitoring capabilities are provided, allowing
to observe how the application is instantiated, e.g., how many physical machines are used, and
how components are distributed among them. Furthermore, adaptation capabilities allow for the
modification of the deployment structure. As mentioned previously, the modeled monitoring
and adaptation capabilities are used by actions representing objectives to be achieved by the
application and are later used to allow application evolution strategies to consider changes in the
deployment structure.

3.3.6 Execution and Runtime Monitoring

After successfully deploying an application, runtime monitoring provides comprehensive data
about the fulfillment of specified application goals. Figure 3.8 shows monitoring queries that
are executed alongside the SBS are represented in the lifecycle model and map to according
monitoring capabilities. Monitoring capabilities represent low-level data, such as response time,
number of service calls, and occurred errors, emitted from the SBS at runtime that is assigned to
appropriate actions by system designers.

bdd Evolution Lifecycle Model

Artifact3

Artifact

Model ViewView Element

Architectural Artifact

Artifact

Deployable Deployment Descriptor

View Element

Artifact

Monitoring Query Adaptation Rule

0..*

0..*
0..*

«influences»
«requires»

«achieved by»

«triggers»

«depends on»

«depends on»

«depends on»

«depends on»

«has»

«triggers»

«requires»

«has»

«achieved by»

«reports»

«influences»

«composes»

«composes»

«represents»

«has»

«has»

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.8: Runtime Model

Similarly, adaptation rules adjusting application behavior at runtime are modeled to document
links to according adaptation capabilities. As mentioned above, adaptation capabilities represent
changes to the application that can be performed at runtime, such as modify service quality,
defer background processing, and modify external service binding. These capabilities are used
by actions representing higher-level objectives that can be achieved by executing adaptations.

3.4 Adaptation and Escalation Strategy

In this section we discuss how the lifecycle evolution model is used to enable adaptation and
evolution across the complete development process leading to more efficient, cost-effective and
higher quality applications.

Our objective is to perform adaptation actions to achieve application goals in the most cost-
effective and automatic way possible. Whenever an application goal violation is detected, an
adaptation strategy is derived from the SBS’s lifecycle evolution model.

Available adaptation actions are performed automatically at runtime if possible to adjust the
SBS’s behavior towards the defined goals. Runtime adaptations are usually cheap and can be

25

performed quickly, allowing for fast reaction to environmental changes. This is similar to how
current applications perform runtime adaptation. However, the presented approach is designed to
improve on the state of the art by allowing for incorporation of information from all phases of the
application development lifecycle to enable more sophisticated, higher quality decisions about
SBS evolution considering not only runtime, but also deployment, implementation and design
aspects.

When runtime adaptation is not sufficient to reach a defined application behavior goal, mod-
ifying the application deployment might be suitable. The deployment model can be modified
in several ways, e.g. by replicating application parts, migrating deployable artifacts to differ-
ent physical machines, or adjusting deployment configuration. After modifying the deployment
model, the adaptation strategy will incrementally redeploy the application to minimize downtime.
Deployment adaptation can be executed automatically using defined adaptation rules.

The process for selecting adaptation actions to be executed is illustrated in Algorithm 1. The
algorithm is periodically executed and supplied with the set of system states S that currently
hold, and aims to return a set of actions A that should improve system state towards currently
unfulfilled goals Gu. We first gather the set of goals that are currently not satisfied, as seen on
line 2. Then, the algorithm creates an associative array mapping available actions to a utility
value incorporating the action’s execution costs as well as the importance of currently unsatisfied
goals (lines 6, 11–18). The most valuable action amax is added to the set of actions A to be
executed, and goals Gac

amax
that are achieved by amax are removed from the set of unfulfilled goals

Gu (lines 20–23). If no actions are found to achieve a goal g, a system-provided escalation action
ae

g is added to the set of actions A to be executed to indicate the need for operator intervention to
satisfy goal g (lines 7–10).

If an adaptation triggers an implementation change, adaptation costs as specified in the model
are updated according to metrics extracted from the code to improve subsequent adaptation
decisions. Metrics, such as changed lines of code, code churn, and time taken, are incorporated
to accurately reflect costs of performed adaptation actions.

Similarly, if adaptation decisions lead to changes in view models, according artifacts in the
lifecycle model are updated with the cost of the performed adaptation, including implementation
changes resulting from model changes.

If architectural decisions are changed, the according cost of change in the lifecycle model
includes not only metrics for necessary changes in application architecture, but also view models,
as well as related implementation changes.

3.5 Related Work

The adaptation of service-oriented systems to rapidly uncertain and changing environment and
settings has been studied at various levels in the literature. At the component-level, for instance,
FRACTAL [28] relates components with a set of control capabilities to allow adaptations of com-
ponent properties, addition or deletion of components, etc. for supporting dynamic configuration
of distributed systems. At the requirements level, Peng et al. [124] address the self-configuration

26

Algorithm 1 Action selection
Input: S: currently active states
Output: A: actions to execute

Gu currently unfulfilled goals
Aac

g actions achieving goal g
Gac

a goals achieved by action a
ae

g escalation action for goal g

1: A← /0
2: Gu←{g′ ∈ G|«triggers»(s,g′),s ∈ S}
3: while Gu 6= /0 do
4: vactions← empty dictionary
5: for all g ∈ Gu do
6: Aac

g ←{a′ ∈ A|«achieved_by»(g,a′)}
7: if Aac

g = /0 then
8: A← A∪ae

g
9: Gu← Gu \g

10: end if
11: for all a ∈ Aac

g do
12: ia← 0
13: Gac

a ←{g′ ∈ G|«achieved_by»(g′,a)}
14: for all ga ∈ Gac

a do
15: ia← ia +ga.importance
16: end for
17: vactions[a]← ia/a.costs
18: end for
19: end for
20: amax← argmaxa∈A(vactions[a])
21: Gac

amax
←{g′ ∈ G|«achieved_by»(g′,amax)}

22: Gu← Gu \Gac
amax

23: A← A∪amax

24: end while
25: return A

27

of software systems by introducing a formal reasoning procedure at runtime for supporting dy-
namic quality trade-off among alternative OR-decomposed goals.

However, existing approaches for self-adaptation of requirements goals and architectural
models focus on the adaptation only at one layer. However, in our approach, we explore the
possibility of performing adaptations at different layers/phases (Architectural Design, Model-
ing/Implementation, Deployment/Configuration) for satisfying the same goal. We achieve this by
introducing traceability links between artifacts of the different layers and by relating the artifacts
to monitoring and adaptation capabilities.

Reconfiguration of software systems at runtime for achieving specific goals has been stud-
ied in many contexts with focus on the area of service-oriented architectures. Rainbow frame-
work [57] uses abstract architectural models for monitoring a system’s runtime properties and
proposes adaptations that can be directly reused at the running system. Irmert et al. [81] perform
adaptations in service-oriented component models. Their approach utilizes Aspect-Oriented Pro-
gramming (AOP) for transparent and atomic replacement of service implementations at runtime.
Samimi et al. [137] describe an infrastructure for self-adaptive (autonomic) communication
services that improve QoS using dynamic service instantiation and reconfiguration. Yet, these
approaches concentrate on the reconfiguration and redeployment of the implementations and do
not consider any adaptations at architectural modeling or design layer.

Similar to our approach, Shen et al. [145] propose a quality-driven adaptation approach at
three different layers: requirements, design decisions and runtime architecture. In their work,
the adaptation plans affect all three layers/phases in a unified manner, that is, the adaptation of
the requirements goal model triggers the corresponding design decision deduction and runtime
architecture reconfiguration. However, the adaptation plans in our approach can also be performed
independently at one or more layers, thus providing more flexibility and alternatives.

3.6 Discussion

To provide a hands-on discussion of the presented approach, we consider three concrete lifecycle
use cases related to the scenario in Section 3.2. The first case (C1) is concerned with short-term
adaptation of the internal monitoring and adaptation platform of a telecommunications provider.
The second case (C2) deals with more coarse-grained evolution of the platform architecture, and
the third case (C3) shows how the proposed escalation mechanism is used extend the model to
handle previously unforeseen circumstances.

3.6.1 Use Case C1: VM Adaptation

For use case C1, we consider the runtime artifacts in Figure 3.9 for an implementation of variant
1 of the previously introduced scenario application (cf. Figure 3.2). Deployable vm1 represents
a VM in the “Elastic Pool” handling requests for premium customers. For the given case, we
assume that vm1 is currently exhibiting unusually high RAM usage. The worker pool is managed
by deployable pool1.

28

vm1: Deployable m1: Monitoring Capability

q1: Monitoring State

“ram = 0.9”

r1: Adaptation Rule

condition = “if ram>0.8”

a1: Action

action = “increase RAM”
costs = 10

a2: Action

action = “add new VM”
costs = 20

«requires»

c1: Adaptation Capability

“adjust VM features”

«reports»

«triggers»

«achieved by»

c2: Adaptation Capability

“change number of VMs”

«requires»

pool1: Deployable

rejected
due to
higher
costs

Figure 3.9: Artifacts of Use Case C1

The VM exposes, amongst others, a monitoring capability m1 reporting general machine
health information, such as CPU usage, amount of used RAM, and total RAM. Furthermore, vm1
offers an adaptation capability c1 that allows to adjust VM features, such as number of virtual
CPUs, available instance storage, and total RAM, at runtime. Worker pool pool1 exposes an
adaptation capability c2 that allows to start and stop worker VMs. Furthermore, Monitoring state
q1 extracts the current RAM usage from m1 and asserts the ‘current RAM usage too high’ status.
This state triggers adaptation goal r1: “RAM usage should not be too high”. Goal r1 can be
achieved by multiple actions, mitigating the encountered problem. In our case, two actions, a1
and a2 are available for execution. Action a1 uses adaptation capability c1 of vm1 to increase the
amount of RAM available to the worker at runtime, whereas action a2 uses adaptation capability
c2 of pool1 to add another worker VM to the pool to spread the work load over more machines.
Since a1 can be performed much quicker than a2, we reject a2 in this case and execute a1 to
mitigate the problem.

The system will subsequently monitor state q1, as well as fulfillment of goal r1 to ensure that
the performed adaptation has the desired effect. If the performed adaptation does not lead to the
removal of q1, and the amount of RAM available to vm1 cannot be increased further, c1 becomes
inactive, leading to the execution of a2.

3.6.2 Case C2: Architectural Refinement

In the second use case, we discuss how our approach can be used during application design
to document and improve the development of SBSs. The discussion is based on the scenario
introduced in Section 3.2. Consider an enterprise that uses the presented approach for all their
software projects. During application design for a new customer, stakeholders face the decision
of whether to realize communication between the load balancer worker components using remote

29

procedure invocation (Variant 1) or messaging (Variant 2), as illustrated in Figure 3.2.

rpc: Option

activated: true

mom: Option

activated: false

lb: Component

name =
“Load Balancer”

gw: Component

name =
“Gateway”

mq: Component

name =
“Message Queue”

lbs: Deployable

type =
“WAR file”

gws: Deployable

type =
“WAR file”

mqvm: Deployable

type = “VM”

g2: Goal

“Achieve Decoupling”

a2: Action

“Activate Messaging”

a1: Action

“Activate RPC”

g1: Goal

“Centralized Control”
D

ep
lo

ym
en

t
M

od
el

in
g

D
es

ig
n

ad1: Architectural Decision

“Realize Communication”

p1: Pattern

“RPC”

p2: Pattern

“Messaging”

c1: Mutual Exclusion

Figure 3.10: Artifacts of Use Case C2

Depending on the application requirements, either variant might be suitable. Remote pro-
cedure invocation allows for greater control over communication paths and provides for lower
absolute latency. On the other hand, messaging reduces coupling between components and en-
ables horizontal scalability independent of the load balancer component.

The presented approach assists application architects by storing artifacts from previously
created applications in an artifact repository that can be queried for past solutions. The repository
acts as an enterprise-wide application development knowledge base documenting experiences
gathered in past projects. In our case, architects specify goals g1 and g2 for the application to
be, as shown in Figure 3.10. The repository is queried for the created goals and provides actions
for using remote procedure invocation (a1) as well as messaging (a2), along with according
patterns and components to be implemented. Furthermore, a constraint c1 applies to patterns rpc
and mom, stating mutual exclusion. Since goals g1 and g2 are conflicting, application architects
provide their decision by setting the importance attributes of g1 and g2 according to application
requirements. If decision leads to the execution of either a1, action a2 becomes inactive due to
constraint c1. Pattern rpc, component lb, and deployable lbs are merged into the current applica-
tion model from the repository, allowing operators to adjust their properties to the application at
hand.

In the context of product line engineering, the presented approach can furthermore be used to
significantly improve knowledge transfer and reuse between product variants. During design of

30

a new variant, application architects can reuse ‘application slices’ from previously implemented
variants. If the load balancer component was realized using patterns rpc and mom in previous
variants, the stakeholders’ decision will lead not only to the inclusion of relevant model elements,
but also the accompanying code artifacts.

3.6.3 Case C3: Adaptation Escalation

In the third use case we illustrate the escalation model employed in our approach to enable
cross-stage adaptation, as well as incorporating operator intervention. As before, we consider
the scenario as described in Section 3.2. We consider the artifacts shown in Figure 3.11. The
scenario application is implemented using variant 1 as shown in Figure 3.2. For the given case,
we assume that the load among the worker VMs is unevenly distributed due to a bug in the load
balancer component. For brevity, application artifacts representing worker VMs, pool manager,
load balancer, as well as their monitoring and adaptation capabilities are omitted in the figure.

s1: State

“VM Load is
unbalanced”
active = true

g1: Goal

“Generic Action
(Solve Problem)”

D
ep

lo
ym

en
t

M
od

el
in

g/
Im

p
l.

D
es

ig
n

R
un

tim
e

g2: Goal

“Fix
deployment”

s2: State

“Not OK. Some VMs
are not addressable

or not available”
active = false

a4: Action

“Activate Messaging”
costs = 200

a3: Action

“Test and Improve
Load Balancer”

costs = 150

s3: State

“s1 && !s2”
active = true

g3: Goal

“Fix Load
Balancer”

importance = 70

a2: Action

“Change descriptors
and redeploy”

costs = 15

Not available
because state
is not active

g4: Goal

“Achieve Decoupling”
importance = 70

«achieved by»

«achieved
by»

«achieved
by»

«triggers»

«triggers»

«triggers»

Figure 3.11: Artifacts of Use Case C3

Worker VMs report their CPU load through monitoring capabilities as described in case C1,
and uneven load distribution activates state s1 in the lower part of Figure 3.11. We assume that
s1 was put in place by application designers as a precaution to notice a system state that should
not occur according to the specification. Hence, there is no mitigation strategy defined for s1, i.e.,
no adaptation goals are specified to execute adaptation actions. A generic goal g1 is provided by
the system to indicate that this state, while not yet handled, should be fixed if it occurs.

31

Since g1 does not have any candidate actions associated that could be triggered automatically,
the problem is escalated to system operators. Support staff assess the situation and suspect that
the problem cannot be solved using runtime adaptations, but a faulty deployment could have
caused the problem to appear. The deployment structure is validated using state s2 that is active
if there is a problem with VM deployment. In our case, deployment is valid and the associated
mitigating actions need not be executed. Operators now suspect that a bug in the load balancer
component is responsible for the problem.

A composite state s3 is created to represent the facts gathered during problem analysis.
Furthermore, goal g3 is created to document the desired system state, along with action a3
representing the maintenance effort to fix the bug in the load balancer component. Additionally,
actions to mitigate the problem are queried from the artifact repository. In our case, action a4 from
the repository is found to also solve the problem, albeit at higher cost. In addition to fulfilling goal
g3, action a4 furthermore fulfills goal g4, which was not satisfied before due to low importance.
However, facing the problem at hand, a4 is now the most feasible action to execute due to the
increased benefits of satisfying g3 as well as g4. If a messaging-based implementation of the
load balancer component is already available from previous application variants (as discussed in
C2), a4 can be applied with minimal operator intervention. Otherwise, developers are requested
to provide the necessary implementation and relevant application components are re-deployed.

3.7 Summary

The systematic evolution of service-based systems is currently not well supported, particularly
when considering integration of the four conceptual lifecycle layers: design, implementation,
deployment, and runtime. Our proposed methodology for addressing this problem is to distill the
concepts and artifacts from each layer into a generic lifecycle model, which allows for specific
adaptation within a layer and at the same time escalation to adjacent layers. Escalation to a layer
of higher abstraction (e.g., change of design decision as in Figure 3.11) is typically followed
by downward traversal of the lifecycle phases (e.g., re-generation of code, re-deployment of
components, re-initialization of monitoring queries). Technically, the process of adaptation is
triggered by monitoring primitives, which can be combined into aggregated information, and are
eventually correlated with artifacts from the lifecycle model. The correlation between measurable
monitoring metrics and the lifecycle artifacts is the cornerstone for identification of system
dependencies and possible adaptation actions.

Modeling the set of goals with associated alternative actions allows to make decisions about
the best action to take in specific situations. While the decision for actions on lower layers (deploy-
ment, runtime) can be done mostly automatic, more high level decisions (concerning architecture
or modeling) are often semi-automatic and require intervention by human experts. To enable the
process of automatic selection, we propose using a cost/benefit tradeoff model associated with
actions and the respective goals they achieve. Quantifying the benefit (importance) of goals is
specific to the application domain, whereas costs of actions can typically be quantified precisely,
e.g., man-hours for implementation, or usage fees for elastic Cloud computing resources.

The three case studies, presented to illustrate the feasibility of our approach, highlight runtime
adaptation, architecture refinement, as well as adaptation escalation. We argue that the concept

32

of a generic lifecycle model provides a solid basis for extended aspects related to reliability
and enforcement of QoS. In future work we aim to incorporate fault detection techniques to
automatically assert previously unknown fault states when they occur, as well as adaptation policy
improvement to improve on the modeled rules and augment system control policies. We also
envision that the approach can be integrated with automated testing [70] to identify incompatible
configurations of activated artifacts.

33

CHAPTER 4
Model-Based Adaptation of

Cloud Computing Applications

In this chapter we propose a provider-managed, model-based adaptation approach for cloud com-
puting applications, allowing customers to easily specify application behavior goals or adaptation
rules. Delegating control over corrective actions to the cloud provider will pose advantages for
both, customers and providers. Customers are relieved of effort and expertise requirements nec-
essary to build sophisticated adaptation solutions, while providers can incorporate and analyze
data from a multitude of customers to improve adaptation decisions. The envisioned approach
will enable increased application performance, as well as cost savings for customers, whereas
providers can manage their infrastructure more efficiently.

4.1 Overview

The cloud computing paradigm has found widespread adoption throughout the last couple of
years. The pay-per-use model of cloud computing proved to be convenient in many respects. It
allows to cope with services of time-varying resource demand and peak loads. Cloud computing
helps to avoid high initial investments in IT infrastructures, as resources can be dynamically
provisioned even if the demand for a service is unknown in advance [8].

However, in order to benefit from the resource elasticity provided by cloud computing, ap-
plications need to be properly built. We argue that developers should be able to create models
describing their application’s adaptation capabilities together with adaptation goals defining their
preferences. Cloud computing providers use this information to control and adapt the application
according to the customers’ objectives. Customers have only a limited view on the execution
infrastructure, while cloud computing providers, when given access to necessary information
from the application, have a complete view and can incorporate low-level infrastructure details
to make adaptation more efficient and effective.

35

Models are already used for improving deployment of cloud computing applications. An
example is Amazon’s CloudFormation [5] service, providing a DSL for defining the infrastructure
required by an application, which can be provisioned in a single step. Research has brought
forth sophisticated approaches for adapting application topologies and resource allocations, e.g.,
for latency requirements [35], power and cost considerations [86], or deadline-driven workflow
scheduling [89], among other purposes. In practice, however, cloud providers currently do not
provide mechanisms for further managing an application at runtime. We propose to use models
allowing application developers to create “management hooks” for the cloud provider. This
has the advantages that all applications can benefit from a sophisticated control mechanisms
offered by the provider. Application developers use models to state the objectives for application
control, relieving them from implementing complex adaptation schemes. Cloud providers have a
deeper understanding of the application infrastructure, which they can use to improve application
adaptation, but also to optimize resource usage. Also, providers can leverage the experiences and
data from similar applications to improve control and adaptation over time.

4.2 Models in Cloud Computing

The main responsibilities of cloud application lifecycle management are infrastructure provision-
ing, application deployment, and finally control and adaptation at runtime.

Infrastructure provisioning involves setting up virtual machines, installing and configuring
required software packages, and initializing cloud services, such as load balancers, database in-
stances, persistent storage, or caches. Manual infrastructure provisioning is cumbersome and
error-prone, and limits the level of reusability, e.g., to set up identical environments for devel-
opment and testing. Furthermore, proper change management of infrastructure is not supported.
Model-based approaches for infrastructure provisioning that have recently emerged help to over-
come these limitations. Amazon’s CloudFormation provides a service to create infrastructure
templates used to create a collection of related infrastructure resources and provision them in
an automated way. These models can be easily reused and shared using infrastructure template
repositories, helping to establish and distribute best practices for different kinds of applications.
The provisioned resources, e.g., virtual machines, still need to be properly configured to include
all necessary application dependencies, as well as respective links between system components.
To enable a predictable and repeatable process for this, deployment models are used to enable
automated server configuration according to predefined specifications. Popular approaches for
modeling software deployment include Configuration Management (CM) tools like Chef [120],
Puppet [127], or cfengine [9]. Resource configuration is modeled using vendor-specific DSLs,
specifying required software packages and libraries, as well as necessary configuration files and
parameters to support the application to be deployed and all its components. The CM will attempt
bring all managed resources into the state defined for its particular role by installing packages,
deploying configuration files, and (re-)starting affected services.

Application deployment and redeployment deal with packaging and copying artifacts to
according infrastructure resources, configuring them, establishing links between them, and finally
making sure they are properly launched. Deployment models are used to ensure efficient and
effective application roll-outs and updates based on declarative specifications, e.g. [74]. Again,

36

Cloud Provider Infrastructure

Auto Scaling Gr.

Load Balancer Web Server
Load Balancer

Auto Scaling Gr.
App Server

Adaptation

DB Master

DB Read
Slave

Users

component interactionadaptation logic adaptation interaction

Figure 4.1: Traditional Cloud Application Architecture

CM tools, as mentioned above, can be used to model application components, their dependencies,
and required parameter settings.

While deployment models enable the predictable, testable and repeatable provisioning of
runtime infrastructure, their responsibility stops at deployment time. The models are not designed
to consider application specific runtime aspects or application behavior goals that should be
reached. Cloud providers offer means to monitor basic infrastructure or application metrics,
but adaptation is mostly limited to starting or stopping instances to cope with varying load
patterns. Complex applications, however, have a variety of possibilities to cope with changes to
the environment without necessarily resorting to scaling out available resources. Certain non-
critical process steps could, for instance, be deferred to a later time if current load is too high,
or service quality could be adapted according to environmental circumstances. Today’s cloud
providers, however, employ a black box model for applications deployed on their infrastructure,
leaving customers responsible for realizing their own adaptation infrastructure to implement
application-level reactions to changes in the environment. Future cloud service providers will
offer means for integrating advanced application adaptation into their offerings using a model-
based adaptation approach, as discussed in the next section.

4.3 A Case for Model-based Adaptation

In this section, we present an approach for provider-assisted model-based application adaptation
that will yield benefits for both providers and customers.

Figure 4.1 shows a traditional cloud application deployment for an exemplary web applica-
tion. Incoming requests are distributed across several front end web servers using the provider’s
load balancer service. The web servers access the back end infrastructure using a custom middle
tier load balancer, evenly distributing load on the available back end application servers. The
application servers execute business logic and access the database cluster. Web and application
server instances can be added or removed according to their current and predicted future load. The

37

Auto Scaling Group

Cloud Provider Infrastructure

Auto Scaling Group

Load Balancer Web Server Load Balancer App Server

DB Master

DB Read
Slave

Application Objectives

Users

component interactionadaptation modeladaptation point

Figure 4.2: Cloud Application Architecture using Provider-Managed Adaptation

custom adaptation component controls service quality by performing corrective actions on all ap-
plication services according to defined behavior goals, realized as autonomic control loop [65]. It
will, for instance, incrementally raise the fragment cache expiry time out up to a certain threshold
on the web servers when an increase in request traffic is detected. Similarly, a recommendation
module running on the app server instances will set to only return cached user group recommen-
dations, or a list of the most purchased products, instead of personalized recommendations, in
response to high order volumes. This will lower stress on the database, as well as the application
servers and starting new instances is not immediately required. Analogously, when application
load is low, the web servers will always serve fresh content and the recommendation module will
always deliver personalized recommendations. Since these adaptation actions influence service
quality and thus user experience, the customer will employ a utility function within the adap-
tation component to determine, when to change service quality and when to scale. Currently,
cloud providers only offer support for automatic scaling of application components based on
infrastructure and application metrics, but, as deployed applications are considered black boxes,
do not provide means to alter component runtime behavior to react to changes in the environment.
As indicated in the figure, customers need to deploy their own adaptation infrastructure, often
scattered across deployed components.

We propose an approach for model-based cloud application adaptation. Customers specify
emitted metrics, available adaptation points and desired objectives using provided models, in
order to make applications ready for provider-driven adaptation and control. These models can
be realized using the evolution lifecycle model presented in Chapter 3, or utilize previous re-
search such as [164]. This gives customers the ability to declaratively specify desired application
behavior, while the provider has necessary information to take over control. Figure 4.2 shows
the cloud application discussed above, deployed using the envisioned model-based provider-
managed adaptation approach. A dedicated custom adaptation component is not needed anymore,
as customers describe desired application behavior objectives in the adaptation model and dele-
gate its execution to the cloud provider. This results in significant cost savings for the customer,

38

as creating sophisticated and comprehensive adaptation solutions requires considerable effort
and expertise. The business logic components do not contain any adaptation logic, but only
provide designated adaptation points to allow for external management. Available adaptation
points are referenced in the adaptation model for use in corrective actions. As a result, compo-
nent design is simplified through the clear separation of adaptation capabilities and adaptation
logic. As desired application behavior is declaratively specified in the application adaptation
model, it can easily be reused or modified to accommodate changes without altering components.
In the presented exemplary application, the customer specifies the following adaptation points:
SetFragmentCacheTimeout to modify the fragment cache timeout in the web server com-
ponent, and SetRecommendationStrategy to switch between personalized recommenda-
tions, cached customer group recommendations, or a list of the most sold products overall in
the application server. Additionally, the ScalePool adaptation point supplied by the cloud
provider can be used to start and stop application instances. Monitoring metrics data required to
take adaptation decisions are modeled with the application objectives, or a push-based approach
similar to current provider-assisted scaling solutions such as the previously Amazon CloudWatch
is used. The model allows for specification of conventional Event-Condition-Action (ECA) rules
to govern application behavior, so existing applications can easily migrate their current adapta-
tion strategy. Alternatively, the customer can define a simple utility function to reflect application
objectives according to desired characteristics, such as ‘response time should not exceed 500ms’,
‘service quality should be as high as possible’, and ‘infrastructure cost should be as low as pos-
sible’. This is possible since adaptation points contain indications on how they will affect appli-
cation behavior. Adaptation point SetFragmentCacheTimeout, for instance, will indicate
that higher parameter values should decrease response time, but will also decrease service quality.
These indications will initially be supplied by customers, but the cloud provider will monitor
the effects of performed corrective actions and adjust adaptation point information during the
runtime of the application. The provider-managed adaptation service uses the customer-supplied
objectives and infers optimized actionable adaptation strategies. A cloud provider can not only
use monitoring data from the application to be controlled, but also consider historical data from
different but similar customers, leveraging time series analysis to better anticipate load patterns
or even adaptation action effects for common components such as databases.

Allowing for provider-assisted application adaptation at runtime has a number of distinct ad-
vantages. Outsourcing some control over adaptation decisions will benefit customers. Providers
can offer optimized adaptation decisions based on data from similar customers. Furthermore,
providers are able to improve resource provisioning strategies and offer better service to cus-
tomers.

By handing off control over the execution of adaptation actions, customers can benefit from
the provider’s expertise in reliability and resilience engineering. They are relieved of imple-
menting their own complex adaptation mechanisms and can use an advanced, thoroughly tested
solution offered by the cloud provider without investing large amounts of capital or personnel.
Leveraging economies of scale, the cloud provider in turn can offer their adaptation solution to
customers with competitive pricing strategies while retaining appropriate return on investment.

Using data from a multitude of customers, the cloud provider can make better adaptation
decisions for customers, enabling higher levels of service, as well as cost savings for customers

39

and the provider. By analyzing time series data of a large number of customers, the provider can
anticipate, for instance, future load patterns much more accurately than a single customer could
with their data alone. This allows for better adaptation decisions, as the provider can establish cat-
egories of customers, enabling more precise load predictions based on signals like traffic patterns
and geographical distribution. Using this data, the provider can offer targeted adaptation deci-
sions or recommendations for geographic placement of instances, or even migration of instances
to more suitable locations.

Furthermore, the additional information available to the provider will enable highly opti-
mized resource provisioning, keeping over-provisioning at even lower levels than with traditional
elastic applications that can only analyze traffic patterns from their own past. Customers nat-
urally benefit from lower resource usage by paying less, while the provider now has access to
previously unused but, due to inefficient provisioning, inaccessible resources. Furthermore, the
supplied adaptation goals can be used to react in different ways to varying environmental condi-
tions. Depending on the utility, it might be more reasonable for an application to defer certain
processing steps to a later time, thus reducing load on application instances, before scaling out by
adding new machines. Similarly, when request traffic declines it might be beneficial to process
queued tasks on the now underused instances – at least until their current billing interval is over –
before terminating them to reduce infrastructure costs. The customer-provided utility functions
guide the adaptation decisions considering application performance, service quality, as well as
infrastructure costs. While the presented approach is ideally deployed by the cloud provider, a
transitional implementation could also be realized as part of a cloud abstraction layer like the
meta cloud, as discussed in Section 4.4 below, allowing the use of a managed adaptation solution
without explicit cloud provider support.

4.4 The Meta Cloud Abstraction Layer

The emergence of more and more cloud offerings from a multitude of service providers calls for
a meta cloud, which smoothens the jagged cloud landscape. We discuss our proposal for such
a meta cloud, and explain how it solves the lock-in problems that current users of public and
hybrid clouds face.

The cloud computing paradigm has found widespread adoption throughout the last years.
The reason for the success of cloud computing is the possibility to use services on-demand with
a pay as you go pricing model, which proved to be convenient in many respects. Because of
low costs and high flexibility, migrating to the cloud is indeed compelling. Despite the obvious
advantages of cloud computing, many companies hesitate to “move into the cloud”, mainly
because of concerns related to availability of service, data lock-in, and legal uncertainties [8].
Lock-in is particularly problematic for the following reasons. Firstly, even though availability of
public clouds is generally high, eventual outages still occur [133]. If this is the case, businesses
locked into such a cloud are essentially at a standstill until the cloud is back online. Secondly,
public cloud providers generally do not guarantee particular service level agreements [146], i.e.,
businesses locked into a cloud have no guarantees that this cloud will continue to provide the
required QoS tomorrow. Thirdly, the terms of service of most public cloud providers allow the

40

provider to unilaterally change pricing of their service at any time. Hence, a business locked in a
cloud has no mid- or long-term control over their own IT costs.

At the core of all of these problems, we can identify a need for businesses to permanently
monitor the cloud they are using, and to be able to rapidly “change horses”, i.e., migrate to a differ-
ent cloud if monitoring discovers problems or estimations foresee issues in the future. However,
migration is currently far from trivial. A plethora of cloud providers is flooding the market with a
confusing body of services, such as compute services e.g., Amazon Elastic Compute Cloud (EC2)
and VMware vCloud, or key-value stores, e.g., Amazon Simple Storage Service (S3). Evidently,
some of these services are conceptually comparable to each other, others are vastly different, but
all of them are, ultimately, technically incompatible and follow no standards but their own. To
further complicate the situation, many companies are not (only) building on public clouds for
their cloud computing needs, but combine public offerings with their own private cloud, leading
to so-called hybrid cloud setups [165].

In this section we introduce the concept of a meta cloud consisting of a combination of design
time and runtime components. Meta cloud abstracts away from technical incompatibilities of
existing offerings, thus mitigating vendor lock-in. It helps to find the right set of cloud services
for a particular use case, and supports an applications initial deployment and runtime migration.

4.4.1 The Current Weather in the (Meta) Cloud

Firstly, standardized programming APIs are required to enable the development of cloud-
neutral applications, which are not hardwired to any single provider or cloud service. Cloud
provider abstraction libraries such as libcloud [55], fog [18], and jclouds [54] provide unified
APIs for accessing cloud products of different vendors. Using these libraries, developers are
relieved of technological vendor lock-in, as they can switch cloud providers for their applications
with relatively low overhead.

As a second ingredient, the meta cloud makes use of resource templates to define concrete
features that the application requires from the cloud. For instance, an application needs to be able
to specify that it requires a given number of computing resources, internet access, and database
storage. Some current tools and initiatives (e.g., Amazon’s CloudFormation [5], or the upcoming
TOSCA specification [118]) are working towards similar goals, and can be adapted to provide
these required features for the meta cloud.

In addition to resource templates, the automated formation and provisioning of cloud applica-
tions, as envisioned in the meta cloud, also depends on sophisticated features to actually deploy
and install applications automatically. Predictable and controlled application deployment is a
central issue for cost-effective and efficient deployments in the cloud, and even more so for the
meta cloud. Several application provisioning solutions exist today, enabling the declarative spec-
ification of deployment artifacts and dependencies to allow for repeatable and managed resource
provisioning. Notable examples include Opscode Chef [120], Puppet [127], and juju [31].

At runtime, an important aspect of the meta cloud is application monitoring. Monitoring
enables meta cloud to decide whether new instance of the application should be provisioned,
or whether parts of the application need to be migrated. Currently, various vendors are provid-
ing tools for cloud monitoring, ranging from system-level monitoring (e.g., CPU, bandwidth),
application-level monitoring (e.g., Amazon’s CloudWatch [6]) up to monitoring of service level

41

agreements (e.g., monitis [114]). However, the meta cloud requires more sophisticated moni-
toring techniques, and in particular approaches for making automated provisioning decision at
runtime based on context and location of current users of the applications.

4.4.2 Inside the Meta Cloud

To some extent, the meta cloud can be realized based on a combination of existing tools and
concepts, part of which are presented in the previous section. The main components of the meta
cloud, depicted in Figure 4.3, are described in the following and their interplay is illustrated
using the previously introduced sports betting portal example. The components of the meta cloud

Meta Cloud
API

Resource
Templates

Migration/
Deployment

Recipes
Development

Application

Meta Cloud
Proxy

Resource
Monitoring

Provisioning
Strategy

Knowledge
Base

C
loud Provider

Meta Cloud

Runtime

Information Flow
Implements

Figure 4.3: Conceptual Overview of the Meta Cloud.

can be distinguished whether they are mainly important for cloud software engineers during
development time or whether they perform tasks during runtime.

Meta Cloud API

The meta cloud Application Programming Interface (API) provides a unified programming inter-
face to abstract from the differences among provider API implementations. For customers, the
use of the meta cloud API prevents their application from being hard-wired to a specific cloud
service offering. The meta cloud API can be built upon available cloud provider abstraction
APIs, like libcloud [55], fog [18], and jclouds [54], as previously mentioned. While these mostly
deal with key-value stores and compute services, in principle all services can be covered that are
abstract enough to be offered by more than one provider and whose specific APIs do not differ
too much, conceptually.

42

Resource Templates

Developers describe the cloud services necessary to run an application using resource templates.
They allow to specify service types with additional properties, and a graph model is used to
express the interrelation and functional dependencies between services. The meta cloud resource
templates are created using a simple DSL, allowing for the concise specification of required
resources. The resource definitions is based on a hierarchical composition model, allowing for
the creation of configurable and reusable template components, enabling developers and their
teams to share and reuse common resource templates in different projects. Using the DSL,
developers model their application components and their basic runtime requirements, such as
(provider-independently normalized) CPU, memory, and I/O capacities, as well as dependencies
and weighted communication relations between these components. The weighted component
relations are used by the provisioning strategy to determine the optimal deployment configuration
for the application. Moreover, resource templates allow for the definition of constraints based on
costs, component proximity, and geographical distribution.

Migration/Deployment Recipes

Deployment recipes are an important ingredient for automation in the meta cloud infrastructure.
The recipes allow for controlled deployment of the application including installation of packages,
starting of required services, managing package and application parameters, and establishing
links between related components. Automation tools such as Chef provide an extensive set
of functionalities, which are directly integrated into the meta cloud environment. Migration
recipes go one step further and describe how to migrate an application during runtime, e.g.,
migrating storage functionality from one service provider to another. Recipes only describe
initial deployment and migration, the actual process is executed by the provisioning strategy and
the meta cloud proxy using aforementioned automation tools.

Meta Cloud Proxy

The meta cloud provides proxy objects, which are deployed with the application and run on
the provisioned cloud resources. They serve as mediator between the application and the cloud
provider. These proxies expose the meta cloud API to the application, transform application
requests into cloud provider specific requests, and forward them to the respective cloud services.
The proxy provides means to execute deployment and migration recipes triggered by the meta
cloud’s provisioning strategy. Moreover, proxy objects send QoS statistics to the resource mon-
itoring component running within the meta cloud. The data are gained by intercepting calls of
the application to the underlying cloud services and measuring their processing time, or by exe-
cuting short benchmark programs Applications can also define and monitor custom QoS metrics
that are sent to the resource monitoring component via the proxy object to enable advanced,
application-specific management strategies. To avoid high load and computational bottlenecks,
the communication between proxies and the meta cloud is kept at a minimum. Proxies do not run
inside the meta cloud, and regular service calls from the application to the proxy are not routed
through the meta cloud, either.

43

Resource Monitoring

The resource monitoring component is responsible for receiving data collected by meta cloud
proxies about the resources they are using, on application’s request. These data are filtered and
preprocessed, and then stored to the knowledge base for further processing. This helps to generate
comprehensive QoS information of cloud service providers and the particular services they are
providing, including response time, availability, and more service specific quality statements.

Provisioning Strategy

The main task of the provisioning strategy component is to match an application’s cloud service
requirements to actual cloud service providers. It is able to find and rank cloud services based on
data in the knowledge base. The initial deployment decision is based on the resource templates,
specifying the resource requirements of an application, together with QoS and pricing information
about service providers. The result is a ranked list of possible combinations of cloud services
regarding expected QoS and costs. At runtime, the component is able to reason about whether
migration of a resource to another resource provider is beneficial based on new insights into
the application’s behavior and updated cloud provider QoS or pricing data. Reasoning about
migrating additionally involves calculating migration costs. Decisions of the provisioning strategy
result in executing customer defined deployment or migration scripts.

Knowledge Base

The knowledge base serves as store for data about cloud provider services, their pricing and QoS,
and information necessary to estimate migration costs. Customer provided resource templates
and migration/deployment recipes are stored in the knowledge base as well. Also, the knowledge
base indicates which cloud providers are eligible for a certain customer. These usually comprise
all providers the customer has an account with and providers that offer possibilities to create
(sub) accounts on the fly. A number of different information sources contribute to the knowledge
base: meta cloud proxies regularly send data about application behavior and cloud service QoS.
Pricing and capabilities of cloud service providers may be either added manually or by crawling
techniques able to get this information automatically, like [43].

4.4.3 A Meta Cloud Use Case

A meta cloud compliant application accesses cloud services using the meta cloud API and does
not directly talk to the cloud provider specific service APIs. For the particular case this means the
application does not depend on Amazon’s EC2, Simple Queue Service (SQS), or RDS service
APIs, but on meta cloud’s compute, message queue, and relational database service APIs.

For initial deployment the developer submits the application’s resource template to the meta
cloud. It specifies not only the three types of cloud services needed for running the sports ap-
plication, but also their necessary properties and how they depend on each other. For compute
resources, for instance, CPU, RAM, and disk space can be specified, according to terminology
defined by the meta cloud resource template DSL. Each resource can be named in the template,
which allows for referencing during deployment, runtime, and migration. The resource template

44

specification should also contain interdependencies, like the direct connection between the web
service compute instances and the message queue service.

The rich information provided by resource templates helps provisioning strategy component
to make profound decisions about cloud service ranking. The working principle for initial deploy-
ment can be explained by web search analogy, in which resource templates are queries, cloud
service provider QoS and pricing information represent indexed documents. Algorithmic aspects
of the actual ranking are beyond the scope of this article. If some resources in the resource graph
are only loosely coupled, then it is more likely that resources from different cloud providers may
be selected for a single application. In our use case, however, we assume that the provisioning
strategy ranks the respective Amazon cloud services first, and that the customer follows this
recommendation.

After the resources are determined the application together with an instance of the meta
cloud proxy is deployed, according to customer provided recipes. During runtime, the meta cloud
proxy mediates between the application components and the Amazon cloud resources, and sends
monitoring data to the resource monitoring component running within the meta cloud.

Monitoring data is used to refine the application’s resource template and the provider’s overall
QoS values, both stored in the knowledge base. This updated information is regularly checked by
the provisioning strategy component, which might trigger a migration. Front end nodes could be
migrated to other providers to place them closer to the application’s users, for example. Another
reason for a migration can be updated pricing data. After a price cut by Rackspace services may
migrate to their cloud offerings. For making these decisions, potential migration costs regarding
time and money need to be taken into account by the provisioning strategy component. The actual
migration is performed based on customer provided migration recipes.

4.5 Summary

In this chapter we presented a novel approach for provider-managed, model-based adaptation
of cloud computing applications. Customers are not required to implement their own adapta-
tion solution, but can use a simple model to specify desired application behavior. The presented
approach has the potential for significant cost savings and increased application quality for cus-
tomers by utilizing a sophisticated adaptation infrastructure managed by the cloud provider that
can offer better adaptation decisions by considering data from multiple different, but similar, cus-
tomers. Furthermore, cloud providers will be able to manage their infrastructure more efficiently
due to reduced resource over-provisioning resulting from improved adaptation decisions.

Deferring control over adaptation decisions to a cloud provider poses several challenges
that need to be addressed. Our approach requires that customers trust providers with potentially
confidential information about their applications’ inner structure, such as adaptation strategies and
request traffic patterns. The widespread adoption of cloud computing has shown that customers
already trust reputable providers with hosting their applications, so we argue that the addition of
adaptation strategies will not be problematic, provided that service contracts clearly state how
provided data will be used. Customers that do not want their data used to improve adaptation
decisions for others could still benefit of the provider’s adaptation infrastructure, saving them
implementation effort, but will in turn not be able to receive adaptation decisions optimized

45

using data from others. Furthermore, service level agreements need to explicitly state the new
DSLs and tools needed, as well as responsibilities of both customers and providers when using
managed adaptation infrastructure.

To enable the transition to a provider-managed adaptation approach, we also introduced the
meta cloud abstraction layer that can help to mitigate vendor lock-in and promises transparent
use of cloud computing services. Most of the basic technologies necessary to realize the meta
cloud already exist, yet lack integration. For avoiding meta cloud lock-in it is critical that the
community drives the ideas, to create a truly open meta cloud with added value for all customers
with broad support for different providers and implementation technologies.

46

CHAPTER 5
Generic Event-based Monitoring and

Adaptation Methodology for
Heterogeneous Distributed Systems

The Cloud computing paradigm provides the basis for a class of platforms and applications
that face novel challenges related to multi-tenancy, adaptivity, elasticity, and more. To account
for service delivery guarantees in the face of ever increasing levels of heterogeneity, scale and
dynamism, service provisioning in the Cloud has raised the demand for systematic and flexible
approaches to monitoring and adaptation of applications. In this chapter, we tackle this issue and
present a framework for efficient runtime management of Cloud environments, and distributed
heterogeneous systems in general. A novel domain-specific language (DSL) termed MONINA is
introduced that allows to define integrated monitoring and adaptation functionality for controlling
such systems. We propose a mechanism for optimal deployment of the defined control operators
onto available computing resources. Deployment is based on solving a quadratic programming
problem, which aims at achieving minimized reaction times, low overhead, as well as scalable
monitoring and adaptation. The monitoring infrastructure is based on a distributed messaging
middleware, providing high level of decoupling and allowing new monitoring nodes to join
the system dynamically. We provide a detailed formalization of the problem domain, discuss
architectural details, highlight the implementation of the developed prototype, and put our work
into perspective with existing work in the field.

5.1 Overview

Efficient monitoring and adaptation of large-scale heterogeneous systems, integrating a multitude
of components, possibly from different vendors, is challenging. Huge amounts of monitoring
data and sophisticated adaptation mechanisms in complex systems render centralized processing
of control logic impractical, as the significant network overhead could interfere with production

47

traffic, requiring the use of sophisticated monitoring strategies selecting only necessary status
information in order to minimize communication overhead. Moreover, complex interactions and
interdependencies of system components call for advanced adaptation mechanisms, allowing for
simple and clear specification of overall system behavior goals, as well as fine-grained control
over individual components. In distributed systems it is desirable to keep relevant monitoring
and adaptation functionality as local as possible, to reduce traffic and to allow for timely reaction
to changes.

In this chapter, we present an architecture and methodology for managing complex heteroge-
neous systems using a combination of Complex Event Processing (CEP) [115, 163] techniques
to manage and enrich monitoring data, and production rule systems for defining system and com-
ponent behavior goals to perform necessary adaptations. Furthermore, we introduce a domain-
specific language (DSL) to easily and succinctly specify system components and their monitoring
and adaptation relevant behavior. It allows to define integrated monitoring and adaptation func-
tionality to realize applications based on top of heterogeneous, distributed components. Using the
introduced DSL we then outline the process of deploying the integration infrastructure, focussing
on the efficient placement of monitoring and adaptation functionality onto available resources.
The presented approach is especially suited for deployments in cloud computing environments, as
efficient deployment strategies are suitable to reduce infrastructure costs and increase application
performance.

5.2 Scenario

In this section we introduce a motivating scenario based on the problems tackled in the Indenica1

FP7 EU project. The project aims at providing methods and tools for describing, deploying and
managing disparate platforms based on Virtual Service Platforms (VSPs), which integrate and
unify their services.

Complex service-based business applications consist of a multitude of components, both
developed in-house, as well as from third parties. Often, multiple alternative products from
different vendors exist that offer similar functionalities but exhibit significant fragmentation
regarding technology, cost, or quality. A flight booking service from vendor A might, for instance,
be implemented to offer SOAP web service endpoints for communication, charge for every
request to the system, and offer flights at competitive rates. A competing service from vendor B
on the other hand might provide an Advanced Message Queueing Protocol (AMQP) interface,
charge only for booked flights, and offer comparatively expensive flight rates. Depending on the
application to be created, either of the offers may be more suitable, and even a combination of
multiple services might be appropriate. The problem of deciding on suitable components gets
exacerbated when implementing complex applications, as a large number of similar alternatives
by different vendors will be available to use, each with different properties regarding dimensions
such as technology, cost, or quality. It is therefore increasingly important to design applications
to allow for easy and controlled migration of functionality between different components and
providers.

1http://indenica.eu

48

http://indenica.eu

Due to different fragmentation aspects, coordination and control of involved services must
adapt to changes introduced by switching providers. Service access must be mediated to accom-
modate for technology differences, whereas coordination and control must be designed to easily
compensate for fragmentation of aspects such as cost or quality, i.e., differences in provided
functionality as well as different control policies.

Furthermore, deployment mechanisms for complex applications and their control infrastruc-
ture must be able to account for available processing capacity on involved hosts, as well as
network connection properties such as cost and capacity. This is especially important for cloud
applications, as efficient deployment of components results in minimized infrastructure costs and
maximized application performance.

In the following, we present an architecture and framework to ease the creation, deployment,
and management of applications as described above.

5.3 Architecture

In this section, we present an architecture for VSPs to tackle the problems outlined in the sce-
nario above, allowing for integration of heterogenous service platforms, unified management of
orchestrated behavior, as well as the addition of domain-specific functionality to be consumed
by client applications.

• • •Service
Platform 1

Service
Platform 2

Service
Platform m

Client Application

component interaction

VSP
Control Interface

Messaging Infrastructure

MQ 1 MQ 2 MQ 3 MQ n• • •

Service
Platform 3

Unified Service Interface
Deployment &

Integration
Monitoring: CEP

Engines
Adaptation: Rule

Engines

Figure 5.1: VSP Runtime Architecture

49

The VSP runtime architecture is presented in Fig. 5.1. A VSP provides a unified view on
the functionality of the integrated service platforms that are connected by control interfaces.
Monitoring and adaptation are performed by Complex Event Processing (CEP) engines and
production rule engines, respectively. Communication within the VSP is based on a distributed
messaging infrastructure.

The control interface allows for integration of external services using a wire format trans-
formation layer to accommodate various technologies, such as SOAP, REpresentational State
Transfer (REST), Remote Method Invocation (RMI) or messaging based solutions such as Java
Messaging Service (JMS) or AMQP. Furthermore, this interface allows for the specification of
emitted monitoring events, as well as supported adaptation actions of connected service plat-
forms.

Monitoring events emitted by integrated services are used within the monitoring infrastructure
to derive composite events by aggregating and enriching data emitted by multiple sources (such
as the integrated platforms and VSP components) using CEP techniques. The monitoring engines
allow for the specification of monitoring queries to derive complex events in order to model the
system state in domain-specific terms relevant to stakeholders, abstracting from low-level metrics
and system details.

The modeled system state is then used in the adaptation infrastructure by transforming state
change events to facts in the adaptation knowledge base. The adaptation infrastructure utilizes
production rule systems to enable sophisticated reasoning on the modeled application state to
control the VSP behavior. It allows for the specification of adaptation rules that can influence the
integrated systems using actions specified in the according control interface.

This clear separation of monitoring and adaptation concerns allows for independent evolution
of data derived from the system state and control logic to facilitate the creation of monitoring
and adaptation hierarchies. Business rule experts can specify high-level goals for the modeled
application’s behavior that are evaluated based on domain-specific system state indicators derived
from composite monitoring events specified by system experts. The architecture is furthermore
designed to allow operators to focus on specifying control logic and let the framework handle
decisions about where and how the specified control infrastructure is physically deployed.

Communication between components is realized using a distributed messaging fabric that
enables to minimize unnecessary network traffic (compared to a centralized message bus de-
ployment) and further allows components to move freely within the network without changing
connection bindings or losing connectivity to the system. The execution of monitoring and adap-
tation on top of multiple engines further allows for scalable control using distributed resources.

To enable the simplified specification of an application based on the presented architecture we
introduce a new DSL called MONINA, which allows the user to specify service platform capabili-
ties, monitoring queries, and adaptation rules. The MONINA language is presented in Section 5.4.
While the presented architecture allows for simple distributed deployment of complex runtime
environments, efficient and effective distributed deployment by optimizing component placement
poses several challenges. In a deployed system, operating cost and network overhead should min-
imal, but the provisioned compute resources must be able to handle the processing load of all
deployed components. When external services are integrated, involved components should fur-
thermore be placed “close to” their communication peers to reduce network latency and possibly

50

transmission cost. Strategies to tackle the presented problems and deploy the specified function-
ality onto available resources will be discussed in Section 5.5. The prototype implementation
based on the presented concepts is discussed in Section 5.6.

5.4 MONINA Language

In this section we introduce MONINA (MONitoring, INTegration, Adaptation) a DSL allow-
ing for concise, easy, and reusable specification of platforms integrated into a VSP, along with
monitoring and adaptation rules governing their behavior.

The language is developed using the Xtext [48] language development framework, allowing
for tight integration in the Eclipse platform. The plugin offers syntax highlighting, as well as
several automated sanity checks to ease system specification. The language plugin is further-
more integrated into the overall Indenica tool suite, allowing for the usage of existing system
models stored in the infrastructure repository. Future versions of the plugin will offer a graphical
abstraction in addition to the textual DSL for increased simplicity and ease of use.

The listing in Figure 5.2 shows a simple definition for a service platform to be integrated
into a VSP The ‘ApplicationServer’ component emits ‘RequestFinished’ events after processing
requests and supports a ‘DecreaseQuality’ action, which can be triggered by adaptation rules.
Emitted events are processed by the ‘AggregateResponseTime’ query, which aggregates them
over five minutes, creating an ‘AverageProcessingTime’ event. This event is converted to a fact,
which might trigger ‘DecreaseQualityWhenSlow’ adaptation rule. The physical infrastructure
consists of hosts ‘vm1’ and ‘vm2’. Runtime elements without defined costs are assigned default
values, which are refined at runtime. In the following, we will discuss the most important language
constructs of MONINA in more detail.

event Monitoring events are described listing attributes contained in emitted messages. Events
are then used in component definitions, monitoring query declarations, as well as facts.

fact Facts constitute the knowledge base for adaptation actions. Fact definitions reference an
event type and a partition key.

action Similar to events, adaptation actions list all their valid parameters. Actions are used in
component definitions as well as adaptation rules.

component A component definition references all monitoring events the platform can emit
(including their frequency), all adaptation actions that can be performed, as well as its
processing requirements. Furthermore, it is correlated with a concrete instance of the
component in question at deployment.

query Monitoring queries are used to define the aggregation, filtering and enrichment of emitted
monitoring data in a CEP fashion. Monitoring rules will either emit complex aggregated
events to be consumed by other monitoring rules, directly issue adaptation actions, or emit
facts to be used in adaptation rules.

51

event R e q u e s t F i n i s h e d {
r e q u e s t _ i d : I n t e g e r
p r o c e s s i n g _ t i m e _ m s : I n t e g e r

}

event A v e ra g e P r o c es s i n g T i me {
p r o c e s s i n g _ t i m e _ m s : I n t e g e r

}

act ion D e c r e a s e Q u a l i t y {
amount : Double

}

component A p p l i c a t i o n S e r v e r {
endpoint {

at " / a p p _ s e r v e r "
emit R e q u e s t F i n i s h e d
act ion A d j u s t Q u a l i t y

}
host vm1
cost 32

}

host vm1 { capaci ty 128 }
host vm2 { capaci ty 256 }

query Aggrega teResponseTimes {
from A p p l i c a t i o n S e r v e r
event R e q u e s t F i n i s h e d as r e q
emit A v e r ag e P r o c e s s i n g T i me (avg (r e q . p r o c e s s i n g _ t i m e _ m s))
window 5 m i n u t e s

}

f a c t {
from A v e r ag e P r o c e s s i n g T i me

}

ru le DecreaseQual i tyWhenSlow {
from A v e r ag e P r o c e s s i n g T i me as a p t
when a p t . p r o c e s s i n g _ t i m e _ m s > 2000
execute A p p l i c a t i o n S e r v e r . D e c r e a s e Q u a l i t y (5)

}

Figure 5.2: Sample MONINA System Definition

52

rule Adaptation rules allow for the usage of complex business management rules to govern
system behavior. Monitoring rules emit facts to be used for reasoning over the current
system state. Adaptation rules can either publish new facts or issue adaptation actions.

host Hosts represent possible deployment locations of components, monitoring queries and
adaptation rules. A host description contains its processing capacity.

5.4.1 Event

In our work, we follow the event-based interaction paradigm [66]. Events are emitted by compo-
nents to signal important information. Furthermore, events can be emitted by monitoring queries
as a result of the aggregation or enrichment of one or more source events.

Figure 5.3 shows a simplified grammar of the event construct in Extended Backus-Naur
Form (EBNF). Event declarations start with the event keyword and an event type identifier. As
shown in the figure, an event can contain multiple attributes, defined by specifying name and
type separated by a colon. Currently, supported event types are a variety of Java types such as
String, Integer, and Decimal, and Map<?,?>.

〈event〉 ::= ‘event’ 〈ID〉 ‘{’ 〈attr〉* ‘}’

〈attr〉 ::= 〈attr-name〉 ‘:’ 〈type〉

〈attr-name〉 ::= 〈ID〉

Figure 5.3: Simplified Event Grammar in EBNF

Since listing all available event types for every application would be a tedious and error-prone
task, we automatically gather emitted event types from known components to improve reusability
and ease of use. This procedure is described in more detail in Section 5.4.4.

More formally, we assume that E is the set of all event types, T is the set of all data types,
and each event type E ′ ∈ E is composed of event attribute types E ′ = (α1, . . . ,αk), αi ∈ T ∀i ∈
{1, . . . ,k}. IE denotes the set of monitoring event instances (or simply events), and each event
e ∈IE has an event type, denoted t(e) ∈ E. The attribute values contained in event e are repre-
sented as a tuple e = (πα1(e), . . . ,παk(e)), where παx(e) is the projection operator (from relational
algebra), which extracts the value of some attribute αx from the tuple e.

5.4.2 Action

Complementary to monitoring events described above, adaptation actions are another basic lan-
guage element of MONINA. Adaptation actions are invoked by adaptation rules and executed by
corresponding components to modify their behavior. Figure 5.4 shows a simplified grammar of
the action construct in EBNF. Action declarations start with the action keyword followed by the
action type identifier. Furthermore, actions can take parameters, modeled analogously to event
attributes shown in Figure 5.3.

53

〈action〉 ::= ‘action’ 〈ID〉 ‘{’ 〈attr〉* ‘}’

Figure 5.4: Simplified Action Grammar in EBNF

Similar to events, adaptation actions offered by known components do not need to be spec-
ified manually, but are automatically gathered from component specifications, as mentioned in
Section 5.4.4.

The symbol A denotes the set of all types of adaptation actions, and each type A′ ∈ A contains
attribute types: A′ = (α1, . . . ,αk), αi ∈ T ∀i ∈ {1, . . . ,k}. The set IA stores all action instances
(or simply actions) that are issued in the system. The values of an action a ∈IA are evaluated
using the projection operator (analogously to event attributes): a = (πα1(a), . . . ,παk(a)).

5.4.3 Fact

Facts constitute the knowledge base for adaptation rules and are derived from monitoring events.
A fact incorporates all attributes of the specified source event for use by adaptation rules. Fig-
ure 5.5 shows a simplified grammar of the fact construct in EBNF. Fact declarations start with
the fact keyword and an optional fact name. A fact must specify a source event type that is used
to derive the fact from. Furthermore, an optional partition key can be supplied. If the fact name
is omitted, the fact will be named after its source event.

〈fact〉 ::= ‘fact’ 〈ID〉? ‘{’ 〈ID〉 〈partition-key〉? ‘}’

〈partition-key〉 ::= ‘by’ 〈ID〉

Figure 5.5: Simplified Fact Grammar in EBNF

The partition key construct is used to enable the creation of facts depending on certain event at-
tributes, allowing for the concise declaration of multiple similar facts for different system aspects.
For instance, a fact declaration for the event type ProcessingTimeEvent that is partitioned
by the component_id attribute will create appropriate facts for all encountered components,
such as ProcessingTime(Component1), . . . , ProcessingTime(ComponentN). In
contrast, a fact declaration for the MeanProcessingTimeEvent without partition key will
result in the creation of a single fact representing the system state according to the attribute values
of incoming events.

Formally, a fact f ∈ F is represented as a tuple f = (κ,e), for event type e ∈ E and parti-
tion key κ . The optional partition key κ allows for the simplified creation of facts concerning
specified attributes, to model facts relating to single system components, using πκ(e), the projec-
tion of attribute κ from event e. Alternatively, the type of event e itself acts as the partition key,
aggregating all events of the same type to a single fact.

54

5.4.4 Component

A component declaration incorporates all information necessary to integrate third-party system
into the Indenica infrastructure. Figure 5.6 shows a simplified grammar of the component con-
struct in EBNF. Component declarations start with the component keyword and a component
identifier. A component specifies all monitoring events it will emit with an optional occurrence
frequency, supported adaptation actions, as well as a reference to the host the component is
deployed to.

〈component〉 ::= ‘component’ 〈ID〉 ‘{’ 〈metadata〉? 〈c-elements〉* 〈host-ref 〉 ‘}’

〈metadata〉 ::= (‘vendor’ 〈STRING〉)? (‘version’ 〈STRING〉)? . . .

〈c-elements〉 ::= 〈endpoint〉 | 〈refs〉

〈refs〉 ::= 〈event-ref 〉 | 〈action-ref 〉

〈action-ref 〉 ::= ‘action’ 〈ID〉

〈event-ref 〉 ::= ‘event’ 〈ID〉 〈frequency〉?

〈endpoint〉 ::= ‘endpoint’ 〈ID〉? ‘{’ 〈e-addr〉 〈refs〉* ‘}’

〈frequency〉 ::= ‘every’ 〈Number〉 ‘seconds’ | 〈Number〉 ‘Hz’

〈host-ref 〉 ::= ‘host’ 〈ID〉

Figure 5.6: Simplified Component Grammar in EBNF

For brevity, further elements such as endpoint addresses, are omitted in the presented grammar
snippet but are included in Appendix B.

As mentioned before, it is usually not necessary to manually specify component, action,
and event declarations. The Indenica infrastructure provides for means to automatically gather
relevant information from known components through the control interface shown in Figure 5.1.

Formally, components c ∈C are represented with the signature function2

sig : C→P(A)×P({(e j,ν j)|e j ∈ E,ν j ∈ R+
0 })×R+

0 ×H

and the signature for a component ci is

sig(ci) 7→ (IA
i ,Ω

E
i ,ψi,hi)

The signature function sig extracts relevant information from the according language con-
struct for later use by the deployment infrastructure. Monitoring events emitted by the component
are represented by ΩE

i , and for each emitted event type e j an according frequency of occurrence
ν j is supplied. Adaptation actions supported by the component are denoted by IA

i , its processing
cost is represented by ψi, and hi identifies the host the component is deployed to.

2For clarity, we use the same symbol sig for signatures of components (Section 5.4.4), monitoring queries (Sec-
tion 5.4.5), adaptation rules (5.4.6), and hosts (Section 5.4.7).

55

5.4.5 Monitoring Query

Monitoring queries allow for the analysis, processing, aggregation and enrichment of monitoring
events using CEP techniques. In the context of the Indenica project we provide a simple query
language tailored to the needs of the specific solution.

A simplified EBNF grammar of the monitoring query construct is shown in Figure 5.7. A
query declaration starts with the query keyword and a query identifier. Afterwards, an arbitrary
number of event sources for the query is specified using the from and event keywords to spec-
ify source components and event types. A query then specifies any number of event emission
declarations, denoted by the emit keyword followed by the event type and a list of expressions
evaluating the attribute assignments of the event to be emitted. For brevity we omit the specifi-
cation of 〈cond-expression〉 clause that represents a SQL-style conditional expression. Queries
can be furthermore designed to operate on event stream windows using the window keyword,
specifying either a number of events to create a batch window or a time span to create a time
window. Conditions expressed using the where keyword are used to limit query processing to
events satisfying certain conditions, using the conditional expression construct mentioned above.
Finally, queries can optionally indicate the rate of incoming vs. emitted events, as well as an
indication of required processing power. These values are user-defined estimations in the initial
setup, and are adjusted continuously during runtime to accommodate changes in the environment.

〈query〉 ::= ‘query’ 〈ID〉 ‘{’ (〈sources〉 | 〈emits〉)*
〈window〉? 〈condition〉? 〈io-ratio〉? 〈cost〉? ‘}’

〈sources〉 ::= ‘source’ 〈ID〉 (‘,’ 〈ID〉)*
‘event’ 〈ID〉 (‘,’ 〈ID〉)*

〈emits〉 ::= ‘emit’ 〈ID〉 (〈attr-emit〉*)*

〈attr-emit〉 ::= 〈cond-expression〉 (‘as’ 〈ID〉)?

〈window〉 ::= ‘window’ (〈batch-window〉 | 〈time-window〉)

〈batch-window〉 ::= 〈Integer〉 ‘events’

〈time-window〉 ::= 〈Integer〉 (‘seconds’ | ‘minutes’ | ‘days’ | . . .)

〈condition〉 ::= ‘where’ 〈cond-expression〉

〈io-ratio〉 ::= ‘ratio’ 〈Number〉

〈cost〉 ::= ‘cost’ 〈Number〉

Figure 5.7: Simplified Monitoring Query Grammar in EBNF

In addition to the query construct presented above, the language infrastructure allows for the
integration of other CEP query languages, such as Esper Event Processing Language (EPL) [51]
if necessary.

56

The set of queries qi ∈ Q is represented using the signature

sig : Q 7→P(E)×P(E)×R+
0 ×R+

0

and the signature for a query qi is

sig(qi) 7→ (IE
i ,O

E
i ,ρi,ψi)

Input and output event streams are denoted by IE
i and OE

i respectively, while ρi represents
the ratio of input events processed to output events emitted, and ψi represents the processing cost
of the query.

5.4.6 Adaptation Rule

Adaptation rules employ a knowledge base consisting of facts to reason on the current state of the
system and modify its behavior when necessary using a production rule system. Figure 5.8 shows
a simplified grammar of the adaptation rule construct in EBNF. A rule declaration starts with the
rule keyword and a rule identifier. After importing all necessary facts using the from keyword, a
rule contains a number of when-statements where the condition evaluates a 〈cond-expression〉 as
described above, referencing imported facts, and the then block specifies a number of adaptation
action invocations including any necessary parameter assignments. Optionally, a rule can indicate
processing requirements (cf. Figure 5.7) that will be adjusted at runtime.

〈rule〉 ::= ‘rule’ 〈ID〉 ‘{’ (〈r-sources〉)+ 〈stmt〉+ 〈cost〉?‘}’

〈r-sources〉 ::= ‘from’ 〈ID〉 (‘as’ 〈ID〉)?

〈stmt〉 ::= ‘when’ 〈cond-expression〉 ‘then’ 〈action-expr〉+

〈action-expr〉 ::= 〈ID〉 ‘(’ 〈action-attr〉 (‘,’ 〈action-attr〉)* ‘)’

〈action-attr〉 ::= 〈cond-expression〉 (‘as’ 〈ID〉)?

Figure 5.8: Simplified Adaptation Rule Grammar in EBNF

As with monitoring queries, the adaptation rule module is tailored to the requirements of the
Indenica infrastructure but also allows for the usage of different production rule languages, such
as the Drools [83] rule language, if more complex language constructs are required.

More formally, the set of rules ri ∈ R is represented with the signature function

sig : R 7→P(F)×P(A)×R+
0

and the signature for a rule ri is
sig(ri) 7→ (IF

i ,O
A
i ,ψi)

The set of facts from the knowledge base used by the adaptation rule are denoted by Fi, while
A j represents the adaptation actions performed, and ψi represents the processing cost of the rule.

57

5.4.7 Host

Hosts represent the physical infrastructure available for deployment of infrastructure components.
Figure 5.9 shows a simplified grammar of the host construct in EBNF. A host declaration starts
with the host keyword and a host name. An address in the form of a Fully-Qualified Domain
Name (FQDN) or an IP address can be supplied. If no address is given, the host name will be
used instead. Furthermore, a capacity indicator is provided that will be used for deployment
decisions.

〈host〉 ::= ‘host’ 〈ID〉 ‘{’ 〈address〉? 〈capacity〉 ‘}’

〈address〉 ::= 〈fqdn〉 | 〈ip-address〉

〈capacity〉 ::= ‘capacity’ 〈Number〉

Figure 5.9: Simplified Host Grammar in EBNF

The set of hosts hi ∈ H is represented with the signature function

sig : H 7→ R+
0

and the signature for a host hi is
sig(hi) 7→ (ψi)

with the capacity of a host represented by ψi.

As mentioned above, the EBNF snippets illustrating the introduced concepts have been
shortened for simplicity and clarity. A complete listing of the language specification can be
found in Appendix B.

5.5 Deployment of Monitoring Queries and Adaptation Rules

In this section, we propose a methodology for efficiently deploying runtime elements. Deploy-
ment is based on a MONINA definition. The deployment strategy tries to find an optimal place-
ment with regard to locality of information producers and consumers, resource usage, network
load, and minimal reaction times. Our deployment procedure consists of three main stages. First,
an infrastructure graph is generated from the host declarations in the MONINA definition to
create a model of the physical infrastructure. Then, a dependency graph is derived from compo-
nent, query, fact, and rule definitions. Finally, a mathematical optimization problem is formulated
based on both graphs, which finds an optimal deployment scheme.

5.5.1 Infrastructure Graph

The infrastructure graph models the available infrastructure. Its nodes represent execution en-
vironments. We will refer to execution environments as hosts, even though they might not only

58

49

0

12

85.89

1
.2

.49

2.1

0 0

00

1.633.9
9

(a) Infrastructure Graph

C1

C2

C3

C4

C5

Q1

Q2

Q3

Q4

F1

F2

F3

F4
R1

R2

(b) Dependency Graph

Figure 5.10: Graphs generated from a MONINA description

represent single machines, but more complex execution platforms. The graph’s edges represent
the connection between hosts. Formally, the infrastructure graph GI = (VI,EI) is a directed graph.
Capacity function cI : VI → R+

0 assigns each host its capacity for hosting runtime elements, e.g.,
monitoring queries or adaptation rules. A capacity of zero prohibits any runtime elements on the
host. Edge weight function wI : EI → R+

0 models the delay between two hosts. Values close to
zero represent good connection. For the sake of convenience we assume that each vertex has a
zero weighted edge to itself. Figure 5.10a shows an exemplary infrastructure graph.

The infrastructure graph is generated based on a MONINA description, i.e., its node set VI

is taken from the description file, which also contains the hosts’ physical addresses. The next
step is the exploration of the edges based on the traceroute utility, which is available for all
major operating systems. It allows, amongst others, measuring transit delays. Furthermore, node
capacities can be read by operating system tools to complement missing MONINA values. In
Unix-like operating systems, for instance, the /proc pseudo-filesystem folder provides information
about hardware and its utilization.

5.5.2 Dependency Graph

Dependency graphs model the dependencies between components, monitoring queries, facts, and
adaptation rules. A dependency graph GD = (VD,ED) is a directed, weighted graph, whose node
set VD = C∪Q∪F ∪R is composed of pairwise disjoint sets C, Q, F , and R. These represent
components, queries, facts, and rules, respectively. Edges represent dependencies between these
entities, i.e., exchange of events, and weight function wD : ED→R+

0 quantifies the relative number
of events. Another function eD : ED→ E maps edges to events they are based on, where E is the
set of event types. Components are event emitters, which may be consumed by queries or may
be converted into a fact in a knowledge base. Queries consume events from components or other
queries producing new events. Knowledge bases convert certain events into facts. Rule engines
work upon knowledge bases, and trigger rules if respective conditions become true. Edges link
event emitters (components or queries) to respective event consumers (queries or knowledge
bases). They also connect knowledge bases to rules relying on facts they are managing. Finally,

59

rules are linked to the components they are adapting, i.e., components in which they trigger
adaptation actions. Thus, the edge set is limited to the following subset ED ⊆ (C×Q)∪ (C×
F)∪(Q×Q)∪(Q×F)∪(F×R)∪(R×C). Figure 5.10b shows an exemplary dependency graph.
Event types and edges weights are omitted for readability.

The generation of a dependency graph is based on a MONINA description. Initially, the
dependency graph GD = (VD,ED) is created as a graph without any edges, i.e., VD =C∪Q∪F∪R
and ED = /0, where C, Q, F , R are taken from the MONINA description. Then, edges are added
according to the following edge production rules.

Component→ Query. An edge c
ψ−→ q is added to ED for every component c ∈C, query q ∈Q,

and event e ∈ (OE ∩ IE), where sig(c) = ((OE ,•),•,ψ) and sig(q) = (IE
i ,•,•,•). In case

an edge c
ψ2−→ q is supposed to be added to ED, but ED already contains c

ψ1−→ q, then the
latter is replaced by c

ψ1+ψ2−−−−→ q. For all following edge production rules we assume that
edges that already exist are merged by adding weights, like here.

Component→ Fact. An edge c
ψ−→ f is added to ED for every component c∈C, fact f ∈ F , and

event e ∈ OE , where sig(c) = ((OE ,•),•,ψ) and f = (•,e).

Query→ Query. An edge q1
ρ−→ q2 is added to ED for all queries q1,q2 ∈ Q and event e ∈

(OE ∩ IE), where q1 6= q2, sig(q1) = (•,OE ,ρ,•) and sig(q) = (IE
i ,•,•,•).

Monitoring Query→ Fact. An edge q
ρ−→ f is added to ED for every query q ∈ Q, fact f ∈ F ,

and event e ∈ OE , where sig(q) = (•,OE ,ρ,•) and f = (•,e).

Fact→ Adaptation Rule. An edge f → r is added to ED for every fact f ∈ F and adaptation
rule r ∈ R, where f ∈ IF and sig(r) = (IF ,•,•).

Adaptation Rule→ Component. An edge r→ c is added to ED for every adaptation rule r ∈ R
and component c ∈C, where a ∈ (OA∩ IA), sig(r) = (•,OA,•) and sig(c) = (IA,•,•).

5.5.3 Quadratic Programming Problem Formulation

Quadratic programming [17] is a mathematical optimization approach, which allows to mini-
mize/maximize a quadratic function subject to constraints. Assume that x,b,c,d∈Rn are column
vectors, and Q ∈ Rn×n is a symmetric matrix. Then, a quadratic programming problem can be
defined as follows.

min
x

f (x) = 1
2 xT Qx+ cT x

Subject to

Ex = d (Equality constraint)

Ax≤ b (Inequality constraint)

We want to achieve an optimal mapping of the dependency graph onto the infrastructure
graph. Runtime entities described in the dependency graph that depend on each other should

60

be as close as possible, in the best case running on the same host. This results in fast reactions,
timely adaptations, and low network overhead. On the other hand, hosts have capacity restrictions,
which have to be considered. Adding more hosts (scaling out) is often the only possibility to
cope with growing load. Our mapping approach is able to find the optimal tradeoff between the
suboptimal strategies (1) putting everything on the same host and (2) evenly/randomly distribute
runtime elements among the available hosts.

Since we want to get a mapping from the optimization process, we introduce placement
variables pvI ,vD for each host vI ∈VI in the dependency graph and each runtime element vD ∈VD

in the dependency graph. Each of these variables has a binary domain, i.e., pvI ,vD ∈ {0,1}. The
assignment pvI ,vD = 1 decodes that runtime element vD is hosted on vI , pvI ,vD = 0 stands for vD

is not running on host vI . This results in |VI| · |VD| binary variables, whose aggregation can be
represented as a single vector p ∈ {0,1}|VI |·|VD|.

To find out the optimal mapping of the dependency graph onto the infrastructure, we solve the
following optimization problem, which can be classified as binary integer quadratic programming
problem, based on the form of variable p and the function to minimize.

min
p ∑

eI∈EI

wI(eI) · ∑
eD∈ED

wD(eD) · pv1
I ,v

1
D
· pv2

I ,v
2
D

(5.1)

Subject to

∀c ∈C : ph(c),c = 1 (5.2)

∀vD ∈VD : ∑
vI∈VI

pvI ,vD = 1 (5.3)

∀vI ∈VI : ∑
vD∈VD

pvI ,vD · cD(vD) ≤ cI(vI) (5.4)

The function to minimize (1) calculates for each edge eI = (v1
I ,v

2
I) in the infrastructure graph

and each edge eD = (v1
D,v

2
D) the weight that incurs if this particular dependency edge is mapped

to this particular infrastructure edge. If both runtime elements (v1
D and v2

D) are mapped to the
same node no weight is added to the function, because all self-links have weight zero. The first
equality constraint (2) fixes the mapping for every component c ∈C ⊆VD to the hosts they are
statically assigned to, as defined in MONINA and represented by h(c), where sig(c) = (•,•,•,h).
We assume that components are bound to hosts. If there exist components that can be deployed
on any host and do not have an assignment in MONINA, then this can be handled by simply
omitting the respective constraint for this component. The second equality constraint (3) defines
that each node from the dependency graph is mapped to exactly one node in the infrastructure
graph. Finally, the inequality constraint (4) requires that for all hosts the summarized costs of
all elements they are hosting is less than the respective capacity. The function cD : VD → R+

0
represents the costs of executing a runtime element vD, as defined in the MONINA description.

We use the Gurobi optimizer [60] for solving the optimization problem as described above.
Runtime aspects of the currently implemented deployment module are discussed in Section 5.6.

61

5.5.4 Deployment in Cloud Computing Environments

The presented approach is suitable for continuous deployments in order to react to changes in
the runtime environment. If new rules are added or communication characteristics change sig-
nificantly we derive a new deployment strategy based on the existing structure. The goal of
continuous (re-)deployment is to maintain a near-optimal component distribution while minimiz-
ing the changes to be performed. By moving as little components as possible, we minimize the
cost of transferring component state information between machines.

This model of continuous optimization and re-deployment integrates perfectly with the con-
cept of Cloud computing [8], which allows to dynamically allocate and release computing re-
sources to implement elastically scaling applications. Cloud environments fulfill two prerequi-
sites which are central to our approach. First, the Cloud provides the possibility to acquire a
practically unbounded number of VM instances. In the optimization procedure of our approach,
application components and monitoring queries are placed on hosts, and Cloud computing ef-
fectively removes any potential limits of the optimization procedure with regards to the number
of hosts. Our approach considers this by dynamically adjusting the number of hosts available
for deployment planning. Hosts are added to the solution space until a solution can be found
that does not violate any placement constraints. Second, cost aspects are typically an integral
part of (commercial) Cloud offerings, hence we can directly incorporate the computation and
communication costs into our optimization model. In addition, many Cloud providers offer a con-
venient set of pre-configured software tools which simplify the implementation of our approach,
including distributed messaging fabrics for de-centralized event transmission, host and network
monitoring tools for obtaining the decision basis of our optimization, data storage services for
persisting (event) data, and more.

t

Application Configuration #1

Resource
Billing Unit

Application Configuration #2

Opt. Wt. Alloc. Rec. Opt. Wt. Alloc. Rec.

Opt. … Optimization Alloc. … Resource (De-)Allocation
Wt. … Waiting Time Rec. … Reconfiguration

Cycle 1 Cycle 2

Figure 5.11: Cost-Efficient Optimization and Re-Configuration in Cloud Environments

Note, however, that the commercial nature of Cloud computing entails certain peculiarities,
which should be taken into account for our approach. In particular, Cloud resources are typically
subject to a billing cycle (e.g., VMs are billed in units of one hour), which requires that the
optimization approach be adjusted in order to achieve optimal results. To address this issue, we
suggest to perform adaptations in cycles, as illustrated in Figure 5.11. The figure shows a timeline
which is split up into the billing units of computing resources, e.g., one hour (for simplification
we assume that all resources are stopped/started simultaneously in each cycle). The grey bars at
the top illustrate the current configuration (first #1, then #2) of the application whose deployment
we strive to optimize. We assume that two adaptations are triggered over the duration of the

62

timeline, consisting of four main parts each: optimization procedure, waiting time, allocating
and de-allocating of resources, and reconfiguration of the application based on the new resource
allocations. The essential part is that the change in resource allocation should be aligned with
the expiry time of the resource billing unit. If this alignment were not implemented, the unused
resource utilization corresponding to the “waiting time” would be wasted from a cost perspective.
Depending on the duration of the optimization algorithm (in relation to the resource billing
unit), the duration of the waiting time should be minimized, in order to avoid changes in the
environmental conditions which could potentially result in a different optimum at the time the
adaptations get applied.

5.6 Implementation

In this section we discuss the implementation of the presented concepts. The developed prototype
is available for download from the prototype web site3. As mentioned above, application speci-
fication using the MONINA language is implemented as Eclipse plugin. We use the Xtext [48]
language development framework to model MONINA. The plugin offers convenience functions
such as syntax highlighting, code completion and static analysis of system specifications to detect
definition errors. Fig. 5.12 shows a screenshot of the editor, illustrating some of the implemented
features. After specifying the relevant system structure, the MONINA plugin generates a set of
configuration directives to be used with the runtime infrastructure.

Figure 5.12: Sample Screenshot of MONINA Editor

The runtime infrastructure implements the architecture presented in Section 5.3. At the core
of the runtime, a distributed messaging fabric (currently based on embedded ActiveMQ [53]

3http://indenicatuv.github.io/releases/

63

http://indenicatuv.github.io/releases/

brokers) allows for extensible realization of distributed applications. The messaging fabric auto-
matically establishes a communication mesh between application components deployed in the
same network using multicast discovery. Components deployed in different networks need to
know a single address per external network to establish connections to all relevant modules of
the deployed app. When using a MONINA description for deployment, this information can be
gathered from the contained host declarations and the deployment strategy. The messaging
fabric furthermore establishes conventions for component discovery and management, such as
common topic names and management endpoint addresses for infrastructure components to sub-
scribe to. Furthermore, the messaging fabric allows components to register for communication
paths or event streams they are interested in to create the runtime interaction structure. Messages
are then delivered to components via the best available path (considering latency and bandwidth)
to significantly reduce the introduced traffic overhead compared to solutions using centralized
messaging middleware. Future versions of the framework will take additional factors, such as
communication cost into account to enable more fine-grained control over the communication
behavior of deployed applications.

The control interface is realized using the Apache Tuscany [56] Service Component Archi-
tecture (SCA) container to allow for easy integration of different interface technologies, such as
SOAP and REST web services, JMS, RMI or the Common Object Request Broker Architecture
(CORBA). Configuration directives from the MONINA application specification are used to es-
tablish connections to external components by registering monitoring event sinks and adaptation
endpoints.

As described in the architecture in Section 5.3, the monitoring engines process event streams
from integrated external components as well as queries running within the system to derive
complex events representing relevant application state changes. In the current implementation,
we use the Esper [51] CEP engine to perform event stream processing. Source events are received
via the messaging fabric, processed using monitoring queries defined in the MONINA description,
and derived events are handed back to the messaging infrastructure to make them available for
further processing by other monitoring queries or adaptation rules.

The adaptation engines execute production rules on the current system state to influence its
properties in order to maintain or achieve desired behavior. In the current implementation, we
use the Drools Expert [83] rule engine to execute adaptation rules as specified in the MONINA
system description. To establish a knowledge base from the available system state change events,
a fact transformer component is used, translating a stream of state change events into a fact
object representation that can be used in production rules. In the current implementation, fact
transformation is handled using the Esper CEP engine, aggregating state changes into appropriate
facts. Adaptation rules act on conditions about the state of facts in the knowledge base and can
execute adaptation actions on integrated components. Actions to be executed are delivered to the
according control interfaces by the messaging fabric. The control interface will then perform the
actual execution of adaptation actions on the external component.

Control interface specifications, monitoring queries, fact transformation, and adaptation rules
can be submitted to the system in multiple formats. MONINA descriptions are supported as a
portable, technology-independent behavior specification, but component-native directives, such
as raw EPL queries or Drools Rule Language (DRL) rules are supported by the currently imple-

64

mented monitoring and adaptation engines respectively.
Application deployment is carried out using the deployment component. It analyzes the

supplied system specification, starts components on the available nodes according to computed
deployment strategy, and deploys all necessary configuration artifacts such as endpoint defini-
tions for external communication, monitoring queries, fact transformation rules, and adaptation
rules. The deployment strategy is currently realized using the Gurobi [60] optimizer to solve the
mapping problem discussed in Section 5.5. In the current version, a MONINA specification will
be deployed according to cost and communication traffic estimations provided with the system
description and can be redeployed based on interaction information gathered during runtime. In
the future, we will extend the deployment strategy module to allow incremental deployments
considering the costs of migrating existing components, rules, and queries.

Extensible interface design throughout the implemented framework allows for easy extension
or replacement of components if required to avoid potential vendor lock-in.

5.7 Related Work

In this section we discuss important previous work related to event-based monitoring and adapta-
tion, as well as optimized deployment of query operators in monitoring infrastructures. Although
some of the seminal work dates back to the pre-Cloud era, we also emphasize the relevance of
these approaches for Cloud-based monitoring.

5.7.1 Monitoring of QoS and SLAs

Previous work on monitoring and adaptation of distributed heterogeneous systems is mainly
concerned with establishing and monitoring SLAs and QoS policies. SLAs are typically com-
posed of a number of Service Level Objectives (SLOs) [36] which correspond to the monitoring
metrics, denoted facts, in our approach. The work by Comuzzi et al. [40] discusses a holistic
SLA management approach. Whereas their work is strongly focused at the process for SLA
establishment, we assume that the SLAs and the corresponding SLO metrics are known to the
service provider. The MONINA language then facilitates the definition of raw facts (emitted by
monitoring agents) and complex or derived facts (resulting from monitoring queries) to monitor
the values of these SLOs. One of the core issues in service computing (and more recently Cloud
computing) is the efficient generation of adaptation policies. The approach by Jung et al. [85]
generates adaptation policies for multi-tier applications in consolidated server environments. The
authors argue that online adaptation approaches based on, both, control theory and rule-based
expert systems, have disadvantages. Hence, a hybrid approach is proposed which combines the
best of both worlds. Their approach builds on queuing theoretic models for predicting system
behavior, in order to automatically generate optimal system configurations. Our approach, on the
other hand, abstracts from the type of monitoring data (whether predicted or actual values are
used), and focuses on efficient definition and deployment of monitoring infrastructures. The work
by Cardellini et al. [32] targets QoS-driven runtime adaptation of service oriented architectures.
The presented approach does not, however, consider the efficient placement of the monitoring and
adaptation rules themselves, but relies on decent initial placement or intervention by the operator.

65

Our work contributes an integrated approach which allows high-level definition of application
topologies, which are then mapped to infrastructure graphs and deployed in Cloud environments.

5.7.2 Optimized Deployment of Monitoring Queries

The performance of monitoring infrastructures depends on the topology and data flow between
query operators, hence efficient operator placement plays a key role. The work by Lakshmanan
et al. [91] provides an overview of eight different operator placement algorithms, which are
evaluated with respect to five core dimensions: node location (clustered/distributed), data rates
(bursty/uniform), administrative domain (single/multiple), topology changes (dynamic/uniform),
and queries (redundant/heterogeneous). Algorithms for efficient operator placement in widely-
distributed systems are presented in [2]. Also the work by Pietzuch et al. [126] has influenced
our work. Their approach performs operator placement using a stream-based overlay network
for decentralized optimization decisions. A decentralized algorithm for near optimum operator
placement in heterogeneous CEP systems is presented in [142]. The algorithm in [160] models
the system load as a time series X and computes the load correlation coefficient ρi j for pairs of
nodes i and j. The optimization goal is to maximize the overall correlation, which has the effect
that the load variance of the system is minimized. A comprehensive and fine-grained model
of CPU capacity and system load is provided in [161]. The feasible set of stream data rates
under a certain placement plan is constructed. Mathematically, the feasible set corresponds to
the (nonnegative) space under n node hyperplanes, where n is the number of nodes and the i-th
hyperplane consists of all points that render node i fully loaded.

5.7.3 Adaptation Rules and Objectives

The approach in [100] achieves optimization and adaptation of service compositions, which can
arguably also be applied to the monitoring topology deployed in our approach. In contrast to [100],
which takes a cost-centric viewpoint, in this work we target fast reactions, timely adaptations, and
low network overhead. Adaptation rules based on the ECA [4] scheme are a popular technique
used to control systems. However, for some complex systems the enumeration of all conditions,
e.g., all possible types of failures, is often impracticable. Also, the actions to recover the system
can become too tedious to be specified manually. Automated planning allows to automatically
compute plans on top of a knowledge base following predefined objectives, and helps to enable
goal-driven management of computer systems [138, 140].

5.7.4 Dynamic Reconfiguration and Redeployment

Facilities for dynamic reconfiguration and redeployment of monitoring infrastructures is at the
heart of our approach. Srivastava et al. [148] present an approach for minimizing network usage
and managing resource consumption in data acquisition networks by moving query operators. An
elastic approach for optimal CEP query operator placement using cloud computing techniques is
presented in [66]. As part of an optimization algorithm, the approach achieves a tradeoff between
load distribution, duplicate event buffering and inter-node data traffic, also taking into account the

66

costs of migration. The work also tackles the technical challenge of migrating stateful operators
between infrastructure nodes.

5.8 Summary

In this chapter we introduce an architecture and a domain-specific language that allow to integrate
functionality provided by different components and to define monitoring and adaptation func-
tionality. We assume that monitoring is carried out by complex-event processing queries, while
adaptation is performed by condition action rules performed on top of a distributed knowledge
base. However, our approach can be applied to other forms of control mechanisms with depen-
dencies among functionality blocks. Furthermore, we discuss implementation characteristics of
the currently realized prototype based on the proposed architecture.

In future work, we plan to integrate continuous deployment techniques, i.e., the capability
to migrate elements at runtime to adapt according to more precise knowledge and changing
environments. Furthermore, we aim to integrate the presented framework with current cloud
management tools such as OpenStack Heat [119].

67

CHAPTER 6
Non-intrusive Policy Optimization for

Dependable and Adaptive Systems

The SOA paradigm facilitates the creation of distributed, composite applications. Services are
usually simple to integrate, but often encapsulate complex and dynamic business logic with mul-
tiple variations and configurations. The fact that these services typically execute in a dynamic,
unpredictable environment additionally complicates manageability and calls for adaptable man-
agement strategies. Current system control strategies mostly rely on static approaches, such
as predefined policies. In this chapter we propose a novel technique to improve management
policies for complex service-based systems during runtime. This allows systems to adapt to
changing environments, to circumvent unforeseen events and errors, and to resolve incompatibil-
ities of composed services. Our approach requires no knowledge about the internals of services
or service platforms, but analyzes log output to realize adaptive policies in a non-intrusive and
generic way. Experiments in our testbed show that the approach is highly effective in avoiding
incompatibilities and reducing the impact of defects in service implementations.

6.1 Overview

The SOA [123] paradigm is a popular way to realize large-scale software systems integrating
various services across multiple providers. A basic principle of SOA is that services are loosely
coupled and implement business functionality as black boxes. Although services by definition are
stateless and solely react to the provided input, service-based systems are generally depending on
multiple configuration parameters and operate in dynamic, error-prone environments. All these
characteristics render management of SOA systems a highly challenging task.

To ensure that such systems work properly, SOA governance is responsible for monitoring
the performance of single services, runtime environments, and the overall system or service
composition. This information is used either by human operators that reconfigure the system
manually, or as input to policies that provide automated adaptation [147]. However, it is difficult to

69

anticipate each and every possible system state and provide an according policy rule. It is similarly
problematic to foresee all effects of reconfiguration actions. Software bugs, for instance, can
occur in every service implementation and runtime environment. Furthermore, the management
policies or administrator actions may be in conflict, thus forcing the application into unwanted
states or oscillation patterns [105]. In the end, human error can never be ruled out resulting in
software defects [27], incorrect policies, or wrong adaptation actions, respectively.

We present a novel approach for dependable and adaptive control of service-oriented systems.
Our technique poses low requirements on the system, and can be integrated into any SOA in a
minimally invasive way. We propose a novel technique that infers a MDP model by analyzing the
effect of system configuration parameters. The MDP model is automatically constructed from
log output emitted by the services. The MDP is used to derive optimized policies considering
software bugs, incompatibilities, and environmental changes. The main contributions of this
chapter are (1) a generic framework for dependable and adaptive control of SOA based on log
analysis, (2) novel techniques for transforming typical SOA log data into an MDP representation,
and (3) real world experiments to quantify the usefulness of this approach.

6.2 Scenario

In this section, we introduce a scenario that serves as the basis for discussion of our approach.
Consider a SOA that provides an enterprise travel itinerary service, allowing employees to auto-
matically manage flight, car and hotel reservations for their trips to customers. The application
is implemented as a composition of multiple interacting services.

Application

ClientClientClient Client• • •

GDS Provider

Hotel
Reservation

Service Provider

Booking
Service

CRM

Financial
Management

Hotel
Reservation

GDS Adapter

Car Rental
External Request

Invocation

Figure 6.1: Architecture of the Travel Itinerary Application

A high-level overview of the services and interactions is shown in Figure 6.1. When an
employee requests a new trip, the Global Distribution System (GDS) is requested to book a flight.
To that end, the GDS adapter retrieves the customer address from the Customer Relationship
Management (CRM) system, and uses external GDS Providers to find a suitable flight to an airport
sufficiently close to the customer’s site. At the same time the GDS needs to consider the available

70

budget, as retrieved from the Financial Management System (FMS). Next, the Hotel Reservation
Service (HRS) contacts external HRS Providers to find a hotel close to the destination address.
The Car Reservation Service (CRS) then issues a request to book a car for the specified period.

Parameter Type Examples
Application-Specific Skip Budget Check
Dynamic Binding Providers for GDS, HRS
QoS Criteria Max. Response Time of GDS
Runtime Environment Resource Limits

Table 6.1: Parameters Defining the Travel Itinerary System Configuration

The system has various parameters that determine the current configuration state and influ-
ence the performance and functionality of the offered service (summarized in Table 6.1). Firstly,
services expose application-specific properties that can be set explicitly (e.g., whether to skip
a time-consuming budget check). Next, the composition depends on external services that are
dynamically looked up and bound to at runtime (e.g., providers for GDS and HRS). Moreover,
QoS properties are used to control the composition behavior (e.g., use only GDS providers with
a certain response time). Finally, the runtime environment in which services execute influences
the composition behavior (e.g., resource limits, request queue lengths). For reliable operation of
a dependable system it is crucial to capture these parameters and to define management policies
which aim at reconfiguring the application in response to undesired system states.

6.3 Adaptive Policy Optimization

In this section we present our approach for deriving optimized policies that lead to dependable
and adaptive service-oriented systems. Figure 6.2 illustrates the assumptions we are posing on
the system. Since the internal structure of the system is not important for our approach a generic
SOA model can be assumed, consisting of a number of runtime environments, each hosting a
number of services. We suppose that the system initially is either managed by an administrator or
predefined policies, which are to be replaced by an optimized policy. The crucial prerequisite is
that status information and management actions are observable, as illustrated by the magnifying
glass.

We argue that the entity initially managing the system needs data about the system status
and performed management actions anyways, hence such information is already available in
some form. We do not assume that this information is produced centrally. Our approach is
also applicable if each service and runtime environment produces the required data about status
and reconfigurations individually. The status data needs to contain all information relevant to
the system’s performance and reliability. If, for instance, the response time of services matters
then the status data should contain that information. However, there is no need for semantic
annotations. Status information may be issued either at fixed intervals or triggered by events. It
is sufficient, but not necessary, to emit only the indicators that have changed since the last output.

71

SOA
Runtime Environment 1

Service
1

Service
m• • • • • •

Runtime Environment n

Service
m+1

Service
m+q• • •

Status information Management Actions

Figure 6.2: SBS without optimized policy. Information about the system status and management
actions need to be observable in order to apply our approach.

At least if a performance indicator changes significantly, then there should be a status information
update. We argue that all these requirements are met by virtually any SOA, which typically log
the change of performance indicators and management actions.

In a nutshell, based on raw log data containing information about status updates of individual
or compound components and management actions taken by the managing entity, we derive an
optimized policy that takes over control, as shown in Figure 6.3.

SOA
Runtime Environment 1

Service
1

Service
m• • • • • •

Runtime Environment n

Service
m+1

Service
m+q• • •

Status information Management Actions

Optimized
Policy

Log
Adapter

Mgmt
Adapter

Figure 6.3: SOA with optimized policy, which takes system status data as input and outputs an
optimized management action.

To be able to cover all kinds of systems with different models for providing status information
and triggering management actions, we use a log adapter transforming status information into a
canonical format and a management adapter responsible for executing a decision generated by
the optimized policy.

Figure 6.4 shows the procedure of generating an optimized policy. Log data, containing
information about relevant performance indicators as well as executed management actions, is

72

used as input to the log adapter, which transforms the information into a canonical representation.
The log adapter is also used during runtime to preprocess the monitoring data for the optimized
policy. The MDP Creator generates an MDP based on the canonical log data. Since MDPs are
well known in Artificial Intelligence (AI) research, the Policy Creator can be based on already
existing algorithms to finally create the optimized policy.

Improved Policy
Policy Optimizer

Canonical Representation

Log Adapter

MDP

MDP Creator Policy Creator
Optimized
Policy

Log

Figure 6.4: Functionality of the Policy Optimizer. It takes system information – usually in the
form of logs – as input and outputs an optimized policy.

To the best of our knowledge there is no comparable approach transforming generic log data
into an MDP. This transformation is not trivial since, for instance, there is no reward function
contained in the log data, which, however, is an essential part of an MDP. The final optimized
policy will mimic the successful management actions while avoiding the ones that lead to errors.
It is able to absorb complex relationships, and root causes to effects that are not directly linked.
In the following, we explain the three main components of the policy optimizer.

6.3.1 Log Adapter

The log contains information about changes of performance indicators and management actions.
However, we cannot assume, that logs from different services or runtime environments adhere
to a common standardized format. The log adapter is responsible for the aggregation of all
available logs from the system’s components, and transforms the applications-specific formats
into a canonical representation, as indicated by the arrow labeled À in Figure 6.5. Apart from the
Management Adapter, which provides a mapping from abstract management actions to concrete
calls of components, the implementation of the log adapter is the only functionality that needs to
be provided by the user in order to apply our approach. All other parts are generic and provided
by our framework.

We propose the model shown in Figure 6.5 as canonical format for capturing relevant infor-
mation contained in the log data. StatusInformation emitted from system components includes
updated performance indicators, captured in Parameter, consisting of a generic name-value tuple.

Errors are identified as a special type of performance indicator in the log entries, and an
according Parameter named ‘ERR’ is set. When a configuration change is performed – either by
the administrator or by the currently active management policy – the system emits a log message
that is captured by ManagementAction in the model.

73

Log ①

Class Diagram1

-timestamp : long
StatusInformation

-name : string
Component

-name : string
-value : T

Parameter

-timestamp : long
ManagementAction

T

performanceIndicators
0..*

0..*

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.5: Functionality of the Log Adapter

6.3.2 MDP Creator

In this section we show how the canonically represented log data are transformed into an MDP
(S,A,T,R).

MDP States and Actions

Class Diagram1

-timestamp : long
StatusInformation

-name : string
Component

-name : string
-value : T

Parameter

-timestamp : long
ManagementAction

T

-isERR : boolean
State

-name : string
-timestamp : long

ComponentState

-name : string
-value : T

DiscretizedParameter
T

-timestamp : long
Action

0..*

0..*

performanceIndicators
0..*

0..*

Visual Paradigm for UML Community Edition [not for commercial use]

T : S × A × S

②

③

S A

Figure 6.6: Generation of states, actions and transition model

The first step towards a complete representation as an MDP is the extraction of states S and
actions A as shown by the arrow labeled Á in Figure 6.6. The captured StatusInformation updates
for each component are aggregated to ComponentStates, and further to a full State representation
for the system. This aggregation is based on either temporal proximity of the timestamps or on a
correlation by a specified Parameter attribute, such as request id. If a state contains a component
state with at least one DiscretizedParameter signifying an error, the state is labeled as error state
by setting isERR. States S of the MDP must be finite. Parameters, however, contain continuous
values and could result in an infinite number of states. Therefore, we conduct an automatic

74

discretization of the observed values for each continuous Parameter (e.g., response-time), using
a simple equal width interval method [44], resulting in DiscretizedParameters. Our framework
is designed to allow for the usage of different discretization methods, such as equal frequency
binning or Holte’s 1R [62], but we found that the simple equal width binning method performed
reasonably well. Actions A are constructed from each ManagementAction element. Additionally,
a no-operation action (NOP) is added to the set of actions to allow the policy to remain in
the current state, which allows to cover environment changes. Whenever performance indicators
change without interference of policy or administrator action, the NOP action is used to represent
external events not within control of our framework.

MDP Transition Model

In this step, we extract the transition model T : S×A×S from the representation generated so
far, as shown by the arrow labeled Â in Figure 6.6. The transition model T (s,a,s′) assigns the
probability of reaching state s′ from state s when performing action a. We derive the transition
model by employing a modified Passive ADP Agent [135] algorithm. Algorithm 2 is invoked for
each State and Action in chronological order, incrementally constructing a transition model from
the observed data.

Algorithm 2 Transition model learning
Input: s′: current state;

a: previously taken action

T (s,a,s′) a transition model
Nsa a table of frequencies for the state-action pairs, initially zero
Ns′|sa a table of outcome frequencies given state-action pairs, initially zero

1: if s is not null then
2: increment Nsa(s,a) and Ns′|sa(s′,s,a)
3: for all t such that Ns′|sa(t,s,a) is nonzero do
4: T (s,a,s′)← Ns′|sa(t,s,a)/Nsa(s,a)
5: end for
6: end if

MDP Reward Function

To complete the generation of the MDP (S,A,T,R), we finally need to derive a reward function
R : S→ R from the model. So far, the required data was in some way directly extractable from
the log output. The reward function, however, is not readily available, as neither the logs, nor the
models generated so far provide any reward signals.

We propose a novel approach to finding a reward function from preprocessed log data, based
on the assumption that a majority of the actions taken by the initial managing entity are reasonable.

75

The basic idea is that if the initial manager performs some action a in state s1 which leads to
state s2, i.e., s1

a−⇁ s2, then we assume that state s2 is more desirable than state s1. In the case
of contradictory transitions where there are a number of transitions s1

•−⇁ s2 and s2
•−⇁ s1 we

assume that the majority of management actions was beneficial. In any case, failure conditions
are to be avoided. Figure 6.7 graphically illustrates how we generate a reward function R that

Transitions

A B
a'

B C
b

A B
a

B A
a

D B
a

E F
a

Orderings as forest

C

B

A D

X

F

E

Height in Graph

A = 0
B = 1
C = 2
D = 0
E = 0
F = 1

Rewards

A = 0
B = 0.5
C = 1
D = 0
E = 0
F = 0.5

Figure 6.7: Illustrative example of our reward function

assigns rewards to states. The input is observed transitions T O ⊆ S×A× S. As a first step a
forest F = (S,E) is created, where the nodes consist of states S and edges E. Furthermore, the
following condition holds: (s1,s2) ∈ E =⇒ |{s1

•−⇁ s2}| ≤ |{s2
•−⇁ s1}|. The reward function

R : S→ [−1,1], which maps states to rewards, is defined as follows

R(s) =


heightF (s)

height(subtree(s)) , if s 6= ERR

−1, if s = ERR
0, otherwise,

(6.1)

where heightF(s) returns the length of the longest path from node s to a leaf node in F , subtree(s)
return the tree s belongs to, and height(t) returns the height of tree t, i.e., the height of its root
node.

The definition ensures that failure states give lower (negative) rewards than all non-failure
states. Non-failure states give a higher reward if they have been favored by the initially managing
entity. For a state without any occurrence in the log, 0 reward is given.

6.3.3 Policy Improvement

The output of the MDP creator is a system description in the form of an MDP. In the pol-
icy improvement step, well-known decision making algorithms can be applied to optimize the
management policy. We have incorporated both Policy Iteration [20] for adapting a policy to
avoid error states in an environment, that is not expected to change significantly, as well as the
Q-learning [157] algorithm, able to iteratively adjust to changing environments.

Finally, to utilize the optimized policy, it is deployed, replacing the initial policy. The policy
optimization can be arbitrarily repeated. This allows to take additionally gathered data into
account to refine the policy and react to changes in the environment.

76

6.4 Evaluation

To evaluate our approach, we have created a simulation testbed, allowing for quick and easy
specification of complex composite applications, their runtime properties, as well as the initial
management policies. The simulation testbed is implemented using Ruby1. It provides a DSL for
the definition of the service behavior, e.g., interaction with other services, and processing cost.
Furthermore, it allows for the specification of configuration variants and parameters that can be
dynamically changed during runtime. The listing in Figure 6.8 shows a simplified definition of
the HRS’s “find hotel” method in the “search using all external providers” configuration. It adds
a new configuration variant to the HRS’s “find hotel” method, which invokes 3 partner services
CRM, FMS, and GDS. Furthermore, to model processing time and interaction with external
services, the ‘cost’ value defines the mean of the normally distributed invocation time.

add (" h r s # f i n d _ h o t e l ") . add_config (" a l l # r e g u l a r ") do
invoke " crm# g e t _ c u s t o m e r _ a d d r e s s "
invoke " fm# g e t _ b u d g e t "
invoke " gds # g e t _ f l i g h t _ i n f o r m a t i o n "
cost 4 # e s t i m a t e d c o s t o f e x t e r n a l r e q u e s t s

end

Figure 6.8: Service Method Definition: HRS “find hotel”, demonstrating basic capabilities of the
developed simulation testbed, i.e., invocation of other services and their methods, simulation of
external processing costs, and the definition of configuration variants.

The simulation testbed furthermore allows for the specification of initial management policies
for the created services using a similar DSL. Additionally, a management interface is provided,
allowing to replace the initial policy with the optimized one. We also provide for several different
user interaction patterns to simulate varying numbers of users with different behaviors.

The policy optimization framework is implemented as a Java library. For convenience, we
provide an exemplary log adapter2, compatible with the simulation testbed log, and conforming to
the specification. The optimization algorithms, i.e., policy iteration and Q-Learning, are optimized
implementations of the algorithms presented in [135].

We implemented the scenario application as described in Section 6.2, with multiple concur-
rent clients sending requests to the Booking Service. The initial policy is designed to degrade
the quality of services for faster processing times if load rises above a certain threshold. In the
interaction of the HRS and GDS services there manifests a hidden incompatibility in one certain
configuration constellation. In that scenario, the HRS is configured to only consider major air-
ports for finding hotels which increases the probability of empty results for the travel itinerary in
combination with the GDS, configured to look for the cheapest flights, which might use smaller
airports. This situation is perceived as an error and mitigated by the HRS querying all available

1http://ruby-lang.org/
2Exemplary log4j configuration directives along with helper methods conforming to the implemented format are

available at https://gist.github.com/1197839

77

http://ruby-lang.org/
https://gist.github.com/1197839

0	

500	

1000	

1500	

Original	

Policy	

Policy	

Itera3on	

Q-­‐Learning	

(a) Total Errors

0"

1"

2"

3"

4"

Original"
Policy"

Policy"
Itera5on"

Q7Learning"

(b) Processing Time (s)

Figure 6.9: Evaluation result summary. Our approach was able to significantly improve the initial
management policy using both, policy iteration and Q-Learning. Error occurrence was reduced
by more than 70%, and average processing time decreased by over 27%.

partner services incurring additional processing overhead. This special case is not addressed in
the otherwise useful initial policy. In general, as argued before, it is very difficult to anticipate all
possible failure scenarios, which calls for adaptive management policies as proposed here.

The policy optimization is performed after a bootstrapping phase which is needed to collect
log data. This phase is completed if 3000 requests have been processed. Each single service
invocation triggers the output of at least one status update information. The requests are issued
in a sawtooth pattern to simulate varying load patterns. The evaluation period, in which the
performance of policies is assessed, consists of an equal amount of requests following the same
pattern. The evaluation was performed on a machine with a 2.4GHz quad-core Intel Xeon E5620
CPU with 12MB shared L3 cache, 16GB RAM, running Ubuntu 10.04 LTS.

The results in Figure 6.9 show, that we are able to reduce the occurrence of errors by over
70% using the Q-Learning policy improvement, and by more than 80% using the policy obtained
through policy iteration. Furthermore, the average request processing time is reduced by over
27% due to the reduced impact of the performance penalty incurred when errors are encountered.
The worse performance of the Q-Learning algorithm with regard to total errors can be attributed
to the slower convergence of this algorithm for the given problem. However, Q-Learning is more
suitable for iterative, online policy improvement.

Figure 6.10 presents detailed evaluation results. The section ‘Queue Length’ shows the
system’s processing queue and illustrates that the chosen request pattern induces significant
stress on the application. The three ‘Processing Time’ sections show the time it took the system
to process each single request. The optimized policies maintain appropriate processing times, and
allow for a degradation in processing time to avoid errors. The last section, ‘Cumulative Errors’,
shows the aggregated number of errors encountered during the evaluation. In our scenario, both
optimized policies outperform the original management strategy.

78

 6
00

 1
20

0

 1
80

0
Q

ue
ue

 L
en

gt
h

O
rig

in
al

 P
ol

ic
y

P
ol

ic
y

Ite
ra

tio
n

Q
-L

ea
rn

in
g

 2 6 1
0

P
ro

ce
ss

in
g

T
im

e
(O

rig
in

al
 P

ol
ic

y)

 2 6 1
0

P
ro

ce
ss

in
g

T
im

e
(P

ol
ic

y
Ite

ra
tio

n)

 2 6 1
0

P
ro

ce
ss

in
g

T
im

e
(Q

-L
ea

rn
in

g)

 4
00

 8
00

 1
20

0

0
50

0
10

00
15

00
20

00
25

00
30

00

C
um

ul
at

iv
e

E
rr

or
s

Fi
gu

re
6.

10
:R

es
ul

ts
of

th
e

co
nd

uc
te

d
ex

pe
ri

m
en

t.
T

he
x-

ax
is

re
pr

es
en

ts
th

e
pr

og
re

ss
of

th
e

ev
al

ua
tio

n
ba

se
d

on
th

e
nu

m
be

ro
fr

eq
ue

st
pr

oc
es

se
d.

‘Q
ue

ue
L

en
gt

h’
sh

ow
s

th
e

nu
m

be
ro

fr
eq

ue
st

s
pe

nd
in

g
fo

rp
ro

ce
ss

in
g.

T
he

th
re

e
‘P

ro
ce

ss
in

g
Ti

m
e’

pa
ne

ls
de

pi
ct

th
e

tim
e

it
to

ok
fo

ri
nd

iv
id

ua
lr

eq
ue

st
s

to
be

pr
oc

es
se

d
fo

re
ac

h
of

th
e

th
re

e
ev

al
ua

te
d

po
lic

ie
s.

‘C
um

ul
at

iv
e

E
rr

or
s’

sh
ow

s
th

e
ag

gr
eg

at
ed

nu
m

be
r

of
er

ro
rs

oc
cu

rr
ed

du
ri

ng
th

e
ev

al
ua

tio
n

ru
n.

79

6.5 Related Work

Autonomic and policy-based management, fault tolerance, and self-healing systems research
has received a lot of attention in the past and continues to do so until today. Recently, these
areas are becoming more and more relevant for SOA environments, as unaided optimization
of configuration, collaboration, and error mitigation strategies, are essential for the successful
implementation of loosely-coupled SBSs.

An approach to autonomic SLA-based management of distributed systems is presented in [3],
proposing a hierarchical architecture of autonomic managers using a traditional MAPE cycle,
each responsible for certain non-functional concerns of an application according to a predefined
policy. Similarly, [96] presents an autonomic framework for preventing SLA violations. The
approach presented in [140] applies automated planning algorithms for system reconfiguration
based on user-defined objectives.

Several approaches have been presented in the area of self-healing web service integration and
composition (e.g., [33, 41, 42]), as well as self-healing BPEL processes (e.g., [14, 15, 113]). The
presented techniques are concerned with optimizing the behavior of integrated and/or composed
services and business processes, using static a priori policies, and, contrary to our approach,
assume in-depth knowledge of the services to be managed.

An architecture for self-manageable cloud services is presented in [26]. Similar to our ap-
proach, services provide management interfaces to allow for the control by the autonomic man-
ager. However, the presented solution requires for the autonomic manager to know the service
capabilities ahead of time.

A notable method for policy-driven autonomic management using reinforcement learning
techniques is presented in [11, 12]. The approach allows for optimization of runtime behavior
of managed applications by analyzing and deconstructing the provided management policies,
utilizing a complex management architecture. In contrast to our approach, managed applications
and components must be completely controlled using the proposed framework, policies enforced
by internal mechanisms cannot be taken into account.

6.6 Summary

In this chapter we present a novel approach for optimizing control policies for SOA, leading to
dependable and adaptive service-oriented systems. The approach makes minimal assumptions
about the structure and capabilities of the system. We present a new technique to transform
log data into a Markov Decision Process representation, which is used to generate an improved
control policy that takes into account dynamics of the environment and software defects. This
is done at runtime without need for human intervention. Experiments conducted in a testbed
consisting of real Web services show that the adaptive policies are capable of mitigating the
effects of defects and incompatibilities between collaborating components.

As future work we plan to integrate service level objectives, as well as request payload data,
into the policy generation in addition to log data. We will also investigate how our approach
can be applied to Web service compositions and business process optimization. Another future
research direction includes to consider not only the service level but also the resource level, i.e.,

80

to control the mapping of services to resources. The techniques presented in this paper allow
to manage relatively complex SBAs. However, if large-scale highly complex systems are to be
controlled, algorithms for complexity reduction, such as principal component analysis, could be
employed. Active learning promises better exploration and faster learning rates for Q-learning.

81

CHAPTER 7
Identifying Incompatible
Service Implementations

We study fault localization techniques for identification of incompatible configurations and im-
plementations in SBAs. Practice has shown that standardized interfaces alone do not guarantee
compatibility of services originating from different partners. Hence, dynamic runtime instantia-
tions of such SBAs pose a great challenge to reliability and dependability. The aim of this work is
to monitor and analyze successful and faulty executions in SBAs, in order to detect incompatible
configurations at runtime. We propose an approach using pooled decision trees for localization of
faulty service parameter and binding configurations, explicitly addressing transient and changing
fault conditions. The presented fault localization technique works on a per-request basis and is
able to take individual service inputs into account. Considering not only the service configura-
tion but also the service input data as parameters for the fault localization algorithm increases
the computational complexity by an order of magnitude. Hence, our performance evaluation is
targeted at large-scale SBAs and illustrates the feasibility and decent scalability of the approach.

7.1 Introduction

Distributed and mission-critical enterprise applications are becoming more and more reliant on
external services, provided by suppliers, customers or other members of Service Value Networks
(SVNs) [23]. In many industries, the technical interfaces of these services are governed by in-
dustry standards, specified by bodies such as the TMF, the Association for Retail Technology
Standards (ARTS) or the International Air Transport Association (IATA). Hence, integration of
services provided by different partners into a single SBA becomes feasible. Additionally, as often-
times a multitude of potential partners are providing implementations of the same standardized
interfaces, SBAs are enabled to dynamically switch providers at runtime, i.e., select the most
suitable implementation of a given standardized interface based on current requirements.

83

Unfortunately, practice has shown that standardized interfaces alone do not guarantee com-
patibility of services originating from different partners. Many industry standards are prone to
underspecification, while others simply allow multiple alternative (and incompatible) implemen-
tations to co-exist. Additionally, and particularly for younger specifications, not every vendor
can be trusted to interpret each standard text in the same way. Consequently, there are practical
cases where SBAs, which should work correctly in theory, fail to function because of unexpected
incompatibilities of service implementations chosen at runtime. Note that this does not necessar-
ily mean that any single one of the chosen service implementations is faulty in itself – it merely
means that two or more chosen service implementations do not work in conjunction (even though
both may work perfectly in combination with other services).

In this chapter, we present a machine learning driven approach to identify such incompatibil-
ities of industry standard implementations. We analyze runtime event logs emitted by the SBA
using decision tree techniques and principal component analysis, with the goal of suggesting
combinations of service implementations that should not be used in conjunction. Decision trees
are a white-box machine learning approach that allow to extract incompatibility rules from the
constructed tree [144]. Our approach takes into account not only the actual service implementa-
tions themselves, but also the received input and the produced output data of implementations.
Furthermore, we quantify the benefits of our approach based on a numerical evaluation.

7.2 Scenario

We base the discussion of our approach on the scenario introduced in Section 3.2, and elaborate
relevant parts in more detail. As introduced in Section 3.2, the eTOM [154] is a widely adopted
industry standard for implementation of business processes promoted by the TMF, and our sce-
nario is condensed from the TMF’s Case Study Handbook [153] as well as two eTOM-related
IBM publications on practical application of SOA in such systems [52, 58].

7.2.1 Service Delivery the eTOM Way

Figure 7.1 depicts the service delivery process in BPMN. The process consists of six activities
(denoted i1, . . . , i6). We refer to these activities as interfaces or abstract services. Each abstract
service activity has a set of sub-activities which we denote as concrete service implementations
(denoted c1, . . . ,c14 in the figure). At runtime the process selects and executes one concrete
service for each service interface. The data flow between the service interfaces of the scenario
process is illustrated in Figure 7.2.

The process is initiated by the abstract service i1 (Handle Customer Order) which is offered in
two variants for standard and premium users. Depending on the order input, the process then con-
figures a particular service (ADSL, IPTV or VoIP). The third abstract service selects one among
three partner providers to allocate resources required for service delivery. Telecommunication
services are typically associated with QoS attributes, which are fine-tuned by abstract service i4.
For instance, this activity configures parameters in the ADSL device or sets the location Uniform
Resource Identifier (URI) of IPTV endpoints, in correspondence with QoS requirements. If a

84

Customer
Relationship
Management

Service Management
and Operations

Resource Management
and Operations

F
ul

fil
lm

en
t

A
ss

ur
an

ce
B

ill
in

g

i1: Handle
Customer Order

i2: Configure
Service

c3: Conf. ADSL

c4: Conf. IPTV

c5: Conf. VoIP

i3: Allocate
Resources

i6: Perform Billing

c13: Internal Billing

c14: Partner Billing

c9: Setup Device

i5: Handle
Problem Report

c1: Standard

i4: Adjust Quality

c10: Set URIs

c6: T-Mobile

c7: AT&T

c8: Verizonc2: Premium

c11: Standard

c12: Premium

Figure 7.1: Service-Based Scenario Application Architecture, based on [52] and [58]

Service Delivery Process

i1: Handle
Customer Order

i2: Configure
Service

i3: Allocate
Resources

i6: Perform
Billing

i5: Handle
Problem
Report

i4: Adjust
Quality

customerID serviceType

customerID

orderID

premium serviceType

requirements

requirementsrequirementsorderID

resources

orderID resources

premium

Figure 7.2: Data Flow in the Scenario Process

85

problem is detected at runtime, the optional reporting service is executed in activity i5. Finally,
the process terminates after storing billing information, either for paying partner providers or for
internal accounting if the service was delivered in-house. Besides regular termination, the process
may also be interrupted by exceptions at any stage of execution (not depicted in Figure 7.1). We
assume that the information whether the execution has terminated regularly or exceptionally is
available for each instance of the process.

One defining characteristic of eTOM and the presented scenario is process decomposition,
which means that business processes are modeled at different levels of abstraction, from the
high-level business goals view down to the technical implementation level. In our scenario this
is illustrated by the distinction between abstract and concrete services, though in fact the number
of abstraction levels can be higher than two.

7.2.2 Challenges for Reliable Service Delivery

The scenario outlined in Section 7.2 entails challenges to reliability that are typically encountered
in service-based applications. Interface standardization (such as Multi-Technology Operations
System Interface (MTOSI) in the case of our scenario) per se does not guarantee compatibility
of services originating from different partners. The interactions among services contain complex
dependencies and data flows. The number of variations, i.e., possible instantiations of the process,
grows exponentially with the combination of concrete services as well as the provided user input.
Hence, comprehensive upfront verification and validation in terms of integration testing is not
always feasible and can only cover a certain percentage of the possible instantiations. Therefore,
in addition to rigorous testing methods, reliable operation of business-critical SBAs requires
proactive monitoring to analyze and avoid incompatible configurations at runtime.

7.3 Fault Localization Approach

This section discusses our novel fault localization technique. Section 7.3.1 establishes a notion
for the model of SBAs. Sections 7.3.2 and 7.3.3 discuss preprocessing and machine learning
techniques used to learn rules which describe the reasons for faults based on the collected model
data.

7.3.1 System Model

We establish a generalized model that forms the basis for the concepts presented in the work. The
core model artifacts are summarized in Table 7.1 and briefly discussed in the following.

A SBA consists of a set of industry standard service interfaces I = {i1, . . . , in} and a set
of implementations C = {c1, . . . ,cm}. The mapping between interface and implementation is
defined by the function c : I→P(C), where P(C) denotes the power set of C. The domain of
possible input parameters P, each defined by name (N) and domain of possible data values (D) is
represented by P = N×D. Function p : I→P(P) returns all inputs required by an interface, and
d : P→ D returns the value domain for a given parameter. The set F ⊆ I× I defines data flows
as pairs of interfaces (ix, iy), where the output of ix becomes the input of iy. Transitive data flows
spanning more than two services can be derived from F . Moreover, we define T = 〈t1, . . . , tk〉

86

as the sequence of logged execution traces tx : K→ V in chronological order, mapping the set
of keys K = I ∪ (I×N) to values V = C∪D; interfaces I map to implementations C, whereas
parameter names I ×N map to parameter domains D. Finally, the function r : {1, . . . ,k} →
{success, f ault} is used to express the result of a trace tx,x ∈ {1, . . . ,k}, i.e., whether the trace
represents a successful or failed execution of the SBA.

Symbol Description

I = {i1, ..., in} Set of industry standard interfaces defined by the SBA.
Example: I = {i1, ..., i6}

C = {c1, ...,cm} Set of available concrete implementations to interfaces.
Example: C = {c1, ...,c14}

c : I→P(C) Function that returns all concrete candidate implementations for an
interface. Example: c(i2) = {i3, i4, i5}

P = [N×D] Domain of service input parameters. Each input parameter is defined
by a name (N) and a domain of possible data values (D). Example:
P = {(′premium′,{true, f alse}), (′serviceType′,String), . . .}

p : I→P(P) Function that returns all input parameters for an interface.
Example: p(i1) = {(′customerID′,String)}

F ⊆ I× I Set of direct data flows (dependencies) between two services.
Example: F = {(i1, i2),(i2, i3),(i2, i4), . . .}

tx : K→V,
K = I∪ (I×N),
V = S∪D,
x ∈ {1, . . . ,k}

Log trace representing one execution of the SBA. The function
maps from a set of keys (K) to values (V). In particular, interfaces
(I) map to implementations (S), and parameter names (I×N) map to
parameter values (D). Example: t1: a1 7→c2, i2 7→c3, . . . ,
(i1,′ customerID′)7→′ joe123′, (i2,′ premium′)7→true, . . .

T = 〈t1, ..., tk〉 Sequence of logged execution traces.

r : {1, . . . ,k} 7→
{success, f ault}

Function that determines for an integer x ∈ {1, . . . ,k} whether the
execution represented by the trace tx was successful or has failed.

ES ⊆P(P(I→C)) Incompatible assignment. If the implementations in E are used in
combination, a fault occurs at runtime.
Example: EC = {{(i1 7→ c2)},{(i2 7→ c4),(i3 7→ c8)}}.

continued on next page

87

continued from previous page

Symbol Description

EP ⊆P(P(
(I→C)∪
((I×N) 7→ D)))

Incompatible assignment with specific input data. Example:
EP = {{(i1 7→ c2)},{((i2,′ premium′) 7→ f alse),(i3 7→ c8)}}

Table 7.1: Description of Variables

Summarizing the model, the core idea of our approach is to analyze log traces of SBA
executions for fault localization. We consider two classes of properties as part of the traces: 1)
runtime binding of interfaces to concrete implementations, 2) service input parameters, i.e., data
provided by the user to the application as well as data flowing between services.

7.3.2 Trace Data Preparation

Table 7.2 lists an excerpt of six exemplary traces for the scenario application. The table contains
multiple rows which represent the traces (t1, . . . , t6); the columns contain the bindings for the ser-
vice interfaces (i1, i2, i3, . . .), the input parameter values (tx(. . .)), and the success result of the trace
(r(x)). Two exemplary parameters for a customer service are in the Table: tx(i1,′ custID′) denotes
the customer identifier provided to some interface i1, and the parameter tx(i2,′ premium′) tells
the service interface i2 whether it is dealing with a regular customer or a high-paying premium
customer.

We follow the typical machine learning terminology and denote the column titles as attributes
and the rows starting from the second row as instances. The first attribute (tx) is the instance
identifier, and r(x) is denoted class attribute.

tx i1 i2 i3 .. tx(i1,′ custID′) tx(i2,′premium′) .. r(x)
t1 c1 c3 c7 .. ′ joe123′ f alse .. success
t2 c2 c4 c6 .. ′aliceXY ′ true .. success
t3 c1 c5 c8 .. ′ joe123′ f alse .. f ault
t4 c2 c5 c8 .. ′bob456′ true .. success
t5 c2 c4 c7 .. ′aliceXY ′ true .. success
t6 c1 c4 c8 .. ′lindaABC′ f alse .. f ault
..

Table 7.2: Example Traces for Scenario Application

The number of attributes and combinations of attribute values can grow very large. To es-
timate the number of possible traces for a medium sized application, consider an SBA using
10 interfaces (|I| = 10), 3 candidate implementations per interface (|c(ix)| = 3 ∀ix ∈ I), 3 in-
put parameters per service (|p(ix)| = 3 ∀ix ∈ I), and 100 possible data values per parameters
(|d| = 100 ∀ix ∈ I,(n,d) ∈ p(ix)). The total number of possible execution traces in this SBA is

88

310∗100310
= 5.9049∗1064. Efficient localization of faults in such large problem spaces evidently

poses a huge algorithmic challenge. Even more problematically, the problem space becomes in-
finite if the service parameters use non-finite data domains (e.g., String). The first step towards
feasible fault analysis is to reduce the problem space to the most relevant information. We propose
a two-step approach:

1. Identifying (ir)relevant attributes: The first manual preprocessing step is to decide, based
on domain knowledge about the SBA, which attributes are relevant for fault localization. For
instance, in an e-commerce scenario we can assume that a unique customer identifier (custID)
does not have a direct influence on whether the execution succeeds or fails. Per default, all
attributes are deemed relevant, but removing part of the attributes from the execution traces helps
to reduce the search space.

2. Partitioning of data domains: Research on software testing and dependability has shown
that faults in programs are often not solely incurred by a single input value, but usually depend on
a range of values with common characteristics [158]. Partition testing strategies therefore divide
the domain of values into multiple sub-domains and treat all values within a sub-domain as equal.
As a simple example, consider a service parameter with type Integer (i.e., {−231, . . . ,+231−1}),
a valid partitioning would be to treat negative/positive values and zero as separate sub-domains:
{{−231, . . . ,−1},{0},{1, . . . ,+231− 1}}. If explicit knowledge about suitable partitioning is
available, input value domains can be partitioned manually as part of the preprocessing. However,
efficient methods have been proposed to automatize this procedure (e.g., [38]).

7.3.3 Learning Rules from Decision Trees

Using the preprocessed trace data, we strive to identify the attribute values or combinations of
attribute values that are likely responsible for faults in the application. For this purpose, we
utilize decision trees [128], a popular technique in machine learning. It has the advantage that
the decision making of the resulting trees can be easily comprehended; their knowledge can
be distilled for the purpose of fault localization. Also, decision tree training with state of the
art algorithms like C4.5 results in comparably fast learning speeds, compared to other machine
learning approaches.

Figure 7.3 illustrates decision trees based on the example traces in Table 7.2. The figure
shows two variants of the same tree which classifies non-premium services from Provider 3
(tx(i3) = c8). The inner nodes are decision nodes which divide the traces search space, and the
leaf nodes indicate the trace results. The left-hand side of the figure shows a regular decision tree
where each decision node splits according to the possible values of an attribute. The right-hand
side shows the same tree with binary split (i.e., each decision node has two outgoing edges).

The decision tree with binary split is used to automatically derive incompatible attribute val-
ues. The basic procedure is to loop over all f ault leaf nodes and create a combination of attribute
assignments along the path from the leaf to the root node. The detailed algorithm is presented in
Algorithm 3. For each f ault leaf node, a set Etemp is constructed which contains the conditions
that are true along the path. The total set of all such condition combinations is denoted EI . Our
approach exploits the simple structure of decision trees for extracting incompatibility rules; other

89

tx(i2,'premium')
= false ?

tx(i3) = c8 ? success

true false

success fault

false true

tx(i2,'premium')
= ?

tx(i3) = ? success

false true

success fault

c6 c8

success

c7

Regular With Binary Split

Figure 7.3: Exemplary Decision Tree in Two Variants

Algorithm 3 Obtaining Incompatibility Rules from Decision Tree
1: EI ← /0
2: for all f ault leaf nodes as n do
3: path← path of nodes from n to root node
4: Etemp← /0
5: for all decision node along path as d do
6: c← condition of d
7: if c is true along path then
8: Etemp← Etemp∪ c
9: end if

10: end for
11: EI ← EI ∪Etemp

12: end for
13: for all Ex,Ey ∈ EI do
14: if Ex is covered by Ey then
15: EI ← EI \Ex

16: end if
17: end for

popular classification models (e.g., neural networks) have much more complex internal structures
which make it harder to extract the principal attributes responsible for the output [144].

7.3.4 Coping with Transient Faults

So far, we have shown how trace data can be collected, transformed into a decision tree, and used
for obtaining rules which describe which configurations have led to a fault. The assumption so
far was that faults are deterministic and static. However, in real-life systems which are influenced
by various external factors, we have to be able to cope with temporary and changing faults. Our

90

approach is hence tailored to react to such irregularities in dynamically changing environments.
A temporary fault manifests itself in the log data as a trace t ∈ T whose result r(t) is supposed

to be success, but the actual result is r(t) = f ault. Such temporary faults can lead to a situation
of contradicting instances in the data set. Two trace instances t1, t2 ∈ T contradict each other if
all attributes are equal except for the class attribute: {(k,v) | (k,v) ∈ t1} = {(k,v) | (k,v) ∈ t2},
r(t1) 6= r(t2).

Fortunately, state-of-the-art decision tree induction algorithms are able to cope with such
temporary faults which are considered as noise in the training data (e.g., [1]). If the reasons for
faults within an SBA change permanently, we need a mechanism to let the machine learning
algorithms forget old traces and train new decision trees based on fresh data. Before discussing
strategies for maintaining multiple decision trees, we first briefly elaborate on how the accuracy
of an existing classification model is tested over time.

7.3.5 Assessing the Accuracy of Decision Trees

Let D be the set of decision trees used for obtaining fault combination rules. We use the function
rc : (D × {1, . . . ,k})→ {success, f ault}, where k is the highest trace index, to express how a
decision tree classifies a certain trace. Over a subset Td ⊆ T of the traces classified by a decision
tree d, we assess its accuracy using established measures true positives (T P), true negatives (T N),
false positives (FP), and false negatives (FN) [10]:

• True Positives: T P(Td) = {tx ∈ Td | rc(d,x) = f ault ∧ r(x) = f ault}

• True Negatives: T N(Td) = {tx ∈ Td | rc(d,x) = success∧ r(x) = success}

• False Positives: FP(Td) = {tx ∈ Td | rc(d,x) = f ault ∧ r(x) = success}

• False Negatives: FN(Td) = {tx ∈ Td | rc(d,x) = success∧ r(x) = f ault}

From the four basic measures we obtain further metrics to assess the quality of a decision
tree. The precision expresses how many of the traces identified as faults were actually faults
(T P/(T P + FP)). Recall expresses how many of the faults were actually identified as such
(T P/(T P+FN)). Finally, the F1 score [64] integrates precision and recall into a single value
(harmonic mean):

F1 = 2∗ precision · recall
precision+ recall

7.3.6 Maintaining a Pool of Decision Trees

In the following, we discuss our approach to cope with changing fault conditions over time, based
on a sample execution of the system model introduced in Section 7.3.1.

Figure 7.4 illustrates a representative sequence of execution traces {t1, t2, t3, . . .}; time pro-
gresses from the left-hand side to the right-hand side of the figure. In the top of the figure the
trace results r(tx) are printed, where “S” represents success and “F” represents f ault. As the
traces arrive with progressing time we utilize deduction algorithms to learn decision trees from

91

 S F ... S ... F S ... S S F ... S S F ...

time

r(x) =

t1 t2 ta tb

 - F ... F ... F S ... F S F ... S

 - - ... 0.0 ... 0.8 0.82 … 0.7 0.71 0.72 … 0.74

S … Success S/F … Correct Classification
F … Fault S/F … Incorrect Classification

Misclassification (FP) Triggers Training of New Tree

tc

 1 2 ... a … b … c … d …

td

Initial Training Phase

rc(d1,x) =

F1(d1) =

 - ... S S ... S S F ... S

 - ... - - … 0.98 0.99 0.99 … 0.99

 - F S ... S S F ...

 - - - ... 1.0 1.0 1.0

rc(d2,x) =

F1(d2) =

Perfect Score Causes Removal of Other Trees

rc(d3,x) =

F1(d3) =

Figure 7.4: Maintaining Multiple Trees to Cope with Changing Faults

the data. At time point 1, the decision tree d1 is initialized and starts the training phase. The
learning algorithm has an initial training phase which is required to collect a sufficient amount of
data to generate rules that pass the required statistical confidence level. After the initial training
phase the quality of the decision tree rules is assessed by classifying new incoming traces. In
Figure 7.4 correct classifications are printed in normal text, while incorrect classifications are
printed in bold underlined font.

We have marked four particularly interesting time points (a,b,c,d) in Figure 7.4, which we
discuss in the following.

1. At time a the tree d1 misclassifies the trace ta as a false positive. This triggers the parallel
training of a new decision tree d2 based on the traces starting with ta.

2. A false negative by d2 occurs at time b. However, since this happens during the initial
training phase of d2, we simply regard the trace tb as useful information for the learner and
add it to the training set. No further action is required.

3. Time point c contains another false positive misclassification of d1. In the meantime,
F1(d1) had risen due to some correct classifications, but now the score is pushed down to
0.7. Again, as in time point a, the generation of a new tree d3 is triggered.

4. At time d the environment seems to have stabilized and decision tree d3 reached a state
with perfect classification (F1(d3) = 1). At this point, the remaining decision trees are

92

rejected. The old trees are still stored for reference, but are not trained with further data to
save computing power.

7.4 Implementation

Our prototype implementation of the presented fault localization approach is implemented in
Java. We utilize the open-source machine learning framework Weka [108]. Weka contains an im-
plementation of the popular C4.5 decision tree deduction algorithm [129], denoted J48 classifier
in Weka. C4.5 has been applied successfully in many application areas and is known for its good
performance characteristics.

Fault Localization Platform

Service-Based Application
(e.g., Telco Service Delivery Process)

Trace
Log Store

Weka

Weka
Instances

Store

Trace Converter

Domain
Partition
Manager

Logging
Interface

Decision Tree Pool

Training
Scheduler

J48
Classifier

Statistics
Calculator

Fault
Localizer

Notification
Interface

Figure 7.5: Prototype Implementation Architecture

Figure 7.5 outlines the architecture of the Fault Localization Platform with the core com-
ponents. Third-party components (Weka) are depicted with light grey background color. The
service-based application submits its log traces (service bindings plus input messages) to the
Logging Interface and provides a Notification Interface to receive fault localization updates. The
Trace Log Store receives trace data and forwards them to the Trace Converter. The Domain
Partition Manager maintains the customizable value partitions for input messages. For instance,
if a trace contains an integer input parameter x = −173 and the chosen domain partition for x
is {negative,zero, positive} then the Trace Converter transforms the input to x = negative. The
transformed traces are put to the Weka Instances Store. The Decision Tree Pool utilizes the Weka
J48 Classifier to maintain the set of trees. The Statistics Calculator determines quality measures

93

for the learned classifiers, and the Training Scheduler triggers the adaptation of the tree pool to
changing environments.

7.5 Evaluation

In the following, we evaluate different aspects of our proposed fault localization approach.

7.5.1 Evaluation Setup

The test traces are generated randomly, with assumed uniform distribution of the underlying
random generator.

ID |I| |c(i)|, |p(i)|, |d|, |e|, Fault
i ∈ I p(i) ∈ P i ∈ I e ∈ EI Probability

S1 5 5 10 20 {1} 4∗10−2

S2 5 5 10 20 {2} 2∗10−3

S3 5 5 10 20 {3} 1∗10−4

S4 5 5 10 20 {3,3,3} 3∗10−4

S5 10 10 10 100 {3,4} 1.001∗10−6

S6 10 10 10 100 {4} 1∗10−12

Table 7.3: Fault Probabilities for Exemplary SBA Model Sizes

Table 7.3 shows six different SBA instances with corresponding parameter settings that are
considered for evaluation. |I| denotes the number of service interfaces, |c(i)| is the number of
concrete implementations of each interface i ∈ I, |p(i)| represents the number of input param-
eters per interface, |d(p)| is the domain size for a parameter p ∈ P, and |EI| is the number of
injected incompatibilities that cause the faults at runtime. The table also lists for each setting the
probability that a fault occurs in a random execution.

All tests have been performed on machines with two Intel Xeon E5620 quad-core CPUs,
32 GB RAM, and running Ubuntu Linux 11.10 with kernel version 3.0.0-16.

7.5.2 Training Duration

First, we evaluate how many fault traces are required by the J48 classifier to pass the threshold
for reliable fault detection. The scenario SBAs S3,S2,S1 (cf. Table 7.3) were used in Figure 7.6,
20 iterations of the test were executed, and the figure contains three boxes representing the range
of minimum and maximum values. As shown in Figure 7.6, the number of traces required to
successfully detect a faulty configuration depends mostly on the complexity (i.e., probability) of
the fault with regard to the total scenario size.

A single fault in the configuration S1 was on average detected after observing between 90
and 190 traces. If we multiply these values with the fault probability of 4∗10−2, we get a range

94

 10

 100

 1000

 10000

 100000

 0.0001 0.002 0.04

#
T

ra
c
e

s

Fault Probability

Figure 7.6: Number of Traces Required to Detect Faults of Different Probabilities

of 4 to 8 fault traces required for the localization. Also with more complex (unlikely) faults the
relative figures do not appear to change considerably. With a fault probability of 2 ∗ 10−3 and
1 ∗ 10−4 the faults are detected after observing 3/16 and 4/7 minimum/maximum fault traces,
respectively. The data suggest that there is a strong relationship between the number of required
fault traces and the fault probability.

7.5.3 Transient Faults

As discussed in Section 7.3.6, our fault localization approach is designed to cope with changing
environments, which is evaluated here. Figure 7.7 shows the performance in the presence of
changing faults. The evaluation setup is as follows: Initially a fault combination FC1 (e.g.,
〈tx(i2,′ premium′) = f alse, i3 = c8〉) is active. At trace 33000, the implementation that causes the
fault FC1 is repaired, but the fix introduces a new fault FC2 that is fixed at trace 66000. At trace
66000, another fault FC3 occurs, and an attempted fix at trace 88000 introduces an additional
fault FC4, while FC3 remains active. At trace 121000, both FC3 and FC4 are fixed, but two
new faults FC5 and FC6 are introduced to the system. The occurrence probability for each of
the fault combinations (FC1−FC6) is set to 2 ∗ 10−3 (corresponding to scenario setting S2 in
Table 7.3).

This scenario is designed to mimic a realistic situation, but serves mainly to highlight several
aspects of our solution. After about 4000 observed execution traces the localizer provides a first
guess as to the cause of the fault, but the classification is not yet correct. After around 5200
observed execution traces, the localizer was able to analyze enough error traces to provide an
accurate localization result. Note that at that time, only about 6 error traces have been observed,
yet the algorithm already produces a correct result. At trace 33000, the previously detected fault
FC1 disappears and is replaced by FC2. Due to the pool of decision trees maintained by our
localizer, FC2 can again be accurately localized roughly 6000 traces later. Similarly, after FC2

95

 0

 0.2

 0.4

 0.6

 0.8

 1

F1 Score

0 40000 80000 120000 160000 200000

#Traces

Active Range of Fault Combination 6

Active Range of Fault Combination 5

Active Range of Fault Combination 4

Active Range of Fault Combination 3

Active Range of Fault Combination 2

Active Range of Fault Combination 1

Figure 7.7: Fault Localization Accuracy for Dynamic Environment with Transient Faults

disappears, FC3 is localized roughly 5000 traces after its introduction.
The decision tree pool allows for the effective localization of new faults introduced to the

system at any time. At trace 88000 in Figure 7.7, FC4 is introduced, and can again be accurately
localized after observing around 5000 traces. FC3 and FC4 disappear at trace 121000 and are
replaced by simultaneously occurring errors FC5 and FC6. This situation is more challenging
for our approach, as seen in the rightmost 80000 traces in Figure 7.7. The spikes between trace
121000 and 150000 represent different localization attempts that are later invalidated by contra-
dicting execution traces. Finally, however, the localization stabilizes and both faults FC5 and
FC6 are accurately detected.

We also evaluated the performance of our approach using different noise levels in the trace
logs. Figure 7.8 analyzes how the F1 score develops with increasing noise ratio. The figure
contains four lines, one each for the scenario settings S1− S4. To ensure that the algorithm
actually obtained enough traces for fault localization, we executed the localization run after
200000 observed traces.

7.5.4 Runtime Considerations

Due to the nature of the tackled problem, as well as the usage of C4.5 decision trees to generate
rules, there are some practical limitations to the number of traces and scenario sizes that can

96

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.005 0.01 0.015 0.02

F1
 S

co
re

Noise Ratio

p=0.04
p=0.002

p=0.0003
p=0.0001

Figure 7.8: Noise Resilience. Our approach maintains reasonable accuracy in the presence of
noisy data.

be analyzed using our approach within a reasonable time. In the following, we provide insights
into the runtime performance in different configurations and discuss strategies for fine-tuning the
performance.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 250000 500000 750000 1e+06

L
o

c
a

liz
a

ti
o

n
 T

im
e

 (
m

s
)

#Traces

5 Values per Input Part
10 Values per Input Part
50 Values per Input Part

100 Values per Input Part

Figure 7.9: Localization time for different trace window sizes in the scenario S5 for input sizes
|d|= {5,10,50,100}.

Figure 7.9 shows the time needed for to localize faults for various trace window sizes for the
base scenario S5, for input sizes |d|= {5,10,50,100}. The figure illustrates that the time needed
for a single localization run increases roughly linearly with increasing window sizes. Larger trace
windows allow the algorithm to find more complex faults. If fast localization results are needed,
the window size must be kept adequately small, at the cost of the system not being able to localize

97

faults above a certain complexity.
Furthermore, the frequency of localization runs must be considered when implementing our

approach in systems with very frequent incoming traces (in the area of hundreds or thousands
of traces per second). Evidently, there is a natural limit to the number of traces that can be pro-
cessed per time unit. Figure 7.10 shows the localization speed as number of traces processed per
second compared to different fault localization intervals (i.e., number of traces after which fault
localization is triggered periodically) for different window sizes (|T |, i.e., number of considered
traces).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

c
e

s
s
e

d
 T

ra
c
e

s
 p

e
r

S
e

c
o

n
d

Fault Localization Interval (# Traces)

Window Size = 50000 Traces
Window Size = 100000 Traces
Window Size = 200000 Traces
Window Size = 300000 Traces

Figure 7.10: Localization performance in traces per second for different fault localization inter-
vals and window sizes, using scenario S5

The data in Figure 7.10 can be seen as a performance benchmark for the machine(s) on
which the fault localization is executed. Executing this test on different machines will result
in different performance footprints, which serves as a decision support for configuring window
size and localization interval. For instance, if our application produces 1500 traces per second
(i.e., processes 1500 requests per second), a localization interval greater than 400 should be used.
Currently, the selection happens manually, but as part of our future work we investigate means
to fine-tune this configuration automatically.

7.6 Related Work

In this section we discuss existing approaches related to reliability, fault detection, and fault
localization in SBAs and distributed systems in general.

7.6.1 Software Testing

Our work is related to the broad field of software testing where a plethora of approaches for fault
localization have been proposed. Generally, software testing is the process of executing a program

98

or systems with the intent of finding errors [116]. Testing approaches are often divided into white-
and black-box testing. In white-box (or logic-driven) testing the internals of the software under
test are visible to the tester. Black-box (input/output-driven) testing has to get along with no
information about internal structure. Our problem formulation faces a black-box model in which
we can observe the system behavior but have no details about the internals. Formal verification of
software is an alternative to testing that is often employed in highly safety-critical environments.

Canfora et al. [30] provide an extensive overview of testing services and SBAs. The seminal
work by Narayanan and McIlraith [117] was among the first to perform automated simulation
and verification based on a semantic model of Web services. Another related approach has been
presented in [67], which performs upfront integration testing with different combinations of
concrete service implementations. Due to the huge search space, even in medium sized SBAs,
their test case generation approach is not able to consider the service input and output data,
whereas the efficient fault localization algorithms used in this work allow us to do so. Concluding,
in software testing a system is actively executed to find problems; in this work, however, we do
not control the software but we monitor its execution to localize faults and fault reasons at
runtime.

7.6.2 Software Fault Localization

Software fault localization helps to identify bugs in software on the source code level. Oftentimes
a two-phase procedure is applied: 1) finding suspicious code that may contain bugs and 2)
examining the code and deciding whether it contains bugs with the goal of fixing them. Research
mainly focused on the former, the identification of suspicious code parts with prioritization based
on its likelihood of containing bugs [39, 101, 159]. The seminal paper by Hutchins et al. [71]
introduces an evaluation environment suitable for fault localization (often referred to as the
Siemens suite), consisting of seven base programs (in different versions) that have been seeded
with faults on the source code level. Fundamental research on statistical bug isolation is presented
in [101]. Decision branches are modeled as predicates, and conditional probabilities are used to
compute the likelihood that a failure occurs in a certain branch.

Renieres et al. [132] present a fault localization technique for identifying suspicious lines of
a program’s source code. Based on the existence of a faulty run of the program and many correct
runs they select the correct run that is most similar to the faulty one. Proximity is defined based
on the program spectra. Then, traces of the two runs are compared and suspicious program lines
are reported. This general approach is very common in software fault localization. Arguing that
traditional trace proximity (literal comparison of traces) is insufficient as faults can be triggered
in various ways, Liu and Han [103] introduce R-Proximity which regards two traces as similar if
they appear to have roughly the same fault location. Guo et al. [59] propose a different similarity
metric based on control flow. The metric takes into account the sequence of statement rather
than just the unordered set. Our work differs from traditional software fault localization in that
we do not analyze program code but only observe the runtime behavior of services. We also
assume that the environment or service implementations may change during runtime, in contrast
to the analysis of static code. The work in [84] assists humans in localizing software faults by
visualizing test information and highlighting suspicious code statements with different color
intensity. The empirical study conducted shows that single faults are evidently easier to find

99

for humans than complex fault combinations, which strengthens the motivation for automated
machine learning based fault localization, as studied here.

7.6.3 Monitoring and Fault Detection

Monitoring and fault detection are key challenges for implementing reliable distributed systems.
Fault detectors are a general concept in distributed systems and aim at identifying faulty compo-
nents. In asynchronous systems it is in fact impossible to implement a perfect fault detector [34],
because faults cannot be distinguished with certainty from lost or delayed messages. Heartbeat
messages can be used for probabilistic detection of faulty components; in this case a monitored
component or service has the responsibility to send heartbeats to a remote entity. The fault de-
tector presented in [139] considers the heartbeat inter-arrival times and allows for a computation
of a component’s faulty behavior probability based on past behavior. Steinder and Sethi [149]
study fault localization in communication systems using belief networks. The approach is noise
resilient and able to handle spurious events, but if fault conditions change permanently, updates
in the belief network are arguably slower than using pooled decision trees. Moreover, their re-
sults indicate that fault localization time has exponential growth in the number of network nodes,
whereas our centralized approach scales near-linearly in the number of traces. Lin et al. [102] de-
scribes a middleware architecture called LIama that advocates a service bus that can be installed
on existing service-based infrastructures. It collects and monitors service execution data which
enable to incorporate fault detection mechanisms using the data. Such a service bus can be used to
collect the data necessary for our analysis. The major body of research in the area of monitoring
and fault detection in SBAs deals with topics like SLAs [100] and service compositions rather
than compatibility issues [123].

7.6.4 Fault Analysis and Adaptation

Fault analysis derives knowledge from faults that have been experienced. Adaptation tries to lever-
age this knowledge to reconfigure the system to overcome faults. Oftentimes, domain-specific
knowledge is required to efficiently analyze faults and their origins (e.g., [69]). Zhou et al. [166]
have proposed GAUL, a problem analysis technique for unstructured system logs. Their approach
is based on enterprise storage systems, whereas we focus on dynamic service-based applications.
GAUL uses a fuzzy match algorithm based on string similarity metrics to associate problem
occurrences with log output lines. The aim of GAUL differs from our approach since we assume
the existence of structured log files and focus on the localization of faulty configuration param-
eters. Control of SOAs mostly relies on static approaches, such as predefined policies [125].
Techniques from artificial intelligence can be used to improve management policies for SBAs
during runtime. For instance, Markov decision processes represent a possible way for modeling
the decision-making problems that arise in controlling SBAs.

7.7 Summary

In this chapter we describe a fault localization technique that is able to identify which combi-
nations of service bindings and input data cause problems in SBAs. The analysis is based on

100

log traces, which accumulate during runtime of the SBA. A decision tree learning algorithm is
employed to construct a tree from which we extract rules, describing which configurations are
likely to lead to faults. For providing a fine-grained analysis we do not only consider the service
bindings but also data on message level. This allows to find incompatibilities that go beyond
“service A has incompatibility issues with service B” leading to rules of the form “service A has
incompatibility issues with service B for messages of type C”. Such rules can help to safely use
partial functionality of services. We present extensions to our basic approach that help to cope
with dynamic environments and changing fault patterns. We have conducted experiments based
on scenario traces of realistic size. The results provide evidence that the employed approach leads
to successful fault localization for dynamically changing conditions, and is able to cope with the
large amounts of data that accumulate by considering fine-grained data on message level.

101

CHAPTER 8
Conclusion and Future Research

In this chapter we summarize the main results of this thesis. In Section 8.1 we focus on the core
outcomes of the conducted work and how the state of the art in research was advanced as part of
this work. Then, the research questions posited in Section 1.2 are revisited and critically analyzed
in Section 8.2. Finally, Section 8.3 discusses ongoing trends and open topics in related research
areas for future research to build on the contributions presented in this work.

8.1 Summary of Contributions

In this thesis, we have presented novel methods for coping with the challenges of evolution and
adaptation of SBAs in cloud computing environments in a structured and predictable way. We
take a holistic viewpoint and align our discussion with the phases of the software development
lifecycle, ranging from managing software evolution in a structured way at design time, reli-
able specification and deployment of complex adaptation infrastructures at deployment time, to
improving policy and fault management at runtime.

The presented evolution lifecycle model and framework allow for the structured evolution
and adaptation of SBAs throughout all phases of the software development lifecycle by cap-
turing and documenting relevant information as it becomes available, enabling traceability of
design decisions and their evolutionary changes, from abstract descriptions of intents to concrete
and actionable application components, their dependencies and interactions within the system.
Moreover, the model and accompanying strategies allow for unified handling of change requests
in any lifecycle phase, and facilitate the propagation of necessary changes between phases in
a controlled manner. To facilitate effective modeling and optimized deployment of application
runtime management infrastructures in cloud environments, we have introduced a method for
provider-managed adaptation that enables customers to leverage provider experience in man-
aging complex distributed systems without requiring large upfront investments. A novel DSL
called MONINA was created to model application structure, monitoring queries, and adaptation
rules, along with strategies for optimized deployment and increased maintainability, allowing

103

complex SBAs to effectively and efficiently react to changes in their environment without op-
erators needing to implement custom management infrastructure. To further improve created
application management policies and increase dependability at runtime, we have presented ap-
proaches based on machine learning techniques to incrementally improve adaptation policies
without explicit domain knowledge, along with a novel technique for automated identification of
service implementation incompatibilities using pooled decision trees.

The results of our investigations were evaluated based on multiple case studies and showed
that our approaches can significantly contribute to facilitate structured evolution of SBSs and
increase system robustness by autonomically improving adaptation policies. For cloud providers,
our work allows the creation of new revenue streams by offering managed adaptation solutions,
as well as increased resource efficiency by leveraging additional information gained from appli-
cation management policies.

8.2 Research Questions Revisited

The research questions introduced in Section 1.2 guided the work in this thesis. In this section,
we revisit these questions and summarize how they have been answered within the context of our
work, along with a discussion of the limitations of the presented solution.

Research Question I:
How can software evolution and adaptation be explicitly incorporated

in cloud application design and management?

We demonstrated that explicit documentation and structured realization of evolutionary
changes throughout the software development process enables partial automation of far-reaching
changes in SBAs with significantly reduced human intervention, along with increased trans-
parency owing to seamless traceability of design decisions. As part of our solution, we intro-
duced a DSL and accompanying adaptation infrastructure allowing for optimized deployment
and management of adaptation concerns suitable for a wide range of business domains. However,
our approaches currently rely on software designers explicitly modeling evolution and adapta-
tion concerns using the proposed methods. To allow for a higher degree of automation, it is
necessary to also gather as much information as possible from existing tools that are used in the
development process, such as software and bug repositories, requirements models, and software
architecture models. Furthermore, the presented adaptation infrastructure currently relies on tra-
ditional ECA rules, whereas the evolution model would allow for more expressive, goal-based
adaptation strategies, which have not been studied in-depth in this work.

Research Question II:
How can explicit cloud application design and management be

autonomously improved in the face of changes in their environment?

The presented policy improvement approach can autonomously improve application manage-
ment policies without specific domain knowledge. While the approach can effectively improve

104

management policies and reduce the occurrence of failures, the resulting policies are only suit-
able for consumption by an autonomic manager, but meaningful rules for human consumption
(and subsequent improvement of explicit management policies) are not created in the current
work, due to the nature of the used machine learning techniques. In contrast, the introduced fault
detection approach can reliably detect service implementation incompatibilities and create rules
that are meaningful for human operators. While the technique can reliably detect and create rules
for incompatible combinations of service implementations and parameters, the effectiveness de-
pends on proper partitioning of the source attributes to reduce the state space to a size feasible
for our approach. Currently, this is a manual step that must be performed by domain experts.

8.3 Future Work

In this work we presented different aspects to enable controlled evolution and adaptation of SBSs
in cloud computing environments. However, based on the discussion in Section 8.2, it is apparent
that a number of important challenges were out of scope for this thesis. In the following, we
outline some challenges and possibilities for future research.

• It is expected that future research will build on the evolution lifecycle and adaptation model
created in this work to derive a comprehensive software development process for cloud
applications. This development process will be tailored to the fundamental properties of
cloud computing environments, such as resource, cost, and quality elasticity [46], and will
enable the creation and evolution of cloud-native applications in an agile way.

• In future work we envision tighter mutual integration of the proposed approaches for fault
detection and policy improvement to automatically assert previously unknown fault states
when they occur, as well as improve the modeled rules and augment system control policies,
along with automated testing [70] to identify incompatible configurations of activated
artifacts.

• The approach for specifying and deploying application adaptation infrastructures should
be extended to integrate continuous deployment techniques, i.e., the capability to migrate
elements at runtime to adapt according to more precise knowledge and changing environ-
ments. Furthermore, the presented framework should be integrated with and adopted by
current cloud management tools, such as OpenStack Heat [119].

• With regard to the presented policy improvement framework, we expect that future work
will integrate service level objectives, as well as request payload data, into the policy gen-
eration in addition to log data. Another future research direction includes to consider not
only the service level but also the resource level, i.e., to control the mapping of services
to resources. The techniques presented in this work allow to manage relatively complex
service-oriented systems. However, if large-scale highly complex systems are to be con-
trolled, algorithms for complexity reduction, such as principal component analysis, could
be employed.

105

Bibliography

[1] David W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based learn-
ing algorithms. International Journal of Man-Machine Studies, 36(2):267–287, 1992.
ISSN 0020-7373. doi:10.1016/0020-7373(92)90018-G.

[2] Yanif Ahmad and Uğur Çetintemel. Network-aware query processing for stream-based
applications. In Proceedings of the 30th International Conference on Very large data
bases, VLDB ’04, pages 456–467. VLDB Endowment, 2004. ISBN 0120884690.
acmid:1316730.

[3] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic management of
non-functional concerns in distributed & parallel application programming. In IEEE
International Symposium on Parallel Distributed Processing, 2009, IPDPS ’09., pages
1–12, 2009. doi:10.1109/IPDPS.2009.5161034.

[4] E. Emanuel Almeida, Jonathan E. Luntz, and Dawn M. Tilbury. Event-condition-action
systems for reconfigurable logic control. Automation Science and Engineering, IEEE
Transactions on, 4(2):167–181, 2007. doi:10.1109/TASE.2006.880857.

[5] Amazon Web Services, Inc. CloudFormation, 2014. http://aws.amazon.com/
cloudformation. [Online; accessed January 17, 2014].

[6] Amazon Web Services, Inc. CloudWatch, 2014. http://aws.amazon.com/cloudwatch.
[Online; accessed January 17, 2014].

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[8] Michael Armbrust, Ion Stoica, Matei Zaharia, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, and Ariel Rabkin.
A view of cloud computing. Communications of the ACM, 53(4):50–58, April 2010.
doi:10.1145/1721654.1721672.

[9] CFEngine AS. CFEngine, 2014. http://cfengine.com. [Online; accessed January 17,
2014].

107

http://www.worldcat.org/issn/0020-7373
http://dx.doi.org/10.1016/0020-7373(92)90018-G
http://en.wikipedia.org/wiki/Special:BookSources/0120884690
http://doi.acm.org/10.1145/1316730
http://dx.doi.org/10.1109/IPDPS.2009.5161034
http://dx.doi.org/10.1109/TASE.2006.880857
http://aws.amazon.com/cloudformation
http://aws.amazon.com/cloudformation
http://aws.amazon.com/cloudwatch
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://dx.doi.org/10.1145/1721654.1721672
http://cfengine.com

[10] Ricardo Baeza-Yates and Ribeiro-Neto Berthier. Modern information retrieval. Addison-
Wesley, 1999. ISBN 978-0201398298.

[11] Raphael M. Bahati and Michael A. Bauer. Modelling reinforcement learning in policy-
driven autonomic management. International Journal On Advances in Intelligent Systems,
1(1):54–79, 2008. ISSN 1942-2679.

[12] Raphael M. Bahati, Michael A. Bauer, and Elvis M. Vieira. Policy-driven autonomic
management of multi-component systems. In Proceedings of the 2007 Conference of the
Center for Advanced Studies on Collaborative Research, CASCON ’07, pages 137–151,
New York, NY, USA, 2007. ACM. doi:10.1145/1321211.1321226.

[13] Olivier Barais, Anne Françoise Meur, Laurence Duchien, and Julia Lawall. Software
architecture evolution. In Software Evolution Mens and Demeyer [111], pages 233–262.
ISBN 978-3-540-76439-7. doi:10.1007/978-3-540-76440-3_10.

[14] Luciano Baresi and Sam Guinea. Dynamo and Self-Healing BPEL Compositions. In Com-
panion to the proceedings of the 29th International Conference on Software Engineering,
ICSE COMPANION ’07, pages 69–70, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2892-9. doi:10.1109/ICSECOMPANION.2007.31.

[15] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Self-healing BPEL processes with
Dynamo and the JBoss rule engine. In International workshop on Engineering of software
services for pervasive environments: in conjunction with the 6th ESEC/FSE joint meeting,
pages 11–20, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-798-8. doi:10.1145/
1294904.1294906.

[16] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 2nd edition, 2003. ISBN 978-0321154958.

[17] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M.R Shetty. Nonlinear Programming:
Theory and Algorithms. Wiley-Interscience, 3rd edition, 2006. ISBN 978-0-4714-8600-8.

[18] Wesley Beary. fog – the ruby cloud services library, 2014. http://fog.io. [Online; accessed
January 17, 2014].

[19] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, October 1999. ISBN 978-0201616415.

[20] Richard E. Bellman. Dynamic programming. Dover Books on Computer Science. Dover
Publications, 2003. ISBN 978-0486428093.

[21] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a roadmap.
In Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, New
York, NY, USA, 2000. ACM. doi:10.1145/336512.336534.

108

http://en.wikipedia.org/wiki/Special:BookSources/978-0201398298
http://www.worldcat.org/issn/1942-2679
http://dx.doi.org/10.1145/1321211.1321226
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76439-7
http://dx.doi.org/10.1007/978-3-540-76440-3_10
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-2892-9
http://dx.doi.org/10.1109/ICSECOMPANION.2007.31
http://en.wikipedia.org/wiki/Special:BookSources/978-1-59593-798-8
http://dx.doi.org/10.1145/1294904.1294906
http://dx.doi.org/10.1145/1294904.1294906
http://en.wikipedia.org/wiki/Special:BookSources/978-0321154958
http://en.wikipedia.org/wiki/Special:BookSources/978-0-4714-8600-8
http://fog.io
http://en.wikipedia.org/wiki/Special:BookSources/978-0201616415
http://en.wikipedia.org/wiki/Special:BookSources/978-0486428093
http://dx.doi.org/10.1145/336512.336534

[22] Keith H. Bennett, Václav T. Rajlich, and Norman Wilde. Software evolution and the
staged model of the software lifecycle. Advances in Computers, 56:1–54, 2002. doi:10.
1016/S0065-2458(02)80003-1.

[23] Benjamin Blau, Jan Kramer, Tobias Conte, and Clemens van Dinther. Service value net-
works. In Proceedings of the IEEE Conference on Commerce and Enterprise Computing,
CEC ’09, Washington, DC, USA, 2009. IEEE Computer Society. doi:10.1109/CEC.2009.
64.

[24] Jason Bloomberg. The Agile Architecture Revolution. How Cloud Computing, REST-
Based SOA, and Mobile Computing Are Changing Enterprise IT. John Wiley & Sons,
January 2013. ISBN 9781118421994.

[25] Robert Bohn, John Messina, Fang Liu, Jin Tong, and Jian Mao. NIST cloud computing
reference architecture. In Proceedings of the 2011 IEEE World Congress on Services,
SERVICES ’11, pages 594–596, Washington, DC, USA, 2011. IEEE Computer Society.
doi:10.1109/SERVICES.2011.105.

[26] Ivona Brandic. Towards self-manageable cloud services. In Proceedings of the 33rd
Annual IEEE International Computer Software and Applications Conference, COMP-
SAC ’09, Washington, DC, USA, 2009. IEEE Computer Society. doi:10.1109/COMPSAC.
2009.126.

[27] Aaron B. Brown and David A. Patterson. To err is human. In Proceedings of the First
Workshop on Evaluating and Architecting System dependabilitY, EASY ’01, 2001. http:
//roc.cs.berkeley.edu/papers/easy01.pdf.

[28] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard
Stefani. The FRACTAL component model and its support in Java. Software: Practice and
Experience, 36(11-12):1257–1284, August 2006. doi:10.1002/spe.767.

[29] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging it platforms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation Computer Systems, 25(6):599–616, June 2009.
doi:10.1016/j.future.2008.12.001.

[30] Gerardo Canfora and Massimiliano Di Penta. Testing services and service-centric systems:
challenges and opportunities. IT Professional, 8(2):10–17, 2006. ISSN 1520-9202. doi:10.
1109/MITP.2006.51.

[31] Canonical, Inc. Juju, 2014. http://juju.ubuntu.com/. [Online; accessed January 17, 2014].

[32] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco Lo Presti, and Raf-
faela Mirandola. Qos-driven runtime adaptation of service oriented architectures. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ES-
EC/FSE ’09. ACM, 2009. doi:10.1145/1595696.1595718.

109

http://dx.doi.org/10.1016/S0065-2458(02)80003-1
http://dx.doi.org/10.1016/S0065-2458(02)80003-1
http://dx.doi.org/10.1109/CEC.2009.64
http://dx.doi.org/10.1109/CEC.2009.64
http://en.wikipedia.org/wiki/Special:BookSources/9781118421994
http://dx.doi.org/10.1109/SERVICES.2011.105
http://dx.doi.org/10.1109/COMPSAC.2009.126
http://dx.doi.org/10.1109/COMPSAC.2009.126
http://roc.cs.berkeley.edu/papers/easy01.pdf
http://roc.cs.berkeley.edu/papers/easy01.pdf
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1016/j.future.2008.12.001
http://www.worldcat.org/issn/1520-9202
http://dx.doi.org/10.1109/MITP.2006.51
http://dx.doi.org/10.1109/MITP.2006.51
http://juju.ubuntu.com/
http://dx.doi.org/10.1145/1595696.1595718

[33] K.S. May Chan and Judith Bishop. The design of a self-healing composition cycle for web
services. In Proceedings of the ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’09, pages 20–27, Washington, DC, USA, 2009. IEEE
Computer Society. doi:10.1109/SEAMS.2009.5069070.

[34] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, 1996. doi:10.1145/226643.
226647.

[35] Fangzhe Chang, Ramesh Viswanathan, and Tom L. Wood. Placement in clouds for
application-level latency requirements. In Proceedings of the 5th International Conference
on Cloud Computing, CLOUD ’12, pages 327–335. IEEE, 2012. doi:10.1109/CLOUD.
2012.91.

[36] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, and Akhil Sahai. Sla decomposition:
Translating service level objectives to system level thresholds. In Proceedings of the
Fourth International Conference on Autonomic Computing, ICAC ’07, pages 3–3. IEEE,
2007. doi:10.1109/ICAC.2007.36.

[37] Betty H C Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper An-
dersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Marzo Seru-
gendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo
Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela
Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli,
Danny Weyns, and Jon Whittle. Software engineering for self-adaptive systems: A re-
search roadmap. In Lecture Notes in Computer Science, pages 1–26. Springer, Berlin,
Heidelberg, 2009. ISBN 978-3-642-02161-9. doi:10.1007/978-3-642-02161-9_1.

[38] Michal R. Chmielewski and Jerzy W. Grzymala-Busse. Global discretization of continuous
attributes as preprocessing for machine learning. International Journal of Approximate
Reasoning, 15(4):319 – 331, 1996. doi:10.1016/S0888-613X(96)00074-6.

[39] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceedings
of the 27th International Conference on Software Engineering, ICSE ’05, pages 342–351,
New York, NY, USA, 2005. ACM. doi:10.1145/1062455.1062522.

[40] Marco Comuzzi, Constantinos Kotsokalis, George Spanoudakis, and Ramin Yahyapour.
Establishing and monitoring SLAs in complex service based systems. In Proceedings of
the IEEE International Conference on Web Services, ICWS ’09, pages 783–790, Washing-
ton, DC, USA, 2009. IEEE Computer Society. doi:10.1109/ICWS.2009.47.

[41] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. SHIWS: A self-healing integrator for
web services. In Companion to the Proceedings of the 29th International Conference
on Software Engineering, pages 55–56, Washington, DC, USA, 2007. IEEE Computer
Society. doi:10.1109/ICSECOMPANION.2007.66.

110

http://dx.doi.org/10.1109/SEAMS.2009.5069070
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1109/CLOUD.2012.91
http://dx.doi.org/10.1109/CLOUD.2012.91
http://dx.doi.org/10.1109/ICAC.2007.36
http://en.wikipedia.org/wiki/Special:BookSources/978-3-642-02161-9
http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://dx.doi.org/10.1016/S0888-613X(96)00074-6
http://dx.doi.org/10.1145/1062455.1062522
http://dx.doi.org/10.1109/ICWS.2009.47
http://dx.doi.org/10.1109/ICSECOMPANION.2007.66

[42] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Designing self-adaptive service-oriented
applications. In Proceedings of the 4th International Conference on Autonomic Computing,
ICAC ’07, page 16. IEEE Computer Society, June 2007. doi:10.1109/ICAC.2007.13.

[43] Marios D. Dikaiakos, Asterios Katsifodimos, and George Pallis. Minersoft: Software
retrieval in grid and cloud computing infrastructures. Transactions on Internet Technology,
12(1), June 2012. doi:10.1145/2220352.2220354.

[44] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised dis-
cretization of continuous features. In Proceedings of the 12th International Conference
on Machine Learning, pages 194–202. Morgan Kaufmann Publishers, Inc., 1995.

[45] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. Inter-
national Journal of Web and Grid Services, 1(1):1–30, January 2005. ISSN 1741-1114.

[46] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. Principles of
elastic processes. Internet Computing, IEEE, 15(5):66–71, 2011. doi:10.1109/MIC.2011.
121.

[47] Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger. Analysing software
repositories to understand software evolution. In Software Evolution Mens and Demeyer
[111], pages 37–67. ISBN 978-3-540-76440-3. doi:10.1007/978-3-540-76440-3_3.

[48] Eclipse Foundation. Xtext Documentation, 2014. http://www.eclipse.org/Xtext/
documentation.html. [Online; accessed January 17, 2014].

[49] Thomas Erl. Service-Oriented Architecture. Concepts, Technology, and Design. Prentice
Hall, August 2005. ISBN 9780132715829.

[50] Thomas Erl, Richardo Puttini, and Zaigham Mahmood. Cloud Computing: Concepts,
Technology & Architecture. The Prentice Hall Service Technology Series from Thomas
Erl. Prentice Hall, 2013. ISBN 9780133387520.

[51] EsperTech. Esper Reference Documentation, 2014. http://esper.codehaus.org/esper/
documentation/documentation.html. [Online; accessed January 17, 2014].

[52] Marc Fiammante. Dynamic SOA and BPM: From simplified integration to dynamic
processes. In Dynamic SOA and BPM: Best Practices for Business Process Management
and SOA Agility. IBM Press, 2009.

[53] Apache Software Foundation. ActiveMQ, 2014. http://activemq.apache.org. [Online;
accessed January 17, 2014].

[54] Apache Software Foundation. jclouds, 2014. http://jclouds.apache.org. [Online; accessed
January 17, 2014].

[55] Apache Software Foundation. Libcloud python library, 2014. http://libcloud.apache.org.
[Online; accessed January 17, 2014].

111

http://dx.doi.org/10.1109/ICAC.2007.13
http://dx.doi.org/10.1145/2220352.2220354
http://www.worldcat.org/issn/1741-1114
http://dx.doi.org/10.1109/MIC.2011.121
http://dx.doi.org/10.1109/MIC.2011.121
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3_3
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html
http://en.wikipedia.org/wiki/Special:BookSources/9780132715829
http://en.wikipedia.org/wiki/Special:BookSources/9780133387520
http://esper.codehaus.org/esper/documentation/documentation.html
http://esper.codehaus.org/esper/documentation/documentation.html
http://activemq.apache.org
http://jclouds.apache.org
http://libcloud.apache.org

[56] Apache Software Foundation. Tuscany SCA, 2014. http://tuscany.apache.org. [Online;
accessed January 17, 2014].

[57] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, October 2004. doi:10.1109/MC.2004.175.

[58] Scott M. Glen and Jens Andexer. A practical application of SOA, Oc-
tober 2007. https://web.archive.org/web/20090226230835/http://www.ibm.com/
developerworks/webservices/library/ws-soa-practical/. [Online; accessed January 17,
2014].

[59] Liang Guo, Abhik Roychoudhury, and Tao Wang. Accurately choosing execution runs
for software fault localization. In Proceedings of the 15th International Conference on
Compiler Construction, CC ’06, pages 80–95. Springer, 2006. doi:10.1007/11688839_7.

[60] Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2014. http://www.gurobi.
com/resources/documentation. [Online; accessed January 17, 2014].

[61] Reiko Heckel, Rui Correia, Carlos Matos, Mohammad El-Ramly, Georgios Koutsoukos,
and Luis Andrade. Architectural Transformations: From Legacy to Three-Tier and Ser-
vices. In Software Evolution Mens and Demeyer [111], pages 139–170–170. ISBN 978-
3-540-76440-3. doi:10.1007/978-3-540-76440-3_7.

[62] Robert C. Holte. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63–90, 1993. doi:10.1023/A:1022631118932.

[63] Paul Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy. IBM, Armonk, NY, USA, 2001. https://web.archive.org/web/20050310235031/http:
//www-1.ibm.com/industries/government/doc/content/bin/auto.pdf.

[64] George Hripcsak and Adam S. Rothschild. Agreement, the f-measure, and reliability in
information retrieval. Journal of the American Medical Informatics Association, 12(3):
296–298, 2005. doi:10.1197/jamia.M1733.

[65] Markus C Huebscher and Julie A McCann. A survey of autonomic computing—degrees,
models, and applications. ACM Computing Surveys, 40(3), August 2008. doi:10.1145/
1380584.1380585.

[66] Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar. Dynamic
migration of processing elements for optimized query execution in event-based systems. In
On the Move to Meaningful Internet Systems, OTM ’11, pages 451–468, Berlin, Heidelberg,
2011. Springer. doi:10.1007/978-3-642-25106-1_3.

[67] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar. Test
coverage of data-centric dynamic compositions in service-based systems. In Proceedings
of the Fourth International Conference on Software Testing, Verification and Validation,

112

http://tuscany.apache.org
http://dx.doi.org/10.1109/MC.2004.175
https://web.archive.org/web/20090226230835/http://www.ibm.com/developerworks/webservices/library/ws-soa-practical/
https://web.archive.org/web/20090226230835/http://www.ibm.com/developerworks/webservices/library/ws-soa-practical/
http://dx.doi.org/10.1007/11688839_7
http://www.gurobi.com/resources/documentation
http://www.gurobi.com/resources/documentation
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3_7
http://dx.doi.org/10.1023/A:1022631118932
https://web.archive.org/web/20050310235031/http://www-1.ibm.com/industries/government/doc/content/bin/auto.pdf
https://web.archive.org/web/20050310235031/http://www-1.ibm.com/industries/government/doc/content/bin/auto.pdf
http://dx.doi.org/10.1197/jamia.M1733
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1007/978-3-642-25106-1_3

ICST ’11, pages 40–49, Washington, DC, USA, 2011. IEEE Computer Society. doi:10.
1109/ICST.2011.55.

[68] Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and Schahram
Dustdar. Distributed continuous queries over web service event streams. In Proceedings of
the 7th International Conference on Next Generation Web Services Practices, NWeSP ’11,
pages 176–181, Washington, DC, USA, 2011. IEEE Computer Society. doi:10.1109/
NWeSP.2011.6088173.

[69] Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, and Schahram
Dustdar. Deriving a unified fault taxonomy for event-based systems. In Proceedings of
the 6th ACM International Conference on Distributed Event-Based Systems, DEBS ’12,
pages 167–178, New York, NY, USA, 2012. ACM. doi:10.1145/2335484.2335504.

[70] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar. Test-
ing of data-centric and event-based dynamic service compositions. Software Testing, Veri-
fication and Reliability, 23(6):465–497, 2013. doi:10.1002/stvr.1493.

[71] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of
the effectiveness of dataflow- and controlflow-based test adequacy criteria. In Proceed-
ings of the 16th International Conference on Software Engineering, ICSE ’94, pages 191–
200, Los Alamitos, CA, USA, 1994. IEEE Computer Society. ISBN 0-8186-5855-X.
acmid:257766.

[72] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible implementations of industry standard service interfaces
for dependable service-based applications. Technical Report TUV-1841-2012-1, Vienna
University of Technology, 2012.

[73] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Towards identifying root causes of faults in service-based applications. In
Proceedings of the 31st IEEE International Symposium on Reliable Distributed Systems,
SRDS ’12, pages 404–405, Washington, DC, USA, 2012. IEEE Computer Society. doi:10.
1109/SRDS.2012.78.

[74] Christian Inzinger, Benjamin Satzger, Waldemar Hummer, and Schahram Dustdar. Spec-
ification and deployment of distributed monitoring and adaptation infrastructures. In
Proceedings of the International Workshop on Performance Assessment and Auditing in
Service Computing, co-located with ICSOC ’12, PAASC ’12, pages 167–178, Berlin, Hei-
delberg, 2012. Springer. doi:10.1007/978-3-642-37804-1_18.

[75] Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram
Dustdar. Non-intrusive policy optimization for dependable and adaptive service-oriented
systems. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 504–510, New York, NY, USA, 2012. ACM. doi:10.1145/2245276.
2245373.

113

http://dx.doi.org/10.1109/ICST.2011.55
http://dx.doi.org/10.1109/ICST.2011.55
http://dx.doi.org/10.1109/NWeSP.2011.6088173
http://dx.doi.org/10.1109/NWeSP.2011.6088173
http://dx.doi.org/10.1145/2335484.2335504
http://dx.doi.org/10.1002/stvr.1493
http://en.wikipedia.org/wiki/Special:BookSources/0-8186-5855-X
http://doi.acm.org/10.1145/257766
http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1007/978-3-642-37804-1_18
http://dx.doi.org/10.1145/2245276.2245373
http://dx.doi.org/10.1145/2245276.2245373

[76] Christian Inzinger, Waldemar Hummer, Ioanna Lytra, Philipp Leitner, Huy Tran, Uwe
Zdun, and Schahram Dustdar. Decisions, models, and monitoring – A lifecycle model
for the evolution of service-based systems. In Proceedings of the 17th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, EDOC ’13, pages 185–194,
Washington, DC, USA, 2013. IEEE Computer Society. doi:10.1109/EDOC.2013.29.

[77] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible service implementations using pooled decision trees. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
485–492, New York, NY, USA, 2013. ACM. doi:10.1145/2480362.2480456.

[78] Christian Inzinger, Benjamin Satzger, Philipp Leitner, Waldemar Hummer, and Schahram
Dustdar. Model-based adaptation of cloud computing applications. In Proceedings of
the International Conference on Model-Driven Engineering and Software Development
(MODELSWARD ’13), Special Track on Model-driven Software Adaptation, MODA ’13,
pages 351–355. SciTePress, 2013. doi:10.5220/0004381803510355.

[79] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Generic event-based monitoring and adaptation methodology for heterogeneous
distributed systems. Software: Practice and Experience, 2014. doi:10.1002/spe.2254.
(to appear).

[80] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and Schahram
Dustdar. MADCAT – A methodology for architecture and deployment of cloud applica-
tion topologies. In Proceedings of the 8th International Symposium on Service-Oriented
System Engineering, SOSE ’14, Washington, DC, USA, 2014. IEEE Computer Society.
(to appear).

[81] Florian Irmert, Thomas Fischer, and Klaus Meyer-Wegener. Runtime adaptation in a
service-oriented component model. In Proceedings of the International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’08, pages 97–
104, New York, NY, USA, 2008. ACM. doi:10.1145/1370018.1370036.

[82] Anton Jansen and Jan Bosch. Software architecture as a set of architectural design de-
cisions. In Proceedings of the Working IEEE/IFIP Conference on Software Architec-
ture, WICSA ’05, pages 109–120, Washington, DC, USA, 2005. IEEE Computer Society.
doi:10.1109/WICSA.2005.61.

[83] JBoss Drools team. Drools Expert User Guide, 2014. http://docs.jboss.org/drools/
release/5.5.0.Final/drools-expert-docs/html_single/index.html. [Online; accessed Jan-
uary 17, 2014].

[84] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM. doi:10.1145/
581339.581397.

114

http://dx.doi.org/10.1109/EDOC.2013.29
http://dx.doi.org/10.1145/2480362.2480456
http://dx.doi.org/10.5220/0004381803510355
http://dx.doi.org/10.1002/spe.2254
http://dx.doi.org/10.1145/1370018.1370036
http://dx.doi.org/10.1109/WICSA.2005.61
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html_single/index.html
http://dx.doi.org/10.1145/581339.581397
http://dx.doi.org/10.1145/581339.581397

[85] Gueyoung Jung, Kaustubh R. Joshi, Matti A. Hiltunen, Richard D. Schlichting, and
Calton Pu. Generating adaptation policies for multi-tier applications in consolidated
server environments. In Proceedings of the International Conference on Autonomic Com-
puting, ICAC ’08, pages 23–32, Washington, DC, USA, 2008. IEEE Computer Society.
doi:10.1109/ICAC.2008.21.

[86] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D. Schlichting, and Calton
Pu. Mistral: Dynamically managing power, performance, and adaptation cost in cloud
infrastructures. In Proceedings of the 30th IEEE International Conference on Distributed
Computing Systems, ICDCS ’10, pages 62–73, Washington, DC, USA, 2010. IEEE Com-
puter Society. doi:10.1109/ICDCS.2010.88.

[87] Leslie Pack Kaelbing, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996. doi:10.1613/jair.
301.

[88] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003. doi:10.1109/MC.2003.1160055.

[89] Hyunjoo Kim, Yaakoub el Khamra, Shantenu Jha, and Manish Parashar. Exploring appli-
cation and infrastructure adaptation on hybrid grid-cloud infrastructure. In Proceedings
of the 19th ACM International Symposium on High Performance Distributed Computing,
HPDC ’10, pages 402–412, New York, NY, USA, 2010. ACM. doi:10.1145/1851476.
1851536.

[90] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Professional, 3rd edition, 2004. ISBN 9780321197702.

[91] Geetika T. Lakshmanan, Ying Li, and Rob Strom. Placement strategies for internet-scale
data stream systems. IEEE Internet Computing, 12(6):50–60, 2008. doi:10.1109/MIC.
2008.129.

[92] George Lawton. Developing software online with platform-as-a-service technology. Com-
puter, 41(6):13–15, June 2008. doi:10.1109/MC.2008.185.

[93] Meir M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. Journal of Systems and Software, 1:213–221, January 1979. doi:10.
1016/0164-1212(79)90022-0.

[94] Meir M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE, 68(9):1060–1076, 1980. doi:10.1109/PROC.1980.11805.

[95] Meir M. Lehman, Juan F. Ramil, P D Wernick, D E Perry, and W M Turski. Metrics and
laws of software evolution-the nineties view. In Proceedings of the Fourth International
Software Metrics Symposium, METRIC ’97, pages 20–32, Washington, DC, USA, 1997.
IEEE Computer Society. doi:10.1109/METRIC.1997.637156.

115

http://dx.doi.org/10.1109/ICAC.2008.21
http://dx.doi.org/10.1109/ICDCS.2010.88
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1145/1851476.1851536
http://dx.doi.org/10.1145/1851476.1851536
http://en.wikipedia.org/wiki/Special:BookSources/9780321197702
http://dx.doi.org/10.1109/MIC.2008.129
http://dx.doi.org/10.1109/MIC.2008.129
http://dx.doi.org/10.1109/MC.2008.185
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/METRIC.1997.637156

[96] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. Monitoring,
prediction and prevention of sla violations in composite services. In Proceedings of
the 2010 IEEE International Conference on Web Services, ICWS ’10, pages 369–376,
Washington, DC, USA, 2010. IEEE Computer Society. doi:10.1109/ICWS.2010.21.

[97] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and Schahram
Dustdar. Cost-efficient and application sla-aware client side request scheduling in an
infrastructure-as-a-service cloud. In Proceedings of the 5th IEEE International Conference
on Cloud Computing, CLOUD ’12, pages 213–220, Washington, DC, USA, 2012. IEEE
Computer Society. doi:10.1109/CLOUD.2012.21.

[98] Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger, and Schahram
Dustdar. Application-level performance monitoring of cloud services based on the com-
plex event processing paradigm. In Proceedings of the 5th IEEE International Conference
on Service-Oriented Computing and Applications, SOCA ’12, Washington, DC, USA,
2012. IEEE Computer Society. doi:10.1109/SOCA.2012.6449437.

[99] Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and Schahram
Dustdar. CloudScale – a novel middleware for building transparently scaling cloud ap-
plications. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 434–440, New York, NY, USA, 2012. ACM. doi:10.1145/2245276.
2245360.

[100] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-based optimization of
service compositions. IEEE Transactions on Services Computing, 6(2):239–251, 2013.
doi:10.1109/TSC.2011.53.

[101] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN Cconference on
Programming Language Design and Implementation, PLDI ’05, pages 15–26, New York,
NY, USA, 2005. ACM. doi:10.1145/1064978.1065014.

[102] Kwei-Jay Lin, Mark Panahi, Yue Zhang, Jing Zhang, and Soo-Ho Chang. Building ac-
countability middleware to support dependable SOA. Internet Computing, 13(2), 2009.
doi:10.1109/MIC.2009.28.

[103] Chao Liu and Jiawei Han. Failure proximity: a fault localization-based approach.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’06, pages 46–56, New York, NY, USA, 2006. ACM.
doi:10.1145/1181775.1181782.

[104] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn Leaf.
NIST cloud computing reference architecture. NIST Special Publication, 500-292, 2011.

[105] Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems manage-
ment. IEEE Transactions on Software Engineering, 25(6):852–869, 1999. doi:10.1109/
32.824414.

116

http://dx.doi.org/10.1109/ICWS.2010.21
http://dx.doi.org/10.1109/CLOUD.2012.21
http://dx.doi.org/10.1109/SOCA.2012.6449437
http://dx.doi.org/10.1145/2245276.2245360
http://dx.doi.org/10.1145/2245276.2245360
http://dx.doi.org/10.1109/TSC.2011.53
http://dx.doi.org/10.1145/1064978.1065014
http://dx.doi.org/10.1109/MIC.2009.28
http://dx.doi.org/10.1145/1181775.1181782
http://dx.doi.org/10.1109/32.824414
http://dx.doi.org/10.1109/32.824414

[106] Ioanna Lytra, Stefan Sobernig, and Uwe Zdun. Architectural decision making for service-
based platform integration: A qualitative multi-method study. In Proceedings of the Joint
Working IEEE/IFIP Conference on Software Architecture and European Conference on
Software Architecture, WICSA-ECSA ’12, pages 111–120, Washington, DC, USA, 2012.
IEEE Computer Society. doi:10.1109/WICSA-ECSA.212.19.

[107] Ioanna Lytra, Huy Tran, and Uwe Zdun. Constraint-based consistency checking between
design decisions and component models for supporting software architecture evolution. In
Proceedings of the 16th European Conference on Software Maintenance and Reengineer-
ing, CSMR ’12, pages 287–296, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/CSMR.2012.36.

[108] Machine Learning Group at the University of Waikato. Weka 3: Data Mining Software in
Java, 2014. http://www.cs.waikato.ac.nz/ml/weka/. [Online; accessed January 17, 2014].

[109] Peter Mell and Timothy Grance. The NIST definition of cloud computing. NIST Special
Publication, 800-145, 2011.

[110] Tom Mens. Introduction and roadmap: History and challenges of software evolution. In
Software Evolution Mens and Demeyer [111], pages 1–11. ISBN 978-3-540-76440-3.
doi:10.1007/978-3-540-76440-3_1.

[111] Tom Mens and Serge Demeyer. Software Evolution. Springer Berlin Heidelberg, 2008.
ISBN 978-3-540-76440-3.

[112] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. End-to-
end support for QoS-aware service selection, binding, and mediation in VRESCo. IEEE
Transactions on Services Computing, 3(3):193–205, 2010. doi:10.1109/TSC.2010.20.

[113] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. SH-BPEL: a self-healing plug-in
for Ws-BPEL engines. In Proceedings of the 1st workshop on Middleware for Service
Oriented Computing, MW4SOC ’06, pages 48–53, New York, NY, USA, 2006. ACM.
doi:10.1145/1169091.1169099.

[114] Monitis. Cloud monitoring, 2014. http://www.monitis.com/cloud-monitoring. [Online;
accessed January 17, 2014].

[115] Gero Mühl, Ludger Fiege, and Peter R. Pietzuch. Distributed event-based systems.
Springer, 2006. ISBN 978-3-5403-2651-9.

[116] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley,
3rd edition, 2011. ISBN 1-118-03196-2.

[117] Srini Narayanan and Sheila McIlraith. Simulation, verification and automated composition
of web services. In Proceedings of the 11th International Conference on World Wide
Web, WWW ’02, pages 77–88, New York, NY, USA, 2002. ACM. doi:10.1145/511446.
511457.

117

http://dx.doi.org/10.1109/WICSA-ECSA.212.19
http://dx.doi.org/10.1109/CSMR.2012.36
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3_1
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://dx.doi.org/10.1109/TSC.2010.20
http://dx.doi.org/10.1145/1169091.1169099
http://www.monitis.com/cloud-monitoring
http://en.wikipedia.org/wiki/Special:BookSources/978-3-5403-2651-9
http://en.wikipedia.org/wiki/Special:BookSources/1-118-03196-2
http://dx.doi.org/10.1145/511446.511457
http://dx.doi.org/10.1145/511446.511457

[118] OASIS. Topology and orchestration specification for cloud applications TC, 2014. https:
//www.oasis-open.org/committees/tosca/. [Online; accessed January 17, 2014].

[119] OpenStack Foundation. OpenStack Heat, 2014. https://wiki.openstack.org/wiki/Heat.
[Online; accessed January 17, 2014].

[120] OpsCode, Inc. Chef, 2014. http://opscode.com/chef. [Online; accessed January 17,
2014].

[121] Stephen R. Palmer and John M. Felsing. A Practical Guide to Feature-Driven Develop-
ment. The Coad Series. Prentice Hall PTR, 2002. ISBN 9780130676153.

[122] Michael P. Papazoglou. Service-oriented computing: concepts, characteristics and di-
rections. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of
the Fourth International Conference on, pages 3–12, 2003. doi:10.1109/WISE.2003.
1254461.

[123] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. Computer, 40(11):38–45,
2007. doi:10.1109/MC.2007.400.

[124] Xin Peng, Bihuan Chen, Yijun Yu, and Wenyun Zhao. Self-tuning of software systems
through goal-based feedback loop control. In Proceedings of the 18th IEEE International
Requirements Engineering Conference, RE ’10, pages 104–107, Washington, DC, USA,
2010. IEEE Computer Society. doi:10.1109/RE.2010.22.

[125] Tan Phan, Jun Han, Jean-Guy Schneider, Tim Ebringer, and Tony Rogers. A survey of
policy-based management approaches for service oriented systems. In Proceedings of the
19th Australian Conference on Software Engineering, ASWEC ’08, pages 392–401, Wash-
ington, DC, USA, 2008. IEEE Computer Society. doi:10.1109/ASWEC.2008.4483228.

[126] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh,
and Margo Seltzer. Network-aware operator placement for stream-processing systems. In
Proceedings of the 22nd International Conference on Data Engineering, ICDE ’06, pages
49–61, Washington, DC, USA, 2006. IEEE Computer Society. doi:10.1109/ICDE.2006.
105.

[127] PuppetLabs, Inc. Puppet, 2014. http://puppetlabs.org/. [Online; accessed January 17,
2014].

[128] John Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
doi:10.1007/BF00116251.

[129] John Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., 1993. ISBN 978-1-5586-0238-0.

[130] Václav T. Rajlich. Changing the paradigm of software engineering. Communications of
the ACM, 49(8):67–70, 2006. doi:10.1145/1145287.1145289.

118

https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/
https://wiki.openstack.org/wiki/Heat
http://opscode.com/chef
http://en.wikipedia.org/wiki/Special:BookSources/9780130676153
http://dx.doi.org/10.1109/WISE.2003.1254461
http://dx.doi.org/10.1109/WISE.2003.1254461
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1109/RE.2010.22
http://dx.doi.org/10.1109/ASWEC.2008.4483228
http://dx.doi.org/10.1109/ICDE.2006.105
http://dx.doi.org/10.1109/ICDE.2006.105
http://puppetlabs.org/
http://dx.doi.org/10.1007/BF00116251
http://en.wikipedia.org/wiki/Special:BookSources/978-1-5586-0238-0
http://dx.doi.org/10.1145/1145287.1145289

[131] Václav T. Rajlich and Keith H. Bennett. A staged model for the software life cycle.
Computer, 33(7):66–71, 2000. doi:10.1109/2.869374.

[132] Manos Renieres and Steven P. Reiss. Fault localization with nearest neighbor queries.
In Proceedings of the 18th IEEE International Conference on Automated Software En-
gineering, ASE ’03, pages 30–39, New York, NY, USA, 2003. IEEE Computer Society.
doi:10.1109/ASE.2003.1240292.

[133] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A Taxonomy and Survey of Cloud
Computing Systems. In Proceedings of the 2009 Fifth International Joint Conference
on INC, IMS and IDC, pages 44–51, Los Alamitos, CA, USA, November 2009. IEEE.
doi:10.1109/NCM.2009.218.

[134] Winston W. Royce. Managing the development of large software systems: Concepts and
techniques. In Proceedings of the 9th International Conference on Software Engineering
(Reprint), ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press. ISBN 0-89791-216-0. acmid:41801. Originally published in Proceedings
of IEEE WESTCON, August 1970.

[135] Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010. ISBN 978-0-1360-4259-4.

[136] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Transactions on Autonomous and Adaptive Systems, 4(2):14:1–14:42,
May 2009. doi:10.1145/1516533.1516538.

[137] Farshad A. Samimi, Philip K. McKinley, S. Masoud Sadjadi, Chiping Tang, Jonathan K.
Shapiro, and Zhinan Zhou. Service clouds: Distributed infrastructure for adaptive commu-
nication services. IEEE Transactions on Network and Service Management, 4(2):84–95,
2007. doi:10.1109/TNSM.2007.070901.

[138] Benjamin Satzger and Oliver Kramer. Goal distance estimation for automated planning
using neural networks and support vector machines. Natural Computing, 12(1):87–100,
2013. doi:10.1007/s11047-012-9332-y.

[139] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. A new
adaptive accrual failure detector for dependable distributed systems. In Proceedings of
the 2007 ACM Symposium on Applied Computing, pages 551–555, New York, NY, USA,
2007. ACM. doi:10.1145/1244002.1244129.

[140] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. Using
automated planning for trusted self-organising organic computing systems. In Proceedings
of the 5th International Conference on Autonomic and Trusted Computing, ATC ’08, pages
60–72, Berlin, Heidelberg, 2008. Springer. doi:10.1007/978-3-540-69295-9_7.

[141] Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and Schahram
Dustdar. Winds of change: From vendor lock-in to the meta cloud. IEEE Internet Com-
puting, 17(1):69–73, 2013. doi:10.1109/MIC.2013.19.

119

http://dx.doi.org/10.1109/2.869374
http://dx.doi.org/10.1109/ASE.2003.1240292
http://dx.doi.org/10.1109/NCM.2009.218
http://en.wikipedia.org/wiki/Special:BookSources/0-89791-216-0
http://doi.acm.org/10.1145/41801
http://en.wikipedia.org/wiki/Special:BookSources/978-0-1360-4259-4
http://dx.doi.org/10.1145/1516533.1516538
http://dx.doi.org/10.1109/TNSM.2007.070901
http://dx.doi.org/10.1007/s11047-012-9332-y
http://dx.doi.org/10.1145/1244002.1244129
http://dx.doi.org/10.1007/978-3-540-69295-9_7
http://dx.doi.org/10.1109/MIC.2013.19

[142] Björn Schilling, Boris Koldehofe, and Kurt Rothermel. Efficient and distributed rule place-
ment in heavy constraint-driven event systems. In Proceedings of the 13th IEEE Inter-
national Conference on High Performance Computing and Communications, HPCC ’11,
pages 355–364, Washington, DC, USA, 2011. IEEE Computer Society. doi:10.1109/
HPCC.2011.53.

[143] Ingo Schnabel and Markus Pizka. Goal-driven software development. In Proceedings
of the 30th Annual IEEE/NASA Software Engineering Workshop, SEW ’06, pages 59–65,
Washington, DC, USA, 2006. IEEE Computer Society. doi:10.1109/SEW.2006.21.

[144] Toby Segaran. Programming Collective Intelligence. O’Reilly Media, 2007. ISBN 978-0-
5965-2932-1.

[145] Liwei Shen, Xin Peng, and Wenyun Zhao. Quality-driven self-adaptation: Bridging the
gap between requirements and runtime architecture by design decision. In Proceedings of
the 36th Annual IEEE Computer Software and Applications Conference, COMPSAC ’12,
pages 185–194, Washington, DC, USA, 2012. IEEE Computer Society. doi:10.1109/
COMPSAC.2012.29.

[146] James Skene, D Davide Lamanna, and Wolfgang Emmerich. Precise service level agree-
ments. In Proceedings of the 26th International Conference on Software Engineering,
ICSE ’04. IEEE Computer Society, May 2004. acmid:998675.999422.

[147] Morris Sloman. Policy driven management for distributed systems. Journal of Network
and Systems Management, 2(4):333–360, 1994. doi:10.1007/BF02283186.

[148] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. Operator placement for
in-network stream query processing. In Proceedings of the 24th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’05, pages 250–258, New
York, NY, USA, 2005. ACM. doi:10.1145/1065167.1065199.

[149] Małgorzata Steinder and Adarshpal S. Sethi. Probabilistic fault localization in commu-
nication systems using belief networks. IEEE/ACM Transactions on Networking, 12(5):
809–822, 2004. doi:10.1109/TNET.2004.836121.

[150] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the 7th International Conference
on Machine Learning, pages 216–224, San Francisco, CA, USA, 1990. Morgan Kaufmann
Publishers Inc. ISBN 1-55860-141-4.

[151] Hirotaka Takeuchi and Ikujiro Nonaka. The new new product development game. Harvard
business review, 64(1):137–146, 1986.

[152] Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. On the use of
hybrid reinforcement learning for autonomic resource allocation. Cluster Computing, 10
(3):287–299, 2007. doi:10.1007/s10586-007-0035-6.

120

http://dx.doi.org/10.1109/HPCC.2011.53
http://dx.doi.org/10.1109/HPCC.2011.53
http://dx.doi.org/10.1109/SEW.2006.21
http://en.wikipedia.org/wiki/Special:BookSources/978-0-5965-2932-1
http://en.wikipedia.org/wiki/Special:BookSources/978-0-5965-2932-1
http://dx.doi.org/10.1109/COMPSAC.2012.29
http://dx.doi.org/10.1109/COMPSAC.2012.29
http://doi.acm.org/10.1145/998675.999422
http://dx.doi.org/10.1007/BF02283186
http://dx.doi.org/10.1145/1065167.1065199
http://dx.doi.org/10.1109/TNET.2004.836121
http://en.wikipedia.org/wiki/Special:BookSources/1-55860-141-4
http://dx.doi.org/10.1007/s10586-007-0035-6

[153] TM Forum. Case study handbook, December 2009.

[154] TM Forum. eTOM Business Process Framework, 2014. http://www.tmforum.org/
BusinessProcessFramework/1647/home.html. [Online; accessed January 17, 2014].

[155] Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based and model-driven approach
for reducing the development complexity in process-driven SOA. In Proceedings of
the 1st International Working Conference on Business Process and Services Computing,
BPSC ’07, pages 105–124, Bonn, 2007. GI. ISBN 978-3-88579-210-9.

[156] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Berlin, Heidelberg, April 2011. ISBN 978-3-6421-9344-6.

[157] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):
279–292, 1992. doi:10.1007/BF00992698.

[158] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE
Transactions on Software Engineering, 17(7):703–711, 1991. doi:10.1109/32.83906.

[159] W. Eric Wong and Vidroha Debroy. Software fault localization. Part of the IEEE Reliabil-
ity Society 2009 Annual Technology Report, 2009. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.172.202.

[160] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load distribution in the
borealis stream processor. In Proceedings of the 21st International Conference on Data
Engineering, ICDE ’05, pages 791–802, Washington, DC, USA, 2005. IEEE Computer
Society. doi:10.1109/ICDE.2005.53.

[161] Ying Xing, Jeong-Hyon Hwang, Uǧur Çetintemel, and Stan Zdonik. Providing resiliency
to load variations in distributed stream processing. In Proceedings of the 32nd interna-
tional conference on Very large data bases, VLDB ’06, pages 775–786. VLDB Endow-
ment, 2006. acmid:1164194.

[162] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of cloud
computing. In Proceedings of the Grid Computing Environments Workshop, GCE ’08,
pages 1–10, Washington, DC, USA, 2008. IEEE Computer Society. doi:10.1109/GCE.
2008.4738443.

[163] Chuanzhen Zang and Yushun Fan. Complex event processing in enterprise information
systems based on RFID. Enterprise Information Systems, 1(1):3–23, 2007. doi:10.1080/
17517570601092127.

[164] Ji Zhang and Betty H.C. Cheng. Model-based development of dynamically adaptive
software. In Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pages 371–380, New York, NY, USA, 2006. ACM. doi:10.1145/1134285.
1134337.

121

http://www.tmforum.org/BusinessProcessFramework/1647/home.html
http://www.tmforum.org/BusinessProcessFramework/1647/home.html
http://en.wikipedia.org/wiki/Special:BookSources/978-3-88579-210-9
http://en.wikipedia.org/wiki/Special:BookSources/978-3-6421-9344-6
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/32.83906
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.202
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.202
http://dx.doi.org/10.1109/ICDE.2005.53
http://doi.acm.org/10.1145/1164194
http://dx.doi.org/10.1109/GCE.2008.4738443
http://dx.doi.org/10.1109/GCE.2008.4738443
http://dx.doi.org/10.1080/17517570601092127
http://dx.doi.org/10.1080/17517570601092127
http://dx.doi.org/10.1145/1134285.1134337
http://dx.doi.org/10.1145/1134285.1134337

[165] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010. doi:10.1007/
s13174-010-0007-6.

[166] Pin Zhou, Binny Gill, Wendy Belluomini, and Avani Wildani. GAUL: Gestalt analysis of
unstructured logs for diagnosing recurring problems in large enterprise storage systems.
In Proceedings of the 29th IEEE Symposium on Reliable Distributed Systems, SRDS ’10,
pages 148–159, Washington, DC, USA, 2010. IEEE Computer Society. doi:10.1109/
SRDS.2010.25.

[167] Olaf Zimmermann, Uwe Zdun, Thomas Gschwind, and Frank Leymann. Combining
pattern languages and reusable architectural decision models into a comprehensive and
comprehensible design method. In Proceedings of the 7th Working IEEE/IFIP Conference
on Software Architecture, WICSA ’08, pages 157–166, Washington, DC, USA, 2008. IEEE
Computer Society. doi:10.1109/WICSA.2008.19.

[168] Thomas Zimmermann, Nachiappan Nagappan, and Andreas Zeller. Predicting bugs from
history. In Software Evolution Mens and Demeyer [111], pages 69–88. ISBN 978-3-540-
76440-3. doi:10.1007/978-3-540-76440-3_4.

122

http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1109/SRDS.2010.25
http://dx.doi.org/10.1109/SRDS.2010.25
http://dx.doi.org/10.1109/WICSA.2008.19
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://en.wikipedia.org/wiki/Special:BookSources/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3_4

APPENDIX A
Glossary

ADSL Asymmetric Digital Subscriber Line.
AI Artificial Intelligence.
AMQP Advanced Message Queueing Protocol.
AOP Aspect-Oriented Programming.
API Application Programming Interface.
ARTS Association for Retail Technology Standards, http://nrf-arts.org/.

BPMN Business Process Modeling Notation.

CEP Complex Event Processing.
CM Configuration Management.
CORBA Common Object Request Broker Architecture.
CRM Customer Relationship Management.
CRS Car Reservation Service.

DaaS Data as a Service.
DRL Drools Rule Language, http://docs.jboss.org/drools/.
DSL Domain-Specific Language.

EBNF Extended Backus-Naur Form.
EC2 Elastic Compute Cloud.
ECA Event-Condition-Action.
EPL Esper Event Processing Language, http://esper.codehaus.org/.
eTOM enhanced Telecom Operations Map.

FDD Feature Driven Development.
FMS Financial Management System.
FQDN Fully-Qualified Domain Name.

123

http://nrf-arts.org/
http://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/ch05.html
http://esper.codehaus.org/esper-4.10.0/doc/reference/en-US/html/epl_clauses.html

GDS Global Distribution System.
GUI Graphical User Interface.

HRS Hotel Reservation Service.

IaaS Infrastructure as a Service.
IATA International Air Transport Association, http://www.iata.org/.
IPTV Internet Protocol television.

JMS Java Messaging Service.

MAPE Monitor, Analyze, Plan, Execute.
MDP Markov Decision Process.
MOM Message-Oriented Middleware.
MONINA MONitoring, INtegration, and Adaptation.
MTOSI Multi-Technology Operations System Interface.

PaaS Platform as a Service.

QoS Quality of Service.

RDBMS Relational Database Management System.
RDS Relational Database Service.
REST REpresentational State Transfer.
RMI Remote Method Invocation.
RUP Rational Unified Process.

S3 Simple Storage Service.
SaaS Software as a Service.
SBA Service-Based Application.
SBS Service-Based System.
SCA Service Component Architecture.
SLA Service Level Agreement.
SLO Service Level Objective.
SOA Service Oriented Architecture.
SOAP Simple Object Access Protocol (originally).
SQS Simple Queue Service.
SVN Service Value Network.

TMF TM Forum, http://tmforum.com/.

URI Uniform Resource Identifier.

VbMF View-based Modeling Framework.
VM Virtual Machine.
VoIP Voice over IP.
VSP Virtual Service Platform.

XP Extreme Programming.

124

http://www.iata.org/
http://tmforum.com/

APPENDIX B
MONINA Language Grammar

In the following, we show the complete EBNF specification for the MONINA language, as
implemented in the current version of the MONINA Editor Eclipse plugin. Documentation on
how to install the plugin is available at http://indenicatuv.github.io/releases. The plugin source
code can be inspected at https://github.com/inz/monina, and the runtime components used by
the plugin for deploying the specified application management infrastructures is available at
https://github.com/inz/indenica-runtime-core.

〈monina-root〉 ::= 〈abstr-elem〉*

〈abstr-elem〉 ::= 〈pkg-decl〉
| 〈import〉
| 〈component〉
| 〈event〉
| 〈action〉
| 〈query〉
| 〈fact〉
| 〈host〉
| 〈rule〉

〈pkg-decl〉 ::= ‘package’ 〈qualified-name〉 ‘{’ 〈abstr-elem〉* ‘}’

〈import〉 ::= ‘import’ 〈qualified-name-w〉

〈component〉 ::= ‘component’ 〈ID〉
‘{’ 〈comp-metadata〉 〈refs〉* 〈host-ref 〉? 〈endpoint〉* ‘}’

〈comp-metadata〉 ::= (‘vendor’ 〈STRING〉)?
(‘version’ 〈STRING〉)?
(‘description’ 〈STRING〉)?

125

http://indenicatuv.github.io/releases
https://github.com/inz/monina
https://github.com/inz/indenica-runtime-core

〈endpoint〉 ::= ‘endpoint’ 〈ID〉? ‘{’ ‘at’ 〈endpoint-addr〉 〈refs〉* ‘}’

〈endpoint-addr〉 ::= 〈STRING〉
(‘on’ 〈host-ref 〉)?
(〈host-port〉)?
(‘using’ 〈STRING〉)?
(‘with’ 〈STRING〉)?

〈refs〉 ::= 〈event-ref 〉 | 〈action-ref 〉

〈host-ref 〉 ::= ‘host’ 〈qualified-name〉

〈event-ref 〉 ::= 〈qualified-name〉 〈freq〉?

〈action-ref 〉 ::= ‘action’ 〈qualified-name〉

〈event〉 ::= ‘event’ 〈qualified-name〉 ‘{’ 〈e-attr〉* ‘}’

〈action〉 ::= ‘action’ 〈qualified-name〉 ‘{’ 〈e-attr〉* ‘}’

〈e-attr〉 ::= 〈ID〉 ‘:’ 〈qualified-name〉

〈freq〉 ::= ‘every’ 〈Number〉 〈t-unit〉 | 〈Number〉 ‘Hz’

〈host〉 ::= ‘host’ 〈ID〉 ‘{’ 〈host-addr〉? 〈host-port〉? 〈host-capacity〉? ‘}’

〈host-addr〉 ::= ‘address’ 〈STRING〉

〈host-port〉 ::= ‘port’ 〈INT〉

〈host-capacity〉 ::= ‘capacity’ 〈INT〉

〈query〉 ::= 〈simple-query〉 | 〈esper-query〉

〈simple-query〉 ::= ‘query’ 〈ID〉 ‘{’
(〈source-decl〉 | 〈emit-decl〉)*
〈window-decl〉? 〈cond-decl〉?
〈cost〉? 〈io-ratio〉?
‘}’

〈esper-query〉 ::= ‘equery’ 〈ID〉 ‘{’ 〈source-decl〉+ 〈STRING〉 ‘}’

〈source-decl〉 ::= ‘from’ 〈source〉 (‘,’ 〈source〉)*

〈source〉 ::= (‘source’ | ‘sources’) 〈qualified-name〉 (‘,’ 〈qualified-name〉)*
(‘event’ | ‘events’) 〈qualified-name〉 (‘,’ 〈qualified-name〉)*
(‘as’ 〈ID〉)?

126

〈emit-decl〉 ::= ‘emit’ 〈qualified-name〉
‘(’ 〈attr-emit-decl〉 (‘,’ 〈attr-emit-decl〉)* ‘)’

〈attr-emit-decl〉 ::= 〈cond-expr〉 (‘as’ 〈qualified-name〉)?

〈window-decl〉 ::= ‘window’ 〈window-expr〉

〈window-expr〉 ::= 〈batch-window〉 | 〈time-window〉

〈batch-window〉 ::= 〈INT〉 (‘event’ | ‘events’)?

〈time-window〉 ::= 〈INT〉 〈time-unit〉

〈time-unit〉 ::= ‘s’ | ‘sec’ | ‘second’ | ‘seconds’
| ‘m’ | ‘min’ | ‘minute’ | ‘minutes’
| ‘h’ | ‘hour’ | ‘hours’
| ‘d’ | ‘day’ | ‘days’
| ‘M’ | ‘month’ | ‘months’
| ‘y’ | ‘year’ | ‘years’

〈cond-decl〉 ::= ‘where’ 〈cond-expr〉

〈cost〉 ::= ‘cost’ 〈Number〉

〈io-ratio〉 ::= ‘ratio’ 〈Number〉

〈fact〉 ::= 〈ID〉? ‘{’ 〈source-decl〉 〈part-key〉? ‘}’

〈part-key〉 ::= ‘by’ 〈qualified-name〉

〈rule〉 ::= 〈simple-rule〉 | 〈drools-rule〉

〈simple-rule〉 ::= ‘rule’ 〈ID〉 ‘{’ 〈rule-source〉+ 〈stmt〉+ 〈cost〉? ‘}’

〈drools-rule〉 ::= ‘drule’ 〈ID〉 ‘{’ 〈rule-source〉+ 〈STRING〉 ‘}’

〈rule-source〉 ::= ‘from’ 〈qualified-name〉 (‘as’ 〈ID〉)?

〈stmt〉 ::= ‘when’ 〈cond-expr〉 ‘then’ 〈action-expr〉

〈action-expr〉 ::= 〈qualified-name〉 〈qualified-name〉
(‘(’ 〈attr-emit-decl〉 (‘,’ 〈attr-emit-decl〉)* ‘)’)?

〈cond-expr〉 ::= 〈cond-or-expr〉

〈cond-or-expr〉 ::= 〈cond-and-expr〉 (〈or-op〉 〈cond-and-expr〉)*

〈or-op〉 ::= ‘||’ | ‘or’ | ‘OR’

127

〈cond-and-expr〉 ::= 〈eq-expr〉 (〈and-op〉 〈eq-expr〉)*

〈and-op〉 ::= ‘&&’ | ‘and’ | ‘AND’

〈eq-expr〉 ::= 〈rel-expr〉 (〈eq-op〉 〈rel-expr〉)*

〈eq-op〉 ::= ‘=’ | ‘!=’

〈rel-expr〉 ::= 〈add-expr〉 (〈rel-op〉 〈add-expr〉)*

〈rel-op〉 ::= ‘<’ | ‘<=’ | ‘>=’ | ‘>’

〈add-expr〉 ::= 〈mult-expr〉 (〈add-op〉 〈mult-expr〉)*

〈add-op〉 ::= ‘+’ | ‘-’

〈mult-expr〉 ::= 〈unary-expr〉 (〈mult-op〉 〈unary-expr〉)*

〈mult-op〉 ::= ‘*’ | ‘/’ | ‘%’

〈unary-expr〉 ::= 〈unary-op〉? 〈primary-expr〉

〈unary-op〉 ::= ‘-’ | ‘not’ | ‘!’

〈primary-expr〉 ::= 〈par-expr〉 | 〈literal〉 | 〈feature-call〉

〈par-expr〉 ::= ‘(’ 〈cond-expr〉 ‘)’

〈feature-call〉 ::= 〈qualified-name〉

〈literal〉 ::= 〈bool-lit〉 | 〈number-lit〉 | 〈null-lit〉 | 〈string-lit〉

〈bool-lit〉 ::= ‘false’ | ‘true’

〈number-lit〉 ::= 〈Number〉

〈null-lit〉 ::= ‘null’

〈string-lit〉 ::= 〈STRING〉

〈qualified-name〉 ::= 〈ID〉 (‘.’ 〈ID〉)*

〈qualified-name-w〉 ::= 〈qualified-name〉 ‘.*’?

〈ID〉 ::= (‘a’..‘z’|‘A’..‘Z’|‘_’) (‘a’..‘z’|‘A’..‘Z’|‘_’|‘0’..‘9’)*

〈INT〉 ::= ‘0’..‘9’ (‘0’..‘9’)*

〈Number〉 ::= 〈INT〉 (‘.’ 〈INT〉)?

128

APPENDIX C
Curriculum Vitae

Christian Inzinger
Gruschaplatz 2/9
1140 Wien, Austria

Born May 20, 1982
Email inzinger@dsg.tuwien.ac.at

Web dsg.tuwien.ac.at/staff/inzinger

Experience

Researcher at the Distributed Systems Group since 2011
Vienna University of Technology
http://dsg.tuwien.ac.at/

CTO, Blackwhale GmbH 2008–2010

Consultant, Freelance since 2004
PVM Data Services GmbH (http://pvmoil.com)
convisio GmbH (http://convisio.at)
ilogs GmbH (http://ilogs.com)

CTO, Nexovis GmbH (http://nexovis.com/) 2002–2004

Software Engineer, LKH Villach (http://lkh-vil.or.at/) 2000–2001

Education

Ph.D. in Computer Science at the Distributed Systems Group, 2014
Vienna University of Technology

129

http://dsg.tuwien.ac.at/staff/inzinger
http://dsg.tuwien.ac.at/
http://pvmoil.com
http://convisio.at
http://ilogs.com
http://nexovis.com/
http://lkh-vil.or.at/

Dipl.Ing. (M.Sc.) in Software Engineering & Internet Computing, 2010
Vienna University of Technology

Bakk.techn. (B.Sc.) in Software & Information Engineering, 2006
Vienna University of Technology

Publications

• Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and Schahram
Dustdar. MADCAT – A methodology for architecture and deployment of cloud application
topologies. In Proceedings of the 8th International Symposium on Service-Oriented System
Engineering, SOSE ’14, Washington, DC, USA, 2014. IEEE Computer Society. (to appear)

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Generic event-based monitoring and adaptation methodology for heterogeneous
distributed systems. Software: Practice and Experience, 2014. doi:10.1002/spe.2254. (to
appear)

• Christian Inzinger, Waldemar Hummer, Ioanna Lytra, Philipp Leitner, Huy Tran, Uwe Zdun,
and Schahram Dustdar. Decisions, models, and monitoring – A lifecycle model for the
evolution of service-based systems. In Proceedings of the 17th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC ’13, pages 185–194, Washington,
DC, USA, 2013. IEEE Computer Society. doi:10.1109/EDOC.2013.29

• Christian Inzinger, Benjamin Satzger, Philipp Leitner, Waldemar Hummer, and Schahram
Dustdar. Model-based adaptation of cloud computing applications. In Proceedings of
the International Conference on Model-Driven Engineering and Software Development
(MODELSWARD ’13), Special Track on Model-driven Software Adaptation, MODA ’13,
pages 351–355. SciTePress, 2013. doi:10.5220/0004381803510355

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible service implementations using pooled decision trees. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
485–492, New York, NY, USA, 2013. ACM. doi:10.1145/2480362.2480456

• Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and Schahram
Dustdar. Winds of change: From vendor lock-in to the meta cloud. IEEE Internet Comput-
ing, 17(1):69–73, 2013. doi:10.1109/MIC.2013.19

• Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger, and Schahram
Dustdar. Application-level performance monitoring of cloud services based on the complex
event processing paradigm. In Proceedings of the 5th IEEE International Conference on
Service-Oriented Computing and Applications, SOCA ’12, Washington, DC, USA, 2012.
IEEE Computer Society. doi:10.1109/SOCA.2012.6449437

130

http://dx.doi.org/10.1002/spe.2254
http://dx.doi.org/10.1109/EDOC.2013.29
http://dx.doi.org/10.5220/0004381803510355
http://dx.doi.org/10.1145/2480362.2480456
http://dx.doi.org/10.1109/MIC.2013.19
http://dx.doi.org/10.1109/SOCA.2012.6449437

• Christian Inzinger, Benjamin Satzger, Waldemar Hummer, and Schahram Dustdar. Specifi-
cation and deployment of distributed monitoring and adaptation infrastructures. In Proceed-
ings of the International Workshop on Performance Assessment and Auditing in Service
Computing, co-located with ICSOC ’12, PAASC ’12, pages 167–178, Berlin, Heidelberg,
2012. Springer. doi:10.1007/978-3-642-37804-1_18

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Towards identifying root causes of faults in service-based applications. In
Proceedings of the 31st IEEE International Symposium on Reliable Distributed Systems,
SRDS ’12, pages 404–405, Washington, DC, USA, 2012. IEEE Computer Society. doi:10.
1109/SRDS.2012.78

• Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, and Schahram
Dustdar. Deriving a unified fault taxonomy for event-based systems. In Proceedings of the
6th ACM International Conference on Distributed Event-Based Systems, DEBS ’12, pages
167–178, New York, NY, USA, 2012. ACM. doi:10.1145/2335484.2335504

• Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and Schahram
Dustdar. Cost-efficient and application sla-aware client side request scheduling in an
infrastructure-as-a-service cloud. In Proceedings of the 5th IEEE International Conference
on Cloud Computing, CLOUD ’12, pages 213–220, Washington, DC, USA, 2012. IEEE
Computer Society. doi:10.1109/CLOUD.2012.21

• Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram
Dustdar. Non-intrusive policy optimization for dependable and adaptive service-oriented
systems. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 504–510, New York, NY, USA, 2012. ACM. doi:10.1145/2245276.
2245373

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible implementations of industry standard service interfaces
for dependable service-based applications. Technical Report TUV-1841-2012-1, Vienna
University of Technology, 2012

• Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and Schahram
Dustdar. CloudScale – a novel middleware for building transparently scaling cloud applica-
tions. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 434–440, New York, NY, USA, 2012. ACM. doi:10.1145/2245276.2245360

• Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and Schahram
Dustdar. Distributed continuous queries over web service event streams. In Proceedings of
the 7th International Conference on Next Generation Web Services Practices, NWeSP ’11,
pages 176–181, Washington, DC, USA, 2011. IEEE Computer Society. doi:10.1109/
NWeSP.2011.6088173

http://dsg.tuwien.ac.at/staff/inzinger

131

http://dx.doi.org/10.1007/978-3-642-37804-1_18
http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1109/SRDS.2012.78
http://dx.doi.org/10.1145/2335484.2335504
http://dx.doi.org/10.1109/CLOUD.2012.21
http://dx.doi.org/10.1145/2245276.2245373
http://dx.doi.org/10.1145/2245276.2245373
http://dx.doi.org/10.1145/2245276.2245360
http://dx.doi.org/10.1109/NWeSP.2011.6088173
http://dx.doi.org/10.1109/NWeSP.2011.6088173
http://dsg.tuwien.ac.at/staff/inzinger

	Acknowledgements
	Danksagung
	Abstract
	Kurzfassung
	Contents
	List of Tables
	List of Figures
	List of Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions
	Organization of this Thesis

	Background
	Cloud Computing
	Software Evolution
	Autonomic Computing
	Reinforcement Learning

	 A Lifecycle Model for the Evolution of Service-Based Applications
	Overview
	Scenario
	Evolution Lifecycle Model
	Adaptation and Escalation Strategy
	Related Work
	Discussion
	Summary

	Model-Based Adaptation of Cloud Computing Applications
	Overview
	Models in Cloud Computing
	A Case for Model-based Adaptation
	The Meta Cloud Abstraction Layer
	Summary

	Generic Event-based Monitoring and Adaptation Methodology for Heterogeneous Distributed Systems
	Overview
	Scenario
	Architecture
	MONINA Language
	Deployment of Monitoring Queries and Adaptation Rules
	Implementation
	Related Work
	Summary

	Non-intrusive Policy Optimization for Dependable and Adaptive Systems
	Overview
	Scenario
	Adaptive Policy Optimization
	Evaluation
	Related Work
	Summary

	Identifying Incompatible Service Implementations
	Introduction
	Scenario
	Fault Localization Approach
	Implementation
	Evaluation
	Related Work
	Summary

	Conclusion and Future Research
	Summary of Contributions
	Research Questions Revisited
	Future Work

	Bibliography
	Glossary
	MONINA Language Grammar
	Curriculum Vitae

