
DISSERTATION

Event Processing in QoS-Aware
Service Runtime Environments

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Prof. Schahram Dustdar
Institut für Informationssysteme (E184)

Technische Universität Wien

begutachtet von

Prof. Carlo Ghezzi
Department of Electronics and Information

Politecnico di Milano, Italy

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Anton Michlmayr
Matr.Nr. 9925744

Fugbachgasse 11/25
A-1020 Wien

Wien, am 15.02.2010
Anton Michlmayr

Abstract

Service-oriented Computing (SOC) has recently received attention from both academia and
industry. It introduces a new paradigm for addressing the complexity of distributed systems,
by using loose coupling, platform-independent interface descriptions and well-established
standards. The overall idea of service orientation is that software is provided as service, which
can be found in service registries and invoked by service consumers. Web services represent
the most common realization of Service-oriented Architecture (SOA) that build on the main
standards SOAP, WSDL and UDDI. However, current service-oriented systems are often not as
dynamic and adaptable as intended. For instance, the publish-find-bind-execute cycle of the
SOA model is not always entirely realized since service registries are often missing.

In this thesis, we address some of the current challenges in SOC research and practice, such
as service metadata and querying, as well as dynamic binding, invocation and mediation of
services. The main focus is on event processing and asynchronous notifications in service-
oriented systems. The aim is to enable clients to subscribe in order to receive notifications if
certain events of interest occur. This can range from basic events (e.g., new service is published
into the service registry) to more complex events regarding service invocations and Quality
of Service (QoS). In contrast to existing approaches, we provide complex event processing
mechanisms such as event patterns and sliding window operators.

The contribution of this thesis can be summarized as follows: Firstly, we describe the current
challenges we see in SOC research and practice based on a motivating example. Secondly, we
introduce the Vienna Runtime Environment for Service-oriented Computing (VRESCo) that
aims at addressing some of these challenges to facilitate the development of service-oriented
applications. Thirdly, we present how complex event processing principles can be integrated
into service-oriented systems. Therefore, we describe the VRESCo event notification support
in detail, by showing how events are processed and how clients can declare their interest to
get notified when certain events occur. Fourthly, besides a detailed performance evaluation
of the different VRESCo components, we give examples for the usefulness and applicability
of this event mechanism. Among others, this includes notification-based rebinding, service
provenance and monitoring of QoS and Service Level Agreements. Finally, we point to further
application scenarios and future research directions which are enabled by this work.

i

Zusammenfassung

Service-oriented Computing (SOC) hat in der letzten Zeit sowohl in der Forschung als auch
in der Industrie Beachtung gefunden. Es stellt ein neues Paradigma dar, um die Komplexität
von verteilten Systemen zu adressieren. Dabei werden lose Kopplung, plattformunabhängige
Schnittstellenbeschreibungen und etablierte Standards verwendet. Service-Orientierung be-
ruht auf der Idee, dass Software als Dienst (Service) zur Verfügung gestellt wird, welches
in Service Register (Registries) gefunden und von Klienten aufgerufen werden kann. Web
Services repräsentieren die häufigste Realisierung von service-orientierter Architektur (SOA)
und basieren auf den Standards SOAP, WSDL und UDDI. Gängige service-orientierte Systeme
sind jedoch oft nicht so dynamisch und adaptierbar wie vorgesehen. Zum Beispiel wird der
publish-find-bind-execute Kreislauf des SOA Modells nicht immer vollständig durchgeführt, weil
Service Registries in der Praxis oft nicht vorhanden sind.

Diese Dissertation beschäftigt sich mit aktuellen Herausforderungen in der SOC Forschung
und Praxis. Dazu zählen zum Beispiel Service Metadaten und Abfragen, sowie dynamische
Bindung, Aufrufe und Mediation von Services. Der Hauptfokus liegt auf der Verarbeitung von
Ereignissen (Events) und asynchronen Benachrichtigungen (Notifications) in service-orientierten
Systemen. Das Ziel ist Klienten zu ermöglichen sich zu subskribieren, um Benachrichtigungen
über bestimmte Ereignisse zu erhalten. Das reicht von einfachen Ereignissen (z.B., ein neues
Service wird zur Registry hinzugefügt) bis zu komplexeren Ereignissen bezüglich Service-
aufrufe und Dienstgüte (Quality of Service, kurz QoS). Im Gegensatz zu existierenden Ansätzen
stellen wir Mechanismen zur komplexen Eventverarbeitung zur Verfügung, wie zum Beispiel
Ereignismuster (Event Patterns) und so genannte verschiebbare Fenster (Sliding Windows).

Der Beitrag dieser Arbeit kann wie folgt zusammengefasst werden: Zunächst wird anhand
eines motivierenden Beispiels beschrieben, welche aktuellen Herausforderungen wir in der
SOC Forschung und Praxis sehen. Danach stellen wir die Vienna Runtime Environment for
Service-oriented Computing (VRESCo) vor, mit dem Ziel einige dieser Herausforderungen
zu adressieren und das Entwickeln von service-orientierten Anwendungen zu vereinfachen.
Darauf aufbauend wird erläutert, wie Prinzipien der komplexen Eventverarbeitung in service-
orientierte Systeme integriert werden können. Dazu beschreiben wir den Event-Mechanismus
von VRESCo im Detail. Wir zeigen die Verarbeitung von Ereignissen und wie Klienten ihr In-
teresse bekunden, um über das Auftreten von bestimmten Ereignissen benachrichtigt zu wer-
den. Zusätzlich zur Leistungsevaluierung der verschiedenen VRESCo Komponenten werden
Beispiele für die Nützlichkeit und Anwendung dieses Event-Mechanismus beschrieben. Unter
anderem beinhaltet das ereignis-basiertes Binden, Service Provenienz und Überwachung von
QoS und Service Level Agreements. Abschließend zeigen wir weitere Anwendungsszenarien
und zukünftige Forschungsrichtungen, die durch diese Arbeit ermöglicht werden.

iii

Acknowledgements

Doing a PhD is never the effort of a single person, but many people have contributed to make
this possible. First and foremost, I am grateful to my advisor Prof. Schahram Dustdar for his
support. He provided an open and stimulating environment to conduct research and helped
me to put things on the right track. I am also very thankful to my examiner Prof. Carlo Ghezzi
for interesting discussions and feedback that helped me to improve my thesis.

I want to thank my colleagues at the Distributed Systems Group who accompanied me during
the last years, especially the VRESCo core members Philipp Leitner and Florian Rosenberg.
I really enjoyed the great time we have spent exchanging views and turning our ideas into
prototypes and papers. I am thankful to all students that contributed to VRESCo, especially
Andreas Huber, Thomas Laner and Christian Marek. Besides that, I thank Benjamin Müller
and all other teaching assistants that helped us to manage the teaching workload. Finally, I am
also grateful to our secretaries for keeping most of the administrative tasks away from us.

I am very thankful to my friends who sustained my work-life balance and provided support
when I needed it most. Among others, Gerd and Stefan for countless sports events and other
fun activities. Bernhard, Markus and Wilfried for sharing the experience of pursuing a PhD.
The core members of the volleyball team “Ninjas of Nasty” (Christine, Hannes, Jassi, Koarl,
Laurent, Romy) for keeping me in shape and showing team spirit. The buddies from Steyr for
long lasting friendship during all these years: Bertram, Dieter, Goggi, Herwig, Metzi, Michi.
And many others.

Most of all, however, I want to thank my parents Christine and Leopold, and my sisters Birgit
and Elke – for everything!

Anton Michlmayr
Vienna, February 2010

v

Publications

Parts of the work presented in this thesis have been published in scientific journals, books,
conferences and workshops, which are listed in reverse chronological order below. This thesis
partly contains verbatim text from these publications that are no longer cited throughout the
thesis. The full list of publications by the author can be found in the references.

• Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. End-to-End Support for QoS-
Aware Service Selection, Binding and Mediation in VRESCo. IEEE Transactions on Services
Computing (TSC), IEEE Computer Society. (forthcoming)

• Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Selective Service Provenance in
the VRESCo Runtime. International Journal on Web Services Research (JWSR), IGI Global.
(forthcoming)

• Michlmayr, A., Leitner, P., Rosenberg, F., and Dustdar, S. Event Processing in Web Service
Runtime Environments. In Principles and Applications of Distributed Event-based Systems,
Editors: A. Hinze and A. Buchmann, IGI Global. (forthcoming)

• Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Comprehensive QoS Monitoring
of Web Services and Event-Based SLA Violation Detection. In Proceedings of the Fourth
International Workshop on Middleware for Service Oriented Computing (MW4SOC’09), co-
located with the 10th International Middleware Conference (Middleware’09), pp. 1–6, ACM,
November 2009. DOI: 10.1145/1657755.1657756

• Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Service Provenance in QoS-
Aware Web Service Runtimes. In Proceedings of the International Conference on Web Services
(ICWS’09), pp. 115–122, IEEE Computer Society, July 2009. DOI: 10.1109/ICWS.2009.32

• Rosenberg, F., Leitner, P., Michlmayr, A., and Dustdar, S. Integrated Metadata Sup-
port for Web Service Runtimes. In Proceedings of the Middleware for Web Services Workshop
(MWS’08), co-located with the 12th International Enterprise Distributed Object Computing Con-
ference (EDOC’08), pp. 361–368, IEEE Computer Society, September 2008. DOI: 10.1109/E-
DOCW.2008.38

• Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Advanced Event Processing
and Notifications in Service Runtime Environments. In Proceedings of the 2nd International
Conference on Distributed Event-Based Systems (DEBS’08), pp. 115–125, ACM, July 2008.
DOI: 10.1145/1385989.1386004

vii

http://dx.doi.org/10.1145/1657755.1657756
http://dx.doi.org/10.1109/ICWS.2009.32
http://dx.doi.org/10.1109/EDOCW.2008.38
http://dx.doi.org/10.1109/EDOCW.2008.38
http://dx.doi.org/10.1145/1385989.1386004

• Michlmayr, A., Leitner, P., Rosenberg, F., and Dustdar, S. Publish/Subscribe in the
VRESCo SOA Runtime (demo paper). In Proceedings of the 2nd International Confer-
ence on Distributed Event-Based Systems (DEBS’08), pp. 317–320, ACM, July 2008. DOI:
10.1145/1385989.1386031

• Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S. End-to-End Versioning Support
for Web Services. In Proceedings of the International Conference on Services Computing
(SCC’2008), pp. 59–66, IEEE Computer Society, July 2008. DOI: 10.1109/SCC.2008.21

• Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., and Dustdar, S. Towards Recovering
the Broken SOA Trianlge – A Software Engineering Perspective. In Proceedings of the
2nd International Workshop on Service Oriented Software Engineering (IW-SOSWE’07), co-
located 6th ESEC/FSE Joint Meeting (ESEC/FSE’07), pp. 22–28, ACM, September 2007. DOI:
10.1145/1294928.1294934

viii

http://dx.doi.org/10.1145/1385989.1386031
http://dx.doi.org/10.1145/1385989.1386031
http://dx.doi.org/10.1109/SCC.2008.21
http://dx.doi.org/10.1145/1294928.1294934
http://dx.doi.org/10.1145/1294928.1294934

Contents

1 Introduction 1
1.1 Motivating Example . 2
1.2 SOC Research Challenges . 3
1.3 Contributions . 5
1.4 Organization of the Thesis . 7

2 Review of the State of the Art 9
2.1 Publish/Subscribe and Event Processing . 10
2.2 Esper . 11
2.3 SOC and Web Services . 12
2.4 Service Registries and Repositories . 13
2.5 Event Notifications in Web Service Registries . 14
2.6 Web Service Notification Specifications . 15
2.7 Conclusion . 17

3 QoS-Aware Service Runtime Environment 19
3.1 Overview . 20
3.2 Service Metadata Model . 21

3.2.1 Service Metadata . 22
3.2.2 Service Model . 23
3.2.3 Mapping Concrete Services to Metadata . 23

3.3 Quality of Service Model . 25
3.4 Service Versioning . 27
3.5 Service Querying . 29

3.5.1 Query Architecture . 30
3.5.2 Query Specification . 31
3.5.3 Query Processing . 33
3.5.4 Querying Strategies . 34

3.6 Dynamic Binding and Invocation . 35
3.6.1 Dynamic Binding . 36
3.6.2 Rebinding Strategies . 36

ix

Contents

3.6.3 Dynamic Invocation . 37
3.7 Service Mediation . 39
3.8 Security Mechanisms . 42

3.8.1 Authentication . 42
3.8.2 Claim-based Authorization . 44

3.9 Evaluation . 45
3.9.1 Querying Performance . 45
3.9.2 Rebinding Performance . 47
3.9.3 Mediation Performance . 48
3.9.4 Security Performance . 49
3.9.5 End-to-End Evaluation and Discussion . 50

3.10 Related Work . 52
3.11 Conclusion . 55

4 Service Notification Engine 57
4.1 Motivation . 58
4.2 Architectural Overview . 58
4.3 Event Types . 60

4.3.1 Service Events . 61
4.3.2 QoS Events . 62
4.3.3 Process Events . 62
4.3.4 User Events . 63
4.3.5 Business Events . 64

4.4 Event Participants . 64
4.4.1 Event Producers . 65
4.4.2 Event Consumers . 66

4.5 Subscription and Notification Mechanisms . 67
4.5.1 Subscription Mechanism . 67
4.5.2 Notification Mechanism . 69

4.6 Event Persistence and Event Search . 70
4.7 Event Ranking . 71
4.8 Event Correlation . 72
4.9 Event Visibility . 73
4.10 Evaluation . 74

4.10.1 Subscription Expressiveness . 74
4.10.2 Software Demonstration . 76
4.10.3 Performance Results . 78

4.11 Related Work . 83
4.12 Conclusion . 85

x

Contents

5 Service Notification Applications 87
5.1 Notification-based Rebinding . 88

5.1.1 Rebinding Strategies Revisited . 88
5.1.2 OnEvent Rebinding Strategy . 88
5.1.3 Evaluation . 90
5.1.4 Conclusion . 91

5.2 Service Provenance . 92
5.2.1 Introduction . 92
5.2.2 Motivation . 93
5.2.3 Provenance Approach . 93
5.2.4 Evaluation . 98
5.2.5 Related Work . 100
5.2.6 Conclusion . 102

5.3 QoS Monitoring and SLA Violation Detection . 102
5.3.1 Introduction . 102
5.3.2 QoS Monitoring . 103
5.3.3 QoS/SLA Integration in VRESCo . 104
5.3.4 Evaluation . 108
5.3.5 Related Work . 110
5.3.6 Conclusion . 111

5.4 Service Pricing and Penalty Models . 112
5.5 Event-based Composition . 112
5.6 Conclusion . 113

6 Conclusion 115
6.1 Summary . 115
6.2 Research Questions Revisited . 116
6.3 Future Research Directions . 118

Bibliography 121

A VQL/SQL Query Examples 141

B Subscription Message Examples 143

C Notification Message Example 145

D Curriculum Vitae 147

xi

List of Figures

1.1 Basic SOA Model – Theory vs. Practice . 2
1.2 CPO Case Study . 3
1.3 Contributions . 6

2.1 Publish/Subscribe Interaction Scheme . 10

3.1 VRESCo Architecture . 20
3.2 Service Metadata Model . 22
3.3 Service Model to Metadata Model Mapping . 23
3.4 Service Mapping . 24
3.5 VRESCo QoS Model . 25
3.6 Service Invocation Intervals . 26
3.7 Service Version Graph . 28
3.8 VRESCo Query Architecture . 31
3.9 Daios Architecture . 37
3.10 VMF Architecture . 39
3.11 VMF Mapping Example . 40
3.12 Authentication and Authorization in VRESCo . 43
3.13 Querying Performance . 45
3.14 Rebinding Strategy Performance . 47
3.15 Mediation Performance . 48
3.16 Authentication and Authorization Performance 50
3.17 End-to-End Performance . 51

4.1 VRESCo Eventing Architecture . 59
4.2 Event Type Hierarchy . 60
4.3 Process Event Tracking . 66
4.4 VRESCo Subscription and Event Publication . 69
4.5 VRESCo Runtime Manager . 76
4.6 Internal Event Throughput . 78
4.7 External Event Throughput . 79
4.8 Internal Eventing Throughput with Persistence and Batch Processing 80
4.9 Eventing Performance . 82

xiii

List of Figures

5.1 Rebinding Strategy Performance (with OnEvent strategy) 91
5.2 Provenance Graph . 97
5.3 Provenance Performance . 99
5.4 QoS/SLA Monitoring Approach . 105
5.5 Execution Time Comparison . 108
5.6 Availability Comparison . 109

xiv

List of Tables

2.1 Related Enterprise Registry Approaches . 13

3.1 VRESCo QoS Attributes . 26
3.2 Default Revision Tags . 29
3.3 VQL/SQL Translation . 32
3.4 Rebinding Strategies . 36
3.5 VMF Mapping Functions . 40
3.6 Basic Claims . 44
3.7 VQL Query Processing (in ms, User/Core, L10) . 46

4.1 Service Events . 61
4.2 QoS Events . 62
4.3 Process Events . 63
4.4 User Events . 64
4.5 VRESCo Event Correlation Sets . 72
4.6 Event Visibilities . 73
4.7 Event Processing Performance (in µs) . 81
4.8 Check Event Visibility (in µs) . 81
4.9 Notification Duration (in ms) . 82

5.1 QoS Attributes . 106
5.2 SLA Obligations . 107

xv

Listings

3.1 VQL Sample Query . 33
3.2 VRESCo Service Invocation . 38
3.3 VMF Mapping Example Code . 41

4.1 Event Type Configuration . 64
4.2 Event Query . 70
4.3 Subscription Example Listing . 77

5.1 OnEvent Proxy Generation . 89
5.2 OnEvent Handler . 89
5.3 OnEvent Handler Configuration . 90
5.4 Provenance Queries . 95
5.5 Provenance Subscription . 96
5.6 WPC Monitoring Configuration . 105

A.1 VQL Query . 141
A.2 Translated SQL Query (Exact Strategy - L100) . 141
A.3 Translated SQL Query (Priority Strategy - L100) 142
A.4 Translated SQL Query (Relaxed Strategy - L100) 142

B.1 Subscription Request Message . 143
B.2 Subscription Response Message . 144

C.1 Event Notification Message . 145

xvii

Chapter 1.

Introduction

During the last few years, Service-oriented Architecture (SOA) [44] has gained acceptance
as an architectural style for addressing the complexity of distributed applications by using
loose coupling, platform-independent interface descriptions and well-established standards.
In theory, the basic SOA model consists of three participants that communicate as shown in
Figure 1.1a. Service providers implement services and make their descriptions available in service
registries. Service consumers (also called service requesters) can query service descriptions and
location information from the registry, bind to the corresponding service provider and finally
execute the service. Due to platform-independent interface descriptions, SOA enables flexible
applications with respect to manageability and adaptivity. For instance, services can easily be
exchanged at runtime and service consumers can switch between alternative service providers
seamlessly. In this regard, the term Service-oriented Computing (SOC) [144] has been used to
describe the paradigm and corresponding research discipline, which proposes the use of SOA
for building service-based and distributed applications.

Web services [1] represent the most common realization of SOA, building on the main standards
SOAP [202] for messaging-based communication, WSDL [203] for service interface descriptions
and UDDI [136] for service registries. Furthermore, WS-BPEL [140] can be used for composing
multiple services to achieve higher-level functionality. Over time, several specifications have
been introduced to address other issues in Web services such as policies and security [190].

However, practice has shown that SOA solutions are often not as flexible and adaptable as
claimed. We argue that there are some issues in current implementations of the SOA model.
First and foremost, service registries such as UDDI and ebXML [134] did not succeed as in-
tended. We think this is partly due to their limited querying support using keyword-based
matching of registry content, and insufficient support for metadata and non-functional prop-
erties of services. This is also highlighted by the fact that Microsoft, SAP and IBM have finally
shut down their public UDDI registries in 2006. As a result, service registries are often missing,
leading to point-to-point solutions where service endpoints are exchanged at design-time (e.g.,
using email/phone) and service consumers statically bind to these endpoints (see Figure 1.1b).
Besides missing registries, other SOC challenges are presented in this chapter, while the main
focus of this thesis is how event processing can be leveraged in service-oriented systems.

1

Chapter 1. Introduction

Service
Contract

Service
Registry

Service
Provider

Service
Requester Bind

RegisterFind

(a) SOA Model

Service
Contract

Service
Provider

Service
Requester Bind

(b) SOA Practice

Figure 1.1.: Basic SOA Model – Theory vs. Practice

1.1. Motivating Example

Before describing the research challenges addressed in this thesis we want to introduce a simple
motivating example. This example is used throughout the thesis for illustration purposes since
it highlights several challenges that are common in service-centric software engineering.

Figure 1.2 shows a typical enterprise application scenario from the telecommunications domain.
The overview of this case study is depicted in Figure 1.2a where cell phone operator CPO1
provides different kinds of services: Public Services (e.g., Rate Information Service) can be used
by everyone. Customer Services (e.g., Short Messaging Service) are used by customers of CPO1.
Finally, Inhouse Services (e.g., CRM Service) represent internal services which should only be
accessed by the different departments of CPO1. Besides that, CPO1 also consumes services
from its partners (e.g., cell phone manufacturers and suppliers) and competitors (e.g., CPO2).

Figure 1.2b shows a simplified version of the number porting process (depicted as oval boxes).
In Europe, CPOs have to provide number porting by law, in order to enable consumers to
keep their mobile phone number when switching to another CPO. This process is interesting
because it contains both internal and external services (depicted as rectangles) and multiple
service candidates. After the customer has been looked up using the Customer Service, the
Number Porting Service of the old CPO has to be invoked. If the number is portable the
porting is executed by the old CPO. If this step was successful the new CPO is informed, which
activates the new number using the Mobile Operation Service. Finally, a notification is sent to
the customer using the preferred notification mechanism (e.g., SMS, email, etc.).

Please note that this scenario is dynamic and the process should ideally adapt to changes
(e.g., new CPOs enter the market, number porting services of existing CPOs are updated, etc.).
However, currently service consumers are not aware of such changes. In this regard, we aim
at using event notifications to inform interested subscribers. Furthermore, when alternative
services are available, service selection mechanisms can be applied to dynamically chose the
best service. This decision may be based on the past performance and history of the service.
Finally, for external services the Quality of Service (QoS) may be defined and monitored.

2

1.2. SOC Research Challenges

Shippers

Suppliers

Manufacturers

Banks

CPO1
Public Services

Order Service

Roaming/Rate
Information Service

Customer Services

Customer Service

Messaging Services

Inhouse Services

CRM Services

Mobile Operation
Services

Number Porting
Service

Billing Service

CPO3

Number Porting
Service

CPO2

Number Porting
Service

1

(a) Case Study Overview

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port
Number

E-Mail Service

SMS Service

CRM Service

CPO Service

Number Porting
Service

Mobile Operation
Service

Internal External

(b) Number Porting Process

Figure 1.2.: CPO Case Study

1.2. SOC Research Challenges

Adaptive service-oriented systems have several requirements that lead to a number of research
challenges. In this section, we summarize the current challenges we see most important. In
the remainder of this thesis, we present an approach that was designed to address them.

• Service Metadata: Service interface description languages such as WSDL focus on the
interface which is needed to invoke the service. However, from this interface it is often
not clear what a service actually does, and if it performs the same task as another service.
Service metadata [23] can give additional information about the purpose of a service
and its interface (e.g., pre- and post-conditions). For instance, in the CPO case study
without service metadata it is not clear if the number porting services of CPO2 and
CPO3 actually perform the same task. We further distinguish between structured and
unstructured metadata: Structured metadata allows to attach data according to the pre-
defined service metadata model, while unstructured metadata enable service providers
to attach unstructured information (e.g., tags) to services.

3

Chapter 1. Introduction

• Service Querying: Once services and associated metadata are defined, this information
should be discovered and queried by service consumers. This is the focus of service
registry standards such as UDDI [136] and ebXML [134]. In practice, the service registry
is often missing since there are no public registries and service providers often do not
want to maintain their own registry [119]. Besides service discovery, another issue is
how to select a service from a pool of possible service candidates [210]. Service selection
using querying languages or APIs can be either type-safe or not type-safe, depending on
whether the query service returns specific types from the service metadata model.

• Quality of Service: In enterprise scenarios QoS plays a crucial role [212]. This in-
cludes both network-level attributes (e.g., latency, availability, etc.), and application-level
attributes (e.g., response time, throughput, etc.). The QoS model should ideally be exten-
sible to allow service providers to adapt it for their needs. Furthermore, the QoS must
be monitored accordingly so that users can be notified when the measured values do
not adhere to the Service Level Agreement (SLA). For instance, CPO1 may want to be
aware of the current QoS of partner services when integrating them into its own business
processes. If SLAs are violated the partners may have to pay penalties.

• Dynamic Binding and Invocation: One of the main advantages of service-centric systems
has always been the claim that service consumers can dynamically bind and invoke
services from a pool of candidate services (e.g., depending on the current QoS). However,
in current practice this is only possible if the service interfaces are identical, which is often
not the case especially when switching from one service provider to another. This raises
the need for service mediation approaches that mediate between alternative services
depending on the service metadata and mappings stored in the registry. Considering
the CPO case study, the interfaces of CPO2’s and CPO3’s number porting services may
differ, but the number porting process of CPO1 should still be able to seamlessly switch
between them at runtime.

• Event Notifications: Service-centric systems are said to be flexible and dynamic. To
support this flexibility, event processing mechanisms can be used to record which events
occur within the system. This includes both basic service events (e.g., new service is
published by CPO1) and complex events regarding QoS (e.g., average response time
of CPO2’s service X has changed) and invocations (e.g., CPO3’s service Y has been
invoked). However, most current approaches do not support mechanisms for complex
event processing [102], such as event patterns or sliding window operators. Users can
usually subscribe only to basic events and get asynchronously notified per email or Web
service notifications (e.g., WS-Notification [138], WS-Eventing [199]). With appropriate
runtime support, such notifications may trigger adaptive behavior (e.g., rebinding to
other services, host new service instances, etc.). Since event processing represents the
main contribution of this work, the challenges and solutions for complex event processing
in SOC are discussed in more detail throughout the thesis.

4

1.3. Contributions

• Service Versioning: Like any piece of software, services are subject to permanent change
regarding their interfaces and implementations. For instance, in our CPO case study,
CPO1 may provide several versions of the Number Porting Service in parallel (e.g., using
different Web service technologies such as JAX-RPC and Microsoft WCF). Current registry
standards provide limited support for versioning of registry data but cannot handle the
differences between various service revisions. We thereby distinguish between metadata
versioning (i.e., maintain versions of metadata), and end-to-end versioning support (i.e.,
enable service consumers to switch between different service revisions transparently).

• Access Control: When service information and metadata are stored in a registry, secu-
rity issues come into play (especially in business scenarios). Clearly, service information
should only be accessible for specific users which raises the need for appropriate au-
thentication and authorization mechanisms. Such mechanisms are described in various
standards such as WS-Security [139]. Considering our CPO case study, CPO1 might want
to define that the Number Porting Service is only visible for competitors CPO2 and CPO3,
but not for customers or public users.

1.3. Contributions

In this section, we highlight the research contributions of this thesis, which can be summarized
in the following three questions that have driven our research efforts.

• Q1: What are current challenges of flexible and adaptive SOC infrastructures in general, and
service registries in particular? How can these challenges be addressed within a coherent system?

Section 1.2 introduces the current SOC challenges we have identified based on a motivat-
ing example. The aim of this thesis is to introduce a novel service runtime environment
that addresses these challenges and provides appropriate runtime support.

• Q2: How can event processing principles be seamlessly integrated in SOC infrastructures? What
are specific challenges and approaches?

Event notifications represent one of these challenges in service-oriented systems. The
main objective of this thesis is to address this specific challenge in more detail (besides
addressing the other challenges). Therefore, the service runtime environment has been
enhanced with advanced event notification support.

• Q3: Which application scenarios are enabled by this work? What would be more difficult or less
efficient to realize without event processing support?

The focus of this thesis has been put on event processing, since we argue that some
challenges can be better solved using this mechanism. Consequently, we give examples
that highlight the usefulness and applicability of the presented event processing support.

5

Chapter 1. Introduction

The research contributions of this thesis are organized in three main layers that correspond to
the research questions raised above (see Figure 1.3). In the following, we will briefly discuss
these layers bottom-up, while the remainder of the thesis describes each layer in more detail.

Service Versioning

Service Metadata

S
er

vi
ce

 R
un

tim
e

La
ye

r
E

ve
nt

 P
ro

ce
ss

in
g

La
ye

r
E

ve
nt

in
g

A
pp

lic
at

io
n

La
ye

r

VRESCo Service Runtime

Events

Subscrip.
Store

Atom

WS-Eventing

E-Mail

NotificationsSubscriptions

Response Time=243ms

Availability=99,7%

string doWork(int i)

VRESCo Event Engine

Service EventsQoS Events

Process EventsBusiness Events

QoS/SLA Monitoring

SLA
Monitor

SLAs Violations

Publications

TSC’10 [117]
JWSR’10 [118]
ICWS’09 [116]

MW4SOC’09 [115]

EBS’10 [113]
DEBS’08 [114]

DEBS’08 (demo) [112]

TSC’10 [117]
EWST’09 [93]
MWS’08 [161]
SCC’08 [90]

IW-SOSWE’07 [119]

QoS
Monitor

QoS Events
QoS Events

QoS
Monitor

OnEvent Rebinding

1.

3.

2.

Client

Service 1

Service 2

Service Provenance

Services

Provenance
Subscriptions

Provenance
Queries

Provenance GraphsEvent
Notification

Event
DB

Quality of Service (QoS)

Querying MediationBinding Security

Throughput=60

Services

Revision
Graph

Figure 1.3.: Contributions

• Service Runtime Layer: The bottom layer aims at addressing the SOC challenges intro-
duced in Section 1.2. This includes all challenges except for event notifications which
represents the focus of the middle layer. We argue that the SOA triangle is broken since
registry standards (e.g., UDDI and ebXML) did not succeed. Therefore, registries are of-
ten missing in current service-oriented systems. In this regard, we suggest that registries
should be equipped with additional functionality and integrated with service runtime
environments. More precisely, we find it crucial that such environments provide support
for service metadata including versioning and QoS, service querying, access control, as
well as dynamic binding, invocation and mediation of services. In this layer, we present
the Vienna Runtime Environment for Service-oriented Computing (VRESCo) that ad-
dresses these issues. In contrast to the other two layers, the core features of VRESCo have
been designed as a joint effort together with Florian Rosenberg [158] and Philipp Leitner.

6

1.4. Organization of the Thesis

• Event Processing Layer: The middle layer describes the Event Notification Engine, that
is built on top of the VRESCo runtime environment. The general idea is that clients can
subscribe to get notified asynchronously when events of interest occur. In contrast to
basic notifications provided by existing approaches, we aim at complex event processing
that includes events patterns and sliding window operators. Besides the actual matching
of subscriptions to events and mechanisms to notify subscribers, this raises the issues
of event ranking, correlation and persistence. In this thesis, we show how we have
addressed these issues in VRESCo and which event types may be supported in service-
centric systems. Furthermore, access control to events is of particular importance: Firstly,
events should only be published by authorized parties. Secondly, and this is even more
important, events should not be visible for all users. This requires fine-grained access
control mechanisms, which are realized by introducing different event visibilities.

• Eventing Application Layer: The top layer builds on the Event Processing Layer and
provides applications and usage scenarios that leverage event notifications in service
runtime environments. We focus on three applications that have been implemented
within the scope of this thesis: Firstly, events can be used to trigger adaptive behavior (e.g.,
if functionally equal services with better QoS get available, the service proxy should be
notified to transparently rebind to them). Secondly, besides notifying subscribers events
are also stored in the Event Database. The information stored in service events represents
the provenance (i.e., the origin and history) of the corresponding service. We provide an
approach that aims at visualizing this information in so called provenance graphs and
enables clients to query and subscribe provenance information. Thirdly, QoS represents
an important issue especially in business scenarios. We have integrated mechanisms
for monitoring current QoS properties which are then published as QoS events. These
events can be used to detect if the current QoS violates pre-defined SLAs. Besides this,
application scenarios of our ongoing and future work are also briefly mentioned.

1.4. Organization of the Thesis

This thesis consists of three main parts which are aligned to the three layers described above.
Before describing these layers in more detail, Chapter 2 briefly reviews the relevant state of
the art. This includes standards, tools and specifications concerning event processing and
Web services, as well as the combination of both paradigms. Related work about the different
aspects covered by our approach is reviewed in dedicated sections in the three chapters.

Chapter 3 presents the VRESCo runtime environment in detail. This includes the overall
architecture, service metadata and QoS model, service versioning, service querying and access
control, as well as the service mediation approach. Finally, the evaluation of this chapter shows
the performance of the different components and an end-to-end evaluation.

7

Chapter 1. Introduction

Chapter 4 describes the VRESCo event notification support. This includes the overall ar-
chitecture, the different event types, as well as subscription and notification mechanisms.
Furthermore, it also describes how events are persisted in the Event Database and how event
access control is provided using event visibility. The evaluation of this chapter gives concrete
subscription examples to highlight the expressiveness of the subscription language and depicts
the performance and overhead of the Event Engine.

Chapter 5 presents the third part of the thesis, which includes the different application scenarios
for event notifications in service-oriented systems. Among others, this includes notification-
based rebinding, service provenance and event-based QoS/SLA monitoring. Furthermore, we
describe other scenarios that have been left for future work.

Finally, Chapter 6 concludes this thesis by summarizing the research contributions. There-
fore, we show how the research questions introduced in this chapter have been addressed.
Furthermore, we briefly point to future research directions that are enabled by this work.

8

Chapter 2.

Review of the State of the Art

This chapter reviews the state of the art regarding topics that are important for this thesis. First of
all, Section 2.1 introduces the Publish/Subscribe paradigm and event-based systems. Section 2.2
then briefly presents an event processing engine that is used in our work. Section 2.3 gives a
brief overview of important Web service specifications, while Section 2.4 compares different
Web service registry and repository approaches regarding the challenges introduced in the
previous chapter. Section 2.5 presents the event notification support of current Web service
registries in more detail, while Section 2.6 finally introduces the most important specifications
and standards regarding event notifications in service-oriented systems.

Contents
2.1 Publish/Subscribe and Event Processing . 10

2.2 Esper . 11

2.3 SOC and Web Services . 12

2.4 Service Registries and Repositories . 13

2.5 Event Notifications in Web Service Registries 14

2.6 Web Service Notification Specifications . 15

2.7 Conclusion . 17

9

Chapter 2. Review of the State of the Art

2.1. Publish/Subscribe and Event Processing

In traditional object-oriented programming, interaction between objects is done point-to-point
by invoking methods which are exposed using interfaces. For instance, object O1 invokes
method M2 defined by interface I2, which is implemented by object O2. This invocation may
change the internal state of object O2. The Observer Pattern [57] introduces more dynamism by
defining one-to-many dependencies between objects. More precisely, several observer objects
can be notified if the state of one subject object changes.

The Observer Pattern can be seen as simplified version or ancestor of the Publish/Subscribe
paradigm [47]. According to this, the basic interaction scheme of Publish/Subscribe (often
referred to as Pub/Sub or P/S) is illustrated in Figure 2.1. Subscribers are enabled to express their
interest in events (or event patterns), that are produced by publishers. If such events (or event
patterns) occur, notifications are sent to interested subscribers. The Event Notification Service is
responsible for managing subscriptions and efficient delivery of notifications.

Event
Notification

Service
Subscriber

Publisher

Publisher

Subscriber

SubscriberSubscriptions

subscribe

unsubscribe

notifypublish

publish

notify

Figure 2.1.: Publish/Subscribe Interaction Scheme

In contrast to the Observer Pattern where publishers and subscribers interact directly, the
Event Notification Service adds three dimensions of decoupling to Publish/Subscribe: space, time
and synchronization. Space decoupling means that the interacting parties are independent of
each other, in the sense that publishers do not know their subscribers and vice versa. Time
decoupling refers to the fact that publishers and subscribers do not have to be online at the
same time. Finally, synchronization decoupling means that publishers are not blocked when
publishing events and subscribers can get notified asynchronously.

According to [47], there are mainly three different types of Publish/Subscribe systems. In
topic-based Publish/Subscribe, events are published to certain topics, while content-based
Publish/Subscribe enables to subscribe to the actual content of events using expressive sub-
scription languages. Finally, type-based Publish/Subscribe [46] provides type-safety by taking
the actual type of the event into consideration. Furthermore, different architectures can be used
for implementing the Event Notification Service such as hierarchical client-server, peer-to-peer
(P2P), or hybrid architectures [26]. The notion of distributed event-based systems [124] is used
if publishers, subscribers and the Event Notification Service are distributed.

10

2.2. Esper

The loosely coupled nature of the Publish/Subscribe paradigm and event-based systems has
several inherent research challenges that have been addressed in the past years. For instance,
how applications that follow this paradigm can be modeled and specified [41, 50, 103]. These
approaches are important to be able to define the behavior of such systems. Furthermore, such
specifications are crucial for verification and validation. There are some approaches that aim
at verifying event-based applications using model checking techniques (e.g., [12,13,60]). Prior
to the present thesis, we have focused on how such applications can be validated using testing
methods [110,111], while others try to bridge the gap between verifying and testing event-based
applications [213]. Finally, another interesting research topic represents how transactions can
be provided in such loosely coupled environments, which was addressed by several research
efforts [97, 98, 109, 169, 180, 186].

The increasing interest in the Publish/Subscribe paradigm and event-based systems has led
to several research prototypes, such as Siena [26], JEDI [35], Hermes [148], PADRES [51],
STREAM [11], Gryphon [20], Elvin [168] and Narada Brokering [143] (just to name a few). An
overview of QoS-aware event-dissemination middleware can be found in [104]. Furthermore,
Publish/Subscribe is used in several specifications and standards (e.g., CORBA Event and
Notification Service [127, 128], Jini [178], JMS [177], DDS [129], etc.), commercial tools (e.g.,
TIBCO Rendezvous [183], IBM WebSphere MQ [76], Oracle Fusion [132], etc.) and open source
projects such as Esper [45]. In recent years, the term Complex Event Processing (CEP) [102]
has emerged to describe how meaningful events and event patterns can be identified when
processing and correlating large numbers of events.

2.2. Esper

To give a concrete example for such event processing engine, this section briefly introduces
the open source engine Esper [45], which is later used as foundation for the VRESCo Event
Notification Engine.

Esper supports several ways for representing events. Firstly, any Java/C# object may be used
as an event as long as it provides getter methods to access the event properties. Event objects
should be immutable since events represent state changes that occurred in the past and should
not be changed. Secondly, events can be represented by Java objects that implement the interface
java.util.Map. The event properties are those values that can be obtained using the map getter.
Finally, events may be instances of the class org.w3c.dom.Node representing XML events. In
that case, XPath [192] expressions are used as event properties. Additionally, Esper provides
different types of properties that can be obtained from events. Simple properties represent
simple values (e.g., timestamp). Indexed properties are ordered collections of values (e.g., user[4])
whereas mapped properties represent keyed collections of values (e.g., user[’firstname’]). Finally,
nested properties live within another property of an event (e.g., service.QoS).

11

Chapter 2. Review of the State of the Art

In Esper, subscriptions are done by attaching listeners to the engine, where each listener
contains a query that defines the actual subscription. Listeners implement an interface which
is invoked when the subscription matches incoming events. Queries use the Esper Event
Processing Language (EPL) – formerly known as Esper Query Language (EQL) – which is
similar to the Structured Query Language (SQL). The main difference is that EPL is formulated
on event streams whereas SQL addresses database tables. The select clause specifies the event
properties to retrieve, the from clause defines the event streams, and the where clause specifies
constraints. Furthermore, similar to SQL there are aggregate functions (e.g., sum, avg, etc.),
grouping functions (group by), and ordering structures (order by). Multiple event streams
can be merged using the insert clause, or combined using joins. In addition to that, event
streams can be joined with relational data using SQL statements on database connections.

EPL provides a powerful mechanism to integrate temporal relations of events using sliding
window operators. These operators allow to define queries for a given period of time. For
instance, if QoS events regularly publish the QoS values of services, then subscriptions can be
defined on the average response time of a given service during the last 6 hours. Finally, EPL
supports subqueries, output frequency and event patterns. The last allows to define relations
between subsequent events (e.g., -> representing a ’followed by’ relation). Section 4.10 gives
some examples for EPL queries. More information on Esper and EPL can be found in [45].

2.3. SOC and Web Services

SOC [144] and Web services [1,190] have received increasing attention in the last years. Besides
the most important standards SOAP [202], WSDL [203] and UDDI [136] that form the basic
SOA triangle, a variety of additional Web service specifications has been proposed. One of the
main ideas of SOC is to compose multiple services into business processes (often referred to
as orchestrations) to achieve higher-level functionality. This is the focus of the Business Pro-
cess Execution Language (BPEL) [140]. On a higher-level of abstraction, cross-organizational
workflows (often referred to as choreographies) can be modeled using the Choreography De-
scription Language (WS-CDL) [197]. In addition, there are some research efforts to bridge the
gap between choreographies and orchestrations [39, 108, 162].

In this regard, Service Level Agreements (SLAs) can be defined between business partners to
specify the obligations that services have to fulfill. For instance, provider P can negotiate with
consumer C that the response time of service S is below 1 second. If this SLA is violated, P is
obliged to pay a certain penalty to C. The WSLA framework [71] provides such agreements.

Over time a rich Web services stack has been built that provides specifications for additional as-
pects, such as policies (WS-Policy [198]), service metadata (WS-MetadataExchange [74]), secu-
rity (WS-Security [139], WS-ReliableMessaging [133]), and transactions (WS-Transaction [141]).
Additionally, several design patterns have been identified that are recurring in SOAs [211].

12

2.4. Service Registries and Repositories

2.4. Service Registries and Repositories

As already stated, the idea of public service registries did not succeed and most of them have
been shut down. However, registries are still an important component that is currently mostly
used within organizations. There are several approaches and standards for service registries
(often referred to as service repositories). Concrete examples are UDDI [136], ebXML [134],
WSO2 ESB and Registry [205], Mule ESB and service repository [125], IBM WebSphere ESB
and Service Registry and Repository [77], AWSR [184] and XMethods [207], just to name a
few (some of them are integrated in Enterprise Service Bus solutions [27]). We have compared
several approaches with the VRESCo runtime in Table 2.1, considering a carefully selected
range of established standards, mature open-source frameworks and commercial tools.

Challenge UDDI ebXML Mule WSO2 WebSphere VRESCo

Service Metadata
Unstructured + + + + + ∼

Structured ∼ ∼ ∼ ∼ + +

Service Querying
Query Language/API + + + ∼ + +

Type-safe Query – – – – ∼ +

Quality of Service
Explicit QoS Support – – – ∼ ∼ +

QoS Monitoring – – – – – +

Dynamic Service Invocation
Binding & Invocation – – + – ∼ +

Service Mediation – – + + + +

Service Versioning
Metadata Versioning – + + ∼ ∼ –
End-to-End Support – – – – – +

Event Processing
Basic Notifications + + + ∼ + +

Complex Event Processing – – – – ∼ +

Table 2.1.: Related Enterprise Registry Approaches

Our findings are organized using the challenges introduced in Chapter 1. In general, all
systems allow to store metadata about services. Mostly, this is done in an unstructured way
(e.g., using tModels in UDDI). There is only limited support for structured metadata in most
approaches, while VRESCo and WebSphere provide an extensive structured metadata model.
To access data and metadata within the registry a query language or API is needed, which is
provided by all approaches (WSO2 supports querying only based on Atom [166] resources). In
contrast to VRESCo, type-safe queries are not supported by most approaches since querying is
usually done on the unstructured service metadata model using languages such as SQL. Only
WebSphere provides partial support by using XPath expressions for querying.

Currently, explicit support for QoS is not widely available. It is to some extent possible in
WSO2 and WebSphere, and fully supported by VRESCo. WSO2 supports QoS only in terms
of WS-Security [139] and WS-ReliableMessaging [133]. However, none of these frameworks
except VRESCo has integrated QoS monitoring. Integration of dynamic binding, invocation
and mediation of services is obviously not supported by pure registries such as UDDI or the
ebXML registry. The other systems provide support in this respect due to their integrated ESBs
(e.g., Mule provides an ESB and therefore supports dynamic binding and invocation).

13

Chapter 2. Review of the State of the Art

All systems except UDDI and VRESCo allow to maintain multiple versions of metadata in the
registry. However, only VRESCo provides end-to-end versioning support, which enables to
seamlessly rebind and invoke different service revisions at runtime. Finally, all approaches
provide support for basic notifications using email, Web service notifications or news feeds
(e.g., Atom [166], RSS [165], etc.). Only WebSphere and VRESCo allow clients to subscribe to
more complex events and event patterns using a rich subscription language.

2.5. Event Notifications in Web Service Registries

The core challenge addressed in this thesis is how event processing can be supported in current
Web service runtime environments. The motivation of this work was the limited support for
notifications in current Web service registry standards, which is summarized in more detail in
this section.

• Universal Description, Discovery and Integration (UDDI): The UDDI Subscription API
was introduced in UDDI v3 [136] and enables monitoring of activities in a registry.
This is done by tracking new, changed, and deleted entries for the following UDDI
entries: businessEntity, businessService, bindingTemplate, tModel, related businessEntity, and
publisherAssertion. It should be noted that the Subscription API is optional and may be
implemented entirely at the discretion of a node. To the best of our knowledge, however,
most UDDI implementations do not support the Subscription API. There are two ways
how subscriptions are provided in the UDDI specification:

1. Asynchronous notifications: Subscribers are asynchronously notified by the node
when registry data of interest changes. This is done by either registering a Web
service listener (the Web service must be implemented by the subscriber) or by
using emails as notification mechanism.

2. Synchronous Change Tracking: Subscribers inquire registry data of interest that
matches their subscription preferences by using synchronous requests.

The subscription criteria are defined using the Inquiry API (i.e., getXXX and findXXX).
Furthermore, nodes may restrict which Inquiry APIs are supported. Finally, subscriptions
have a specific duration that defines how long the subscription is valid.

• Electronic Business using Extensible Markup Languages (ebXML): Similar to UDDI,
ebXML [134] also provides two ways how subscriptions are supported:

1. Asynchronous push-style notifications: Subscribers are asynchronously notified
when registry data of interest changes. Subscribers can either receive emails, or
they register a Web service listener which is invoked to deliver notifications.

2. Pull-style event retrieval: Clients can also retrieve any pending events for their
subscriptions by using the AdHocQuery protocol.

14

2.6. Web Service Notification Specifications

The event model of ebXML provides auditable events representing a long-term record of
changes in a RegistryObject (e.g., Created, Deleted, Updated, Versioned, etc.). Among other
attributes, subscriptions contain an action (i.e., what happens if a subscription matches to
events) and a selector (i.e., pre-defined query that defines the user’s events of interest, by
using SQL as default). The subscriber can express if notifications should contain either
registry objects or only object references.

The event notification mechanism in ebXML seems more mature than the UDDI Subscription
API. Both specifications support the same notification mechanisms: emails or Web service
notifications (however, not following the standards as described below). The AuditableEvents
in ebXML provide more fine-grained control for tracking the changes of registry data. However,
both approaches do not support event patterns or complex event processing, and can notify
only about changes in the registry data.

2.6. Web Service Notification Specifications

There are several research efforts that address the combination of SOA and Publish/Sub-
scribe [34]. The authors mainly focus on content-based Publish/Subscribe, and refer to this
as content-based routing (CBR). In general, there are two main approaches for such asyn-
chronous, event-based interactions using Web services, which are briefly introduced below
together with other related specifications.

• Web Services Eventing (WS-Eventing): The WS-Eventing specification [199] represents
a lightweight realization of Publish/Subscribe for Web services. Basically, subscribers de-
fine interest in events as subscriptions and send them to the event source, which finally
delivers notification messages to the specified event sinks when events match to subscrip-
tions. Furthermore, the event source may designate a subscription manager that handles
subscriptions. All entities involved in this interaction are implemented as Web services.
WS-Eventing provides different delivery modes (e.g., push vs. pull), while filters on no-
tification messages (e.g., only events for a certain topic) can be defined using XPath [192].

The WS-Eventing specification has been implemented by several frameworks such as
JBossWS [156] and Sun Wiseman [179], and open source projects such as WS-Eventing
for WCF [85] and Apache Savan/C [5] (just to name a few).

• Web Services Notification (WS-Notification): WS-Notification [138] represents another
effort for addressing Publish/Subscribe for Web services. The basic concepts are similar
to WS-Eventing, even though the terminology is slightly different. In addition to the
features provided by WS-Eventing, WS-Notification addresses two further mechanisms
which are given in two sub-specifications. The first addresses the organization of event
topics in more detail, while the second describes how notification brokers can be used to
decouple notification producers from consumers.

15

Chapter 2. Review of the State of the Art

WS-Notification has been implemented by several frameworks. To give some examples,
this includes Apache Servicemix [9], Apache Muse [4], Globus Toolkit [61] and IBM
WebSphere Application Server [75].

• Reconciling Efforts: Basically, both of these specifications provide the same features
and have similar architectures, even though WS-Eventing provides only a subset of WS-
Notification [187]. The WS-Messenger project [69] bridges the gap between these two
approaches by supporting both specifications and providing mediation between them.

Furthermore, there have been some efforts to reconcile these specifications (together with
functionality concerning Web service management and resources) into a new specifica-
tion named WS-EventNotification [120]. However, it seems that these efforts have been
abandoned. As a result, WS-Eventing and WS-Notification are still competing and it is
unclear at this point which specification will finally prevail.

• SCA Extension for Event Processing and PubSub (SCA PubSub): The Service Compo-
nent Architecture (SCA) [130] defines a set of specifications describing a programming
model for service-oriented systems, which is independent of the implementation tech-
nology (e.g., BPEL, Java, C++, etc.). The basic idea is that existing or new services are
assembled as components to serve particular business functions. These functions are pro-
vided as services to other components, which use references to express that they depend on
these services. Finally, applications are built as composites, which consist of services, com-
ponents, references, property declarations and the wiring between the different elements.

The SCA specifications have been enriched with an extension for event processing and
Publish/Subscribe [131]. Therefore, every component can act as producer or consumers of
events. Furthermore, channels are used as logical intermediary to decouple producers
and consumers. In this regard, scopes are used to define if producers, consumers and
events are visible outside of a composite. Finally, filters can be defined on channels or
consumers to specify which subset of events are of interest for the consumer. This is done
using different filter dialects such as XPath.

Conceptually, the SCA PubSub specification provides similar means and mechanisms as
the Web service notification specifications. However, it is targeted to SCA and does also
rely on XPath as filter dialect by default. Therefore, there is no support for subscribing
to complex events and event patterns. A prototype implementation of SCA PubSub was
done as part of the Apache Tuscany project [10].

• Web Services Distributed Management (WSDM): Finally, the specifications Common
Event Infrastructure (CEI) [73] and Common Base Event (CBE) [72] have been mainly
driven by IBM’s autonomic computing efforts [83]. CEI and CBE can be seen as pre-
decessors of the Web Services Distributed Management (WSDM) specification [137]. A
Java-based open source implementation of WSDM is provided by the Apache Muse
project [4].

16

2.7. Conclusion

The basic idea of WSDM is to address distributed management of resources using Web
services. This includes managing Web-enabled resources such as routers or printers, as
well as managing Web services themselves. WSDM allows to subscribe to asynchronous
notifications when certain events (i.e., significant state changes) occur. Thereby, every
manageable capability is associated with a topic on which event notifications can be
published following the WSDM Event Format (WEF), which is based on CBE. The actual
event mechanism of WSDM builds on WS-Notification.

2.7. Conclusion

This chapter has reviewed the state of the art regarding Publish/Subscribe and SOA. We have
briefly introduced the basic concepts of Publish/Subscribe and presented an open-source event
processing engine that is used for our work. Furthermore, we have compared several service
registries and repositories regarding their functionality with a special focus on support for event
notifications, since this is one of the main contributions of this thesis. Finally, we have given an
overview of current event processing approaches for SOA and Web services, by summarizing
current specifications and standards.

The chapter has shown that current approaches are limited since only basic service management
events are supported (e.g., new service is published, old service is deleted, etc.). Furthermore,
subscriptions can usually only address single events without support for complex event de-
tection. The goal of this thesis is to provide event processing in service-oriented systems. In
addition to service management events, this also includes events regarding QoS and runtime
information. Moreover, complex event processing mechanisms such as event patterns and slid-
ing window operators should be supported. The Event Processing Layer is described in detail
in Chapter 4. Before that, the VRESCo runtime environment is introduced in the following
chapter, since our event processing approach has been integrated into VRESCo.

17

Chapter 3.

QoS-Aware Service Runtime Environment

This chapter describes the VRESCo service runtime environment that builds the foundation for
the Event Notification Engine presented in Chapter 4. After a brief architectural overview in
Section 3.1, this includes the service metadata model (Section 3.2) and QoS model (Section 3.3).
Furthermore, service versioning is shown in Section 3.4. Querying of registry content is
provided by the VRESCoQuery Engine that is described in Section 3.5. Besides that, Section 3.6
discusses dynamic binding and invocation of services, while service mapping and mediation
is described in Section 3.7. Moreover, access control mechanisms for providing authentication
and authorization are introduced in Section 3.8. After describing the main components, the
VRESCo runtime is evaluated in Section 3.9, while a brief overview of related work is given in
Section 3.10. Finally, Section 3.11 concludes this chapter.

Contents
3.1 Overview . 20

3.2 Service Metadata Model . 21

3.3 Quality of Service Model . 25

3.4 Service Versioning . 27

3.5 Service Querying . 29

3.6 Dynamic Binding and Invocation . 35

3.7 Service Mediation . 39

3.8 Security Mechanisms . 42

3.9 Evaluation . 45

3.10 Related Work . 52

3.11 Conclusion . 55

19

Chapter 3. QoS-Aware Service Runtime Environment

3.1. Overview

In this section, we present an architectural overview of the VRESCo runtime environment. The
main goal of this project is to address some of the current challenges in SOC, which have been
introduced in Section 1.2. Therefore, VRESCo represents a service runtime environment that
aims at efficient development of service-oriented applications. In this regard, it provides a
flexible environment that deals with the deficiencies of existing frameworks, namely the lack
of dynamism as required to implement service-centric solutions [144].

The overall architecture of VRESCo is shown in Figure 3.1. The most important components
are briefly summarized below, while the following sections describe them in more detail.

VRESCo Runtime Environment

Registry
Database

Service
Client

Notification
Engine

SOAP

SOAP

SOAP

Query
Engine

Services

measure

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
ServiceQoS

Monitor

VRESCo Client Library

Daios Client
Factory

invoke

O
R

M

La
ye

r

A
cc

es
s

C
on

tro
l

Certificate
Store

Event
Database

Figure 3.1.: VRESCo Architecture

• Publishing/Metadata Service: This service is used for publishing services and associated
metadata into the Registry Database, which is done using the Object Relation Mapping
(ORM) Layer. Service metadata include functional attributes (e.g., operations, messages,
pre- and post-conditions, etc.) and non-functional attributes such as QoS (e.g., response
time, availability, etc.).

• Query Engine: This engine allows to query for available services and metadata in the
Registry Database. Therefore, VRESCo provides optional and mandatory query criteria,
and different querying strategies that support exact or fuzzy matching.

• Notification Engine: This engine enables clients to subscribe to events of interest. Besides
storing the events into the Event Database, notifications are sent to interested subscribers
using different notification mechanisms. The Notification Engine represents the second
core contribution of this thesis, which is the main focus of Chapter 4.

• Management Service: The management tasks involved in the service runtime are pro-
vided by the Management Service. Most notable, this includes mechanisms for main-
taining users and their access control policies. Furthermore, this service also provides
support for QoS management (e.g., by communicating with the external QoS Monitor).

20

3.2. Service Metadata Model

• Composition Engine: Composing services to achieve higher level functionality repre-
sents a crucial task in SOC. Compositions in VRESCo are defined in a domain-specific
language (DSL) called Vienna Composition Language (VCL). The overall idea is to define
functional and QoS constraints which can make use of constraint hierarchies by lever-
aging hard (i.e., required) and soft (i.e., optional) constraints. The Composition Engine
then tries to find an optimal solution for these constraints semi-automatically. Therefore,
data flow analysis is applied to generate a structured composition model, while both con-
straint programming and integer programming can be used for solving the optimization
problem. Finally, the optimized compositions are executed using Windows Workflow
Foundation (WF) [171]. More information on VCL can be found in [158–160].

• Access Control Layer: Services and associated metadata represent sensitive information
that should not be publicly available. Therefore, the Access Control Layer (ACL) verifies
if clients have the required access rights. This is done using both username/password
credentials and certificates, which are stored in the Certificate Store.

• QoS Monitor: This component is responsible for measuring attributes regarding perfor-
mance and dependability. The QoS monitor presented in [163] implements a client-side
approach based on a low-level TCP analysis and aspect-oriented programming (AOP).
Additionally, server-side QoS monitoring has also been integrated into VRESCo, which
is discussed in Section 5.3.

• Daios: Finally, the actual services maintained in VRESCo are invoked using the dynamic
invocation framework Daios [92]. In addition to that, the VRESCo runtime provides
mediation mechanisms, which are necessary to hide the heterogeneity of different services
that perform the same task.

Following the Software as a Service (SaaS) paradigm, the core functionalities (i.e., the VRESCo
core services) are provided as Web services. The overall runtime is implemented in C#/.NET
on top of the Windows Communication Foundation (WCF) [101, 146], which provides a set of
APIs to build and host service-oriented applications. Moreover, we use the ORM framework
NHibernate [157] for persisting services and associated metadata in the Registry Database.
The Client Library supports dynamic service invocation and provides an API for accessing the
VRESCo core services. Since those are implemented as Web services, the Client Library can be
provided for several platforms. However, currently it is only available for C#/.NET and Java.

3.2. Service Metadata Model

The VRESCo runtime provides a rich service metadata model capable of storing additional
information about services. This is needed for capturing the purpose of services to enable
querying and mediating between services that perform the same task. For the description of
this metadata model, we give examples from our CPO case study introduced in Section 1.1.

21

Chapter 3. QoS-Aware Service Runtime Environment

3.2.1. Service Metadata

The VRESCometadata model introduced in [161] is depicted in Figure 3.2. The main building
blocks of this model are concepts, which represent the definition of an entity in the domain
model. We distinguish between three different types of concepts:

• Features represent concrete actions in the domain that implement the same functionality
(e.g., Check_Status or Port_Number). Features are associated with categories which express
the purpose of a service (e.g., PhoneNumberPorting).

• Data concepts represent concrete entities in the domain (e.g., customer or invoice) which
are defined using other data concepts and atomic elements such as strings or numbers.

• Predicates represent domain-specific statements that are either true or false. Each predi-
cate can have a number of arguments (e.g., for feature Port_Number a predicate Portability_
Status_Ok(Number)may express the portability status of the given argument Number.

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1
1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Figure 3.2.: Service Metadata Model

Furthermore, features can have pre- and postconditions expressing logical statements that have
to hold before and after its execution. Both types of conditions are composed of multiple
predicates, each having a number of optional arguments that refer to a concept in the domain
model. There are two different types of predicates:

• Flow predicates describe the data flow required or produced by features. For instance, the
feature Check_Status could have the flow predicate requires(Customer) as precondition
and produces(PortabilityStatus) as postcondition.

22

3.2. Service Metadata Model

• State predicates express global states that are valid either before or after invoking a feature.
For instance, the state predicate notified(Customer) can be added as postcondition to the
feature Notify_Customer.

3.2.2. Service Model

The VRESCo service model constitutes the basic information of concrete services that are
managed by VRESCo and can be invoked using the Daios dynamic invocation framework.
The service model depicted on the lower half of Figure 3.3 basically follows the Web service
notation as introduced by WSDL with extensions to enable service versioning, represent QoS
and enable eventing on a service runtime level.

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Figure 3.3.: Service Model to Metadata Model Mapping

A concrete service (Service) defines the basic information of a service (e.g., name, description,
owner, etc.) and consists of a least one service revision. A service revision (Revision) contains
all technical information that is necessary to invoke it (e.g., a reference to the WSDL file) and
represents a collection of operations (Operation). Every operation may have a number of input
parameters and may return one or more output parameters (Parameter). Revisions can have
parent and child revisions representing a complete service versioning graph as discussed below.
Both revisions and operations can have a number of QoS attributes (QoS). The distinction in
revision- and operation-specific QoS is necessary, because attributes such as response time
depend on the execution duration of an operation, whereas availability is typically given for
the revision itself (i.e., if a service is not available, all operations are also unavailable).

3.2.3. Mapping Concrete Services to Metadata

In order to associate elements from the service metadata model to elements from the service
model, we establish a mapping between metadata and services. This mapping is shown in
Figure 3.3, where the dashed line represents the connection between elements in the metadata
model and elements in the service model.

23

Chapter 3. QoS-Aware Service Runtime Environment

The elements of this service model are mapped to our service metadata model as follows:
Services are grouped into categories, where every service may belong to several categories at
the same time. Services within the same category provide at least one feature of this category.
Service operations are mapped to features, where every operation implements exactly one fea-
ture. However, we plan to provide support for more complex mappings using the Composition
Engine (i.e., features can be represented as compositions of several service operations).

The input and output parameters of operations map to data concepts. Every parameter is
represented by one or more concepts in the domain model. This means that all data a service
accepts as input or passes as output are well-defined using data concepts and annotated with
the flow predicates requires (for input) and produces (for output). The concrete mapping of
service parameters to concepts is defined by Mapping Scripts that make use of several Mapping
Functions. In general, both scripts for mapping from parameter to concept and vice versa have
to be specified. If an operation requires a certain state prior to its execution, this requirement
can be modeled as a state predicate. The same is true for state changes as result of the execution
of an operation.

<<Postcondition>>
produces

<<Postcondition>>
leads_to

<<Precondition>>
requires

<<Feature>> Check_Status

<<Category>>
Porting_Status

<<Feature>> Port_Number

<<Category>>
Number_Portingis_subcategory

<<Data>> phoneNr : string
<<Data>> status : PortingState

<<Data>>
Porting_Status

<<Postcondition>>
produces

<<Precondition>>
requires <<Data>> phoneNr : string

<<State>>
Is_Ported

<<Data>> name : Name
<<Data>> address: Address
<<Data>> phoneNr : string

<<Data>>
Porting_Info

Metadata Level
Service Level

<<Operation>> portNumber(...)

<<Service>>
PortingService

<<Operation>> isPortable(...)
<<Operation>> portPhoneNumber(...)

<<Service>>
NumberPortingService

CPO 2CPO 1

<<Operation>> checkStatus(...)

<<Service>>
PortabilityCheckService

<<Data>> state : ported, onHold, notPorted

<<Data>>
PortingState

Figure 3.4.: Service Mapping

Figure 3.4 gives a mapping example from our CPO case study in UML class diagram nota-
tion. In this example, we use two features that are mapped to concrete services by two cell
phone operators CPO1 and CPO2: Check_Status and Port_Number. These features have sev-
eral pre- and postconditions that refer to flow predicates (e.g., feature Check_Status requires
data concept Porting_Info and produces Porting_Status) and state predicates (e.g., feature
Port_Number leads to state Is_Ported).

24

3.3. Quality of Service Model

The mapping from metadata to service level is done between features and operations. For
instance, the operation isPortable of CPO2’s NumberPortingService is mapped to the fea-
ture Check_Status of category Porting_Status. Clearly, the input and output of different
implementations of one feature may differ. In that case, various mapping operators (e.g., ==,
concat, stringToInt, etc.) can be used to mediate between different service interfaces. This
service mediation approach is discussed in more detail in Section 3.7.

3.3. Quality of Service Model

Service metadata is essential for defining the purpose and semantics of services, which is often
referred to as functional properties of services. In addition to that, non-functional properties
regarding Quality of Service (QoS) also play a crucial role in service-oriented systems. They
provide means to specify quality guarantees of services such as response time or throughput.

There are several definitions of QoS in literature [107, 155, 212]. According to Rosenberg [158],
QoS in service-oriented systems can be defined on the service, choreography and orchestration layer.
In addition, QoS attributes can be deterministic or non-deterministic, depending on whether they
are known at service invocation time or not. For the purpose of this thesis and the VRESCo
runtime environment, we focus on QoS on the service layer. The basic idea is to define the
quality of atomic services without taking choreographies and orchestrations into consideration.
In this section, we briefly introduce the VRESCoQoS model which was first introduced in [163],
while Section 5.3 explains in detail how QoS is measured and how it can be used to define and
monitor Service Level Agreements (SLAs).

Dependability Security & TrustPerformance

QoS Category

Cost & Payment

Execution Time
Response Time
Round Trip Time

Latency
Scalability

Throughput

Availability
Accuracy

Robustness
Reliable Messaging

Security
Reputation

Price

Penalty

Figure 3.5.: VRESCo QoS Model

Figure 3.5 depicts the VRESCo QoS model which consists of the four categories Performance,
Dependability, Security/Trust and Cost/Payment. However, the main focus is on performance-
and dependability-related attributes since they can be measured automatically. Additionally,
user-defined attributes can be added to the runtime which makes the QoS model extensible.

25

Chapter 3. QoS-Aware Service Runtime Environment

Consumer ConsumerNetwork NetworkProvider

qwt qwt qwt qwtqla qlaqpt

qrt

qrtt

qet

Figure 3.6.: Service Invocation Intervals

Performance-related attributes represent measurable attributes of services regarding perfor-
mance. For this measurement, service invocations are divided into the time intervals shown in
Figure 3.6. In this figure, Processing Time qpt represents the time needed for the actual service
invocation at the provider. In addition to that, the service provider has to wrap and unwrap
SOAP messages, which is indicated by Wrapping Time qwt. Execution Time qet reflects the entire
duration needed to answer the service request. Latency qla defines the time needed for the
request to be sent over the network from consumer to provider. Response Time qrt indicates
the service invocation time at the service consumer (i.e., execution time plus latency), while
Round Trip Time qrtt measures the overall time needed for the service invocation at the service
consumer (i.e., response time plus the time for wrapping SOAP messages on the client-side).
Please note that the intervals presented so far represent single values that are measured for one
invocation. These measurement points can be aggregated to receive meaningful QoS attributes.

Attribute Formula Unit

Latency qla(n) = 1
n

n∑
i=0

qlai ms

Response Time qrt(n) = 1
n

n∑
i=0

qrti ms

Availability qav(ts, te, td) = 1 − td
te−ts

percent

Accuracy qac(r f , rt) = 1 −
r f
rt

percent

Throughput qtp(ts, te, r) = r
te−ts

invocations/s

Price n/a per invocation

Reliable Messaging n/a {true, false}

Security n/a {None, X.509, etc.}

Table 3.1.: VRESCo QoS Attributes

26

3.4. Service Versioning

Table 3.1 shows all QoS attributes currently considered in VRESCo. For each attribute we list
the distinct name, the formula how the attribute is calculated (or “n/a” if deterministic) and the
unit. Latency qla(n) indicates the time a request needs on the wire. It is calculated as the average
value of n individual measuring points qlai . Response time qrt(n) consists of the latency for request
and response plus the execution time of the service (again the average of n individual values
qrti). Availability qav(ts, te, td) stands for the probability that a service is up and running (ts and
te indicate the requested time period, while td represents the total time the service was down).
Accuracy qac(r f , rt) is the probability of a service to produce correct results where r f denotes
the number of failed requests and rt denotes the total number of requests. Finally, Throughput
qtp(ts, te, r) represents the maximum number of requests a service can process within a certain
period of time (denoted as te − ts) where r is the total number of requests during that time.

Besides these performance- and dependability-related attributes VRESCo provides several
other deterministic attributes related to security and cost, such as Reliable Messaging (i.e.,
whether reliable messaging is supported according to WS-ReliableMessaging [133]), Security
(i.e., if the service provides security according to WS-Security [139] such as username/pass-
word, X.509 [67], SAML [135] or Kerberos [126]) and Price (i.e., the price for one invocation).
It should be noted, however, that due to the extensible QoS model users are able to define
additional QoS attributes if needed (e.g., reputation, trust, etc.).

3.4. Service Versioning

Like any kind of software system, services are subject to permanent change. Vendors constantly
add new functionality or change the requirements of existing services, and strive to increase
quality aspects such as reliability or security. This software adaptation process is usually
referred to as software evolution and is subject to a vital research community [17].

Despite the need for versioning of services, there is still only limited support by existing registry
standards. Therefore, we provide a simple, but powerful versioning mechanism in the VRESCo
runtime environment. The main objective of this mechanism is to provide version transparency:
Selection of service versions (also called service revisions), as well as mediation and rebinding
between different revisions should be handled automatically by the service runtime.

In order to manage Web service evolution, service registries need to store not only the service
revisions, but also how they relate to each other. We use the notion of service version graphs
to represent these dependencies. For every service, there is exactly one service version graph.
These graphs are directed, with nodes representing concrete service revisions and edges repre-
senting predecessor-successor relationships. The semantics of these relationships is that revision
A is a predecessor of revision B, if B is the result of changes in A. All revisions in a version graph
refer to the same base service, but are on different maturity levels and different stages in the
base service’s lifecycle. Furthermore, service version graphs may contain branches and merges.

27

Chapter 3. QoS-Aware Service Runtime Environment

Branches represent situations where two or more variants of a service evolve in parallel (e.g.,
a special version with specific behavior for a subset of users). Merge revisions consolidate two
or more branches in the version graph. In terms of graph theory, branch revisions are defined
by an out-degree greater than 1, while merge revisions have an in-degree greater than 1.

Service 1 Service 2 Service 3

Services

Revisions

INITIAL

STABLE

HEAD, LATEST

branch_1

branch_2

branch_1

Figure 3.7.: Service Version Graph

In order to provide helpful information for the user, revisions in the service version graph
may be tagged. Generally, a revision tag is a string attached to one or more service revisions
that describes the revision’s functionality, stability, maturity level or any other functional or
non-functional aspect. Figure 3.7 shows an example service version graph. Several revision
tags (e.g., INITIAL, branch_1, branch_2, etc.) have been assigned to the graph to identify
revisions. The revision tagged STABLE represents a branch revision, while the two branches are
again merged in the revision tagged LATEST.

As stated above, service clients should optimally be version-transparent (i.e., version selection,
mediation between incompatible versions and automatic rebinding should be handled auto-
matically). Clients should be able to switch between versions freely, and invoke any revision of
the service without adapting the client code. In VRESCo, this version-transparency is achieved
through service proxies. These proxies are bound to a selection strategy and update their
target revision whenever there is a better match than their current target. Therefore, proxies
are responsible for mediating between the user-provided data and the expected input of the
target revision. Service mediation is discussed in more detail in Section 3.7.

Selection strategies are queries on the service version graph that use the defined revision tags
and the inter-version relationships to select the most appropriate service revision for users. A
user may, for instance, define a selection strategy that always binds to the most recent revision
in the graph, to the latest stable one, or to a revision belonging to a specific branch. Unlike
one-time queries, this selection is monitored by the proxy. If the service version graph changes
(e.g., because of the insertion of a new revision) the result of the selection may also change,

28

3.5. Service Querying

and the proxy may update its target service to reflect this change. We refer to this change
in the proxies target service as dynamic rebinding. Dynamic rebinding is transparent to the
client (i.e., it can be safely assumed that the most appropriate service according to the selection
strategy is invoked). We describe dynamic binding in more detail in Section 3.6.

The implementation of our approach in VRESCo has been realized using versioning metadata.
Such versioning metadata represent the relationships in the service version graph and are
defined by the service provider when publishing new services or revisions. It should be noted
that our implementation does not enforce any specific rules about the degree of change between
two revisions in a service version graph. Consequently, it is the provider’s decision whether
the differences between two service versions are so fundamental that an entire new service
should be created instead. Furthermore, any evolutionary step may contain multiple discrete
changes (i.e., the actual difference between revisions may be arbitrarily complex). Establishing
branch and merge revisions is also done by the service provider by defining the appropriate
relationships in the service version graph. In this regard, our implementation does not impose
any further restrictions on branching and merging (i.e., the service providers are free to use
branching and merging at their convenience).

Tag Description Assigned by
INITIAL The first version of this service VRESCo
STABLE A well-tested production-level service version provider
HEAD The most recent version in a branch VRESCo
LATEST The most recent version in the entire version graph; implies HEAD VRESCo
DEPREC The version is online, but should not be used anymore (deprecated) provider
OFF The version has been taken offline and is not available anymore provider

Table 3.2.: Default Revision Tags

As already mentioned, VRESCo supports the concept of revision tags. Tags may either be
default tags with a well-defined meaning, or arbitrary strings defined by the user. Table 3.2
gives a list of currently available default tags including their description. It should be noted
that some of these default tags are assigned automatically by VRESCo (INITIAL, LATEST, HEAD)
while others (STABLE, DEPREC, OFF) have to be assigned by the service provider.

3.5. Service Querying

The revision tags introduced above represent one way to mark revisions, so that they can be
identified by service providers and consumers. The VRESCoQuery Language (VQL) provides a
querying framework that is capable of querying all information stored in the Registry Database
(e.g., services, metadata, QoS, tags, etc.). In this section, we discuss the architecture of this
querying framework, as well as query specification and query processing.

29

Chapter 3. QoS-Aware Service Runtime Environment

Before we go into the details of the architecture, we want to briefly mention the requirements
we pose on our querying framework. First of all, declarative query languages such as SQL refer
to database tables and columns, which makes queries invalid as soon as the database schema
changes. Following the Query Object Pattern [56], queries can be built programmatically using
query criteria that refer to classes and fields instead. These queries are finally translated into
SQL statements, which makes them independent of the database schema. In this regard, VQL
should provide such object-oriented querying interface and corresponding query expression
library (similar to the Hibernate Criteria API [157]). Moreover, VQL queries should be type-
safe (i.e., the query requester specifies the expected type of the query results) and secure (i.e.,
queries are protected against well-known security issues such as SQL injection [63]).

Another important requirement for our querying framework was the need for both optional
and mandatory query criteria. This is important since some queries should return only results
that match all criteria, while optional criteria enable fuzzy querying. The latter is often needed
when exact querying does not return any results. For instance, optional criteria can be used to
define QoS attributes that are nice to have, but not strictly required (e.g., service response time
should be less than 500 ms).

3.5.1. Query Architecture

The architecture of the VQL framework is shown in Figure 3.8. In general, the Client Library
is used to invoke VRESCo core services (e.g., Publishing Service). Since these invocations
represent remote method invocations, the Data Transfer Object pattern [56] is used to reduce
the information sent from clients to the core services. Therefore, the VRESCo runtime operates
on the core model (which represents the service metadata model introduced in Section 3.2), while
clients operate on the user model. The task of the Data Access Layer (DAL) is to convert core
objects to user objects and vice versa. The mapping between user and core objects is defined
at design time using .NET attributes [96]. More precisely, source code attributes are used to
define which classes (attribute MappedClass) and properties (attribute MappedProperty) from
the core model map to which classes and properties from the user model.

The advantage of this architecture is that clients operate on the user model, which represents a
restricted view of the core model. Therefore, some information can be hidden from the clients
(e.g., database IDs or versioning information for optimistic locking). Consequently, the VQL
framework has to provide view-based querying, to be able to query on both models (depending
on whether the query is issued client- or server-side). The task of the ORM Layer is then to map
the entities of the core model to the database model (i.e., concrete database tables and columns),
which is realized by NHibernate [157] using dedicated data access objects (DAOs).

According to this architecture, user queries are formulated using the Client Library, that pro-
vides an object-oriented querying interface to define query criteria, which is discussed in the
next section. The query is then sent to the VRESCo runtime (step 1) and forwarded to the VQL

30

3.5. Service Querying

VRESCo Runtime

Database Model

VQL Engine

Preprocessor

ResultBuilder
Strategies

Exact

Relaxed

Priority

3b.

4a.

4b. 3a.

Client Library

Registry
Database

VQL
Engine

Core Model

Data
Access
Layer

User Model

Service
Layer

VQL
Service

Publishing
Service

Metadata
Service

...
5.

2.

ORM
Layer

DAOsDAOsDAOs
NHiber-
nate

Service
Proxies

Querier

Publisher

...

VQL Library

Expressions

Strategies

VQL
Query

1.

Figure 3.8.: VRESCo Query Architecture

Engine (step 2). The Preprocessor component is used to analyze the VQL query and generate
the corresponding SQL query according to the client’s querying strategy (step 3a+3b). This
SQL query is then executed on the Registry Database (step 4a), while the results are converted
by the ResultBuilder (step 4b). The details of query processing are described in Section 3.5.3.
Finally, the results are sent back to the client (step 5).

3.5.2. Query Specification

From a user’s perspective, the most important question is how queries are specified. As stated
above, VRESCo provides a powerful and easy to use querying API for this purpose. In general,
VQL queries consist of six elements:

• Return Type R defines the expected data type of the query results. The return type needs
to be an element of the VRESCometadata model (e.g., a list of Feature objects).

• Mandatory Criteria Cm describe constraints which have to be fulfilled by the query (e.g.,
response time must be less than 500 ms).

• Optional Criteria Co add constraints which should optimally be fulfilled but are not re-
quired (e.g., service provider should be company X).

• Ordering O can be used to define a specific ordering of the query results (e.g., sort
ascending by property ID).

• Result Limit L can be used to restrict the number of results that should be returned (e.g.,
only 10 results, or unlimited which is specified as 0).

• Querying Strategy S finally defines according to which strategy the query is executed (e.g.,
exact or fuzzy matches).

31

Chapter 3. QoS-Aware Service Runtime Environment

The most important elements are criteria since they actually represent the constraints of the
query. Moreover, criteria have different execution semantics depending on the querying strat-
egy, which is discussed in Section 3.5.4. However, the main motivation is to allow the specifi-
cation of mandatory and optional criteria.

Type VQL SQL Description
Cm Add WHERE Mandatory criteria
Co Match IN/JOIN Optional criteria

E

And AND Conjunction of two expressions
Or OR Disjunction of two expressions
Not NOT Negation of an expression
Eq = Equal operator
Lt < Less operator
Le <= Less or equal operator
Gt > Greater operator
Ge >= Greater or equal operator
Like LIKE Similarity operator for strings
IsNull IS NULL Property is null
IsNotNull NOT NULL Property is not null
In IN Property is in a given collection

Between BETWEEN Property is between two values

O
Order ORDER BY Ordering of query results
Asc ASC Ascending ordering
Desc DESC Descending ordering

Table 3.3.: VQL/SQL Translation

In general, criteria consist of a set of expressions E that are used to define common constraints
such as comparison (e.g., smaller, greater, equal, etc.) and logical operators (e.g., AND, OR,
NOT, etc.). Table 3.3 shows criteria (C), expressions (E) and orderings (O) which are currently
provided by VQL. Furthermore, the table indicates how each of these elements is translated
to SQL, which is described in more detail later. It should be noted that VQL is extensible
in that further expressions can be added easily. Therefore, expressions have to extend the
AbstractCriterion class and implement the ToSqlString() method to define how they are
translated into SQL.

Listing 3.1 shows an example query for finding services that implement the Notify_Customer
feature in our CPO case study. As described above, queries are parameterized using the
expected return type. In this case, the type ServiceRevision (line 2) expresses that the result
of the query is a list of service revisions. In our example, two Add criteria (lines 5–6) are used to
state that services have to be active and that each service has to implement the Notify_Customer
feature (by using the Eq expression). The first parameter of expressions is usually a string
representing a path in the user or core model (e.g., Service.Owner.Company describes the

32

3.5. Service Querying

� �
1 // create query object

2 var query = new VQuery(typeof(ServiceRevision));

3

4 // add query criteria

5 query.Add(Expression.Eq("IsActive", true));

6 query.Add(Expression.Eq("Service.Category.Features.Name", "NotifyCustomer"));

7 query.Match(Expression.Eq("Service.Owner.Company", "CompanyX"), 1);

8 query.Match(Expression.Like("Tags.Property.Name", "STABLE", LikeMatchMode.Start), 3);

9 query.Match(

10 Expression.Eq("QoS.Property.Name", "ResponseTime") &

11 Expression.Lt("QoS.DoubleValue", 1000.0), 5);

12

13 // execute query

14 var querier = VRESCoClientFactory.CreateQuerier("username", "password");

15 var results = querier.FindByQuery(query, 10, QueryMode.Priority) as IList<ServiceRevision >;� �
Listing 3.1: VQL Sample Query

company property of the service owner). These strings are central to VQL, and are referred to
as property paths. Additionally, three Match criteria are added in the example (lines 7–11). The
first criterion expresses that services provided by CompanyX are preferred, while the second
criterion defines that revisions should have tags starting with ’STABLE’ (Like expression). The
third criterion specifies an optional QoS constraint on response time, which should be less than
1000 ms. The operator ’&’ in line 10 represents a shortcut for an And expression. All three Match
criteria use priority values as third parameter to define the importance of a criterion.

The query is finally executed (lines 14–15) by instantiating a querier object using the Client
Factory, and invoking the FindByQuery method using the desired querying strategy (e.g.,
QueryMode.Priority). Furthermore, the result limit of the query is set in order to return only
10 results.

3.5.3. Query Processing

Query processing is illustrated in Figure 3.8. When the query is sent to the VQL Engine (step 2),
the specified querying strategy is executed (step 3a), which is implemented using the strategy
design pattern [57]. The query is forwarded to the Preprocessor component (step 3b), which is
responsible for analyzing the VQL query and generating the corresponding SQL query. Next,
a NHibernate session is created to execute the generated SQL query on the database (step 4a).
After execution, the ResultBuilder component takes the results from the NHibernate session
context. Since these results represent core objects, they may have to be converted back into
the corresponding user objects (i.e., if the return type refers to the user model). This is done
dynamically by invoking the constructor of the corresponding object using reflection (step 4b).
For both models, however, the ResultBuilder guarantees type-safety of the results, which are
finally sent back to the client (step 5).

33

Chapter 3. QoS-Aware Service Runtime Environment

Algorithm 1 processQuery(R,C,S,O)

Require: R , {}
1: query← {}
2: if (isUserObject(R)) then
3: R←MapUserToCoreObject(R)
4: end if
5: assocInfo← R
6: for all (crit ∈ C) do
7: for all (expr ∈ GetExpressions(crit)) do
8: assocInfo←assocInfo ∪ ResolveAssoc(expr)
9: propInfo← params ∪ ResolveProp(expr)

10: end for
11: end for
12: query← BuildFrom(assocInfo, propInfo, S)
13: query← BuildWhere(query, assocInfo, propInfo, S)
14: query← BuildOrder(query, O)
15: return query

Algorithm 1 depicts the pseudo-code of the Preprocessor. If the query refers to the user model, it
is first transformed to the core model (lines 2–4). The Preprocessor then iterates over all criteria
and expressions (lines 6–11). The ResolveAssoc function recursively analyzes the property paths
of each expression to determine the necessary table joins. Similarly, the ResolveProp function
extracts the property values of each expression. To give an example, reconsider line 7 of
Listing 3.1: The property path Service.Owner.Company represents two associations Service
and Owner that will be resolved using table joins, and one property Company that will be
compared with the expression’s property value CompanyX. The concrete association/table and
property/column names are retrieved using the ORM Layer. The collected information is finally
used to build FROM, WHERE and ORDER clauses of the SQL query (lines 12–14), according to the
VQL/SQL translation shown in Table 3.3.

3.5.4. Querying Strategies

The querying strategy influences how queries are executed. More precisely, it defines the
Preprocessor’s behavior during SQL generation. The basic transformation process can be sum-
marized as follows: Add criteria are transformed to predicates within the SQL WHERE clause,
whereas Match criteria are handled as SQL sub-selects (IN or JOIN, see Table 3.3).

The exact querying strategy forces all criteria to be fulfilled, irrespective whether this is Add
or Match. However, there are scenarios where Match has to be used instead of Add in order
to get the desired results (i.e., by enforcing sub-selects using IN instead of WHERE predicates).
In particular, when mapping n:1 and n:m associations (i.e., collection mappings in Hibernate

34

3.6. Dynamic Binding and Invocation

terminology), a query cannot have the same collection more than once in the WHERE predicate.
The use of sub-selects eliminates this effect in VQL, otherwise such queries would result in
null since the associated tables are joined more than once. As an example reconsider the query
in Listing 3.1 using the exact strategy. When having only one criterion with respect to QoS, Add
can be used. However, if there would be a second QoS criterion, Match is required.

The priority querying strategy uses priority values for each optional criterion in order to accom-
plish weighted matching of results. Therefore, each Match criterion defines a priority weight,
which is internally added if the criterion is fulfilled. The query finally returns the results sorted
by the sum of priority values. To give an example, the query in Listing 3.1 uses the priority
values “1”, “3” and “5”. This means that the constraint on response time is more important
than the constraint on revision tags. More precisely, queries that fulfill only the third Match
criterion are preferred over queries that fulfill the first and the second Match criterion (since
5 > 3 + 1).

The relaxed querying strategy represents a special variant of priority querying where each Match
criterion has priority 1. Thus, this strategy simply distinguishes between optional and manda-
tory criteria. Results are then sorted based on the number of fulfilled Match criteria. This allows
to define fuzzy queries by relaxing the criteria, which can be useful when no exact match can
be found for a query. To achieve the necessary behavior, relaxed and priority querying both
translate Match criteria into sub-selects using JOIN predicates.

More details on query processing and querying strategies, together with illustrative examples
for each translation step, can be found in [87]. Furthermore, Appendix A depicts SQL queries
that are generated by our approach. This contains exact (Listing A.2), priority (Listing A.3) and
relaxed strategy (Listing A.4). These listings illustrate how an example VQL query (Listing A.1)
is translated into SQL following the VQL/SQL translation shown in Table 3.3.

3.6. Dynamic Binding and Invocation

In general, dynamic binding (or late binding) is the process of linking an abstract service to a
concrete service instance at execution time. Ideally, this should be handled transparently by
the service runtime environment. Dynamic binding in service-oriented systems is mostly used
in combination with runtime service discovery. This means that service consumers try to find
services that match given criteria. Based on the available services, the consumers select the
service that best fulfills their constraints and bind to the service dynamically at runtime. Since,
these constraints may change over time, it is often necessary to rebind to other functionally
identical services which we refer to as dynamic rebinding. Dynamic rebinding additionally
requires mechanisms that provide dynamic invocation as opposed to invoking Web services
statically using pre-defined stubs.

35

Chapter 3. QoS-Aware Service Runtime Environment

3.6.1. Dynamic Binding

In our first attempt to address these problems, we have introduced the notion of QoS-based
and content-based dynamic binding [119]. QoS-based dynamic binding basically uses criteria
on QoS attributes during service selection, which is specified using queries. While the first
version of VRESCo was built on simple queries using keyword-based matching, the querying
framework has later been significantly extended, which was described in Section 3.5.

To achieve content-based dynamic binding, on the other hand, a mapping between some
application logic and a distinct service has to be provided. The overall idea is to add service
metadata that provide service identifiers (e.g., PortingProvider.TELCO2). These identifiers
represent application-specific unique service names that can be used in the application code
(instead of complex queries).

3.6.2. Rebinding Strategies

Over time, we have stepwise refined our initial ideas regarding dynamic rebinding in combi-
nation with service versioning as presented in [90]. In this regard, we have finally put our main
focus on QoS-based (or more general speaking, query-based) dynamic binding of services.
Please note that content-based dynamic binding basically can be seen as a simplified version
of query-based binding.

In general, service selection mechanisms (either queries or identifiers) are used to define con-
straints on the services to invoke. However, services are changing over time or may even be
deleted from the service registry. Moreover, the user-defined constraints on services may also
change over time. Taken together, these two issues raise the need for dynamic rebinding. The
basic idea is to transparently rebind to functionally equal services according to user-defined
properties. For instance, clients may want to rebind to the best available service regarding
some QoS attribute, or to the most recent version of a service. Therefore, VRESCo provides
different rebinding strategies that are implemented using the well-known strategy pattern [57].
It should be noted that dynamic binding using rebinding strategies may also require service
mediation, since the interfaces of the two services may differ. The VRESCo service mediation
approach is described in Section 3.7.

Strategy Description
Fixed The proxy never updates its binding (i.e., always invoke service X).

Periodic The proxy reconsiders its binding periodically (e.g., once every minute).
OnDemand The proxy reconsiders its binding on client requests.

OnInvocation The proxy reconsiders its binding prior to every service invocation.

Table 3.4.: Rebinding Strategies

36

3.6. Dynamic Binding and Invocation

Table 3.4 summarizes all rebinding strategies provided in VRESCo. Fixed proxies are used
in scenarios where rebinding is not needed (e.g., because of existing contractual obligations).
Periodic rebinding causes constant overhead since the proxies verify their binding periodically.
Clearly, this is inefficient if invocations happen infrequently. OnDemand rebinding results in
low overhead but has the drawback that the binding is not always up-to-date. In contrast to
this, OnInvocation rebinding guarantees accurate bindings but seriously degrades the service
invocation time. Thus, all rebinding strategies have their strengths and weaknesses, and it
depends on the specific situation which strategy to use. In Section 5.1, we introduce another
strategy based on events, which aims at combining the advantages of all other strategies.

3.6.3. Dynamic Invocation

Besides dynamic binding, dynamic invocation of services represents another important goal
of service-centric systems. Current Web service frameworks often make use of pre-generated
stubs to access services. However, this makes them hard-wired to specific service providers
which does not follow the initial idea of dynamic binding in SOA.

In this regard, we aim at dynamic, stubless and protocol-independent service invocation pro-
vided by Daios [92]. In contrast to existing dynamic service invocation frameworks such as
Apache WSIF [3], Daios is highly message-driven and does not focus on RPC-style commu-
nication as provided by distributed object technology [189]. The overall idea of Daios is to
abstract from the technical internals of the services, and thus, decouple the clients from the ser-
vices they consume. Furthermore, the framework supports synchronous (request-response),
one-way and asynchronous communication, which is suitable for long-running transactions.

Daios

Service
Invoker

Service
Contract

VRESCo
Registry

Service
Provider

Service
Requester Bind

RegisterFind

Service
Front-End

SOAP Stack

REST Stack

Daios
Message

HTTP,
SOAP, etc.

Interface Parser

XSD Parser

Figure 3.9.: Daios Architecture

37

Chapter 3. QoS-Aware Service Runtime Environment

The architecture of Daios is shown in Figure 3.9 which is adapted from [92]. It consists of three
components: The Front-End component contains the framework classes that orchestrate the
other components. The Interface Parser component is used to preprocess service descriptions
(e.g., WSDL and XML schema), while the Service Invoker component is used to invoke services
using the SOAP [202] or REST [54] stack. Clients (i.e., service requesters) communicate with
the framework by sending Daios messages to the Front-End. These messages represent the
internal data representation of Daios, which can be seen as unordered lists of name-value pairs.
Furthermore, messages can be nested in order to build arbitrary data structures. Thus, Daios
messages can encapsulate XML schema complex types.

Invoking services is done in three steps: Firstly, services are discovered using the VRESCo
querying mechanism. Secondly, the service is bound during the preprocessing phase that col-
lects all service information from the interface description. Thirdly, the service is dynamically
invoked using the corresponding stack (e.g., SOAP, REST). Therefore, the Daios messages are
mapped and converted to the actual input expected by the service (e.g., use correct encoding).
Finally, the output from the service is converted back into a Daios output message.

� �
16 // create service proxy

17 var proxy = querier.CreateRebindingMappingProxy(

18 query, QueryMode.Exact, 100, new PeriodicRebindingStrategy(60000));

19

20 // create Daios message

21 DaiosMessage request = new DaiosMessage();

22 request.SetString("ReceiverNr", "0043-12345678");

23 request.SetString("SenderNr", "0043-98765432");

24 request.SetString("Message", "Phone number has been ported!");

25

26 // invoke service

27 DaiosMessage result = proxy.RequestResponse(request);

28 String confirmationMsg = result.GetString("Confirmation");� �
Listing 3.2: VRESCo Service Invocation

To give an example, Listing 3.2 shows a service invocation from our CPO case study. It should
be noted that this listing continues Listing 3.1. Thus, the query in line 18 refers to the former
listing and the code is not duplicated for brevity. In line 17, a Daios service proxy is created that
is capable of rebinding and service mediation if the interfaces do not match (see Section 3.7).
This time, the query is issued using the exact strategy (i.e., all query criteria have to be fulfilled).
Furthermore, the result set is limited to 100 entries. Line 18 defines that the service proxy
should be created using the periodic strategy. In this case, the proxy reconsiders its binding
every minute (i.e., 60000 ms). In lines 21–24, the input message for the Notify_Customer feature
is built by specifying data types and name-value pairs. Finally, the corresponding service is
executed in line 27 using the request-response pattern. After successful service invocation, the
response can be extracted from the result message (line 28).

38

3.7. Service Mediation

3.7. Service Mediation

So far, the description of dynamic binding and invocation has not addressed the heterogeneity
of service interfaces. Dynamically rebinding and invoking alternative services is rather sim-
ple when service interfaces are identically. However, it gets a lot more complex when this
assumption does not hold, which is often neglected by existing research approaches.

The VRESCoMapping Framework (VMF) introduces mechanisms to define the mapping from
abstract features to concrete service operations as introduced in Section 3.2.3. VMF follows the
notation of a feature-driven metadata model. Therefore, a client that wants to invoke a certain
service does not provide the input of the concrete service directly, but already in a high-level
representation (i.e., the feature input in VRESCo terminology). The VRESCo runtime takes
care of lowering and lifting the feature input and output, respectively. Lowering represents the
transformation from high-level concepts into a low-level format (i.e., feature input to SOAP
input) whereas lifting is the inverse operation (i.e., SOAP output to feature output).

VRESCo Client Library VRESCo Runtime

Registry
Database

Metadata ServiceClient Mapping Library

Mapper

Mapping Mediator

Output

Input

M
ap

pi
ng

 T
im

e
E

xe
cu

tio
n

Ti
m

e

Web Services

Figure 3.10.: VMF Architecture

Figure 3.10 is adapted from [93] and shows an overview of the VMF architecture. Generally,
service mapping and mediation in VMF is done in two steps: Firstly, at Mapping Time different
services that implement the same feature are mapped using the Mapper component. This is
done by creating lifting and lowering information (i.e., Mapping Scripts) for each service, which
is done using the Mapping Library. This information is stored in the Registry Database by
invoking the Metadata Service. Secondly, at Execution Time VMF injects a DaiosMapping Mediator
which is responsible for the mediation process. Mediators are integrated into the Daios chain
of mediators which is presented in more detail in [93]. The Mediator retrieves the lifting
and lowering scripts from the Metadata Service at runtime, and executes the corresponding
mapping. This is done by applying all mapping functions sequentially (i.e., in the order they
have been specified). In that sense, VMF implements an imperative and interpreted domain-
specific language (DSL).

39

Chapter 3. QoS-Aware Service Runtime Environment

Functions Description
Assign Link one parameter to another (source and destination must have the same data type)
Constants Define simple data type constants
Conversion Convert simple data types to other simple data types
Array Create arrays and access array items
String String manipulation operations (e.g., substring, concat, etc.)
Math Basic mathematical and logical operations (e.g., addition, round, and, or etc.)

CSScript Define complex mappings directly in C#

Table 3.5.: VMF Mapping Functions

Mapping scripts are defined using the Mapping Library which includes a number of Mapping
Functions. Mapping functions are the atomic building blocks from which all mapping scripts
are constructed. We have summarized the provided mapping functions in Table 3.5 (grouped
into 7 categories). Probably the most important function is Assign, which is used to map one
input parameter or intermediary result to an output parameter (i.e., a Web service operation
parameter in case of a lowering script, a feature output parameter in case of a lifting script).
Functions from the Constants group are used to create new data directly in the mapping. All
remaining mapping functions are used to transform parameters in various ways (e.g., from
one data type to another, using string manipulation, or using mathematical and logical opera-
tions). Furthermore, more complex mappings can be defined in the CS-Script language [170].
Essentially, this allows to deploy custom mapping functions, which can use the full power of
the C# programming language. For instance, this can be used to invoke external Web services
at mediation time.

<<Feature>>
Notify_Customer

<<InParameter>>

<<DataConcept>>
Message : string

<<InParameter>>

<<DataConcept>>
SenderNr : string

<<InParameter>>

<<DataConcept>>
ReceiverNr : string

<<OutParameter>>

<<DataConcept>>
sendStatus : bool

<<Operation>>
SendSMS1

<<InParameter>>
message : string

<<InParameter>>
areaCodeSender : int

<<InParameter>>
sender : int

<<InParameter>>
areaCodeReceiver : int

<<InParameter>>
receiver : int

Assign

Assign

Assign

Assign

AssignConvertToInt

ConvertToInt

ConvertToInt

SubString(0,4)

SubString(4,8)

SubString(0,4)

AssignConvertToIntSubString(4,8)

<<OutParameter>>
status : string

ConvertToBoolean

Figure 3.11.: VMF Mapping Example

40

3.7. Service Mediation

We give a concrete mapping example in Figure 3.11. In this example, the abstract feature
Notify_Customer from the CPO case study, which needs three input parameters and produces
one output parameter, is mapped to the concrete Web service operation SendSMS1. The param-
eter Message is identical in both interfaces, and can therefore be mapped directly (using only an
Assign function). Note that for the Assign function to work both sides need to be represented
using the same data concept (in this case string). The parameter SenderNr is split into the area
code and the actual number. This is done using the string operation SubString which takes
the start index of the string and the length of the substring as parameters. Afterwards, both
substrings are converted to integers using the ConvertToInt function. This is necessary since
assigning a string to an integer is not possible. The ReceiverNr is handled similarly. So far,
only input parameters have been mapped (i.e., all information given so far forms the lowering
script for this service). The lifting script, which defines how the service output is mapped to
the feature output, consists only of a ConvertToBoolean and another Assign function.

� �
1 // create mapper for feature and operation

2 Mapper mapper = metadataService.CreateMapper(NotifyCustomer , SendSMS1);

3

4 // map feature message to operation message

5 mapper.AddMappingFunction(

6 new Assign(mapper.FeatInParams[0].GetChild("Message"), mapper.OpInParams[0]));

7

8 // get AreaCode , convert to int and map it to operation

9 Substring acSenderStr = new Substring(mapper.FeatInParams[0].GetChild("SenderNr"), 0, 4);

10 acSenderStr = mapper.AddMappingFunction(acSenderStr);

11 ConvertToInt acSenderInt = new ConvertToInt(acSenderStr.Result);

12 acSenderInt = mapper.AddMappingFunction(acSenderInt);

13

14 mapper.AddMappingFunction(

15 new Assign(acSenderInt.Result, mapper.OpInParams[1]));

16

17 // get SenderNr , convert to int and map it to operation

18 Substring senderNrStr = new Substring(mapper.FeatInParams[0].GetChild("SenderNr"), 4, 8);

19 senderNrStr = mapper.AddMappingFunction(senderNrStr);

20 ConvertToInt senderNrInt = new ConvertToInt(senderNrStr.Result);

21 senderNrInt = mapper.AddMappingFunction(senderNrInt);

22

23 mapper.AddMappingFunction(

24 new Assign(senderNrInt.Result, mapper.OpInParams[2]));� �
Listing 3.3: VMF Mapping Example Code

Listing 3.3 illustrates how the first two mappings of this example (i.e., Message and SenderNr)
are specified in C# code. The feature Notify_Customer requires the data concepts Message,
SenderNr and ReceiverNr as input (data type string). The SendSMS1 operation also requires the
parameter Message (string), but sender and receiver number are split into area code and number
(integer). In this example, phone numbers contain an area code with four digits, followed by a
number with eight digits.

41

Chapter 3. QoS-Aware Service Runtime Environment

Line 2 shows how the Mapper is created for feature Notify_Customer and operation SendSMS1.
Clearly, both objects have to be queried from the registry using VQL before the Mapper can
be created (this is not shown in Listing 3.3 for brevity). The Assign function used in line 6
links the Message of the feature (Notify_Customer) to the Message of the operation (SendSMS1),
whereas mapper.AddMappingFunction() adds this link to the mapping. Lines 9–15 get the area
code from the feature’s SenderNr as substring. Then it is converted using the ConvertToInt
function to an integer, which is finally assigned to operation’s input parameterAreaCodeSender.
In lines 18–24 the same is done to map the sender number from the feature’s input to the
operation’s input. Similar mapping functions must be added to map the receiver number from
feature and operation, which is not shown in the figure for brevity.

More detailed information about service mediation and the VMF mapping framework can be
found in [93] and [70]. It should be noted that doing the mapping programmatically using the
API provided by the Mapper component gives great flexibility to the developer. However, it
remains a tedious task for complex mappings and large numbers of features and operations.
Therefore, we envision to support graphical mapping of services as part of the VRESCo GUI,
as provided by other mapping tools such as Altova Mapforce [2].

3.8. Security Mechanisms

The services and associated service metadata stored in the Registry Database represent sensi-
tive information that should usually not be available for the public. This raises the need for
appropriate security mechanisms that guarantee integrity and confidentiality of this informa-
tion. Such security mechanisms have been implemented in VRESCo, which is discussed in the
following section.

3.8.1. Authentication

Authentication mechanisms generally aim at confirming the identity of users or objects. The
VRESCo runtime is not targeted to public Web services but focuses on enterprise scenarios.
In these settings, security issues often play a crucial role since only specific clients should be
able to access internal services and resources. Therefore, it is important to first authenticate
these clients before authorization mechanisms can be applied successfully. For this reason, a
dedicated User Management Service has been implemented that is responsible for maintaining
all users known to the runtime. In this service, users are assigned to specific user groups
that allow fine-grained access control policies. For every user, the runtime maintains several
properties (e.g., first name, last name, company, etc.) and the needed user credentials such as
username and password.

42

3.8. Security Mechanisms

VRESCo Runtime Environment

Registry
Database

Service
Client

Client
Library

Certificate
Store

ACL

Certificate
Validator

Username
Password
Validator

1. Service Certificate

2. Client Certificate

4. Username/Password

VRESCo
Core

Service
7. Invoke

Claim
Checker

6. Check Claims

5. Verify

3. Verify

Figure 3.12.: Authentication and Authorization in VRESCo

Figure 3.12 shows the VRESCo authentication mechanism by using a typical invocation of some
core service (e.g., Publishing or Metadata Service). As shown before, all client invocations of
VRESCo core services must pass the Access Control Layer (ACL). Basically, authentication is
then done twofold: using certificates and username/password credentials. Before any core ser-
vice can be invoked, a secure communication channel between service requester and VRESCo
host must be established. This is done using X.509 certificates [67] and HTTPS (i.e., X.509
certificates are associated with every port where VRESCo core services are running). However,
the channel can only be established if both communication parties trust each other’s certificates.
Therefore, in step 1–3 the certificates of client and service are verified by the other side (we
assume that the certificates have been exchanged before the first invocation). The client has
to trust the service certificate, while the Certificate Validator verifies if the client’s certificate is
in the certificate store (step 3). If this is not the case, an exception is returned to the requester
and the requested core service is not executed. It should be noted that the use of certificates
additionally enables to encrypt all messages which is provided as built-in functionality by the
WCF platform [101].

In addition to authentication based on certificates, the VRESCo runtime supports username-
password credentials, which follows the WS-Security specification [139]. For every invocation,
these credentials are attached to the SOAP message, which is done transparently by the Client
Library (step 4). The Username/Password Validator then verifies if these credentials match to the
one’s stored in the Registry Database (step 5). As before, if they do not match an exception
is returned to the requester and the requested core service is not executed. As a result, after
executing steps 1 to 5 client and service are authenticated and both sides know the identity of
the communicating party. In the next section, we show how claim-based authorization is then
applied in VRESCo.

43

Chapter 3. QoS-Aware Service Runtime Environment

3.8.2. Claim-based Authorization

Authentication and authorization for Web services have been addressed by various research
efforts (e.g., [18,19,49]) and specifications such as WS-Security [139]. In general, access control
is often done role-based where different roles are assigned to users, while security privileges
are directly granted to these roles. In our work, we follow the concept of claim-based access
control that goes one step further: Claims can be defined on different resources (e.g., following
the CRUD operations Create, Read, Update & Delete) for users and groups. Users are allowed to
access resources if they provide the needed claim in their credentials. This includes all claims
that belong to a specific user, while users also inherit the claims assigned to their user group.

Resource Resource-level Instance-level
Category 4

Service 4 4

User 4 4

User Group 4

Claim 4 4

QoS 4

Table 3.6.: Basic Claims

Table 3.6 shows resources and their claims that have been implemented in VRESCo. We
distinguish between resource- and instance-level claims: Resource-level claims apply to all
instances of a resource (e.g., Read on all services), while instance-level claims refer only to a
specific instance of a resource (e.g., Update on user U1). Besides having claims for the core
resources Service, Category, User and User Group, the resource Claim defines who is allowed
to create, modify and delete custom claims. Therefore, users can dynamically add claims for
other resources (e.g., regarding the service metadata model). Finally, claims on QoS can be
used to restrict access to QoS information. In addition, the PermissionManager claim enables
to assign service instance-level claims to other users or groups. This is of particular interest
when service owners want to pass claims for their services to others. Besides assigning claims
manually, some claims are generated automatically when users and resources are created.

Similar to users and user groups, claims are also managed by the User Management Service
and stored in the Registry Database. The VRESCo core services use the Access Control Layer
(see Figure 3.12) to verify if the client has the required claims to invoke the current operation.
After clients are authenticated, their identity is known and the Claim Checker can verify the
claims in the database (step 6). If the claims are present the operation is executed (step 7),
otherwise an appropriate exception is returned to the requester. To give a concrete example
for such claims, the Publishing Service requires the Create claim on resource Service, while the
Query Engine requires the Read claim on the queried resources (i.e., either the resource-level
Read claim or the instance-level Read claim on instances returned by the Query Engine).

44

3.9. Evaluation

3.9. Evaluation

In this section, we give an evaluation of the VRESCo runtime focusing on the topics presented
so far. The purpose of this evaluation is twofold: Firstly, we show the runtime performance
regarding service querying, rebinding and mediation using synthetic data. The goal is to
analyze the impact of each aspect in isolation. Secondly, we combine them into a coherent
end-to-end evaluation by using an order processing workflow. The aim is to understand
the influence of each aspect with regard to the overall process duration in a realistic setting.
Additionally, we show how the individual results of the first part interrelate in an end-to-end
setting. All experiments have been executed on an Intel Xeon Dual CPU X5450 with 3.0 GHz
and 32GB RAM running under Windows Server 2007 SP1. Furthermore, we use .NET v3.5
and MySQL Server v5.1. For mediation, rebinding and end-to-end evaluation we have created
different sets of test services and QoS configurations (with varying response times) using the
Web service testbed Genesis [80]. These are described in the corresponding subsections.

3.9.1. Querying Performance

First of all, we show the performance of the VQL Engine in Figure 3.13, which has been
measured using the query in Listing 3.1. The test data are generated automatically: In every
step, 5 categories are inserted, each having 5 alternative services with 10 revisions, while every
revision has 1 tag and 11 QoS attributes with random values. In every step 20% of all services
match the queried feature Notify_Customer and service owner CompanyX, while only 2% of
all service revisions match all query criteria. To eliminate outliers, the results represent the
median of 10 runs, while the database and Hibernate session cache are cleared after each run.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000 16000

E
xe

cu
tio

n
T

im
e

(in
 m

s)

Service Revisions

 SQL
 HQL
 VQL

(a) Query Performance (NL)

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

E
xe

cu
tio

n
T

im
e

(in
 m

s)

Service Revisions

 EXACT
 RELAXED
 PRIORITY

(b) Query Strategies (User, L10)

Figure 3.13.: Querying Performance

45

Chapter 3. QoS-Aware Service Runtime Environment

Figure 3.13a compares the performance of the queries generated by SQL, HQL and VQL.
Therefore, the query from Listing 3.1 was manually translated into HQL and SQL, while
the VQL query is executed on core objects using the exact strategy without result limit (NL).
The queries return only the ID of the matching revisions. Therefore, this table shows the
performance of the native queries and does not include the time needed for converting the
results back into ServiceRevision objects. The results indicate that the queries generated by
all three approaches perform equally. Please note that all approaches exhibit the same peaks
which are due to internal processing of the database.

Figure 3.13b compares the querying strategies using the same query on user objects and limited
to 10 results (L10). The limit was chosen since relaxed and priority return more revisions than
exact (which influences the results). It can be seen that exact is much faster than relaxed, while
relaxed and priority have similar performance. The reason for the significant difference is that
relaxed and priority use different table joins and need to sum up and order by the total sum of
priority values, while the query in exact mode can be optimized by the database.

Finally, Table 3.7 depicts the duration of the individual steps during VQL query processing.
Therefore, the previous query is executed on both core and user objects using the exact strategy.
Generation indicates how long the Preprocessor component needs to analyze and generate the
query. Execution depicts the actual query execution time, while Conversion represents the time
needed by the ResultBuilder to convert the query results.

Revisions
User Model Core Model

Generation Execution Conversion Generation Execution Conversion
1000 4,8 3,8 84,7 3,1 3,6 7,1
2000 4,8 14,6 87,5 3,2 14,4 6,8
3000 4,8 7,7 87,0 3,2 7,6 6,5
4000 4,8 9,8 77,5 3,2 9,7 6,5
5000 4,8 12,0 81,4 3,2 11,7 6,4
6000 4,8 13,5 83,7 3,1 13,5 7,0
7000 4,8 15,9 86,9 3,2 15,5 6,8
8000 4,8 17,9 86,3 3,2 17,6 7,3
9000 4,8 19,8 82,4 3,2 19,8 7,2
10000 4,8 22,2 86,6 3,1 20,5 6,8

Table 3.7.: VQL Query Processing (in ms, User/Core, L10)

The results show that Generation is almost constant for core/user objects, while the latter is slightly
slower since queries have to be translated to refer to core objects. Obviously, Execution is almost
equal for both approaches. Finally, the table indicates that Conversion is fast for core objects, while
it takes some time for user objects. The main reason is that queries actually return IDs, while the
corresponding entities are loaded from the NHibernate session context. Furthermore, revision
objects have a number of collections (e.g., tags, QoS, etc.) that have to be converted by the

46

3.9. Evaluation

ResultBuilder using reflection, which internally leads to a number of additional queries (since
most collections are lazy-loaded [56]). In this setting, Conversion is constant for all revisions
within both models due to the result limit of 10.

3.9.2. Rebinding Performance

In the following subsection, we give an evaluation of the different rebinding strategies. The
evaluation is done using the Web service testbed Genesis [80]. This testbed provides a mech-
anism to automatically deploy JAX-WS Web services which can be configured using plug-ins
that simulate changing QoS attributes (e.g., response time, availability, etc.).

For measuring the rebinding performance, we used Genesis to simulate 10 services that im-
plement the same feature. Then, we leveraged the QoS plug-in to continuously modify the
response time of all services using a Gaussian distribution, and we additionally increased the
variance after each step in order to simulate an environment where the QoS is subject to sig-
nificant change. Finally, we implemented one client for each rebinding strategy and measured
the average response time when invoking the service. As a result, we can see the impact of the
different rebinding strategies for each client.

The results of this experiment are depicted in Figure 3.14. It should be noted that the response
time of the best service is decreasing since we increase the variance with every step. All
services start with a (server-side) execution time of 2000 ms. The (client-side) response time
differs about 400 ms which is caused by the network latency and the time needed for wrapping
SOAP messages. Therefore, the actual (server-side) execution time of the best service reaches
0 ms after step 30.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(in
 m

s)

Execution Time Variation

Fixed Binding
Periodic Rebinding

On Invocation Rebinding

Figure 3.14.: Rebinding Strategy Performance

47

Chapter 3. QoS-Aware Service Runtime Environment

Obviously, clients with Fixed binding perceive the worst response time because the binding
does not change. Clients using Periodic rebinding mostly use services with good response time.
However, since rebinding is done in pre-defined intervals the binding is not always up-to-date
(e.g., steps 17–18, 24–25 and 27–28 represent such situations). In contrast to that, clients with
OnInvocation rebinding always invoke the best service since the rebinding is re-considered just
before service invocation. However, this leads to a constant overhead of about 400 ms which
is needed to check the binding and update if necessary. In this figure, the OnDemand strategy
has been omitted since it heavily depends on when the client requests the rebinding.

3.9.3. Mediation Performance

Moreover, we have evaluated the overhead introduced by the VRESComediation mechanisms,
which is shown in Figure 3.15. This evaluation has again been done using the Genesis testbed.

Figure 3.15a depicts the response time of a single Web service invocation depending on the size
of the message sent to the service. We have evaluated five different scenarios: (1) no mediation,
(2) mediation using only constant mapping functions (i.e., replacing an input parameter with
a constant string), (3) using mathematical functions (replacing a parameter with a calculated
value), (4) using string modification functions (adding a constant string to a string parameter),
and finally (5) using CS-Script (a simple script which exchanges the order of two parameters).
Unsurprisingly, unmediated invocations are generally faster than any type of mediation. The
performance of mediated invocations is similar no matter what type of mapping functions
have been applied. However, in our experiments mediation using string operations introduces
slightly more overhead than the other types. This is due to the fact that string operations
naturally become more expensive when the strings become bigger.

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000 3500

R
es

po
ns

e
T

im
e

(in
 m

s)

Payload Size (in KB)

Unmediated
Constants

Math Functions
String Operations

CS-Script

(a) Message Size

 190

 200

 210

 220

 230

 240

 0 20 40 60 80 100

R
es

po
ns

e
T

im
e

(in
 m

s)

Mapping Functions

Constants
Math Functions

String Operations
CS-Script

(b) Mediation Steps

Figure 3.15.: Mediation Performance

48

3.9. Evaluation

In Figure 3.15b we have studied the overhead introduced by different mapping functions
in more detail. We have evaluated how the overhead introduced by mediation depends on
the amount of mediation necessary (measured in the number of mapping functions applied).
We have evaluated the same scenarios as before, but omitted the tests using unmediated
invocations. Generally, the additional overhead introduced by a larger number of mapping
functions is rather small: the difference between 1 and 100 mapping functions varies between
5 and 20 ms. As before, the overhead introduced by string operations heavily depends on the
size of the string. Our experimentation string was rather sizable at 73 kByte, which explains the
comparatively big overhead incurred by this type of mapping function. Note that the overhead
of CS-Script mappings is constantly about 10 ms. The reason is that the main overhead is the
initialization of the scripting engine, while the execution of the script is usually negligible (as
long as the script has no expensive computations, which is not typical for mapping scenarios).

This result differs from what we have reported earlier in [89]. In this work, we have compared
various Daios mediators including one based on SAWSDL [201] which is similar to the VMF
approach from a conceptual point of view. Contrary to the constant overhead of the VMF
mediator, the overhead of SAWSDL-based mediation increases (slightly) with the number of
mediation steps. It should be noted, however, that the results must be compared with caution
because they represent two different approaches. While VMF is integrated into VRESCo,
the SAWSDL-based mediator has been implemented in the Java branch of Daios. Detailed
information about the performance of VMF can be found in [70].

3.9.4. Security Performance

Furthermore, we want to briefly evaluate the security features by showing the overhead of
authentication and authorization when invoking VRESCo core services. For our experiments
we have used the Publishing Service to activate and deactivate service revisions in the registry.
To show the effects of authentication and authorization, we have utilized different users for the
service invocation (i.e., user admin has all access rights, while authorization has to be verified
for other users). In each round, we have added an additional revision. Furthermore, we show
the difference of using the resource-level Update claim on Revision, compared to instance-level
claims on specific revisions (we assign two claims per revision to the user).

The results are depicted in Figure 3.16. The red line depicts the time needed for 500 activations/-
deactivations without security. The black line indicates the overhead involved in authentication
and transport-level message protection based on certificates. In this setting, the average over-
head is about 11%. Finally, for authorization we distinguish between resource-level claims
(RLC, green line) and instance level claims (ILC, blue line). In this setting, the overhead for
authorization plus authentication in relation to authentication only is about 20% for RLC and
about 27% for ILC. The results indicate a slight overhead when enabling security. Additionally,
RLC should be preferred over ILC since performance is decreasing with the number of claims.

49

Chapter 3. QoS-Aware Service Runtime Environment

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500

T
im

e
(in

 m
s)

Number of Service Invocations

No Security
Authentication

Authorization (RLC)
Authorization (ILC)

Figure 3.16.: Authentication and Authorization Performance

3.9.5. End-to-End Evaluation and Discussion

The final part of the evaluation consists of an end-to-end scenario, that combines the most
important aspects introduced above (i.e., querying, rebinding, mediation and invocation).
Therefore, we use a larger order processing workflow taken from the CPO case study introduced
in Section 1.1. The use case represents online ordering of new cell phone contracts including
mobile phone and SIM card. The workflow has been implemented in C# and consists of 19
activities which are split into 5 sequential subprocesses.

Basically, the workflow starts upon receiving customer orders via the company Web site.
Firstly, the internal stock is checked for the availability of phone and SIM card. If one of
those components is missing, it is ordered by using one of the internal or external supplier
services. Secondly, the contracting subprocess creates a new contract and, if necessary, adds
the customer to the CRM system. If the customer wants to transfer her old number, the number
porting subprocess as depicted in Figure 1.2b is executed. Then, the new cell phone number is
activated in the GSM network. Finally, the payment and shipping subprocesses are executed.

The services used in this case study have been deployed on a different host using Genesis [80].
For each internal service (e.g., CRM, contracting, etc.) we have deployed only one alternative,
whereas, for each external service (e.g., Credit Card Service, etc.) multiple alternatives are
available. More precisely, we have provided between 60–250 alternatives per service. Addi-
tionally, there are 30 alternatives for the internal Notification Service, which is used to notify
customers of their order status (e.g., using SMS, email, mail, etc.). This is the only service in our
experiment that requires significant mediation. Finally, we use the Genesis testbed to simulate
a response time of 30–100 ms for each service.

50

3.9. Evaluation

 0

 5000

 10000

 15000

 20000

 25000

 30000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

T
im

e
(m

s)

Experiment Runtime

Sum of Service Response Times
Sum of Mediation

Sum of Queries
Other

Figure 3.17.: End-to-End Performance

In Figure 3.17, we show the average process duration in this case study based on 40 concur-
rent clients running on one host that is also hosting the VRESCo environment. Each client
continuously executes the process over an experiment time of 16 min. We have chosen the
Periodic rebinding strategy for this scenario, to accommodate for our highly dynamic scenario
with many alternatives for each external service and changing QoS properties. In order to get
a big number of re-bindings during our experiment time we have chosen a rebinding interval
of 5 seconds. The x-axis of the figure shows the experiment time (in minutes) and the y-axis
depicts the averaged process durations of the currently executing process instances. Right
after bootstrapping the system, there is a steep incline in the overall duration because each
client performs some initialization. This includes querying the available services (red part),
as well as creating proxies and binding to one service candidate (blue part). Additionally, the
services are invoked (green part) and a certain amount of mediation occurs (black part). After
the initialization phase, the system stabilizes and the response times and mediation time are
constant. The mediation overhead reflects our detailed mediation results from Figure 3.15a.
Together, service response times and mediation account for about 92% of the average process
duration after the initialization phase. The remaining 8% (blue part) represent other factors
such as thread handling or the workflow business logic. Please note that querying and oc-
casional rebinding still happens after the initialization phase, but it is no longer part of the
average process execution time (on the y-axis). This is because the rebinding clients perform
querying and rebinding asynchronously in a separate thread.

Therefore, it solely depends on the rebinding strategy whether querying and rebinding is part
of the process execution time or just part of the initialization phase. In case of OnInvocation,
there would be querying and rebinding overhead in the overall process execution time, whereas
for OnDemand the behavior would be similar as shown above.

51

Chapter 3. QoS-Aware Service Runtime Environment

Generally, the decision which rebinding strategy to use depends on the particular domain and
the requirements. For example, for the number porting service fixed binding is not a reasonable
choice because even simple changes of the partner CPO’s services (e.g., a different endpoint)
would break the process. OnDemand is only reasonable if changes happen infrequently, and
adaptation to changes is not time-critical. Periodic rebinding, on the other hand, is only adequate
when services change frequently enough to warrant permanent polling for updates. Since
number porting is not time-critical, we could have also used the OnInvocation rebinding strategy
which has a constant invocation overhead but always finds the best available service.

3.10. Related Work

In this section, we want to give an overview of related work, with an emphasis on service
metadata and querying, versioning and dynamic binding/invocation of Web services.

• Service Metadata and Service Querying: Besides UDDI and ebXML, there are other
standards for describing service metadata [23]. Some of them are used by semantic Web
service approaches [105], such as OWL-S [193], WSMO [196] and SAWSDL [201]. It should
be noted, however, that the VRESCo service metadata model introduced in Section 3.2 is
not intended to compete with these approaches. We aim at enterprise development where
metadata is an important business asset which should not be accessible for everyone, as
opposed to the semantic Web service community where domain ontologies should be
public to facilitate integration among different providers and consumers.

In general, several standards and research approaches have emerged that address the
complexities of managing and deploying Web services [209]. In these approaches, service
querying and selection play a crucial role, especially regarding service composition (e.g.,
[64, 159, 212]). However, the query models of current registries and Web service search
engines [149] mainly focus on keyword-based matching of service properties which often
do not cover the rich semantics of service metadata.

Yu and Bouguettaya [208] introduce a Web service query algebra and optimization frame-
work. This framework is based on a formal model using service and operation graphs that
define a high-level abstraction of Web services. Besides functional service descriptions,
they present a QoS model that distinguishes between runtime quality (latency, reliability
and availability) and business quality (fee and reputation). Service queries are specified
as algebraic operators on functionality, quality and composition of services, and finally
result in service execution plans. Optimization techniques are then applied to select the
best service execution plan according to user-defined QoS properties. This work is com-
plementary to ours: While the authors focus on their formal service model and introduce
a query algebra for this model, we present a service runtime that provides end-to-end
support for service management and querying functionality.

52

3.10. Related Work

Furthermore, there is plenty of research in the area of service discovery (e.g., [86,176]). The
authors distinguish between three types of service discovery. Early service discovery occurs
in the requirements engineering phase and is driven by the requirements specification.
Architecture-driven service discovery is done during the design phase and is driven by the
specification of functionality, quality attributes and constraints. Finally, runtime service
discovery deals with the discovery and replacement of services at runtime. In contrast to
our work, the approach presented in [176] focuses on runtime monitoring the compliance
of service-centric systems to requirements and discovering alternative services at runtime,
whereas dynamic binding is not explicitly addressed.

• Versioning: The evolution of Web services is subject to a wide ranging debate. The W3C
recently paid attention to versioning of Web services [200, 203]. Currently, a common
workaround to deal with the lack of versioning support is to use separate namespaces
for each version of a service. The general problem of versioning of distributed software
systems is sketched in [188] where the author distinguishes between Distributed-Object
Versioning and Messaging Versioning. Even more generally, Web service evolution can be
considered a special case of the Software Configuration Management (SCM) problem [33].
Therefore, we have adopted many notions from SCM (e.g., revisions, branching and
merging, revision tagging) in our approach.

Current registry standards provide only little support for evolving Web services. The
ebXML versioning approach [134] is based upon the versioning extensions of Web-
DAV [30], but provides only a small subset of this functionality. If the ebXML registry
supports versioning, all registry items are implicitly under version-control. However, it
should be noted that ebXML mainly focuses on versioning of registry data but it remains
unclear how clients can access specific service revisions. In contrast to ebXML, the UDDI
specification [136] does not mention versioning at all. One common approach for ver-
sioning in UDDI is that a given version of a wsdl:portType is represented by a unique
tModel. Current best practices for service versioning using UDDI are described in [25].

One approach that addresses Web service evolution has been introduced by Kaminski et
al. [81]. The authors outline various requirements for versioning, and demonstrate why
common versioning strategies are inappropriate in the context of Web services. Instead
they propose to use the Chain of Adapters pattern [57] for developing evolving Web ser-
vices. Ponnekanti et al. [151] address the interoperability among independently evolving
Web services by specifying four types of incompatibilities that may arise: structural, value,
encoding, semantic. However, the paper mainly focuses on structural and value incom-
patibilities. The authors introduce static and dynamic analysis algorithms to identify
compatibility between applications and non-native services, and present tools that im-
plement these algorithms. Moreover, they introduce so called cross stubs for resolving
incompatibilities. These cross stubs are generated semi-automatically and mediate the
interaction between application and target service at runtime.

53

Chapter 3. QoS-Aware Service Runtime Environment

• Dynamic Binding, Invocation and Mediation: Pautasso and Alonso [145] discuss
binding models for (Web) services, as well as different points in time when the bindings
are evaluated. The motivation of their work is the shortcoming of current composition
languages such as WS-BPEL [140]. In WS-BPEL, dynamic binding is supported by re-
assigning endpoints using the partnerLink construct. Endpoints represent specific ports
of a service interface at runtime which are usually identified using WS-Addressing [194].
However, dynamic binding in WS-BPEL can only be achieved if the interfaces of the
different services are identical, which limits the flexibility of this approach. The authors
present a flexible binding model using their JOpera system. In this approach, binding is
done using reflection and therefore does not require a specific language construct.

Di Penta et al. [40] present the WS-Binder framework for enabling dynamic binding within
BPEL processes. They distinguish between three different types of binding mechanisms:
Pre-execution workflow global binding occurs prior to the execution of a composition and
is done using genetic algorithms. Run-time local binding allows to select service bindings
while the composition is already running. Finally, run-time workflow slice re-binding stops
the execution of the composition in case of an error (e.g., service is not available or QoS
values are not as desired), and determines the workflow slice still to be executed using
global binding. This approach is built on top of WS-BPEL and uses proxies to separate
the abstract services with the concrete service instances.

Apache Web Service Invocation Framework (WSIF) [3] represents the first Java-based
dynamic invocation framework for Web services. However, WSIF has some drawbacks
compared to other frameworks. For instance, it provides only weak support for us-
ing complex XML schema types in parameters (input or output) since they have to be
mapped to existing Java classes before invocation. Furthermore, the runtime perfor-
mance compared to other frameworks such as Daios, Apache CXF [7], Apache Axis2 [6],
or Codehaus XFire [31] is significantly worse (see [92]). Finally, WSIF has not been under
active development since 2003. In contrast to Daios, the frameworks above rely on static
components for accessing Web services, and provide little dynamic invocation support.

There are several research efforts addressing service mediation. Similar to our client-side
approach, others use adaptors to resolve interface incompatibility (e.g., [16, 99]). These
adaptors are conceptually similar to our mediators, but are more decoupled from the
clients. Furthermore, service mediation is also addressed in semantic Web services. For
instance, the Web Service Execution Environment (WSMX) [195] provides a mediation
architecture based on WSMO. However, semantic approaches usually rely on shared
ontologies and explicit semantic information. Others have addressed mediation on the
service composition level. For instance, Moser et al. [123] adapt BPEL processes by
exchanging service bindings at runtime, while compatibility of services is realized using
XSLT transformations. Finally, industry solutions often address mediation at the ESB
level [167] by using XSLT-based transformation on SOAP messages.

54

3.11. Conclusion

3.11. Conclusion

In this chapter, we have introduced the VRESCo runtime environment that aims at address-
ing some of the current challenges in SOC. Among others, this includes service metadata
and service querying, QoS-based dynamic binding and invocation, as well as service media-
tion. Furthermore, we also addressed service versioning and security mechanisms to provide
authentication and authorization.

One of the main goals of VRESCo is to provide an environment for transparent binding of
services that perform the same task but have different technical interfaces. Therefore, we have
introduced a service metadata model following a feature-driven service abstraction. Further-
more, a querying framework has been proposed to query services and associated metadata
using different querying strategies. Finally, service mappings are defined to map services with
different interfaces, while the mediation framework is used to execute these mappings. As a
result, clients can seamlessly access alternative services by automatically rebinding to these
alternatives. For instance, this can be desired if new service revisions are published or old
services are deleted, or if alternative services provide better QoS.

The evaluation has shown that the performance of the different components (i.e., querying,
mediation and security) is adequate for the expected number of services. Furthermore, we also
depicted the effects of using different rebinding strategies. Finally, the end-to-end evaluation
has discussed the effects of the different components using a scenario from the motivating
example introduced in Section 1.1.

55

Chapter 4.

Service Notification Engine

This chapter describes the VRESCo event notification support in detail. A brief overview of the
necessary background was given in Section 2.2. After highlighting the motivation of this work
in Section 4.1, the architectural overview of the eventing mechanism is shown in Section 4.2. The
details of this eventing mechanism are described in the following sections. This includes event
types (Section 4.3), event participants (Section 4.4), subscription and notification mechanisms
(Section 4.5), event search (Section 4.6), event ranking (Section 4.7) and event correlation (Sec-
tion 4.8). Furthermore, event access control using event visibility is introduced in Section 4.9.
Section 4.10 evaluates the eventing support regarding the expressiveness of the subscription
language and the performance of the Event Engine, as well as a brief software demonstration.
Finally, Section 4.11 describes related work in this area and Section 4.12 concludes the chapter.

Contents
4.1 Motivation . 58

4.2 Architectural Overview . 58

4.3 Event Types . 60

4.4 Event Participants . 64

4.5 Subscription and Notification Mechanisms . 67

4.6 Event Persistence and Event Search . 70

4.7 Event Ranking . 71

4.8 Event Correlation . 72

4.9 Event Visibility . 73

4.10 Evaluation . 74

4.11 Related Work . 83

4.12 Conclusion . 85

57

Chapter 4. Service Notification Engine

4.1. Motivation

In Chapter 1, we have introduced several SOC challenges such as metadata, querying and
versioning, as well as dynamic binding, invocation and mediation of services. One reason
for these issues is represented by the fact that services, associated service metadata and QoS
attributes change regularly. However, service consumers are not aware of these changes, and
cannot automatically react to service and environment changes (e.g., by adapting their service-
based applications). This raises the need for appropriate event notification mechanisms.

Notifying subscribers when events of interest occur has been addressed by the Publish/Sub-
scribe paradigm [47] in general, and event-based systems [124] in particular. Cugola and Di
Nitto [34] give a detailed overview of approaches that combine Publish/Subscribe and SOA.
The most popular examples are WS-Notification [138] and WS-Eventing [199]. Additionally,
UDDI [136] and ebXML [134] introduce limited support for event notifications in registries.

As discussed in Chapter 2, we see three main challenges in existing approaches. Firstly, the
notifications provided by service registries mainly focus on basic service management events.
In contrast to this, additional runtime information concerning service invocations and QoS
should also be taken into consideration. We argue that such notifications are equally important
and should, therefore, be provided by service runtime environments. Secondly, most existing
approaches have in common that subscriptions can only address single events (e.g., new
service is published). In practice, however, it is often desired to detect more complex events
(e.g., average QoS within some timeframe is beyond some threshold). Therefore, complex
event processing mechanisms [102] such as sliding window operators and event patterns are
needed. Thirdly, some approaches do not store the event history but discard events as soon as
all subscribers have been notified. However, we think that users should be enabled to query
for historical events since this can be of great interest (e.g., during service selection).

Considering our motivating example from Section 1.1, there are several use cases for simple
and complex subscriptions. On the one hand, CPOs want to know if new services are published
or existing services are deleted by partners and competitors. On the other hand, the QoS of
external services is also of interest. For instance, if the average response time of some service
goes beyond a certain threshold, rebinding to an alternative service may become necessary.

4.2. Architectural Overview

This section gives a high-level overview of the VRESCo event notification support, while the
details are described in the remainder of this chapter. The basic idea can be summarized as
follows: Notifications are published within the runtime if certain events occur (e.g., service is
added, user is deleted, etc.). Service consumers are then enabled to subscribe for notifications
about the occurrence of these events.

58

4.2. Architectural Overview

VRESCo Runtime

VRESCo Query Engine

VRESCo Event Notification Engine

Querying
Service

Subscription
Manager

Events

Subscriptions

Queries
Results

Event
Adapters

Eventing
Service

Notifications

Es
pe

r E
ng

in
e

Subscription
Storage

Query
Interface

Subscription
Interface

Notification
Manager

Delivery
Thread

Pool

Persistence Queue

Event
Database

Pending
Notifications Listeners

Figure 4.1.: VRESCo Eventing Architecture

Figure 4.1 depicts the architecture of the Notification Engine which represents one component
of the VRESCo runtime shown in Figure 3.1. Therefore, it is also implemented in C# on the
.NET platform. The event processing functionality is based on NEsper, which is a port of the
event processing engine Esper [45]. Within the Notification Engine, events are published using
the Eventing Service. Most events are produced by the corresponding VRESCo core services
(e.g., user management events are fired by the User Management Service while metadata events
are fired by the Metadata Service). Therefore, these services send their events directly to the
Eventing Service for publication, which is illustrated in Figure 3.1 using vertical lines between
VRESCo core services and Notification Engine. In contrast to this, some events (e.g., related to
QoS) are produced by external components (e.g., QoS Monitor), which use the external event
interface for publication. Event adapters are thereby used to transform incoming events into the
internal event format for further processing. The Eventing Service then forwards these events
to the Persistence Queue, which is responsible for persisting events in the Event Database. This
is done using the ORM Layer introduced in the previous chapter. Finally, the Eventing Service
feeds incoming events into the Esper Engine, which is responsible for event processing.

The Subscription Interface is used for subscribing to events of interest according to the in-
terfaces proposed in the WS-Eventing specification [199]. The Subscription Manager is then
responsible for managing subscriptions, which are put into the Subscription Storage. In ad-
dition, subscriptions are translated for further processing, which is done by converting the
WS-Eventing subscriptions into listeners that can be attached to the Esper Engine.

59

Chapter 4. Service Notification Engine

Esper performs the actual event processing and is, therefore, responsible for matching incoming
events received from the Eventing Service to listeners attached by the Subscription Manager.
On a successful match, the registered listener informs the Notification Manager, which is
responsible for notifying interested subscribers using a thread pool. Depending on the listener
type, the Notification Manager knows which mechanism to use (e.g., email, Web service, etc.).

Finally, the Query Interface on the bottom is used to search for historical events using the VQL
Engine (see Section 3.5), which returns all events that match a given VQL query. The Event
Database is implemented using a relational database and accessed via the ORM Layer.

4.3. Event Types

The first step in developing such an eventing mechanism is to define all event types which are
supported by the engine. In the context of our work several events can be captured at runtime.
We have identified various event types and show the most important types in Figure 4.2.

UserManagementEvent ServiceManagementEvent

ProcessEvent

BindingInvocationEvent VersioningEventMetadataEvent

QoSEvent

VRESCoEvent

BusinessEvent

Figure 4.2.: Event Type Hierarchy

In general, the event types form a type hierarchy following the concept of class hierarchies (i.e.,
events inherit the properties of their parent type). As shown in the figure, all events inherit from
the base type VRESCoEvent, which provides a unique event sequence number and a timestamp
measured during event publication. For efficient processing of events, VRESCo uses its own
event format implemented as C# classes. These event classes consist of name-value pairs which
are often used in event-based systems since they support efficient content-based filtering of
events. According to the type-based approach the event classes are part of an event hierarchy
as described above. Furthermore, in addition to simple name-value pairs the event classes may
also include non-primitive data types.

In the following, we describe all event types in more detail. It should be noted, that this list is
not intended to be exhaustive, but rather contains all events currently provided by VRESCo.
However, additional event types can be easily integrated into the runtime environment, which
makes the eventing infrastructure extensible.

60

4.3. Event Types

4.3.1. Service Events

Since VRESCo represents a service runtime environment, the most important events are obvi-
ously those related to service management. These events are summarized in Table 4.1 where
events are grouped according to their type, while the event condition in the right column
describes the situations when the event occurs.

Event Type Event Name Event Condition

ServiceManagementEvent

ServicePublishedEvent Service is published to the runtime
ServiceModifiedEvent Service is updated in the runtime
ServiceDeletedEvent Service is deleted from the runtime
ServiceActivatedEvent Service is activated in the runtime
ServiceDeactivatedEvent Service is deactivated in the runtime

VersioningEvent

RevisionPublishedEvent Revision is published to the runtime
RevisionActivatedEvent Revision is activated in the runtime
RevisionDeactivatedEvent Revision is deactivated in the runtime
RevisionTagAddedEvent Revision tag is added by the owner
RevisionTagRemovedEvent Revision tag is removed by the owner

MetadataEvent

ServiceCategoryAddedEvent Category is added to the runtime
ServiceCategoryModifiedEvent Category is modified
ServiceCategoryDeletedEvent Category is deleted from the runtime
FeatureAddedEvent Feature is added to a category
FeatureModifiedEvent Feature is modified
FeatureDeletedEvent Feature is deleted from a category
OperationAddedEvent Operation is added to the runtime
OperationModifiedEvent Operation is modified
OperationDeletedEvent Operation is deleted from the runtime
MappingAddedEvent Operation is mapped to a feature
MappingDeletedEvent Operation-Feature mapping is deleted

BindingInvocationEvent
ServiceInvokedEvent Service has been invoked
ServiceInvocationFailedEvent Service invocation has failed
ProxyRebindingEvent Service proxy is (re-)bound to a service

QueryingEvent
RegistryQueriedEvent Registry is queried using query string
ServiceFoundEvent Specific service is found by a query
NoServiceFoundEvent No services are found by a query

Table 4.1.: Service Events

To start with, basic service management events record if services are published, modified, acti-
vated, deactivated or deleted in the Registry Database. Furthermore, the VRESCo versioning
mechanism introduced in Section 3.4 is also captured by events. This includes the creation,
activation and deactivation of service revisions. Furthermore, adding and removing of revision
tags also triggers corresponding events.

61

Chapter 4. Service Notification Engine

Besides service management, service metadata is another important topic covered by the event-
ing mechanism. This mainly includes events that record if entities in the VRESCo metadata
model are created, updated or deleted (e.g., service categories, features, operations, etc.). In
addition, events also record if mappings between operations and features (as described in
Section 3.2.3) are created and deleted. Furthermore, events regarding binding and invocation
of services are also of particular interest. In VRESCo these events contain both the username
and IP address of the service requester, as well as the returned exception message, if the service
invocation has not been successful. Additionally, events are raised if service proxies success-
fully rebind from one service to another. Finally, events regarding querying are listed for
historic reasons. They have been disabled by default in the meanwhile, since they happen very
frequently but there are only few scenarios where these events are of interest.

4.3.2. QoS Events

Quality of Service represents an important issue in service-oriented systems, especially during
service discovery and dynamic rebinding. If there are multiple services candidates, consumers
often want to invoke the service having the “best” quality. In VRESCo, QoS events (see Table 4.2)
are used to record the current quality attributes of services. Thereby, we distinguish between
QoS values of services (QoSEvent), service revisions (QoSRevisionEvent) and service operations
(QoSOperationEvent). For instance, some QoS properties are defined on the operation-level
(e.g., response time), while others are defined on the revision- or service-level (e.g., security).

Event Type Event Name Event Condition

QoSEvent

QoSEvent QoS value of service is published
QoSRevisionEvent QoS value of service revision is published
QoSOperationEvent QoS value of service operation is published
RevisionGetsUnavailableEvent Service revision gets unavailable
RevisionGetsAvailableEvent Service revision gets available again

Table 4.2.: QoS Events

The QoS events reflect the QoS model described in Section 3.3. In Section 5.3 we will show how
QoS values are actually measured in VRESCo, how QoS events are used to combine different
monitoring techniques, and how this can be further used to monitor the compliance to SLAs.

4.3.3. Process Events

According to the SOA model, services are often invoked as part of business processes which
can be represented as composition of services. One common standard for SOA-based business

62

4.3. Event Types

Event Type Event Name Event Condition

WorkflowTrackingEvent

WorkflowAbortedEvent Workflow has been aborted
WorkflowChangedEvent Workflow has been changed
WorkflowCompletedEvent Workflow has been completed
WorkflowCreatedEvent Workflow has been created
WorkflowExceptionEvent Workflow execution has raised an exception
WorkflowIdleEvent Workflow is idle
WorkflowLoadedEvent Workflow has been loaded
WorkflowPersistedEvent Workflow has been persisted
WorkflowResumedEvent Workflow has been resumed
WorkflowStartedEvent Workflow has been started
WorkflowSuspendedEvent Workflow has been suspended
WorkflowTerminatedEvent Workflow has been terminated
WorkflowUnloadedEvent Workflow has been unloaded

ActivityTrackingEvent

ActivityInitializedEvent Activity has been initialized
ActivityExecutingEvent Activity has been executed
ActivityCancelingEvent Activity has been canceled
ActivityFaultingEvent Activity has been faulted
ActivityClosedEvent Activity has been closed
ActivityCompensatingEvent Compensating activity has been executed

UserTrackingEvent UserTrackingEvent Track business- or workflow-specific data

Table 4.3.: Process Events

processes is WS-BPEL [140]. Such processes can raise events which are often called process or
workflow events (e.g., some activity has been invoked, the process has completed, etc.).

The process events shown in Table 4.3 are based on the events provided by the Windows
Workflow Foundation (WF) [171]. Basically, these events record the lifecycle of workflows (e.g.,
Created, Started, Completed, etc.) and workflow activities (e.g., Executing, Compensating, etc.).
Furthermore, business- or workflow-specific data can also be tracked using UserTrackingEvents.
Section 4.4 describes in more detail how these events are handled in VRESCo.

4.3.4. User Events

Another type of events concern the management of VRESCo users, which mainly consists of
the three basic operations create, update and delete. Furthermore, events are raised when users
login to or logout from the Runtime Manager GUI.

Table 4.4 summarizes all user events currently available in VRESCo. These events seem to be
of minor importance at first glance but there are some scenarios where they are useful. For
instance, some users may be interested if user details (e.g., postal address) of partners change.

63

Chapter 4. Service Notification Engine

Event Type Event Name Event Condition

UserManagementEvent

UserAddedEvent User is added to the runtime
UserModifiedEvent User is modified
UserDeletedEvent User is deleted from the runtime
UserLoginEvent User login using the GUI
UserLogoutEvent User logout using the GUI

Table 4.4.: User Events

4.3.5. Business Events

The final group of events is represented by business events. Similar to UserTrackingEvents,
such events can be used to publish user- or business-specific data which is not covered by
the existing event types. In general, business events leverage the extensibility of the VRESCo
eventing mechanism.

� �
1 <?xml version="1.0" encoding="UTF-8"?>

2 <esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

3 xmlns="http://www.espertech.com/schema/esper"

4 xsi:noNamespaceSchemaLocation="esper-configuration -3-0.xsd">

5 <!-- ... -->

6 <event-type name="VRESCoEvent" class="VRESCo.Contracts.Eventing.VRESCoEvent"/>

7 <!-- ... -->

8 </esper-configuration>� �
Listing 4.1: Event Type Configuration

To be more concrete, these events have to be defined as C# classes and configured in XML
configuration files, which is currently done at design-time. As described in Section 2.2, the C#
classes representing the events must provide getter and setter methods for the event properties.
Furthermore, the event classes must be part of the event type hierarchy (e.g., inherit from the
base class VRESCoEvent). Finally, the XML configuration file defines the mapping between
name of the event and event class as shown in Listing 4.1 (line 6).

4.4. Event Participants

Event-based systems usually consist of two types of participants which pose different require-
ments to the system, namely event producers and event consumers (also referred to as event
source and sink). The following section describes the event participants in more detail.

64

4.4. Event Participants

4.4.1. Event Producers

In general, events are produced by various VRESCo components. However, different com-
ponents are responsible for firing different kinds of events. In this section, we describe these
components which mainly differ in their location. In this regard, we distinguish between in-
ternal events which are produced within the VRESCo runtime (i.e., by the core services) and
external events which are published from components outside the runtime (e.g., service proxies).

• VRESCo Services: Most events are directly produced by the corresponding VRESCo
core services as indicated in Figure 3.1 using vertical arrows. To give an example, service
management events (e.g., ServicePublishedEvent) are fired by the Publishing Service. The
same is true for versioning events, while metadata events are raised by the Metadata
Service. Consequently, user management events are published by the User Management
Service. All these event types have in common that they are produced as part of the
VRESCo core services and thus represent internal events. As described in Section 4.2, the
events are then forwarded to the Eventing Service which triggers the event processing
mechanisms. To accomplish this, the Eventing Service first adds a unique sequence
number and the timestamp of publication to the event payload, before publishing them
into the Esper Engine that performs the actual matching.

• Service Proxies: The application logic inherent to binding and invocation of services is
located in the service proxies that are provided by the Client Library (see Figure 3.1).
As a result, events concerning binding and invocation (e.g., ServiceInvokedEvent, Servi-
ceInvocationFailedEvent, etc.) are fired by this component. Therefore, VRESCo provides
an external event interface (as part of the Management Service) in order to allow clients
to feed binding and invocation events into the runtime. These client events represent
external events which are then transformed into the internal event format.

• QoS Monitor: QoS events are published by the QoS Monitor, which regularly measures
the QoS values of services. These events contain the id of the service/revision/operation
(depending on the type of QoSEvent), the name of the QoS property (e.g., response time),
and the measured value (e.g., 100 ms). Similar to the Client Library, the QoS Monitor
uses the external event interface to feed external events into the runtime. In Section 5.3
we present two different QoS monitoring techniques in more detail. We also show how
QoS events are used to publish current QoS values and monitor SLA violations.

• Workflow Engine: Process events are based on the VRESCo Composition Engine intro-
duced in [158–160]. Compositions in VRESCo are defined in a domain-specific language
called Vienna Composition Language (VCL). The overall idea is to define functional
and QoS constraints which can make use of constraint hierarchies by leveraging hard
(i.e., required) and soft (i.e., optional) constraints. The Composition Engine then tries to
find an optimal solution for these constraints semi-automatically. Finally, the optimized
compositions are executed using Windows Workflow Foundation (WF) [171].

65

Chapter 4. Service Notification Engine

The basic idea of process events is to trace workflow executions. Therefore, WF provides
a powerful tool called Tracking Service [78], which enables to hook into the workflow
engine to receive certain events (see Table 4.3). Moreover, tracking profiles are used to
define event filters, while matching events are sent to the users using tracking channels.

VRESCo Runtime Environment

Event
Database

VRESCo
Tracking
Service

VRESCo
Tracking
Channel

WF Workflow Engine

WF
Tracking
Runtime VRESCo

Eventing
Service

Subscribers

Figure 4.3.: Process Event Tracking

To integrate these workflow events into VRESCo, we have implemented our own Tracking
Service and Tracking Channel as shown in Figure 4.3. The Tracking Service reads the
tracking profile from a configuration file and listens to all events that match this profile
(in our case all WF workflow events). When such events are published by the Workflow
Engine, they are sent to the Tracking Channel and finally forwarded to the Eventing
Service that feeds them into Esper. In addition to notifying interested subscribers, the
events are persisted into the Event Database. As a result, users can subscribe to and
search for workflow events in the same way as for all other VRESCo events.

Please note that event producers may use different mechanisms for event publication. More
precisely, internal events are published by components within the runtime (e.g., VRESCo core
services, Workflow Engine) by directly interacting with the Eventing Service. The latter triggers
event publication using Esper and event persistence using the Persistence Queue. In contrast
to this, events of external components (e.g., QoS Monitor, service proxies) are published using
the external event interface and event adapters. They are transformed into internal events and
forwarded to the Eventing Service to perform the same processing steps.

4.4.2. Event Consumers

Similar to event producers, we distinguish between internal and external consumers. Inter-
nal consumers reside within the VRESCo runtime and register listeners at the Esper Engine
which are invoked when subscriptions match incoming events. External consumers outside
the runtime are notified depending on the notification delivery mode defined in the subscrip-
tion request. External consumers can be further divided into humans and services. Clearly,
notification delivery and notification payload differ for these two groups.

66

4.5. Subscription and Notification Mechanisms

• Humans: Humans are mainly interested in notifications sent per email, SMS or other
technologies such as news feeds (e.g., RSS [165], Atom [166]). In some scenarios, it may
also be suitable to log the occurrence of events in log files which are regularly checked by
the system administrator. In any case, notifications for humans may be less explicit since
humans can interpret incomplete information. Our current VRESCo prototype supports
human notifications using email. Furthermore, basic state changes of the registry content
can be published using Atom.

• Services: In contrast to this, service notifications are mainly sent using the specifications
WS-Eventing and WS-Notification (clearly, emails/feeds can also be used to some extent).
For our current prototype, we have enhanced the WS-Eventing specification since it rep-
resents a lightweight approach supporting content-based subscriptions. The integration
and enhancements of WS-Eventing are described later.

The notification payload may differ for humans and services. While services need exact infor-
mation about the event type or the context in which an event occurred, the notification payload
for humans may be less verbose. In addition, notifications for humans do not necessarily have
to adhere to standardized formats or rules.

Finally, another distinction can be made between service providers and service consumers since
they may be interested in different types of events. For instance, service consumers may not be
interested in user management events or may even not be allowed to receive them. Section 4.9
discusses access control mechanisms for events in more detail.

4.5. Subscription and Notification Mechanisms

After discussing event types and participants, this section goes into the details of the subscrip-
tion and notification mechanisms. The former is needed to declare interest in events and define
how notifications should be sent, while the latter shows how event notifications are finally sent
to the subscribers.

4.5.1. Subscription Mechanism

In general, event consumers can be enabled to subscribe to their events of interest in several
ways [47]. The most basic way is following the topic-based style which uses topics to classify
events. Event consumers subscribe to receive notifications about that topic. Similar to topic-
based subscriptions, the type-based style uses event types for classification. Even though these
two styles are simple, they do not provide fine-grained control over the events of interest.
Therefore, the content-based style can be used to express subscriptions based on the actual
notification payload.

67

Chapter 4. Service Notification Engine

Since the VRESCo runtime is provided using Web service interfaces, the Subscription Interface
should also be exposed as Web service. WS-Eventing [199] represents a lightweight specification
that defines such an interface by providing five operations: Subscribe and Unsubscribe are used
for subscribing and unsubscribing. The GetStatus operation returns the current status of a
subscription, while Renew is used to renew existing subscriptions. Each subscription has
a given duration specified by the Expires attribute. Finally, Subscription End is used if an
event source terminates a subscription unexpectedly. More information on WS-Eventing and
alternative specifications can be found in Section 2.

For the implementation of the VRESCo event processing mechanism, we build on an existing
WS-Eventing implementation [85] which was extended for our purpose. WS-Eventing nor-
mally uses XPath [192] message filters as subscription language which are used for matching
incoming XML messages to stored subscriptions. However, these message filters only refer
to single event messages and cannot describe filters on event sequences as provided by our
approach. Fortunately, the specification defines an extension point to use other filter dialects
which we have used to introduce the EPLDialect for using Esper EPL queries as powerful sub-
scription language. Using this mechanism, the actual EPL query is attached to the subscription
message by introducing a new message attribute subscriptionQuery.

The WS-Eventing specification distinguishes between subscriber (the entity that defines a sub-
scription) and event sink (the entity that receives the notification), which are both implemented
using Web services. VRESCo additionally supports notifications sent per email and written
to log files. Therefore, in addition to the default delivery mode PushDeliveryMode using Web
services, we have introduced EmailDeliveryMode and LogDeliveryMode which are also attached
to the subscription messages.

The subscription process is illustrated in Figure 4.4, where the VRESCo eventing components
with public interfaces are depicted bold. When the Subscription Manager receives a Subscribe
request, it first extracts the subscription and puts it into the Subscription Storage (to be able
to retrieve it later). Then it extracts the EPL subscription query and the delivery mode from
the request and creates a corresponding Esper listener. This listener is finally attached to
the Esper Engine to be matched against incoming events. Furthermore, the Subscription
Manager is responsible for keeping the subscriptions in the storage and the listeners attached to
Esper synchronized. That means, when subscriptions are renewed or expire, the Subscription
Manager re-attaches the corresponding listener or removes them, respectively. Finally, the
Subscription Manager sends the response to the Subscribe message to the requester. This
message contains the subscription identifier implemented as UUID [88] and the expiration
date of the subscription. The identifier can be used to get the status or renew subscriptions,
or to unsubscribe. Please note that for brevity the figure shows only simplified versions of
the request and response message, while the complete XML sample messages can be found in
Listing B.1 and B.2 in Appendix B.

68

4.5. Subscription and Notification Mechanisms

EsperSubscriptionManager Storage EventingService EventDatabase NotificationManager

<subscriptionQuery>
select * from QoSRevisionEvent
where Revision.Id = 4711
and Property='ResponseTime'
and DoubleValue > 500

</subscriptionQuery>
<notifyTo>

<Address>
http://localhost:4712/OnQoSEvent
</Address>

</notifyTo>

subscribe

extract subscription

store subscription

extract EPL query

attach listener

publish

persist event

transform event

publish event

matching

notify event sink

notify listener

extract info

subscription

publication

Event
Source

Event
Sink

<event name="QoSRevisionEvent">
<RevisionId>4711</RevisionId>
<Property>ResponseTime</Property>
<DoubleValue>692</DoubleValue>
<SubscriptionId>uuid:815</SubscriptionId>

</event>

responseSubscriptionId
uuid:815

Subscriber

<event name="QoSRevisionEvent">
<RevisionId>4711</RevisionId>
<Property>ResponseTime</Property>
<DoubleValue>344</DoubleValue>

</event>

<event name="QoSRevisionEvent">
<RevisionId>4711</RevisionId>
<Property>ResponseTime</Property>
<DoubleValue>344</DoubleValue>

</event>

<event name="QoSRevisionEvent">
<RevisionId>4711</RevisionId>
<Property>ResponseTime</Property>
<DoubleValue>692</DoubleValue>

</event>

Figure 4.4.: VRESCo Subscription and Event Publication

4.5.2. Notification Mechanism

Sending notifications can be done in several ways: In the best-effort model, notifications are
lost in case of communication errors. To prevent such loss, subscribers may send acknowl-
edgements on receiving notifications. Besides pushing notifications towards the interested
subscribers, pull-style notifications enable subscribers to retrieve pending notifications.

VRESCo notifications are generally sent push-style using email or listener Web services. As
shown in Figure 4.4, the Notification Manager knows which notification delivery mode to use
depending on the listener attached to the Esper Engine. On a successful match the Notification
Manager first extracts this information from the listener. In addition, the subscription identifier
is added to the notification message so that the event sink can correlate subscriptions and
notifications. If the event sink prefers email notifications, the Notification Manager connects
to an SMTP server. In case of Web service notifications, the Notification Manager invokes the
corresponding listener Web service provided by the event sink. In both cases, a dedicated
delivery thread pool is used to inform the interested subscribers. Additionally, if the event
sink cannot be notified (e.g., the listener Web service is offline), pending notifications are stored
in the Event Database and can be retrieved by the subscribers in pull-style. The figure again
shows only a simplified version of the notification message, while the complete XML sample
notification message can be found in Listing C.1 in Appendix C.

69

Chapter 4. Service Notification Engine

4.6. Event Persistence and Event Search

Event notifications are often used when subscribers want to quickly react on state changes.
Additionally, in many situations it is also important to search in historical event data. For
instance, users may want to get notified if a new service revision is published into the registry,
while they also want to search for the QoS history of services. To support such functionality, the
Notification Engine stores all events in the Event Database and provides an appropriate Query
Interface for it. As illustrated in Figure 4.4, when events are published by an event source, the
Eventing Service first transforms them into the internal event format and persists them. Please
note, however, that event persistence can be disabled if not desired.

Events are queried using a dedicated Query Interface. Initially, this interface was part of the
simple keyword-based Querying Service, which was used to search for services in the first
prototype implementation of VRESCo [119]. Since data access is done via the ORM Layer
using NHibernate [157], the first version of the event query was built on the Hibernate Query
Language (HQL). More precisely, search strings consisting of name-value pairs using simple
operators were translated into corresponding HQL queries.

However, this first querying approach had a number of disadvantages, which have encouraged
the design and development of the VQL querying framework introduced in Section 3.5. Since
VQL represents a generic and type-safe querying approach, it can be used to search for historical
events in the same way as users search for services or service metadata.� �
1 // create query object

2 var query = new VQuery(typeof(QoSRevisionEvent));

3 query.Add(Expression.Eq("Revision.Id", 13));

4 query.Add(Expression.Gt("Timestamp", new DateTime(2010, 1, 1)));

5 query.Add(Expression.Eq("Property", Constants.QOS_AVAILABILITY));

6

7 // execute query

8 IVRESCoQuerier querier = VRESCoClientFactory.CreateQuerier("admin", "secret");

9 var results = querier.FindByQuery(query, 100, QueryMode.Exact) as IList<QoSRevisionEvent >;� �
Listing 4.2: Event Query

Listing 4.2 gives an example for a simple event query in VQL. The query in this example
searches for all QoSRevisionEvents (line 2) concerning service revision 13 (line 3), but it should
return only events that have occurred after 1.1.2010 (line 4). Moreover, the query only addresses
events regarding availability (line 5). Finally, the query is executed using the exact strategy and
the top 100 results are returned to the client (lines 8–9).

Since event-based systems often have to deal with vast numbers of events, in some situations
using relational databases may not be efficient enough. In such cases, building highly targeted
and efficient index structures may be preferred instead. In this regard, we envision to use the
Vector space engine described in [149,150] in addition to a traditional relational event database.

70

4.7. Event Ranking

Following the Vector space model, documents (events) are represented by n-dimensional vec-
tors where each dimension represents one keyword. The similarity of two vectors then indicates
the similarity of the two corresponding documents (events) using these keywords. The advan-
tage of the Vector space model compared to traditional database search is that the search returns
a list of fuzzy matches together with a similarity rating. Furthermore, the search queries can
be easily executed on multiple distributed vector spaces.

4.7. Event Ranking

In general, event notifications range from critical alerts to minor status updates. The importance
and relevance of different events can be estimated by ranking them according to some fitness
function. This is of particular interest when dealing with vast numbers of events. The following
list describes several ways we have identified for event ranking.

• Priority-based: Event priority properties (e.g., 1 to 10 or ’high’ to ’low’) can be pre-
defined according to the event model, or defined by the event producer when publishing
the event. In the latter case, one problem may be that event producers cannot estimate
the importance of particular events compared to other events.

• Hierarchically: Events are ordered in a tree structure where the root represents the most
important event while the leaves are less important.

• Type-based: All events are ranked based on their type. That means, each event has a
specific type (possibly supporting type inheritance) which is used to define the ranking.
However, the importance of some events may not only depend on its type – sometimes
the event properties will make the difference.

• Content-based: Events can be ranked based on keywords in the notification payload
(e.g., if the payload contains the keyword ’exception’ it may be more important than
events with keyword ’warning’ or ’info’).

• Probability-based: In general, the frequency of different events depends on environmen-
tal factors. In this regard, one can assume that frequent events (e.g., RegistryQueriedEvent)
may be less important than infrequent ones (e.g., RevisionGetsUnavailableEvent).

• Event Patterns: Finally, some events often occur as part of event patterns (e.g., service
proxy is bound to a specific service, followed by service is invoked using this proxy). The
ranking mechanism could consider such event patterns.

VRESCo currently supports hierarchical and typed-based ranking through the event type hier-
archy, while priority- and content-based ranking can be realized using special event attributes.
Probability-based ranking has been integrated by continuously counting the number of oc-
currences for each event type. This number is then used to calculate the frequency which is
attached to the event during publication.

71

Chapter 4. Service Notification Engine

In general, however, it should be noted that event ranking has one inherent problem: While
one specific event is critical for one subscriber, it might be only minor for others (e.g., QoS value
changes, service revision is deleted, etc.). Yet, introducing event ranking mechanisms provides
different ways to express the importance of events. This information can also be useful during
event processing. For instance, when huge amounts of events have to be processed at peak
loads, critical and important events could be handled first. Event consumers, on the other
side, could use different display options for different event priorities (e.g., pop-up windows
for critical events versus log entries for minor events).

4.8. Event Correlation

Event-based systems usually deal with vast numbers of events which have to be managed
accordingly. Event correlation techniques are used to avoid losing track of all events and
their relationship. For instance, Rozsnyai et al. [164] describe the Event Cloud that provides
different correlation mechanisms. Basically, the idea is to use event properties which have the
same value as correlation identifier. For instance, two events (e.g., ServicePublishedEvent and
ServiceDeletedEvent) having the same event attribute ServiceId are correlated since they both
refer to the same service.

Correlation Set Events Identifier
User Management Create, update & delete users UserId
Service Lifecycle Create, update, delete, bind, invoke & query services ServiceId

Service Revision Lifecycle Create, update, delete, bind, invoke, query & tag revisions RevisionId
QoS Correlate all QoS measurements of one service revision RevisionId

Service Category Correlate all events of services within one service category CategoryId
Feature Correlate all events of services that implement one feature FeatureId

Table 4.5.: VRESCo Event Correlation Sets

In the context of our work, we have identified the correlation sets summarized in Table 4.5,
which shows the name of the correlation set, the events which are subsumed and the correlation
identifier. The correlation sets mainly cover three different aspects: user management using the
UserId as correlation identifier, service (and service revision) lifecycle and QoS using ServiceId
(and ServiceRevisionId) and service category information using the ServiceCategoryId.

The difference between event correlation sets and event types can be summarized as follows:
While event types represent groups of events that occur in the same situations or indicate the
same state change (e.g., service is published), event correlation sets group all events that are
related due to some event attribute (e.g., service revision X is published, deactivated, invoked,
or QoS values change, etc.). Therefore, correlation sets enable users to track all important
events which are related.

72

4.9. Event Visibility

4.9. Event Visibility

In our first prototype, events were visible to all users within the runtime, which can be prob-
lematic in business scenarios. For instance, considering our CPO case study, CPO1 might agree
that PARTNER1 can see events concerning service management and versioning, but might
restrict that events related to binding and invocation are only visible for its own employees.

Mühl et al. [124] discuss security issues in event-based systems by introducing different access
control techniques such as access control lists (ACL), capabilities and role-based access con-
trol (RBAC) [15]. ACLs represent a simple way to define the permissions of different users
(principals) for a specific security object. In contrast, capabilities define the permissions of a
specific user for different security objects. The difference is that ACLs are stored for every
security object while capabilities are stored for every user. Finally, RBAC extends capabilities
by allowing users to have several roles which are abstractions between users and permissions.
Users can have one or more roles while permissions are directly granted to the different roles.

In the VRESCoNotification Engine, we have integrated an access control mechanism following
RBAC which is similar to the idea of scopes [52]. Therefore, users are divided into different
user groups. The event visibility can then be defined according to the event visibilities shown
in Table 4.6. In our work, event publishers are enabled to define the visibility of their events.
While one publisher may not want that other users can see her events (PUBLISHER), another
may not define any restrictions on events (ALL). Furthermore, it is possible to grant only specific
users access to events (e.g., joe). RBAC is then introduced by either granting access to all users
of a specific group which is indicated using a leading colon (e.g., :admins), or all users within
the same group as the publisher (GROUP).

Event Visibility Description
ALL Events are visible to all users

GROUP Events are visible to all users within the publisher’s group
PUBLISHER Events are visible to the publisher only
:GroupName Events are visible to all users within a specific group

Username Events are visible to a specific user only

Table 4.6.: Event Visibilities

Besides defining event visibilities for different users and groups, more fine-grained access
control is provided by allowing users to specify event visibilities for different event types.
Clearly, these definitions take the event type hierarchy into consideration: If no event visibility
is defined for a specific event type, the engine takes the visibility of the parent type. If there is
no visibility for any type the default visibility is chosen (i.e., ALL for type VRESCoEvent).

The access control mechanism is enforced by the Eventing Service and the Notification Manager
(see Figure 4.4). On the one side, the Eventing Service attaches both event visibility and name

73

Chapter 4. Service Notification Engine

of the publisher to the event before feeding it into Esper (see Listing C.1 in the Appendix
for an example). While the name of the publisher can be directly extracted from the request
message of the invoked VRESCo core service (e.g., Publishing Service), the event visibility of
the publisher is queried from the Registry Database.

On the other side, when events match subscriptions, the Notification Manager gets name and
user group of the subscriber from the Subscription Storage and extracts publisher name and
event visibility from the notification payload. Based on this information, the Notification
Manager can verify if the current event is visible to the subscriber or not. If the event is visible
the subscriber is notified, otherwise the notification is discarded. It should be noted that the
VQL querying mechanism follows the same principle: if events returned by a query are not
visible to the query requester, they are removed from the result set.

In our approach, publishers are able to specify which subscribers can see which events by using
event visibilities. Therefore, event access is mainly controlled by the publishers. Apart from
that, however, subscribers are able to specify which event producers they are interested in.
This is done by specifying the event attribute publisher in the EPL subscription.

4.10. Evaluation

In this section we evaluate the VRESCo event notification support threefold: Firstly, we show
the expressiveness of the subscription language by using scenarios from the motivating exam-
ple in Section 1.1. Secondly, we show concrete code examples how such subscriptions can be
requested using the VRESCoClient Library. Finally, we present various performance measure-
ments of the VRESCo Event Notification Engine. Further application scenarios enabled by this
work are discussed in Chapter 5.

4.10.1. Subscription Expressiveness

Considering our CPO case study, assume the system administrator of CPO1 wants to get
notified as soon as some of their service revisions get deactivated. This can be easily expressed
using the following subscription.

select * from RevisionDeactivatedEvent

where Service.Owner.Company = ’CPO1’

Another example is to notify about new services. Consider that a service consumer wants to
get notified if a new revision of service 11 is published. This can be written as

select * from RevisionPublishedEvent

where Service.Id = 11

74

4.10. Evaluation

The first two examples are intentionally basic. Besides the fact that UDDI does not provide
versioning support, these examples could also be implemented using existing registries.

Furthermore, the VRESCo runtime also considers QoS attributes of services which are measured
by the QoS Monitor. Although not natively supported by UDDI, this could be implemented by
storing QoS attributes in corresponding tModels of the UDDI registry as for example illustrated
in [212]. To give a concrete example, assume a service consumer wants to get notified, as soon
as the response time of service revision 17 is greater than 500 milliseconds, which is expressed
by the following subscription.

select * from QoSRevisionEvent

where Revision.Id = 17

and Property = ’ResponseTime’

and DoubleValue > 500

The notification features of current Web service registry standards mainly provide support
for subscribing to static registry data. The VRESCo Event Engine goes one step further and
also includes runtime information such as binding and invocation of services. In that way,
service providers are enabled to get notified if some service has been invoked. Furthermore,
subscribers are interested in events within a given period of time which is supported by
the sliding window operator. For instance, getting univariate statistics (e.g., sum, average,
variance, etc.) of property Priority of the last ten subsequent ServiceInvokedEvents concerning
service 9 can be expressed as easily as follows.

select * from ServiceInvokedEvent(Service.Id=9).win:time(10).stat:uni(’Priority’)

Similar to this, the sliding window can also be defined on the actual time when the events occur.
Additionally, the where clause can be used to express constraints on the statistical function.
For example, the following subscription fires if the average Availability of QoSRevisionEvents
concerning service revision 47 that occurred within the last 24 hours is greater than 95%.

select * from QoSRevisionEvent(Revision.Id=47 and Property=’Availability’)\\

.win:time(24 hours).stat:uni(’DoubleValue’)

where average > 0.95

Finally, event patterns may be considered which enables subscribers to define temporal rela-
tions between events. For instance, the following subscription fires, if a new service revision is
invoked within ten days after its publication. A -> Bmeans that event A happens before event
B, the every operator defines which events trigger the pattern to be fired.

select * from pattern

[every publish=RevisionPublishedEvent -> every invoke=ServiceInvokedEvent\\

(publish.Revision.Id=invoke.Revision.Id)

where timer:within(10 days)]

75

Chapter 4. Service Notification Engine

To summarize, the subscription language of our approach enables to define complex subscrip-
tions using event patterns, sliding window operators and statistical functions on event streams,
which cannot be defined using traditional service notification mechanisms.

4.10.2. Software Demonstration

In this section, we give a brief demonstration of the VRESCo Runtime Manager GUI [112, 113]
using the CPO case study. Figure 4.5 shows some services of this case study in the Runtime
Manager. Service categories and their services are illustrated in the left part of the GUI, which
also provides an interface for querying services within the Registry Database. The service
revision graph of the selected service is depicted in the middle, showing identifier and tags
(e.g., INITIAL, STABLE, etc.) of all service revisions (depicted as blue boxes). The initial
revision is always placed on the top of the graph while the edges define the predecessor-
successor relationship. The details of the selected service revision (depicted as orange box)
are shown in the right part including revision tags, URL of the WSDL document, binding
information, current QoS attributes and all events related to this revision (showing sequence
number, timestamp and event type). We envision to extend this GUI with additional service
metadata information and mechanisms to graphically define service mediation.

Figure 4.5.: VRESCo Runtime Manager

76

4.10. Evaluation

� �
1 IVRESCoSubscriber subscriber =

2 VRESCoClientFactory.CreateSubscriber("admin", "secret");

3

4 Identifier sid = subscriber.SubscribePerEmail(

5 "select * from RevisionPublishedEvent where Service.Id = 11",

6 "anton@infosys.tuwien.ac.at", 10*60);

7

8 sid = subscriber.SubscribePerWS(

9 "select * from QoSRevisionEvent"+

10 "where Revision.Id = 17 and Property = ’ResponseTime ’ and DoubleValue > 500",

11 "net.tcp://localhost:8005/SubscriptionEndTo",

12 "net.tcp://localhost:8006/OnVRESCoEvents", new DateTime(2011,11,11));

13

14 sid = subscriber.SubscribePerEmail(

15 "select * from QoSRevisionEvent(Revision.Id=47 and Property=’Availability ’)."+

16 "win:time(24 hours).stat:uni(’DoubleValue ’) where average > 0.95",

17 "anton@infosys.tuwien.ac.at", 30*24*60*60);� �
Listing 4.3: Subscription Example Listing

The CPO case study has several scenarios where notifications are useful. Listing 4.3 shows
how the examples from the previous section are specified using the Client Library. First of all, a
subscriber proxy is generated by the Client Factory which takes the username and password as
parameters (lines 1–2). The name of the VRESCo host and the port number of the Subscription
Manager Service are read from configuration files.

The first example shown in lines 4–6 represent an email notification. The first parameter
defines the subscription in EPL which in this example means that notifications should be sent
every time a new revision of service 11 is published (line 5). The second parameter specifies
the email address the Notification Manager should use for the notifications, while the third
parameter defines the duration of the subscription in seconds (i.e., 10 minutes in this example).
The Subscription Manager returns a unique subscription identifier sid which can be used to
unsubscribe or renew the subscription.

The second example declares interest in QoSRevisionEvents where the ResponseTime of revision
17 is greater than 500 ms (lines 8–12) since this might violate some SLAs. This time notifica-
tions should be sent using Web service notifications following the WS-Eventing specification.
The second parameter defines where the subscriptionEnd messages should be sent, while the
third parameter specifies the destination of the actual notification messages (line 12). The
subscription should be valid until 11.11.2011.

Finally, the third example demonstrates the use of sliding windows and statistical functions
on multiple events. More precisely, it defines that notifications should be sent per email if the
average Availability of QoSRevisionEvents concerning service revision 47 that occurred within
the last 24 hours is greater than 0.95 (lines 14–17). In addition, the subscription should be valid
for 30 days.

77

Chapter 4. Service Notification Engine

4.10.3. Performance Results

In this section, we give a performance evaluation of the VRESCo Event Notification Engine
that includes throughput, processing and overhead. The following experiments have been
executed on an Intel Xeon Dual CPU X5450 with 3.0 GHz and 32GB RAM running on Windows
Server 2007 SP1 and .NET v3.5, while MySQL v5.1 has been used as database. Furthermore,
all results represent the average of 10 repetitive runs.

First, we have evaluated the performance of the Event Notification Engine by using a simu-
lation of QoS events to measure the throughput of the actual matching between events and
subscriptions. These events were continuously published, while we increased the number
of subscribers and varied the percentage of matching subscriptions (we have chosen values
between 0% and 20% since higher values are unusual in typical settings). Finally, we measured
how many events can be processed per second. It should be noted that we do not consider the
time needed to actually notify external subscribers, since this is done by a dedicated delivery
thread pool and varies significantly depending on the notification mechanism (such as email
or Web services).

The results of the internal event throughput of our first prototype are shown in Figure 4.6.
In this case, the events are raised internally (i.e., by components that are within the VRESCo
runtime). Figure 4.6a depicts the throughput of internal events when event persistence is
disabled. The graph illustrates that the throughput is high for small numbers of matching
subscriptions (e.g., about 115.000 events per second without subscribers which is not shown
in the figure) and decreases with the number of matching subscriptions. In this setting, it
converges to 250–350 events per second for 2000 subscriptions (depending on the number of
matching subscriptions).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

S
ec

on
d

Number of Subscribers

0%
5%

10%
15%
20%

(a) Without Persistence

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

S
ec

on
d

Number of Subscribers

0%
5%

10%
15%
20%

(b) With Persistence

Figure 4.6.: Internal Event Throughput

78

4.10. Evaluation

Figure 4.6b shows that providing event persistence significantly reduces the throughput, espe-
cially for low numbers of subscribers. This is mainly caused by sequentially persisting events
instead of batch processing. However, the performance of the internal events is adequate for
our system since the typical setting consists of a small to medium number of services, which
minimizes the number of produced events. Furthermore, most events are triggered by in-
vocations of the VRESCo core services, which are provided as Web services. Therefore, the
maximum throughput of internal events is usually not reached in practical deployments. Be-
sides integrating batch processing, the performance decrease could be alleviated by refraining
from persisting frequent and minor events (e.g., ServiceFoundEvent, etc.), or by removing event
persistence as integral part of the engine and using external components instead.

Figure 4.7a depicts the throughput of external events (e.g., fired by the QoS Monitor) that are
published using the Management Service. Besides HTTP (red line), we have used additional
bindings such as TCP (black line) and named pipes (green line) for the external event interface.
The results are different to [114], since the VRESCo runtime has evolved in the meanwhile and
we have used a more powerful machine for this evaluation. Figure 4.7b shows the throughput
decrease when events are persisted (we have used 10% matching subscriptions in this example).
Both figures indicate that the external event throughput using HTTP is only slightly lower than
TCP and named pipes. Therefore, we currently use HTTP for this interface since integration
with external components is most comfortable when providing Web service invocations over
HTTP. However, JMS [177] or message queuing (MSMQ) could also be integrated.

In general, the throughput performance is satisfying but there is still room for improvement.
Therefore, we have integrated batch processing and notification thread pools in a second
step [118]. We have again evaluated the internal throughput of the Event Notification Engine.
The experiment setting is the same as used in Figure 4.6 (with event persistence).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

S
ec

on
d

Number of Subscribers (10% matching)

HTTP
TCP

Named Pipes

(a) Without Persistence

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

S
ec

on
d

Number of Subscribers (10% matching)

HTTP
TCP

Named Pipes

(b) With Persistence

Figure 4.7.: External Event Throughput

79

Chapter 4. Service Notification Engine

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000

E
ve

nt
s

pe
r

S
ec

on
d

Number of Subscribers

0%
5%

10%
15%
20%

Figure 4.8.: Internal Eventing Throughput with Persistence and Batch Processing

The results are depicted in Figure 4.8. Obviously, the throughput decreases with the number
of subscribers and the percentage of matching subscriptions. However, this time it starts about
2000 events per second without subscriptions (compared to about 900 events without batch
processing) and again converges to 250–350 events per second for 2000 subscriptions. As stated
above, the measured throughput is still higher than the expected number of events in typical
VRESCo settings.

Another interesting point is the effect of the different processing steps that are involved in event
processing. For this experiment, we have simulated 1000 event publications using different
event types. Then, we have measured the performance overhead of each processing step.
To keep it simple, we have used only one subscription that matches all events. To eliminate
outliers, the results represent the median of the measured values.

Table 4.7 summarizes the results which are divided into four processing steps (please note
that the values represent microseconds). The column Generation specifies how long it takes to
generate the event and append the necessary information. This includes name of the publisher,
event visibility, timestamp and sequence number. Ranking shows the overhead of probability-
based ranking as introduced in Section 4.7. Persistence defines the time needed to store events
in the Event Database, which is done prior to the actual publication (since we want to measure
the values for single events, we have disabled batch processing for this experiment). Finally,
Processing specifies how long it takes to process events. Total represents the overall time needed
to publish the event into Esper and process the listeners. This includes to check the event
visibility (EV) and convert Esper events back into the VRESCo core model (Conversion). The
time needed for notifying external subscribers is ignored here, since it heavily depends on the
used notification mechanism.

80

4.10. Evaluation

Event Type Generation Ranking Persistence
Processing

EV Conversion Total
QoSEvent 1550,1 0,9 1143,2 1,2 9,0 738,7

ServiceManagementEvent 1443,8 0,9 1107,8 1,2 7,9 737,2
VersioningEvent 1524,4 0,9 1122,4 1,3 9,2 734,6
MetadataEvent 1469,5 0,9 1105,9 1,2 8,7 735,5

BindingInvocationEvent 1512,7 0,9 1133,9 1,3 8,6 737,0
ProcessEvent 1464,5 0,9 1094,6 1,2 8,7 729,3

UserManagementEvent 2311,2 0,9 1053,7 1,2 8,5 713,0

Table 4.7.: Event Processing Performance (in µs)

The results indicate that the measured values are almost identical for all event types, except
for UserManagementEvents which are slightly more expensive to generate. The time needed
for Generation could be reduced by caching visibility of frequent events, since this is currently
read from the database. The overhead of Ranking is below 1 microsecond, however, it can still
be disabled if not desired. Persistence is an expensive operation that can either be reduced
when using batch processing (as shown in the throughput evaluation above) or completely
disabled in the configuration. Finally, Conversion slightly differs for the different event types,
while checking event visibility has almost constant overhead here, since we have used the same
event visibility for all events.

For the sake of completeness, we did a re-run of the last experiment using QoSEvents with
different event visibilities to measure the performance overhead. Table 4.8 shows how long
it takes to verify the event visibility depending on the visibility type. It can be seen that
verifying specific users or specific user groups is twice expensive than using the pre-defined
visibilities ALL, GROUP and PUBLISHER. However, the evaluation has shown that event
visibility checking is very efficient for all visibility types.

Type Check EV
ALL 1,1

GROUP 1,3
PUBLISHER 1,3
:groupname 2,5
username 2,3

Table 4.8.: Check Event Visibility (in µs)

Furthermore, we have also measured the time needed for the different notification mechanisms
provided by VRESCo, since this was not part of the results shown in Table 4.7. We have used 10
event publications for each event type. However, since there was no significant performance
deviation between the different event types, we did not distinguish between them any further.

81

Chapter 4. Service Notification Engine

Console
WS-Eventing Email

Successful Failure Async. Send ACK
First 1,0 245,3 1118,1 43,8 181,1

Average 0,1 37,6 1008,2 0,7 7,7

Table 4.9.: Notification Duration (in ms)

Table 4.9 shows the three main notification mechanisms Console, WS-Eventing and email. Fur-
thermore, we depict both average results and the results of the first run, which are significantly
higher due to initialization (e.g., proxy generation for listener Web service or connection setup
to the mail server). It can be seen that console listeners are clearly fastest. For WS-Eventing,
the first notification needs about 240 ms while the following notifications are much faster. In
contrast, if the listener Web service is not available the notification process takes about one
second (i.e., socket timeout plus time for persisting the pending notification). Finally, emails
are sent asynchronously which needs about 40 ms for the first message and goes down to about
1 ms in average, while the acknowledgement from the mail server needs about 8 ms in average.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

T
im

e
(in

 m
s)

Number of Service Publications

Eventing off
Eventing on

(a) Service Publication

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500

T
im

e
(in

 m
s)

Number of Service Activations

Eventing off
Eventing on

(b) Service Activation

Figure 4.9.: Eventing Performance

Finally, the overhead of the eventing support is also considered. Therefore, we have measured
the overhead for two invocations of the Publishing Service, which is shown in Figure 4.9.
More precisely, we have simulated a certain number of sequential Web service publications
(i.e., one service with one initial service revision) both with and without eventing support, and
measured how long both operations take. The results in Figure 4.9a show that the average
overhead is less than 10% in this setting. In Figure 4.9b we have repeated the experiment of
deactivating/activating service revisions (compare Figure 3.16). The results indicate that the
average overhead increases to 18% in this setting. The reason is that activation/deactivation
of revisions represents a more basic operation than service publication. Therefore, the almost

82

4.11. Related Work

constant overhead of eventing has more impact on the overall time in this experiment. In
general, we argue that the eventing overhead is acceptable, especially when considering the
possibilities opened up by the VRESCo eventing mechanism. However, it should be noted that
eventing support can be completely disabled in the configuration if not desired.

4.11. Related Work

Event-based systems [124] and the Publish/Subscribe paradigm [47] have been researched in
the past years, which led to event-based architecture definition languages (e.g., Rapide [103])
and QoS-aware event-dissemination middleware [104]. Moreover, data and event stream
processing has also been addressed in different prototypes (e.g., STREAM [11], Esper [45], etc.).

Approaches to integrate Publish/Subscribe and the SOA model led to WS-Notification [138]
and WS-Eventing [199]. Furthermore, combining event-driven architectures and SOA is also
addressed by Enterprise Service Bus implementations (e.g., Servicemix [9], Mule [125], etc.). In
contrast to our work, ESBs mainly focus on connecting various legacy applications by using a
common bus that performs message routing, transformation and correlation.

Ostrowski and Birman [142] have studied the combination of Web service notifications and
IP multicast, in order to provide a scalable and reliable Publish/Subscribe platform. Cugola
and Di Nitto [34] give a detailed overview of other research approaches combining SOA and
Publish/Subscribe. Furthermore, they introduce a system that aims at adopting content-based
routing (CBR) in SOA by extending the work presented in [14]. Their approach is built on
the CBR middleware REDS [37] and provides notifications following WS-Notification. Service
discovery is implemented according to the query-advertise style using UDDI inquiry messages.
The aim of this work is to use CBR to perform service discovery, while we focus on event
processing and notifications in service runtime environments. Besides service discovery, we
also provide support for dynamic binding and QoS attributes.

Medjahed [106] presents several patterns for event-driven SOA by categorizing using the two
taxonomies interaction and filtering. According to the author, interaction has three dimensions:
mode (push vs. pull), cardinality (1:1 vs. 1:N) and strategy (implicit vs. explicit dissemination).
In contrast, filtering has the two dimensions event (topic-based, content-based, type-based,
semantic and generic filtering) and service (specific, category-based, policy-based and semantic
filtering). The remainder of this work focuses on various protocols for the peer-to-peer Push
1:N-Implicit pattern using topic-category-based filtering, which the author refers to as implicit
notifications. According to this categorization, the VRESCoEvent Engine follows the centralized
1:N Explicit pattern, and provides support for both push- and pull-style. Filtering is currently
done content- and type-based on events, while the service dimension is supported both specific
and category-based. Our access control mechanism using event visibility can be seen as a special
form of policy-based filtering.

83

Chapter 4. Service Notification Engine

Service registries (e.g., UDDI [136], ebXML [134]) represent one part of the SOA triangle
that is responsible for maintaining a service repository including publishing and querying
functionality. Both UDDI and ebXML provide subscription mechanisms to get notified if
certain events occur within the service registry. However, these notifications are limited to the
service data stored in the registry and do not include service runtime information. Notifications
are sent per email or by invoking listener Web services. Other registry approaches such
as AWSR [184] and XMethods [207] use news feeds (e.g., RSS [165] and Atom [166]) for
dissemination of changing service repository content. News feeds enable to seamlessly federate
multiple registries, yet, in contrast to our approach, do not provide fine-grained control on the
received notifications since they follow the topic-based subscription style. Furthermore, similar
to UDDI and ebXML, these approaches do not include service runtime information.

There are several approaches that address search in historical events [79, 95, 164]. Rozsnyai et
al. [164] introduce the Event Cloud system, which aims at searching for business events. Their
approach uses indexing and correlation of events by using different ranking algorithms, and is
based on the open source text search engine Apache Lucene [8]. In contrast to our approach,
the focus of this work is on building an efficient index for searching in vast numbers of events
whereas subscribing to events and getting notified about their occurrence is not addressed.

Li et al. [95] present a data access method which is integrated into the distributed content-
based Publish/Subscribe system PADRES. The system enables to subscribe to events published
in both the future and the past. In contrast to our work, the focus is on building a large-scale
distributed Publish/Subscribe system that provides routing of subscriptions and queries.

Jobst and Preissler [79] present an approach for business process management and business
activity monitoring using event processing. The authors distinguish between SOA events
regarding violation of QoS parameters and service lifecycle, as well as business/process events
building upon BPEL. These events are fired by receive and invoke activities within a BPEL
process. In contrast to our work, the focus is on search and visualization of business events
whereas subscribing to events is not addressed. Furthermore, the different SOA events and
how they are handled is not described in detail.

Finally, there is some work on access control of event-based systems [15, 53, 206]. Belokosz-
tolszki et al. [15] discuss general requirements regarding access control in Publish/Subscribe
systems. Furthermore, the authors integrate role-based access control into the Hermes mid-
dleware [147]. Conceptually, this work is similar to ours. Furthermore, they also address how
trust between brokers can be achieved in P2P Publish/Subscribe networks. Fiege et al. [52, 53]
introduce the notion of scopes in event-based systems, which was adopted in our work. In their
approach, scopes are used to group components in a hierarchical manner. Events between two
components are sent only if they are visible to each other (i.e., share a common superscope). In
contrast to that, in our work visibility is defined by the event publisher. Therefore, the event
type hierarchy and the user groups are taken into consideration.

84

4.12. Conclusion

4.12. Conclusion

Since services change regularly, service consumers want to get notified about such changes.
Event notifications have been addressed in service registry standards (e.g., UDDI and ebXML)
and other service repository approaches as introduced in Section 2.4. However, most ap-
proaches do not support complex event processing and consider only changes in registry data,
which does not include runtime information concerning binding and invocation of services.

In this chapter, we have presented an approach for event notifications in service runtime envi-
ronments that is capable of including such runtime information together with QoS attributes.
Additionally, complex event processing is provided by temporal relations between events using
the sliding window operator, event patterns and statistical functions on events. Furthermore,
we have presented how historical events can be accessed and how event visibility provides
fine-grained access control on events. Finally, we have shown how our approach has been
integrated into the VRESCo runtime environment.

The evaluation has been done threefold: Firstly, we have shown the expressiveness of the
subscription language using some usage examples. Secondly, we have demonstrated how
concrete subscriptions are implemented in VRESCo. Thirdly, the performance results have
indicated that the event notification support can deal with the expected number of events
and subscribers. Additionally, the overhead of the Eventing Engine and the performance
improvements with respect to the first prototype implementation have been investigated.
Finally, we have mentioned related work in this area.

85

Chapter 5.

Service Notification Applications

After describing the VRESCo runtime environment and its event notification support in detail,
this chapter presents three application scenarios that have been implemented based on this
work. Firstly, Section 5.1 describes how events can help in combining the advantages of the
different rebinding strategies provided by VRESCo. Secondly, the events stored in the Event
Database can be used to maintain the provenance of services, which is presented in Section 5.2.
Thirdly, Section 5.3 shows how events are leveraged to combine client- and server-side QoS
monitoring and SLA violation detection. Furthermore, Section 5.4 and 5.5 briefly sketch other
use cases that are enabled by VRESCo eventing, but have been left for future work. Finally,
Section 5.6 concludes this chapter.

Contents
5.1 Notification-based Rebinding . 88

5.2 Service Provenance . 92

5.3 QoS Monitoring and SLA Violation Detection 102

5.4 Service Pricing and Penalty Models . 112

5.5 Event-based Composition . 112

5.6 Conclusion . 113

87

Chapter 5. Service Notification Applications

5.1. Notification-based Rebinding

The first use case for the VRESCo eventing support represents one of the core challenges that
have driven the development of the VRESCo runtime environment, namely dynamic binding
and invocation of services. In contrast to many existing SOC solutions, VRESCo enables clients
to dynamically bind and invoke different services from a pool of service candidates, even if the
technical service interfaces are different. In this regard, the VRESCo mediation mechanism is
responsible for applying the necessary mapping functions to hide this interface mismatch.

5.1.1. Rebinding Strategies Revisited

In Section 3.6.2, we have introduced different rebinding strategies. Basically, these strategies
are proactive in the sense that service requesters have to define when the rebinding should be
done (e.g., OnInvocation and OnDemand), how often it should be done (e.g., Periodic), or if the
service proxies should not rebind at all (e.g., Fixed).

In the evaluation in Section 3.9, we have discussed that it always depends on the specific
situation which rebinding strategy to use, since all strategies have their strengths and weak-
nesses. For instance, the OnInvocation strategy obviously always invokes the best available
service but introduces constant overhead for every service invocation. Therefore, this is not
a good choice if the services do not change often. In contrast, the Periodic strategy does not
influence the actual service invocation since the service proxy considers its binding periodically
in the background. However, it is not guaranteed if the proxy always invokes the best service.
Clearly, decreasing the rebinding interval can mitigate this problem, but this finally leads to
processing overhead for both clients and the VRESCo runtime (which has to be queried when
considering the binding). As a result, when choosing a rebinding strategy one usually has to
make a tradeoff between invocation/rebinding overhead and optimal service binding.

5.1.2. OnEvent Rebinding Strategy

The VRESCo eventing support bridges the gap between the different rebinding strategies by
providing manners to combine their advantages in a reactive way. Basically, the idea is that
the rebinding of service proxies is done when critical events occur (e.g., the service response
time goes beyond a given threshold, the service is deactivated, etc.). Therefore, clients use
subscriptions to specify in which situations the current binding should be verified, instead
of using periodic rebinding intervals or rebinding on every service invocation. The actual
rebinding is finally triggered by event notifications that match these subscriptions.

Listing 5.1 shows how service proxies use the OnEvent strategy. As before, a VQL query is
used to define the desired service revision (lines 2–8). We have used the same query as shown
in Listing 3.1, except that it uses Relaxed instead of Priority querying. The actual subscription is

88

5.1. Notification-based Rebinding

� �
1 // define query

2 var query = new VQuery(typeof(ServiceRevision));

3 query.Add(Expression.Eq("IsActive", true));

4 query.Add(Expression.Eq("Service.Category.Features.Name", "NotifyCustomer"));

5 query.Match(Expression.Eq("Service.Owner.Company", "CompanyX"));

6 query.Match(

7 Expression.Eq("QoS.Property.Name", "ResponseTime") &

8 Expression.Lt("QoS.DoubleValue", 1000.0));

9

10 // define subscription

11 string epl = "select * from RevisionDeactivatedEvent";

12 string notifyTo = "net.tcp://vresco.vitalab.tuwien.ac.at:33333/OnVRESCoEvents";

13 DateTime expires = new DateTime(2011, 11, 11);

14

15 // create proxy using onEvent strategy

16 var querier = VRESCoClientFactory.CreateQuerier("username", "password");

17 DaiosProxy proxy = querier.CreateRebindingMappingProxy(query, QueryMode.Relaxed, 10,

18 new OnEventRebindingStrategy(epl, notifyTo , expires));� �
Listing 5.1: OnEvent Proxy Generation

then defined in lines 11–13 using EPL. In this example, the rebinding should be verified every
time a service revision is deactivated (which is signaled by RevisionDeactivatedEvents).
Furthermore, notifyTo and expires define the notification endpoint and how long the subscription
is valid. This subscription information, together with the VQL query, is finally used to generate
the service proxy in lines 17–18. The actual service invocation is the same as shown in Listing 3.2,
and has therefore been omitted for brevity.

Listing 5.2 depicts the corresponding event handler method Notify of the IEventNotification
interface. Service proxies listen for WS-Eventing notifications defined by the notifyTo endpoint
and invoke this method when notifications arrive. Besides writing tracing information for
debugging, the rebinding of the service proxy is finally triggered in line 10.� �
1 class MyServiceProxy : IEventNotification {

2 // ...

3 public void Notify(VRESCoEvent[] newEvents , VRESCoEvent[] oldEvents , string subscriptionId)

4 {

5 Trace.WriteLine("I got the following rebinding events for subscription: " + subscriptionId);

6 for (int i = 0; i < newEvents.Length; i++)

7 Trace.WriteLine(newEvents[i].ToString());

8

9 // force proxy to rebind

10 proxy.ForceRebinding();

11 Trace.WriteLine("Rebinding done...");

12 }

13 }� �
Listing 5.2: OnEvent Handler

Finally, Listing 5.3 shows a code snippet of the configuration file, which is needed to host the

89

Chapter 5. Service Notification Applications

� �
1 <services >

2 <service name="MyServiceProxy">

3 <endpoint

4 address="net.tcp://vresco.vitalab.tuwien.ac.at:33333/OnVRESCoEvents"

5 binding="customBinding"

6 bindingConfiguration="binding1"

7 contract="RKiss.WSEventing.IEventNotification"/>

8 </service>

9 </services >� �
Listing 5.3: OnEvent Handler Configuration

WS-Eventing endpoint of the event handler. It defines the contract (i.e., interface) of the handler
(IEventNotification), the name of the service (MyServiceProxy), and the endpoint address
(net.tcp://vresco.vitalab.tuwien.ac.at:33333/OnVRESCoEvents) plus binding informa-
tion (TCP). Currently, these settings have to be manually configured by the client. However,
we envision to automate this step so that the WS-Eventing endpoints are hosted autonomously.

It should be noted, that in this basic example the rebinding is done every time service revisions
are deactivated (since the subscription declares interest in all RevisionDeactivatedEvents).
During rebinding, the service proxy first queries the VRESCo runtime using the query specified
above, and then binds to the best result. However, it is also possible to attach the new service
revision (i.e., the revision that should be bound) to the notification, so that the service proxy can
extract this information from the notification payload and directly bind to it without querying
the VRESCo runtime again.

5.1.3. Evaluation

For evaluating the OnEvent strategy, we have re-run the evaluation shown in Figure 3.14. Briefly
summarized, we have used the Web service testbed Genesis [80] to simulate 10 services that
implement the same feature, but exhibit different response times (using a Gaussian distribution
and by increasing the variance). Finally, we have implemented one client for each rebinding
strategy and measured the average response time when invoking the service.

The figure shows that OnEvent (blue line) removes the constant overhead of 300–400ms which
is introduced by OnInvocation (green line). The reason for this is that rebinding is done using
background threads and does not influence the service invocation time. The same behavior
can be seen for the Periodic strategy (black line). However, in contrast to periodic rebinding
OnEvent invokes the best service since the binding is always up-to-date (due to the fact that
rebinding is triggered by events). Furthermore, it usually leads to less overhead on the client
since the rebinding is not checked periodically, but only when certain events of interest occur.
However, this mainly depends on the concrete subscription and rebinding interval.

90

5.1. Notification-based Rebinding

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

R
es

po
ns

e
T

im
e

(in
 m

s)

Execution Time Variation

Fixed Binding
Periodic Rebinding

On Invocation Rebinding
On Event Rebinding

Figure 5.1.: Rebinding Strategy Performance (with OnEvent strategy)

One obvious drawback of the OnEvent strategy is that it requires the VRESCo eventing support,
which is optional and can be turned off if not desired. Furthermore, clients must be able to host
WS-Eventing endpoints and must allow the VRESCo Notification Manager to invoke these
endpoints. This may lead to problems, for instance if firewalls drop network connections to
non-standard ports. This is the main reason why we currently let clients manually define which
ports to use for notifications. Finally, if subscriptions are not chosen properly (e.g., rebind on
every event) it may seriously degrade the overall system performance, which also happens if
clients choose very short intervals for the Periodic strategy (e.g., rebind every second).

5.1.4. Conclusion

This section has introduced the OnEvent strategy as first use case which shows the usefulness of
the Event Notification Engine. The aim of this strategy is to combine the strengths and reduce
the weaknesses of the rebinding strategies initially introduced in VRESCo. Thereby, event
notifications are used to trigger the rebinding of service proxies. More precisely, subscriptions
are used to define when rebinding should be done automatically. For instance, clients can now
define that rebinding is triggered when service revisions are deactivated, or when certain QoS
attributes change (or any other situation which is recorded by events).

We have described how clients can use this strategy using illustrative code snippets from the
CPO case study. Furthermore, the evaluation was done using a Web service testbed. The results
have shown that the OnEvent strategy indeed binds to the best service without introducing any
invocation overhead (as done by the OnInvocation strategy).

91

Chapter 5. Service Notification Applications

5.2. Service Provenance

Another interesting use case for VRESCo eventing goes beyond just notifying subscribers if
certain events of interest occur. Since all events are also persisted in the Event Database,
this can be used as source for historical event information. This information, together with
service metadata stored in the Registry Database, represents the provenance of services. In
the following section, we present a novel service provenance approach [116, 118] that was
implemented within the scope of this thesis.

5.2.1. Introduction

The term provenance is commonly used to describe the origin and well-documented history of
some object and is used in various areas such as fine arts, archeology or wines. Provenance
information is often used to prove the authenticity and estimate the value of objects. For
instance, the price of wine depends on origin, vintage and how the wine was stored. In
information systems, the notion of provenance was adopted to refer to the origin and history of
electronic data [121], which has been applied in different research areas such as e-Science [172].

Provenance is an important issue that enables (especially in service-oriented systems) assertions
on who did what in applications or business processes (possibly including human interaction).
Based on the availability of event data, provenance information can be gathered and used to
proof compliance with certain regulations (e.g., laws, standardized processes, etc.).

SOA and Web services represent well-known paradigms for developing flexible and cross-
organizational enterprise applications. Data provenance in such applications and the prove-
nance of business processes as realized in Business Activity Monitoring are important issues
that have been addressed by several research projects [38, 154, 185]. These approaches mainly
focus on the provenance of data which is produced, transformed or routed through an SOA
system. In contrast to that, service provenance also plays a central role, for instance during
service selection. If there are multiple alternative services available, service consumers may be
interested in the history of candidates. This includes creation date, ownership or modifications,
and QoS information such as failure rate or response time. Additionally, service providers are
also interested in service provenance (e.g., to identify services that do not perform well).

In this section, we introduce a service provenance approach that has been integrated into
the VRESCo runtime environment. In most current approaches, provenance information is
captured at runtime and usually managed in a dedicated provenance store. In our approach,
we have enhanced the existing event processing mechanism in order to capture and maintain
provenance information. Events are thereby published and correlated when certain situations
occur (e.g., new service is created, service revision is added, QoS changes, service operation is
invoked, etc.).

92

5.2. Service Provenance

5.2.2. Motivation

Existing work on provenance mainly focuses on data provenance (i.e., how and when data
was created, transformed or accessed in business processes or scientific workflows). This is
important, for instance, to validate the results of scientific simulation runs. In contrast to that,
however, we aim at addressing service provenance, which is the origin and well-documented
history of services. Although conceptually similar at first glance, these two paradigms differ
since our work introduces a different view on provenance in service-oriented systems.

The CPO case study from Section 1.1 highlights the motivation of our work. As stated above,
service selection represents an illustrative application for service provenance. If there are
multiple alternative services, service consumers might want to take the origin and history of
the alternatives into consideration. For instance, one service consumer may not trust specific
service providers (due to bad experience in the past). Other service consumers may pay special
attention to QoS values of alternative services. If one service has performed well over the
last months, it might be preferred over recently published services without documented QoS
history. Once selected, the services may change which also includes their behavior regarding
QoS. In such cases, service consumers may want to automatically rebind to alternative services,
which can be triggered based on existing provenance information. Besides service selection,
another motivation for service provenance derives from the fact that service consumers and ser-
vice providers continuously query and monitor current provenance information (e.g., changing
QoS attributes, new service revisions, etc.). For instance, service providers can verify if their
services perform as expected and take corrective actions otherwise.

Current service registry standards, such as UDDI [136] and ebXML [134] provide only limited
support for service provenance. In UDDI, the businessEntity construct can be used to store
information about the owner of a service, but this construct is fixed and there is no further
support for more complex structures regarding the history of a service. In ebXML, every
RegistryObject can be associated to persons or organizations that have either submitted this
information or are responsible for it. In addition, ebXML provides full versioning of registry
information. Therefore, the provenance model of ebXML is clearly advanced compared to
UDDI, but there is still no support to further collect and process service provenance information.

5.2.3. Provenance Approach

The following section describes how the service provenance approach is realized in VRESCo.
This includes how to collect, retrieve and visualize provenance information. Furthermore,
we also aim at addressing security issues that typically occur in provenance systems. Finally,
our approach should be integrated into an existing service runtime environment instead of
introducing a dedicated and stand-alone provenance system.

93

Chapter 5. Service Notification Applications

Collecting Service Provenance Information

In VRESCo, service provenance information is collected at runtime. This consists of various
aspects, such as basic service information, service metadata and service runtime events. While
the former two are mostly published by service providers, events are raised automatically by
the runtime. These aspects are discussed in more detail next.

• Basic Service Information: The first part of service provenance information is repre-
sented by what we call basic service information, which is kept in the Registry Database.
This consists of required information to invoke services (e.g., service endpoint, binding,
WSDL document, etc.). Furthermore, every service can be associated with service owner
information (e.g., name, address, etc.). As described in Section 3.4 services can have
multiple service revisions that are represented in service revision graphs. According to
this, service versioning information and revision tags (i.e., every revision can be tagged
by the service provider) are also part of provenance information.

• Service Metadata: Besides basic service information, another important source for prove-
nance information is represented by service metadata as described in Section 3.2. Briefly
summarized, service metadata in VRESCo is used to describe the functionality and se-
mantics of services that cannot be seen in the WSDL descriptions. To accomplish this, we
have defined a mapping between our service model and service metadata model, which
is shown in Figure 3.3.

• Service Runtime Events: The third and most important source of provenance information
is provided by the VRESCo Event Engine, which has been introduced in Chapter 4.
Basically, the idea is to publish events when certain situations occur, such as new services
being published or existing services being modified. Subscribers are then enabled to
receive notifications using different mechanisms (e.g., email, WS-Eventing, etc.). In
addition, all events are persisted in the Event Database, and can later be retrieved. This
opens new possibilities for our provenance approach, such as provenance subscriptions
and provenance queries which are described below.

Security Considerations

Before going into the details of our provenance approach, we want to briefly mention security
issues, which are often neglected in provenance approaches. Provenance data represents
sensitive information that should not be publicly available. Moreover, fine-grained access
control policies can be used to gain access to this information only for specific users.

The VRESCoAccess Control Layer introduced in Section 3.8 provides the required mechanisms
regarding authentication and authorization. Firstly, all clients need to be authenticated when
interacting with the VRESCo core services. Therefore, only authenticated users can invoke

94

5.2. Service Provenance

the core services (e.g., to enter provenance information into the system). Secondly, the claim-
based access control mechanism provides authorization features in order to define which users
are allowed to create, read, update or delete which resources. Finally, event visibility (as
introduced in Section 4.9) can be used to define which users can access which events (either
through notifications or by using queries in historical event data). Since the service provenance
approach builds on these events, event visibility is of particular importance.

Provenance Queries

Once provenance information is collected at runtime, the next issue is how to access and query
this information. This ranges from simple queries like “Who has created service X?” to more
complex queries like “What is the average response time of service X?” or “How often has
service X been invoked in the last 24 hours?”.� �
1 IVRESCoQuerier querier = VRESCoClientFactory.CreateQuerier("username", "password");

2

3 // build provenance query regarding QoS

4 var query1 = new VQuery(typeof(QoSRevisionEvent));

5 query1.Add(Expression.Eq("Revision.Id", 815));

6 query1.Add(Expression.Eq("Property", Constants.QOS_RESPONSE_TIME));

7 query1.Add(Expression.Gt("DoubleValue", 500));

8

9 // build provenance query regarding invocations

10 var query2 = new VQuery(typeof(ServiceInvokedEvent));

11 query2.Add(Expression.Eq("Revision.Id", 4711));

12 query2.Add(Expression.Eq("Publisher", "telco1"));

13 query2.Add(Expression.Gt("Timestamp", new DateTime(2010, 1, 1)));

14 query2.Add(Expression.Lt("Timestamp", new DateTime(2010, 1, 31)));

15

16 // execute provenance queries

17 var results1 = querier.FindByQuery(query1, QueryMode.Exact) as IList<QoSRevisionEvent >;

18 var results2 = querier.FindByQuery(query2, QueryMode.Exact) as IList<ServiceInvokedEvent >;� �
Listing 5.4: Provenance Queries

Listing 5.4 gives two examples for provenance queries. Initially, the querier (i.e., the proxy
to the Query Engine) is created using the Client Library that takes username and password
as input (line 1). The certificates are attached by the Client Library transparently. The first
query (lines 4–7) returns all measuring points (QoSRevisionEvents) where the response time
of service revision 815 was greater than 500 milliseconds. The second query (lines 10–14)
returns all service invocations (ServiceInvokedEvents) of service revision 4711 from user telco1
that happened between 1.1.2010 and 31.1.2010. After the queries are built, they are executed
using the querier in lines 17–18. The Query Engine returns all events considering their visibility.
For instance, if the event visibility of ServiceInvokedEvents is set to user sue, the query will return
no results for user joe. Internally, the Query Engine first builds the result set of the query, then
iterates through the results to check the visibility and finally returns only the visible events.

95

Chapter 5. Service Notification Applications

Provenance Subscriptions

Besides using queries on the historic provenance information stored in the runtime, the Event
Notification Engine enables users to subscribe to certain events of interest. Subscriptions for
events or event patterns are specified in the Esper Event Processing Language (EPL) [45], which
has been introduced in Section 2.2. If such events or event patterns occur, notifications are sent
to the interested subscribers using email or WS-Eventing notifications. This mechanism can
now be leveraged to receive notifications if events of interest occur that refer to provenance
information.� �
1 IVRESCoSubscriber subscriber = VRESCoClientFactory.CreateSubscriber("username", "password");

2

3 // subscribe per email

4 int sid = subscriber.SubscribePerEmail(

5 "select * from QoSRevisionEvent where " +

6 "Revision.Id = 815 and " +

7 "Property = ’ResponseTime ’ and DoubleValue > 500",

8 "joe@foo.bar",

9 new DateTime(2010, 1, 1));� �
Listing 5.5: Provenance Subscription

Listing 5.5 gives an example subscription. It should be noted that this subscription is seman-
tically equal to the first query shown in Listing 5.4. The actual subscription is defined in EPL
in lines 5–7. If the response time of revision 815 is greater than 500 milliseconds, a notification
email should be sent to the given email address (line 8). The date in line 9 specifies that the
subscription is valid until 1.1.2010. Furthermore, the identifier sid returned in line 4 can be
used to cancel or renew the subscription.

Provenance Graphs

Besides querying provenance information, another useful feature is to illustrate this information
using provenance graphs. The aim of these graphs is to give an overview of relevant provenance
information, such as service versioning information, service ownership and service history
regarding binding and invocation, as well as QoS attributes. The input of provenance graphs
can either be services/revisions or provenance queries. In the first case, the graph is built
with all provenance information that is available for the requested service or revision. In the
second case, the result of a provenance query (which is a list of events as shown in Listing 5.4)
is displayed in a graph. This is done using pre-defined templates that control the graph
generation. These templates are based on the event type returned by the provenance query
(i.e., only the relevant parts of the provenance graph are shown). Currently, we provide such
templates for QoS events and service invocation events.

96

5.2. Service Provenance

Due to the vast amount of information stored in the runtime, the provenance graphs tend to get
overloaded quickly. Therefore, the information inherent to the events is divided into several
groups such as core service details, versioning graph, invocations, QoS attributes, revision tags
and operations. Each group summarizes the information of the corresponding events.

REVISION

Id=23

Published: 17.04.2009 12:41:13

User=admin

Owner=joe

ServiceId=2

OPERATIONS
bool isPortable(string phoneNr, string firstname, string lastname)

void portPhoneNumber(string phoneNr)

operations

TAGS

v1

STABLE

jaxrpc

tags

INVOCATIONS

#Invocations=851

#Failures=13

Last invocation: 23.10.2009 19:17:24 (user=guest)

Last failure: 13.08.2009 22:11:21 (user=sue)

invocations

QOS

#QoS events=580

Latency=29

ResponseTime=107

Throughput=23

Availability=0.99

qos

PREDECESSOR

Id=21

INITIAL

previous

SUCCESSOR

Id=25

v2 alt jaxrpc

next

SUCCESSOR

Id=28

v3 wcf

next

G file:///F:/projects/VReSCO/papers/JWSR2009/img/ProvenanceGraph.svg

1 von 1 13.10.2009 17:37

Figure 5.2.: Provenance Graph

Figure 5.2 depicts a provenance graph example which was generated by our approach. This
graph shows provenance information of a specific service revision. First of all, parts of the
versioning graph are shown on the top of the graph. This includes both predecessors (edge
previous) and successors (edge next) of the current revision. In this case, the revision has one
predecessor and two successors which represent the beginning of a branch. The revision itself
is positioned in the center and gives information about the corresponding service, owner,
creation date and the user that created this revision. While the first two elements are read
from the service metadata, the last two elements are stored in the RevisionPublishedEvent.
The bottom part illustrates the groups Invocations (i.e., number of successful and failed service
invocations, last successful and failed service invocation, etc.), QoS (i.e., number of QoS events
and aggregated QoS information), Tags (i.e., all revision tags such as “v1”) and Operations (i.e.,
all operations of this revision including their input and output).

The service provenance graphs in VRESCo are built using the open source graph drawing
libraries QuickGraph [32] and GraphViz [58]. Before such a graph is built, all relevant prove-
nance information (i.e., events and service metadata) is retrieved using the Query Engine. The
corresponding graph is then generated using this information while the graph libraries are
used to render the resulting graph according to the user’s preferences (e.g., PDF, PNG, etc.).
The graph image (or a graph representation as GraphViz’ DOT file [58]) is finally returned to
the user. The overall approach of building provenance graphs is implemented and provided
as part of the VRESCo Query Service.

97

Chapter 5. Service Notification Applications

Selective Service Provenance

As described above, VRESCo provides fine-grained access control for service provenance
information stored in the runtime. This guarantees that only authenticated and authorized
user are able to access this information. It should be noted that this mechanism also has
an interesting side effect: Different users can come to different conclusions regarding the
provenance of services. In other words, two users (with different claims and event visibilities)
may have different views on the same service.

To give a concrete example, reconsider the provenance graph shown in Figure 5.2. This graph
was generated for some user that had access to all provenance information (e.g., user admin).
However, claims and event visibility may restrict the visible information for specific users.
For instance, users without the resource-level Read claim on Service or without the instance-
level Read claim on Service 2 clearly would not receive any provenance information about this
service. To give an example for event visibility, if the visibility of BindingInvocationEvents is
set to telco1, then other users might not see the INVOCATIONS node in the graph. This can
be further refined, by granting user telco1 access to ServiceInvokedEvents but restrict access
to ServiceInvocationFailedEvents only to users within the user group admins. In that case,
only information about successful invocations would be shown in the graph.

Process Provenance

So far, we have focused on the provenance of services since, to the best of our knowledge, this
has not been addressed by other research projects. However, data and process provenance is
also of particular importance.

In this regard, the tracking of workflow events in VRESCo (as introduced in Section 4.4) can
be leveraged. Consequently, process provenance could be provided since the workflow events
are persisted in the Event Database. Therefore, it is easily possible to query the information
inherent to these events (e.g., which workflow instances have been started or completed,
which services have been executed as part of the workflow activities, etc.). Furthermore, the
user tracking events could be leveraged to implement data provenance (i.e., which data item
has been produced or consumed by the different workflow activities). This is one potential
extension to the presented provenance approach, which has been left for future work.

5.2.4. Evaluation

The evaluation of the presented provenance approach is done twofold: Firstly, we discuss the
usefulness and advantages of our work based on the motivating example. Secondly, we show
some performance results of our current prototype implementation.

98

5.2. Service Provenance

First of all, we want to highlight that there are several use cases for service provenance, which are
of interest for both service consumers and service providers. On the one hand, service providers
often want to know if their services perform as expected regarding QoS (e.g., response time,
failure rate, etc.) or the expected number of service invocations. Otherwise, corrective actions
may be taken in order to achieve the expected values. Due to the combination of service
management and runtime events, provenance information can also be used to investigate
which service changes had negative impact on QoS. On the other hand, service provenance
information is also of particular importance for service consumers, especially when it comes
to service selection. As described in the motivation, if there are multiple candidate services,
service consumers may want to take a look at the history of these alternatives. If a service had
good performance during the last year it might be more trustworthy than services which have
been recently published. In this regard, the VRESCo service mediation approach can be used
to dynamically rebind to alternative services if the current service is removed from the runtime
or does not fulfill the requirements any longer.

Furthermore, security issues are often neglected in current provenance approaches. Therefore,
one goal of our approach represents the integrity of provenance information, as well as appro-
priate access control mechanisms. Firstly, we want to ensure that all provenance information
is accurate, which requires that all users within VRESCo are authenticated. Secondly, and this
is even more important, only authorized users must be able to access services and metadata
stored in the Registry Database. This has been implemented by the claim-based access control
mechanism. Finally, considering provenance information we find it crucial that producers of
provenance information are able to define who is authorized to see which piece of informa-
tion (i.e., different clients may have different views of the same service). Therefore, we have
leveraged event visibility to provide fine-grained access control to events.

 0

 200

 400

 600

 800

 1000

 1200

 0 5000 10000 15000 20000

T
im

e
(in

 m
s)

Number of Events

Build Graph
Render Graph

Query (without EV)
Query (EV)

Figure 5.3.: Provenance Performance

99

Chapter 5. Service Notification Applications

Secondly, we describe the performance of our approach which is depicted in Figure 5.3. It
illustrates how long it takes to generate the provenance graph shown in Figure 5.2 depending
on the number of events that have to be considered. Again, all test results represent the average
of 10 repetitive runs.

The red and black lines illustrate how long it takes to build the graph (i.e., generate the corre-
sponding GraphViz DOT file) and render it (i.e., transform the DOT file into the desired format
such as PNG) once all necessary information has been queried from the Registry Database. The
lines are almost constant, which is due to the grouping of similar events in the graph. The green
and blue lines depict the query performance by distinguishing whether event visibility must
be evaluated. This is done by using two query issuers with different event visibility: The first
user admin can access all events, while only 25% of all events are visible to the second user (i.e.,
the remaining 75% have to be sorted out). The graph shows that our approach scales linearly
for several thousands of events and that the provenance queries perform well (e.g., about 1s
for 20000 events). Furthermore, it can be seen that the overhead introduced when considering
event visibility is acceptable (e.g., 13% for 20000 events, and 25% for 40000 events which is
not shown in the figure). All results were measured on the server-side since the client’s SOAP
request to the Query Engine heavily depends on the network latency.

5.2.5. Related Work

After describing our provenance approach, we want to give a brief overview of related work.
The provenance of electronic data has been addressed in various research efforts [121]. The
focus of this research has often been on provenance in e-Science and scientific workflows [172],
which led to different research prototypes such as Chimera [55]. Over the years, research on
data provenance resulted in the Open Provenance Model [122] and reference architectures for
provenance systems [62]. Additionally, there is existing work in the area of data provenance
in service-based systems [29,154,173,185] which is discussed in more detail below. In general,
these approaches address data provenance which aims at capturing the history of some piece
of data generated by some process. In contrast to that, our work focuses on service provenance
by maintaining the origin and history of services and associated metadata.

There are several issues when designing provenance in service-oriented systems. Tsai et al. [185]
discuss the issues of data provenance in SOA systems compared to traditional data provenance
techniques. Their main focus is on security, reliability and integrity of data routed through
such a system. Tan et al. [181] also address security issues in SOA-based provenance systems.
They use p-assertions [121], which represent specific items that document parts of a process, as
foundation for their considerations. Similar to our work, they argue that access control, trust
and accountability of provenance information are crucial points. In addition to that, we also
address security issues in service runtime environments, which is realized using authentication
based on certificates and claim-based authorization.

100

5.2. Service Provenance

Rajbhandari and Walker [154] present a system that incorporates provenance into scientific
workflows to capture the history of the produced data items. This history is captured by
the workflow engine and recorded into a provenance database, which is structured using RDF
schema. Furthermore, a provenance query service is used to query the provenance information
stored in the database. Heinis and Alonso [66] present another approach to provenance of
scientific data. In their approach, they focus on how provenance data can be efficiently stored
and queried in the provenance database.

Another interesting work in this area is described by Simmhan et al. [173] who introduce the
Karma2 system. The goal of this work is to provide provenance in data-driven workflows.
The authors describe their provenance model including different provenance activities (e.g.,
ServiceInvoked, DataProduced, etc.). The idea is to trace workflow executions for both process
provenance (i.e., which services are invoked by a process) and data provenance (i.e., which
data items are produced and consumed). The architecture of Karma2 uses a Publish/Subscribe
infrastructure to publish provenance activities to interested subscribers. In addition, prove-
nance queries are provided to display provenance information using graphs. Although our
notion of provenance is different, there are some similarities to our work. Both approaches
use provenance queries and provenance graphs. Additionally, provenance information is sent
using a Publish/Subscribe infrastructure based on WS-Eventing [199]. However, while our
approach provides content-based subscriptions and complex event processing, Karma2 sup-
ports only topic-based subscriptions (i.e., subscribers can either receive all or none events for
one workflow). Furthermore, Karma2 uses a modified SOAP library for collecting provenance
information while our work is integrated into the VRESCo runtime. Finally, our definition of
service provenance also includes service metadata and QoS attributes.

Chen et al. [29] introduce what they call augmented provenance, which is based on the idea of
semantic Web services (SWS). They address process provenance in scientific workflows with a
special emphasis on Grid environments. Their approach applies ontologies to model metadata
at various levels of abstraction while SWS are used for capturing execution-independent meta-
data. Similar to our work, the authors use metadata as source for provenance. However, they
focus on traditional SWS technologies while our work builds on the VRESCo metadata model.
Furthermore, they do not provide provenance graphs and subscriptions.

Curbera et al. [38] present a slightly different view on provenance. They introduce the notion
of business provenance in order to achieve compliance violation monitoring. The basic idea is
to trace end-to-end business operations by capturing various business events, correlate these
events into a provenance store, and monitor if some compliance goals are violated. The authors
introduce a generic provenance data model, which can be represented in provenance graphs.
These graphs are built based on the event information in the provenance store and can be
queried for root cause analysis. This work is complementary to ours since the authors address
business provenance using business events, while we focus on service provenance based on
events raised on the service management level.

101

Chapter 5. Service Notification Applications

5.2.6. Conclusion

In this section, we have introduced a second interesting use case for VRESCo eventing, which
makes use of the historical information stored in the Event Database. This information can be
used as a means to document the origin and history of services within the runtime. Since such
documented history of objects is often referred to as provenance, we introduced the notion of
service provenance.

Provenance information is collected at runtime and can be retrieved using provenance queries,
subscriptions or graphs. Besides describing how the three types have been realized in VRESCo,
we also given concrete examples. Based on this description, the evaluation discusses the
usefulness and applicability of our approach, and gives performance results for generating
provenance graphs. Furthermore, we position our work among related research efforts, which
have mainly focused on the provenance of data in business processes and scientific workflows.

5.3. QoS Monitoring and SLA Violation Detection

Besides notification-based rebinding and service provenance, the VRESCo Event Notification
Engine also supports monitoring QoS attributes by combining two conceptually different ap-
proaches. The QoS information collected at runtime using events can then be used to detect
SLA violations. These two topics represent the focus of the following section.

5.3.1. Introduction

QoS plays a crucial role in service-oriented systems. For instance, reconsider the motivating
example in Section 1.1. When CPO1 integrates external services into internal business processes
(e.g., Number Porting Service of CPO2), it is important to consider the quality guarantees of
the service provider. In this regard, SLAs [82] are used to define the expected QoS between
service consumers and service providers.

In general, QoS attributes can be classified as deterministic or non-deterministic. The former
indicates that the QoS attribute is known before a service is invoked (e.g., price, security,
etc.), while the latter includes all attributes that are unknown at service invocation time (e.g.,
response time, availability, etc.). For non-deterministic QoS attributes, monitoring approaches
can be used to continuously measure current QoS values.

Conceptually, there are two main approaches for QoS monitoring: Server-side monitoring is
usually accurate but requires access to the actual service implementation which is not always
possible. In contrast, client-side monitoring is independent of the service implementation but
the measured values may not always be up-to-date since client-side monitoring is usually done
by sending probe requests (i.e., test requests that are similar to real requests).

102

5.3. QoS Monitoring and SLA Violation Detection

We aim at combining the advantages of both approaches which has been realized in the
VRESCo runtime environment. Therefore, we have linked an existing client-side QoS moni-
toring approach [163] together with server-side monitoring based on Windows Performance
Counters [204]. Furthermore, event processing is used to integrate both approaches and pro-
vide means to monitor SLAs. If SLA obligations are violated, notifications are sent to interested
subscribers using email or Web service notifications.

5.3.2. QoS Monitoring

In this section, we present two conceptually different monitoring approaches for Web services,
which we have integrated into VRESCo. The QoS model used for this work has been introduced
in Section 3.3.

Client-side Monitoring

The first approach to address QoS monitoring is done client-side using the QUATSCH tool
which was introduced in [163]. The overall idea is to send probe requests to the services that
should be measured. The service invocation is thereby divided into the time periods shown in
Figure 3.6 that correspond to the introduced QoS attributes.

The actual monitoring is done in three phases. In the preprocessing phase, the WSDL files
of the services are parsed and stubs are generated. The performance measurement code is
thereby weaved into the stubs using aspect-oriented programming (AOP) [84] or interceptors
(depending on the used Web service framework). In the evaluation phase, the services are
executed by probing arbitrary values as input parameters. Moreover, templates can be used
to provide user-defined input. Finally, the result analysis phase stores the results of the
evaluation phase in a database. Interestingly, the client-side monitoring approach is indeed able
to accurately measure server-side attributes such as execution time (as we will show below).
In QUATSCH, this is done using low-level TCP packet sniffing and analysis of SOAP message
traces. For instance, the network latency can be measured by leveraging the TCP handshake
(i.e., SYN and ACK packets). More details on the trace analysis algorithm can be found in [158].

Server-side Monitoring

The main drawback of the client-side approach is the fact that monitoring is done by regularly
sending probe requests (e.g., every 5 minutes). Single results should be handled with caution
since they represent only snapshots (e.g., the service may be under heavy load when the probe
request is sent). Decreasing the monitoring interval may mitigate this problem to some extent
but this must be done carefully since short monitoring intervals (e.g., once every second) may
finally affect the actual performance of the service.

103

Chapter 5. Service Notification Applications

Server-side monitoring addresses this problem by continuously measuring QoS attributes.
Since no probe requests are needed anymore, the measured values represent “real” service
invocations. However, as said above, this technique requires access to the actual Web service
implementation which is not always possible in practice.

Windows Performance Counters (WPC), especially the counters regarding the Windows Com-
munication Foundation (WCF) [146], are part of the .NET framework and provide such server-
side QoS monitoring for Web services [204]. WPC supports a rich set of counters that can be
measured at runtime. For our work, we focus on the following counters: Call Duration indi-
cates the service invocation time which resembles Execution Time in the client-side approach.
Calls Per Second defines how often a service has been invoked, while Calls Failed Per Second
represents a similar counter for unsuccessful service invocations. Other performance counters
(e.g., Transactions Flowed Per Second, Security Validation and Authentication Failures, etc.) could
also be integrated easily.

As before, monitoring is done in user-defined intervals. The different performance counter val-
ues are thereby aggregated and averaged within an interval, and finally re-set at the beginning
of the next interval. For instance, if a service has been invoked 3 times, the average response
time of these three invocations is returned by the counter.

5.3.3. QoS/SLA Integration in VRESCo

In this section, we show how the presented client- and server-side approaches are integrated
in VRESCo, and how this enables event-based SLA violation detection [115].

QoS Integration

The overall architecture of our monitoring approach is shown in Figure 5.4. The client-side
monitor QUATSCH was first integrated into VRESCo. Users can specify QoS monitoring
schedules following the CRON time notation to define which service (or service operation)
should be monitored in which time intervals. Since this is a client-side approach, the monitor
runs on a dedicated QUATSCH host as shown in the middle of the figure. The actual monitoring
is then done using AOP and TCP packet analysis as described in Section 5.3.2. Once the current
QoS values have been measured, they are published into VRESCo. This is done via the QoS
Manager that receives the values and, in turn, publishes them as corresponding QoS events
into the Event Notification Engine.

Monitoring is done regularly based on the user-defined monitoring schedules. The set of
resulting QoS events represents the history of QoS information as collection of single QoS
snapshots. To make these values easily accessible, they are aggregated by a QoS aggregation
scheduler task on a regular basis. Finally, they are attached to the corresponding service
revision (or service operation in case of QoSOperationEvents).

104

5.3. QoS Monitoring and SLA Violation Detection

WPC
Monitor

Service Host

S1

QUATSCH Host

QUATSCH
Monitor Event

Engine

VRESCo Host

QoS
Manager

Mapping

QoS
Events

SLA Violation
Notifications

SLA Obligations Subscriptions

S
LA

 L
ay

er
Q

oS
 L

ay
er

Figure 5.4.: QoS/SLA Monitoring Approach

As already discussed, the client-side approach has both strengths and weaknesses. Therefore,
we decided to additionally integrate a server-side approach using WPC which is an integral
part of the .NET framework. Consequently, the WPC-based approach is restricted to services
implemented in .NET. The WPC monitor runs on the same host as the service (see Figure 5.4)
and continuously monitors its QoS attributes. The measured values are published into the
VRESCo runtime the same way as described before. For the WPC-based approach the mon-
itoring schedules are defined in configuration files as shown in Listing 5.6. It defines which
service/operation should be monitored, together with the monitoring and availability checking
interval (in ms). The former describes how often the counters are retrieved while the latter
is required since availability should be checked more often than other QoS attributes to get
meaningful results.� �
1 <vresco.qosmonitoring monitoringinterval="60000" availabilitycheckinterval="5000">

2 <webservices>

3 <webservice wsdl="http://localhost:8013/s?wsdl">

4 <operations>

5 <add name="TestOperation"/>

6 </operations>

7 </webservice>

8 </webservices>

9 </vresco.qosmonitoring>� �
Listing 5.6: WPC Monitoring Configuration

In general, the two approaches are independent. However, some attributes can only be mea-
sured by one of the approaches (e.g., latency and response time have to be measured from the
client-side). Table 5.1 shows the QoS attributes currently measured in VRESCo and depicts
which approach has been taken for which attribute. Throughput and Calls Per Second seem to
refer to the same QoS attribute. However, the first represents the maximum number of requests
that can be processed, while the latter indicates the number of invocations that really occurred.

105

Chapter 5. Service Notification Applications

QoS Attributes Monitored by
Execution Time QUATSCH & WPC
Response Time QUATSCH

Latency QUATSCH
Availability QUATSCH & WPC
Throughput QUATSCH

Calls Per Second WPC
Calls Failed Per Second WPC

Table 5.1.: QoS Attributes

It can be seen that two attributes are measured by both approaches. For both Availability and
Execution Time, the WPC-based approach is usually more accurate since it does not need to
send probe requests, but represents the values of real invocations. However, we still monitor
using both approaches since the measured values may be different. In Section 5.3.4, we briefly
discuss why this combination is useful and give some concrete examples.

SLA Monitoring

QoS monitoring approaches, as introduced in the last section, represent an essential foundation
for SLAs, which define the expected QoS between service providers and consumers. In this
section, we describe the SLA monitoring approach in VRESCo, and how clients can react to
SLA violations. This approach is based on the VRESCo Event Engine and is depicted in the
top part of Figure 5.4. To give a brief overview, simple SLA obligations can be attached to
services. This is done using the Publishing Service that also allows to temporary start and
stop SLA monitoring. These obligations are then transformed to subscriptions specified in the
Esper Processing Language (EPL) [45] since VRESCo eventing is based on the Esper Engine.
This engine does the actual matching between subscriptions and events. Finally, when such
matches occur the subscribers are notified about the corresponding SLA violation.

Frameworks such as WSLA [82] have been proposed for defining complex SLAs, but they are
rarely used in practice. Therefore, we decided to define simple SLA obligations representing
guarantees on the QoS attributes, which are shown in Table 5.2. First of all, obligations can be
either attached to service operations or revisions. Every obligation is valid only within a given
period of time after which it expires. The property name represents the QoS attribute to monitor
(e.g., response time), while logical operator and property value are used to define threshold
values (e.g., < 500 ms). Aggregation functions (e.g., sum, max, avg, median, etc.) can further
be defined on multiple QoS events. Obligations also define the notification mechanism and
the address used for violation notifications (e.g., email or WS-Eventing notifications). Finally,
sliding window operators can be used to define the time period to consider for the QoS events
(e.g., the last 10 events or events within the last 5 minutes).

106

5.3. QoS Monitoring and SLA Violation Detection

Property Description
Id Identifier of the obligation

RevisionId Identifier of the service revision
OperationId Identifier of the service operation
StartDate Start date of the obligation
EndDate End date of the obligation

PropertyName QoS attribute to monitor
Aggregation Aggregation function on property

LogicalOperator Logical operator used for comparison
PropertyValue Threshold value used for comparison
ReactionType Notification mechanism to use

ReactionAddress Address of the subscriber
WindowType Type of the sliding window operator
WindowValue Value of the sliding window operator

Table 5.2.: SLA Obligations

To give concrete examples, a simple SLA obligation could define that the availability of revision
23 should be greater than 0.99. This obligation is transformed to the following EPL expression
(please note that logical operators must be inverted since subscriptions represent violation
conditions):

select * from QoSRevisionEvent

where Revision.Id=23 and Property=’Availability’ and DoubleValue<=0,99

A more complex SLA obligation could define that operation 47 of service revision 11 should
have an average response time less than 500 ms within the last 24 hours. Besides the sliding
window operator (win:time) this SLA obligation uses univariate statistics on event streams
(.stat:uni and average) which are provided by Esper:

select * from QoSOperationEvent\\

(Revision.Id=11 and Operation.Id=47 and Property=’ResponseTime’)\\

.win:time(24 hours).stat:uni(’DoubleValue’)

where average>=500

Once an SLA violation is detected, notifications are sent using email or Web service notifications
to the specified address. The subscribers can then react accordingly, for instance by rebinding to
functionally equal services [117]. In this regard, the SLA violation mechanism can also be used
by service providers to monitor if services perform as intended. SLA violation notifications
could then automatically trigger to start new instances of this service and publish them into
VRESCo. Such scenarios and ways to define SLA penalty models are part of our future work.

107

Chapter 5. Service Notification Applications

5.3.4. Evaluation

To evaluate our approach, we compare the accuracy of both monitoring approaches in terms
of execution time and availability as two exemplary values that can be measured by both
QUATSCH and WPC. Based on these findings, we discuss why a combination of both ap-
proaches is useful and highlight some of its advantages and disadvantages.

Our evaluation environment consists of a server hosting VRESCo and a set of C#/.NET dummy
services that have a configurable execution time and a variable availability (3 downtimes of
30 min, 2 min and 10 min length, and simulated network problems with short interruptions
between 19:00 and 19:20). Additionally, QUATSCH is hosted on a VMWare image running on
a different server in the LAN.

Figure 5.5 and 5.6 depict the results of our monitoring experiments where QUATSCH probes
every 5 minutes whereas WPC measures every minute. We further use soapUI [48] to simulate
clients that continuously invoke the test services. The different measurement intervals are
based on the fact that QUATSCH sends real invocations to probe a service, while WPC has
lower overhead because it queries performance counters provided by the operating system.

 999

 1000

 1001

 1002

 1003

16:00 17:00 18:00 19:00 20:00 21:00 22:00

M
ill

is
ec

on
ds

Time

Execution Time (WPC)
Execution Time (QUATSCH)

Simulated Execution Time

Figure 5.5.: Execution Time Comparison

Figure 5.5 depicts the measured execution time over 6 hours. The results show that both
approaches are pretty accurate. The deviation from the simulated execution time (1 sec) is
less than 2 ms for most measurements. The values for QUATSCH indicate that execution time
can be indeed measured from the client-side. Additionally, it can be seen that WPC is more
accurate because it represents the average execution time measured on the server-side. The
gap between simulated execution time and average value measured by WPC is 0.88 ms, which
is partly caused by internal processing of the test services (e.g., threading, console output, etc.).

108

5.3. QoS Monitoring and SLA Violation Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30

A
va

ila
bi

lit
y

Time

Availability (WPC)
Availability (QUATSCH)

Simulated Availability

Figure 5.6.: Availability Comparison

Figure 5.6 shows the simulated and measured availability of the test services. It can be ob-
served that WPC detects downtimes faster, which is due to the shorter monitoring interval.
WPC further divides this interval into availability checking intervals (5 sec). Therefore, the
availability of one interval can also be measured (e.g., at 18:31 and 20:02). In contrast to that,
QUATSCH does not have this fine-grained distinction (i.e., availability is either 0 or 1). As
a result, QUATSCH does not recognize the short downtime at 20:02. The same is true for
the timespan between 19:00 and 19:20 where WPC is quite accurate whereas QUATSCH does
not detect this at all. It should be noted that the same behavior could be observed when the
execution time in Figure 5.5 is varying.

Nonetheless, combining both approaches is still useful. Firstly, some QoS attributes can only
be measured from the client-side (e.g., latency). Secondly, it is possible to distinguish between
client- and server-side view on some QoS attributes (e.g., availability). For instance, if there is no
network connection on the QUATSCH monitoring host, client-side availability decreases even
if the service is running. However, this can be verified by the WPC approach. Thirdly, bogus
server-side measurements can be detected by the client-side approach, by comparing measured
QoS values over a longer period of time. Fourthly, another dimension to client-side monitoring
could be added by integrating actually perceived QoS values on the client-side (in addition
to the measured values of the QUATSCH probe requests). However, the combination of both
approaches also has some drawbacks. For instance, clients must agree to install monitoring
software which may not always be the case.

We have shown that the accuracy of the monitoring approaches makes them suitable for SLA
monitoring. As depicted in Figure 4.8, the event throughput is high enough for the expected
number of services (e.g., 2000 services with the same monitoring intervals as above). Therefore,
it is easily possible to subscribe to SLA violations and react adaptively if needed.

109

Chapter 5. Service Notification Applications

5.3.5. Related Work

Several different QoS models have been proposed in literature (e.g., [107, 155, 212]). However,
most approaches do not discuss how QoS can be monitored. An overview of QoS monitoring
approaches for Web services is presented by Thio et al. [182]. The authors discuss various
techniques such as low-level sniffing or proxy-based solutions. The prototype presented in their
paper adopts an approach where the SOAP library is instrumented with logging statements to
emit the necessary information for QoS measurement. A major drawback of this approach is
the dependency on the modified SOAP library and the resulting maintenance and distribution
of the modified library.

QoS monitoring has been an active research area for years which is not only focused on Web
service technology. For instance, Garg et al. [59] present the WebMon system that aims at mon-
itoring the performance of Web transactions using a sensor-collector architecture. Similar to
our work, their approach correlates client- and server-side response times which are measured
by different components. In their work, the question is whether to instrument the Web server
or the Web browser for doing the performance measurements.

There are many existing approaches for SLA monitoring and violation detection (e.g., [28, 100,
153,175] just to name a few). Skene et al. [175] introduce SLAng which is a general SLA language
not only focused on Web services, but targeted to distributed systems and applications with
reliable QoS characteristics. The language is modeled in UML while the syntax is defined using
XML schema. The authors further define a model for all parties and services involved in such
agreement. The actual constraints in the SLAs are then defined using the Object Constraint
Language (OCL). Finally, UML profiles are used to extend SLAng with a QoS catalog which
enables to define QoS characteristics of services.

Raimondi et al. [153] describe an SLA monitoring system that translates timeliness constraints
such as latency or availability of SLAs into timed automata. The execution traces of Web
services are then verified using these timed automata. Their approach is implemented as
handler for the open source engine Axis [6] while they use SLAng for defining SLAs.

Lodi et al. [100] describe a middleware for SLA-driven clustering of QoS-aware application
servers. They use XML for defining SLAs, which was inspired by SLAng. The architecture
consists of three components: The Configuration Service is responsible for managing the QoS-
aware cluster, the Monitoring Service observes the application at runtime to detect violations
of SLAs, and the Load Balancing Service intercepts client requests to balance them among
different cluster nodes. If the cluster is mainly idle or close to breach the SLA (e.g., the response
time converges to the upper bound), it is reconfigured (i.e., add/release nodes).

Chau et al. [28] present a similar approach for modeling and event-based monitoring of SLAs
which is part of the eQoSystem project. The SLA model refines the WSLA specification: SLAs
consist of multiple SLOs and use various metrics that indicate different measurement aspects of
a process. Furthermore, action handlers can be defined to react when SLOs are violated. Similar

110

5.3. QoS Monitoring and SLA Violation Detection

to our work, the SLA monitoring approach is based on events. These events are assumed to be
emitted by the business process and contain a snapshot of the current process state. In contrast
to that, our QoS events focus on the service- and operation-level. Furthermore, we additionally
address how QoS attributes of Web services can be monitored from client- and server-side.

Moser et al. [123] present the VieDAME system that aims at non-intrusive monitoring of BPEL
processes. The main idea is to monitor QoS of processes and provide service adaptation
by introducing different selection strategies for services. For instance, this can be used to
implement load balancing. Furthermore, if services do not perform well, they can be replaced
with alternative services. If the alternatives do not have the same interfaces, SOAP messages
are adapted using XSLT transformations. Wetzstein et al. [191] monitor and analyze the QoS
of BPEL processes to observe key performance indicators (KPIs) and find factors that influence
process performance. Their approach uses process events published by the process engine
and QoS information (e.g., service response time) measured by the QoS monitor, while the
dependencies of KPIs to process and QoS metrics are depicted in tree structures.

Finally, it should be noted that there are other options for handling QoS besides monitoring. For
instance, Bianculli et al. [21, 22] propose the ReMan infrastructure for reputation management
of composite Web services. The basic idea is to build service rankings based on the client-
perceived QoS of external services. Furthermore, notifications can be sent if the rankings
change. This work is complementary to the Quality of Experience (QoS) approach introduced in
VRESCo [91]. While ReMan focuses on how reputation of composite services can be estimated
and how clients are notified if service rankings change, our work uses tagging as mechanism
for receiving structured and unstructured user feedback. Furthermore, tag merging and trust
relationships are used to aggregate this information.

5.3.6. Conclusion

Monitoring QoS attributes of Web services is an essential aspect to enforce SLAs established
among business partners. In this section, we have shown that a combination of client- and
server-side QoS monitoring can be beneficial regarding the overall monitoring capabilities since
both approaches have strengths and weaknesses. These monitoring capabilities combined with
a powerful Web service runtime enable an event-based detection of SLA violations for Web
services, while subscribers can react appropriately to such violations. We have evaluated
the accuracy of both QoS monitoring approaches, which has confirmed our assumption that
server-side monitoring is more accurate than client-side monitoring. However, we have further
discussed a number of reasons why combining both approaches can still be useful in practice.

For future work, we plan to automatically react to SLA violations, such as deploying new
service instances on-the-fly or dynamically increase virtual machine capabilities (that are often
used to host services). Furthermore, we envision to measure and publish the actual response
times at the client-side, in addition to the measured QUATSCH probe requests.

111

Chapter 5. Service Notification Applications

5.4. Service Pricing and Penalty Models

The use cases presented so far have been realized within the scope of this thesis. Furthermore,
there are several other scenarios that can leverage the VRESCo eventing support. We briefly
present two of them in the following two sections.

Service pricing receives increasing attention as more and more services become available. In
this regard, service usage can be automatically billed to the user account according to the
agreed pricing model. To give a concrete example, reconsider the CPO case study introduced
in Section 1.1. In this example, CPO1 provides Messaging Services for sending SMS messages,
which can only be used by customers. However, such services are typically not free but have
to be paid by its users. This raises the need for appropriate pricing models.

Service pricing models [43] can range from simple models with fixed prizes to complex models
where prizes can be calculated in a dynamic manner. For instance, the basic flat-rate model
allows users unlimited access to services for given period of time. In contrast to this, more
flexible pricing models include pay-per-use where users pay a certain amount of money for
every service invocation (or for a certain amount of invocations).

In VRESCo, such billing information can be easily aggregated based on the information stored
in the Event Database, since every invocation is represented by ServiceInvokedEvents. Therefore,
the Billing Service simply has to query the Event Database for every invocation within a given
time period, and apply this information to the agreed service pricing model.

Furthermore, service pricing may also be influenced by the SLAs defined between partners,
and possibly result in penalties if providers cannot meet the SLAs. For instance, if the service
response time is beyond a given threshold, service providers may be bound by contract to make
penalty payments to service consumers. The same is true if service invocations fail, which is
recorded by ServiceInvocationFailedEvents.

Similar to pricing models, penalty models can be defined in order to specify the effects if SLAs
are violated. Using the information stored in events, this can also include complex penalty
models (e.g., pay 10$ if the average response of service X within the last month goes beyond a
given threshold). Finally, pricing and penalty models can be combined, which allows flexible
derivation of pricing models based on dynamically negotiated SLAs. For instance, users may
get 5 free service invocations for every failed invocation.

5.5. Event-based Composition

Another interesting point for future work in VRESCo is to link together the Composition
Engine [158] and Eventing Engine in order to provide what we call event-based composition.
However, it should be noted that this is conceptually different to the work of Hu et al. [68],
who describe how Publish/Subscribe can be used for automatic service composition.

112

5.6. Conclusion

Currently, the VRESCoComposition Engine statically builds the composition using the services
and metadata stored in the Registry Database. Especially in large-scale settings, the execution
time of the query represents an essential part of the overall time [159]. To reduce this overhead,
event notifications could be used by subscribing to these queries and perform re-optimization
of compositions, instead of running the whole composition process from scratch.

In this regard, the re-optimization process is then triggered by events at runtime. For instance,
if the response time of a service within a composition changes significantly, the Composition
Engine may be triggered to re-optimize the composition. In this way, not well-performing
services could be replaced by services with better QoS, that implement the same feature.

5.6. Conclusion

This section has presented some application scenarios of VRESCo eventing. Some of them have
been implemented within the scope of this thesis, while others are proposed for future work.

Firstly, the initial motivation for the VRESCo Event Notification Engine was to use event
notifications to trigger dynamic rebinding of service proxies. Using events for this purpose
obviously has advantages compared to the other rebinding strategies introduced earlier.

Secondly, the information inherent to historical events stored in the Event Database can be used
as source of service provenance. The aim of service provenance is to document the origin and
history of services in the Registry Database, which can be visualized using provenance graphs.
Furthermore, access control is used to support selective service provenance.

Thirdly, event processing can be used for QoS/SLA monitoring. In this regard, we have
presented two different QoS monitoring techniques that were combined using the VRESCo
eventing support. Furthermore, the complex event processing mechanisms of the Event Engine
also enable event-based SLA violation detection.

Finally, there are several use cases that are enabled by this work, but have not been imple-
mented so far. We have briefly summarized two of them, namely service pricing models and
event-based composition of services. To sum up, this section has shown the usefulness and
applicability of the VRESCo Event Notification Engine.

113

Chapter 6.

Conclusion

This chapter concludes the thesis and summarizes what has been presented. Furthermore, the
research questions raised in Chapter 1 are revisited, by discussing how this work provides
corresponding answers. Finally, we briefly mention future work and research directions that
are enabled by this thesis.

6.1. Summary

Service-oriented Architecture has received attention from both academia and industry in the
past years. Following this paradigm, loosely-coupled software services are provided and can be
composed into business processes to achieve higher-level functionality. Web services represent
the most common and widely-used realization of SOA. Within the past years, several standards
and specifications have been proposed and a complete Web services stack has emerged.

In this thesis, we have presented several challenges that we see in SOC research and practice.
More precisely, we argue that current service-oriented solutions are often not as flexible and
loosely-coupled as initially intended by the SOA model. Among others, these challenges
include service metadata and service querying, QoS-based dynamic binding and invocation,
as well as service mediation. We have introduced the VRESCo service runtime environment
that addresses these challenges.

The focus of the second part of this thesis has been put on one challenge, which represents
asynchronous event notifications in service-oriented systems. After describing the state of the
art regarding event processing and SOC, we have highlighted the problems of current solutions.
Based on these findings, we have integrated complex event processing support into VRESCo.

Finally, we have given several application scenarios for event notifications in service-oriented
systems. For instance, event notifications can be used for dynamic binding of services, which
has clear advantages over other rebinding strategies. Besides describing some application
scenarios that have been investigated within the scope of this thesis, we also point to future
research directions enabled by this work.

115

Chapter 6. Conclusion

6.2. Research Questions Revisited

After this brief summary, we want to evaluate the research questions raised in Chapter 1. More
precisely, we show how the results of this thesis contribute to the three research questions.

• Q1: What are current challenges of flexible and adaptive SOC infrastructures in general, and
service registries in particular? How can these challenges be addressed within a coherent system?

In Section 1.2 we have highlighted the challenges we see in SOC. Moreover, we have
investigated several approaches with regard to these challenges in Section 2.4.

Based on these results, we argue that many approaches provide only limited support
for several challenges. Therefore, we have introduced the novel service runtime envi-
ronment VRESCo in Chapter 3. Among others, one of the main objectives is QoS-based
dynamic binding and invocation of services. This also includes mediation mechanisms if
functionally equal services provide different technical interfaces. As a result, clients can
dynamically bind between different services that perform the same task. For instance, if
the response time of some service goes beyond a given threshold, service proxies can be
automatically rebound to an alternative service with better QoS.

This requires a QoS-aware environment which is provided using QoS monitoring tech-
niques. Furthermore, service metadata are used to map abstract service descriptions to
concrete service implementations. This enables to define if two services perform the same
task, and to specify the concrete technical service interface, which is needed for service
mediation. Besides that, service querying is needed in order to query services and asso-
ciated service metadata at runtime. Finally, other important topics include support for
service versioning in order to maintain multiple revisions of a service, and access control
mechanisms to gain access to VRESCo only to authorized parties.

The evaluation in Section 3.9 has shown that the performance of the VRESCo components
is adequate in large-scale settings. Moreover, an end-to-end scenario has been exempli-
fied to highlight the effects of single components on the overall system performance. In
contrast to simple keyword-based matching of most service registries, VRESCoprovides a
powerful querying framework supporting view-based querying, different strategies and
optional/weighted constraints. Furthermore, the rebinding, mediation and versioning
mechanisms facilitate the implementation of flexible and adaptive service-based applica-
tions, as opposed to existing service frameworks (see qualitative comparison in Table 2.1).

• Q2: How can event processing principles be seamlessly integrated in SOC infrastructures? What
are specific challenges and approaches?

In Chapter 2 we have introduced the state of the art concerning event processing in SOC
by describing different standards and specifications, as well as eventing support in Web
service registries. Currently, there are various similar specifications which are competing,
and it is unclear which specification will succeed.

116

6.2. Research Questions Revisited

Most approaches have in common to support only basic events (e.g., new service has been
published, old service has been deleted, etc.). However, we argue that more complex
events are of particular interest. This includes support for event patterns (e.g., A happens
before B) and sliding window operators (e.g., consider only events within the last 2 hours).

Consequently, one of the main objectives of this thesis is to introduce such complex event
processing mechanism, which is described in detail in Chapter 4. The VRESCo eventing
support builds on the open source engine Esper, that provides several complex event
processing features. We have introduced various event types that can be of interest in
service-oriented systems (e.g., service management and QoS, process or business events).
Furthermore, events are persisted into the Event Database, while the VQL querying
framework can be used to search in historical events. Finally, since events may include
sensitive information, appropriate access control mechanisms have been investigated that
gain access to events only to authorized parties.

The evaluation in Section 4.10 has shown that the VRESCo Event Engine can deal with
several hundreds of events per second. In general, this is adequate for various application
scenarios. Furthermore, the overhead of the Event Engine depicted in Figure 4.9 seems
acceptable when considering the new possibilities opened up by the eventing support.
Finally, concrete usage examples have emphasized the expressiveness of the subscription
language. In this regard, most of the complex event processing mechanisms are not
supported by current service infrastructures that usually provide only basic events.

• Q3: Which application scenarios are enabled by this work? What would be more difficult or less
efficient to realize without event processing support?

The previous question has addressed the general event processing mechanisms of service
runtime environments, without pointing to actual application scenarios. We argue that
these mechanisms can be used to address several SOC challenges more efficiently, which
highlights the usefulness and applicability of our approach.

First of all, event notifications can be used during dynamic binding of services. In the first
prototype, rebinding was done proactively (e.g., check the binding periodically). Using
notifications, subscriptions can define when the rebinding should be triggered (e.g., if
the response time of service X goes beyond 500 ms, etc.). Together with the VRESCo
mediation approach this increases the flexibility of service-oriented solutions, which can
automatically react and adapt to changing environments. To support this claim, Figure 5.1
has shown that the OnEvent rebinding strategy performs better than other strategies.

Even though OnEvent rebinding was the main motivation for the Event Engine in the
first place, there are several other use cases that have been investigated. For instance, the
events stored in the Event Database can be used as source for provenance information
since they represent the origin and history of services. This information can be retrieved
using provenance queries, graphs or subscriptions (e.g., during service selection).

117

Chapter 6. Conclusion

In contrast to existing approaches that address data and process provenance, VRESCo
focuses on the provenance of services. Furthermore, our approach was integrated into an
existing infrastructure instead of providing a dedicated provenance framework. Besides
giving concrete provenance examples, Figure 5.3 has shown that generating provenance
graphs in VRESCo can be done efficiently for several thousands of events.

Besides that, QoS/SLA monitoring represents another interesting use case for event pro-
cessing. The VRESCo eventing mechanism has been leveraged to combine client- and
server-side QoS monitoring techniques, as well as event-based SLA violation detection.
These violations may be used to automatically trigger reactions (e.g., rebind to another
service). In Section 5.3 we have compared client- and server-side monitoring techniques.
Even though server-side monitoring is usually more accurate, we have shown that com-
bining both techniques into a comprehensive monitoring framework can still be beneficial.

6.3. Future Research Directions

The work presented in this thesis opens up new possibilities for future work. To conclude, we
give some examples and future research directions that we envision based on this thesis.

• Real-Life Case Study: The evaluation of Chapter 3 has depicted the performance of the
VRESCo components, together with an end-to-end evaluation using a simple case study.

In the next step, it would be interesting to apply VRESCo in a large-scale and real-life
case study. After conversations with different software companies, our view on the SOC
challenges has been encouraged since many of these problems are also present in practice.
Therefore, such case study additionally aims at bridging the gap between research and
practice. In this regard, we also plan to make VRESCo available as open source in
order to allow interested researchers and practitioners to evaluate our work. Finally, a
comparative case study would also be worthwhile to highlight the benefits of VRESCo
compared to traditional Web service technology.

• Federation of Registries: Currently, the VRESCo runtime uses a centralized architecture
where all services are stored in one database. In this regard, it would be interesting to
provide support for federation of registries using appropriate distribution techniques.

On the one hand, services and associated metadata could be maintained in multiple
registries, and changes in one registry instance must be propagated to the others. Others
have already studied the problems that arise when federating registries [14, 42, 174].
Besides that, the distribution of other VRESCo components requires more attention. For
instance, it must be investigated how the complex event processing infrastructure can
be distributed in order to still guarantee efficient matching. In this regard, Cugola and
Margara introduce the RACED middleware [36] that addresses distributed detection of
complex events by using an event definition language similar to Esper EPL.

118

6.3. Future Research Directions

Furthermore, another interesting topic would be to deploy VRESCo into a cloud com-
puting environment [65]. On the one hand, services and associated metadata could be
stored in the cloud instead of a registry database [24]. On the other hand, the VRESCo
services could also be deployed in the cloud for scalability reasons.

• Adaptive Rebinding Strategies: In this thesis, we have introduced different rebinding
strategies that can be used to dynamically bind and invoke services. According to our
client-side approach, service consumers can define the point in time when rebinding
should be reconsidered (e.g., Periodic, OnInvocation, OnEvent, etc.).

Our evaluation has shown an interesting effect in large-scale settings, which is caused
by this client-side approach. If all service consumers want to invoke the best available
service, the quality of this service may get worse due to the high number of requests (or
may even break down completely). As a result, clients would be rebound to the second
best service and the same effect starts over again.

To prevent such situations, the rebinding strategies could be made adaptive. In other
words, the rebinding decision of one service proxy may depend on the binding of other
service proxies that use the same feature (or different features on the same host). In
this regard, it should be investigated how software load balancers can be used to evenly
spread the load among services that perform the same task [100, 152].

• Further Eventing Applications: In this thesis, we have presented three usage scenarios
that have been implemented based on the VRESCo Event Engine, namely notification-
based rebinding, service provenance and event-based QoS/SLA monitoring.

Furthermore, we have mentioned additional usage examples enabled by VRESCo event-
ing, which have been left for future work. This includes service pricing and penalty
models and event-based composition. These topics have been discussed in more detail
in the previous chapter. Another interesting aspect would be to detect recurring event
patterns in past event data, in order to predict the behavior of a system in the future.

• SLA Violation Prediction: In service-oriented systems, SLAs are often used to define
the contractual obligations between service consumers and providers. In general, service
providers aim at preventing SLA violations since this usually entails penalty payments
and decreases customer satisfaction. Consequently, it is of particular importance to be
able to predict SLA violations before they actually happen. Service providers can then try
to react in order to avoid the impending violation (e.g., by adapting the business process).

In this regard, our ongoing and future work includes to investigate how machine learning
techniques can be used to predict SLA violations based on historical QoS data [94]. This
historical data is based on QoS events that are published by the workflow engine. Once
SLA violations are predicted, the question is how the process can be automatically adapted
to meet the SLA. However, in some cases it might be preferred to violate the SLA since
the penalty payment is less expensive than the necessary adaptation actions.

119

Bibliography

[1] Alonso, G., Casati, F., Kuno, H., andMachiraju, V. Web Services – Concepts, Architectures
and Applications. Springer Verlag, 2004.

[2] Altova, Inc. MapForce, 2009. http://www.altova.com/mapforce.html (Last accessed:
November 30, 2009).

[3] Apache Software Foundation. Web Services Invocation Framework, September 2003. http:
//ws.apache.org/wsif (Last accessed: August 31, 2009).

[4] Apache Software Foundation. Muse v2.2, March 2007. http://ws.apache.org/muse/
(Last accessed: October 3, 2009).

[5] Apache Software Foundation. Savan/C v0.9, May 2007. http://ws.apache.org/savan/
c/ (Last accessed: October 3, 2009).

[6] Apache Software Foundation. Axis2 v1.5.1, October 2009. http://ws.apache.org/
axis2/ (Last accessed: October 30, 2009).

[7] Apache Software Foundation. CXF v2.1.7, October 2009. http://cxf.apache.org/
(Last accessed: October 30, 2009).

[8] Apache Software Foundation. Lucene v2.9, September 2009. http://lucene.apache.
org/ (Last accessed: October 3, 2009).

[9] Apache Software Foundation. Servicemix v3.3.1, June 2009. http://servicemix.
apache.org/ (Last accessed: October 3, 2009).

[10] Apache Software Foundation. Tuscany v2.0, July 2009. http://tuscany.apache.org/
(Last accessed: October 3, 2009).

[11] Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivas-
tava, U., and Widom, J. STREAM: The Stanford Data Stream Management System. In
Data Stream Management: Processing High-Speed Data Streams, M. Garofalakis, J. Gehrke,
and R. Rastogi, Eds. Springer, 2010. http://infolab.stanford.edu/~usriv/papers/
streambook.pdf (forthcoming).

[12] Baresi, L., Ghezzi, C., andMottola, L. On Accurate Automatic Verification of Publish-
Subscribe Architectures. In Proceedings of the 29th International Conference on Software Engi-
neering (ICSE’07) (2007), IEEE Computer Society, pp. 199–208. DOI: 10.1109/ICSE.2007.57.

121

http://www.altova.com/mapforce.html
http://ws.apache.org/wsif
http://ws.apache.org/wsif
http://ws.apache.org/muse/
http://ws.apache.org/savan/c/
http://ws.apache.org/savan/c/
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://cxf.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/
http://tuscany.apache.org/
http://infolab.stanford.edu/~usriv/papers/streambook.pdf
http://infolab.stanford.edu/~usriv/papers/streambook.pdf
http://dx.doi.org/10.1109/ICSE.2007.57

Bibliography

[13] Baresi, L., Ghezzi, C., and Zanolin, L. Modeling and Validation of Publish/Subscribe
Architectures. In Testing Commercial-off-the-shelf Components And Systems, S. Beydeda and
V. Gruhn, Eds. Springer Verlag, 2005, pp. 273–292. DOI: 10.1007/3-540-27071-X_13.

[14] Baresi, L., andMiraz, M. A Distributed Approach for the Federation of Heterogeneous
Registries. In Proceedings of the 4th International Conference on Service-oriented Computing
(ICSOC’06) (December 2006), Springer, pp. 240–251. DOI: 10.1007/11948148_20.

[15] Belokosztolszki, A., Eyers, D. M., Pietzuch, P. R., Bacon, J., andMoody, K. Role-Based
Access Control for Publish/Subscribe Middleware Architectures. In Proceedings of the 2nd
International Workshop on Distributed Event-Based Systems (DEBS’03) (2003), ACM, pp. 1–8.
DOI: 10.1145/966618.966622.

[16] Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., and Toumani, F. Developing
Adapters for Web Services Integration. In Proceedings of the 17th International Conference on
Advanced Information Systems Engineering (CAiSE’05) (2005), Springer, pp. 415–429. DOI:
10.1007/11431855_29.

[17] Bennett, K. H., and Rajlich, V. T. Software Maintenance and Evolution: A Roadmap.
In Proceedings of the Conference on The Future of Software Engineering (ICSE’00) (New York,
NY, USA, 2000), ACM, pp. 73–87. DOI: 10.1145/336512.336534.

[18] Bhargavan, K., Fournet, C., andGordon, A. D. A Semantics for Web Services Authenti-
cation. Theoretical Computer Science 340, 1 (2005), 102–153. DOI: 10.1016/j.tcs.2005.03.005.

[19] Bhargavan, K., Fournet, C., and Gordon, A. D. Verifying Policy-Based Web Services
Security. ACM Transactions on Programming Languages and Systems (TOPLAS) 30, 6 (2008),
1–59. DOI: 10.1145/1391956.1391957.

[20] Bhola, S., Strom, R. E., Bagchi, S., Zhao, Y., and Auerbach, J. S. Exactly-once Delivery
in a Content-based Publish-Subscribe System. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN’02) (2002), IEEE Computer Society,
pp. 7–16. DOI: 10.1109/DSN.2002.1028881.

[21] Bianculli, D., Binder, W., Drago, L., and Ghezzi, C. Transparent Reputation Man-
agement for Composite Web Services. In Proceedings of the 6th International Confer-
ence on Web Services (ICWS’08) (2008), IEEE Computer Society, pp. 621–628. DOI:
10.1109/ICWS.2008.39.

[22] Bianculli, D., Binder, W., Drago, M., and Ghezzi, C. ReMan: A Pro-active Reputation
Management Infrastructure for Composite Web Services. In Proceedings of the 31st Inter-
national Conference on Software Engineering (ICSE’09) (May 2009), IEEE Computer Society,
pp. 623–626. DOI: 10.1109/ICSE.2009.5070571.

[23] Bodoff, D., Ben-Menachem, M., andHung, P. C. Web Metadata Standards: Observations
and Prescriptions. IEEE Software 22, 1 (2005), 78–85. DOI: 10.1109/MS.2005.25.

122

http://dx.doi.org/10.1007/3-540-27071-X_13
http://dx.doi.org/10.1007/11948148_20
http://dx.doi.org/10.1145/966618.966622
http://dx.doi.org/10.1007/11431855_29
http://dx.doi.org/10.1007/11431855_29
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1016/j.tcs.2005.03.005
http://dx.doi.org/10.1145/1391956.1391957
http://dx.doi.org/10.1109/DSN.2002.1028881
http://dx.doi.org/10.1109/ICWS.2008.39
http://dx.doi.org/10.1109/ICWS.2008.39
http://dx.doi.org/10.1109/ICSE.2009.5070571
http://dx.doi.org/10.1109/MS.2005.25

Bibliography

[24] Brantner, M., Florescu, D., Graf, D., Kossmann, D., andKraska, T. Building a Database
on S3. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD’08) (2008), ACM, pp. 251–264. DOI: 10.1145/1376616.1376645.

[25] Brown, K., and Ellis, M. Best Practices for Web Services Versioning, January 2004.
http://www-128.ibm.com/developerworks/webservices/library/ws-version/ (Last
accessed: October 3, 2009).

[26] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. Design and Evaluation of a Wide-
Area Event Notification Service. ACM Transactions on Computer Systems 19, 3 (Aug. 2001),
332–383. DOI: 10.1145/380749.380767.

[27] Chappell, D. Enterprise Service Bus. O’Reilly Media, Inc., 2004.

[28] Chau, T., Muthusamy, V., Jacobsen, H.-A., Litani, E., Chan, A., and Coulthard, P.
Automating SLA Modeling. In Proceedings of the 2008 Conference of the Center for Ad-
vanced Studies on Collaborative Research (CASCON’08) (2008), ACM, pp. 126–143. DOI:
10.1145/1463788.1463802.

[29] Chen, L., Yang, X., and Tao, F. A Semantic Web Service Based Approach for Augmented
Provenance. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence (WI’06) (2006), IEEE Computer Society, pp. 594–600. DOI: 10.1109/WI.2006.25.

[30] Clemm, G., Amsden, J., Ellison, T., Kaler, C., andWhitehead, J. RFC3253: Versioning
Extensions to WebDAV (Web Distributed Authoring and Versioning), March 2002. http:
//tools.ietf.org/html/rfc3253 (Last accessed: December 9, 2009).

[31] Codehaus. XFire, 2007. http://xfire.codehaus.org/ (Last accessed: August 31, 2009).

[32] Codeplex. Quickgraph v3.1, Jan. 2009. http://www.codeplex.com/quickgraph (Last
accessed: November 30, 2009).

[33] Conradi, R., andWestfechtel, B. Version Models for Software Configuration Manage-
ment. ACM Computing Surveys 30, 2 (1998), 232–282. DOI: 10.1145/280277.280280.

[34] Cugola, G., and Di Nitto, E. On Adopting Content-Based Routing in Service-Oriented
Architectures. Information and Software Technology 50, 1–2 (Jan. 2008), 22–35. DOI:
10.1016/j.infsof.2007.10.004.

[35] Cugola, G., Di Nitto, E., and Fuggetta, A. The JEDI Event-Based Infrastructure and
its Application to the Development of the OPSS WFMS. IEEE Transactions on Software
Engineering 27, 9 (2001), 827–850. DOI: 10.1109/32.950318.

[36] Cugola, G., and Margara, A. RACED: An Adaptive Middleware for Complex Event
Detection. In Proceedings of the 8th Workshop on Adaptive and Reflective Middleware (ARM’09)
(2009), ACM, pp. 1–6. DOI: http://dx.doi.org/10.1145/1658185.1658188.

[37] Cugola, G., and Picco, G. P. REDS: A Reconfigurable Dispatching System. In Proceedings
of the 6th International Workshop on Software Engineering and Middleware (SEM’06) (2006),
ACM, pp. 9–16. DOI: 10.1145/1210525.1210530.

123

http://dx.doi.org/10.1145/1376616.1376645
http://www-128.ibm.com/developerworks/webservices/library/ws-version/
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1145/1463788.1463802
http://dx.doi.org/10.1145/1463788.1463802
http://dx.doi.org/10.1109/WI.2006.25
http://tools.ietf.org/html/rfc3253
http://tools.ietf.org/html/rfc3253
http://xfire.codehaus.org/
http://www.codeplex.com/quickgraph
http://dx.doi.org/10.1145/280277.280280
http://dx.doi.org/10.1016/j.infsof.2007.10.004
http://dx.doi.org/10.1016/j.infsof.2007.10.004
http://dx.doi.org/10.1109/32.950318
http://dx.doi.org/10.1145/1658185.1658188
http://dx.doi.org/10.1145/1210525.1210530

Bibliography

[38] Curbera, F., Doganata, Y. N., Martens, A., Mukhi, N., and Slominski, A. Business
Provenance - A Technology to Increase Traceability of End-to-End Operations. In Pro-
ceedings of the 16th International Conference on Cooperative Information Systems (CoopIS’08)
(Nov. 2008), Springer, pp. 100–119. DOI: 10.1007/978-3-540-88871-0_10.

[39] Decker, G., Kopp, O., Leymann, F., and Weske, M. BPEL4chor: Extending BPEL for
Modeling Choreographies. In Proceedings of the 5th International Conference on Web Services
(ICWS’07) (July 2007), IEEE Computer Society, pp. 296–303. DOI: 10.1109/ICWS.2007.59
(http://www.bpel4chor.org/).

[40] Di Penta, M., Esposito, R., Villani, M. L., Codato, R., Colombo, M., and Di Nitto, E.
WS Binder: A Framework to Enable Dynamic Binding of Composite Web Services. In
Proceedings of the International Workshop on Service-oriented Software Engineering (SOSE’06)
(2006), ACM Press, pp. 74–80. DOI: 10.1145/1138486.1138502.

[41] Dingel, J., Garlan, D., Jha, S., and Notkin, D. Reasoning About Implicit Invocation. In
SIGSOFT Software Engineering Notes (November 1998), vol. 23, ACM Press, pp. 209–221.
DOI: 10.1145/291252.288312.

[42] Dustdar, S., and Treiber, M. View Based Integration of Heterogeneous Web Service
Registries – the Case of VISR. World Wide Web Journal 9, 4 (2006), 457–483. DOI:
10.1007/s11280-006-8561-3.

[43] Eckert, J., Ertogrul, D., Papageorgiou, A., Repp, N., and Steinmetz, R. The Impact
of Service Pricing Models on Service Selection. In Proceedings of the 4th International
Conference on Internet and Web Applications and Services (ICIW’09) (2009), IEEE Computer
Society, pp. 316–321. DOI: 10.1109/ICIW.2009.53.

[44] Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005.

[45] EsperTech. Esper Reference Documentation, 2009. http://esper.codehaus.org/ (Last
accessed: October 27, 2009).

[46] Eugster, P. Type-based Publish/Subscribe: Concepts and Experiences. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 29, 1 (2007), 6. DOI:
10.1145/1180475.1180481.

[47] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. The Many
Faces of Publish/Subscribe. ACM Computing Survey 35, 2 (2003), 114–131. DOI:
10.1145/857076.857078.

[48] Eviware. soapUI, 2009. http://www.soapui.org/ (Last accessed: December 3, 2009).

[49] Felix, P., and Ribeiro, C. A Scalable and Flexible Web Services Authentication Model.
In Proceedings of the 2007 ACM Workshop on Secure Web Services (SWS’07) (2007), ACM,
pp. 66–72. DOI: 10.1145/1314418.1314429.

124

http://dx.doi.org/10.1007/978-3-540-88871-0_10
http://dx.doi.org/10.1109/ICWS.2007.59
http://www.bpel4chor.org/
http://dx.doi.org/10.1145/1138486.1138502
http://dx.doi.org/10.1145/291252.288312
http://dx.doi.org/10.1007/s11280-006-8561-3
http://dx.doi.org/10.1007/s11280-006-8561-3
http://dx.doi.org/10.1109/ICIW.2009.53
http://esper.codehaus.org/
http://dx.doi.org/10.1145/1180475.1180481
http://dx.doi.org/10.1145/1180475.1180481
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://www.soapui.org/
http://dx.doi.org/10.1145/1314418.1314429

Bibliography

[50] Fiadeiro, J. L., and Lopes, A. A Formal Approach to Event-Based Architectures. In Pro-
ceedings of the 6th International Conference on Fundamental Approaches in Software Engineering
(FASE 2006) (March 2006), Springer-Verlag, pp. 18–32. DOI: 10.1007/11693017_4.

[51] Fidler, E., Jacobsen, H.-A., Li, G., andMankovski, S. The PADRES Distributed Publish/-
Subscribe System. In Proceedings of the 8th International Conference on Feature Interactions in
Telecommunications and Software Systems (FIW’05) (2005), S. Reiff-Marganiec and M. Ryan,
Eds., IOS Press, pp. 12–30.

[52] Fiege, L., Mezini, M., Mühl, G., and Buchmann, A. P. Engineering Event-Based Systems
with Scopes. In Proceedings of the 16th European Conference on Object-Oriented Programming
(ECOOP’02) (June 2002), Springer-Verlag, pp. 309–333. DOI: 10.1007/3-540-47993-7_14.

[53] Fiege, L., Zeidler, A., Buchmann, A., Kilian-Kehr, R., andMühl, G. Security Aspects in
Publish/Subscribe Systems. In Proceedings of the 3rd International Workshop on Distributed
Event-Based Systems (DEBS’04) (May 2004), IET, pp. 44–49. DOI: 10.1049/ic:20040381.

[54] Fielding, R. T. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000. http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm (Last accessed: December 3, 2009).

[55] Foster, I., Vockler, J., Wilde, M., and Zhao, Y. Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation. In Proceedings of the 14th
International Conference on Scientific and Statistical Database Management (2002), pp. 37–46.
DOI: 10.1109/SSDM.2002.1029704.

[56] Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

[57] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1995.

[58] Gansner, E. R., and North, S. C. An Open Graph Visualization System and its Appli-
cations to Software Engineering. Software: Practice and Experience 30, 11 (2000), 1203–
1233. (http://www.graphviz.org/) DOI: 10.1002/1097-024X(200009)30:11<1203::AID-
SPE338>3.3.CO;2-E.

[59] Garg, P. K., Eshghi, K., Gschwind, T., Haverkort, B. R., andWolter, K. Enabling Net-
work Caching of Dynamic Web Objects. In Proceedings of the 12th International Conference
on Computer Performance Evaluation, Modelling Techniques and Tools (TOOLS’02) (2002),
Springer Verlag, pp. 329–338. DOI: 10.1007/3-540-46029-2_24.

[60] Garlan, D., Khersonsky, S., and Kim, J. S. Model Checking Publish-Subscribe Systems.
In Proceedings of the 10th International SPIN Workshop on Model Checking of Software (SPIN
2003) (May 2003), pp. 166–180.

[61] GlobusAlliance. Globus Toolkit v4.0.8, August 2008. http://www.globus.org/toolkit/
(Last accessed: September 23, 2008).

125

http://dx.doi.org/10.1007/11693017_4
http://dx.doi.org/10.1007/3-540-47993-7_14
http://dx.doi.org/10.1049/ic:20040381
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://dx.doi.org/10.1109/SSDM.2002.1029704
http://www.graphviz.org/
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://dx.doi.org/10.1007/3-540-46029-2_24
http://www.globus.org/toolkit/

Bibliography

[62] Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., and Moreau, L. An
Architecture for Provenance Systems. Tech. Rep. 12023, Univ. of Southampton, 2006.

[63] Halfond, W. G. J., and Orso, A. AMNESIA: Analysis and Monitoring for NEutral-
izing SQL-Injection Attacks. In Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE’05) (Nov. 2005), ACM, pp. 174–183. DOI:
10.1145/1101908.1101935.

[64] Harney, J., and Doshi, P. Selective Querying for Adapting Web Service Compositions
Using the Value of Changed Information. IEEE Transactions on Services Computing 1, 3
(2008), 169–185. DOI: 10.1109/TSC.2008.11.

[65] Hayes, B. Cloud Computing. Communications of the ACM 51, 7 (2008), 9–11. DOI:
10.1145/1364782.1364786.

[66] Heinis, T., and Alonso, G. Efficient Lineage Tracking for Scientific Workflows. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(2008), ACM, pp. 1007–1018. DOI: 10.1145/1376616.1376716.

[67] Housley, R., Ford, W., Polk, W., and Solo, D. RFC2459: Internet X.509 Public Key
Infrastructure Certificate and CRL Profile, January 1999. http://tools.ietf.org/html/
rfc2459 (Last accessed: December 9, 2009).

[68] Hu, S., Muthusamy, V., Li, G., and Jacobsen, H.-A. Distributed Automatic Service
Composition in Large-Scale Systems. In Proceedings of the 2nd International Confer-
ence on Distributed Event-Based Systems (DEBS’08) (2008), ACM, pp. 233–244. DOI:
10.1145/1385989.1386019.

[69] Huang, Y., Slominski, A., Herath, C., and Gannon, D. WS-Messenger: A Web Services-
Based Messaging System for Service-Oriented Grid Computing. In Proceedings of the 6th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’06) (2006), IEEE
Computer Society, pp. 166–173. DOI: 10.1109/CCGRID.2006.109.

[70] Huber, A. VMF - A Transformation Engine for Resolving Web Service Heterogeneities
within the VRESCo Runtime. Master’s thesis, Vienna University of Technology, July
2009.

[71] IBM Corporation. Web Service Level Agreements (WSLA), January 2003. http://www.
research.ibm.com/wsla/ (Last accesssed: November 11, 2009).

[72] IBM Corporation. Common Base Event (CBE), August 2004. http://www.ibm.com/
developerworks/library/specification/ws-cbe/ (Last accesssed: October 20, 2009).

[73] IBM Corporation. Common Event Infrastructure (CEI), August 2004. http://www-01.
ibm.com/software/tivoli/features/cei/ (Last accesssed: October 20, 2009).

[74] IBM Corporation. Web Services Metadata Exchange (WS-MetadataExchange), August
2006. http://www.ibm.com/developerworks/webservices/library/specification/
ws-mex/ (Last accessed: October 4, 2009).

126

http://dx.doi.org/10.1145/1101908.1101935
http://dx.doi.org/10.1145/1101908.1101935
http://dx.doi.org/10.1109/TSC.2008.11
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1145/1364782.1364786
http://dx.doi.org/10.1145/1376616.1376716
http://tools.ietf.org/html/rfc2459
http://tools.ietf.org/html/rfc2459
http://dx.doi.org/10.1145/1385989.1386019
http://dx.doi.org/10.1145/1385989.1386019
http://dx.doi.org/10.1109/CCGRID.2006.109
http://www.research.ibm.com/wsla/
http://www.research.ibm.com/wsla/
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www-01.ibm.com/software/tivoli/features/cei/
http://www-01.ibm.com/software/tivoli/features/cei/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/
http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/

Bibliography

[75] IBM Corporation. WebSphere Application Server v7, September 2008. http://www.ibm.
com/software/webservers/appserv/was/ (Last accessed: October 4, 2009).

[76] IBM Corporation. WebSphere MQ, September 2008. http://www.ibm.com/software/
integration/wmq/ (Last accessed: October 20, 2009).

[77] IBM, Inc. WebSphere Service Registry and Repository, v6.2, July 2008. http://www.ibm.
com/software/integration/wsrr (Last accessed: Novermber 30, 2009).

[78] Jaganathan, R. Windows Workflow Foundation: Tracking Services Deep Dive, January
2007. http://msdn.microsoft.com/en-us/library/bb264458%28VS.80%29.aspx (Last
accessed: September 2, 2009).

[79] Jobst, D., and Preissler, G. Mapping Clouds of SOA- and Business-Related Events for
an Enterprise Cockpit in a Java-Based Environment. In Proceedings of the 4th International
Symposium on Principles and Practice of Programming in Java (PPPJ’06) (2006), ACM, pp. 230–
236. DOI: 10.1145/1168054.1168089.

[80] Juszczyk, L., Troung, H.-L., and Dustdar, S. GENESIS – A Framework for Automatic
Generation and Steering of Testbeds of Complex Web Services. In Proceedings of the 13th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2008)
(Mar. 2008), pp. 131–140. DOI: 10.1109/ICECCS.2008.27.

[81] Kaminski, P., Müller, H., and Litoiu, M. A Design for Adaptive Web Service Evolution.
In Proceedings of the International workshop on Self-Adaptation and Self-Managing Systems
(SEAMS’06) (2006), ACM Press, pp. 86–92. DOI: 10.1145/1137677.1137694.

[82] Keller, A., and Ludwig, H. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management 11, 1
(2003), 57–81. DOI: 10.1023/A:1022445108617.

[83] Kephart, J. O., and Chess, D. M. The Vision of Autonomic Computing. Computer 36, 1
(2003), 41–50. DOI: 10.1109/MC.2003.1160055.

[84] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. An
Overview of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01) (June 2001), pp. 327–354. DOI: 10.1007/3-540-45337-7_18.

[85] Kiss, R. WS-Eventing for WCF (Indigo), June 2007. http://www.codeproject.com/KB/
WCF/WSEventing.aspx (Last accessed: October 22, 2009).

[86] Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas, V., and Sanchez, F. Architecture-
driven Service Discovery for Service Centric Systems. International Journal of Web Service
Research 4, 2 (2007), 82–113.

[87] Laner, T. VQL Ű A View-based Querying Approach for the VRESCo Runtime. Master’s
thesis, Vienna University of Technology, July 2009.

127

http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/wsrr
http://www.ibm.com/software/integration/wsrr
http://msdn.microsoft.com/en-us/library/bb264458%28VS.80%29.aspx
http://dx.doi.org/10.1145/1168054.1168089
http://dx.doi.org/10.1109/ICECCS.2008.27
http://dx.doi.org/10.1145/1137677.1137694
http://dx.doi.org/10.1023/A:1022445108617
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1007/3-540-45337-7_18
http://www.codeproject.com/KB/WCF/WSEventing.aspx
http://www.codeproject.com/KB/WCF/WSEventing.aspx

Bibliography

[88] Leach, P., Mealling, M., and Salz, R. RFC4122: A Universally Unique Identifier (UUID)
URN Namespace, July 2005. http://tools.ietf.org/html/rfc4122 (Last accessed:
December 9, 2009).

[89] Leitner, P., Michlmayr, A., and Dustdar, S. Towards Flexible Interface Mediation for
Dynamic Service Invocations. In Proceedings of the 3rd Workshop on Emerging Web Services
Technology (WEWST’08) (Nov. 2008).

[90] Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S. End-to-End Versioning Sup-
port for Web Services. In Proceedings of the International Conference on Services Computing
(SCC 2008) (July 2008), IEEE Computer Society, pp. 59–66. DOI: 10.1109/SCC.2008.21.

[91] Leitner, P., Michlmayr, A., Rosenberg, F., andDustdar, S. Selecting Web Services Based
on Past User Experiences. In Proceedings of the IEEE Proceedings of the IEEE Asia-Pacific
Services Computing Conference (APSCC’09) (December 2009), IEEE Computer Society.

[92] Leitner, P., Rosenberg, F., andDustdar, S. DAIOS – Efficient Dynamic Web Service Invo-
cation. IEEE Internet Computing 13, 3 (May/June 2009), 72–80. DOI: 10.1109/MIC.2009.57.

[93] Leitner, P., Rosenberg, F., Michlmayr, A., Huber, A., andDustdar, S. A Mediator-Based
Approach to Resolving Interface Heterogeneity of Web Services. In Emerging Web Service
Technologies, Volume III, W. Binder and S. Dustdar, Eds. Birkhäuser, July 2009, pp. 55–74.
DOI: 10.1007/978-3-0346-0104-7_4.

[94] Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., and Leymann,
F. Runtime Prediction of Service Level Agreement Violations for Composite Services.
In Proceedings of the 3rd Workshop on Non-Functional Properties and SLA Management in
Service-Oriented Computing (NFPSLAM-SOC’09) (November 2009).

[95] Li, G., Cheung, A., Hou, S., Hu, S., Muthusamy, V., Sherafat, R., Wun, A., Jacobsen,
H.-A., and Manovski, S. Historic Data Access in Publish/Subscribe. In Proceedings of
the Inaugural International Conference on Distributed Event-Based Systems (DEBS’07) (2007),
ACM, pp. 80–84. DOI: 10.1145/1266894.1266908.

[96] Liberty, J., and Xie, D. Programming C# 3.0. O’Reilly Media, Inc., 2007.

[97] Liebig, C., Malva, M., and Buchmann, A. P. Integrating Notifications and Transac-
tions: Concepts and X2TS Prototype. In Proceedings of the 2nd International Workshop
on Engineering Distributed Objects (EDO’00) (2001), Springer-Verlag, pp. 194–214. DOI:
10.1007/3-540-45254-0_18.

[98] Liebig, C., and Tai, S. Middleware Mediated Transactions. In Proceedings of the 3rd
International Symposium on Distributed Objects and Applications (DOA’01) (2001), IEEE
Computer Society, p. 340. DOI: 10.1109/DOA.2001.954099.

[99] Lin, B., Gu, N., and Li, Q. A Requester-based Mediation Framework for Dynamic Invo-
cation of Web Services. In Proceedings of the IEEE International Conference on Services Com-
puting (SCC’06) (2006), IEEE Computer Society, pp. 445–454. DOI: 10.1109/SCC.2006.13.

128

http://tools.ietf.org/html/rfc4122
http://dx.doi.org/10.1109/SCC.2008.21
http://dx.doi.org/10.1109/MIC.2009.57
http://dx.doi.org/10.1007/978-3-0346-0104-7_4
http://dx.doi.org/10.1145/1266894.1266908
http://dx.doi.org/10.1007/3-540-45254-0_18
http://dx.doi.org/10.1007/3-540-45254-0_18
http://dx.doi.org/10.1109/DOA.2001.954099
http://dx.doi.org/10.1109/SCC.2006.13

Bibliography

[100] Lodi, G., Panzieri, F., Rossi, D., and Turrini, E. SLA-Driven Clustering of QoS-Aware
Application Servers. IEEE Transactions on Software Engineering 33, 3 (2007), 186–197. DOI:
10.1109/TSE.2007.28.

[101] Löwy, J. Programming WCF Services. O’Reilly Media, Inc., 2007.

[102] Luckham, D. The Power of Events. Addison-Wesley, 2002.

[103] Luckham, D. C., and Vera, J. An Event-Based Architecture Definition Language. IEEE
Transactions on Software Engineering 21, 9 (1995), 717–734. DOI: 10.1109/32.464548.

[104] Mahambre, S. P., S.D, M. K., and Bellur, U. A Taxonomy of QoS-Aware, Adaptive
Event-Dissemination Middleware. IEEE Internet Computing 11, 4 (2007), 35–44. DOI:
10.1109/MIC.2007.77.

[105] McIlraith, S. A., Son, T. C., andZeng, H. Semantic Web Services. IEEE Intelligent Systems
16, 2 (2001), 46–53. DOI: 10.1109/5254.920599.

[106] Medjahed, B. Dissemination Protocols for Event-Based Service-Oriented Architectures.
IEEE Transactions on Services Computing 1, 3 (2008), 155–168. DOI: 10.1109/TSC.2008.13.

[107] Menascé, D. A. QoS Issues in Web Services. IEEE Internet Computing 6, 6 (2002), 72–75.
DOI: 10.1109/MIC.2002.1067740.

[108] Mendling, J., and Hafner, M. From WS-CDL Choreography to BPEL Process Or-
chestration. Journal of Enterprise Information Management 22 (2008), 525–542. DOI:
10.1108/17410390810904274.

[109] Michlmayr, A., and Fenkam, P. Integrating Distributed Object Transactions with Wide-
Area Content-Based Publish/Subscribe Systems. In Proceedings of the 4th International
Workshop on Distributed Event-Based Systems (DEBS’05) (2005), IEEE Computer Society,
pp. 398–403. DOI: 10.1109/ICDCSW.2005.80.

[110] Michlmayr, A., Fenkam, P., and Dustdar, S. Architecting a Testing Framework for
Publish/Subscribe Applications. In Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC 2006) (September 2006), IEEE Computer
Society, pp. 467–474. DOI: 10.1109/COMPSAC.2006.28.

[111] Michlmayr, A., Fenkam, P., and Dustdar, S. Specification-Based Unit Testing of Pub-
lish/Subscribe Applications. In Proceedings of the 5th International Workshop on Distributed
Event-based Systems (DEBS 2006) (July 2006), IEEE Computer Society. DOI: 10.1109/ICD-
CSW.2006.103.

[112] Michlmayr, A., Leitner, P., Rosenberg, F., and Dustdar, S. Publish/Subscribe in the
VRESCo SOA runtime (Demo paper). In Proceedings of the 2nd International Confer-
ence on Distributed Event-Based Systems (DEBS’08) (July 2008), ACM, pp. 317–320. DOI:
10.1145/1385989.1386031.

129

http://dx.doi.org/10.1109/TSE.2007.28
http://dx.doi.org/10.1109/TSE.2007.28
http://dx.doi.org/10.1109/32.464548
http://dx.doi.org/10.1109/MIC.2007.77
http://dx.doi.org/10.1109/MIC.2007.77
http://dx.doi.org/10.1109/5254.920599
http://dx.doi.org/10.1109/TSC.2008.13
http://dx.doi.org/10.1109/MIC.2002.1067740
http://dx.doi.org/10.1108/17410390810904274
http://dx.doi.org/10.1108/17410390810904274
http://dx.doi.org/10.1109/ICDCSW.2005.80
http://dx.doi.org/10.1109/COMPSAC.2006.28
http://dx.doi.org/10.1109/ICDCSW.2006.103
http://dx.doi.org/10.1109/ICDCSW.2006.103
http://dx.doi.org/10.1145/1385989.1386031
http://dx.doi.org/10.1145/1385989.1386031

Bibliography

[113] Michlmayr, A., Leitner, P., Rosenberg, F., and Dustdar, S. Event Processing in Web
Service Runtime Environments. In Principles and Applications of Distributed Event-based
Systems, A. Hinze and A. Buchmann, Eds. IGI Global, 2010. (forthcoming).

[114] Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Advanced Event Processing
and Notifications in Service Runtime Environments. In Proceedings of the 2nd International
Conference on Distributed Event-Based Systems (DEBS’08) (July 2008), ACM, pp. 115–125.
DOI: 10.1145/1385989.1386004.

[115] Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Comprehensive QoS Moni-
toring of Web Services and Event-Based SLA Violation Detection. In Proceedings of the 4th
International Workshop on Middleware for Service Oriented Computing (MW4SOC’09) (Nov.
2009), ACM, pp. 1–6. DOI: 10.1145/1657755.1657756.

[116] Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. Service Provenance in
QoS-Aware Web Service Runtimes. In Proceedings of the 7th International Conference
on Web Services (ICWS’09) (July 2009), IEEE Computer Society, pp. 115–122. DOI:
10.1109/ICWS.2009.32.

[117] Michlmayr, A., Rosenberg, F., Leitner, P., and Dustdar, S. End-to-End Support for
QoS-Aware Service Selection, Binding and Mediation in VRESCo. IEEE Transactions on
Services Computing (TSC) (2010). (forthcoming).

[118] Michlmayr, A., Rosenberg, F., Leitner, P., andDustdar, S. Selective Service Provenance
in the VRESCo Runtime. International Journal on Web Services Research (JWSR) (2010).
(forthcoming).

[119] Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., and Dustdar, S. Towards
Recovering the Broken SOA Trianlge – A Software Engineering Perspective. In Proceedings
of the 2nd International Workshop on Service Oriented Software Engineering (IW-SOSWE’07)
(Sept. 2007), ACM, pp. 22–28. DOI: 10.1145/1294928.1294934.

[120] Microsoft Cooperation. Toward Converging Web Service Standards for Resources, Events,
and Management (WS-EventNotification), March 2006. http://msdn.microsoft.com/
en-us/library/aa480724.aspx (Last accessed: December 10, 2009).

[121] Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S., Munroe,
S., Rana, O., Schreiber, A., Tan, V., and Varga, L. The Provenance of Electronic Data.
Communications of the ACM 51, 4 (2008), 52–58. DOI: 10.1145/1330311.1330323.

[122] Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y., Futrelle,
J., McGrath, R. E., Myers, J., Paulson, P., Bowers, S., Ludaescher, B., Kwasnikowska, N.,
den Bussche, J. V., Ellkvist, T., Freire, J., and Groth, P. The Open Provenance Model
(v1.01), July 2008. http://www.openprovenance.org/ (Last accessed: October 12, 2009).

130

http://dx.doi.org/10.1145/1385989.1386004
http://dx.doi.org/10.1145/1657755.1657756
http://dx.doi.org/10.1109/ICWS.2009.32
http://dx.doi.org/10.1109/ICWS.2009.32
http://dx.doi.org/10.1145/1294928.1294934
http://msdn.microsoft.com/en-us/library/aa480724.aspx
http://msdn.microsoft.com/en-us/library/aa480724.aspx
http://dx.doi.org/10.1145/1330311.1330323
http://www.openprovenance.org/

Bibliography

[123] Moser, O., Rosenberg, F., andDustdar, S. Non-Intrusive Monitoring and Service Adap-
tation for WS-BPEL. In Proceedings of the 17th International Conference on World Wide Web
(WWW’08) (2008), ACM, pp. 815–824. DOI: 10.1145/1367497.1367607.

[124] Mühl, G., Fiege, L., and Pietzuch, P. Distributed Event-Based Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[125] MuleSoft, Inc. Mule Galaxy, v1.5.1, November 2009. http://www.mulesoft.org/
display/GALAXY/Home (Last accessed: Novermber 30, 2009).

[126] Neuman, C., Yu, T., Hartman, S., and Raeburn, K. RFC4120: The Kerberos Network
Authentication Service (V5), July 2005. http://tools.ietf.org/html/rfc4120 (Last
accessed: December 9, 2009).

[127] Object Management Group (OMG). CORBA Event Service, v1.2, October 2004. http:
//www.omg.org/cgi-bin/doc?formal/2004-10-02 (Last accesssed: May 28, 2009).

[128] Object Management Group (OMG). CORBA Notification Service, v1.1, October
2004. http://www.omg.org/cgi-bin/doc?formal/2004-10-11 (Last accesssed: May
28, 2009).

[129] ObjectManagement Group (OMG). Data Distribution Service, v1.2, January 2007. http:
//www.omg.org/spec/DDS/1.2/ (Last accesssed: May 28, 2009).

[130] Open SOA. Service Component Architecture (SCA), March 2007. http://osoa.org/
display/Main/Service+Component+Architecture+Home (Last accessed: July 3, 2009).

[131] Open SOA. SCA Assembly Extensions for Event Processing and Pub/Sub, April
2009. http://osoa.org/download/attachments/35/SCA_Assembly_Extensions_for_
Event_Processing_and_PubSub_V1_0.pdf?version=1 (Last accessed: July 3, 2009).

[132] Oracle, Inc. Oracle Fusion Middleware, 2009. http://www.oracle.com/us/products/
middleware/ (Last accessed: Novermber 30, 2009).

[133] Organization for the Advancement of Structured Information Standards (OASIS).
WS-Reliable Messaging v1.1, Nov. 2004. http://www.oasis-open.org/committees/wsrm/
(Last accessed: August 19, 2009).

[134] Organization for the Advancement of Structured Information Standards (OA-
SIS). ebXML Registry Services and Protocols, May 2005. http://www.oasis-open.org/
committees/regrep (Last accessed: December 3, 2009).

[135] Organization for the Advancement of Structured Information Standards (OASIS).
Security Assertion Markup Langugage v2.0, Mar. 2005. http://www.oasis-open.org/
committees/security/ (Last accessed: August 19, 2009).

[136] Organization for the Advancement of Structured Information Standards (OASIS).
Universal Description, Discovery and Integration (UDDI), February 2005. http://www.
oasis-open.org/committees/uddi-spec/ (Last accessed: December 3, 2009).

131

http://dx.doi.org/10.1145/1367497.1367607
http://www.mulesoft.org/display/GALAXY/Home
http://www.mulesoft.org/display/GALAXY/Home
http://tools.ietf.org/html/rfc4120
http://www.omg.org/cgi-bin/doc?formal/2004-10-02
http://www.omg.org/cgi-bin/doc?formal/2004-10-02
http://www.omg.org/cgi-bin/doc?formal/2004-10-11
http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS/1.2/
http://osoa.org/display/Main/Service+Component+Architecture+Home
http://osoa.org/display/Main/Service+Component+Architecture+Home
http://osoa.org/download/attachments/35/SCA_Assembly_Extensions_for_Event_Processing_and_PubSub_V1_0.pdf?version=1
http://osoa.org/download/attachments/35/SCA_Assembly_Extensions_for_Event_Processing_and_PubSub_V1_0.pdf?version=1
http://www.oracle.com/us/products/middleware/
http://www.oracle.com/us/products/middleware/
http://www.oasis-open.org/committees/wsrm/
http://www.oasis-open.org/committees/regrep
http://www.oasis-open.org/committees/regrep
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/uddi-spec/
http://www.oasis-open.org/committees/uddi-spec/

Bibliography

[137] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Distributed Management (WSDM), February 2006. http://oasis-open.org/
committees/wsdm/ (Last accessed: October 3, 2009).

[138] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Notification (WS-Notification), October 2006. http://oasis-open.
org/committees/wsn/ (Last accessed: December 3, 2009).

[139] Organization for the Advancement of Structured Information Standards (OASIS).
WS-Security v1.1, Feb. 2006. http://www.oasis-open.org/committees/wss (Last ac-
cessed: June 22, 2009).

[140] Organization for the Advancement of Structured Information Standards (OASIS).
Web Service Business Process Execution Language (WS-BPEL) v2.0, April 2007. http://www.
oasis-open.org/committees/wsbpel/ (Last accessed: June 22, 2009).

[141] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Transactions (WS-TX) v1.2, February 2009. http://www.oasis-open.org/
committees/ws-tx/ (Last accessed: October 22, 2009).

[142] Ostrowski, K., and Birman, K. Extensible Web Services Architecture for Notification
in Large-Scale Systems. In Proceedings of the 4th International Conference on Web Services
(ICWS’06) (2006), IEEE Computer Society, pp. 383–392. DOI: 10.1109/ICWS.2006.63.

[143] Pallickara, S., and Fox, G. NaradaBrokering: A Distributed Middleware Framework
and Architecture for Enabling Durable Peer-to-Peer Grids. In Proceedings of the ACM/I-
FIP/USENIX 2003 International Conference on Middleware (Middleware’03) (2003), Springer-
Verlag New York, Inc., pp. 41–61.

[144] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 40, 11 (2007), 38–45.
DOI: 10.1109/MC.2007.400.

[145] Pautasso, C., andAlonso, G. Flexible Binding for Reusable Composition of Web Services.
In Proceedings of the 4th International Workshop on Software Composition (SC’2005), Edinburgh,
UK (2005), Springer, pp. 151–166. DOI: 10.1007/11550679_12.

[146] Peiris, C., Mulder, D., Bahree, A., Chopra, A., Cicoria, S., and Pathak, N. Pro WCF:
Practical Microsoft SOA Implementation. Apress, Berkely, CA, USA, 2007.

[147] Pietzuch, P. R. Hermes: A Scalable Event-Based Middleware. PhD thesis, University
of Cambridge, Feb. 2004. http://www.doc.ic.ac.uk/%7Epeter/manager/doc/thesis/
prp_thesis.pdf (Last accessed: May 27, 2009).

[148] Pietzuch, P. R., and Bacon, J. Hermes: A Distributed Event-Based Middleware Archi-
tecture. In Proceedings of the 1st International Workshop on Distributed Event-Based Sys-
tems (DEBS’02) (July 2002), IEEE Computer Society, pp. 611–618. DOI: 10.1109/ICD-
CSW.2002.1030837.

132

http://oasis-open.org/committees/wsdm/
http://oasis-open.org/committees/wsdm/
http://oasis-open.org/committees/wsn/
http://oasis-open.org/committees/wsn/
http://www.oasis-open.org/committees/wss
http://www.oasis-open.org/committees/wsbpel/
http://www.oasis-open.org/committees/wsbpel/
http://www.oasis-open.org/committees/ws-tx/
http://www.oasis-open.org/committees/ws-tx/
http://dx.doi.org/10.1109/ICWS.2006.63
http://dx.doi.org/10.1109/MC.2007.400
http://dx.doi.org/10.1007/11550679_12
http://www.doc.ic.ac.uk/%7Epeter/manager/doc/thesis/prp_thesis.pdf
http://www.doc.ic.ac.uk/%7Epeter/manager/doc/thesis/prp_thesis.pdf
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1109/ICDCSW.2002.1030837

Bibliography

[149] Platzer, C., and Dustdar, S. A Vector Space Search Engine for Web Services. In Proceed-
ings of the 3rd European IEEE Conference on Web Services (ECOWS’05) (November 2005).
DOI: 10.1109/ECOWS.2005.5.

[150] Platzer, C., Rosenberg, F., and Dustdar, S. Web Service Clustering using Multidimen-
sional Angles as Proximity Measures. ACM Transactions on Internet Technology 9, 3 (2009),
1–26. DOI: 10.1145/1552291.1552294.

[151] Ponnekanti, S. R., and Fox, A. Interoperability Among Independently Evolving Web
Services. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware
(Middleware’04) (2004), Springer-Verlag New York, pp. 331–351. DOI: 10.1007/b101561.

[152] Porter, G., and Katz, R. H. Effective Web Service Load Balancing through Statistical
Monitoring. Communications of the ACM 49, 3 (2006), 48–54. DOI: 10.1145/1118178.1118201.

[153] Raimondi, F., Skene, J., and Emmerich, W. Efficient Online Monitoring of Web-
Service SLAs. In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT’08/FSE-16) (2008), pp. 170–180. DOI:
10.1145/1453101.1453125.

[154] Rajbhandari, S., andWalker, D. W. Incorporating Provenance in Service Oriented Archi-
tecture. In Proceedings of the International Conference on Next Generation Web Services Prac-
tices (NWeSP’06) (2006), IEEE Computer Society, pp. 33–40. DOI: 10.1109/NWESP.2006.18.

[155] Ran, S. A Model for Web Services Discovery with QoS. SIGecom Exchanges 4, 1 (2003),
1–10. DOI: 10.1145/844357.844360.

[156] Red Hat Middleware, LLC. JBossWS, August 2009. http://www.jboss.org/jbossws/
(Last accessed: October 13, 2009).

[157] Red Hat Middleware, LLC. NHibernate Reference Documentation, 2009. http://www.
nhibernate.org/ (Last accessed: October 13, 2009).

[158] Rosenberg, F. QoS-Aware Composition of Adaptive Service-Oriented Systems. PhD thesis,
Vienna University of Technology, June 2009.

[159] Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., andDustdar, S. An End-to-End
Approach for QoS-Aware Service Composition. In Proceedings of the 13th IEEE International
Enterprise Computing Conference (EDOC’09), Auckland, New Zealand (September 2009),
IEEE Computer Society, pp. 151–160. DOI: 10.1109/EDOC.2009.14.

[160] Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., and Dustdar, S. Towards
Composition as a Service - A Quality of Service Driven Approach. In Proceedings of the
1st IEEE Workshop on Information and Software as Service (WISS’09) (March 2009), IEEE
Computer Society, pp. 1733–1740. DOI: 10.1109/ICDE.2009.153.

[161] Rosenberg, F., Leitner, P., Michlmayr, A., andDustdar, S. Integrated Metadata Support
for Web Service Runtimes. In Proceedings of the Middleware for Web Services Workshop
(MWS’08) (2008), IEEE Computer Society, pp. 361–368. DOI: 10.1109/EDOCW.2008.38.

133

http://dx.doi.org/10.1109/ECOWS.2005.5
http://dx.doi.org/10.1145/1552291.1552294
http://dx.doi.org/10.1007/b101561
http://dx.doi.org/10.1145/1118178.1118201
http://dx.doi.org/10.1145/1453101.1453125
http://dx.doi.org/10.1145/1453101.1453125
http://dx.doi.org/10.1109/NWESP.2006.18
http://dx.doi.org/10.1145/844357.844360
http://www.jboss.org/jbossws/
http://www.nhibernate.org/
http://www.nhibernate.org/
http://dx.doi.org/10.1109/EDOC.2009.14
http://dx.doi.org/10.1109/ICDE.2009.153
http://dx.doi.org/10.1109/EDOCW.2008.38

Bibliography

[162] Rosenberg, F., Michlmayr, A., and Dustdar, S. Top-Down Business Process Develop-
ment and Execution using Quality of Service Aspects. Enterprise Information Systems 2, 4
(Nov. 2008), 459–475. DOI: 10.1080/17517570802395626.

[163] Rosenberg, F., Platzer, C., and Dustdar, S. Bootstrapping Performance and De-
pendability Attributes of Web Services. In Proceedings of the 4th International Confer-
ence on Web Services (ICWS’06) (Sept. 2006), IEEE Computer Society, pp. 205–212. DOI:
10.1109/ICWS.2006.39.

[164] Rozsnyai, S., Vecera, R., Schiefer, J., and Schatten, A. Event Cloud - Searching for
Correlated Business Events. In Proceedings of the 9th IEEE International Conference on E-
Commerce Technology and The 4th IEEE International Conference on Enterprise Computing,
E-Commerce and E-Services (CEC-EEE 2007) (2007), IEEE Computer Society, pp. 409–420.
DOI: 10.1109/CEC-EEE.2007.47.

[165] RSS Advisory Board. Really Simple Syndication (RSS), 2009. http://www.rssboard.org/
rss-specification (Last accessed: October 31, 2009).

[166] Sayre, R. Atom: The Standard in Syndication. IEEE Internet Computing 9, 4 (2005), 71–78.
DOI: 10.1109/MIC.2005.74.

[167] Schmidt, M.-T., Hutchison, B., Lambros, P., and Phippen, R. The Enterprise Service Bus:
Making Service-Oriented Architecture Real. IBM Systems Journal 44, 4 (2005), 781–797.

[168] Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T. Content Based Routing
with Elvin4. In Proceedings of the AUUG2K Conference (june 2000). http://www.elvin.
org/papers/auug2k/auug2k.pdf (Last accesssed: October 4, 2009).

[169] Shatsky, Y., and Gudes, E. TOPS: A New Design for Transactions in Publish/Subscribe
Middleware. In Proceedings of the 2nd International Conference on Distributed Event-Based
Systems (DEBS’08) (2008), ACM, pp. 201–210. DOI: 10.1145/1385989.1386015.

[170] Shilo, O. CS-Script – The C# Script Engine. http://www.csscript.net/ (Last accessed:
November 19, 2009).

[171] Shukla, D., and Schmidt, B. Essential Windows Workflow Foundation (Microsoft .Net Devel-
opment Series). Addison-Wesley Professional, 2006.

[172] Simmhan, Y. L., Plale, B., and Gannon, D. A Survey of Data Provenance in e-Science.
SIGMOD Record 34, 3 (2005), 31–36. DOI: 10.1145/1084805.1084812.

[173] Simmhan, Y. L., Plale, B., and Gannon, D. Karma2: Provenance Management for
Data-Driven Workflows. International Journal of Web Services Research 5, 2 (2008), 1–22.

[174] Sivashanmugam, K., Verma, K., and Sheth, A. Discovery of Web Services in a Federated
Registry Environment. In Proceedings of the 2nd International Conference on Web Services
(ICWS’04) (2004), IEEE Computer Society, pp. 270–278. DOI: 10.1109/ICWS.2004.48.

134

http://dx.doi.org/10.1080/17517570802395626
http://dx.doi.org/10.1109/ICWS.2006.39
http://dx.doi.org/10.1109/ICWS.2006.39
http://dx.doi.org/10.1109/CEC-EEE.2007.47
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://dx.doi.org/10.1109/MIC.2005.74
http://www.elvin.org/papers/auug2k/auug2k.pdf
http://www.elvin.org/papers/auug2k/auug2k.pdf
http://dx.doi.org/10.1145/1385989.1386015
http://www.csscript.net/
http://dx.doi.org/10.1145/1084805.1084812
http://dx.doi.org/10.1109/ICWS.2004.48

Bibliography

[175] Skene, J., Lamanna, D. D., and Emmerich, W. Precise Service Level Agreements. In
Proceedings of the 26th International Conference on Software Engineering (ICSE’04) (2004),
pp. 179–188. DOI: 10.1109/ICSE.2004.1317440.

[176] Spanoudakis, G., Zisman, A., and Kozlenkov, A. A Service Discovery Framework for
Service Centric Systems. In Proceedings of the IEEE International Conference on Services Com-
puting (SCC’05) (2005), IEEE Computer Society, pp. 251–259. DOI: 10.1109/SCC.2005.17.

[177] Sun Microsystems, Inc. Java Messaging Service (JMS) v1.1, March 2002. http://java.
sun.com/products/jms/ (Last accesssed: October 4, 2009).

[178] SunMicrosystems, Inc. Jini, v2.0.2, June 2005. http://java.sun.com/products/jini/
2_0_2index.html (Last accesssed: March 31, 2009).

[179] SunMicrosystems, Inc. Wiseman v1.0, June 2007. http://wiseman.dev.java.net/ (Last
accessed: October 4, 2009).

[180] Tai, S., Mikalsen, T. A., Rouvellou, I., and Sutton, Jr, S. M. Dependency-Spheres:
A Global Transaction Context for Distributed Objects and Messages. In Proceedings of
the 5th International Enterprise Distributed Object Computing Conference (EDOC’01) (2001),
IEEE Computer Society, pp. 105–117. DOI: 10.1109/EDOC.2001.950427.

[181] Tan, V., Groth, P. T., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., and Moreau, L.
Security Issues in a SOA-Based Provenance System. In Provenance and Annotation of
Data – Post-Proceedings of the International Provenance and Annotation Workshop (IPAW’06),
L. Moreau and I. Foster, Eds. Springer, 2006, pp. 203–211. DOI: 10.1007/11890850_21.

[182] Thio, N., and Karunasekera, S. Automatic Measurement of a QoS Metric for Web
Service Recommendation. In Proceedings of the Australian Software Engineering Conference
(ASWEC’05) (2005), pp. 202–211. DOI: 10.1109/ASWEC.2005.16.

[183] TIBCO Sofware, Inc. TIBCO Rendezvous, 2008. http://www.tibco.com/software/
messaging/rendezvous/ (Last accessed: December 3rd, 2009).

[184] Treiber, M., and Dustdar, S. Active Web Service Registries. IEEE Internet Computing 11,
5 (2007), 66–71. DOI: 10.1109/MIC.2007.99.

[185] Tsai, W.-T., Wei, X., Zhang, D., Paul, R., Chen, Y., and Chung, J.-Y. A New SOA
Data-Provenance Framework. In Proceedings of the 8th International Symposium on Au-
tonomous Decentralized Systems (ISADS’07) (2007), IEEE Computer Society, pp. 105–112.
DOI: 10.1109/ISADS.2007.5.

[186] Vargas, L., Pesonen, L. I. W., Gudes, E., and Bacon, J. Transactions in Content-Based
Publish/Subscribe Middleware. In Proceedings of the 27th International Conference on Dis-
tributed Computing Systems Workshops (ICDCSW ’07) (2007), IEEE Computer Society, p. 68.
DOI: 10.1109/ICDCSW.2007.85.

[187] Vinoski, S. More Web Services Notifications. IEEE Internet Computing 8, 3 (2004), 90–93.
DOI: 10.1109/MIC.2004.1297279.

135

http://dx.doi.org/10.1109/ICSE.2004.1317440
http://dx.doi.org/10.1109/SCC.2005.17
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
http://java.sun.com/products/jini/2_0_2index.html
http://java.sun.com/products/jini/2_0_2index.html
http://wiseman.dev.java.net/
http://dx.doi.org/10.1109/EDOC.2001.950427
http://dx.doi.org/10.1007/11890850_21
http://dx.doi.org/10.1109/ASWEC.2005.16
http://www.tibco.com/software/messaging/rendezvous/
http://www.tibco.com/software/messaging/rendezvous/
http://dx.doi.org/10.1109/MIC.2007.99
http://dx.doi.org/10.1109/ISADS.2007.5
http://dx.doi.org/10.1109/ICDCSW.2007.85
http://dx.doi.org/10.1109/MIC.2004.1297279

Bibliography

[188] Vinoski, S. The More Things Change . . . IEEE Internet Computing 8, 1 (2004), 87–89. DOI:
10.1109/MIC.2004.1260709.

[189] Vogels, W. Web Services Are Not Distributed Objects. IEEE Internet Computing 7, 6
(2003), 59–66. DOI: 10.1109/MIC.2003.1250585.

[190] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and Ferguson, D. F. Web Services
Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005.

[191] Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., and Leymann, F. Mon-
itoring and Analyzing Influential Factors of Business Process Performance. In Proceedings
of the 13th IEEE International Enterprise Computing Conference (EDOC’09), Auckland, New
Zealand (2009), IEEE Computer Society, pp. 141–150. DOI: 10.1109/EDOC.2009.18.

[192] World Wide Web Consortium (W3C). XML Path Language, November 1999. http:
//www.w3.org/TR/xpath (Last accessed: October 17, 2009).

[193] WorldWideWebConsortium (W3C). OWL-S: Semantic Markup for Web Services, Novem-
ber 2004. http://www.w3.org/Submission/OWL-S/ (Last accessed: November 18, 2009).

[194] World Wide Web Consortium (W3C). Web Service Addressing, August 2004. http:
//www.w3.org/Submission/ws-addressing/ (Last accessed: October 17, 2009).

[195] WorldWideWeb Consortium (W3C). Web Service Execution Environment (WSMX), June
2005. http://www.w3.org/Submission/WSMX/ (Last accesssed: November 18, 2009).

[196] World Wide Web Consortium (W3C). Web Service Modeling Ontology (WSMO), June
2005. http://www.w3.org/Submission/WSMO/ (Last accesssed: November 18, 2009).

[197] World Wide Web Consortium (W3C). Web Services Choreography Description Language
(WS-CDL), November 2005. http://www.w3.org/TR/ws-cdl-10/ (Last accesssed: Octo-
ber 3, 2009).

[198] World Wide Web Consortium (W3C). Web Service Policy 1.2 - Framework (WS-Policy),
April 2006. http://www.w3.org/Submission/WS-Policy/ (Last accessed: October 3,
2009).

[199] WorldWideWeb Consortium (W3C). Web Services Eventing (WS-Eventing), March 2006.
http://www.w3.org/Submission/WS-Eventing/ (Last accessed: December 3, 2009).

[200] World Wide Web Consortium (W3C). Extending and Versioning Languages, November
2007. http://www.w3.org/2001/tag/doc/versioning (Last accessed: October 3, 2009).

[201] WorldWideWeb Consortium (W3C). Semantic Annotations for WSDL and XML Schema,
Aug. 2007. http://www.w3.org/TR/sawsdl/ (Last accesssed: November 18, 2009).

[202] WorldWideWeb Consortium (W3C). Simple Object Access Protocol (SOAP) v1.2, Arpil
2007. http://www.w3.org/TR/soap12/ (Last accessed: November 18, 2009).

136

http://dx.doi.org/10.1109/MIC.2004.1260709
http://dx.doi.org/10.1109/MIC.2004.1260709
http://dx.doi.org/10.1109/MIC.2003.1250585
http://dx.doi.org/10.1109/EDOC.2009.18
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/WSMX/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/2001/tag/doc/versioning
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/soap12/

Bibliography

[203] World Wide Web Consortium (W3C). Web Service Description Language (WSDL) v2.0,
June 2007. http://www.w3.org/TR/wsdl20/ (Last accessed: November 18, 2009).

[204] WCF Performance Counters, 2009. http://msdn.microsoft.com/en-us/library/

ms735098.aspx (Last accessed: December 3, 2009).

[205] WSO2, Inc. WSO2 Registry, v2.0, Feb. 2009. http://wso2.org/projects/registry (Last
accessed: Novermber 30, 2009).

[206] Wun, A., and Jacobsen, H.-A. A Policy Management Framework for Content-Based
Publish/Subscribe Middleware. In Proceedings of the ACM/IFIP/USENIX 2007 Interna-
tional Conference on Middleware (Middleware’07) (2007), Springer-Verlag, pp. 368–388. DOI:
10.1007/978-3-540-76778-7_19.

[207] XMethods, 2009. http://www.xmethods.com/ (Last accessed: October 3, 2009).

[208] Yu, Q., and Bouguettaya, A. Framework for Web Service Query Algebra and Optimiza-
tion. ACM Transactions on the Web 2, 1 (2008), 1–35. DOI: 10.1145/1326561.1326567.

[209] Yu, Q., Liu, X., Bouguettaya, A., and Medjahed, B. Deploying and Managing Web
services: Issues, Solutions, and Directions. The VLDB Journal 17, 3 (2008), 537–572. DOI:
10.1007/s00778-006-0020-3.

[210] Yu, T., Zhang, Y., and Lin, K.-J. Efficient Algorithms for Web Services Selection
with End-to-End QoS Constraints. ACM Transactions on the Web 1, 6 (2007), 6. DOI:
10.1145/1232722.1232728.

[211] Zdun, U., Hentrich, C., and Aalst, W. M. P. V. D. A Survey of Patterns for Service-
Oriented Architectures. International Journal of Internet Protocol Technology 1, 3 (2006),
132–143. DOI: 10.1504/IJIPT.2006.009739.

[212] Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J., and Chang, H.
QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering 30, 5 (May 2004), 311–327. DOI: 10.1109/TSE.2004.1.

[213] Zhang, H., Bradbury, J. S., Cordy, J. R., and Dingel, J. Implementation and Verification
of Implicit-Invocation Systems Using Source Transformation. In Proceedings of the 5th
International IEEE Workshop on Source Code Analysis and Manipulation (SCAM 2005) (Sept.
2005), IEEE Computer Society. DOI: 10.1109/SCAM.2005.15.

137

http://www.w3.org/TR/wsdl20/
http://msdn.microsoft.com/en-us/library/ms735098.aspx
http://msdn.microsoft.com/en-us/library/ms735098.aspx
http://wso2.org/projects/registry
http://dx.doi.org/10.1007/978-3-540-76778-7_19
http://dx.doi.org/10.1007/978-3-540-76778-7_19
http://www.xmethods.com/
http://dx.doi.org/10.1145/1326561.1326567
http://dx.doi.org/10.1007/s00778-006-0020-3
http://dx.doi.org/10.1007/s00778-006-0020-3
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1504/IJIPT.2006.009739
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/SCAM.2005.15

Abbreviations

ACL Access Control Layer
AOP Aspect-Oriented Programming
API Application Programming Interface
BPEL Business Process Execution Language
CBE Common Base Event
CBR Content-Based Routing
CEI Common Event Infrastructure
CEP Complex Event Processing
CPO Cell Phone Operator
CRM Customer Relationship Management
DAIOS Dynamic and Asynchronous Invocation of Services
DAL Data Access Layer
DAO Data Access Object
DSL Domain-Specific Language
ebXML Electronic Business using XML
ESB Enterprise Service Bus
EPL Event Processing Language
EV Event Visibility
HQL Hibernate Query Language
HTTP(S) Hypertext Transfer Protocol (Secure)
ILC Instance-Level Claim
JMS Java Message Service
KPI Key Performance Indicator
OCL Object Constraint Language
ORM Object Relational Mapping
OWL Web Ontology Language
P2P Peer-to-Peer
PubSub (P/S) Publish/Subscribe
QoE Quality of Experience
QoS Quality of Service

139

Bibliography

RBAC Role-Based Access Control
REST Representational State Transfer
RLC Resource-Level Claim
RPC Remote Procedure Call
RSS Really Simple Syndication
SaaS Software as a Service
SAWSDL Semantic Annotations for WSDL
SCA Service Component Architecture
SCM Software Configuration Management
SLA Service Level Agreement
SMS Short Messaging Service
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOC Service-Oriented Computing
SQL Structured Query Language
TCP Transmission Control Protocol
UDDI Universal Description, Discovery and Integration
UUID Universally Unique Identifier
UML Unified Modeling Language
VRESCo Vienna Runtime Environment for Service-Oriented Computing
VCL Vienna Composition Language
VMF VRESCo Mapping Framework
VQL VRESCo Query Language
WCF Windows Communication Foundation
WF Windows Workflow Foundation
WPC Windows Performance Counters
WSDL Web Service Description Language
WSDM Web Service Distributed Management
WSLA Web Service Level Agreement
WSMO Web Service Modeling Ontology
XML Extensible Markup Language
XSLT Extensible Stylesheet Language (XSL) Transformations

140

Appendix A.

VQL/SQL Query Examples

� �
1 var query = new VQuery(typeof(ServiceRevision));

2 query.Add(Expression.Eq("IsActive", true));

3 query.Add(Expression.Eq("Operations.Feature.Name", "NotifyCustomer"));

4 query.Match(Expression.Eq("QoS.Property.Name", "ResponseTime") &

5 Expression.Lt("QoS.DoubleValue", 900), 3);

6 query.Match(Expression.Eq("QoS.Property.Name", "Availability") &

7 Expression.Gt("QoS.DoubleValue", 0.99), 1);� �
Listing A.1: VQL Query

� �
1 SELECT t0.ID as ID

2 FROM Revision t0

3 LEFT OUTER JOIN ServiceRevisionRELOperation t3 ON(t0.ID = t3.ServiceRevisionID)

4 LEFT OUTER JOIN VrescoFunction t1 ON(t3.OperationID = t1.ID)

5 LEFT OUTER JOIN VrescoFunction t2 ON(t1.FeatureID = t2.ID)

6 WHERE t0.IsActive = ’true’ AND t2.Name = ’NotifyCustomer ’

7 AND t0.ID IN

8 (SELECT DISTINCT t4.ID as ID

9 FROM Revision t4

10 LEFT OUTER JOIN RevisionQoS t5 ON(t4.ID = t5.RevisionID)

11 LEFT OUTER JOIN Property t6 ON(t5.PropertyID = t6.ID)

12 WHERE (t6.Name = ’ResponseTime ’ AND t5.DoubleValue < 900))

13 AND t0.ID IN

14 (SELECT DISTINCT t7.ID as ID

15 FROM Revision t7

16 LEFT OUTER JOIN RevisionQoS t8 ON(t7.ID = t8.RevisionID)

17 LEFT OUTER JOIN Property t9 ON(t8.PropertyID = t9.ID)

18 WHERE (t9.Name = ’Availability ’ AND t8.DoubleValue > 0.99))

19 GROUP BY t0.ID

20 LIMIT 100� �
Listing A.2: Translated SQL Query (Exact Strategy - L100)

141

Appendix A. VQL/SQL Query Examples

� �
1 SELECT t0.ID as ID , SUM(COALESCE(t4.P,0) + COALESCE(t8.P,0)) as Priority

2 FROM Revision t0

3 LEFT OUTER JOIN

4 (SELECT DISTINCT t1.ID as ID , 3 as P

5 FROM Revision t1

6 LEFT OUTER JOIN RevisionQoS t2 ON(t1.ID = t2.RevisionID)

7 LEFT OUTER JOIN Property t3 ON(t2.PropertyID = t3.ID)

8 WHERE (t3.Name = ’ResponseTime ’ AND t2.DoubleValue < 900)) t4 ON(t4.ID = t0.ID)

9 LEFT OUTER JOIN

10 (SELECT DISTINCT t5.ID as ID , 1 as P

11 FROM Revision t5

12 LEFT OUTER JOIN RevisionQoS t6 ON(t5.ID = t6.RevisionID)

13 LEFT OUTER JOIN Property t7 ON(t6.PropertyID = t7.ID)

14 WHERE (t7.Name = ’Availability ’ AND t6.DoubleValue > 0.99)) t8 ON(t8.ID = t0.ID)

15 LEFT OUTER JOIN ServiceRevisionRELOperation t11 ON(t0.ID = t11.ServiceRevisionID)

16 LEFT OUTER JOIN VrescoFunction t9 ON(t11.OperationID = t9.ID)

17 LEFT OUTER JOIN VrescoFunction t10 ON(t9.FeatureID = t10.ID)

18 WHERE t0.IsActive = ’true’ AND t10.Name = ’NotifyCustomer ’

19 GROUP BY t0.ID , t4.P , t8.P

20 ORDER BY Priority DESC

21 LIMIT 100� �
Listing A.3: Translated SQL Query (Priority Strategy - L100)

� �
1 SELECT TOP 100 t0.ID as ID , SUM(COALESCE(t4.P,0) + COALESCE(t8.P,0)) as Priority

2 FROM Revision t0

3 LEFT OUTER JOIN

4 (SELECT DISTINCT t1.ID as ID , 1 as P

5 FROM Revision t1

6 LEFT OUTER JOIN RevisionQoS t2 ON(t1.ID = t2.RevisionID)

7 LEFT OUTER JOIN Property t3 ON(t2.PropertyID = t3.ID)

8 WHERE (t3.Name = ’ResponseTime ’ AND t2.DoubleValue < 900)) t4 ON(t4.ID = t0.ID)

9 LEFT OUTER JOIN

10 (SELECT DISTINCT t5.ID as ID , 1 as P

11 FROM Revision t5

12 LEFT OUTER JOIN RevisionQoS t6 ON(t5.ID = t6.RevisionID)

13 LEFT OUTER JOIN Property t7 ON(t6.PropertyID = t7.ID)

14 WHERE (t7.Name = ’Availability ’ AND t6.DoubleValue > 0.99)) t8 ON(t8.ID = t0.ID)

15 LEFT OUTER JOIN ServiceRevisionRELOperation t11 ON(t0.ID = t11.ServiceRevisionID)

16 LEFT OUTER JOIN VrescoFunction t9 ON(t11.OperationID = t9.ID)

17 LEFT OUTER JOIN VrescoFunction t10 ON(t9.FeatureID = t10.ID)

18 GROUP BY t0.ID , t4.P , t8.P

19 ORDER BY Priority DESC

20 LIMIT 100� �
Listing A.4: Translated SQL Query (Relaxed Strategy - L100)

142

Appendix B.

Subscription Message Examples

� �
1 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

2 xmlns:not="http://www.vitalab.tuwien.ac.at/vresco/notifications"

3 xmlns:even="http://schemas.xmlsoap.org/ws/2004/08/eventing"

4 xmlns:a="http://www.w3.org/2005/08/addressing">

5 <soapenv:Header>

6 <not:SubscriptionQuery>

7 select * from QoSRevisionEvent where Revision.Id = 4711

8 and Property = ’ResponseTime’ and DoubleValue > 500

9 </not:SubscriptionQuery>

10 <not:Subscriber>admin</not:Subscriber>

11 </soapenv:Header>

12 <soapenv:Body>

13 <even:Subscribe>

14 <even:Subscribe xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing">

15 <wse:EndTo>

16 <a:Address>http://vresco.vitalab.tuwien.ac.at:20005/SubscriptionManagerService</a:Address>

17 </wse:EndTo>

18 <wse:Delivery wse:Mode="http://schemas.xmlsoap.org/ws/2004/08/eventing/DeliveryModes/Push">

19 <wse:NotifyTo>

20 <a:Address>net.tcp://vresco.vitalab.tuwien.ac.at:33333/OnVRESCoEvents</a:Address>

21 </wse:NotifyTo></wse:Delivery>

22 <wse:Expires>P1D</wse:Expires>

23 </even:Subscribe>

24 </even:Subscribe>

25 </soapenv:Body>

26 </soapenv:Envelope>� �
Listing B.1: Subscription Request Message

143

Appendix B. Subscription Message Examples

� �
1 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

2 xmlns:even="http://schemas.xmlsoap.org/ws/2004/08/eventing">

3 xmlns:a="http://www.w3.org/2005/08/addressing">

4 <s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

5 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

6 <SubscribeResponse xmlns="http://schemas.xmlsoap.org/ws/2004/08/eventing">

7 <wse:SubscribeResponse xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing">

8 <wse:SubscriptionManager>

9 <a:Address>http://vresco.vitalab.tuwien.ac.at:20005/SubscriptionManagerService</a:Address>

10 <a:ReferenceParameters>

11 <wse:Identifier>uuid:4ec58981 -3718-4641-b25c-b6c7bbe37b4a</wse:Identifier>

12 </a:ReferenceParameters>

13 </wse:SubscriptionManager>

14 <wse:Expires>2010-02-01T15:21:46.606Z</wse:Expires>

15 </wse:SubscribeResponse>

16 </SubscribeResponse>

17 </s:Body>

18 </s:Envelope>� �
Listing B.2: Subscription Response Message

144

Appendix C.

Notification Message Example

� �
1 <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

2 xmlns:a="http://www.w3.org/2005/08/addressing">

3 <s:Header>

4 <a:Action s:mustUnderstand="1">http://www.vitalab.tuwien.ac.at/vresco/notifications/notify</a:Action>

5 <a:To s:mustUnderstand="1">net.tcp://vresco.vitalab.tuwien.ac.at:33333/OnVRESCoEvents</a:To>

6 </s:Header>

7 <s:Body>

8 <Notify xmlns="http://www.vitalab.tuwien.ac.at/vresco/">

9 <newEvents xmlns:b="http://www.vitalab.tuwien.ac.at/vresco/usertypes"

10 xmlns:i="http://www.w3.org/2001/XMLSchema -instance">

11 <b:VRESCoEvent i:type="b:QoSRevisionEvent">

12 <b:Publisher>admin</b:Publisher>

13 <b:PublisherGroup>AdminGroup</b:PublisherGroup>

14 <b:SeqNum>59303452-8304-485b-b8bb-dc3e9ae645d3:55</b:SeqNum>

15 <b:Timestamp>2010-02-01T10:41:37</b:Timestamp>

16 <b:Visibility>ALL</b:Visibility>

17 <b:DoubleValue>692</b:DoubleValue>

18 <b:Property>ResponseTime</b:Property>

19 <b:RevisionId>4711</b:RevisionId>

20 </b:VRESCoEvent>

21 </newEvents>

22 <oldEvents i:nil="true" xmlns:b="http://www.vitalab.tuwien.ac.at/vresco/usertypes"

23 xmlns:i="http://www.w3.org/2001/XMLSchema -instance">

24 </oldEvents>

25 <subscriptionId>uuid:9214fb42 -2094-4563-8255-d12ea8f48369</subscriptionId>

26 </Notify>

27 </s:Body>

28 </s:Envelope>� �
Listing C.1: Event Notification Message

145

Appendix D.

Curriculum Vitae

Personal Information

Current Position: University Assistant (Faculty Member)
Address (Work): Distributed Systems Group (DSG)

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

Voice: ++43 1 58801 18452
Fax: ++43 1 58801 18491
E-Mail: anton@infosys.tuwien.ac.at
WWW: http://www.infosys.tuwien.ac.at/staff/michlmayr/
Date of Birth: 23.12.1979, Linz (Austria)
Citizenship: Austrian

Education

PhD Studies in Computer Science June 2006 - March 2010
Vienna University of Technology
Thesis: “Event Processing in QoS-Aware Service Runtime Environments”
Advisor: Prof. Schahram Dustdar (TU Wien)
Examiner: Prof. Carlo Ghezzi (Politecnico di Milano)

MSc Studies in Computer Science October 1999 - April 2005
Vienna University of Technology
Thesis: “Integrating Transactions with Content-based Publish/Subscribe Middleware”
Advisors: Prof. Mehdi Jazayeri, Dr. Pascal Fenkam
Graduated with honors

Secondary School September 1990 - June 1998
Bundesrealgymnasium Steyr Michaelerplatz
Graduated with honors

147

Appendix D. Curriculum Vitae

Languages

German (native)
English (good)
French (basic)

Experience

University Assistant June 2006 - now
Vienna University of Technology (DSG)

Research Assistant August 2005 - May 2006
Vienna University of Technology (DSG)
Project RAY (FWF P16970-N04) funded by the Austrian Research Foundation FWF

Teaching Assistant March 2002 - June 2004
Vienna University of Technology
Tutor at the Database and Artifical Intelligence Group for the courses:
q Data Modeling (181.114 - VU 2.0 - Datenmodellierung)
q Database Systems (181.379 - LU 2.0 - Datenbanksysteme)

Civilian Service October 1998 - September 1999
Lebenshilfe OÖ: Supporting mentally disabled people

Furthermore, I have done summer internships and project work at BMW Motoren Steyr GmbH,
Heinrich Moser GmbH and Softlab Austria (Cirquent).

Teaching Activities

Bachelor Courses
q Scientific Writing (184.121 - SE 2.0 - Grundlagen methodischen Arbeitens)
q Distributed Systems Lab (184.167 - LU 2.0 - Verteilte Systeme)
q Project Lab Work (e.g., 184.230 - PR 4.0 - Projektpraktikum)

Master Courses
q Technologies for Distributed Systems (184.260 - VU 4.0 - Technologien für Verteilte Systeme)
q Software Architectures (184.159 - VU 2.0 - Software Architekturen)
q Internet Computing Lab Work (e.g., 184.254 - PR 4.0 - Praktikum aus Internet Computing)

Master Thesis Supervised
q Thomas Laner: A Semantically Enriched Querying Language for the VRESCo Metamodel
q Andreas Huber: A Transformation Engine for Resolving Web Service Heterogeneities within

the VRESCo Runtime

148

Awards

Web Service Challenge: 3rd place (http://www.ws-challenge.org/) July 2007
Together with Lukasz Juszczyk, Florian Rosenberg, Christian Platzer, Alexander Urbanec and
Schahram Dustdar. Co-located with the IEEE Joint Conference on E-Commerce Technology
and Enterprise Computing, E-Commerce and E-Services (CEC & EEE’07), Tokyo, Japan.

Master Thesis Grant July 2004 - June 2005
Vienna University of Technology (DSG)

Merit Grant for outstanding achievements November 2003
Vienna University of Technology

Research Interests

Software Architectures for Distributed Systems
Service-oriented Computing
Distributed Event-based Systems

Program CommitteeMemberships

q 3rd International Workshop on Dynamic and Declarative Business Processes (DDBP’10),
Vitoria, ES, Brazil (co-located with EDOC’10)

q 8th International Workshop on Modelling, Simulation, Verification and Validation of Enter-
prise Information Systems (MSVVEIS’10), Funchal, Portugal (co-located with ICEIS’10)

q 7th International Workshop on Modelling, Simulation, Verification and Validation of Enter-
prise Information Systems (MSVVEIS’09), Milano, Italy (co-located with ICEIS’09)

q 9th ACIS International Conference on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing (SNPD’08), Phuket, Thailand.

q 6th International Workshop on Modelling, Simulation, Verification and Validation of Enter-
prise Information Systems (MSVVEIS’08), Barcelona, Spain (co-located with ICEIS’08).

q IADIS International Conference on Applied Computing 2008 (AC’08), Algarve, Portugal.
q 8th ACIS International Conference on Software Engineering, Artifical Intelligence, Network-

ing, and Parallel/Distributed Computing (SNPD’07), Qingdao, China.
q IADIS International Conference on Applied Computing 2007 (AC’07), Salamanca, Spain.

149

Appendix D. Curriculum Vitae

Publications

Journal Papers

1. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: “End-to-End
Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo”, IEEE
Transactions on Services Computing (TSC), 2010. (forthcoming)

2. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: “Selective
Service Provenance in the VRESCo Runtime”, International Journal on Web Services
Research (JWSR), IGI Global, 2010. (forthcoming)

3. Florian Rosenberg, Anton Michlmayr, Schahram Dustdar, “Top-Down Business Process
Development and Execution using Quality of Service Aspects”, Enterprise Information
Systems, 2(4), 459-475, Taylor & Francis, November 2008.

Conference, Workshop and Demo Papers

4. Philipp Leitner, Anton Michlmayr, Florian Rosenberg, Schahram Dustdar: "Selecting Web
Services Based on Past User Experiences", Proceedings of the IEEE Asia-Pacific Services
Computing Conference (APSCC’09), Biopolis, Singapore, December 2009.

5. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: "Comprehen-
sive QoS Monitoring of Web Services and Event-Based SLA Violation Detection", Proceed-
ings of the 4th International Workshop on Middleware for Service Oriented Computing
(MW4SOC’09 @ Middleware’09), Urbana-Champaign, IL, USA, December 2009.

6. Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton Michlmayr, Schahram
Dustdar, Frank Leymann: "Runtime Prediction of Service Level Agreement Violations
for Composite Services", Proceedings of the 3rd Workshop on Non-Functional Properties
and SLA Management in Service-Oriented Computing (NFPSLAM-SOC’09 @ ICSOC/Ser-
viceWave’09), Stockholm, Sweden, November 2009.

7. Florian Rosenberg, Predrag Celikovic, Anton Michlmayr, Philipp Leitner, Schahram Dust-
dar: "An End-to-End Approach for QoS-Aware Service Composition", Proceedings of the
13th IEEE International Enterprise Computing Conference (EDOC’09), Auckland, New
Zealand, September 2009.

8. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: "Service Prove-
nance in QoS-Aware Web Service Runtimes". Proceedings of the 7th IEEE International
Conference on Web Services (ICWS’09), Los Angeles, CA, USA, July 2009.

150

9. Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Celikovic, Schahram Dust-
dar: "Towards Composition as a Service - A Quality of Service Driven Approach", Pro-
ceedings of the 1st IEEE Workshop on Information and Software as Service (WISS’09 @
ICDE’09), Shanghai, China, March 2009.

10. Philipp Leitner, Anton Michlmayr, Schahram Dustdar: "Towards Flexible Interface Me-
diation for Dynamic Service Invocations", Proceedings of the 3rd Workshop on Emerging
Web Services Technology (WEWST’08 @ ECOWS’08), Dublin, Ireland, November 2008.

11. Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Schahram Dustdar: "Integrated
Metadata Support for Web Service Runtimes", Proceedings of the Middleware for Web
Services Workshop (MWS’08 @ EDOC’08), Munich, Germany, September 2008.

12. Philipp Leitner, Anton Michlmayr, Florian Rosenberg, Schahram Dustdar: "End-to-End
Versioning Support for Web Services", Proceedings of the International Conference on
Services Computing (SCC’08), Honolulu, HI, USA, July 2008.

13. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: "Advanced
Event Processing and Notifications in Service Runtime Environments". Proceedings of
the 2nd International Conference on Distributed Event-Based Systems (DEBS’08), Rome,
Italy, July 2008.

14. Anton Michlmayr, Philipp Leitner, Florian Rosenberg, Schahram Dustdar: "Publish/Sub-
scribe in the VRESCo SOA Runtime" (demo paper). Proceedings of the 2nd International
Conference on Distributed Event-Based Systems (DEBS’08), Rome, Italy, July 2008.

15. Florian Rosenberg, Christian Enzi, Anton Michlmayr, Christian Platzer, Schahram Dust-
dar: "Integrating QoS Aspects in Top-Down Business Process Development using WS-
CDL and WS-BPEL", Proceedings of the 11th IEEE International EDOC Conference
(EDOC’07), Annapolis, MD, USA, October 2007.

16. Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, Schahram Dust-
dar: "Towards Recovering the Broken SOA Triangle - A Software Engineering Perspec-
tive", Proceedings of the 2nd International Workshop on Service-oriented Software Engi-
neering (IW-SOSWE’07 @ ESEC/FSE’07), Dubrovnik, Croatia, September 2007.

17. Lukasz Juszczyk, Anton Michlmayr, Christian Platzer, Florian Rosenberg, Alexander
Urbanec, and Schahram Dustdar: "Large Scale Web Service Discovery and Composition
using High Performance In-Memory Indexing", Proceedings of the IEEE Joint Conference
on E-Commerce Technology and Enterprise Computing, E-Commerce and E-Services,
(CEC/EEE’07), Tokyo, Japan, July 2007.

18. Anton Michlmayr, Pascal Fenkam, and Schahram Dustdar: “Architecting a Testing
Framework for Publish/Subscribe Applications”, Proceedings of the 30th Annual In-
ternational Computer Software and Applications Conference (COMPSAC’06), Chicago,
IL, USA, September 2006.

151

Appendix D. Curriculum Vitae

19. Anton Michlmayr, Pascal Fenkam, Schahram Dustdar: “Specification-Based Unit Testing
of Publish/Subscribe Applications”, Proceedings of the 5th International Workshop on
Distributed Event-Based Systems (DEBS’06 @ ICDCS’06), Lisbon, Portugal, July 2006.

20. Anton Michlmayr and Pascal Fenkam: “Integrating Distributed Object Transactions with
Wide-Area Content-Based Publish/Subscribe Systems”, Proceedings of the 4th Interna-
tional Workshop on Distributed Event-Based Systems (DEBS’05 @ ICDCS’05), Columbus,
OH, USA, June 2005.

Book Chapters

21. Anton Michlmayr, Philipp Leitner, Florian Rosenberg, Schahram Dustdar: “Event Pro-
cessing in Web Service Runtime Environments”: Principles and Applications of Dis-
tributed Event-based Systems, IGI Global (Editors: Annika Hinze, Alejandro Buchmann),
2010, (forthcoming).

22. Philipp Leitner, Florian Rosenberg, Anton Michlmayr, Andreas Huber, Schahram Dust-
dar: "A Mediator-Based Approach to Resolving Interface Heterogeneity of Web Services",
Post-Proceedings of the 3rd International Workshop on Emerging Web Service Technolo-
gies (WEWST’08), Birkhaeuser (Editors: Walter Binder, Schahram Dustdar), July 2009.

23. Florian Rosenberg, Anton Michlmayr, Christoph Nagl, Schahram Dustdar: "Distributed
Business Rules within Service-Centric Systems", Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches, IGI Global
(Editors: Dragan Gasevic, Adrian Giurca, Kuldar Taveter), May 2009.

Poster Presentations

24. Anton Michlmayr, Florian Rosenberg, Philipp Leitner, Schahram Dustdar: "VRESCo
– Vienna Runtime Environment for Service-Oriented Computing", 10th International
Middleware Conference (Middleware’09), Urbana-Champaign, IL, USA, December 2009.

Theses

25. Anton Michlmayr, "Event Processing in QoS-Aware Service Runtime Environments", PhD
Thesis, Vienna University of Technology, March 2010.

26. Anton Michlmayr, "Integrating Transactions with Content-based Publish/Subscribe Mid-
dleware", Master Thesis, Vienna University of Technology, April 2005.

152

	Introduction
	Motivating Example
	SOC Research Challenges
	Contributions
	Organization of the Thesis

	Review of the State of the Art
	Publish/Subscribe and Event Processing
	Esper
	SOC and Web Services
	Service Registries and Repositories
	Event Notifications in Web Service Registries
	Web Service Notification Specifications
	Conclusion

	QoS-Aware Service Runtime Environment
	Overview
	Service Metadata Model
	Service Metadata
	Service Model
	Mapping Concrete Services to Metadata

	Quality of Service Model
	Service Versioning
	Service Querying
	Query Architecture
	Query Specification
	Query Processing
	Querying Strategies

	Dynamic Binding and Invocation
	Dynamic Binding
	Rebinding Strategies
	Dynamic Invocation

	Service Mediation
	Security Mechanisms
	Authentication
	Claim-based Authorization

	Evaluation
	Querying Performance
	Rebinding Performance
	Mediation Performance
	Security Performance
	End-to-End Evaluation and Discussion

	Related Work
	Conclusion

	Service Notification Engine
	Motivation
	Architectural Overview
	Event Types
	Service Events
	QoS Events
	Process Events
	User Events
	Business Events

	Event Participants
	Event Producers
	Event Consumers

	Subscription and Notification Mechanisms
	Subscription Mechanism
	Notification Mechanism

	Event Persistence and Event Search
	Event Ranking
	Event Correlation
	Event Visibility
	Evaluation
	Subscription Expressiveness
	Software Demonstration
	Performance Results

	Related Work
	Conclusion

	Service Notification Applications
	Notification-based Rebinding
	Rebinding Strategies Revisited
	OnEvent Rebinding Strategy
	Evaluation
	Conclusion

	Service Provenance
	Introduction
	Motivation
	Provenance Approach
	Evaluation
	Related Work
	Conclusion

	QoS Monitoring and SLA Violation Detection
	Introduction
	QoS Monitoring
	QoS/SLA Integration in VRESCo
	Evaluation
	Related Work
	Conclusion

	Service Pricing and Penalty Models
	Event-based Composition
	Conclusion

	Conclusion
	Summary
	Research Questions Revisited
	Future Research Directions

	Bibliography
	VQL/SQL Query Examples
	Subscription Message Examples
	Notification Message Example
	Curriculum Vitae

