
DISSERTATION

Human Interactions in Mixed Systems -

Architecture, Protocols, and Algorithms

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Schahram Dustdar
Institut für Informationssysteme

Arbeitsbereich für Verteilte Systeme
Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Daniel Schall

d.schall@infosys.tuwien.ac.at

Wien, Jänner 2009

Kurzfassung

Die zugrundeliegende Arbeit umfasst die Anwendung des Web Services Paradigmas in
Kollaborationssystemen. Verteilte Systeme können mittels Web Services verbunden und
erweitert werden. Die Anwendung einer Service-orientierten Architektur (SOA) ermöglicht
es, Services zu finden, ohne die Verfügbarkeit aller möglichen Instanzen eines Services zu
jedem Zeitpunkt zu kennen.

Jede Kollaboration erfordert in der Regel Interaktionen zwischen Menschen und Soft-
ware Services. Diese Interaktionen werden von dynamischen und komplexen Wechselwir-
kungen geprägt. In heutigen Service-orientierten Architekturen ist das Zusammenspiel von
Interaktionen zwischen Menschen und Services nur bedingt unterstützt und grösstenteils
limitiert auf vordefinierte Geschäftsprozesse.

Die vorgestellte Arbeit beschäftigt sich mit Modellen zur Erweiterung von SOA mittels
”Human-Provided Services” (HPS), welche als Dienstleistungen von Menschen in Service-
orientierten Kollaborationssystemen verfügbar gemacht werden können. Die Anwendbar-
keit der HPS Softwarearchitektur ist nicht nur auf Geschäftsprozesse limitiert, sondern
erlaubt es, flexible Szenarien ohne vordefiniertem Interaktionsmodell zu realisieren.

Abstract

Web-based collaboration platforms evolve into service-oriented architectures by promot-
ing composite and user-enriched services. In such platforms, the collaborations typically
include both human and software services, thus creating highly dynamic and complex inter-
actions. However, in existing platforms users cannot specify different interaction interfaces
as services that can be reused in various collaborations. We argue that people need more
ways to indicate their availability and desire to participate in collaborations.

Furthermore, open service-oriented environments require a flexible yet reusable collab-
oration model because compositions comprise interactions between people and a number of
software services. The presented work introduces Human-Provided Services (HPS), which
can be included in ad-hoc and process-centric collaborations. The HPS framework fos-
ters the user-driven integration of human capabilities into service-oriented infrastructures,
thereby promoting reusability and flexibility of interaction flows. By using the framework,
people can manage their interactions and provide services in dynamic collaborations.

Acknowledgements

First and foremost, I would like to thank my adviser Prof. Schahram Dustdar for the
excellent supervision and mentoring during all phases of my research. I have been very
lucky to have an adviser who gave me the liberty to explore different ideas and directions,
and at the same time the guidance I needed to complete my dissertation.

I would also like to thank Prof. Frank Leymann for valuable comments and suggestions
that helped me to improve this work. He helped me to correct notation in formal specifi-
cations and algorithms.

I would like to acknowledge Christoph Dorn, Robert Gombotz, and Hong-Linh Truong
for fruitful discussions on related topics.

Most importantly, this would have not been possible without the continuous support
of my family. This dissertation is dedicated to my family.

Finally, I am grateful for the constant financial support from the EU FP6 project
inContext (IST-034718), funding parts of the research discussed in this dissertation.

Daniel Schall
January 18, 2009

Vienna, Austria

For my family

Contents

1 Introduction 1

1.1 Motivating Examples . 2

1.2 Problem Formulation . 4

1.3 Contributions . 5

1.4 Structure of Thesis . 7

2 Related Work 8

2.1 Task- and Service-oriented Systems . 9

2.2 Web Services in Pervasive Computing . 11

2.3 Metrics and Ranking . 13

2.3.1 Ranking Web Services . 13

2.3.2 Tagging and Search . 14

2.3.3 Global Importance Ranking . 14

2.3.4 The PageRank Model . 15

2.4 Complex Systems . 16

3 Interaction Models 17

3.1 Abstract . 17

3.2 Common Interaction Models . 17

3.2.1 Levels of Participation . 18

3.2.2 Roles . 18

3.3 Activity-centric Collaboration . 18

3.3.1 Activity Use Cases . 19

3.3.2 Summary of Basic Concepts . 22

3.4 HPS Interaction Model . 23

3.4.1 Types of Interactions . 24

i

Contents ii

3.4.2 Conceptual Model . 26

3.4.3 Task Model . 30

3.4.4 Calling an HPS . 33

3.4.5 Capturing Human and Service Interactions 36

3.4.5.1 Email Mining . 36

3.4.5.2 Raw Logs from Human-Service Interactions 36

3.4.5.3 Activity-Event Logs . 37

3.4.6 Summary of Interaction Models . 38

4 Global Importance Ranking 39

4.1 Abstract . 39

4.2 Preliminaries . 39

4.2.1 Basic Terminology . 40

4.2.2 Notation . 41

4.3 Human Interaction Networks . 42

4.4 Link Analysis using PageRank . 44

4.4.1 PageRank Primer . 44

4.4.2 PageRank in Human Interaction Networks 45

4.5 Towards DSARank . 47

4.5.1 Intensity Metrics . 48

4.5.2 Intensity-based DSARank . 50

4.6 Context-Aware DSARank . 52

4.6.1 Interaction Context . 53

4.6.2 Context-Sensitive DSARank . 55

4.6.3 Summary of Ranking Model . 55

4.7 Advanced Context-based Metrics . 56

5 HPS Framework 59

5.1 Abstract . 59

5.2 HPS Revisited . 60

5.3 Outline of Approach . 61

5.4 Supporting the Design of HPS . 63

5.4.1 The Collaborative Design of HPS 64

5.4.1.1 Usage Patterns of Tagging in Mixed Systems 65

5.4.1.2 HPS Design Use Case . 66

Contents iii

5.4.1.3 Recommendation Algorithm 67

5.5 HPS Interface Transformation and Generation 69

5.5.1 Design Process . 69

5.5.2 Interface Mappings . 70

5.6 Architecture of HPS Framework . 72

5.6.1 Middleware Layer . 72

5.6.2 API Layer . 73

5.6.3 Design Tools . 74

5.6.4 Services used at Runtime . 74

5.6.5 Data Collections . 75

5.7 Metrics Characterizing HPSs . 76

5.7.1 Classification of Metrics . 77

5.7.2 Task Metrics . 79

5.7.3 Service Metrics . 80

5.7.4 User Rating of HPS . 83

5.8 Task Rewarding Model . 84

5.8.1 Initial Rewarding Model . 84

5.8.2 Trend-based Rewarding Model . 86

6 Implementation 89

6.1 Abstract . 89

6.2 Middleware Layer . 90

6.2.1 Background . 90

6.2.2 Managing XML Collections in HPS Framework 90

6.2.2.1 Design Considerations . 90

6.2.2.2 Implementation Aspects 91

6.2.2.3 XML Examples . 91

6.2.3 HPS Access Layer . 94

6.2.3.1 Design Considerations . 94

6.2.3.2 Implementation Aspects 94

6.3 HPS Design . 96

6.3.1 HPS Design APIs . 96

6.3.2 Meta Model for Interface Mappings 97

6.3.3 XML Examples . 98

Contents iv

6.3.3.1 Input Form Representation 98

6.3.3.2 XForm Model for SOAP 98

6.3.4 Implementation User Tools . 99

6.3.4.1 Registry and Lookup . 99

6.3.4.2 User Control for HPS Design 100

6.4 HPS Interaction Analysis and Ranking . 101

6.4.1 Architecture . 101

6.4.2 Implementation Aspects . 102

6.4.3 Visualization . 103

7 Evaluation 106

7.1 Abstract . 106

7.2 Ranking Experiments . 107

7.2.1 Evaluation Metrics and Comparison of Ranking Algorithms 107

7.2.2 Effect of Interaction Intensities . 108

7.2.2.1 Summary of First Observations 110

7.2.2.2 Kendall’s τ . 111

7.2.2.3 Relative Ranking Change 111

7.2.2.4 Overlap Similarities . 113

7.2.2.5 Summary . 113

7.2.3 Experiments in Labeled Interaction Graph 113

7.2.3.1 Tagged Message Corpus 114

7.2.3.2 Applied Expansion and Filtering 115

7.2.3.3 Ranking Parameters . 115

7.2.3.4 Context Coupling and Subgraph Intensities 115

7.2.3.5 Filtering Algorithm . 116

7.2.3.6 Applying DSARank in Context-Dependent Interactions . . 117

7.2.3.7 Kendall’s τ . 118

7.2.3.8 Overlap Similarities . 119

7.2.3.9 Skill and Expertise Rank in Subgraphs 121

7.2.4 Score Distributions of Ranking Algorithms 121

7.3 HPS in Open Collaboration Environments 122

7.4 Web Services on Mobile Devices . 126

7.4.1 Web Services Toolkits . 126

Contents v

7.4.1.1 Platform Specific Implementations 126

7.4.1.2 Platform Independent Implementations 127

7.4.2 Performance Metrics . 128

7.4.3 Methodology . 128

7.4.3.1 Approach . 129

7.4.3.2 Calculations . 129

7.4.4 Setup and Implementation . 130

7.4.4.1 Using Web Services Toolkits in Performance Study 130

7.4.4.2 Code Optimization . 131

7.4.5 Results . 131

8 Conclusion 133

Bibliography 134

A Screenshots 143

B XML Listings 145

B.1 Review Service WSDL . 145

B.2 XML Schema Instance . 148

B.3 XHTML Input Form . 149

B.4 Predefined XML Types . 151

B.5 Meta Model for Interface Mappings . 152

C Model Diagrams 154

D Weight Profiles 156

E Task Rewarding Example 158

F Code Listing Ranking Service 160

F.1 Experimental Implementation . 160

F.2 Ranking Algorithm in Matlab . 161

F.3 Ranking Algorithm in Java . 162

F.4 Ranking Web Service . 166

List of Figures

1.1 Flexibility and Reusability in Collaboration 2

1.2 Ad-hoc and Process-Centric Collaboration Models 3

2.1 B4P Task and Role Model . 10

3.1 Use Cases of Activity-centric Collaboration 19

3.2 Interactions in Mixed Systems . 24

3.3 Overview HPS Activity Model . 27

3.4 Hierarchical Activity Model . 29

3.5 Overview Task Model . 30

3.6 Task Execution Model . 32

3.7 HPS Interaction Model . 34

3.8 Example Log of Human-Service Interactions 36

3.9 Bipartite Graph Model Capturing Activities and Control Actions 37

4.1 Example Interaction Graph . 41

4.2 Interaction Graph of Point-to-Point Human Communications 42

4.3 Degree Distributions Cellular Network . 42

4.4 Degree Distributions Email . 43

4.5 PageRank in Cellular Network . 46

4.6 Schematic Illustration of Intensity Metrics 50

4.7 Approach Context-Aware DSARank . 52

4.8 Example of Tagged Interaction Graph . 54

5.1 Overview and Motivation of HPS Framework 61

5.2 Recommendations for HPS Design . 66

5.3 Conceptual Approach Interface Design . 69

vi

List of Figures vii

5.4 HPS Framework . 72

5.5 Conceptual Overview Analysis and Rewarding 76

5.6 Classification HPS Metrics . 78

5.7 Example Dataset Service Metrics . 82

5.8 Schematic Illustration of HPS Rating . 83

5.9 Initial Task Rewarding Models . 86

5.10 Calculating Task Scoring Trend . 87

5.11 Task Metrics for Different Trend-based Scoring Models 88

6.1 Implementation HPS Design . 96

6.2 Screenshot of Service Registry User Interface 99

6.3 Example User Control . 101

6.4 Overview Ranking Approach . 102

6.5 Screenshot of Interaction Graph Visualization 104

7.1 Top-30 Ranked Users by DSARank . 108

7.2 Relative Ranking Change Measured for Availability and IIL 112

7.3 Tag Statistics in Email Interactions . 114

7.4 Interaction Graph Coupling . 116

7.5 Example of Context-Aware DSARank . 117

7.6 Kendall’s τ Composite Contexts . 118

7.7 Overlap Similarities for Composite Contexts 119

7.8 Distributions of Ranking Scores . 121

7.9 Example Application Scenario of HPS . 122

7.10 gSOAP Run-time . 127

7.11 Summary of Mobile Web Services Performance Study 132

A.1 Screenshot of Activity Management User Interface 143

A.2 Context-based Discovery of HPSs . 144

C.1 HPS Access Layer Database Schema . 154

C.2 HPS Profile Information . 155

E.1 Rewarding Example . 159

List of Tables

2.1 Related Collaborations Systems . 12

3.1 Summary Degrees of Formalism to Control Interactions and Collaborations 38

4.1 Basic Graph Metrics and Operators . 41

4.2 PageRank and Related Symbols . 44

4.3 Metrics and Weights in Interaction Networks 51

4.4 DSARank and Related Symbols . 56

5.1 Mapping between Concepts and Framework 60

5.2 Symbols used in Recommendation Algorithm 68

5.3 HPS Metrics and Related Symbols . 79

5.4 Task Rewarding Model and Related Symbols 84

5.5 Mathematical Background Initial Task Rewarding Model 85

5.6 Task Risk Models . 85

5.7 Determining Imaginary Unit for Trend Function 87

6.1 Example of Interface Mapping used in HPS Design 97

7.1 Top-10 List of Users in Cellphone Network based on DSARank. 109

7.2 Top-10 List of Users in Cellphone Network based on PageRank. 110

7.3 Comparing DSARank and PageRank using Kendall’s τ 111

7.4 OSim DSARank and PageRank . 113

7.5 Primary Categories in Labeled Interaction Graph 114

7.6 Intensities i(g) for Different Subgraphs . 115

7.7 Top-10 Ranked Users by DSARank in Email Communications 118

7.8 Kendall’s τ for Composite Contexts . 119

viii

List of Tables ix

7.9 OSimk=10 for Composite Contexts . 120

7.10 OSimk=30 for Composite Contexts . 120

7.11 Performance Evaluation of Mobile Web Services and Related Symbols . . . 130

D.1 Metric Weight Profiles . 157

E.1 Generated Task Data Set (a) . 158

E.2 Generated Task Data Set (b) . 158

E.3 Table Showing Calculation of Task Trend 159

List of Symbols

Symbol Meaning

α The predefined PageRank damping factor. A value between 0.8 and 0.9.
~PR The PageRank vector for parameter α.
~p The teleportation distribution vector called personalization vector.
m A metric or measured value in human interaction networks, m ∈MR.
wm Denotes the weight of a metric, wm ∈WMR

.
wv,u Weight of a link connecting v to u.
wsv The sum of outgoing link weights of node v.
IIL Interaction intensity level.
c Denotes a context tag.
cf The frequency of a context tag.
γ A factor in the range 0 < γ < 1 used in additive smoothing.

SE(u; c) Context-dependent skill- and expertise-based importance ranking.
~pm The teleportation distribution vector for metric m.

DSA(u;C ′) Context-aware DSARank based on the set C ′ of context tags.
wc Weight for context-dependent DSARank.
i(g) Subgraph intensity.

w(u,tag) Weight of a tag applied to resource.
ω(tag) The frequency of a tag applied to resource.
φ Variable depicting the correlation coefficient within the range [0, 1].

pref(u) User-define preference vector used in recommendations for HPS design.
T Denotes the set of human tasks, ht ∈ T .
τ Time interval (expiration time) after which ht fails.
TQ The set of all possible task states, q ∈ TQ.
H(c) The set of tasks in context c, H(c) = {hti|hti ∈ T, c ∈ C}.
s Depicts an HPS, s ∈ S.

HT (s) The set of tasks processed by s.
S(c) The set of services associated with a context c.

x

Glossary

Term Definition

Human interaction Any interpretable action or event that is used to establish
a link between actors.

Mixed system A system comprised of human actors and software services
interacting in regular and irregular ways.

Activity A procedure performed by human actors in collaborations.
Activity declaration A description of the activity.
Activity instance The activity carried out by human actors.
Action Interaction between actors conveying activity-related in-

formation.
Control Action Coordinative or informative actions to capture activity-

change events.
Human-Provided Services Human capabilities represented as Web services-based in-

teraction interfaces.
Ad-hoc flows Collaboration and interaction flows not following prede-

fined model.
State-aware interactions Shared awareness between actors of the progress of activ-

ities.
Process-centric Modeled control and data flow in workflow-based systems.
Opportunistic compositions Loosely structured collaborations comprising interactions

between humans and between humans and software ser-
vices.

xi

Chapter 1

Introduction

Web services have paved the way for a new blend of collaboration systems. Services let
us design modular information systems in distributed environments (Alonso et al. 2003,
Papazoglou et al. 2007). Service interfaces are described in a standardized manner by
using, for example, the Web Services Description Language (WSDL). Users can create
collaborative features by (re)using and composing Web services. Services already play an
important role in fulfilling organizations’ business objectives because process stakeholders
can design, implement, and execute business processes using Web services and languages
such as the Business Process Execution Language (BPEL), (Andrews et al. 2003). Services
are increasingly found in open collaboration platforms that are available on the Web. Users
and developers have the ability to use Web services in various applications because services
offer well-defined, programmable, interfaces. In process-centric collaboration, we typically
follow a top-down approach and define workflows by using activities to specify work items in
the workflow, control flows to define the structure of activities and their relations, and data
flows to assemble and disassemble input or output data (Leymann 2006). Before creating a
process model, the business analyst or process designer must fully understand each step in
the process. This phase is called the design or modeling phase. A process model is executed
(enacted) by instantiating a set of services that realize the modeled flow. Such models’
reusability is generally high, because we can apply process models several times. However,
flexibility is limited because whenever unexpected changes occur, which have not been
considered in the modeling phase, the flow has to be remodeled. Such changes may cause
exceptions, disrupting the normal execution of the process. Thus, it is important to support
adaptivity in collaborations. An important role towards adaptive processes plays the ability
to support “adhocness” — enabling humans to create “unforeseen” activities at run-time.
Ad-hoc flows are more flexible but less reusable, because many aspects depend on the actual
players (humans) involved in such flows. While the process-centric collaboration approach
follows a top-down methodology in modeling flows, ad-hoc flows in flexible collaborations
emerge at run-time. A run-time environment constraints the execution of flows. Such
constraints are, for example, the availability of resources, services, and people.

1

Chapter 1: Introduction 2

������ �����		���
����
���������� ���	�������

���
���� ������������� � �!�� ��"��������

Figure 1.1: Flexibility versus reusability in collaboration. Opportunistic service composi-
tion represents loosely structured collaborations.

In this work, we define a collaboration spectrum ranging from ad-hoc to process-centric
interaction models (Dustdar 2004,Schall et al. 2008b). Ad-hoc collaborations, for example,
are situations in which people must act in a flexible manner.

We show this range in Fig. 1.1: ad-hoc, activities are created at run-time (a bottom-up
system perspective); process-centric, activities and flows are created at design-time (top-
down perspective). The area — depicted as opportunistic service composition — represents
loosely structured collaborations. The degree of control in compositions, for example,
compositions of software services, can be understood as the trade-off between fexibility
and reusability: we lose high reusability of well-modeled processes; but gain flexibility
and robustness at run-time. The philosophy of this thesis is to view compositions of
humans and software services as complex systems. In complex systems, “the whole is more
than the sum of its parts”, Aristotle. Open collaboration environments require flexible
compositions comprised of interactions between human and software services. Thus, a
human is typically part-of such compositions. The presented work introduces Human-
Provided Services (HPS), which can be used in ad-hoc and process-centric collaborations.
The HPS framework enables humans to integrate their capabilities as Web services in SOA.

1.1 Motivating Examples

The collaboration landscape has changed dramatically over the last few years by allow-
ing users to shape the Web and availability of information. In the past collaborations
were bound to, for example, intra-organizational collaborations using a companies specific
platform; it is now possible to utilize the knowledge of many people participating in in-
teractions on the Web. The shift towards the Web 2.0 allows people to write blogs about
their activities, share knowledge in forums, write Wiki pages, and utilize social-services to
stay in touch with other people.

Chapter 1: Introduction 3

(a) (b)

Figure 1.2: (a) Ad-hoc and (b) process-centric collaboration models.

The Web has moved from being a “read-only” repository of Web pages to a Web of
services, which can be composed and enriched. Moreover, properties of users are no longer
tied to specific platforms and Web pages; they will be globally available (Ramakrishnan
and Tomkins 2007).

Consider Fig. 1.2 (a), User A publishes Web content by using open service-based
applications. Other Web users can then consume, aggregate, or filter the content. However,
users can’t apply the same procedure in other collaborations (for example, to share content
including documents, videos, and photos) because the depicted scenario relies mainly on ad-
hoc interactions. In addition, the collaboration is not structured as there’s no interaction
link between the users. This makes it difficult – if not impossible – to manage interactions
spanning multiple users and services.

Figure 1.2 (b) shows a process-centric collaboration scenario involving human actors
(depicted as human activity in the process model). An example of such interactions are
human activities in BPEL processes. Such activities are defined as BPEL4People (B4P)
activity (Agrawal et al. 2007). However, the applicability of such models in open collabora-
tion environments may be limited because we can’t model emerging interactions between
humans and software services in advance. Consider the following motivating scenarios
detailing collaborations involving both human and software services.

Ad-hoc collaborations : in Fig. 1.2 (a), User A records a video and posts it on the
Web. However, current platforms don’t let consumers (User B) actively find available
users who can contribute to collaborations by producing the desired content on demand.
In particular, users should be able to find any person who can deliver the desired content
using whichever platform (service) to host the Web content. This use case depends on the
activity to be performed by humans and the involved services; but not on the platform
that is used to share or host the content.

Chapter 1: Introduction 4

User-defined processes: continuing the previous use case, the collaboration might in-
volve many different services and people. For example, a (software) service should auto-
matically check the input User A receives (for example, for file format compatibility) and
convert it into a suitable format — if needed. The requester can then check whether the
provided contribution needs to be revised or re-recorded. Here interactions include human
as well as software services. However, most systems do not address reusability aspects of
loosely structured processes in such collaboration scenarios. User-defined processes allow
people to manage and control their interactions in a flexible manner.

Human interactions in formalized processes: it becomes increasingly important to en-
able interactions between business processes and human actors (Fig. 1.2 (b)). However,
people are increasingly on the move and use different devices to access various information.
So, we must consider mobility aspects, such as the location and limited processing power
of a user’s mobile devices, and we must adjust interactions according to the user’s context.
In particular, software services should be able to find and select the right person. How-
ever, most systems do not support the lookup of humans based on dynamically changing
properties such as expertise and skills of users.

1.2 Problem Formulation

Recently, Web-based collaboration platforms have started to evolve into Web services-
based architectures. In such platforms, collaborations include both humans and software
services. The challenge of composing these new type of services — user-driven contributions
as services and software services — is that interactions are highly dynamic and context-
dependent. However, a fundamental issue is that existing collaboration platforms do not
support humans in specifying their capabilities as services. User-defined services can be
used as interfaces to interact with people. Furthermore, humans need different ways to
denote their availability and desire to participate in collaborations. The problem is that
current systems lack the notion of human capabilities in SOA. The challenge is to support
the user in designing and providing services. Such services are called HPS and can be
discovered like any software-based services. However, humans must be able to offer HPSs
and mange their interactions in pervasive environments. Moreover, in open and dynamic
collaboration environment, typically a very large number of people collaborate and interact
by using different collaboration tools and platforms. It is important to determine expertise
and skill level of users. Somebody seeking help or advice on how to solve a specific problem
needs to be able to find the right expert.

However, the expertise and importance of users changes depending on performed tasks,
interactions with other users, as users gain know-how by collaborating with other experts,
and based on the information users receive from other people. An expert recommender
algorithm must consider the expert’s interest in a certain area. For example, a scientist
may have done research in a certain field; however, the scientist might change his/her
principle research domain over time and therefore no longer be the right expert to contact.

Chapter 1: Introduction 5

Thus, the interest and activity level of a person in a specific field must be considered.
We believe that ranking models should not only rely on profiles or skill information that
need to be maintained and manually updated by users. It is unlikely that a single skill-
or expertise-ontology is sufficient to capture the concepts and requirements of various
collaboration domains. Tagging mechanisms can be used to classify information and to
derive the context of interactions. Golder and Huberman (2006), for example, investigated
tagging models in collaborations. Tags provide a) input to derive skills and user-interests;
and b) the context of activities and interactions. The challenge is to devise a ranking
model that is able to capture these dynamic, context-dependent properties.

1.3 Contributions

We introduce Human-Provided Services because current systems don’t sufficiently address
the challenges and problems presented in the motivating use cases. In this work, we
present the applicability of HPS in open collaboration environments. We introduce a
framework to support the integration of human capabilities and interactions in SOA. The
HPS framework lets people supply services based on their skills and expertise. HPSs
are interaction interfaces towards humans, letting users define various HPSs for different
activities. Thus, HPSs are used to define the ability of users to participate in ad-hoc as
well as process-centric collaborations.

Users can manage interactions, which might potentially span various platforms and
services. People benefit from HPS because they can reuse different services in various
collaborations, thus fostering the reusability of human capabilities. Moreover, HPSs can
increase flexibility in collaborations because problems can be solved by HPSs that software
services alone can’t solve (see also (Naor 1996)).

At the implementation level, the framework utilizes Web services technologies such as
WSDL to describe HPSs. From the user’s point of view, HPSs are activities and actions
that users can design in form of services. Based on HPS, we discuss the application of
our ranking approach and the role of tagging mechanism to compute personalized ranking
scores. We propose link-analysis methods to determine the importance of users in hu-
man interaction networks. Specifically, we adopt and significantly extend the PageRank
model, as introduce by Page et al. (1998), for human interaction analysis. The benefit
of PageRank is that the global properties of an interaction graph are taken into account
when establishing the importance of users. This method is a variant of eigenvector cen-
trality. We devise a new model, which we call DSARank, to capture interaction dynamics;
thereby ensuring that ranking scores are distributed based on the activity-level of individ-
uals. In addition, we propose link-analysis in subgraph partitions of the human interaction
network to obtain context-sensitive rankings. We provide empirical results by evaluating
our ranking model in real-life interaction networks. On the one hand, human interaction
graphs based on email interactions; and on the other hand phone conversations in cellular
networks.

Chapter 1: Introduction 6

Publications

• Activity and Interaction Modeling: Publications in the area of activity-centric collab-
oration and related interaction models appeared in Human Interactions in Dynamic
Environments through Mobile Web Services (Schall et al. 2007) and VieCAR - En-
abling Self-adaptive Collaboration Services (Schall et al. 2008). The concept of ac-
tivities and actions using SOA has led to the definition of Human-Provided Services.
Initial use cases of HPS were published in a book chapter Context-aware Mobile Com-
puting (Schall, Dorn, and Dustdar 2007a). Furthermore, we gave a brief introduction
of HPS and the relation to activity-centric collaboration in (Schall, Gombotz, and
Dustdar 2006). We discuss activities and interaction models in Chap. 3.

• Human-Provided Services: The most important manuscripts discussing the HPS
framework as well as HPS interaction models were published at

1. International Conference on Web Services (ICWS 2007) (Schall, Gombotz,
Dorn, and Dustdar 2007): focusing on the notion of activities and the map-
ping of such activities to interactions with HPS. In the paper we focused on
mobile collaboration scenarios and context-aware discovery of HPSs. The work
was performed based on results of Web Services on Embedded Devices (Schall,
Aiello, and Dustdar 2006) and Wireless Internet Applications (Schall, Dorn,
and Dustdar 2007b), which we present in Sec. 7.4.

2. IEEE Conference on Enterprise Computing, E-Commerce and E-Services (EEE
2008) (Schall, Truong, and Dustdar 2008a): we presented the HPS framework
and a detailed description of HPS related XML collections. Chapter 5 discusses
the framework and introduces HPS related metrics.

3. IEEE Internet Computing (special issue on Web-scale workflows) (Schall, Truong,
and Dustdar 2008b): presenting the HPS framework as well as selected use cases
showing how HPSs can be utilized in Web-scale collaborations (see Sec. 7.3).

• Importance Ranking and Recommendations: We presented a ranking approach for
activities, context and services at the EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA 2008) (Schall, Dorn, Dustdar, and
Dadduzio 2008). Furthermore, the publication contained a description of VieCAR
(Vienna Collaborative Activity and Resource Management Framework), which is an
OSGi-based middleware closely related to the HPS middleware implementation, see
(Schall et al. 2008, Section 2). However, the details regarding the ranking model
employed in VieCAR are not presented in this thesis. The HPS ranking model and
related metrics (as presented in this thesis) have been submitted to an international
journal; submission entitled Global Importance Ranking based on Local Interaction
Intensities and Context. However, no outcome of the review process was available
with the completion of this thesis. A brief introduction of ranking models and inter-
action mining was given in inContext reports (Tilly, Yu, Schall, and Peray 2007) and
(Tilly, Yu, Schall, and Peray 2008).

Chapter 1: Introduction 7

• Tagging and Message Annotation: An initial tagging model that associates task-
information as annotations with, for example, email messages, was presented in
Pattern-based Collaboration in Ad-Hoc Teams Through Message Annotation (Schall,
Gombotz, and Dustdar 2007). The work provided the basic ideas for the interaction-
based recommendation algorithms to support the design of HPSs (Sec. 5.4.1).

Other publications focusing on context, e.g., (Dorn, Schall, and Dustdar 2006), were not
directly used in this thesis but are related to the problem of context-aware HPS discovery.

1.4 Structure of Thesis

In Chap. 2 we discuss related work in task-based collaboration platforms, SOA and Web
services, and ranking approaches. Chapter 3 introduces basic interaction models in human
collaboration and presents our activity-based interaction model. Activity-centric collabo-
ration is the starting point for HPS. We discuss HPS interaction models emphasizing the
role of human interactions in SOA.

In Chap. 4, we present our interaction analysis approach, called DSARank, focusing
on the estimation of user-importance, skills and expertise level in human collaborations.
However, our ranking model is well suited for importance ranking of Web services in general.

In the following, we provide on overview of the HPS framework in Chap. 5. An
important aspect in enabling HPSs is to support users in designing HPSs, for example,
the design of various SOA artifacts. We present a user-centric approach helping users
to design HPSs. We provide an architecture overview and discuss the main features of
the framework. To support collaborations in open service-oriented environments, various
metrics need to be defined to enable ranking, recommendations, and rewarding models.
These models are based on, for example, human tasks.

Chapter 6 details the various software components and services implemented within the
HPS framework. In addition, we highlight the implementation of the interaction analysis
and ranking APIs. Chapter 7 presents the experiments performed in this work including
the evaluation of interaction-analysis algorithms and a performance study of Web services
in pervasive environments.

Finally, a conclusion of this work is given in Chap. 8 by discussing open issues and by
providing an outlook on future research.

Chapter 2

Related Work

The work presented in this dissertation focuses on a methodology and tools allowing human
interactions in SOA to be executed in a flexible manner. In complex systems, there are
several types of architectural views (Levis 1999,Crawley et al. 2004):

• The functional architecture: a partially ordered list of functions that are needed to
accomplish the system’s requirements.

• The physical architecture: representation of physical resources and their intercon-
nections.

• The technical architecture: an elaboration of the physical architecture that comprises
a minimal set of rules governing the arrangement, interconnections, and interdepen-
dence of the elements, such that the system will achieve the requirements.

• The dynamic operational architecture: a description of how the elements operate and
interact over time while achieving the goals.

We structure our discussion into related work in the area of task-centric computing,
SOA, Web services, and process-centric collaboration. In Sec. 2.1, we discuss various
approaches ranging from human computation in open collaboration environments, for ex-
ample, platforms available on the Web, to workflow systems, which can be used to execute
business processes. In our discussion, we emphasize systems based on Web services tech-
nology, focusing mainly on functional and technical architectures.

Second, we cover research in pervasive computing using mobile Web services (Sec. 2.2).
One of the major challenges in supporting human interactions in SOA is to enable flexible
interactions in pervasive environments, for example, information access using mobile de-
vices. In this work, we present Web services toolkits and their performance characteristics.

Third, we present research in complex systems and the dynamic nature of human inter-
actions (Sec. 2.4). Related research mainly falls into the dynamic operational architecture

8

Chapter 2: Related Work 9

view. Human dynamics have great significance for various metrics and algorithms pre-
sented in this thesis. In particular, our metrics attempt to capture the dynamic nature
of HPS. The interaction analysis algorithm presented in this work is based on statistical
ranking models, which have been applied with great success in search engines (see Sec.
2.3).

2.1 Task- and Service-oriented Systems

Collaboration systems use tasks to associate a state with a work item that has to be
performed by a human actor. Tasks can be used in systems that model workflows by
designing process models. On the other hand, tasks can be used in ad-hoc collaboration
to establish state-awareness among people involved in the interaction (collaboration).

Recently, major software vendors have been working on standards addressing the lack of
human interaction support in service-oriented systems. WS-HumanTask (WS-HT) (Amend
et al. 2007) and B4P (Agrawal et al. 2007) were released to address the emergent need
for human interactions in business processes. These standards specify languages to model
human interactions, the lifecycle of humans tasks, and generic role models. In (Russell
and Aalst 2007), the relation of B4P-related Web standards and resource patterns was
discussed. Role-based access models (see Agrawal et al. (2007) and Mendling et al. (2008))
are used to model responsibilities and potential task assignees in processes. A concrete
implementation of B4P as a service was introduced in (Thomas et al. 2007,Holmes et al.
2008). In the following, we provide a brief overview of B4P and WS-HT. A detailed
knowledge of BPEL concepts and syntax is not needed.

Human Tasks in B4P: We discuss B4P from the technical (specification) point of
view since B4P is becoming a broadly accepted standard to support human interactions
in BPEL. Figure 2.1 shows the basic concepts in B4P processes. Many BPEL processes
require Human Interactions, which is basically the definition of a set of Human Tasks

that are assigned to people. The BPEL Role Model defines task as well as process-centric
roles. For example, task specific roles such as Initiator or Stakeholder. The Logical

People Group allows for the ”late binding” of people involved in interactions. At run-time
Logical People Groups are bound to, for example, organizational directories (Leymann
2006).

Compared to concepts in B4P, people using the HPS framework decide which service
they provide, for example, in a specific collaboration context to manage their interac-
tions by using HPS. B4P, for example, specifies how a process architect can involve people
in formalized processes, or workflows. However, “emerging” aspects of the collaboration
environment such as user-defined services are not covered in WS-HT or B4P-related spec-
ifications.

As mentioned earlier, it is important to support ad-hoc flows in collaborative systems.
Caramba, a system enabling the coordination of distributed teams using activities was in-
troduced by Dustdar (2004). In Caramba, activities are used to establish state-awareness

Chapter 2: Related Work 10

#
Figure 2.1: B4P task and role model.

in a process. Adams et al. (2006) introduced worklets grounded in activity theory repre-
senting self-contained subprocesses. Garlan et al. (2004) proposed adaptive, task-based
platforms to cope with changing environmental conditions. Similarly, Moody et al. (2006)
introduced business activity patterns to design flexible applications. Human tasks metrics
in workflow management system have been discussed in (Kumar et al. 2002). A for-
mal approach to modeling and measuring inconsistencies and deviations, generalized for
human-centered systems, was presented in (Cugola et al. 1996).

Interface Generation: The presented HPS framework utilizes open standards such as
WSDL1, to describe HPS interfaces, and XForms2 to automatically generate user interfaces.
GUI generation and mappings for WSDL was presented in (Kassoff, Kato, and Mohsin
2003, Song and Lee 2007). Also forms generators such as IBM’s XML Forms Generator3

(link followed on January 2009) are available for the Eclipse environment. In this work,
we not only focus on automatic GUI-generation based on WSDL descriptions, but also the
mapping of human activities onto Web services. We support the automatic generation of
different presentations formats (WSDL or XForms).

Human computation is motivated by the need to “outsource” certain steps in a
computational process to humans (Gentry et al. 2005). Kosorukoff and Goldberg (2001)
presented an application of human computation in genetic algorithms. A variant of hu-
man computation called games that matter was introduced by von Ahn (2006). Related
to human computation are systems such as Yahoo! Answers4 and Amazon Mechanical

1http://www.w3.org/TR/wsdl
2http://www.w3.org/MarkUp/Forms
3http://www.alphaworks.ibm.com/tech/xfg
4http://answers.yahoo.com/

Chapter 2: Related Work 11

Turk5. Both Yahoo! Answers and Amazon Mechanical Turk are Web-based, task-centric,
platforms. Users can publish, claim, and process tasks. Su et al. (2007), for example, eval-
uated the task properties of a similar platform in cases where large amounts of data are
reviewed by humans. While Yahoo! Answers is mainly used as a question/answer forum,
Amazon Mechanical Turk enables businesses to access the manpower of many people using
a Web services API.

In Table 2.1, we compare different collaboration paradigms. The first column shows
features, or capabilities, which collaboration systems must in our opinion support to ad-
dress the needs in large-scale collaborations and workflows involving human and software
services. Task-based systems such as Yahoo! Answers are denoted by the category “human
reviewed data”.

2.2 Web Services in Pervasive Computing

Web services-based applications that can be hosted by mobile devices have recently earned
much attention by academia and industry. Service-oriented infrastructures supporting
mobile Web services — i.e., the registration, discovery, and invocation of services — must
account for the challenges imposed by embedded devices. These devices have limited
hardware resources in terms of CPU/battery power and memory. Additionally, mobile
services may become unavailable due to interruptions of network connectivity. Mobile
Web services open many interesting opportunities for HPSs. For example, services can
be provided in a certain location area. Furthermore, requesters may specify constraints
in the HPS discovery process such as proximity to find, for example, services that are
nearby. Thus, the research performed in this work is related to human interactions in
dynamic environments using mobile Web services. In particular, we focused on deployment,
management mechanisms, and performance characteristics of mobile Web services.

Understanding performance limits is important as many Web services-based applica-
tions fulfill critical tasks in terms of retrieving or providing information. Aiello and Dustdar
(2008), for example, presented a Web services stack with the aim of connecting heteroge-
neous devices at home. A mobile Java-based platform utilizing Web services has been
introduced in (Rellermeyer and Alons 2007). Work in the area of interoperability problems
and SOA, with special focus on legacy issues, can be found in (Jammes, Mensch, and Smit
2005). The work involved the implementation of a Web services stack on devices following
a form of device profiling. From the technological point of view, Pham and Gehlen (2005)
conducted a performance study of SOAP-based servers on mobile devices. The gSOAP
toolkit has been introduced by Engelen (2003a). Furthermore, a performance study and
comparison of various Web services toolkits including gSOAP, .NET-based implementa-
tions, Apache Axis, and xSOAP was presented in (Engelen 2003b). Tierno and Campo
(2005) analyzed the limits of applications on a mobile Java platform. In particular, the

5http://www.mturk.com/

C
hapter

2:
R
elated

W
ork

12

Feature Human computation Human reviewed data Human process inter-
actions

Expert finder systems

Human requesters no yes no yes
Modeling interactions
in process

yes yes yes no

Interaction-based col-
laborations

no No explicit collabora-
tion link

yes no

Open collaboration
environments

yes yes Enterprise level col-
laboration

Ontologies describing
skills

Context-dependent
discovery

no Skills Role models Skills

Expertise ranking no yes no yes
User-defined interac-
tions

no no Defined by process
designer

no

User-defined services no no no no

Table 2.1: Related collaboration systems and the features they support.

Chapter 2: Related Work 13

authors discussed the ability to process multimedia data, for example, applications such
as image processing, movement detection, and pattern recognition, on smart phones. In
addition, various code optimization techniques were highlighted.

2.3 Metrics and Ranking

The definition and modeling of metrics associated with Web services (e.g., QoS metrics)
are active research areas in the Web services community. The challenge is to find a com-
mon understanding and agreement on how to express service related metrics. The reason
is that Web services are a “horizontal” technology to implement domain specific applica-
tions. Thus, it would be desirable to define a common set of metrics and model that can
be extended for a particular domain. To this date, a variety of QoS models have been
proposed to cover the most common QoS attributes of services such as response time and
service availability. The OASIS working group developed a model for the management of
Web service quality factors (Kim and Lee 2005). A method for analyzing Web service in-
teractions and a categorization of performance and dependability attributes was presented
in (Rosenberg et al. 2006). Maximilien and Singh (2004) presented a QoS ontology for
autonomic Web services and a matching algorithm to find the most trusted service. Sheng
et al. (2004) proposed personalized service composition considering various constraints
such as context; for example, location.

2.3.1 Ranking Web Services

Ranking and selection of the “right” service is highly important in SOA. A large number of
service providers may publish their services on the Web, which can be (dynamically) found
and invoked by service consumers. In a manner similar to search engines for Web pages,
ranking algorithm for services should suggest the most relevant service to perform certain
“activities”. Rankings can be computed by aggregating functional and non-functional
properties (NFPs).

Aggregated scores based on, for example, QoS metrics can be calculated using scoring of
preferences (Dujmovic 2007), for example, see (Andreozzi et al. 2006). Ranking of services
using mining techniques has recently gained attention because the quality of a particular
service is not only determined based on information such as current load of a service, but
also past invocations. However, the complete invocation graph (e.g., interactions between
composite services) may not always be available in large-scale distributed systems. A
short overview of different ranking approaches in networks of Web services was presented
in (Gekas 2006). Constantin et al. (2006) proposed a distributed ranking algorithm to
determine the importance of Web services based on interaction logs.

Chapter 2: Related Work 14

2.3.2 Tagging and Search

The focus of our research is to determine the expertise-level of users in Web-based col-
laborations. In the context of the Web, (Becerra-Fernandez 2006) described a system and
ontologies expressing skills of experts. Furthermore, (Aleman-Meza et al. 2007) proposed
the combination of diverse semantic information to derive skill profiles and expertise of
users. However, these works did not discuss how to obtain information regarding users’
expertise in an automated manner.

Recently, models for collaborative tagging have been presented (Cattuto, Loreto, and
Pietronero 2007) and personalized recommendations based on tagging models (Byde, Wan,
and Cayzer 2007). In (Jäschke et al. 2007), the authors presented an evaluation of tag-
recommendations in folksonomies using collaborative filtering methods and an algorithm
called FolkRank. Heymann et al. (2008) showed an approach for tag-based association rule
mining. In contrast, we propose activity tagging to determine the expertise and know-how
of users. Based on tags, we propose collaborative filtering methods for service recommen-
dations. Li et al. (2008), for example, showed that user-generated tags can be used to
discover social interests shared by groups of users.

2.3.3 Global Importance Ranking

We believe that models and algorithms to determine the expertise of users are important in
future service-oriented environments. The notion of service-orientation is not only applica-
ble to Web services. Service-orientation in human collaboration is becoming increasingly
important. For example, task-based platforms allow users to share their expertise (Yang,
Adamic, and Ackerman 2008); or users offer their expertise by helping other users in fo-
rums.

By analyzing email conversations, Dom et al. (2003) studied graph-based algorithms
such as HITS (Kleinberg 1999) and PageRank (Page et al. 1998,Brin and Page 1998) to
estimate the expertise of users. Shetty and Adibi (2005) followed a graph-entropy model
to measure the importance of users. Karagiannis and Vojnovic (2008) presented an email
analysis in enterprises, defining information flow metrics in the social interaction graph.

Zhang et al. (2007) followed a graph-based approach and applied HITS as well as
PageRank in online communities (i.e., a Java question and answer forum), naming their
approach ExpertiseRank. More precisely, the Java form and discussion threads were used
to capture human interactions. We cite some results below:

• The authors found that structural information in human interactions can be used to
determine the expertise of users.

• Structural characteristics matter when social network-based algorithms are used for
expertise ranking.

Chapter 2: Related Work 15

• PageRank did nearly as well as human raters in terms of estimating the expertise of
users.

The analysis of social networks has a long history of research in social sciences. However,
most studies usually focus on the structural characteristics of such networks. In a similar
manner, ExpertiseRank mainly uses structural characteristics of the human interaction
network to calculate the users’ importance.

While the above cited works attempted to model the importance of users based on
interactions and information flow; they ignore the fact that interactions typically take
place in different contexts. In contrast, we propose a model where expertise analysis is
performed in context-dependent subgraph partitions. Rodrigues et al. (2006) as well as
Tang et al. (2007) studied subgraph extraction and visualization in co-author networks
using the DBLP computer science bibliography. Furthermore, Conyon and Muldoon (2006)
proposed PageRank in weighted bipartite graphs.

2.3.4 The PageRank Model

We provide a brief overview of PageRank and related literature because our ranking model
relies on the probabilistic formulation of the “Random Surfer Model”. PageRank (Page
et al. 1998, Brin and Page 1998) is an eigenvector centrality-based model for ranking
documents on the Web. The basic idea is that the importance of a Web page v depends
on the citation links pointing to v. Recently, much research has been performed to better
understand the theoretical foundations of the PageRank model, e.g., Bianchini et al. (2005)
and Brinkmeier (2006). See the work of Berkhin (2005) for a state of the art review in this
area.

Personalized PageRank: In PageRank, the “Random Surfer” follows the outlinks of
a Web page with probability α, usually a value between 0.8 - 0.9 according to Page et al.
(1998), or with probability (1− α) “jumping” to a randomly selected Web page.

Richardson and Domingos (2002) introduced the Intelligent Surfer Model, arguing that
users do not select Web pages at random. Haveliwala (2002) proposed a topic-sensitive
ranking model by computing personalized PageRank vectors using different categories of
Web pages. Topic-sensitive ranking scores can be aggregated into a composite score at
query time. White and Smyth (2003) defined a variant of this model called PageRank
with priors. Beyond topic-sensitivity, Jeh and Widom (2003) showed that personalized
PageRank vectors can be decomposed to compute personalizations for individual Web
pages. Recently, Fogaras et al. (2005) and Chakrabarti (2007) proposed Monte Carlo
methods to compute fingerprints of personalization vectors.

Personalization in PageRank-based link analysis is an important tool because the im-
portance of nodes in a graph (e.g., humans as part of the interaction network) can be
customized based on context information. However, to our best knowledge there is no
existing work in the area of personalized PageRank in human interaction analysis.

Chapter 2: Related Work 16

2.4 Complex Systems

It is important to understand mixed systems of human and software services as complex
systems. Both, the technological and social aspects shape the operation constraints of a
system (Kleinberg 2008). We believe that such operation constraints of complex systems
lead to certain runtime behavior, which cannot be modeled in terms of “prewiring” of inter-
actions based on role models, but rather by observing the natural evolution of cooperation
in real systems. Fundamental issues in cooperative systems and (business) processes are
monitoring of human tasks and reputation mechanism.

Vamos (1983), for example, formulated a control system perspective: “Starting from
various technologies, needs, evolution trends, and realization possibilities, a new perspec-
tive of system architecture is evolving that feeds back its revolutionary effects, not only
to technology but to a broad spectrum of human activity.” This evolutionary perspective
is important when designing and modeling systems. For example, users must be able to
change and adapt their activities based on interests, available services, and expertise. The
problem of composition is strongly related to organization and control. The key princi-
ples of autonomic computing (e.g., see the (IBM 2005) whitepaper for an overview) aim
at supporting systems featuring self-* properties. In this work, we employ monitoring
of human and service interactions to give recommendations for the design of HPSs and
execution of human tasks.

However, expertise and human activity change depending on the environment and con-
text. Thus, human dynamics must be considered when determining reliability, reputation,
and expertise of users and HPSs in complex systems. It is therefore important not only to
model human interactions in ad-hoc and process-centric systems, but also to understand
how people are connected (Shi et al. 2008,Yang et al. 2008) and how information flows
are influenced by structure (Rosvall and Sneppen 2006,Rosvall and Bergstrom 2008).

Human dynamics play an important role when modeling ranking algorithms capturing
the dynamic nature of interactions. Barabási (2005) introduced models to capture the
dynamics in human communications (see also Barabási (2007)). Human dynamics has been
studied by observing various interaction and communication mechanisms. For example,
Oliveira and Barabási (2005) analyzed Darwin’s and Einstein’s communication patterns
of correspondence and showed that today’s email exchanges follow the same scaling laws.
Analytical models based on queuing theory and human activity have been proposed in
(Vázquez et al. 2006). Onnela et al. (2007) introduced metrics to measure the dynamics
in human communications in cellphone networks. Based on visitation patterns of a news
portal, Dezsö et al. (2006) showed that these information access patterns follow a power-
law distribution.

Chapter 3

Interaction Models

3.1 Abstract

We provide basic definitions of interaction models in human collaborations. A short intro-
duction of common collaboration and interaction models is given to provide the context for
more advanced interaction models in service-oriented environments. The term interaction
makes an explicit statement regarding the number of actors involved, which must be equal
or greater than two. Involvement in an interaction can mean active participation, or just
being affected by, or possibly even only being aware of interactions.

Within the inContext project, we defined interactions as: A human interaction denotes
any interpretable action or event that allows us to establish a link between actors based on
which measures can be taken to understand and enhance collaborations. We present the
HPS interaction model and discuss different degrees of formalism in human interactions.
Furthermore, we introduce a task-execution model serving as input for recommendations
of the right person to perform tasks in collaborations.

3.2 Common Interaction Models

• Synchronous communications: The interaction model in conventional telephone com-
munications between users. Both users are involved in the interaction, regardless of
the initiating user. Other combinations are possible such as multi-party calls or calls
supporting rich media, for example, IP-based calls.

• Asynchronous communications: The most popular messaging tool is email enabling
“offline” or asynchronous interactions between users. Considering a single interaction
(i.e., message), we speak of one-to-many interactions. Instant messaging (IM) has
similar characteristics in terms of a) message-cardinality (the number of recipients

17

Chapter 3: Interaction Models 18

of a particular message) and b) the addressing scheme of people using URIs. In
contrast, messages are exchanged (or delivered) in near-synchronous mode.

3.2.1 Levels of Participation

The very basic categorization of participation levels is active and passive participation in
interactions. Here, active participation means an observable action in a certain interaction
context. As an example, a user sends a message regarding a certain topic to one or more
users; more generally, initiates any kind of interaction in a certain context. Various factors
may influence the context of an interaction, for example, in the scope of a project, a
certain activity in a project, or even an activity in the scope of multiple projects. On the
contrary, passive participation means that no observable action was recorded or logged by
the system. In this research not only explicit collaboration between actors is considered,
but also actions by individuals that effect other actors, and even such actions that raise or
increase awareness between actors without active participation in a collaboration (Gombotz
et al. 2006).

3.2.2 Roles

Role models may be defined for different interaction levels and for different contexts. On
the one hand, roles in human interactions can be derived based on properties such as
initiator of an interaction or active collaborators as contributors (e.g., in discussion threads
or collaborative editing of documents). For example, the WS-HT specification defines a
Task Generic Role model for B4P (see Fig. 2.1 and (Amend et al. 2007, Section 3.1)).
In (Dorn et al. 2007), various views on teams including organizational structure, projects,
and interactions are given. These views represent team-centric roles and their properties
in collaborations. While roles can be modeled and represented explicitly, Dustdar and
Hoffmann (2007) proposed interaction mining to detect roles in collaborations based on
patterns. An example of pattern-based collaborations and context-dependent roles, for
example, observers, has been presented in (Schall, Gombotz, and Dustdar 2007).

3.3 Activity-centric Collaboration

Activities in collaboration are commonly understood as steps in a workflow. Within the
scope of the inContext project, we considered semi-structured collaboration scenarios with-
out predefined control and data flow models. In contrast, formalized processes in workflow
systems demand for precise control and data flow models. Therefore, such models represent
well-understood processes of stable business activities.

The assumption we make in this work is that collaborations are comprised of activi-
ties and actions, which are performed by human actors. These actions are conducted in

Chapter 3: Interaction Models 19

a particular context (e.g., people working on projects), thereby resulting in interactions
with other team members. Examples of such activities include “writing/sending emails”,
“making phone calls”, and “creating/editing documents”. We can think of these activities
as ad-hoc activities, which emerge on demand rather than following a predefined work-
plan. Being able to perform ad-hoc activities is a vital part in collaboration. It fosters
creativity and awareness in teams, the ability to solve unforeseeable problems, and allows
team members to adapt to changes by optimizing their actions. As the next step, we show
use cases in the following section to illustrate how users can apply activities in dynamic
collaboration scenarios.

3.3.1 Activity Use Cases

It is useful to show some use cases of activity-centric collaboration before going into tech-
nical details; how activities are modeled and the relation to HPSs. An activity can be
performed many times resulting in activity instances being created. Each instance corre-
sponds to an activity declaration, which defines at the very basic level the activity name,
URI, and resources that are used to perform activities. A complex activity is composed
of sub-activities, which are the basic elements of an activity structure. For example, an
activity “finalize document” may be composed of two sub-activities, “submit for review”
and “send instant message”. These sub-activities are basic activities that can be executed
using service-oriented architectures. Basic activities are defined as activity types. A simple
example, “send instant message” may have a To property (the recipient URI) and a Text

property (plain text associated with message). Throughout this work, activity declarations
depict basic activities that may have an associated activity type. Figure 3.1 shows example
use cases, which we will describe in detail in the following — discussions and models are
based on (Schall, Gombotz, Dorn, and Dustdar 2007).

$%&' (
$%&')

*+, -./010/02,
3+, -./010/02,

45-627 -./010/02, $%&' 8
9 -./010/: 72.;-6-/0<=9 -./010/: 0=,/-=.2 9 62;-/0<= >2/?22= -./010/02,

@+, -./010/02,
9 0=1<;12A2=/ 0= -./010/:9 -BB;027 62,<C6.2

Figure 3.1: Use cases of activity-centric collaboration.

Chapter 3: Interaction Models 20

Each user may have a set of private or protected activities which are not visible to
all users. Let us first discuss the role of User A and User B in Fig. 3.1. User A has
three activity instances in his workspace (illustrated as a cloud); two activities are related
to each other, for example, as parent-child activities. In addition, User A’s workspace
contains an activity declaration. As mentioned before, a declaration may correspond to
one or more activity instance(s). User B works on two activity instances, which are not
connected to each other. In B’s workspace, we see activity declarations that are related to
each other. For example, a complex activity can be refined by adding sub-activities as child
elements. User A and User B can share selected activity instances by moving instances
from their private workspace to a shared workspace (shared activities). Also, users
can create new activity instances in a shared workspace, which are visible to all users that
have permission to access the workspace.

Now, we illustrate two use cases to demonstrate how User C could integrate his capabil-
ities as HPSs. Both cases presume an existing team which organizes work using activities
— User A and User B in Fig. 3.1. We assume that User C offers an HPS. (A detailed
knowledge of the HPS interaction model is not needed at this point).

Automatic discovery. Suppose the team comprised of User A and User B instantiates
an activity named “evaluate open-source solution”. This activity requires the knowledge
of a user familiar with the specified open-source project. Let’s assume that User C has
not yet joined the team and that C is not available at the time the activity is instantiated.
Furthermore, potential collaborators should have worked on similar evaluation activities in
the past, for example, whether or not the open-source project can be used in an existing
infrastructure. In this use case, User C has expertise in this particular type of activity and
offers a “consulting service” to make his expertise available. Thus, C’s capabilities could
be integrated into an existing activity-based collaboration structure.

However, since C is not available at the time of instantiation, A and B use an HPS
registry to indicate the need for this type of consulting service. Notice, multiple users with
different levels of expertise and skills can provide the same type of service. Also, a user
can choose which service he or she wants to provide.

Consequently, a “flag” — discover and notify — is set for the service in this activity
(a publish/subscribe mechanism at the technical level). Once User C becomes available,
the demanded HPS enters the online state and C’s consulting service can be integrated
into the aforementioned “evaluate open-source solution” activity. Thus, the execution
of the activity can be continued. In (Schall et al. 2007), we presented a similar use
case; additionally emphasizing the use of context information in the discovery process, for
example, location context and proximity of HPSs.

An important fact in this use case is that User C need not be aware of the activity
structure shared between User A and User B. In particular, User C may have declared an
HPS as an activity which can be used in many different collaboration scenarios. Thus,
C contributes his expertise in the scope of a specific activity without being aware of the
“global” collaboration context. However, from C’s point of view, interactions in this specific
context are also represented as an activity instance. Such partial views on the collaboration

Chapter 3: Interaction Models 21

context can be observed in many real-life collaboration scenarios, for example, due to
hierarchical structures, role models, and trust-based access control.

To finalize our discussion on automatic discovery, it is important to note that the
presented use case shows human interactions in a dynamic and open environment. Users
can contribute their expertise as services, which can be used for human interactions in
the context of activity-centric collaboration. An example of such HPSs are “consulting
services” that can be discovered and integrated into collaborations as the demand for such
HPSs arises. Reputation, trust, and reliability are of major importance to realize this vision.
The interesting perspective in this context is to study the dynamics and evolution in such
environments, e.g., see (Lieberman et al. 2005).

User-driven integration. This use case is strongly motivated by social-effects in
collaborations. While we previously assumed a scenario where users perform activities in
the absence of detailed knowledge about the nature of the collaboration (activity) structure,
here we motivate the need to establish a social context in activity-centric collaboration.
Let us assume that A, B, and C share activity declarations. For example, A can view B’s
activity declarations and vice versa. Now, there is a need to process a pending activity.
Like in the previous use case, a pending activity could be “evaluate open-source solution”,
which has been instantiated but is not assigned to a user or HPS. We regard pending
activities as items in a work queue that need to be processed by the team. Notice, at this
point the team is still comprised of A and B, while C is a potential collaborator to perform
the activity marked as pending. In this given collaboration setting, we have the following
options to integrate HPSs into the collaboration structure:

• Let us assume that User C is aware of the collaboration structure (Fig. 3.1). He
decides to join the shared activity workspace — the ongoing collaboration between
A and B — by using one of his own HPSs in the instantiated “evaluate open-source
solution” activity.

Indeed, C needs to have the permission to claim and process the activity. Apart from
access rights that can be enforced through role models, reputation and expertise are
key indicators to determine whether C should be able to claim a particular activity
or not. When referring to explicit constraints (e.g., role-based access models), we
speak of functional properties. Non-functional properties, on the other hand, are
based on soft-constraints such as expertise. In other words, if a set of users is eligible
to perform an activity, non-functional properties are used to decide which user is
best suited for the activity at hand. The decision — user selection — is made either
automatically by the system (e.g., an activity management service implementation)
or administered by a user; for example, a super user responsible for the top-level
activity and its child elements (e.g., User A in Fig. 3.1).

• Another strategy User C may choose is to decide to adopt an existing activity dec-
laration. User C can select an existing activity from A or B, or decide to adopt an
activity from the outside world. However, which strategy C will choose is in fact

Chapter 3: Interaction Models 22

more subtle than it may seem at the first glance. The question is whether A, B, and
C are sufficiently (self-)similar.

As an example (based on simulations of evolving populations), Riolo et al. (2001) find
that “cooperation can arise when agents donate to others who are sufficiently similar
to themselves in some arbitrary characteristic”. Self-similarity, in a cooperation
and collaboration context, means that communities and teams usually share similar
interests and features. Intuitively, users with similar interests (and expertise) tend
to work on similar activities. Guimerà et al. (2003) studied self-similar community
structure in human interaction networks (i.e., based on an email network). The
authors find that this network self-organizes into a self-similar structure. Finding
such structures is a community-detection problem. Newman (2006), for example,
introduced modularity as a measure to find the optimal community structure.

Therefore, C will choose from A’s or B’s activity declarations based on his interest and
similarity. The chosen activity declaration is then adopted and integrated into the
existing, ongoing activity instance. Notice, an activity declaration can be depicted
as an HPS. Such cases are beneficial when A and B have previously not considered
to include existing capabilities (e.g., services) into a certain activity.

• An important requirement for flexible collaboration is the ability to create new activ-
ity declarations and HPS-mappings of such declarations. (The mapping onto HPSs
will be discussed after we have concluded the use case discussion.) Such mappings
indicate that C considers a particular HPS to be a suitable solution to perform a
certain activity. The ability to declare new activities as HPSs allows a user to easily
provide capabilities and opportunities to the team that may have not been considered
before.

Both use cases will be the motivation for the design and implementation of a novel
framework allowing humans to create and use HPSs in various collaboration scenarios.
Next, we summarize important features of activity-centric collaboration and basic HPS
concepts.

3.3.2 Summary of Basic Concepts

We provide a brief summary of previously introduce concepts before continuing our discus-
sion on HPS interaction models. Our main focus is the use of activities in service-oriented
architectures.

Managing collaboration structure. The important characteristic of activity-centric
collaboration is that users can create and share ad-hoc (informal) processes by defining
the steps needed to create the demanded collaboration output. Users can modify activity
structures by editing activity steps or sequences. These structures can be defined as private
or shared activities. Activities help to establish awareness among coworkers by letting users
share status information (progress of activities) or refinements of ongoing activities.

Chapter 3: Interaction Models 23

Maintaining activity knowledge. Shared activities allow teams or communities to
establish a common understanding of steps and/or useful resources in specific collabora-
tions; thus fostering reuse of activity declarations and complex activities (i.e., a set of
structured activities). Shared know-how defined as activity-structures increases the effi-
ciency in collaborations and allows users to define best-practices. This is very much in
the spirit of Web 2.0 platforms, which enable users to jointly edit and provide content.
However, activities are used to structure collaborations and interactions; thus, they can
be executed using service-oriented architectures and adapted to satisfy the requirements
of the actual environment.

Activities in service-oriented architectures. In this work, we are mainly interested
in the application of activities in service-oriented architectures. Specifically, activity dec-
larations and corresponding type definitions enable HPSs by mapping (human) activities
onto Web services.

Notice, Web services can be used in activities, for example, “send instant message” using
an instant messaging service, or as standardized interfaces — standards such as WSDL,
SOAP, WS-Addressing1 — to offer human capabilities as HPSs. Not activities are provided
by humans; only HPSs using Web services technology. HPS (interface) descriptions should
not be confused with an API definition to access and manipulate a human activity, for
example, an activity management service. HPS descriptions are based on declarations of
activities. Thus, HPSs are not general purpose definitions of human capabilities.

Activities are shared between users to establish awareness in teams and to coordinate
work among users. HPSs can be shared and (re)used by users to publish their capabilities
as services; for example, on the public Web. An HPS is defined by associating a user’s
profile to an HPS description, which we call a personal service. In this work, we do not
define precise ontologies to depict, or categorize, different HPSs. We employ a light-weight
tagging approach allowing users to associate metadata to HPSs. Such tags are used in the
discovery of services.

3.4 HPS Interaction Model

The use of Web services technology to enable human interactions in open environments
offers many interesting opportunities such as discovery of HPSs in dynamic collaborations.
However, most Web services-related standards and toolkits have been designed to satisfy
the requirements of enterprise-grade applications. Such applications demand for reliability,
security, and the consistent (transactional) execution of business processes.

The goal of this work differs with respect to such application scenarios. We focus on ad-
hoc collaboration scenarios, which typically require flexible execution of human activities,
and opportunistic compositions of human and software services. Therefore, we propose a
light-weight activity model comprised of the essential concepts enabling humans to manage

1http://schemas.xmlsoap.org/ws/2004/08/addressing

Chapter 3: Interaction Models 24

their interactions in service-oriented environments. Before doing so, we need to elaborate
on the different types of interactions in mixed systems.

3.4.1 Types of Interactions

In our previous use case discussions we emphasized the role of activity-centric collaboration
in SOA. Here we focus on the different types of interactions maintaining the collaboration
setting as introduced in Sec. 3.3.1. In particular, we assume a scenario as illustrated in our
automatic discovery use case, i.e., a user provides an HPS without being aware in which
activity structure the HPS is used. As depicted in Fig. 3.2, we extended the collaboration
scenario by introducing a set of human and software services (the cloud below the shared
activity instance). Furthermore, User A and User B have toolboxes, which they can use to
establish a mapping between activities and services. In other words, a service is used to
work on activity instances at run-time. Indeed, a service is usually defined by Web services
professionals using an XML-based description language (e.g., WSDL). Thus, an activity
declaration also encompasses an (user) interface representation so users can interact with
services. One can think of such interface representations as forms or widgets allowing users
to specify the (input) parameters of a service request issued by the user and to view the
corresponding response (output) of that request. The following discussion are based on
(Schall, Gombotz, and Dustdar 2006).

DEFG H
DEFG IJKL MNNOPNQ

RKL MNNOPNQ DEFG STKL UVW MNNOPNQX YZZO[\] L\ _̂ [̀ \
ab
UcdYe Ye] WNfMgY^\W\ _̂ [̀ \Lah aiaj

WkY^\] Y M̀[_[Ml[eLMYe`\L

X [eM\^Y M̀[NeL

ai
abai

TKL Y M̀[_[M[\L
aj

Figure 3.2: Types of interactions in mixed systems.

Chapter 3: Interaction Models 25

Let us now define the different types of human and software service interactions in
mixed systems (with reference to Fig. 3.2).

Human interactions using software services. People can use Web services to work
on their activities. User A, for example, uses S3 to work on specific activities. Prior to
working on a certain type of activity, User A associates S3 with an activity declaration
(illustrated as A’s toolbox). Similarly, User B can create his own activity definitions for
S1 and S3. Such compositions are an activity-based mashup of services defined by the
user. Mashups allow users to combine data and application logic from different (existing)
Web applications or services. The focus of these compositions is to create solutions — for
example, B uses his toolbox to create a complex activity composed of S1 and S3 — in ad-
hoc and semi-structured collaborations. However, mashups are not only used to create local
applications, for example, applications used within organizations; mashups have already
been applied to create global services. For example, research scientists scattered around
the globe weaved data together from different sources to show the geographic distribution
of ant species by using map services (Butler 2006). From the technological point of view,
Maximilien et al. (2008) defined mashups as applications allowing users to solve situational
problems.

In our work, mashups are loosely structured compositions of services that are controlled
by interactions between users and services. As an example, User A works on the top-most
activity instance, which is connected to B’s activity (a child-activity). Both A and B work
on shared activity instances using a set of services — applied services are S1 and S3.

Service interactions initiated towards humans. Such scenarios include notifica-
tions and information “pushed” towards the user. In Fig. 3.2, S1 notifies User B about
events with respect to the shared (activity-based) collaboration structure.

As an example scenario, an intelligent meeting scheduling service has been implemented
within the inContext project. The scheduling service is composed of a set of collabora-
tion services. The selection of participants, suggested physical location of the meeting,
and relevant documents are recommended by a relevance ranking service; thereby helping
users to plan and organize meetings. Based on the performed activities, deadlines, or other
context-information such as involvement of users and their roles in interactions, notifica-
tions are sent by using communication services, for example, email, instant messaging, or
SMS. The selection of the most suitable communication service is influenced by the user’s
current context and preferences. For example, users may be busy or only available in urgent
matters. Interaction rules are used to express user preferences as event-condition-action
patterns.

Interactions between software services. Such interaction scenarios are found in
compositions of software services. For example, S1 is a composed service using S2 and S3
to realize its features. For example, see (Alonso et al. 2003). The interesting aspect in
this interaction scenario is that S3 depends on S4 (S3 requests input from S4; depicted as
the arrow going from S3 to S4). However, S1 may not be aware of this dependency. Thus,
it is important to account for this dependency when negotiation of the expected QoS-level
(service-level-agreement) between S1 and S3 takes place.

Chapter 3: Interaction Models 26

Human interactions as part of (software) service compositions. Many business
processes require human input as part of their regular execution. We briefly highlighted
such interaction scenarios and the role of B4P in Sec. 2. In B4P, tasks are used to interface
with people.

When the BPEL engine reaches an (people) activity, a People Query (for example, as
previously depicted in Fig. 2.1) is used to retrieve a set of people, which are selected from
an organizational directory to work on tasks (Leymann 2006, Section 7). The result of those
tasks is passed back to the BPEL engine and the business process continues its execution.
Typically, a “global” view is assumed and therefore interactions between various human
and software services are modeled at design time using, for example, B4P standards.

Human interactions using HPSs. The novel concept presented in this work is
based on the idea that humans can specify their capabilities as Web services. The notion
of activity-centric collaboration attempts to tie into the compositional nature of the Web
by providing the fundamental concepts to structure and compose activities in a hierarchical
manner. User C, for example, created the service S4 (see C’s HPS toolbox), which can
be used by other (software) services. However, as mentioned before, C may not be aware
of the fact that the HPS S4 is used in a composition of a set of services. Here User C’s
activity instances are depicted in a private activity workspace. User A and User B have
created mappings to software services S1 and S3. Also, S4 can be used by A and B to
work on their shared activity instances enabling a “consulting service” to be integrated
into existing collaboration structures.

While such compositions of activities and services are user-driven, business processes —
as mentioned in the previous interaction scenario — perhaps require a detailed definition of
tasks, notifications, and roles in advance. For example, in B4P a process designer usually
creates a model so that BPEL engines can interface with humans.

3.4.2 Conceptual Model

Previously, we discussed various interaction scenarios in a service-oriented collaboration
environment. We motivated the need for activities and the role of activities in SOA. Ac-
tivities are used for different purposes. On the one hand, people use activities to structure
collaborations in a flexible manner. On the other hand, activities enable users to define
HPSs. We now turn to the basic activity model comprised of the key concepts enabling the
use of HPS in various interaction scenarios. As stated before, interactions may take place
between humans (using HPSs) or between (software) services and humans. Both scenarios
are enabled by using Web services technology.

However, complex flows spanning compositions of multiple HPSs and software services
are not the focus of this work. Thus, the presented activity model depicts the most
important elements to support basic interaction scenarios. A detailed description of various
resources, for example, HPS WSDL mappings, will follow at a later point when we define
the HPS-design process.

Chapter 3: Interaction Models 27

Here we discuss the activity-centric collaboration models. In Fig. 3.3, we show the
basic model allowing users to create HPSs. Notice, the diamond-shaped UML symbol
is a relation to link three concepts. These relations are called n-ary relations. In UML
class diagrams, diamond-shaped symbols are not used to depict activity instances. The
description of the model concepts is given in the following.mnopqrsntumvtwxyntznosr{|}{p~t��|n

�r}{�xs} v~}nrxs}{p~�p�
���s}{� {}� v~o}x~sn�s}{p~twxyn

���v~}nr�xsntwxyn �����
��

�n~nr{smnopqrsnt�x�o
����pr}

� � �����
�

�
�s}{�{}�zns�xrx}{p~tumvtwxyntznosr{|} {p~t�x�o

��

����rpq|tznosr{|}{p~uonr
�rp�{�ntumv �� �s}{p~v~o}x~sn��

�}}xs�yn~}��
�p~}rp��s}{p~� � ����

Figure 3.3: Overview of HPS activity model.

• An ActivityDeclaration defines the name and description of an activity, URI, and
a set of tags that can be applied to the declaration. Tags are applied by users to
associate keywords to declarations. The same tag is perhaps used to depict different
activities. Some tags might simply be misplaced or not meaningful. Thus, at a later
point we will discuss methods to deal with misplaced tags.

• The HPSInterface relates to an ActivityDeclaration. Name in the HPSInterface

depicts the HPSs name, for example, a review service. The HPSInterface (descrip-
tion) is very similar to the description of “conventional” software services. Essentially,
we perform a simple mapping to depict declarations as Web service descriptions (e.g.,
using WSDL).

• An HPSGroup defines the set of people providing a certain type of service established
as the relation between User, HPSInterface, and HPSGroup. As mentioned before,
an HPS requester can be a human seeking expert opinion or a composed software
service requiring human input. Since many users may provide the same type of
service, a ranking procedure must be used to select the best available HPS.

Chapter 3: Interaction Models 28

We term the relation between User and HPSInterface personal service, which is
technically an instance of an HPS. Each user has a Profile identifying people, storing
user preferences, and so forth.

• A Resource is used for different purposes. As mentioned before, HPSInterfaces

are depicted using languages such as WSDL. Thus, the interface is an XML docu-
ment that can be modified by using resource identifiers (URIs) to retrieve or update
resources. Other resources are type definitions, for example, activity types and/or
parts of complex data types.

Let us briefly discuss why type definitions, or typed messages, are useful. We can use
HPS in ad-hoc collaborations by exchanging messages depicted as XML documents.
Such ad-hoc interactions are in a manner similar to email-based collaborations. A
user can compose a message, attach documents, and send those messages to other
users. An email message contains header information, which is parsed and interpreted
by an email service; however, the message body is usually composed as plain-text
content. It is difficult to route and interpret such messages in a service-oriented
environment because the actual content of a message does not have syntactic meaning
for software services. Thus, email-based interactions — in the context of HPS — are
used to trigger, for example, one-way notifications (e.g., email messages automatically
generated by a service).

• A GenericResource is a special type of Resource, which we use to wrap Artifacts.
Artifacts include collaboration documents and all sorts of files that are used and
created during collaborations. The GenericResource defines metadata associated
with Artifacts.

• The Action concept is used to interact with HPSs in the scope of an activity. The
HPSInterface is composed of a set of Actions. Notice, there are different action
concepts in our model. On the one hand, Action, as discussed here, is defined by
the user in the scope of an HPSInterface. The definition of an Action is done at
design time.

• The HPSPort depicts the technical — in a Web services sense — realization of an
HPS interface. (The details are not needed at this point and will be discussed in
the HPS framework section.) The HPSPort relates to a set of resources (e.g., typed
messages), which are used in certain Actions.

The previous concepts were introduced as models to depict and design HPSs. The
following concepts describe activity and HPS-centric interactions at run-time.

• An ActivityInstance represents an actual work item (Dustdar 2004). In particular,
an activity can be performed many times, which are called instances of the activ-
ity. Each instance corresponds to a declaration. Instances represent the context of
interactions.

Chapter 3: Interaction Models 29

• An ActionInstance is connected to an ActivityInstance. Specifically, each
ActionInstance is defined by an Action. An Attachment is something generic
to associate XML documents, for example, XML messages that are exchanged be-
tween HPSs, and other content-types with an ActionInstance. Attachments usually
convey typed messages that are defined in an HPSInterface and Resources.

Both ControlAction and ActionInstance are used at run-time. A ControlAction,
however, depicts common action types in human collaboration. In other words,
ControlActions include coordination, communication, and execution actions that
are associated with instances of activities. However, such actions are not part of an
HPSInterface. A ControlAction is always used between two or more people to, for
example, coordinate the execution of activities; whereas an ActionInstance may be
the result of interactions between human and software services.

Each action, ControlAction as well as ActionInstance, is logged to keep a his-
tory of interactions. The InteractionLog captures traces of interactions (activities
and their actions) performed in collaborations. Also, interactions between software
services are logged to maintain a history of the collaboration context.

The next model, shown in Fig. 3.4, depicts an excerpt of the inContext activity model.
It has been presented in a similar form in (Schall et al. 2008, Figure 3) and (Dorn et al.
2008, Figure 5). Our use cases (Sec. 3.3.1) described collaboration scenarios where people
can organize their work as structured activities. In particular, activities can be hierarchi-
cally arranged to reflect “fine-grained” steps in collaborations.

�������� �������� ����������� ���¡���
¢££¤¢££¥¦§¨©ª« ¬®¯°¥¥¨©¯§«©±²³

´������¡���µ���¶¶ · ¶ ¸������������¹�¡�¹º»��µ��¼½�¹�¾¾���¼¡���µ���¹¿��� ���
¸� µ�������� º»��µ����¸���¼�������

Figure 3.4: Excerpt of hierarchical activity model.

Activities can be structured as hierarchies using parent and child relations. Child
activities specify the details with respect to the (sub-)steps in collaborations, for example,
sub-activities in the scope of a parent activity. This allows for the refinement of collab-
oration structures as the demand for a new set of activities (e.g., performed by different
people and services) increases. The need for the dynamic refinement of collaboration struc-
tures is especially required when people have limited experience (the history of performed

Chapter 3: Interaction Models 30

activities) with respect to a given objective or goal. Furthermore, some people tend to
underestimate the scale and complexity of an activity; thus the hierarchical model enables
the segmentation of activities into sub-activities, which can be, for example, delegated to
other people.

The basic HPS activity model (Fig. 3.3) did not define any notion of activity hierarchies
because, currently, we do not support the mapping of activity hierarchies onto HPSs.
For example, hierarchically structured activities in activity declarations would require a
mapping of such hierarchies into a set of Actions. The relatedTo property provides
a mechanism to link to any other activity. Typically, multiple members work on the
same activity with different roles. The InvolvementRole identifies the creator, observer,
contributor, responsible, and supervisor of an activity. Involved workers apply a set of
GenericResources to perform their work. As mentioned before, objects such as documents
are represented as a shared Artifact. Here we apply the concept of an ControlAction,
as introduced in (Dustdar 2004), to capture activity-change events, interactions between
members, and work carried out. Actions can trigger events describing the progress of
activities.

3.4.3 Task Model

In most collaborations, activities need to be controlled by capturing temporal aspects such
as progress of activities and monitoring of deadlines. In this section, we define an extended
task model, which can be used in open collaboration scenarios; for example, in HPS-based
collaborations on the Web. Figure 3.5 shows task-related concepts and their relation to
previously introduced concepts.

ÀÁÁÂ
ÃÃÀÁÁÂ

ÃÀÁÁÂ
Ã ÀÁÁÂ

ÄÅÆÇÈÉÊ ÉÈË ÌÍÎÄÏÐÉÅÊÄÏÊÐÑ
ÒÐÏÌÈÐÍÓÄÒÐÍÈÒÉÇÈÐÑ ÌÔÔÏÉÐÑ

ÕÖ×ØÕÙÚÛÜÚÝÚÕÞßàÝÚÕáÜâãÜâÚä åÛæç
ÕÙÚÛÚàÕáÜãèÜàææÕÞßÜÛÚâãéêßëÛéåÛæç

Ã ÀÁÁÂ ÝìÚâí âÚä ØéæÚÛéìà ÀÁÁÂÀÁÁÃ ÝìÚâí âÚäÞàìîÛÜÛÚâãé

ÕïÛëàÕåäðàÕåÛèæåÛæçÞàæìÜâðÚâãé
ÕåäðàÕÞàæìÜâðÚâãéáàãðîàñÜãßð ×àòßâÜàëàéÚ

óãìÛÚâãé
ïãÚâôâìÛÚâãé õö

×àæãßÜìà

Figure 3.5: Overview task model.

Chapter 3: Interaction Models 31

Controlling the execution of activities. The most fundamental aspect is to con-
trol the execution of activities by associating a HumanTask with an ActivityInstance.
Multiple tasks can be created because activity instances can be divided into sub-activities.
A HumanTask is derived from a generic Task defining basic task-properties — StartAt,
DueAt, and, Priority. If tasks are used in HPS-based collaborations, requesters are aware
of the state of a given interaction (e.g., accepted, inprogress, or completed). Based on these
execution parameters, for example, the properties Priority and DueAt, Notifications
can be sent to a set of people. Examples include, notify a set of people (PeopleGroup)
about the status of an activity, escalate deviations in the execution of activities, or notify
the supervisor of an activity when the activity (or one of its sub-activities) has been com-
pleted. This model is well aligned with the WS-HT specification. Moreover, functional
properties can be associated with ActivityDeclarations, depicted as Requirement in
Fig. 3.5; for example, role models controlling whether users are allowed to work on ac-
tivities. Again, a generic PeopleGroup is used which is populated with a set of people
depending on specified requirement. Notice, requirements typically do not change over
time. For example, if we use a role model to control the set of people who can work on an
activity, we follow a top-down view — modeling how an activity should be performed. In
contrast, constraints change over time depending on the run-time context. Constraint are,
for example, the minimum set of skills or level of expertise a potential worker must have.
Indeed, skills and level of expertise change over time depending on performed activities.

Creating announcements. The idea of the HPS model is not only to support enter-
prise collaboration scenarios but also Web-based collaborations. In enterprises, a corporate
directory usually holds all information regarding employees, their role in the company, and
additional contact information, which can be accessed to populate a PeopleGroup. How-
ever, these announcements are well applicable to enterprise collaborations as well because
in global corporations it is impossible to maintain expertise, roles, interests of employees
in a central directory.

Here we define two scenarios showing the usefulness of announcements:

• We can imagine a TaskDescription as an announcement to express the need for a set
of HPSs to work on tasks. The notion of task descriptions is similar to marketplaces
of work in task-based platforms on the Web, for example, Amazon’s Mechanical Turk
where Human Intelligence Tasks (HITs) are used for this purpose. See the relation
between TaskDescription, Resource, and PeopleGroup in Fig. 3.5. A Resource

describes an HPS as previously discussed in the basic HPS activity model.

Task descriptions comprise constraints such as task availability information (begin-
ning and expiration time of the task) and the number of available task instances
(how many of those tasks can be claimed by users). In this case, it is clear that a
particular type of HPS has to be used in the context of a task.

• The relation between ActivityDeclaration, TaskDescription, and Location de-
picts the need for a service — potentially in a specific location area. Therefore,

Chapter 3: Interaction Models 32

these kind of announcements are opportunities for users to create new HPSs or to
associate an existing HPS with a description which has not been considered before.
Such announcements are different with respect to the previous case (marketplace
example) because ActivityDeclaration and TaskDescription do not demand for
a particular type of HPS.

The next step is to introduce a task execution model defining the possible task states.
The task execution model is depicted by Fig. 3.6. It is relevant for both cases, announce-
ments of task and the control of activity executions. Based on this execution model, we
will derive task-related metrics capturing the dynamic nature of HPS-based collaborations
— these metrics will be defined when we introduce the HPS framework.÷øùúûùüûý þûùúÿý� ÷��ý��ý�

÷ü���ý� ��ú�úù�ý�
÷��úøù�ý�
�ú�ú	
ý�

�ùúûý�
÷����øý�
÷		ú��ý���ùøùúûùüûý

�ù�ý ��ù�	ú�ú���ù	� �ù�ý

ù������ý � ú�
��ù�
�ý�ý�� �ûùúÿ�ûùúÿù		ú�� �ý�ý�� ù		ú��ÿý�� ù��ý�� �ûùúÿù��ý�� ù		ú��ÿý��

�ú	�ù�� ùü��� 	�ù�� ����ý		ú��
��ÿ�ûý�ýù��ý�� �ý	���	ý

���øú�ý ú����
�ýø��ý �� �ü	� ûý�ý�ý�ý�� �ý	���	ý

Figure 3.6: Task execution model.

• Claiming Tasks: Announcements allow requesters to denote the availability of work
items (i.e., activities) without explicitly selecting a particular HPS. Announcement
can be generated if there is not any matching HPS available; or if the demanded HPS
is currently not provided by users. Initially, a task is set to Available and becomes
Unavailable when the announcement expires. Based on announcements, tasks can
be Claimed, Accepted or rejected by requesters (becoming Available again).

• Task Assignments: A task can be Assigned to HPSs without issuing announcements,
specifically when software services generate tasks that need to be processed based on,
for example, deadlines. An Assigned task may go into the Accepted state, otherwise

Chapter 3: Interaction Models 33

to Aborted when the assignment procedure times out. For example, the user is not
responding to an assignment request.

The task state changes from Accepted to Initiated when an action is performed in
the context of an activity (e.g., sending a request to an HPS). The task changes its state
to Aborted if the initiation fails (Initiated state). The state Activated indicates that
the request is processed, followed by the Finished state or Failed if the HPS was unable
to deliver the desired output — the expected information, which can be validated by, for
example, a (human) requester reviewing the output. A task is successful if the output of
an HPS is Approved by the requester. As mentioned before, we will define metrics based
on the presented model as well as a task rewarding model.

3.4.4 Calling an HPS

The next step in this chapter is to illustrate basic interactions in HPS-enabled environ-
ments. That is, using Web services to interact with humans. We use the basic activity
model — depicted in Fig. 3.3 — to represent human activities as HPSs. In particular, an
ActivityInstance represents an activity processed by humans.

In today’s collaboration environments, we observe a shift towards “pervasive interac-
tions”. A system supporting HPSs must give users the flexibility to deploy user-defined
services on a variety of devices. For example, a software stack based on Web services
standards to enable HPSs may be deployed on devices, which are not always connected to
fixed (wired) or mobile (wireless) networks. Moreover, due to the pervasiveness of services,
we can also imagine that a software stack used for HPSs is deployed on — or hosted by —
consumer hardware such as standard PCs. In many cases, such devices cannot be accessed
from the public Web. To address these challenges, we introduce a) interaction (run-time)
models suitable for HPSs and b) a middleware allowing various types of messages to be
managed. In this section we show the run-time interaction model.

In Web service environments, a client sends a request to a service and receives a response
from either the requested service, or some other service endpoint (see WS-Addressing). In
many Web services-based applications, simple service interaction patterns are sufficient.
For example, a requester invokes a Web service operation and receives the corresponding
response in a synchronous manner. Asynchronous interactions are achieved by, for example,
providing callback destinations. The support of asynchronous (interaction) patterns is
mandatory in HPS.

In HPS, we need to define a human-centered terminology. If a user decides to offer a ser-
vice, we speak of a personal service. The same service (type) can be provided by multiple
users; available as a set of registered services. One can imagine a Request and corre-
sponding Response as XML documents that are used in collaborations (e.g., input/output
of HPSs). A request is a document providing the input information to process a human
activity. Actions associate such documents with activities. Recall, these documents are

Chapter 3: Interaction Models 34

described as declarations which are detailed in Fig. 3.3. Similarly, a response is the output
of an activity.

���������������
����

������� !"� ��
�#�$�"�

%��"�������
�#�$�"�

& #�'�"�&

�"�$���
�(�"�

$�)� ��� "������
���#*!������������

�"��#��"�������
�#�$�"�+

,-./-. /-0 ,-0 ,-1 ,-2
,-3-4

,-5
,-3-446+ 67

6/
6,

Figure 3.7: Example of HPS interaction as transactional model.

Figure 3.7 depicts the run-time model as a transactional diagram. The steps 1-3 show
the normal execution of a request. Steps prefixed with a capital C denote the cancellation
of a request.

1. A request is sent towards the HPS middleware platform, which offers an interface
accepting different types of messages. Thereby, interactions between requesters and
HPSs take place in an asynchronous manner by routing messages to the appropriate
destination. Routing of messages is based on the geographic location of users, the
preferred device, and the (logical) location of the deployed software stack enabling
Web services-based interactions.

2. (a) Every request is then passed through a validation phase (apply rules) in which
an authorization check is performed. The user can specify white/black lists,
routing, and interaction rules. White/black lists are used to, for example, pre-
vent certain users (or requesters in general) from interacting with HPSs.

(b) Requests can be delivered to the corresponding HPS immediately, or through
an offline interaction as illustrated in Figure 3.7 (save).

Chapter 3: Interaction Models 35

3. (a) To start working on a request, users retrieve requests by different means (i.e.,
push or pull based retrieval — get requests).

(b) Users start working in requests using their preferred devices (process). Also, a
hosted solution (i.e., a Web portal) is provided by the HPS framework enabling
Web-based access to the user’s “message inbox”.

(c) Then, a request is completed (complete) when the response (document) is ready
for delivery.

(d) The response is delivered to the middleware platform (respond). The requester
has different options to obtain the response, which also depend on, for example,
whether interaction control tasks are associated with a particular request.

(e) i. If a task is used to share the state of a request (i.e., task state finished),
status updates trigger notifications (notify) to inform the requester.

ii. Without using control tasks, the exchange of message takes place in a man-
ner similar to sharing a common view on a set of resources. The response is
published to a collection of resources which are shared with the requester.
The user is doing so by updating the status of a request (update status).

(f) Finally, the requester can retrieve the response (provide response).

Cancellation of requests:

• C1 Requests can be discarded automatically based on predefined rules and filters
(e.g., white/black lists).

• C2 Pending requests, which HPSs have not yet retrieved for processing, can be with-
drawn by the requester.

• C3 A user (offering an HPS) can inspect and discard a request.

• C4 Both, the requester and user (HPS) can cancel a request being processed (abort).

Chapter 3: Interaction Models 36

3.4.5 Capturing Human and Service Interactions

A fundamental role in this thesis plays the analysis of human as well as service interactions.
Mining of interactions is not only important in ad-hoc collaboration scenarios, but also to
monitor deviations in formalized processes. The ProM framework, for example, is a process
mining tool supporting the analysis of event logs in workflow management system, e.g.,
see (van Dongen et al. 2005), (van Dongen and van der Aalst 2005). Using process mining
tools, we better understand if changes in the process model are necessary (Günther et al.
2008). Dustdar et al. (2005) introduced process mining in the context of ad-hoc flows in
dynamic environments. Here we focus on logs captured in interactions between humans
in SOA and email-based communications. Typically, a single source (i.e., service) cannot
capture all relevant logs and collaboration data. In this work, interaction logs are obtained
from email and instant messaging (IM) based interactions; and collaboration services such
as a document portal.

3.4.5.1 Email Mining

Although services play are increasingly important in collaboration, email will remain one
of the core communication means in the foreseeable future. Thus, we extract human
interactions from email repositories. Emails contain the following significant information:
(i) sender and receivers, the participants in interactions; (ii) subject, enabling the extraction
of contextual information, for example, in which context a particular email message was
exchanged; (iii) reply-to, to identify message threads; and (iv) email attachments, the
applied collaboration resources and artifacts.

3.4.5.2 Raw Logs from Human-Service Interactions

Figure 3.8 shows a fragment of a logged human-service interaction obtained from a shared-
workspace service.

guid 11:20:17 server incontext wp5/forms/allitems.aspx userID Mozilla/4.0

guid 11:20:23 server incontext wp5/forms/upload.aspx userID Mozilla/4.0

guid 11:21:30 server incontext wp5/t5.3 impl/design_12.doc userID Mozilla/4.0

guid 11:21:30 server incontext wp5/forms/allitems.aspx userID Mozilla/4.0

Figure 3.8: Example log from user interactions captured from share-workspace service.

Each line in the log file contains: (i) a unique id (guid), (ii) a timestamp, (iii) the
server identifier, (iv) the top-level site, (v) the resource on the server, (vi) the user id,
and additional information from the requesting client such as browser type. The given
example shows a document upload action, denoted by the upload identifier. Based on
these raw service logs, we can automatically establish correlations between upload actions,
documents that are used in collaborations, and involved members, for example, people that
are notified via email about the availability of a specific document in a shared document
workspace (assuming that email messages and service logs can be correlated).

Chapter 3: Interaction Models 37

3.4.5.3 Activity-Event Logs

An activity management service is a representative source for notifications and activity-
change events. Together with email and raw service logs, these sources cover a significant
spectrum of coordinative and communicative work aspects in most teams (Dorn et al.
2008). Listing 3.1 shows an example of an activity-change event.

� �

<ControlAct ion xmlns=” ht tp : // in−context . eu/ ac t i on ” x s i : t y p e=”Coordinat ion ”
URI=”Coordinat ion#6564” Des c r i b e sAc t i v i t y=” Act iv i ty#222”>

<From>ht tp : // in−context . eu/User/User1</From>

<CoordinationType>Delegat ion</CoordinationType>
<To>ht tp : // in−context . eu/User/User2</To>

</ControlAct ion>
� �

Listing 3.1: Example action event log captured from activity service.

Based on human and service interaction logs, we can establish a graph. Figure 3.9 shows
an example instance of a bipartite interaction graph that is based on user interactions,
activities, and logs of above mentioned events. (See also Guimerà et al. (2007) for bipartite
networks.) Diamond-shaped nodes represent activity instances. The line-thickness of each
edge is based on the action count.

Figure 3.9: Bipartite graph capturing activities, user involvement, and control actions.

The important property of this graph representation is that interactions are always
context-dependent. An alternative way of representing context-dependent interaction
graphs is to tag interaction links with context identifiers. As mentioned before, context in-
formation can be extracted and combined from various sources to establish the interaction
links between users.

Chapter 3: Interaction Models 38

3.4.6 Summary of Interaction Models

To summarize the presented interaction models, there are different degrees of formalism
in HPS-based collaborations. The formalism needed to describe interactions — in terms
of creating explicit process models to depict collaboration flows — is (i) a function of
the requirements and (ii) is constraint by the degree of complexity. Complexity is related
to the amount of information needed to describe the system (Kolmogorov 1983). Here
the collaboration spectrum ranges from ad-hoc (informal) to formalized process models
(Dustdar 2004, Schall et al. 2008b). In Table 3.1, we overview the degrees of formalism
(Schall, Truong, and Dustdar 2008a).

Ad-hoc Interactions take place in an ad-hoc manner if collaboration flows are
not modeled in advance. As an example, interactions between two
actors — a requester of an HPS and the user offering the service —
take place by exchanging a set of XML documents and messages.

State-awareness Tasks are used control the status and lifecycle of interactions. Certain
constraints such as start-time (the latest point in time when a user has
to start the execution of an activity) or deadlines (latest completion
time of a given activity) can be associated with interactions.

Process-centric A process is usually established to automate reoccurring activities;
enforcing a certain flow of interactions. In collaboration systems, a
process describes steps in a workflow composed of a set of activities
to coordinate people and software services.

Table 3.1: Overview degrees of formalism to control interactions and collaborations.

For example, if the requirement is to create a model for stable, well-defined, business
processes; we need to apply a process-centric systems perspective. However, if we assume
an open-world of human and software services, we need to be aware of the constrains
in terms of complexity related to the information needed to describe the mixed system.
At this stage, the focus of our work is to enable HPS-based interaction scenarios with
the focus on ad-hoc and state-aware collaborations. For users, the only requirement is to
define human activities (at design time), which can be mapped onto specific HPSs. At run-
time, a request to perform certain activities is realized by using Web services technology.
In contrast to existing workflow systems, tasks or formalized process models are optional
depending on the desired application or composition scenario.

Chapter 4

Global Importance Ranking

4.1 Abstract

In HPS, humans can interact with one another by using Web services. Moreover, com-
positions of services require in many cases the interplay of human and software services.
Regardless of the interaction scenario, the HPS requester or expert seeker must be able to
find the right person based on a set of skills and the expertise level of a user. We hypoth-
esize that link-analysis in human interaction networks is a suitable method to determine
the expertise of users.

We introduce a link intensity-based ranking model to recommend relevant users in
collaborations. In open and dynamic environments on the Web, it is important to determine
expertise and skills of users in an automated manner. Additionally, the ranking model must
consider properties such as availability, activity level, and expected informedness of users.
In this section, we present DSARank to estimate the relative importance of users based
on the concept of eigenvector centrality in networks. We test the ranking model in real
human interaction networks including email conversations and telephone communications
in mobile phone networks. The results show that DSARank is better suited to calculate
the importance of users in collaboration networks than traditional degree-based methods.

4.2 Preliminaries

Social scientists and physicists have been interested in the structural properties of networks
for many years. A large number of centrality metrics have been proposed to measure the
structural importance of nodes in networks. In social sciences, for example, such centrality
metrics are used to study the role and importance of different actors in social networks
(Wasserman and Faust 1994). However, it has been recognized that networks evolve over
time (Barabasi and Albert 1999,Watts 1999). A lot of recent research in complex systems

39

Chapter 4: Global Importance Ranking 40

views networks as dynamical systems comprising nodes that follow their own rules of
behavior, and the edges between nodes represent dynamically coupled information flows
(Newman, Barabasi, and Watts 2006, Chapter 1 (Networks as dynamical systems)). Before
discussing our importance ranking model, we need to fix some terminology related to
interaction models.

4.2.1 Basic Terminology

The term interaction model has different semantics depending on the context of the dis-
cussion.

Technical models describe the set of rules governing the arrangement and intercon-
nections of elements. Interaction rules in a technical sense are, for example, message
exchange patterns such as request/response — if the requester initiates a message, the
provider responds with a message or fault.

Dynamical systems exhibit rules or models of cooperation — how we expect interac-
tions to take place. As an example, Hamilton’s rule, “I will jump into the river to save two
brothers or eight cousins,” is an interaction rule to depict the probability that cooperation
is favored between related actors (Nowak 2006).

In this chapter we focus on interaction models in dynamical systems to answer questions
such as — who is the best informed user in a network?

Let us start with the definition of some basic concepts. The interaction graph is defined
as G = (V,E), V = {v1, v2, . . . , vn} the set of vertices and E = {e1, e2, . . . , en} the set of
directed edges between vertices. Given an instance of G, we create a row-oriented adjacency
matrix of that interaction graph

Ai,j =

{

1 , if i is connected to j

0 , otherwise
(4.1)

Typically, an edge has a weight, which can be calculated by, for example, counting the
number of interactions. Suppose that W is a weighted adjacency matrix whose weights are
positive entries wi,j ≥ 0 satisfying

• wi,j > 0, if a directed edge connects i to j

• wi,j = 0, if there is no edge between i and j

In Fig. 4.1 we show a) an example interaction graph and b) the corresponding weighted
adjacency matrix W .

Chapter 4: Global Importance Ranking 41

W =

0 w1,2 w1,3 0 0 0
0 0 0 w2,4 0 0
0 0 0 0 w3,5 0
0 0 0 0 w45 w4,6

0 0 0 w5,4 0 w5,6

0 0 0 0 0 0

Figure 4.1: Directed interaction graph (left) and matrix representation (right).

4.2.2 Notation

In the following, we will present graph-based ranking models that are inspired by PageRank
concepts. While our approach is not limited to interactions based on human collaboration
networks — for example, our ranking model can be used to analyze interactions in service
networks — we focus mainly on human-based interactions. In this case, G is composed of
vertices occupied by the set U = {u1, u2, . . . , un} of users. Throughout this work, we depict
a weighted edge as the interaction link ℓ. Depending on the context of the discussion, we
define whether ℓ(u) is an out- or incoming interaction link. Furthermore, by following
the PageRank model, we create a transpose matrix (that is, a column-oriented matrix)
based on the row-oriented description of W . Let us define the column-stochastic transition
matrix I

Ij,i = probability of transitioning from node i to node j. (4.2)

Column-stochastic means that the sum of all column elements equals 1. Table 4.1 gives
an overview of operators and descriptions of basic metrics in interaction graphs. An edge
e ∈ E points from v to u, if e ∈ outlinks(v) ∩ inlinks(u). In other words, ℓ denotes an
interaction link between users, which may comprise many interactions that are aggregated
into a single link.

Operator Description

inlinks(u) Denotes the set of u’s inbound interaction links. For example, v ∈
inlinks(u) has initiated an interaction towards u. The set cardinality
|inlinks(u)| is given as indegree(u).

outlinks(u) All interactions initiated by u towards other users are denoted by the set
outlinks(u) and similarly, outdegree(u) is the number of links in the
set.

Table 4.1: Basic graph metrics and operators.

Chapter 4: Global Importance Ranking 42

4.3 Human Interaction Networks

We study link-based ranking models using two types of interaction networks. On the one
hand, we experiment with different ranking algorithms based on an interaction network,
which we establish based on cell phone communications between users in a mobile phone
network. The cardinality in human interactions is one-to-one because the used dataset
does not comprise conference calls among users.

Figure 4.2: Example interaction graph of point-to-point human communications in mobile
phone network.

The clustering coefficient is a measure to determine whether a graph is a small-world
network (Watts and Strogatz 1998). The coefficient indicates whether the graph, or a
neighborhood of the graph, is well connected or not. The shown network exhibits a low
clustering coefficient of 0.2 due to peripheral users, which are not well connected.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Indegree

N

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Outdegree

N

Figure 4.3: Degree distributions of human communications in cellular network: (a) indegree
and (b) outdegree distribution of telephone calls in mobile phone network. Vertical axis N
(counterclockwise rotation) shows the cumulative number of users.

Chapter 4: Global Importance Ranking 43

Analyzing human interactions in mobile phone networks is well suited for our ranking
approach as we can measure characteristics such as intensities of interactions between
two users considering underlying properties such as the duration of calls. We use the
“Reality Mining” dataset1, which was made available by the MIT Media Lab, see (Eagle
and Pentland 2006).

Figure 4.2 shows an example graph captured in April 2005. The dataset comprises
communication, proximity, and location information captured at MIT for the academic year
2004-2005. The public database image comprises both participants of the study and non-
participants. Non-participants are users who did not have any logging software installed
on their cell phones, but whose interactions were captured as incoming/outgoing calls on
participants’ devices. We perform filtering and select users if their degree of incoming links
is greater than 1 (if a user interacts with at least two different users). Partial observations
of interactions limited to the small set of participants explains the low clustering coefficient
in Fig. 4.2. The structure in terms of in- and outdegree distributions is shown in Fig. 4.3.

The second dataset is an email interaction network. Email messages exchanged between
people serve as input to establish the interaction graph. Each interaction is a directed link
between sender and receiver of a message. The cardinality of email-based interactions is
naturally one-to-many as multiple recipients can be specified.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

Indegree

N

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Outdegree

N

Figure 4.4: (a) Indegree and (b) outdegree of human interactions in email conversations.
Vertical axis N (counterclockwise rotation) shows the cumulative number of users.

Figure 4.4 shows in/outdegree distributions of an email interaction graph. Both distri-
butions have a power low tail as it can be observed in many structures and dynamics on
the Web, for example, the structure in human task networks (Yang et al. 2008), the Web
graph (Pandurangan et al. 2006), or the dynamics in human interactions (Barabási 2005).
Figure 4.4 describes the Enron email interaction network2.

1http://reality.media.mit.edu/
2http://bailando.sims.berkeley.edu/enron email.html

Chapter 4: Global Importance Ranking 44

4.4 Link Analysis using PageRank

We propose to determine the importance of users by using link analysis techniques. Let us
first review the PageRank model and an iterative algorithm to compute PageRank scores.
Then, we discuss the application of PageRank in human interaction networks.

4.4.1 PageRank Primer

Using PageRank, u’s importance is influenced by nodes v ∈ inlinks(u) that are in some
manner linked to u. For example, in the Web graph, a link is a hyperlink between Web
pages, whereas in social networks a link might represent a connection in the network. As
an example, the knows property in a FOAF3 profile can be used to create links between
people.

The idea of PageRank is best explained in its original context. A user browsing the
Web (the ”Random Surfer”) navigates through a set of Web pages by selecting one of the
links on a given page. In other words, the random surfer follows a link with probability
α, usually a value between 0.8 - 0.9 according to Page et al. (1998), or with probability
(1−α) teleports to a randomly selected Web page. PageRank in directed graphs is defined
as follows:

PR(u) = α
∑

v∈inlinks(u)

PR(v)

outdegree(v)
+ (1− α)p(u) (4.3)

Symbol Meaning

α The predefined PageRank damping factor (usually a value between 0.8 and
0.9).

~PR The PageRank vector for parameter α.
~p The teleportation distribution vector called personalization vector.

Table 4.2: PageRank and related symbols.

The vector ~PR can be calculated using an iterative algorithm, for example, the Jacobi
iteration as demonstrated in Algorithm 4.1. A simple measure to test whether the algo-

rithm has converged — ~PR
(k)

holding the importance scores obtained in iteration k — is
to look at the error ǫ so that

max|| ~PR(k) − ~PR
(k−1)|| ≤ ǫ

However, in practice, a fixed number of iterations is used and measures such as Kendall’s
τ (a rank correlation coefficient, e.g., see (Berkhin 2005)) to determine whether the ranking

scores obtained in iteration k and (k − 1) will change the position of u within ~PR.

3http://xmlns.com/foaf/spec/

Chapter 4: Global Importance Ranking 45

Algorithm 4.1 Iterative method to compute PageRank scores in interaction graphs.

input: A human interaction graph.
input: Convergence criteria: error ǫ smaller than desired precision.
output: Ranking scores available in vector ~PR.
for each user u ∈ U do

PR(u) = (1− α)p(u)
end for
while not converged do

for each user u ∈ U do
for each user v ∈ inlinks(u) do

w ← getEdgeWeight(v, u)
PR(u)← wPR(v)

end for
PR(u)← αPR(u) + (1− α)p(u)

end for
end while

4.4.2 PageRank in Human Interaction Networks

There are different views on how we can recast PageRank for expertise analysis in human
interaction networks:

1. The first view is closely related to the random surfer model. Discussion forums, for
example, are popular platforms when users require help or advise. Typically, the user
— or expert seeker — creates a description of the problem by posting a question in the
forum. Other users reply to the question with either a) a description of a potential
solution of the given problem or b) a reference to an existing solution description
(e.g., recommending existing postings in the same or some other forum). Hence, the
expert seeker decides to navigate through the set of postings or may choose a random
posting until he finds a helpful solution or aborts his endeavor. Indeed, the very idea
of PageRank is to use citation links as sources for reputation.

2. On the other hand, we can interpret each link between people as a channel to prop-
agate information in a network (Conyon and Muldoon 2006). The strength of a link
limits the flow of information between v and u. For example, v may notify one of its
neighbors u about some news or forward information to a randomly chosen person.

We hypothesize that PageRank is a suitable model for user-importance ranking. To
test this proposal, we calculate PageRank vectors ~PR∆t of all users in a time window ∆t.
Before doing so, we also provide the characteristics of the mobile phone dataset over time,
starting with Figure 4.5 (a) showing the fraction of users active in a given month (period
2004 - 2005). Each link in the interaction graph is established based on phone calls.

Chapter 4: Global Importance Ranking 46

The ranking results, given the model in Equation 4.3, are obtained using Algorithm 4.1
using the following parameters

• Uniform teleportation distribution: p(u) = 1

• Degree based link weights: wv,u = 1/outdegree(v)

In Figure 4.5 (b) we show the difference between the set of users in two consecutive
months as the Jaccard index, which is often used to measure the distance of two sets. It is
defined as jaccard(U1, U2) = |U1\U2|/|U1∪U2|. The Jaccard index is a useful (set) metric
because a high index indicates that many changes happened in the network; in terms of
joining or leaving users. In such cases, we expect ~PRt1 and ~PRt2 to be less correlated.
(The index of the interaction network is shown in Figure 4.5 (b)).

In the same figure, we show the correlation coefficient of PageRank vectors in two
consecutive months. We calculate the Pearson correlation coefficient, which is defined
within the interval [−1, 1], and perform a simple mapping of the interval [0, 1] so we can

show both coefficients on the same scale. We see in Figure 4.5 (b) that the vectors ~PRt1

and ~PRt2 are highly correlated.

In period 8 (February 2005) we see a spike in the interaction network’s Jaccard index,
resulting in lower correlation of ranking scores. As mentioned before, this is an expected
observation since many joining or leaving users introduce a new collaboration (interaction)
setting. For example, “important” people joining the observable network. Overall, we
believe that the PageRank model — applied to human interaction networks — captures
well the importance of users since ranking scores are in general highly correlated in a
relatively stable interaction network.

1 2 3 4 5 6 7 8 9 10 11
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

F
ra

ct
io

n
 N

Cumulative Number
of Users

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

C
o

ef
fi

ci
en

t

Jaccard Index

Correlation

Figure 4.5: (a) The cumulative number of users over time in mobile phone network. (b)
Jaccard distance index of network and correlation of PageRank scores over the entire period
2004 - 2005 using a 1 month time-window to update ranking scores. We index each month
starting 2004-07 as period 1 and ending at 2005-05 denoted as period 11.

Chapter 4: Global Importance Ranking 47

4.5 Towards DSARank

PageRank has been hugely popular in ranking Web pages on the Internet. To date, the
company Google provides one of the most successful search engines. Over the past years
intense research has been done to better understand the PageRank model and optimizations
in computing the rank of Web pages in a large graph of billions of pages. Berkhin (2005),
for example, provided a comprehensive survey on PageRank.

However, while we believe that PageRank fits also well to determine the importance of
users in human interaction networks, our goal of ranking users is motivated by a concrete
application scenario (that is, HPS). Specifically, our aim is to devise a ranking model
that is able to recommend users who can perform tasks or, more generally, participants in
collaborations.

In human interaction networks, we must consider the workload of users in terms of the
set of incoming tasks or requests, and also the intensity and importance of interactions.
Therefore, the goal of our work is different when compared to social network analysis,
which attempts to understand the structure of human interaction networks and the role of
human actors. For example, in social network analysis, one objective is to determine the
prestige of users. In this work, however, importance of a user also means to find the most
relevant user or expert who can assist in solving a problem.

While in the Web graph hyperlinks usually represent a binary choice, page u is con-
nected to page v, if there is a hyperlink between them, in human interaction networks we
can measure the importance of links by considering the intensity of interactions. Also,
additional metadata associated with links such as tags help us to determine the context of
an interaction. We argue that a ranking model with the objective of finding collaborators
based on expertise must account for the network dynamics in interactions. Hence, we pro-
pose a model that regards those users who actively contribute to interactions in a specific
collaboration network as important peers. Our model has the following ingredients:

• Collaboration dynamics. We extend the PageRank model by introducing var-
ious human-centered metrics to account for the dynamics in human collaboration
networks. Such metrics include availability and activity level of a user. Our model
attempts to balance between the importance and the activity level (interaction in-
tensity) of users.

• Skill, activity, and action aware recommendations. Here we go a step further
and propose additional parameters for personalized ranking. Interactions in collabo-
rations are always performed in a certain context — that is, in the scope of a certain
activity. Recall from previous discussions, we have established the following concepts:

– An activity describes in which kind of work users are engaged. To give examples,
a scientist may declare his/her field of research as activities such as “graph
algorithms” or “Web service discovery”.

Chapter 4: Global Importance Ranking 48

– Actions are usually performed in the scope of certain activities, for example,
creating documents or research papers in a certain research domain.

– In this work, the notion of human skills is equivalent to expertise of a user
and can be declared by the user as activities. However, the actual skill level
is obtained based on observations of actions (e.g., interaction logs) serving as
evidence.

As an example, the expertise (skill level) of a scientist in a given field depends
on the output in form of published paper — actions in a given research activity.

In the remainder of this work, we refer to our approach — accounting for the above
mentioned properties — as DSARank. DSARank stands for Dynamic Skill- and Activity-
aware PageRank. Before introducing DSARank, we define a set of human-centered metrics
capturing the dynamic nature of human collaboration.

4.5.1 Intensity Metrics

In this section we define availability and intensity metrics to measure dynamics in human
interaction networks. We introduce these metrics in the context of point-to-point human
communications (e.g., phone conversations), but we can apply similar metrics to measure
dynamics in, for example, messaging-based interactions.

Definition 4.5.1 (Availability) Let us define a user’s availability4 as the entire duration
user u interacts with other users, i.e., {v|v ∈ U , v ∈ A(u)}, A(u) defining the set of
those users adjacent to u. We define tcall as the duration of a specific phone call. Here,
call ∈ (u, v) is commutative (a call can be an incoming or outgoing call). Given the captured
telephone logs, we calculate u’s estimated availability as

availability(u) =
∑

v∈A(u)

∑

call∈(u,v)

tcall(u, v) (4.4)

Definition 4.5.2 (Link Intensity) Let us define the intensity of an interaction link ℓ as

i(ℓ) =

[

∏

call∈ℓ

tcall

]1/|ℓ|

+ κ (4.5)

The single link intensity is the geometric mean of |ℓ| calls plus a small smoothing factor
κ defined as

Number of missed calls

Total number of calls ∈ ℓ with tcall > 0
(4.6)

4Availability is defined based on already captured interactions.

Chapter 4: Global Importance Ranking 49

In general, the geometric mean is used when values in a set of numbers influence each
other. For example, when growth rate or relative change in a series of numbers is analyzed.
In other words, the single link intensity is the average product of a set of calls between
people to exchange information. Every information flow between people, perhaps gossip or
work-related news, depends on a set of calls that mutually influence each other. (At the
moment, we do not consider the context of interactions.)

Definition 4.5.3 (Interaction Intensity) For a specific user, we define interaction in-
tensity as follows

i(ℓ;u) = i(ℓ) ∗ |ℓ|

∑

ℓ∈links(u)

i(ℓ)

−1

(4.7)

The set links(u) contains directed interaction links. For out intensities iout, we demand
links to be outgoing links, and similarly for in intensities iin, links must be incoming links.

Definition 4.5.4 (Interaction Intensity Level) Based on the definition of i(ℓ) and
i(ℓ;u) we define the interaction intensity level IIL as

IIL(u) =

β2

∑

ℓ∈outlinks(u)

iout(ℓ;u)

2

+ (2− β)2

∑

ℓ∈inlinks(u)

iin(ℓ;u)

2

(1/2)

(4.8)

The factor β ∈ [0, 2] allows IIL to be biased towards iin or iout, where 1 means no bias,
i.e., equal importance for in-/out intensities. Biasing IIL is only valid for all users.

Definition 4.5.5 (IIL Imbalance) We define the imbalance imb(IIL) ∈ [−1, 1] as

imb(IIL) =

∑

ℓ∈inlinks(u)

iin(ℓ;u)−
∑

ℓ∈outlinks(u)

iout(ℓ;u)

∑

ℓ∈links(u)

i(ℓ;u)
, if

∑

ℓ∈links(u)

i(ℓ;u) > 0

∞ , otherwise

(4.9)

Specifically in messaging-oriented communications, imb(IIL) is a useful measure to
determine extreme values:

• Passive involvement of users in interactions such as observers yields imb(IIL) = 1

• Active involvement, but in the extreme case, all interactions could be outgoing and
none of the interactions is replied by the other users (no incoming interactions), thus
imb(IIL) = −1

Chapter 4: Global Importance Ranking 50

Figure 4.6: Schematic illustration intensity metrics: (a) depicts a subgraph in the
network (triangle), (b) undirected, weighted links of nodes in the network, and (c)
directed links between nodes.

Here we give some background related to our intensity-based approach. Motifs are
“small” subgraphs that appear a number of times in complex networks. These simple
building blocks (Milo et al. 2002) can be found in biological, technological, and socio-
logical networks (Milo et al. 2004) and can be of very different sizes and connectivities.
For example, the authors in (Adamic et al. 2008,Yang et al. 2008) analyzed motifs in
online communities (question/answer forums).
Onnela et al. (2005) proposed motif detection in weighted complex networks consid-
ering motif intensity and coherence. Figure 4.6 (a) shows a simple subgraph (triangle)
and its paths. Each link in the path may have different weights. In (Onnela et al.
2005), motif intensities were studied to detect the strength of interactions. Further-
more, in (Onnela et al. 2007), the authors studied the homogeneity of weights in
subgraphs, which they defined as subgraph coherence. To study coherence of weights,
the ratio of the geometric to the arithmetic mean can be defined.
We also use the geometric mean to calculate the strength of interactions. As mentioned
in (Onnela et al. 2005), it is important to consider the coupling between network
structure and interaction strength. However, in our work, even an attempt to interact
with some other actor in the network (e.g., a user attempted but failed to contact
another users) is appended as smoothing factor κ to the link intensity i(ℓ). This is
done because certain communication means (e.g., the physical network) are unreliable
in terms of establishing the communication channel between actors. We calculate the
strength of interactions as undirected links, Fig. 4.6 (b), and calculate the homogeneity
of interaction strengths (see interaction intensity i(ℓ;u)). For example, to calculate
if the strength of a specific link is much higher, or lower, than the average strength.
In particular, we use the ratio of i(ℓ) — the strength of a specific link — an the
arithmetic mean of the strength of all links ℓ ∈ links(u). Finally, we create the
directed, weighted graph Fig. 4.6 (c).

4.5.2 Intensity-based DSARank

In this section we introduce DSARank, a model to capture the dynamic nature of collabora-
tions. More precisely, in the DSARank model we assume that expert seekers interact with
well-informed users depending on the intensity of interactions (that is, IIL-dependent)

Chapter 4: Global Importance Ranking 51

and also with users that are typically highly available. We believe that DSARank is better
suited to recommend users (experts) in human collaboration. Our model does not only
rely on the structure of the network, for example indegree(u) and outdegree(u) of a
particular user u, but also captures the dynamics in collaborations. Also, it is important
to consider the context of interactions. Context allows us to refine rankings of users based
on skill information and expected expertise level of users. DSARank has the following
important properties:

Non-uniform personalization vectors. Previously, we used p(u) = 1. However,
a user does not randomly establish interactions (or collaborations) with other users. In
particular, the expert seeker chooses to request an opinion or input from users who are
potentially those people influencing or controlling the flow of information.

User preferences. Typically, there is a trade-off between various personalization
metrics. For example, interaction metrics include availability and interaction intensity.
We should be able to favor one metric over the other. We can then decide which of those
metrics should mainly influence rankings, for example, of the set of users recommended for
collaboration.

Symbol Meaning

m A metric or measured value in human interaction networks. For example, a
metric depicts availability or intensity of interaction links. Metrics can be
obtained by observing the interaction in a specific context, or the (whole)
interaction network in general. The set MR = {m1,m2, . . . ,mn} defines the
various interaction-based ranking metrics.

wm Denotes the weight of a metric. For example, one may define preferences
for different metrics. If weights are not explicitly specified, we regard each
metric to be equally important and use the following definition of weights:
WMR

= {w|wm = 1/|MR|,∀m ∈ MR}. Also, the sum of metric weights must
be equal to 1.

Table 4.3: Metrics and weights in interaction networks.

As mentioned earlier, I is a column-stochastic matrix. Thus, the sum of outgoing edge
weights of a particular node v must be equal to 1. The sum of weights is given as

wsv =
∑

z∈outlinks(v)

wv,z (4.10)

Next, we define the formula for the basic DSARank

DSA(u) = α
∑

v∈inlinks(u)

(

wv,u

wsv

)

DSA(v) + (1− α)
∑

wm∈WMR

wmpm(u) (4.11)

with ||~p|| = 1

Chapter 4: Global Importance Ranking 52

Remark 4.5.6 (Normalization) The personalization vector ~p has to represent a valid
probability distribution (i.e., ||~p|| = 1). Therefore, we need to normalize availability and
IIL. Let p1(u) denote the personalization for availability and p2(u) for IIL:

p1(u) =
availability(u)

∑

v∈U availability(v)
p2(u) =

IIL(u)
∑

v∈U IIL(v)
(4.12)

In the following, we go a step further and introduce personalization not only based on
availability and IIL, but also additional skill-metrics to rank users based on interaction
contexts.

4.6 Context-Aware DSARank

The next step is to introduce our approach to determine the most relevant user (expert)
based on interaction contexts. In Fig. 4.7, we show the three essential steps: (1) capturing
activity-/action information, and metadata associated with interactions, (2) perform rank-
ing in subgraph partitions, and (3) aggregation of rankings based on the expert seeker’s
preferences.

Figure 4.7: Schematic illustration of context-aware DSARank.

Chapter 4: Global Importance Ranking 53

Interactions between two users may have different scopes. Therefore, we determine a
user’s expertise by considering context because interactions take place at different levels
of importance (i.e., the weight of a link) and intensities. However, there might be a
“coupling” between contexts because a link may convey information relevant for multiple
context topics.

• Step 1. Capturing interactions in human collaboration networks and associated
metadata including tags and activity information, which can be provided by users,
to define the interaction context. As discussed in Sec. 4.5.1, we derive metrics to
calculate the dynamics and user involvement given the entire flow of interactions in
the network.

• Step 2. Perform ranking based on the interaction context by decomposing the
interaction network into subgraphs. Decomposing the network can be performed
using applied tags, user profiles, or content analysis of messages (e.g., emails, forums,
discussion groups, etc.). The subnetworks (i.e., graphs) serve as input to calculate
Context Dependent Rankings. This step is computed offline.

• Step 3. The expert seeker formulates a query, for example, specifying a set of skills
or keywords, which is evaluated by a Query Processing module. The next step is to
utilize the precomputed rankings to perform Aggregation of ranking scores of those
users matching the query. This is done by taking the expert seeker’s Preferences

into account.

4.6.1 Interaction Context

We discuss context in a general setting and define context tags as any information that can
be used to determine the interaction context.

Definition 4.6.1 (Interaction Context) We define the context C = {c1, c2, . . . , cn} of
an interaction as the set of context tags. An interaction takes place in a certain context
C ′ ⊆ C, if a link ℓ is annotated with c ∈ C ′. The context between u, v ∈ U is determined
by the scope of a link ℓ(C ′). For users in a particular context c, we can create a subgraph
g based on subset of links {ℓ(c)}. The set of users U(c) ⊆ U interact in a context c.

As an example for context tags, users tag email messages if these messages are related
to a certain project or activity. We assume that different types of context tags are applied
to interaction links with a certain frequency cf . To account for misplaced or missing
tags, we perform additive smoothing which is a simple but effective method to calculate
probabilities of tags. Usually a smoothing factor γ ranging from 0 < γ < 1 is used. The
smoothened tag occurrence probability is P (cf ; γ) = (cf + γ)/(

∑

c∈C′ cf + γ), where C ′

denotes all context tags used in a link ℓ between u and v.

Chapter 4: Global Importance Ranking 54

W T =

0 0 0 wd,a 0
wa,b 0 0 0 0
wa,c 0 0 0 0
0 0 0 0 0
wa,e 0 0 0 0

Figure 4.8: Example of tagged graph and corresponding (weighted) subgraph.

In Fig. 4.8 we show (a) an example interaction graph with tagged links, (b) the graph
with decomposed links based on tags, (c) the context-dependent subgraph (for example
c1), and (d) the weighted subgraph. Also, we show the weighted transpose matrix W T of
the subgraph. As shown in Fig. 4.8 (a) and (b), each interaction link ℓ is tagged with a
certain frequency cf . We interpret context tags applied to interaction links as follows: User
v interacts with user u in different contexts C ′. However, some tags appear with higher
frequency than other tags. Thus, we assume that v regards some interactions with u as
important in a specific context — the relevance of a link in a context c is proportional to
the tag’s frequency. Therefore, we use smoothened tag frequencies as weights to depict the
relevance of an interaction link ℓ for c. For example, the chance of receiving an item of
information or that u will be contacted in a specific context c.

Given the set of context dependent links {ℓc} ∈ g, we estimate the expertise of users
interacting in c as

SE(u; c) =
∑

v∈inlinks(u)

(

wv,u

wsv

)

SE(v; c) (4.13)

Compared to PR(u), SE(u) is computed in a similar manner; however, in SE(u) we do
not use personalization vectors (i.e., ~p) because SE(u) will be used in a context-dependent
subgraph g, which is already itself a personalization. Notice, depending on the interaction
network, SE(u) can also be interpreted as the expected informedness of a user.

Definition 4.6.2 (Context-Sensitive IIL) Previously, we discussed IIL without con-
sidering interaction context. However, for many collaboration and ranking scenarios, it is
important to find users that are highly involved in specific projects, activities — the con-
text in general — because a user’s expertise and expected informedness or not equal for all
contexts in which the user is participating. For a given context c, we calculate IIL(u; c)
based on the set of context dependent links {ℓ(c)} in g.

Chapter 4: Global Importance Ranking 55

4.6.2 Context-Sensitive DSARank

As mentioned before, SE(u) is the context-dependent skill- and expertise level of a user.
We could use SE(u) as a weighted preference in the ranking process by including SE(u)
when computing DSARank as defined in Equation 4.11. However, this is an impractical
solution because we cannot precompute the vector ~DSA for every possible combination of
demanded skills (i.e., depending on the expert seekers preferences). On the other hand,
we must consider the context of interactions to recommend the right expert. The following
equality helps to solve this problem:

Theorem 4.6.3 (Linearity) (Haveliwala 2002)(Jeh and Widom 2003) For any person-
alization vectors ~p1, ~p2 and weights w1, w2 with w1 + w2 = 1, the following equality holds:

~PR(w1~p1 + w2~p2) = w1
~PR(~p1) + w2

~PR(~p2) (4.14)

The above equality states that personalized PageRank vectors ~PR(
∑

wm∈WMR
~pm) can

be composed as the weighted sum of PageRank vectors. Thus, we can restate the definition
of DSARank, wc depicting the weight for a particular context c, as

DSA(u;C ′) =
∑

c∈C′

wcDSA

∑

wm∈WMR

wmpm(u)

 (4.15)

It is clear that not all users participate in context C ′. For a specific context c, we set

p(u) ≡
{

pm(u) , if u ∈ U(c)

0 , otherwise
(4.16)

4.6.3 Summary of Ranking Model

In this section we proposed our context-aware ranking model termed DSARank. DSARank
is a link-analysis algorithm which is (i) computed offline in context-dependent subgraph
partitions and (ii) used online to compose personalized ranking results based on the expert
seeker’s preferences, for example, the demanded set of skills. Table 4.4 provides a brief
summary of fundamental concepts and symbols.

Chapter 4: Global Importance Ranking 56

Symbol Meaning

wv,u Weight of a link connecting v to u.
wsv The sum of outgoing link weights of node v.
IIL Interaction intensity level.
c Denotes a context tag.
cf The frequency of a context tag.
γ A factor in the range 0 < γ < 1 used in additive smoothing; to smooth a

distribution representing context tag occurrence probabilities.
SE(u; c) Subgraph, or context dependent, skill- and expertise based importance

”particle” — the smallest constituent part of an assembly of SE-based
personalization. For example, an expert seeker’s query may specify the
demanded set of skills.

~pm The teleportation distribution vector for metric m.
DSA(u;C ′) Context-aware DSARank which is customized based on the set C ′ of con-

text tags.
wc Weight for context-dependent DSARank.
i(g) Subgraph intensity.

Table 4.4: DSARank and related symbols.

4.7 Advanced Context-based Metrics

In this section we focus on advanced metrics to measure subgraph properties and context-
dependent link characteristics. Subgraph properties are useful when we want to compare,
for example, the intensities of user interactions in different contexts. Here we will define
subgraph intensity i(g) to analyze in which context users interact with the highest intensity.

In addition to subgraph properties, we will define context-dependent link metrics. These
metrics are mainly used to filter and visualize properties of interaction graphs; however,
they can also be used in more general ranking functions. In many cases interaction graphs
comprise a large number of users. Thus, users and their interactions (links between users)
need to be filtered; especially in visualizations of large graphs. Metrics such as link point-
edness, coverage, and affinity help us to see the relationship between people (from a link
analysis point of view) and importance of interactions in a filtered set of top-ranked users.

For context-dependent IIL, we calculate the interaction intensity of all users in g as
subgraph intensity using the following definition:

Definition 4.7.1 (Subgraph Intensity) Let us define the subgraph intensity i(g) as

i(g) =
1

|U(c)||C|
∑

c∈C

∑

u∈U(c)

IIL(u; c) (4.17)

Chapter 4: Global Importance Ranking 57

In one-to-many communications (e.g., email), we may have many recipients in a single
interaction. Thus, interactions in messaging-oriented systems result in attaching one par-
ticular message to multiple interaction links. The following metrics are defined within a
range of [0, 1].

Definition 4.7.2 (Link Coverage) Given the link ℓ, we define link coverage as a metric
for the total recipient degree of messages msg attached to ℓ:

coverage(ℓ;u) =

[

∑

msg∈ℓ

1

degree(msg)

]−1

(4.18)

In other words, coverage is a metric describing the total number of people who received
a particular message in context C ′. Notice, each message may have multiple context
tags attached to it. If coverage is the “dispersion” of a link, then pointedness(ℓ;u) =
coverage(ℓ)−1 indicates whether messages in a given link address rather a few individuals
or many people (i.e., the recipient degree).

Definition 4.7.3 (Link Affinity) For a link between (v, u), we define link affinity as
follows

affinity(v, u; ℓ) = 1−
∑

msg∈ℓ

{

degree(msg)−1
degree(msg)

, u /∈ recipients(msg)

0 , otherwise
(4.19)

Definition 4.7.4 (Interaction Coverage) Is defined in an interaction context as the
relative number of people addressed by, or involved in interactions initiated by, a given
user v. Those who are active in the same context are defined by the set Ua(C

′) and users
with passive roles in interactions by Up(C

′).

IC(v;C ′) =
|{ℓ(v;C ′}|
|Ua(C ′)| (4.20)

Definition 4.7.5 (Interaction Precision) We define precision as the relative number
of users addressed by v, given the number of users involved in interactions, which have
never been active in C ′.

IP (v;C ′) = 1−

0 , if {u ∈ outlinks(v)} ∩ Up(C
′) = ∅

1 , if IC(v;C ′) = 0
|{u∈outlinks(v)}∩Up(C′)|

|{u∈outlinks(v)}|
, otherwise

(4.21)

Chapter 4: Global Importance Ranking 58

Definition 4.7.6 (Context PC) The ratio of precision and interaction coverage is given
as

PC(v;C ′) =

{

IP/IC , if IC 6= 0

0 , otherwise
(4.22)

PC is a metric indicating whether v interacts with the “right” people in C ′ and how
many of those users which are potentially interested are included in conversations in a
specific context.

Chapter 5

HPS Framework

5.1 Abstract

We envision collaboration scenarios where people define services based on their skills and
expertise. The expert seeker (requester) can interact with experts by using HPS. To
enable human participation through HPS, users must be able to utilize tools to design and
model their participations. These tools must be simple yet powerful enough to deal with
complexities in the service-design process. To date, most effort has been spent on tools for
Web service professionals and developers which, however, cannot be used by users without
programming skills. We present methods and tools supporting the user in the design of
HPSs in SOA-based environments. We analyze the complexity and challenges of the design
process and present our solution. In the design of HPS, we focus on two main aspects of
human interactions in SOA: (i) an approach for designing service interfaces embodying
human activities as actions offered by Web (HPS) users; (ii) a tagging model for activities
and services to recommend (HPS interfaces) in the design process. We discuss the mapping
of human activities onto Web services. We introduce a framework supporting HPSs in
different types of interactions. We present the architecture and its core components: the
Middleware Layer providing features for managing data collections and XML artifacts,
API Layer comprising services for forms generation and XSD transformations, the Runtime
enabling basic activity and user management features as well as support for human and
service interactions using Web services.

In open and dynamic collaboration environments on the Web, it is important to define
metrics capturing the characteristics of HPS. Such metrics need to be established based on
human tasks, interactions, and expertise level of users. In this chapter, we present a task
rewarding model, which rewards users based on performance indicators such as reliability
and processing time of tasks. The rewarding model also accounts for global task properties
including risk and trend of processing time in a set of related tasks.

59

Chapter 5: HPS Framework 60

5.2 HPS Revisited

This chapter provides an integrated view on previously introduced concepts and the tech-
nical realization of HPS interaction models. It is useful to revisit some of the most fun-
damental concepts — as introduced in Chap. 3 — before we elaborate on the technical
architecture.

Human interactions using HPSs. The novelty of the HPS concept is that human
capabilities are modeled and enacted using Web services technology. In other words, in HPS
Web services are not used to implement certain (supporting) applications so that humans
can deal with, for example, human tasks; instead, human capabilities are “exported” as
Web service interfaces based on human activities (i.e., declarations of activities). Moreover,
the notion of activity-centric collaboration ties into the compositional nature of the Web
by providing the fundamental features to structure and compose activities in a hierarchical
manner.

Human interactions as part of (software) service compositions. Many business
processes require human input as part of their regular execution. In other cases, human
input may only be required if the process cannot continue its execution due to exceptions
that need to be analyzed by humans. B4P, for example, targets composition models of
BPEL-based flows and human interactions — mainly in the context of business processes.
When the BPEL engine reaches an (people) activity, a People Query is used to retrieve a
set of people, which are selected from a registry or directory, to work on tasks. The result
of those tasks is passed back to the BPEL engine and the process continues its execution.

In HPS, we target the user-driven design and interactions with user-based services. In
business processes we typically require a detailed definition of tasks, notifications, and roles
in advance. This is done by a business analyst or the process designer.

Topic Introduced in Feature in HPS Framework

Activity Use Cases Sec. 3.3.1 Supporting the user- and community driven
approach to design HPSs.

Conceptual HPS Model Sec. 3.4.2 Collections of SOA artifacts that can be ac-
cessed through various means.

Task Model Sec. 3.4.3 Task registry enabling the creation of (pub-
lic) task announcements and human tasks to
control the status of interactions.

Calling an HPS Sec. 3.4.4 Dispatching and routing of interactions (that
is, HPS requests and responses) using the
HPS Access Layer.

DSARank Sec. 4.6 All interactions are monitored and logged.
Importance rankings are used in the design
process and in the lookup of HPSs.

Table 5.1: Mapping between concepts and framework.

Chapter 5: HPS Framework 61

5.3 Outline of Approach

The first step in this section is to define our approach enabling HPSs — illustrated in Fig.
5.1. There are three essential steps: 1) ability to define services, 2) user-centric service
publishing and provisioning, and 3) discovery of HPSs as well as interactions with humans
using Web services technology. Our goal is to define a framework that integrates Web
technologies and Web services enabling humans to publish services.

Figure 5.1: Overview and motivation of HPS framework. The framework enables a user-
centric approach for the design and provisioning of HPSs.

Chapter 5: HPS Framework 62

1. Ability to define services. People should be able to define services and corresponding
interaction interfaces. This can be done by reusing and/or modifying existing inter-
faces and resources; or by creating new interfaces. In Fig. 5.1, User C performs two
essential steps:

(a) User C uses his HPS toolbox to create new type definitions, for example, activity
types and/or parts of complex data types. These definitions are stored in a
collection of resources.

(b) Based on complex activity structures, User C creates an HPS interface that is
also stored in a collection of resources.

2. User-centric service publishing and provisioning.

(a) In the first step, users specify their personal information as profiles. The struc-
ture and semantics of user profiles has been addressed in various standards and
specifications, for example FOAF or vCard1. Similar profile information is used
in HPS (in this work we will not focus on the details), but with some extended
information to capture, for example, user competencies.

(The next two steps are not in a particular order.)

(b) The user can specify interaction rules to automatically route or filter requests.
Notice, we use document-centric (Web service) interaction styles. Such XML-
based documents are typically encapsulated in SOAP envelopes and exchanged
as XML messages. In HPS, these messages represent actions and resources in
collaboration that are associated with human activities or artifacts. Therefore,
other users can be engaged in interactions by delegating requests or tasks to
them. These rules are usually specified for specific HPSs.

(c) User A creates a personal service to manage interactions in a given context;
that is, in collaborations using HPS. This step basically associates a user profile
with an HPS interface (i.e., the group of people providing specific services —
previously, we introduced HPSGroups to depict these users).

Then, personal services are deployed — this step is not explicitly shown in
Fig. 5.1. We support different deployment options: a) hosted solution where
users access their services and manage requests using a Web portal (no software
stack is needed on the user’s device) and b) deployment of a software stack
on end-user devices, for example, mobile phones or PDAs. This software stack
has XML parsing capabilities, a user front-end to manage activities and services,
and a dynamic rendering engine to display a user-interface (GUI) based on XML
documents.

3. Discovery and interactions. HPS aims at simplifying interactions with user-provided
services by abstracting from service location and deployment. Requesters discover
services and interact with the selected HPS through a middleware.

1vCard: http://www.ietf.org/rfc/rfc2426.txt

Chapter 5: HPS Framework 63

(a) Lookup: Requesters discover HPSs (finding HPSs by matching interface descrip-
tions).

(b) Ranking: Services are ranked based on the requesters’ preferences (ranking cri-
teria). NFPs2 are used in the ranking process. See, for example, (Ran 2003) for
an introduction to Web services discovery using QoS properties in UDDI (Uni-
versal Description Discovery and Integration) registries and (Liu et al. 2004)
for QoS computation and policing.

(c) HPS Access Layer: The HPS Access Layer (HAL) dispatches requests and per-
forms security checks. In Fig. 5.1, we show two different HPS interaction
scenarios.

i. Interactions between humans using HPS.

ii. Human input is demanded by a composed (software) service, for example,
modeled as a step in a process flow.

We follow a top-down approach in this chapter. First, we discuss the design and
(software) engineering perspective of HPS. However, the design of HPS has also a so-
cial component. For example, the design or provisioning of HPSs might be influenced by
community structure, social interest and competition, and evolution of HPS-based com-
munities. These communities are not “static” environments because users have the ability
to contribute services, thereby creating an open marketplace of human-based services.

While we based our related-work discussion (i.e., Chap. 2) on four architectural views
— (i) functional, (ii) physical, (iii) technical, and (iv) dynamic operational architecture,
we can think of an additional view that is based on the social component that arises when
systems of services are designed: (v) the social architecture. A social architecture can
be thought of as a mix between user-centric services to engage in different Web-based
interaction scenarios, community structure, social interest and evolution.

However, the design of HPS is not enough; we need to build a framework that manages
data collections, interactions, and activities. Therefore, the next step is to introduce
the architecture of the HPS framework. We detail the Design tools, Runtime services,
API Layer, and Middleware Layer. In this chapter it is sufficient to show the conceptual
framework. The implementation of all framework-based tools and services will be discussed
in detail in Chap. 6 (implementation).

5.4 Supporting the Design of HPS

An HPS is exposed as a Web service interface that HPS requesters can use to interact with
humans. From the user’s point of view, services are represented as activities and actions the
user can perform in SOA-based collaboration environments. To enable human participation

2NFP is an abbreviation for non-functional properties.

Chapter 5: HPS Framework 64

through HPS, users must be able to utilize tools to design and model their participations.
These tools must be simple yet powerful enough to deal with complexities in the service-
design process. To date, most effort has been spent on tools for Web service professionals
and developers which, however, cannot be used by “novice” users. For example, users who
do not have programming skills or expertise in XML-based markup languages.

Mashup editors, for instance Yahoo! Pipes3, are examples of how simple tools can fa-
cilitate user participation and user-driven processes by gathering and aggregating different
sources of knowledge. We argue that similar tools should be provided for the design of
HPS, enabling users to create their personal services. In this section, we present meth-
ods and tools supporting the user in the design of HPS in SOA-based environments. We
analyze the complexity and challenges of the design process and present our solution.

Our goal is to provide powerful yet simple tools for users to define and provide services.
Such tools should automatically generate all the resources needed to allow users to fully
participate in HPS-based interactions in SOA. Here we present an architecture and its
implementation allowing humans to design services for various collaborations, with the
following key contributions:

1. A methodology to integrate human interactions in SOA based on Web services tech-
nology.

2. Method to help users decide which services they should provide. Our proposed
method is based on tagging and collaborative filtering of information based on social
interest including user profile similarity and personalized expertise-based ranking.

3. Furthermore, we utilize Web services standards such as WSDL to depict HPSs. The
HPS design approach enables the automatic transformation of human activities into
low level service description. We implemented a set of tools and mappings to enable
automatic transformations. Thus, a user is not required to learn (about) Web services
standards, XML languages, or programming languages.

5.4.1 The Collaborative Design of HPS

Dynamic collaborations typically take place using various communication channels and
tools. The HPS framework is a platform targeting SOA-based collaboration scenarios
involving both human and software services. In this section, we first discuss the challenges
in designing HPSs and present our approach. Then, we provide an overview of the steps in
the design process and show how users are supported in finding/reusing existing resources,
for example, service artifacts.

Interface transformation and generation: Designing and providing a service
should be as simple as writing a “blog entry”. Mapping human activities onto Web services

3Yahoo! Pipes online at: http://pipes.yahoo.com/

Chapter 5: HPS Framework 65

is challenging. Users have to be supported in the design in an easy and intuitive manner
by hiding underlying complex processes, which require steps such as automatic service
interface generation and translation of service interfaces (e.g., WSDL) into GUI represen-
tations. Since Web services standards are used — at the technical level — to enable HPS,
versatile collaborations can be supported including interactions between humans as well
as the use of HPS in, for example, formalized processes.

Recommendations for the design of HPS: We argue that humans should be able
to design and provide their capabilities as services. Many HPSs may be available and
registered. These services may have different interface characteristics, for example actions
and type-definitions, and may be used for very different collaborations. The actual meaning
and usefulness of a particular service depends on the user’s background, interest, and
expertise. However, it is difficult to use ontologies or predefined taxonomies to classify
different types of services because HPSs cannot be classified as “bags of services”. For
example, User A may insist that S1 belongs to a set of categories4 C1 and User C may
argue that S1 belongs to the set C2, which may or may not overlap to some degree with
C1. The classification, or association of a service with one or more categories, emerges as
users apply tags to services. Eventually, this “tagging process” should converge towards a
stable set of defined categories that is agreed upon by most users. This typically happens
in tagging systems on the Web. In our opinion it is more useful to apply tags to services
for classification as opposed to the definition of rigid taxonomies. As validated in existing
research results, for example see (Golder and Huberman 2006) for usage patterns of tagging,
tags represent with good accuracy classifications of concepts.

5.4.1.1 Usage Patterns of Tagging in Mixed Systems

We propose tagging mechanism to help users in expressing their skills and the context of
interactions in mixed systems. Tagging becomes increasingly important in today’s collab-
orations because people can associate metadata to various artifacts including Web docu-
ments, links, messages, and so forth. Thus, people can perform search based on user-defined
metadata. Generally speaking, tags are keywords and terms associated with information.
Similarly, tags in the HPS framework are used to identify the context in which services and
artifacts are used. A tag has different meanings depending on what is tagged and when
“it” is tagged. In this work, we distinguish between the following types of tags:

• Activities: Activities can be tagged by users to indicate interests (who is interested
in what). For example, a user may be interested in activities related to “Mobile Web
services”, “WSDL specification efforts”, or “SOA runtime”.

• Services: Service tags are applied to HPSs and software services. A user applies a
tag to a service to indicate that a particular type of service can be used to perform an

4The term category has the same meaning as our previous definition and use of context tags that are
depicted by the set C.

Chapter 5: HPS Framework 66

activity. Both the consumer and the provider of a service can assign tags. Depending
on these roles (consumer or provider) these tags can be quite diverse because how a
service is actually used is often different from how the provider intended the service
to be used. To give examples of service tags, User A provides a “Review service” and
applies tags such as “Review WSDL specification” whereas User B associates even
more fine-grained metadata to the specific HPS by applying a tag “Review WSDL
2.0 specification”.

• Actions: Action (instances) are tagged to denote the use of services from the point
on when collaboration commences. For example, in the context of a particular action
the tag “Write report”. As mentioned earlier, these tags can be used to calculate the
intensities of interactions in a specific context.

5.4.1.2 HPS Design Use Case

The next step is to illustrate (see Fig. 5.2) how the design is supported by utilizing tagged
information and collaborative filtering methods. In Fig. 5.2 (b), dashed line patterns of
boxes depict steps in which the user interacts with the system. Solid line patterns depict
steps that are performed by the system without human intervention or input.

Figure 5.2: (a) Interaction scenario in human and service centric collaborations. Tags are
applied to classify activities and services. (b) The design: people can reuse existing models
or define new interfaces.

• Search and matching: The search for resources is performed by matching the user’s
query against existing HPSs. A matching function takes service metadata as in-
put, either automatically extracted keywords or tagged information. Hence, tagged
information is not only used during collaboration, but also at design time.

Chapter 5: HPS Framework 67

• Similarity and ranking: The next step is the ranking of HPSs which matched the
demanded set of keywords. The output is a ranked list of suggested HPSs by com-
paring interest-similarity. Similarity is calculated based on the user’s (i.e., the person
that initiated the design process) activities and profile with interests of those users
already providing a certain HPS.

• Create or reuse model: The user can create new models, publish related resources
and type definitions, or reuse existing HPS definitions. The model defines human
activities which are mapped onto Web services.

• Create personal service: The final step is to make the definition of the personal
service available. (As already mentioned, a personal service is the association of a
user’s profile with an HPS.) An HPS registry is used to maintain this information.

5.4.1.3 Recommendation Algorithm

In the spirit of collaborative tagging systems, we perform ranking and recommendations
based on tagged resources. Before defining an algorithm for recommendations, we need to
define several concepts and functions:

• Tagged resources are represented as a triple (user, resource, {tag}).

• A user query = {word1, word2, . . . , wordn} contains a number of search terms that
are used to match resources (i.e., an HPS description) assuming that query ⊆ {tag}
(the set {tag} is applied to a particular resource) is satisfied.

• We use the correlation coefficient to measure similarity of profiles and activities. Let
X and Y denote sets of word frequencies — a word is a string depicting a tag applied
to resources such as user profiles, activities, or services; with |X| = |Y |. Furthermore,
let X and Y denote the mean (or expected value) of word frequencies in X and Y
respectively, N the number of distinct words that are used to calculate correlations
and stdev(·) a function calculating the standard deviation of word frequencies. Then,
the correlation coefficient is defined as

correl(X,Y) =
∑

(X −X)(Y − Y)/(N ∗ stdev(X)stdev(Y)) (5.1)

with correl(X,Y) ∈ [−1, 1]. Based on the coefficient, we use the variable φ ∈ [0, 1]

to have strictly positive values for correlations, calculated as φ = correl(X,Y)+1
2

.

• We perform smoothing of tag frequencies by using additive smoothing. This tech-
nique is sometimes called Lidstone smoothing. Previously (Sec. 4.6.1 in Chap. 4),
we used the same method to smoothen tag frequencies applied to interaction links.
Recall, a smoothing factor γ is used, 0 < γ < 1.

Chapter 5: HPS Framework 68

• Users can parameterize the ranking algorithm by assigning preferences. The user-
defined preference vector is depicted as pref(u), assigning a preference score to user
u. The default value is pref(u) = 1.

Symbol Meaning

w(u,tag) Weight of a tag applied to resource.
ω(tag) The frequency of a tag applied to resource.
φ Variable depicting the correlation coefficient within the range [0, 1].

pref(u) User-define preference vector used in recommendations for HPS design.

Table 5.2: Symbols used in recommendation algorithm.

Algorithm 5.1 shows how to obtain ranking scores. We measure the similarity of the
user’s profile with activities of matching users that already offer a specific HPS (depicted
as resource) and calculate ranking scores as the weighted sum of action tag weights.

Algorithm 5.1 Recommendation algorithm for HPS design.

1: input: A user query.
2: output: Recommended HPSs depicted as resources.
3: /* Get matching resources. */
4: R← match(query)
5: /* Get users that apply resource as HPS. */
6: U ← getUsers(R)
7: for each user u ∈ U do
8: /* Similarity is calculated based on v’s profile and u’s activity tags. */
9: φ = similarity(u, v)

10: if u 6= v and φ > 0 then
11: for each resource ∈ getResourceByUser(u) do
12: for each tag ∈ resource do
13: /* Get the frequency for a specific action tag used by u. */
14: ω(tag)← getFrequency(u, tag)
15: /* Assign the weight using the smoothing factor γ. */
16: w(u,tag) ← getSmoothenedWeight(ω(tag))
17: sum← sum+ w(u,tag) ∗ φ
18: end for
19: R(resource)← R(resource) + sum ∗ pref(u)
20: end for
21: end if
22: end for
23: return ranked list of resources

Chapter 5: HPS Framework 69

5.5 HPS Interface Transformation and Generation

The design process and methodology presented in this work has to be supported by a set
of tools and models. We start with the definition of the process, which allows users to de-
fine services without having to understand Web services technologies. Several approaches
(Kassoff et al. 2003, Song and Lee 2007) focus on automatic GUI generation based on
WSDL descriptions. However, these works assume that the WSDL description of a service
already exists and simply needs to be parsed and mapped into some GUI language/repre-
sentation. We propose to create service descriptions based on human activity. Instead of
mapping existing WSDLs into GUIs, we let users design interfaces that map into WSDL
and GUIs. This is a challenging problem because neither a process to create mappings
between human activity and WSDL nor the automatic generation of WSDL and GUIs —
in terms of end-user design support — has been defined or addressed in previous research.

5.5.1 Design Process

We define a process allowing users to create an activity model serving as the input for
automatic generation of service artifacts. Figure 5.3 shows the design process. Steps are
depicted as box-shaped symbols. Boxes with dashed line patterns denote steps requiring
human input. (In this case, only the first step requires human input.) Definitions and
models (for example, models describing the mapping of human activities and WSDL ele-
ments) are depicted as box-shaped symbols that are slightly tilted. Furthermore, document
symbols at the right side of Fig. 5.3 denote the output of the process. Tools and services
used within this process generate WSDL descriptions as well as UI representations.

Figure 5.3: Conceptual approach and interface design.

Chapter 5: HPS Framework 70

1. User input in design

• Definite Activity Model: users define their Activity Model (for example, activity
types). User controls are simple GUI elements that are hosted in a Web portal
provided by the HPS framework. These controls enable users to create complex
structures. An example of such a control will be given at a later point.

2. Transformations

• Bind to XML Schema: The next step is the automatic transformations of the
user’s input into XML artifacts. This requires the definition of a Meta Model
defining the binding of the user’s input (created using the control) to XML
schema. Constraints and mappings expressed as meta models — defined as XML
schemas — will be shown in the implementation chapter. However, detailed
knowledge about these meta models is not needed at this point. At the technical
level, an XSD Transformer is implemented to perform this step.

• Create HPS Interface: HPS Interfaces are created by associating activity types
with the Service Model, which defines the mapping of activity types (and human
actions) to services definitions (WSDL). The mapping of an HPS Interface into
WSDL is the binding of activity type definitions and actions to HAL. At run-
time, HAL acts as a proxy service dispatching requests by performing security
checks, routing, message transformations (if needed), and persistency manage-
ment of messages (i.e., saving request/response messages in XML collections).

3. Automatic interface generation enabling interactions

• Emit Interface: The final step comprises the automated generation of interfaces
at run-time. An Interface Emitter generates: i) interfaces allowing software
services to interact with HPSs by generating WSDLs. Thus, HPSs may be
included in process by defining human interactions (e.g., B4P) in the process
definition, which are enacted as HPS actions (interaction through HAL). (ii)
GUIs are generated automatically by transforming WSDLs and XSDs into XML
forms.

5.5.2 Interface Mappings

We continue our discussion of HPS interfaces by showing a concrete XML example of a
WSDL description. These examples will be sufficient to illustrate the idea of mapping
human activities and actions onto Web services. Of course, no user input is needed to
create such mappings or to create WSDL descriptions out of human activities. These
transformations are automatically performed by tools. A complete XML example of the
discussed HPS WSDL is provided in Appendix B.

Let us start with some exemplary type definitions. Listing 5.1 shows GenericResource,
ReviewRequest type definitions.

Chapter 5: HPS Framework 71

� �

<xsd:schema targetNamespace=” ht tp : // s e r v i c e s . myhps . org / review ”>
<xsd:complexType name=”Gener icResource ”>

<xsd : s equence>
<xsd :e l ement name=”Locat ion ” type=”xsd:anyURI” />
<xsd :e l ement name=”Expires ” type=”xsd:dateTime” />

<xsd : s equence>
</xsd:complexType>
<xsd :e l ement name=”ReviewRequest ” type=”Request ” />
<xsd:complexType name=”Request ”>

<xsd : s equence>
<xsd :e l ement name=”ReviewResource” type=”Gener icResource ”/>
<xsd :e l ement name=”Comments” type=” x s d : s t r i n g ” />

</ xsd : s equence>
</xsd:complexType>
<xsd :e l ement name=”AckReviewRequest” type=” x s d : s t r i n g ” />
<xsd :e l ement name=”GetReviewReply” type=” x s d : s t r i n g ” />
<xsd :e l ement name=”ReviewReply” type=”Reply” />

</xsd:schema>
� �

Listing 5.1: Review-activity types example.

The user can create such definitions by using tools hosted by the HPS platform. In this
simplified example, the activity to be performed by a human is review comprising resources,
the actual request, and the reply, which is a complex XML data structure (abbreviated in
this example).

Listing 5.2 shows an excerpt of the mapping of human activities into WSDL messages
(review HPS). However, we only show the request denoted as ReviewRequest.

� �

<wsdl :message name=”GetReview”>
<wsd l :pa r t name=”part1 ” element=”ReviewRequest” />

</wsdl :message>
<wsdl :message name=”AckReviewRequest”>

<wsd l :pa r t name=”part1 ” element=”AckReviewRequest” />
</wsdl :message>
� �

Listing 5.2: HPS WSDL messages example.

� �

<wsdl :portType name=”HPSReviewPortType”>
<wsd l : ope ra t i on name=”GetReview”>

<wsd l : i nput xmlns:wsaw=” ht tp : //www.w3 . org /2006/05/ addre s s ing /wsdl ”
message=”GetReview” wsaw:Action=”urn:GetReview” >

</ wsd l : i nput>
<wsdl :output message=”AckReviewRequest” />

</ wsd l : ope ra t i on>

</wsdl :portType>
<wsd l :b ind ing name=”HALSOAPBinding” type=”HPSReviewPortType”>
<soap :b ind ing s t y l e=”document” t ranspor t=” ht tp : //xmlsoap . org / soap/http ” />

</ wsd l :b ind ing>
� �

Listing 5.3: HPS WSDL porttype and binding example.

Chapter 5: HPS Framework 72

Notice, PortType (i.e., the technical interface) in Listing 5.3 for all interactions is HAL.
At run-time, HAL extracts and routes messages to the demanded HPS. Since every interac-
tion is entirely asynchronous, interactions (session) identifier are automatically generated
by HAL (e.g., AckReviewRequest).

5.6 Architecture of HPS Framework

In this section we discuss the architecture of the HPS framework. The framework comprises
a set of tools, for example, enabling the design of HPS, and a middleware hosting various
services such as HAL. In Fig. 5.4 we show the architecture and its main components.

Figure 5.4: HPS framework and architecture.

5.6.1 Middleware Layer

The HPS FS — an XML based, distributed file system — manages user profiles, human
tasks, service related information such as WSDL descriptions, personal services, and so
forth. The HPS FS offers a set of APIs to manage XML artifacts and collections via the
Atom Protocol Model5 to retrieve and update HPS related information. We embed, for

5Atom Protocol Model: http://tools.ietf.org/html/rfc5023

Chapter 5: HPS Framework 73

example, HPS interfaces depicted as WSDL as elements in Atom-based XML documents
(see Atom Syndication Format6). In other words, Atom-formatted representations contain
HPS “information items” with the advantage that various Web 2.0 authoring tools and
APIs can be used to retrieve and update Atom-based elements. HPS information include:
(i) which services are registered with the HPS framework, (ii) how to interact with services,
(iii) the geographic location of services; if location information is shared by the user, and
(iv) other context information of an HPS including the current availability of a particular
service. Also, Web service registries that are accessible via Atom-based protocols have
been proposed in (Treiber and Dustdar 2007,Wu and Chang 2007) to manage metadata
associated with software services.

HAL dispatches requests of various types including SOAP or JSON7 requests and rout-
ing HPS interactions to the corresponding service. Thus, humans and software services
(i.e., HPS requesters) are able to interact with HPSs by sending their requests towards the
HPS middleware. In addition, HAL implements security features to prevent unauthorized
access and allows requests to be routed according to user-defined rules.

The HPS Ranking algorithms are used for the analyses of human and service inter-
actions to recommend the most suitable HPS based on various interaction and task met-
rics. (Chapter 4 is concerned with link-analysis algorithms for global importance ranking.)
Ranking results and recommendations can be requested from a ranking service (not shown
in Fig. 5.4).

The HPS Lookup supports various ways to discover HPSs. On the one hand, Web
browsers can be used to obtain a list of services as “news items” embedded in Atom ele-
ments. For example, the middleware implements a service which returns XML documents
as news feeds containing HPS-related information. We have implemented this mechanism
to support the integration of HPS with other Web 2.0 platforms. On the other hand, a
Web services-based API can be used to support typical lookup operations (e.g., get list of
services). The middleware hosts a Service Registry that is used when the service lookup is
performed.

5.6.2 API Layer

To support the design of HPS, the framework includes services and tools for HPS Design
as well as runtime support for the automatic generation of interfaces. The API Layer
includes the following core services:

• WSDL API service to generate service descriptions; in particular, to create WSDLs
based on human activities and user specified interface elements (parameters and
complex elements)

• Forms API implementing support for XML Forms (XForms8)

6Atom Syndication Format: http://tools.ietf.org/html/rfc4287
7JavaScript Object Notation: http://www.json.org/
8W3C Markup Forms: http://www.w3.org/MarkUp/Forms/

Chapter 5: HPS Framework 74

• XSD Transformer service utilizing the Forms API to automatically generate XForms
based on XML schema definitions, for example, as defined in WSDL documents

• Tag Management service associating tags with HPS artifacts (activities, actions, and
WSDLs)

5.6.3 Design Tools

HPS Design tools allow users to create service interfaces in a simple manner. These tools
are hosted in a Web portal. Figure 5.4 illustrates the design flow on the left side (top
down):

• Interface and Message Formats: the HPS framework provides tools to automatically
translate high level specifications (e.g., activities and interface elements) into low level
service descriptions without requiring the user to understand underlying technologies
such as XML or WSDL.

• Publication of Design Artifacts: artifacts such as message formats and activity type
definitions are saved in XML collections.

5.6.4 Services used at Runtime

The following services have been designed to enable HPS-based collaboration.

• The User Management service holds user-related data such as profiles and contact
details.

• The Interface Emitter generates HPS interfaces depending on the interaction sce-
nario; for example, interactions between humans or interactions requiring WSDL
interfaces (e.g., compositions of HPS and software services). Since collaboration sce-
narios include enterprise collaborations, for example, Web-based portals implement-
ing rich user interfaces, and also mobile collaboration scenarios, interface generation
can be customized based on the user’s current context. Therefore, based on the re-
quirements and constraints of the current or preferred user device, different interface
representations can be generated.

• The Activity Management service maintains activity declarations and activity in-
stances.

Chapter 5: HPS Framework 75

5.6.5 Data Collections

The HPS framework utilizes Web services technology to enable HPS at the technical level.
Therefore, various XML-based collections and resources need to be managed in an efficient
manner. In HPS, XML-based collections are managed by the HPS FS. Basic create, read,
update, and delete (CRUD) operations can be performed on HPS-related information. As
mentioned before, the Atom protocol is used for this purpose.

The basic protocol model specifies the use of the standard HTTP methods GET, POST,
PUT, DELETE, and HEAD to retrieve, update, store, delete, or enumerate resources.
Resources and collections include:

User Profile and Metrics. Profiles comprise user related information. There are
many existing standards defining the structure and information of user profiles. Thus, it
is not reasonable to focus on the definition of user profiles because FOAF or vCard can be
used for this purpose. To briefly highlight the features of these standards: FOAF profiles
are usually specified as XML/RDF documents and are often used in the context of the
Semantic Web, for example (Aleman-Meza et al. 2007); vCard is a file format standard for
electronic business cards. Therefore, users can specify basic information or simply import
personal data that is already available in vCard profiles. Also, there are standardized ways
to describe and exchange human resources-related data9.

In this work, we make the distinction between hard and soft-facts. Hard-facts comprise
information typically found in resumes such as education, employment history includ-
ing organizational information and position held by the user, and professional activities.
Soft-facts are represented as competencies. A competency comprises weights (skill level
of a user), classification (description of area or link to taxonomy), and evidence (exter-
nal sources acting as reference or recommendation). Soft-facts can be generated by the
middleware based on users’ activities to indicate expertise or skill level. As mentioned
before, the structure and format of user profiles were not the main focus of this work. For
completeness, we show the HPS profile model in Appendix C, Fig. C.2.

Service Registry. The registry maintains a number of XML documents describing
HPS. This information includes a set of service definitions, the list of available services,
and information regarding personal services. The term personal service was introduced
as a metaphor for a service instance. Service instance is a purely technical term to de-
note the number of physically deployed services that have the same (syntactic) interface
characteristics.

Task Registry. Manages human tasks that can be either public tasks (i.e., announce-
ments used to advertise the need for HPSs) or private tasks that are associated with
HPS-based interactions to control the status of collaborations. Public tasks are associated
with an interaction upon claiming and processing tasks.

9Human Resources Vocabularies: www.hr-xml.org

Chapter 5: HPS Framework 76

5.7 Metrics Characterizing HPSs

HPSs are a new type of services that are provided by human actors. Thus, we need to
establish a new set of metrics that can be associated with HPSs. These metrics are able
to describe human characteristics in a service-oriented economy. While we previously dis-
cussed the HPS framework by introducing the various services and tools from a “static”
(deployment) point of view, here we show the dynamic architectural perspective. In par-
ticular, Fig. 5.5 shows the main principles of how HPS is used in dynamic environments.

Analyze

Execute

PlanMonitor

HPS Framework

Dynamic Executions

Compositions of Human

and Software Services

Management
Metrics,

QoS4HPS
HPS Design

Human,

B4P

Requesters

H
P
S

User-defined

Services

a3a2

a1

Figure 5.5: Conceptual overview of analysis and rewarding.

The HPS framework not only allows experts to define human services, but instead all
people can define their contributions and capabilities as services. Such services can be
invoked by B4P. Our approach is to map the HPS framework into an autonomic control
feedback loop — the Monitor, Analyze, Plan, and Execute (MAPE) cycle; established in
the context of autonomic computing. In service-oriented systems, compositions are the
description of the foreseen flow of interactions between autonomous entities. We take the
autonomic computing paradigm as a metaphor for the envisioned composition approach:
An autonomic computing environment has the ability to manage itself and dynamically
adapt to change in accordance with objectives and strategies (IBM 2005). Self-organizing
environments can adapt based on the context (the runtime environment). Based on the
observed context of the environment, different adaptation strategies can be applied to
guide the interactions between entities, the parameters of those strategies, and actions to
prevent inefficient use of resources and disruptions. The significance of these principles is

Chapter 5: HPS Framework 77

that the dynamics feed back to every aspect in the system’s evolution. The formulation
of compositions can no longer be thought of as a top-down design based on business
or organizational requirements, but rather the specification of a system that is strongly
influenced by human organization and activity. Despite of the availability of models for
organizing humans and services, these compositions may fail to deliver the desired runtime
behavior due to lack of control and context in complex environments. Our architecture
exhibits the following key principles:

• Monitoring is needed to observe the actual run-time state of the system by logging
interactions of heterogeneous entities including human and software services.

• Analysis is done to identify interaction patterns, relation and dependability of en-
tities within the system and calculation of various metrics such as reputation. For
example, envisioned patterns and metrics at the modeling or planing layer versus
enacted in the real system.

• Planning, compositions of HPSs and software services are established by selecting
the right elements constituting the set of interacting partners. Such selection or re-
placeability strategies can be established based on reputation mechanism. However,
while analysis usually focuses on the anatomy of interactions in the real system, plan-
ning also feeds external requirements and constraints into the system, for example,
dependability or demanded-level of expertise.

• Execution is performed as interactions between HPSs, software services, and com-
positions thereof. Such interactions may exhibit long-running flows and transactional
behavior by incrementally updating information in compositions among peers. How-
ever, typically the exact execution of flows can not be modeled in advance, requiring
adaptive behavior of processes and information flow (e.g., synchronization of entities).

5.7.1 Classification of Metrics

The classification of HPS metrics is shown in Figure 5.6 and comprises four main subclasses,
which are task, service, interaction, and user-related metrics.

• Task: Metrics associated with tasks such as task processing statistics (e.g., number
of completed tasks) and task metrics denoting how active a user is in a given field.
For example, the number of claimed/assigned tasks in a particular domain can be
used as input to derive user specific metrics such as skill level or area of interest.

• Service: Service related information including availability, request/response ratio, and
responsiveness. Note in this context that HPSs might be offered to process different
tasks or integrated into systems that do not require the specification of tasks.

Chapter 5: HPS Framework 78

Claimed/Assigned

Tasks

Completed Tasks

Processing Time

Availability

Request/Response

Ratio

Responsiveness

Profile Metrics

(Membership)

Skill Level

Competency

Intensity

Context

Rating

Opportunistic/Long

Running

HPS

Metrics

Task Service Interaction User

Figure 5.6: Classification of HPS metrics.

• Interaction: Interaction metrics are drawn from observations between at least two
actors. As an example, intensity describes how many times a requester (expert
seeker) has interacted with an HPS in a given period of time.

• User: User related metrics are partly obtained from information that is specified in
the User Profile and partially derived from other metrics. For example, membership
is a measure of involvement in different projects or professional organizations. On
the other hand, skill level is a metric that can be derived from the user’s activities
in a certain area.

Various user related metrics can be obtained from the users’ profiles. Membership,
as depicted in Figure 5.6, can be used to establish a common context between users.
For example, users might work on common projects or might know each other from past
projects. This information can be utilized as evidences in the ranking procedure. More
metrics can be calculated based on human task-/HPS related information and statistics. In
addition, various metrics can be combined to establish compound metrics. However, at this
stage we present these metrics independently without going into the details of composed
metrics. Also, experiments and evaluations of metrics are based on individual classes of
metrics.

Before we start with the definition of various HPS-based metrics, we define the symbols
used in the following sections.

Chapter 5: HPS Framework 79

Symbol Meaning

T Denotes the set of human tasks, ht ∈ T .
TQ The set of all possible task states, q ∈ TQ.
H(c) The set of tasks in context c, H(c) = {hti|hti ∈ T, c ∈ C}.
s Depicts an HPS given s ∈ S.

HT (s) The set of tasks processed by s.
S(c) The set of services associated with a context c.

Table 5.3: HPS metrics and related symbols.

5.7.2 Task Metrics

Furthermore, we defined a task model in Fig. 3.6, Sec. 3.4.3, showing task states and
transitions between those states. Here we show the task model again — as define in Fig.
3.6 — making it easier to follow the definition and calculation of presented metrics.89:;<:=<> ?<:;@>A 8BB>CD>A

8=EFD>A GH;D;:D>A
8BD;9:D>A
I;H;JK>A

I:;<>A
8CCFE9>A
8JJ;LH>AMH:9:;<:=<>

ND:D> OF:HJ;D;EHO:JP ND:D>

:HHEQHB> R;DKAF:R
F>S>BD B<:;@B<:;@:JJ;LH F>S>BD :JJ;LH@>HD :BB>CD B<:;@:BB>CD :JJ;LH@>HD

A;JB:FA :=EFD JD:FD CFEB>JJ;HL
BE@C<>D>:BB>CD F>JCEHJ>

CFE9;A> ;HCQD
F>9EP> TT E=JE<>D>F>S>BD F>JCEHJ>

• We use functions to calculate the time spent in task states

– TS(Initiated, Activated): The time interval between Initiated, when the
input was provided, and Activated, start working on a task.

– TS(Activated, Finished): The time interval between Activated and Finished,
i.e., the actual time needed to complete a task.

• Processing time PT of a task ht is defined as the time interval TS(Activated, Finished).

Chapter 5: HPS Framework 80

Definition 5.7.1 (Expected Processing Time) The expected processing time of tasks
in context c

PTex(H(c)) =
1

|H(c)|
∑

ht∈H(c)

PT (ht) (5.2)

Definition 5.7.2 (Maximum Processing Time) The maximum processing time of tasks
ht ∈ H(c)

PTmax(H(c)) = max(PT (ht)) (5.3)

Let us define the set Happroved(c) comprising tasks that were Approved by requesters.
The set H(c) = Happroved(c)∪{ht| task state reached Aborted or Failed} contains Failed
and Approved tasks.

Definition 5.7.3 (Success Rate) The success rate SCR(H(c)) ∈ [0, 1] is calculated as

SCR(H(c)) =

{

|Happroved(c)|

|H(c)|
, if H(c) 6= ∅

0 , otherwise
(5.4)

5.7.3 Service Metrics

An interaction between a requester and HPS is a pair (ht, s). An interaction requires a
task to be Initiated and set to the Activated state. A task is Initiated by sending the
corresponding request to the HPS. The task goes to the Activated state as soon as the
users starts processing the task.

Definition 5.7.4 (Service Availability Factor) We calculate the availability factor SA
of a service as the ratio of the actual uptime UT (∆t, s), i.e., the time a service is avail-
able, in a given time interval ∆t compared to the maximum availability of a set of HPSs
∀s ∈ S(c). UTmax(∆t, S(c)) is defined as

UTmax(∆t, S(c)) = max(UT (∆t, s)) (5.5)

Suppose HTaccepted(s) and HTfinished(s) represent the set of Accepted tasks and the set
of Finished tasks, respectively.

Definition 5.7.5 (Request Response Ratio) The function RR(s) ∈ [0, 1] is calculated
as

RR(s) =
|HTfinished(s)|
|HTaccepted(s)|

(5.6)

Chapter 5: HPS Framework 81

RR(s) calculates the request/response ratio of s. In other words, RR(s) is a measure
of reliability that s will finish accepted tasks.

Our next step is to define a metric for responsiveness. Successful tasks are those tasks
that were accepted and then finished by the user. Let us define the set HT ′(s) = {ht|
task state reached Accepted and Finished} of successful tasks with the path π =
(Accepted, Initiated, Activated, Finished) in their execution traces (states that were
reached when executing the task). We calculate the activation time AT of a task as
TS(Initiated, Activated). We define the mean activation time as

ATmean(S) =
∑

s∈S

1

|HT ′(s)|
∑

ht∈HT ′(s)

AT (ht)

 (5.7)

We use the z-test function to determine whether the difference between ATmean(s) and
ATmean(S(c) \ {s}) is statistically significant. The standard error STE of the population
S ′ = S(c) \ {s} is given as STE(S ′) = σS′/

√

|S ′|, σS′ is the standard deviation of AT (S ′).
The z score for s is calculated as

z(s) =
ATmean({s})− ATmean(S ′)

STE(S ′)
(5.8)

Definition 5.7.6 (Responsiveness) We define the responsiveness based on RP (s) =
1− z(s) as

responsiveness(s) =

Low , if 0 < RP (s) < 0.5

Expected , if RP (s) = 0.5

High , otherwise

(5.9)

The next step is to define an aggregation function for the metrics SA, RR, and RP . The
importance when synthesizing service metrics is to model the relationship between each
metric. For example, how RR is related to RP and how to model the dependency between
these metrics. High responsiveness is desirable, but we need to take RR into account. For
example, a user might be highly responsive but unreliable in delivering desired response
(i.e., RR).

We express this dependency as RP − (1−RR), calculated as EXP (RP − (1−RR)) to
avoid non-positive values. (EXP is a function to calculate powers of Euler’s number e.)
The term (1 − RR) becomes negligibly small if a user has a good request/response ratio
but decimates RP otherwise. Also, we need to integrate the dependency on SA in our
calculation because low availability makes an HPS less valuable; even if RR and RP are
high.

Definition 5.7.7 (Relative Service Goodness) Let us define the relative goodness of
an HPS as

RSG(s) = EXP (wRSG ∗ (RP − (1−RR))− (1− wRSG) ∗ SA) (5.10)

Chapter 5: HPS Framework 82

The weight wRSG ∈ [0, 1] allows us to put more importance on how fast a user processes
a request/task, the term (RP − (1−RR)) or to put more priority on availability. For equal
importance we use wRSG = 0.5 (equal importance for both).

Figure 5.7 shows an example dataset (left), which we generated to demonstrate the effect
of RSG. The vertical axis shows the data sample for SA, RR, and RP ; the horizontal axis
in Fig. 5.7 (left) shows each metric; and the color schema is based on generated values [0,
1]. For example, if SA has a high value in a particular data sample (e.g., sample 2, 5, and
8), we see “hot” colors as defined by the color or “temperature” scale. Furthermore, we
calculate the euclidean distance dist(1) =

√

(1− SA)2 + (1−RR)2 + (1−RP)2.

(1 − SA), (1 − RR), and (1 − RP) can be seen as components of a three dimensional
vector. In the best case, each service metric has the value 1 (the highest score). Thus,
dist(1) returns lower numerical values of metrics that are closer to 1 (each metric is defined
within [0, 1]). However, the RSG values in Fig. 5.7 depict the scores based on aggregated
metric values. In other words, we show which score a particular HPS would obtain if SA,
RR, and RP would obtain values according to the generated data samples.

For wRSG = 0.5, we make the following observations: In sample 18 we see a good
ranking score based on high RP bot rather moderate SA. However, since RR is also high,
the user with such service metric values obtains a good RSA score. On the other hand, 17
shows very low RP and RR but good SA. Generally, if distance values dist(1) are low, we
also see better RSG scores. We could additionally parameterize RSG by using the weight
wRSG.

Service Metrics

RP RR SA

2

4

6

8

10

12

14

16

18

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.4 0.6 0.8 1 1.2 1.4

2

4

6

8

10

12

14

16

18

20

RSG
dist(1)

Figure 5.7: Intensity plot of artificial dataset generated for RP,RR, and SA within the
range [0,1] (left) and RSA based ranking scores (right).

Chapter 5: HPS Framework 83

5.7.4 User Rating of HPS

Requesters have the ability to associate ratings to interactions10. Ratings reflect the opinion
of requesters how valuable (i.e., level of satisfaction) the response is which was provided
by a particular user offering an HPS.

tt-1

tjir ,1, −tjir tjir ,
~

(a) (c)(b)

ntjir −,
~

t-1
vi

(d)

u1

u1

ui

uj uj

vi

uj uj

vi v1 v2

vi

Figure 5.8: Schematic illustration of HPS rating.

We calculate r̃ji as the exponential moving average (EMA) to smoothen the sequence
of ratings (i.e., short-term fluctuations). EMA gives more importance to recent ratings
while not discarding older ratings. This model is a simple yet effective method. We perform
the following steps:

• Consider interactions between vi and uj as an interaction trace vi
r(t−n)→ uj, . . . , vi

r(t−1)→
uj, vi

r(t)→ uj. We obtain a set of ratings {rji,t−n, . . . , rji,t−1, rji,t}, where i rates j (Fig.
5.8 (a)).

• We define η, 0 < η < 1, as a coefficient to smoothen previous ratings of vi; in
particular, based on the ratings vi has given to all other HPSs (Fig. 5.8 (b)). There-
fore, the factor η expresses the relationship between the two sets of ratings X =
{ru1i,t, ru2i,t, . . . , runi,t} and Y = {ru1i,t−1, ru2i,t−1, . . . , runi,t−1}, ∀ui ∈ outlinks(vi).
The calculation of η is performed based on the correlation coefficient correl(X,Y)
and a mapping of the coefficient (see 5.4.1.3 for the definition and mapping).

• We aggregate the set of ratings into r̃ji associated with an interaction between i and
j (Fig. 5.8 (c)). We use this formula: r̃ji,t = ηrji,t + (1− η)r̃ji,t−1.

• Finally, we calculate aggregated ratings AR(uj) for uj based on inbound interaction
links (Fig. 5.8 (d)). AR is calculated as the weighted sum of smoothened ratings,
n = |inlinks(uj)|:

AR(u) =
n

∑

i=1

w(vi)r̃ji,t
∑n

k=1w(vk)
(5.11)

10Providing reference or evidence.

Chapter 5: HPS Framework 84

However, this definition currently has no notion of trust. For example, how trust-
worthy the ratings of a particular user are or whether ratings should be filtered if
somebody is trying to “underrate” a certain HPS.

5.8 Task Rewarding Model

In Sec. 5.7 we discussed human task related metrics including expected processing time
PTex, maximum processing time PTmax, and success rate SCR. These metrics represent
properties of a particular domain in which tasks are processed. In particular, H(c) contains
tasks associated with a certain context or category. Various functions can be used to express
the relationship between task metrics.

5.8.1 Initial Rewarding Model

In this work, a function belonging to the family of sigmoid functions with the general form
P (t) = 1

1+e−t is used. Sigmoid functions are typically used to model systems that saturate
at large values of t, for example, the processing time of tasks in HPS.

Definition 5.8.1 (Task Rewarding Function) Let us define a function fT (PT (ht)) to
determine the reward that can be obtained based on the task processing time PT as:

fT (PT (ht)) =
ψ

1 + EXP
(

−
(

PT (ht)−σ
δ

)) (5.12)

Symbol Meaning

fT (PT (ht)) Task rewarding function based on task processing time PT (ht). Lower
numerical values indicate a better score.

τ Time interval (expiration time) after which ht fails.
ψ Defines the saturation of fT : [0, τ]→ [0, ψ], ψ ∈ [0, 1].
σ Parameter to define the horizontal displacement of fT .
δ Parameter to define the steepness of fT ’s slope.

fT 〈M〉 Task rewarding function parameterized by the model M(ψ, σ, δ).
Mαn

Depicts a rewarding model identified by the index αn.

Table 5.4: Task rewarding model and related symbols.

Chapter 5: HPS Framework 85

Mathematical Background

Let us define λ as PTmax−PTex. The factor σ = PTex + λ
2

determines the displacement of
fT . The slope can be parameterized by calculating δ. Suppose that we want fT to obtain
a value y = fT (PT (ht)) at PTmax, thus PT (ht) being f−1

T (y) = PTex + λ. Therefore, we

need to solve (1+e−
λ
2δ)−1. We can then horizontally expand or compress fT (the steepness

of the slope) by calculating

δ =
0.5λ

ln(y)− ln(y − 1)
(5.13)

Variable Description

PTex Determines the point where fT monotonically increases. From this point on
the score of ht exponentially declines.

PTmax The point where fT penetrates a certain threshold such that f−1
T (y) =

PTmax.
SCR Determines the slope of fT . The success rate indicates whether tasks will be

successfully finished or aborted. We can model the risk in a task category
by adjusting how steeply fT should increase.

f ′′
T Inflection point of fT . The derivative of P (t) is given as dP

dt
= P (1 − P).

Thus, given d2P
dt

= 1− 2P , f ′′
T can be approximated as:

f ′′
T ≈ min

ht∈H(c)
|1− 2(fT (ht))|

Table 5.5: Mathematical background initial task rewarding model.

Risk Range Numerical Example: f−1
T (y) = PTex + λ

Low 1 ≥ SCR > ξ1 Given that y = 0.9 and ξ1 = 0.8, the numerical value of
δ = 13.6536. Case fT 〈M1〉.

Medium ξ1 ≥ SCR ≥ ξ2 The penetration of fT at PTex + λ is set to y = 0.8 and
ξ2 = 0.5, δ becomes 21.6404 (see fT 〈M2〉).

High ξ2 > SCR ≥ 0 We set y = 0.65. The variable δ obtains the value 48.4622.
The corresponding function is fT 〈M3〉.

Table 5.6: fT 〈M〉 ,M ∈ {M1,M2,M3}.

Remark 5.8.2 (Numerical Examples) Table 5.6 shows the numerical values for fT 〈M〉
as depicted in Figure 5.9 (σ1 = σ2 = σ3 and ψ1...3 = 1).

Chapter 5: HPS Framework 86

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PT(ht)

R
ew

ar
d

M1
M2
M3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PT(ht)
R

ew
ar

d

M1
M2
M3

Figure 5.9: fT 〈M〉 (PT (ht)) (left) and refined model f ∗
T 〈M〉 (PT (ht)) (right): horizontal

axis shows the processing time PT of a task, normalized given time interval τ (expiration
time after which ht fails); vertical axis shows the reward or score of a task.

Figure 5.9 shows examples for fT whose shape is parameterized by rewarding models
M1,M2, and M3. For example, the case SCRM1

> SCRM2
> SCRM3

. As we can see in
Fig. 5.9, fT gives a higher score to those tasks that were processed in domains where the
success rate SCR is low. The intuitive justification for this behavior is that tasks that are
processed in a “high-risk” domain should be rewarded higher since each finished task is of
high value compared to domains where SCR is generally high.

However, we see that fT gives lower scores at PT (ht) < σ (in Fig. 5.9 (left), the task
processing time 0.5) for tasks being situated in ξ2 > SCR. Therefore, we need to refine
fT 〈M〉 (PT (ht)) and define a step-wise function.

Definition 5.8.3 Let us define f ∗
T as follows:

f ∗
T 〈M〉 (PT (ht)) =

{

fT 〈MΛ〉 (PT (ht)) , if d2P 〈M〉
dt

< f ′′
T 〈M〉

fT 〈M〉 (PT (ht)) , otherwise
(5.14)

MΛ determines fT ’s shape before reaching the inflection point. In our experiments we
set MΛ = M1 (i.e., low risk determined by high SCR). For an example, see Fig. 5.9
(right).

5.8.2 Trend-based Rewarding Model

The function fT associates a score or reward tr with tasks based on the task processing
time PT such that fT : [0, τ] → tr. Thus, given that a user processes a set of tasks over

Chapter 5: HPS Framework 87

time, we obtain a set of task rewards {trij|i ∈ {HT (s)} and j ∈ {S}}. (For simplicity, we
depict j as the user providing a particular HPS to process tasks.)

Proposition 5.8.4 A trend can be calculated by correlating tri−1j, obtained in f ∗
T 〈Ma〉,

and trij in f ∗
T 〈Mb〉, a = b ∨ a 6= b.

Proof 5.8.5 M = {Mα1
,Mα2

, . . . ,Mαn
} is a set of rewarding models depending on, for

example, time α1 = t1, α2 = t2, . . ., t1 < t2 < . . . < tn. Figure 5.11 shows the surface of
f ∗

T 〈Mα〉PT (ht). Let us define the vectors ~vm(Mαm
) =

(

PT (hti−1)
tri−1j

)

and ~vn(Mαn
) =

(

PT (hti)
trij

)

.

These vectors define points on the surface in Figure 5.11. The projected vector ~pmn =
(PT (hti−1)

t̂rij

)

transposes tri−1j(Mαm
) into an estimated task reward t̂rij(Mαn

) in f ∗
T 〈Mαn

〉.
The cosine of the angle between two vectors is calculated as cosϕ = ~vn~pmn/(‖~vn‖ ‖~pmn‖).
The reward trij can be rewritten as a complex number where ϕ is the argument of trij =
trij · eiϕ.

Figure 5.10: Calculating scoring trend.

Figure 5.10 visualizes the calculation of tr. On the left hand side in Fig. 5.10 (a), f ∗
T is

illustrated and the vectors ~vm and ~vn in their coordinate representations. In Fig. 5.10 (b),
which shows the PT − tr space by projecting ~vm into Mαn

. We determine an increasing,
decreasing, or unchanged trend by comparing the scales of ~vn and the projected vector ~pmn,
sc =

√

p2
mn,x + v2

n,y/
√

p2
mn,x + p2

mn,y.

Quotient sign(log(c)) Trend Remark

sc < 1 -1 increasing trend
sc = 1 1 decreasing trend cosϕ = 0
sc > 1 1 unchanged

Table 5.7: Determining the imaginary unit of eiϕ.

Chapter 5: HPS Framework 88

1

2

3

0

0.2

0.4

0.6

0.8

1

f
T
* PT(ht)

M
α

Figure 5.11: f ∗
T 〈Mα〉PT (ht): illustrating task metrics for different scoring models.

Chapter 6

Implementation

6.1 Abstract

In this chapter we present the implementation details of the HPS framework. The HPS
framework architecture has been presented in Chap. 5, Fig. 5.4, and comprises the Middle-
ware Layer, the API Layer, Design, and Runtime. We discuss the technologies used in this
work as well as the implementation details of various services. Furthermore, we present a
detailed overview of HPS Ranking and interaction analysis implementations. In Appendix
F, we present code listing relevant for interaction analysis. In addition, Appendix A pro-
vides screenshots of user interfaces. A discussion on middleware related components and
services was presented in (Schall et al. 2008a).

89

Chapter 6: Implementation 90

6.2 Middleware Layer

The middleware layer has been designed with the objective of providing a set of reusable
APIs and libraries. Specifically, we adopted OSGi (Open Services Gateway Initiative) as
deployment and runtime container.

6.2.1 Background

OSGi has been specified by the Open Service Gateway Alliance1. Various Java imple-
mentations exist of OSGi containers. We give some application examples of OSGi in the
following:

• Enterprise-grade services — to enable a mix of services implemented in heterogeneous
technologies; see Apache ServiceMix2.

• Platform runtime — to provide a managed runtime for dynamic, service-oriented
platforms; for example, see Equinox3 OSGi.

• Sensor networks — to enable dynamic provisioning of distributed, managed services
on embedded, networked sensor platforms; see (Schall et al. 2007, Section 5).

• Mobile phones — to manage and compose various services on embedded devices.

• Automotive domain — to provide an integrated environment for telematic services.

6.2.2 Managing XML Collections in HPS Framework

The HPS FS is an abstraction layer to manage XML collections within the HPS framework.
It provides the basic features to manipulate XML data as well as means to discover/register
services, metadata, and users.

6.2.2.1 Design Considerations

• Interoperability: We chose XML to represent collections of data to account for inter-
operability and standard compliance grounded in Web services technologies. XML
is a mature technology to model data using XML schema, annotation of data, and
exchange of XML data in distributed systems.

• Extensibility: Data models can be extended by using existing models and agreed
upon specifications.

1www.osgi.org/main/
2http://servicemix.apache.org/
3http://www.eclipse.org/equinox/

Chapter 6: Implementation 91

• Scalability: XML collections of data can be distributed across multiple repositories,
thereby achieving scalability in distributed environments.

• Accessibility: Data can be accessed by locating and querying repositories to obtain
resources expressed in XML.

6.2.2.2 Implementation Aspects

• Query & Update: We use the XQuery API for Java4 to connect to XML data sources.
On top of this API, the HPS framework offers CRUD capabilities to manage tasks,
users, service artifacts, and so forth. We use a native XML database to manage
resources (XSDs, WSDL, profiles, personal services definitions) and an SQL database
with XQuery capabilities to manage various types of messages.

This design decision was made to provide better performance in dispatching requests,
logging of interactions, and processing of large numbers of messages in interaction
analysis algorithms. Entity-relationship models describe the relations between enti-
ties and associated metadata; whereas the actual XML data can be saved in remote
repositories. The detailed database schema is shown in Fig. C.1 in Appendix C.

• Modules: Allow for extensions of elements in XML documents. Specifically, we
adopt and extend the Atom schema as a container format for elements such as tasks,
personal services, etc. A model can be specified by defining an interface containing
the definition of the namespace to determine the scope of the model; and the methods
setDraft, getDraft. The interface is inherited from the Module interface as defined
in Rome’s API5. Each module implements a ModuleParser and a ModuleGenerator,
which are responsible for managing the content under a given namespace.

• Protocol Layer: The protocol layer defines how resources can be manipulated. In
particular, resources can be accessed and manipulated by using the HTTP meth-
ods GET, PUT, POST, HEAD, DELETE in a transparent way, regardless of the
resources’ actual location (i.e., repository hosting a resource). This resource-centric
interaction style is based on the Representational State Transfer (REST) architecture
as introduced by Fielding (2000).

6.2.2.3 XML Examples

In this section we show actual XML examples illustrating i) the information saved in the
HPS registry and ii) public tasks that can be associated with HPSs.

HPS registry. Listing 6.1 shows an XML example of a service feed. Atom is used
as the XML format to associate metadata such as title, updated, etc. with resources.
As mentioned before, the Atom format can be extended by specifying modules to handle

4XQuery API for Java (JSR 225): http://jcp.org/en/jsr/detail?id=225
5Java tools for RSS and Atom feeds: https://rome.dev.java.net/

Chapter 6: Implementation 92

additional content elements, for example new extensions and definitions or inclusion of
existing metadata standards.

� �

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <f e ed xml:lang=”en” xmlns=” ht tp : //www.w3 . org /2005/Atom”>
3 <id>urn:uuid :60a76c80−d399−11d9−b93C−0003939 e0a f8</ id>

4 < t i t l e>HPS Index</ t i t l e>

5 <updated>2007−09−24T23:00:35Z</updated>

6 < l i n k h r e f=” ht tp : //{HAL}/atom? s e r v i c e s ”
7 r e l=” s e l f ” type=” app l i c a t i on /atom+xml”/>
8 <entry>

9 <id>urn:uuid :60a76c80−d399−11d9−b93C−1113939 e0a f8</ id>

10 <updated>2007−09−24T23:00:35Z</updated>

11 < t i t l e>Review Se rv i c e</ t i t l e>

12 < l i n k r e l=” a l t e r n a t e ” type=” app l i c a t i on /atom+xml”
13 h r e f=”/ s e r v i c e s / r e v i ew s e r v i c e . xml”/>
14 <category term=”humanrevieweddata” l a b e l=”documentreview”/>
15 <category term=”soap” l a b e l=” soap+xml”/>
16 <category term=” r e s t ” l a b e l=” j son ”/>
17 </ entry>

18 </ f eed>
� �

Listing 6.1: XML example of HPS registry feed.

Listing 6.1 contains the following elements:

• A (self) reference to the HPS index document (line 6 - 7), which is the service feed
containing definitions of HPSs. The service feed can be retrieved from an atom servlet
hosted by HAL.

• The service feed contains multiple entries (for example, one entry is shown in line
8 - 17). These entries contain a link to the XML document that defines the HPS
interface. For example, the “reviewservice.xml” would contain a WSDL definition of a
human-provided “review service”. The focus of our implementation is the use of Web
service technology and the support of related standards such as WSDL and SOAP.
Thus, the default HPS interaction format (standard) is in this example SOAP-based
(i.e., soap+xml).

In addition, other Web formats can be used in interactions. In this specific example,
we show the category json associated with the review service entry. This means
that both technologies, SOAP and/or JSON, can be used for interactions. Typically,
a one-to-one mapping of more complex XML data structures to JSON is not possible.
However, a detailed discussion on JSON versus XML-based Web formats and protocol
mappings are not provided in this work.

Task registry. Human tasks are managed by the task registry. The task registry offers
an API to publish announcements and to manage task instances (control tasks). Listing
6.2 shows an example of a task announcement.

Chapter 6: Implementation 93

� �

1 <f e ed xmlns=” ht tp : //www.w3 . org /2005/Atom”
2 xmlns :ht=” ht tp : //www. myhps . org /schemas/ task . xsd”>
3 < t i t l e>HPS Tasks</ t i t l e>

4 <updated>2007−09−24T18:30:02Z</updated>

5 <id>urn:uuid :63a99c80−d399−12d9−b93C−0003939 e0a</ id>

6 <entry>

7 < t i t l e>HPS Publ ic Tasks</ t i t l e>

8 <updated>2007−09−19T18:30:02Z</updated>

9 <id>urn:uuid :1223c696−cfb8−4ebb−aaaa−80da344ea6</ id>

10 < l i n k h r e f=” ht tp : //{HAL}/atom? ta sk s ” r e l=” s e l f ”
11 type=” app l i c a t i on /atom+xml”/>
12 < l i n k r e l=” a l t e r n a t e ” type=” app l i c a t i on /atom+xml”
13 h r e f=”/ s e r v i c e s / r e v i ew s e r v i c e . xml”/>
14 <category term=”humanrevieweddata”
15 l a b e l=”documentreview”/>
16 <d e s c r i p t i o n>

17 < ! [CDATA[d e s c r i p t i o n o f human task]]>
18 </ d e s c r i p t i o n>

19 </ entry>

20 </ f eed>
� �

Listing 6.2: XML example of public tasks.

• Similar to the service feed, the HPS tasks document contains a (self) reference (line
10 - 11) to the Atom-based servlet hosted by HAL.

• In this example we show that announcements are tagged with HPS information,
which may already exist in form of existing taxonomies, interface descriptions, or
other expertise and interaction information. The announcement contains a list of
public tasks that should be processed by a particular HPS type (“reviewservice.xml”
line 12 - 13).

Also, the category element can be used to add additional tags to public tasks.
The excerpt of the XML structure depicts that tasks are associated with a certain
category of HPSs by applying keywords such as “humanrevieweddata” and “docu-
mentreview” (line 14 - 15).

• Detailed definitions of human tasks are omitted in this example (description line 16
- 18) because human tasks are well-known in Web-based platforms such as Amazon
Mechanical Turk and in workflow-based systems (e.g., WS-HT).

Chapter 6: Implementation 94

6.2.3 HPS Access Layer

The HPS Access Layer (HAL) manages access to all resources in the framework, routes
requests, and logs interactions. It provides the entry point for all interactions with HPSs.

6.2.3.1 Design Considerations

• Transparance: Interactions between requesters and HPSs take place regardless where
the user is located. Interactions are not limited by, or dependent on, the device at
hand.

• Security: The privacy of users and security of data should be protected by providing
pre-filtering of requests and blacklisting of untrustworthy requesters.

• Continuity: Access to various resources should be guaranteed as well as interactions
in environments with disruptive network connectivity.

• Synchronicity: Interactions can take place in different modes:

– Online: dispatch and forward requests to the demanded service(s) immediately.

– Near-real time: dispatch and cache requests; delivery of requests to the de-
manded service(s) may take place in pull mode.

– Offline: manage requests in collections independent of the users availability.

6.2.3.2 Implementation Aspects

• Message Processing: The implementation of the front-end servlet passes each request
to the MessageProcessor, which dispatches and logs messages as service interac-
tions. We implemented message header/body processing capabilities — depending
on the content-type of the underlying message exchanged in an interaction. A
ConcurrentQueue manages messages to be logged in the desired format and reposi-
tory. The default format in HPS is a SOAPInteraction object which contains header
information and typed message bodies. Both, headers as well as the content of a
message, are made available for inspection, filtering and routing; thus providing the
capabilities for blacklisting and content-based routing. This can be accomplished by
specifying interaction rules. We use the JBoss Drools6 rules engine, which can be
deployed within the HPS middleware environment.

• Routing: Interactions in HPS may take place using various message formats. Al-
though the aim is to use Web services technologies, for example SOAP, and various
Web services standards; interactions in other formats are supported by HAL.

6JBoss Drools: http://www.jboss.org/drools/

Chapter 6: Implementation 95

– SOAP Router: Routes messages based on WS-Addressing7 information such as
To and From. HAL uses the WSDL4J library to check each message for confor-
mance with the WSDL interface definitions. Furthermore, automatic responses
can be generated, for example, to generate conversation identifiers. Therefore,
interactions with HPSs take place asynchronously by maintaining conversation
(session) identifiers.

– JSON Router: The aim of the HPS framework is not only to support interactions
by using standard Web services formats such as SOAP and XML, but also
integration with other Web technologies such as JSON. Specifically, JSON is well
suited to enable the exchange of messages when requesters use Web browsers
to interface with HPSs. Requests are then specified by providing the input
information needed so that HPSs can work on requests and tasks.

For this propose, HAL allows HPSs to be addressed via URIs and supports mes-
sage conversion, JSON to XML and back, depending on the service endpoint’s
(technical) capabilities. We have implemented various scripts to support the
AJAX-based exchange of messages and the dynamic inclusion (“injection”) of
HTML rendering elements in Web browser-based client environments. A de-
tailed example will be given in Sec. 7.3.

Listing 6.3 shows an example configuration to deploy HAL as a bundle in OSGi
(Equinox) container environments. Various OSGi-based services — such as HAL and HPS
FS — can be discovered in a single container, or even distributed containers by extending
OSGi’s registry/discovery capabilities, to composed capabilities. For example, HAL uses
the HPS FS and its XML APIs to manage the discovery, registration, and update of HPS
related information via an AtomServlet.

� �

1 Manifest−Vers ion : 1 . 0
2 Bundle−Mani fes tVers ion : 2
3 Bundle−Name : HAL OSGi Plug−in
4 Bundle−SymbolicName : hps . o s g i . ha l ; s i n g l e t on :=true

5 Bundle−Vers ion : 1 . 0 . 0
6 Bundle−Act ivator : org . myhps . ha l . Act ivator
7 Import−Package : org . e c l i p s e . equinox . http . r e g i s t r y ,
8 org . o s g i . framework ; v e r s i on=” 1 . 3 . 0 ” ,
9 org . o s g i . u t i l . t racker ,

10 org . myhps . framework
11 Require−Bundle : javax . s e r v l e t
12 Bundle−ClassPath : . ,
13 l i b /kxml2 . jar ,
14 l i b / sq l j db c . j a r

� �

Listing 6.3: Sample of HAL configuration and deployment in OSGi container environment.

7WS-Addressing: http://schemas.xmlsoap.org/ws/2004/08/addressing

Chapter 6: Implementation 96

6.3 HPS Design

The design of HPS interfaces has to be aided by tools suitable for people who do not have
any programming skills; people who are not familiar with Web service technologies and
service-oriented architectures. First, we discuss APIs and services within the API Layer.

6.3.1 HPS Design APIs

The HPS middleware services have been implemented in Java using an OSGi container
as hosting environment. The HPS design APIs and services have been developed in
ASP.NET/C# utilizing different subsystems via Web/REST services such as WSDL4J.
Figure 6.1 details the implementation aspects.

UVWXWY
UZ[\]Y
UVWXWY

Figure 6.1: Implementation HPS design.

• The FormProcessor can be extended by various plugins, denoted as XPlugin. These
plugins allow the user to specify complex data structures. The XModel defines the
Meta Model to translate user descriptions into XML schema.

• The ModelCompiler invokes the XsdModelProcessor to transform user descriptions
(HPS interfaces) into XML schema.

Chapter 6: Implementation 97

• The Xsd2XFormsTransformer translates the XML schema into XForms, which can be
rendered in browser-based environments, for example by using the Mozilla XForms
plugin8. On the other hand, various devices can be used by binding XML forms
descriptions to specific controls (e.g., Midlet controls in JavaME environments).

• The InterfaceEmitter generates WSDLs or forms depending on the HPS requester’s
preferences.

• The InstanceGenerator automatically generates and prepopulates instance docu-
ments based on the XML schema because at run-time XForms are bound to instance
documents (e.g., SOAP messages).

• The ActivityService allows users to manage activities that are performed by users
by associating Actions with them.

6.3.2 Meta Model for Interface Mappings

In this section, we present an exemplary Meta Model to support the mapping of GUI
elements to XML schema and forms. Table 6.1 shows the mapping of an XML type into
an XForms representation.

Model & Binding Description

XSD <xs:choice/>

Form <xf:select1 ref="" appearance="$model"/> with appearance
as $model parameter (“full” or “compact”)

Restriction/Model //*[@value=’Choice’]/prop[@name=’type’]/@value and
<xs:choice minOccurs="$model" maxOccurs="$model"> with
$model as parameters (minOccurs and maxOccurs being ”1”)

Table 6.1: Example of interface mapping.

• XSD is the predefined XML schema type.

• Form defines the mapping of XML schema to forms (GUI) representations.

• Restriction/Model is used to map a user control (XPlugin) to XML schema. In other
words, the user selects the desired elements (enumerations, choice, etc.) which are
then automatically translated to schema types.

The design of domain specific services can be tailored to the requirements of users. For
example, by modifying the behavior of user interface elements or by changing the schema
binding. The meta model can also be changed to better fit the appearance of the user
interface based on device requirements (e.g., binding and rendering of XForms on Java
mobile platforms). More descriptions of interface mappings are given in Appendix Sec. B.

8Mozilla XForms: http://www.mozilla.org/projects/xforms/

Chapter 6: Implementation 98

6.3.3 XML Examples

The following XML examples show how XForm technology is used for SOAP-based inter-
actions. A form represents an XML document, for example a WSDL, and its complex data
types. There are two essential steps:

1. The user inserts data or selects predefined elements in a given form.

2. When a user submits a form, the XML instance document, which is a SOAP envelope,
is populated with the data that are specified in the form’s GUI elements.

6.3.3.1 Input Form Representation

Listing 6.4 shows the XML representation of a form, which can be displayed by XForm-
compatible clients. Forms are used by a) human requesters to create an HPS request (i.e.,
the request document) and b) by users offering HPSs to work on those requests. The
switch/case construct defines the behavior of the form — request and response represen-
tation.

� �

1 <x f : sw i t c h>

2 <x f : c a s e id=” reque s t ” s e l e c t e d=” true ”>
3 <x f : l a b e l>Input d e f i n i t i o n s</ x f : l a b e l> . . .
4 <x f : submit submiss ion=”submit−enve lope ”>
5 <x f :message ev : event=”xforms−submit−done”
6 ev : ob s e r v e r=”submit−enve lope ”> . . .
7 </ x f :message>
8 </ x f : submit>
9 </ x f : c a s e>

10 <x f : c a s e id=” response ”>
11 <x f : ou tput r e f=”{ r e f e r enc e−in−in s tance−document}”
12 model=”model−enve lope ”> . . .
13 <x f : l a b e l>Submission output .</ x f : l a b e l>
14 </ x f : ou tput>
15 </ x f : c a s e>
16 </ x f : sw i t c h>

� �

Listing 6.4: Input form representation.

6.3.3.2 XForm Model for SOAP

The next step is to wrap requests in SOAP envelopes. Each message and request is sent
towards HAL, which inspects, routes, and saves requests. SOAP messages contain header
elements such as WS-Addressing information which comprise MessageID, To, and other
information that is used for message routing and filtering. Listing 6.5 shows how XForms
are used to submit HPS requests to HAL as SOAP instance documents.

Chapter 6: Implementation 99

� �

1 <xf :mode l id=”model−enve lope ”>
2 <x f : i n s t a n c e id=” instance−enve lope ” s r c=” review . xml”/>
3 <x f : s ubmi s s i on id=”submit−enve lope ” ac t i on=”{HAL}”
4 method=”post ” mediatype=” text /xml” r ep l a c e=” in s tance ”>
5 <x f : t o g g l e ev : event=”xforms−submit−done” case=” response ”/>
6 </ x f : s ubmi s s i on>

7 </ xf :mode l>
� �

Listing 6.5: SOAP interaction model.

• The submit-envelope element defines what happens when the user clicks submit.
The action tag defines the endpoint (HAL in this case) of the submission target.

• The instance document is modified and submitted upon submission (“review.xml”).

• The toggle tag defines that the response should be shown once the submit action
was performed.

6.3.4 Implementation User Tools

In this section we show user tools to find HPSs and software services; and furthermore
tools supporting the design of HPS.

6.3.4.1 Registry and Lookup

The first tool is based on a screenshot showing aspects of a portal that was implemented
by the European Microsoft Innovation Center as part of the inContext service management
system. Although the service management portal was designed and implemented for Web
services professionals and developers; the screenshot will be used to illustrate the basic
idea of the HPS registry.

Figure 6.2: Registry maintaining WSDL descriptions of human and software services.

Chapter 6: Implementation 100

Two features are shown in the screenshot:

• Registry: new services can be registered or existing services can be listed and/or
unregistered.

• Lookup: user can search for existing services.

1. The user specifies a query, which comprises a set of keywords.

2. Existing services are matched and ranked. The ranking can be performed as
discussed in the HPS design, for example based on user profiles or preferences.

3. A list of services is returned and displayed in a ranked order. The first result is
a ReviewService — the example we already used in our previous discussions.
This service is provided by a human actor and has two Web service operations:
GetReview (the request) and GetReviewReply to obtain the review response.
Notice, GetReviewReply is not the synchronous response of GetReview. At the
technical (Web services) level, it is a Web service request to obtain the review
reply in an asynchronous manner.

6.3.4.2 User Control for HPS Design

The HPS framework provides a set of design tools offering features in a Web 2.0 enabled
portal. Using the Web portal, people can define control elements, options, and definitions
of what format a request and the corresponding response should have. The specified high
level description is automatically translated into low-level XML documents such as XML
schema, instance documents, WSDL descriptions and XForms depending on the requester;
a human requester or (software) process. The approach we take is that users should have
the ability to design which service they want to provide. The HPS design tools are flexible
and can be extended by adding different controls. These controls enable the design of
complex data structures. With the help of meta models, user interface elements can be
translated to XML schema. In addition, integration with other systems, for example B4P
implementations, can be achieved because in HPS we follow a Web services/SOA-based
approach; that is, based on open XML standards such as WSDL and SOAP.

A screenshot of a control is given in Figure 6.3, allowing users (experts) to define
elements of activity types that are mapped onto Web services. In the given example, we
see a generic question template which is customized by users who design activity types.
Using the HPS design tool, all XML artifacts needed to enable human interactions in SOA
are generated on the fly.

• Preview as Form to render an XForm presentation.

• Show as XML (for demo purposes) translates user defined elements into XML schema.

• Show as XML Instance (for demo purposes) displays the associated XML schema
instance document.

Chapter 6: Implementation 101

Figure 6.3: Example user control.

6.4 HPS Interaction Analysis and Ranking

In this section we discuss the HPS Ranking architecture and its implementation within the
HPS framework. Packages implemented in this subsystem include the global importance
ranking algorithm as presented previously in Chap. 4 and collaborative filtering algorithms
that are used in the design of HPS.

6.4.1 Architecture

The architecture of implemented interaction analysis APIs is illustrated in Fig. 6.4. At
a high level, these packages can be categorized in Link Analysis API, Graph API, and
Interaction DB. The database schema for capturing HPS interactions can be found in
Appendix C. The aim of HPS ranking and related libraries is not only to study impor-
tance ranking based on HPS interactions (i.e., in SOA), but human and service interactions
in general. Therefore, the methodology we apply is to use different datasets, for exam-
ple, interactions based on human collaborations, to study different metrics and ranking
algorithms.

Chapter 6: Implementation 102

Figure 6.4: Interaction analysis overview.

6.4.2 Implementation Aspects

• Interaction DB: At the lowest level, the db package contains the facilities to interact
with various databases. Each dataset including HPS interactions, human interactions
— email graphs, cellphone communications, to name a few — are made available as
a datasource for analysis.

– model: defining abstractions and concepts in order to map raw logs, interac-
tions, artifact representations in collaborations (examples include coediting of
documents, comments in discussion forum), into a basic model accessible to the
programmer.

– interface: defining the retrieval API and parameterized queries, selection and
filtering, and type information.

Chapter 6: Implementation 103

– querymanager: manages queries for a given dataset including SQL statements
and XQueries.

– implementation: the implementation of a specific datasource. This is usually
done by mapping interactions into a graph representing the underlying collab-
orations and interactions. Also, the implementation may contain visualizations
specifically designed for a given datasource.

• Graph API: There are many different open-source implementations of basic graph
APIs in Java. In this work, we use the software libraries provided by the JUNG
project9. These libraries are open-source and implement the basic facilities for mod-
eling, analysis, and visualization of graphs.

We extend these API — for graph modeling — by providing features for subgraph
decomposition, management, metric computation and subgraph specific operations
(e.g., analysis and ranking).

• Link Analysis API: We implemented a set of graph algorithms for interaction anal-
ysis. To this end, these algorithm are mainly based on authority ranking in networks
and furthermore offer features to compute graph statistics. Our analysis mainly
focuses on context-dependent link analysis. Thus, most experiments focus on per-
sonalizations (e.g., personalized recommendations) and context-dependent metrics.

Furthermore, we implemented a set of ranking evaluation metrics including Kendall’s
τ , relative ranking change, top-k set, and utility metrics. However, visualizations of
networks and ranking results are an important tool to understand and interpret
results. In addition to above mentioned metrics, which are applicable to most ex-
periments irrespective of the underlying interaction network, we define metrics for
specific interactions graphs (i.e., for a given datasource).

6.4.3 Visualization

We have implemented various graph visualization tools to study ranking and analysis
algorithms. The implemented extensions on top of JUNG’s visualization framework have
been defined based on importance ranking, intensity and weighting metrics, and include:

• Graph coloring for vertices and edges using different coloring schemes.

• Shape transformations based on above mentioned metrics to easily detect relations
between entities and the importance thereof.

• Clustering and filtering such as subgraph visualizations and top-k set visualization
viewers.

9Java Universal Network and Graph Framework: http://jung.sourceforge.net/

Chapter 6: Implementation 104

An example instance of a graph is shown in Fig. 6.5. In this particular screenshot, we
see labeled links with:

• Each link is associated with multiple context identifiers (tags). The level of detail
(i.e., how many of those context identifiers to be displayed) depends on the weight
of a context tag. Filtering can be applied to show only the most important context
tags. Thus, not only links can be filtered but also the level of detail of displayed
context information for each link.

1. First line: link-context information with context identifier (tag) and associated
weight in parenthesis (e.g., 3.2 (0.33)).

2. Second line: link-context ranked at second place (i.e., the second most important
context used in an interaction link) with the same format.

• Additional metrics can be visualized based on the dataset characteristics and/or
performed analysis. In this example (third line) we show link affinity.

Figure 6.5: Example screenshot of interaction visualization and ranking.

Chapter 6: Implementation 105

The coloring of vertices and edges is performed by using a sequential, fixed class-size,
color mapping. Currently we use 5 different classes, separated by the geometric mean
of the distribution of ranking scores. We use a sequential color mapping provided by
“ColorBrewer”10. Algorithm 6.1 shows the coloring of a set of ranked vertices based on
raw ranking scores. Edge coloring is performed in a similar manner by ranking edges based
on link metrics, for example, weight or intensity.

Algorithm 6.1 Vertex coloring based on ranking scores.

1: input: Vector V R with ranked vertices.
2: input: N coloring classes (|classes|).
3: output: Color info for each vertex in the graph.
4: /* Initialize variables. */
5: class← |classes|
6: length← |V R|
7: /* Sort V R by descending rankings. */
8: sort(V R)
9: while coloring not finished do

10: if class = 0 then
11: /* Vertex coloring finished. */
12: Exit loop.
13: end if
14: /* We calculate the geometric mean to create N classes of colored vertices. */
15: mean← 0
16: for each vertex v ∈ V R do
17: mean← mean ∗ getRank(v)
18: end for
19: mean← length

√
mean

20: index← length
21: while threshold not reached do
22: if getRank(V R[index]) > mean and class > 1 then
23: /* Ranking threshold using raw scores has been reached. */
24: length← index.
25: Break loop.
26: else
27: setColorInfo(V R[index], class)
28: decrement(index)
29: end if
30: end while
31: decrement(class)
32: end while

10ColorBrewer: http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer.html

Chapter 7

Evaluation

7.1 Abstract

In this chapter, we present the evaluations performed in the course of this thesis. We
performed the following experiments:

1. Evaluation of the HPS interaction analysis approach: we provide a detailed analysis
using various datasets including tagged-email messages and cellphone communica-
tions. We focus on a detailed evaluation and discussion of ranking results using these
datasets. This approach is needed because at this stage we were not able to deploy
the HPS framework for public use. Therefore, access to a sufficiently large repos-
itory of real interactions was only possible using aforementioned sources of human
conversations and communications.

2. We demonstrate an HPS use case in open collaboration environments. This use
case is implemented on top of the HPS framework showing various artifacts used in
collaborations and the steps performed by users (i.e., HPS) and requesters.

3. We provide an overview of mobile Web services toolkits and present a methodology
and evaluation of Web services on mobile devices. Understanding whether Web
services and related toolkits are supported on such devices was one the first tasks
in the research presented in this thesis; e.g., (Schall, Aiello, and Dustdar 2006) and
(Schall et al. 2007). Use cases involving mobility aspects are compelling application
scenarios for HPS because collaboration in an anytime, anywhere manner is becoming
increasingly important.

106

Chapter 7: Evaluation 107

7.2 Ranking Experiments

First, we establish a set of ranking metrics to test the effectiveness of DSARank compared
to PageRank. We provide graph visualizations of ranking results using the intensity-based
DSARank as well as the context-aware DSARank, followed by discussions of results based
on ranking statistics.

7.2.1 Evaluation Metrics and Comparison of Ranking Algo-

rithms

• Kendall’s τ : We use the definition of Kendall’s τ by Fogaras et al. (2005). Consider
the pairs of vertices v, w. The pair is concordant if two rankings agree on the order,
disconcordant if both rankings disagree on the order, exact-tie if the exact ranking
does not order the pair, and approximate-tie if the approximate ranking does not
order the pair. Denote the number of these pairs by c, d, e, and a, respectively. Given
the total number of pairs as m = n(n−1)

2
, n = |U|, then Kendall’s τ ∈ [−1, 1] is defined

as:

τ =
c− d

√

(m− e)(m− a)
(7.1)

Kendall’s τ helps us to understand whether two algorithms are rank-similar. In other
words, if τ equals 1, there are no cases where the pair v, w is ranked in a different
order.

• Relative Ranking Change (RRC) (Wang et al. 2008): Suppose a user u is ranked
at position d by DSARank and at position p by PageRank, then u’s RRC ∈ [−1, 1]
is given as:

RRC(u) =
d− p
d+ p

(7.2)

If RRC(u) < 0, then u is in the set RRCp of those users promoted by DSARank,
otherwise demoted RRCd. We calculate the percentage of promoted users as:

PP =
|∑u∈RRCp

RRC(u)|
|∑u∈RRCp∪RRCd

RRC(u)| (7.3)

• Top-k Set Metrics: We define the overlap similarity OSim(Tk1, Tk2) of the top-k
sets Tk ranked byDSARank and PageRank asOSim(Tk1, Tk2) = Tk1∩Tk2

k
(Haveliwala

2002).

For a small teleportation probability (1 − α), ranking results are robust in terms of
τ . Low α (e.g., α < 0.45) results in frequent teleportation swamping the resulting ranked
network. For all experiments, we use a damping factor of α = 0.85.

Chapter 7: Evaluation 108

7.2.2 Effect of Interaction Intensities

Here we compare DSARank and PageRank results using iin, iout, and IIL metrics given
the structure and dynamics of the interaction network. We make no assumptions about
the nature of underlying interactions, position of people, or the context of a conversation
(private or business-related). We entirely focus on the effect of interaction intensities on
ranking results. In Fig. 7.11, we see the visualization of ranked nodes in a network.

Remark 7.2.1 (Applied Filtering) We perform filtering of users to select those users
with indegree greater than 1; that is, if a user interacts with at least two different users. In
addition, we remove duplicated call information, for example, multiple call records between
two users that have the same time interval.

Figure 7.1: (Color online) Top-30 ranked users by DSARank based on selected communica-
tions. Users are depicted as nodes in the graph where the size of each circle is proportional
to the user’s importance (a cut-off is applied to limit the maximum size of a node). Edges
are colored based on edge-strengths proportional to interaction intensities (normalized).
Personalization is performed by using dynamic properties of the human interaction net-
work. High IIL yields high importance because IIL is a metric for the users’ contribution
to the information flow. Acting with high intensity (locally) matters for global importance.

1Due to graph-visualization reasons, there is a small offset of the tip and the tail of incoming/outgoing
edges (the arrow depicting edges) connected to the largest and the second largest node.

Chapter 7: Evaluation 109

The properties of the resulting rankings are that the importance of users is not only
influenced by the degree of incoming links but also the intensities of interactions with
other (important) users. Interestingly, we find that users having high IIL with important
nodes, but low indegrees, still fill top positions in the ranking results. We use equal metrics
weights for IIL and availability. Figure 7.1 shows the resulting visualization.

In the following we show two tables: Table 7.1 contains ~DSA and ~PR scores and rank-
ings of users based on selected conversations in the mobile phone network. In particular,
we select only those calls in 2004-08. Users are sorted by decreasing DSARank score.
Table 7.2 is created in a similar manner; however, users are sorted based on PageRank
scores. Also, in both tables iout and iin intensities are percentage values and the metric
availability is abbreviated as AV .

ID score ~DSA rank ~DSA score ~PR rank ~PR iout iin IIL AV

43 0.110183 1 0.030705 6 2.74 0.58 0.027978 0.077728
187 0.071380 2 0.004090 90 6.60 8.85 0.110395 0.052550
39 0.050639 3 0.028502 8 1.11 0.62 0.012730 0.032829

313 0.049208 4 0.004369 74 13.21 4.72 0.140244 0.021839
21 0.047523 5 0.029582 13 1.26 0.78 0.014839 0.018402
29 0.043959 6 0.031956 11 5.29 0.72 0.053370 0.090770
83 0.043492 7 0.042618 1 2.71 0.57 0.027711 0.101583
49 0.035641 8 0.003925 100 0.00 10.76 0.107589 0.045642
95 0.027682 9 0.003708 105 0.00 8.57 0.085738 0.048684
50 0.025403 10 0.004090 93 4.38 3.14 0.053894 0.004553

Table 7.1: Top-10 list of users based on DSARank.

Discussion Table 7.1. The first observation in Table 7.1 is that high-IIL with
important users increases the position of users dramatically. For example, although the
user 187 (in Fig. 7.1, 187 is displayed as the second-largest node located next to the
most important user — largest node in the network) is ranked as “unimportant” by the

unbiased PageRank (only at position 90 in ~PR); user 187 is promoted to the top-10 list
due to very high-IIL with a user, whose PageRank is already very high. This is the desired
behavior in our ranking model because we expect close collaborators of important users to
be important as well; regardless of indegree.

Additionally, we see in Table 7.1 two users with imb(IIL) = 1 moving up to the top-10
ranked users. Given that the dataset contains partial observations of interactions, it is
likely that only a fraction of both users’ interactions have been captured. However, as in
real collaboration scenarios, it is unlikely that we can capture all interactions of users at
all times. We can verify in Fig. 7.1 that ID 49 (located in top-left corner having a single
high-weighted, inlink from a high-ranked user) and ID 95 (located in top-right corner and
similarly connected with a single high-ranked user) are not well connected with the rest of
the network, but have iin links from very important users.

Chapter 7: Evaluation 110

ID score ~PR rank ~PR score ~DSA rank ~DSA iout iin IIL AV

83 0.042618 1 0.043492 7 2.71 0.57 0.027711 0.101583
85 0.037551 2 0.008548 25 0.40 0.08 0.004114 0.009620
8 0.033555 3 0.003750 48 0.08 0.08 0.001195 0.005848

57 0.032718 4 0.020943 15 0.35 0.19 0.004004 0.019368
29 0.031956 5 0.043959 6 5.29 0.72 0.053370 0.090770
43 0.030705 6 0.110183 1 2.74 0.58 0.027978 0.077728
21 0.029582 7 0.047523 5 1.26 0.78 0.014839 0.018402
39 0.028502 8 0.050639 3 1.11 0.62 0.012730 0.032829
20 0.024837 9 0.023832 12 0.71 1.10 0.013113 0.038612
18 0.021950 10 0.009347 24 0.26 0.21 0.003324 0.014028

Table 7.2: Top-10 list of users based on PageRank.

Discussion Table 7.2. We show in Table 7.2 the same collaboration network sorted
by ~PR scores. For example, we see that the user with ID 8 was demoted substantially
because IIL is very low compared to other top ranked users.

7.2.2.1 Summary of First Observations

To conclude our discussion on these first observations, we believe that DSARank accounting
for IIL and availability metrics is better suited to recommend users. In our ranking
model two facts help to discover important users. On the one hand iin intensities with
high-ranked users promote the importance of individuals. For example, in collaborations
these users receive much information from knowledgeable people — even if the link-degree
of those nodes (users) is low.

On the other hand, high-indegree nodes with low IIL are demoted by DSARank.
A possible interpretation of this behavior is, for example: if ranking scores are updated
within relatively short time frames, say every week or second week, we may discover that
individuals are perhaps overloaded in terms of the amount of tasks or requests users have
to work on. Thus, users may not interact with high IIL because of their workload that has
accumulated over time. Thus, DSARank can prevent individuals from being overloaded
by considering the IIL of users. If low IIL is preferred in the ranking model, we could
simple use the inverse value of IIL. One might argue that users with few inbound links
from a single source, potentially with iin-skewed IIL characteristic like in the interactions
of the nodes with ID 49 and 95 (see Figure 7.1); should not be able to improve their
importance rankings substantially. We could additionally penalize these cases by varying
the IIL parameter β.

In the following we discuss Kendall’s τ and ranking changes in the mobile phone network
using a 1 month time window to update rankings. We index each month from 1 - 11 by
starting at 2004-07, depicted as period 1, until 2005-05, depicted as period 11.

Chapter 7: Evaluation 111

7.2.2.2 Kendall’s τ

Table 7.3 shows the comparison of DSARank and the unbiased PageRank with p(u) = 1
and outdegree-based edge weights; and also PageRank in the weighted network using
intensity-based weights.

Period 1 2 3 4 5 6 7 8 9 10 11

τ (unbiased) 0.35 0.34 0.51 0.54 0.48 0.51 0.44 0.43 0.33 0.26 0.36
τ (weighted) 0.63 0.61 0.82 0.87 0.82 0.81 0.74 0.70 0.65 0.68 0.51

Table 7.3: Comparison DSARank and PageRank showing Kendall’s τ in different periods.

The first comparison (unbiased) shows that there is no strong disagreement between
~DSA and ~PR. Otherwise, we would violate our initial assumption that PageRank applied

to human interaction analysis is suitable to determine the importance of users. A stronger
agreement in rankings is achieved by using iout intensity based link weights (comparison
weighted).

7.2.2.3 Relative Ranking Change

The next step in our evaluation is to determine for which users we observe rank-
ing changes. We measure whether users get promoted or demoted given the users’
availability and IIL. We calculate the range for both metrics as max(availability)−
min(availability) and max(IIL) −min(IIL), respectively. For both metrics, we seg-
ment the range linearly into a number of buckets. Then, we calculate RRC and PP for
each bucket to show how many users given availability and IIL were promoted; that is
RRC < 0. We compare the relative ranking change by using DSARank and the unbiased
PageRank. Over the entire period (period 1 - 11) we observer that on average the number
of promoted users PP equals 0.46 for both metrics. In other words, given the total num-
ber of users in a certain period, on average a fraction of 0.46% were promoted and 0.54%
demoted.

In Fig. 7.2, we show two sets of figures delimited by the horizontal line: the top set
shows RRC for availability and the bottom set of figures RRC for IIL. Each set has
11 sub-figures, which depict the ranking changes for each metric in periods ranging from
for 1 to 11.

Given a set of figures (for a specific metric), we show ranking changes for period 1 in the
top-left sub-figure, continue with the second sub-figure in the same row to denote period
2 and continue in this manner (left to right and top to bottom) until period 11. Typically,
5 buckets are shown at the horizontal axis. However, empty buckets are not shown.

Chapter 7: Evaluation 112

0 0.21
0

0.5

1

0 0.1
0

0.5

1

0 0.06
0

0.5

1

0 0.06
0

0.5

1

0 0.05
0

0.5

1

0 0.05
0

0.5

1

0 0.09
0

0.5

1

0 0.09
0

0.5

1

0 0.09
0

0.5

1

0 0.13
0

0.5

1

0 0.17
0

0.5

1

0 0.13
0

0.5

1

0 0.38
0

0.5

1

0 0.34
0

0.5

1

0 0.45
0

0.5

1

0 0.41
0

0.5

1

0 0.26
0

0.5

1

0 0.14
0

0.5

1

0 0.16
0

0.5

1

0 0.1
0

0.5

1

0 0.14
0

0.5

1

0 0.38
0

0.5

1

Figure 7.2: RRC and PP measured for availability (top figures) and IIL (bottom
figures) delimited by horizontal line.

Chapter 7: Evaluation 113

Discussion availability. In most cases we see regularities in promoting users with
increasing availabilities. A 10% rule applies: 90% of the users in RRCp are in the first
bucket (lower availability segment), while the remaining 10% are distributed across the
other buckets. Interaction intensities have a strong impact on link-weights and thus PP
in general. If both metrics are equally weighted; intensities dominate promotion of users,
which we confirm in the IIL-related sub-figures.

Discussion IIL. A similar distribution rule of users across buckets applies. All users
having high IIL were promoted but never demoted. Also, we see an upper threshold of
PP = 0.5 in the lower IIL segment (e.g., first bucket). Users with low IIL are more likely
demoted than promoted.

7.2.2.4 Overlap Similarities

In Table 7.4, we show OSim in various top-k sets of obtained rankings. OSim of DSARank
and the unbiased PageRank are denoted as nobias.

~DSA, ~PR k = 10
(nobias)

k = 10
(weighted)

k = 30
(nobias)

k = 30
(weighted)

k = 50
(nobias)

k = 50
(weighted)

avg 0.38 0.65 0.55 0.81 0.67 0.85
σ 0.08 0.13 0.06 0.05 0.11 0.05

Table 7.4: OSim DSARank versus PageRank: avg is the average overlap similarity (period
1 - 11) and σ the standard deviation of overlap similarities.

Table 7.4 confirms our initial assumption of not having strong disagreements between
DSARank and the unbiased PageRank. On average, we see an overlap of OSim = 0.3 in
the top-10 segment compared to the unbiased PageRank.

7.2.2.5 Summary

To summarize our evaluation on the role of intensity and availability metrics: availability
is coupled with IIL and not always dominant in the upper availability segments. For IIL,
we see clear regularities. Users with high-IIL are always promoted and, on the contrary,
low-IIL more likely demotes users’ importance. We believe that this behavior covers the
requirements of real-life collaboration environments: availability itself does not guarantee
promotion of users because individuals need to be active players and involved in interac-
tions and collaborations.

7.2.3 Experiments in Labeled Interaction Graph

In this section we specifically focus on the proposal of ranking users in context-based
interactions. For this purpose, we use the Enron email dataset2.

2Enron email: http://bailando.sims.berkeley.edu/enron email.html

Chapter 7: Evaluation 114

7.2.3.1 Tagged Message Corpus

A subset of messages of the entire message corpus were labeled by UC Berkeley’s Natural
Language Processing group. These tags were applied to about 1700 messages. The tagged
message corpus serves well to test our context-based ranking approach. Different categories
of tags were applied to interaction links comprised of messages between people with the
focus on business-related emails. 13 categories or contexts are available (Table 7.5).

0

500

1000

1500

2000

2500

Frequency

0

100

200

300

400

500

600

700

Distinct Users

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Cumulative Probability

Figure 7.3: Tag-statistics in email interactions: left figure shows the frequency of tags
given as the total number of occurrences; middle figure depicts the distinct number of
users participating in an interaction context (i.e., if one of the user’s interaction links
contains the tag); right figure shows the cumulative smoothened probability of tags.

ID Index Description

3.1 2 Regulations and regulators (includes price caps)
3.2 5 Internal projects – progress and strategy
3.3 3 Company image – current
3.4 6 Company image – changing / influencing
3.5 10 Political influence / contributions / contacts
3.6 1 California energy crisis / California politics
3.7 7 Internal company policy
3.8 9 Internal company operations
3.9 11 Alliances / partnerships

3.10 4 Legal advice
3.11 13 Talking points
3.12 8 Meeting minutes
3.13 12 Trip reports

Table 7.5: Primary categories in labeled interaction graph. The index establishes the
correspondence to the tag-statistics in Fig. 7.3 (horizontal axis).

Chapter 7: Evaluation 115

7.2.3.2 Applied Expansion and Filtering

We expand the subset of labeled messages by searching the entire email-message corpus
for related messages. For example, given a labeled message, we search for messages which
are most likely related to the labeled message; for example, in reply-to or forwarded

messages. Thereby, we expand the existing labeled message corpus by adding 5248 related
messages. However, some messages are simply “broadcast” messages (e.g., announcements
or periodic auto-generated messages from a person), which we filter out because these
messages might distort ranking results. In addition, sender and recipient of messages must
be real people (e.g., we filter messages from — and to — distribution lists) because we are
interested in link-based importance rankings of people.

7.2.3.3 Ranking Parameters

In all experiments presented in this section, we set the IIL parameter β to 1.2; therefore
assigning a bias to out-intensities. In our previous experiments, we did not use an imb
threshold (imb denoting the imbalance of interactions). Here we use a filter of −0.9 <
imb(IIL) < 0.9. If imb(IIL) of a user is not within this range, we “downgrade” the user’s
IIL(u; c) to 0. This is motivated by the following reason: phone calls are synchronous,
thereby guaranteeing an information flow between users. Whereas email links between
users might be irrelevant if IIL is strongly imbalanced. For example, a user who is active
in a given context, but never receives a reply (indegree(u) = 0 as well as imb(IIL) = −1).
In addition, we will focus on the impact of IIL and SE, which we equally weight, without
parameterizing DSARank with availability.

7.2.3.4 Context Coupling and Subgraph Intensities

Figure 7.4 shows whether different interaction contexts have many shared (i.e., overlapping)
links. In other words, interaction links may contain tags that belong to different contexts.
Therefore, we speak of an overlapping link ℓ(C ′) between c1 and c2, if {c1, c2} ⊆ C ′.

ID 3.9 3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

i(g) 7.43 6.03 5.98 4.54 4.42 4.04 3.96 3.10 3.06 2.83 2.12 1.81 1.06

Table 7.6: Intensities i(g) for different subgraphs (103 × i(g)).

We connect two categories if links are annotated with the same context tags. The node
size and coloring scheme is based on subgraph intensities as depicted in Table 7.6. The
context (category) 3.9 constitutes the subgraph with the highest intensity, whereas 3.6 has
the highest degree of shared links.

Chapter 7: Evaluation 116

Figure 7.4: (Color online) Visualization of shared links between different contexts.

7.2.3.5 Filtering Algorithm

In the following experiments, the visualization of ranking results and interactions between
users are filtered using the following algorithm:

1. We create two sets Tk1 and Tk2 of top-k ranked users.

2. If rank(u) ≤ k1, we add u to Tk1, otherwise to Tk2 if rank(u) ≤ k2.

3. We remove all users u ∈ g which are not in Tk1 ∪ Tk2.

4. For each user in Tk2 we demand a minimum degree mink=1 of connectedness to Tk1

users. We remove u ∈ Tk2, if u is not connected to at least mink=1 users.

5. For each user in Tk1, we test whether u ∈ Tk1 is connected to at least mink=1∪2 users
in Tk1 ∪ Tk2.

By using the above algorithm, we ensure that all users in the visualized graph are
connected to a minimum number of top-ranked users.

Chapter 7: Evaluation 117

7.2.3.6 Applying DSARank in Context-Dependent Interactions

As a first example, we select the subgraph for 3.6 (i.e., the specific interaction context)
and rank all users. The detailed results are provided in Table 7.7. Figure 7.5 shows the
visualization of interactions of top-ranked users (according to the filtering algorithm). We
set mink=1 = 2, mink=1∪2 = 2, |Tk1| = 5, and |Tk2| = 15. With these parameters we have a
reasonable number of interactions and users in our graph visualization.

In Fig. 7.5, we see similar characteristics in terms of importance rankings as we observed
previously in rankings based on mobile phone calls (i.e., Fig. 7.1). Not only many incoming
interactions with important users matter, intensity in a given context dependent subgraph
g plays a keyrole. It is well possible that users get promoted (in some cases substantially)
because they interact with important users in a given context with high intensity. Thus,
DSARank provides accurate results as users are not ranked in a single context.

Figure 7.5: (Color online) Example of context-aware DSARank: we select context 3.6
(California energy crisis / politics) and perform ranking. The subgraph g comprises 11839
messages, 1852 links, and 469 users. We use two metrics, IIL with bias β = 1.2 and
calculate SE within g. Both metrics are weighted with 0.5.

.

Chapter 7: Evaluation 118

ID score ~DSA rank ~DSA score ~PR rank ~PR IIL imb

37 0.109475 1 0.004121 21 7.31 -0.81
8 0.102375 2 0.020758 1 5.13 0.11

90 0.043071 3 0.008326 9 1.1 0.08
253 0.029936 4 0.001733 170 2.07 -0.85
347 0.020443 5 0.001665 282 1.39 -0.87
92 0.016677 6 0.003912 23 0.39 0.82

152 0.016375 7 0.013148 2 1.16 1.0
47 0.014248 8 0.003593 27 0.66 0.41
29 0.014195 9 0.005415 16 1.14 1.0
14 0.014084 10 0.010911 4 2.27 1.0

Table 7.7: Top-10 ranked users by DSARank. Selected subgraph corresponds to category
3.6. Users are sorted by decreasing DSARank score.

7.2.3.7 Kendall’s τ

In the next step we compare Kendall’s τ of DSARank when compared to PageRank. In
particular, we rank in different subgraphs and combine results using the formula for the
context-aware DSARank (see Equation 4.15) to create composite DSARank scores. Each

context-dependent result vector wc1 ∗ ~DSA(c1) and wc2 ∗ ~DSA(c2) is combined with wc1 =
wc2.

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9

3.6

3.2

3.10

3.1

3.3

3.4

3.7

3.8

3.12

3.5

3.11
0.46

0.48

0.5

0.52

0.54

0.56

0.58

Figure 7.6: Kendall’s τ for composite contexts corresponding to entries in Table 7.8.

To create PageRank scores, we use the entire interaction graph G to create the vector
~PR. Kendall’s τ for different combinations of contexts is shown in Table 7.8. We created

Fig. 7.6 based on the data in Table 7.8; making it easier to see whether there is a strong
disagreement in terms of τ in different contexts.

Chapter 7: Evaluation 119

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9 0.54 0.47 0.46 0.52 0.49 0.51 0.47 0.51 0.51 0.49 0.49 0.54
3.6 0.55 0.53 0.57 0.57 0.58 0.54 0.56 0.57 0.56 0.56 0.55
3.2 0.5 0.53 0.51 0.52 0.48 0.53 0.52 0.5 0.49 0.55

3.10 0.52 0.49 0.5 0.47 0.52 0.51 0.48 0.49 0.54
3.1 0.55 0.56 0.52 0.57 0.56 0.55 0.54 0.53
3.3 0.53 0.49 0.53 0.53 0.51 0.52 0.58
3.4 0.51 0.54 0.55 0.53 0.53 0.59
3.7 0.51 0.52 0.49 0.49 0.55
3.8 0.55 0.52 0.52 0.58

3.12 0.53 0.53 0.58
3.5 0.51 0.57

3.11 0.57

Table 7.8: Kendall’s τ for comparison of PageRank and DSARank in composite contexts.

Discussion Table 7.8. Contexts with many shared links (for example 3.1 and 3.6
as depicted in Fig. 7.4) yield stronger agreements between DSARank and PageRank.
Intuitively, 3.6 and 3.1 become more dominant when combined with other contexts. It is
therefore less likely that the order of rankings change. On the other hand, if a context, for
example 3.13 has few shared links with other contexts; and also low subgraph intensity (3.13
has the lowest subgraph intensity), then we observe also stronger agreements in rankings.
This can be explained as the limited impact of low intensity contexts on changing the
position of users within ranking results.

7.2.3.8 Overlap Similarities

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9

3.6

3.2

3.10

3.1

3.3

3.4

3.7

3.8

3.12

3.5

3.11
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9

3.6

3.2

3.10

3.1

3.3

3.4

3.7

3.8

3.12

3.5

3.11 0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Figure 7.7: Overlap similarities for composite contexts: left figure shows OSimk=10 and
right figure OSimk=30.

Chapter 7: Evaluation 120

Here we compare DSARank and PageRank in terms of overlap similarities. Table 7.9
contains the results for OSimk=10 and Table 7.10 the results for OSimk=30. In Fig. 7.7
we show the visualizations of the results in both tables. By comparing the top-10 segment
of ranked users (Fig. 7.7 left), we see higher overlap similarities between high-intensity
contexts, for example, the context pairs (3.9, 3.6), (3.9, 3.2). Low intensity contexts such
as 3.13 combined with, for example (3.13, 3.9), yields also high similarities. The top-30
segment (Fig. 7.7 right) shows stronger similarities in 3.1 as well as 3.6 — both contexts
have many shared links with other contexts.

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9 0.56 0.56 0.44 0.44 0.44 0.33 0.33 0.44 0.33 0.22 0.44 0.67
3.6 0.33 0.33 0.44 0.33 0.22 0.22 0.22 0.22 0.22 0.44 0.56
3.2 0.44 0.44 0.33 0.22 0.33 0.44 0.33 0.22 0.33 0.56

3.10 0.22 0.33 0.33 0.44 0.33 0.22 0.22 0.22 0.33
3.1 0.33 0.22 0.22 0.33 0.33 0.22 0.44 0.56
3.3 0.22 0.22 0.22 0.22 0.22 0.44 0.44
3.4 0.22 0.22 0.22 0.22 0.33 0.33
3.7 0.22 0.22 0.22 0.33 0.33
3.8 0.22 0.22 0.33 0.33

3.12 0.22 0.33 0.22
3.5 0.22 0.22

3.11 0.44

Table 7.9: OSimk=10 for composite contexts.

3.6 3.2 3.10 3.1 3.3 3.4 3.7 3.8 3.12 3.5 3.11 3.13

3.9 0.72 0.69 0.69 0.69 0.69 0.66 0.69 0.72 0.69 0.72 0.69 0.69
3.6 0.76 0.72 0.72 0.72 0.72 0.69 0.66 0.66 0.69 0.76 0.69
3.2 0.69 0.76 0.69 0.66 0.62 0.69 0.62 0.66 0.69 0.69

3.10 0.72 0.69 0.66 0.62 0.66 0.62 0.69 0.69 0.66
3.1 0.76 0.72 0.66 0.72 0.69 0.76 0.76 0.69
3.3 0.66 0.62 0.66 0.59 0.69 0.69 0.69
3.4 0.62 0.66 0.59 0.66 0.66 0.69
3.7 0.59 0.59 0.59 0.59 0.69
3.8 0.59 0.66 0.66 0.62

3.12 0.59 0.59 0.62
3.5 0.66 0.66

3.11 0.69

Table 7.10: OSimk=30 for composite contexts.

Chapter 7: Evaluation 121

7.2.3.9 Skill and Expertise Rank in Subgraphs

We implemented the algorithm to compute SE as a variant of the iterative PageRank
algorithm (Jaccobi iteration introduced in Algorithm 4.1). However, SE is not personalized
by adding teleport vectors ~p. In other words, we do not add (1− α)~p in each iteration. In
addition, we perform a fixed number of iterations to compute SE for each subgraph g to
keep computational complexity low. In our experiments, we perform 6 iterations in each
subgraph. When comparing the ranking results of SE and the unbiased PageRank, we
observed that even though ~p was not used in the computation, both vectors ~SE and ~PR
were rank-similar with Kendall’s τ approximately equal to 1.

7.2.4 Score Distributions of Ranking Algorithms

To conclude the evaluation of interaction analysis algorithms developed within the HPS
framework, we discuss the characteristics of ranking-score distributions. The presented
results are based on the mobile phone dataset. We show ranking scores by using interaction
information over the entire period comprising about 445254 aggregated calls.

1 K=50
10

−4

10
−3

10
−2

10
−1

Rank

S
co

re
s

PageRank

1 K=50 N
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rank

S
co

re
s

DSARank

1 N
10

−4

10
−3

10
−2

10
−1

Rank

S
co

re
s

PageRank (weighted)

Figure 7.8: Distributions of ranking scores: the horizontal axis shows the rank of a person
and the vertical axis the ranking score on a log-scale. Left figure: PageRank scores not
using weighted edges and p(u) = 1 achieving a precision of 7.3721E-9 after 29 iterations.
Middle: intensity-based DSARank in weighted interaction graph. The number of iterations
was 51 achieving a precision of 2.1727E-8. Right figure: PageRank using edge weights;
convergence after 51 iterations with a of precision 1.6428E-8.

Chapter 7: Evaluation 122

7.3 HPS in Open Collaboration Environments

In this section we discuss an HPS use case scenario to give a summary of introduced
concepts. This scenario illustrates an ad-hoc collaboration between humans. The essential
steps are depicted by Fig. 7.9, and detail the role of the HPS framework in each step.
XML listings and namespaces are abbreviated (depicted as: . . .) for readability.

HPS middleware

User pro�les

Reporter
HPS interfaces

Repository

Request

Interaction

rules

Request input form:
<category term="/services/reporterservice#WSDL"/>
<content type="application/xml">
<form method="#" action="submitRequest()">
<meta name="service" content=".../reporterservice">
<input type="submit" value="Submit" />
…

Personal services:
<entry>
<author>
 <name>Daniel Schall</name>
</author>
<geo:lat>48.19766</geo:lat>
<geo:long>16.37146</geo:long>
</entry>

News-reporter service:
<entry>
<title>News Reporters</title>
<link rel="alternate"

type="application/atom+xml"
href="/atom/newsreporter.xml" />

<summary>News-reporter services.</summary>
</entry>

Generate user interfaces2.1

Visualize

HPS

information

2.2

Process

request
3.2

3
Client-side scripts

for interaction

3.1
Dispatch

requests

2
Lookup of

human-provided services (HPS)

1
Register

pro�le/service

Requests

can be saved

in XML

repository

Service interface:
<category term="WSDL"

scheme="http://schemas.xmlsoap.org/wsdl"/>
<link id="wsdl" href="/services/reporterservice/wsdl"

 rel="alternate"
 type="application/wsdl+xml"/>

<content type="application/xml" xml:lang="en">
<mex:Metadata>
<mex:MetadataSection Dialect="...">
<wsdl:definitions xmlns:xs="..." xmlns:wsdl="...">
<wsdl:import namespace=".../reporterservice"

location="#wsdl"/>
...

HPS interaction:
<entry>
<category term="MetaEPR" scheme="…“/>
<Resource>
<ResourceElement Namespace=
 ".../reporterservice" />
<ResourceRef><Reference>
<MetaEPR><ParameterMap>…</ParameterMap>
 <Address>http://{hal}/{uri}/

reporterservice</Address>...
<mex:Metadata>
<mex:MetadataSection Dialect="..."/>
</mex:Metadata>...

Personal service:
<entry>
<title>My Reporter Service</title>
<author><name>Daniel Schall</name></author>
<updated>2008-02-24T18:30:02Z</updated>
<link rel="alternate" title="EndpointReference"

 href="http://.../ReporterService"/>
<category term="/services/reporterservice#WSDL"

schema="..."/>
<content type="xhtml">
<div xmlns=".../acmccs98-1.2.3.xml"> <!--Expertise --></div>
...

Information and interaction �ows

Annotations showing details

Figure 7.9: Example application scenario of HPS in human collaborations: the “reporter
service” is provided by multiple users and can be dynamically discovered based on the
location and availability context.

Chapter 7: Evaluation 123

1. Register the profile and service: Human actors define high-level collaboration
activities (for example, createReport) using an HPS interface editor that the frame-
work hosts. The HPS framework automatically translates these activities into low-
level service interfaces described in WSDL. User profile information includes name,
skills, and competency, which the HPS framework uses to enhance the discovery,
selection, and recommendation process to find the most suitable HPS. The user
specifies basic personal profile information or uploads this information as a vCard
file. Humans provide a service by registering it as a personal service. The scenario in
Fig. 7.9 shows an example in which humans provide reporter services to contribute
Web content such as news reports. The middleware hosts a set of XML documents
in the service registry that is managing the interface description and personal service
information.

� �

<category term=”WSDL” scheme=” ht tp : // schemas . xmlsoap . org /wsdl ”/>
< l i n k id=”wsdl ” h r e f=”/ s e r v i c e s / r e p o r t e r s e r v i c e /wsdl ”

r e l=” a l t e r n a t e ” type=” app l i c a t i on /wsdl+xml”/>
<content type=” app l i c a t i on /xml”>
<mex:Metadata>
<mex:MetadataSection D ia l e c t=” . . . ”>
<w s d l : d e f i n i t i o n s xmlns :xs=” . . . ” xmlns:wsdl=” . . . ”>
<wsdl : import namespace=” . . . / r e p o r t e r s e r v i c e ” l o c a t i o n=”#wsdl ”/>
. . .

� �

Listing 7.1: Excerpt service interface.

Therefore, it is easier to achieve cross-organizational collaboration because companies
can share information stored in the service registry; the very foundation to achieve
dynamic collaborations in open service-oriented environments. Other people who
want to provide the same type of service can then reuse the service interfaces.

� �

<entry>

< t i t l e>My Reporter Se rv i c e</ t i t l e>

<author><name>Danie l S cha l l</name></ author>
<updated>2008−02−24T18:30:02Z</updated>

< l i n k r e l=” a l t e r n a t e ” t i t l e=”EndpointReference ”
h r e f=” ht tp : / / . . . / Repor te rSe rv i c e ”/>

<category term=”/ s e r v i c e s / r e p o r t e r s e r v i c e#WSDL” schema=” . . . ”/>
<content type=”xhtml”>
<div xmlns=” . . . / acmccs98 −1 . 2 . 3 . xml”>< !−− Exper t i s e −−></ div>

. . .
� �

Listing 7.2: Personal service description.

Listing 7.2 shows an excerpt of the XML description of a personal service. The
description contains user-related information, a reference to the service interface de-
scription, and information regarding the user’s expertise rooted in taxonomies. This
information is embedded in Atom feed entries. The Atom Syndication Format is
an XML language describing frequently updated content such as news. Atom feeds

Chapter 7: Evaluation 124

contain, for example, author information, links to content, and summaries. The
framework uses Atom feeds as a container format for WSDL documents and various
content including taxonomies describing users’ expertise; additional context informa-
tion, such as location (<geo> tags); and category information to tag services.

The HPS framework supplies the personal service hosting environment, which users
can download to their desktop computer or mobile devices using mobile Java tech-
nology (JavaME). This environment lets the computer or device deploy software for
personal services as gadgets. It comprises a micro OSGi environment, a set of tools
to manage the gadgets (services), a common lightweight SOAP library, and a user-
interface rendering engine displaying user interfaces described in XML.

2. Look up a service: HPSs can be discovered through an interface implementing the
Atom protocol model or a Web service interface. We show an example in which loca-
tion and availability information enhance the discovery process given that requesters
might want to find reporter services located in some area of interest.

� �

<entry>

< t i t l e>News Reporters</ t i t l e>

< l i n k r e l=” a l t e r n a t e ” type=” app l i c a t i on /atom+xml”
h r e f=”/atom/ newsreporter . xml” />

<summary>News−r epo r t e r s e r v i c e s .</summary>
</ entry>
� �

Listing 7.3: Service entry in lookup result.

The Atom-based lookup interface returns a feed containing a ranked list of entries
(Listing 7.3) comprising personal HPS information. It ranks the services based on
various HPS metrics, such as skill level and user response time.

The lookup returns additional user interface rendering information. On the one
hand, XForms, which are automatically generated based on WSDL interfaces (step
2.1), can be used by human requesters to interact with HPSs. (XForms are a forms
technology expressed in XML that describe user interfaces in a device-independent
way.) If XForms are not supported by the client, HTML forms can be used to
insert request data; see Listing 7.4 for an example. HTML forms need to be created
manually (i.e., these forms cannot be generated based on WSDLs).

� �

<category term=”/ s e r v i c e s / r e p o r t e r s e r v i c e#WSDL”/>
<content type=” app l i c a t i on /xml”>
<form method=”#” ac t i on=”submitRequest () ”>
<meta name=” s e r v i c e ” content=” . . . / r e p o r t e r s e r v i c e ”>
<input type=”submit” value=”Submit”/>
. . .

� �

Listing 7.4: Request input form.

Both XML or HTML forms can be embedded in markers of a geo map.

Chapter 7: Evaluation 125

3. Interact with HPSs: AJAX scripts can issue requests asynchronously towards the
middleware platform. The middleware implements HAL to dispatch HPS requests.
HAL provides a security module to prevent unauthorized access, policy management
to protect the users’ privacy, and request filtering to shield HPSs from denial of
service attacks. HAL dispatches and routes service requests to the appropriate HPS
and device.

� �

<entry>

<category term=”MetaEPR” scheme=” . . . / r e sourceCata log#MetaEPRType”/>
<content type=” app l i c a t i on /xml” xml:base=” . . . / r e sourceCata log ”>
<Resource>
<ResourceElement Namespace=” . . . / r e v i ew s e r v i c e ”

LocalName=”ReviewService ”/>
<ResourceRef><Reference>
<MetaEPR>

<ParameterMap> . . .</ParameterMap>
<Address>ht tp : //{HAL}/{URI}/ r e p o r t e r s e r v i c e</Address>

</MetaEPR>

<mex:Metadata>
<mex:MetadataSection D ia l e c t=” . . . ”/>

</mex:Metadata>
</ Reference>

</ResourceRef>
</Resource>
</ content>

</ entry>
� �

Listing 7.5: HAL definition used for HPS interactions.

The HAL interface description is denoted as HPS interaction (Listing 7.5) using Web
Services Resource Catalog (WS-RC3) Meta-Endpoint definitions that are parameter-
ized by HPS addressing information, such as user identifiers.

HPSs are not always online, because the personal service hosting environment might
be deployed on mobile devices, which rely on wireless network availability and cover-
age. If the HPS is not available at the time of interaction, an XML-based repository
stores service requests and process them whenever the HPS is back online (step 3.2).
Pending requests can be received via push- and pull-based mechanisms depending
on the hosting environment’s configuration. At this stage, HAL comprises request
processing and routing capabilities and request filtering.

3WS-RC: http://schemas.xmlsoap.org/ws/2007/05/resourceCatalog/

Chapter 7: Evaluation 126

7.4 Web Services on Mobile Devices

In this section, we provide an overview of Web services toolkits that can be used on mobile
devices such as cellphones or PDAs. We focus on Java-based implementations suitable for
JavaME (Java Mobile Edition) enabled devices and a C++ Web services stack. We present
a simple approach to test and compare the performance of Java/C++ based implementa-
tions. Furthermore, we selected two open source toolkits to evaluate the performance of
Web services on mobile devices. Mobility aspects in HPS-based applications are important
to enable pervasive interactions and information access. Thus, it is critical to understand
the features and limits of various Web services stacks.

7.4.1 Web Services Toolkits

We have two technology choices; platform specific and platform independent implementa-
tions. Here we give a short overview of various technologies, the basic platform character-
istics, and architecture of a C++ based Web services stack.

7.4.1.1 Platform Specific Implementations

• The Java 2 Platform Micro Edition (J2ME) platform is a set of standard Java APIs
defined through the Java Community Process (JCP). The J2ME specifications de-
fine the Connected Device Configuration (CDC) (i.e., a subset of J2SE) and the
Connected Limited Device Configuration (CLDC). In contrast to CDC, CLDC pro-
vides libraries such as the Connection Framework which are suitable for devices with
a small memory footprint. These libraries are not part of J2SE. CLDC targets hard-
ware platforms with 128 KB to 512 KB memory and 16-bit or 32-bit CPUs. The
Mobile Information Device Profile (MIDP) is specifically designed for cell phones and
provides the user interface, network connectivity, local data storage, and application
management needed by these devices. The following SOAP APIs and Web services
toolkits are suitable for J2ME/MIDP based devices.

1. kSOAP4 is an open source SOAP API for J2ME devices. It provides a
lightweight approach to access SOAP based Web services. However, kSOAP
cannot generate client side stubs from a Web service’s WSDL interface.

2. JSR-172 is a set of Web service APIs (WSA) for J2ME5 available in Sun’s
wireless toolkit (WTK) 2.2. In contrast to kSOAP, client side stubs can be
generated by using WSDL files, thus accelerating the development process.

• The .NET Compact Framework (CF) is a subset of Microsoft’s .NET framework.
The .NET CF is supported on various devices/platforms that are based on PocketPC

4kSOAP: http://kobjects.sourceforge.net
5J2ME Web Services: http://java.sun.com/j2me/reference

Chapter 7: Evaluation 127

and Smartphone architectures. Web services on .NET CF support synchronous or
asynchronous invocations. Development of embedded Web services is performed in
the same manner as in .NET. A Web Reference (i.e., a reference to the actual service)
has to be added to a project and the code is automatically generated.

7.4.1.2 Platform Independent Implementations

The gSOAP toolkit is a platform independent C/C++ based Web services stack (Engelen
2004). We show the basic architecture of the gSOAP client in Fig. 7.10 comprising the
development and deployment phase. The development process starts with C/C++ header
file creation based on the service’s WSDL file. Next, the gSOAP compiler is used to create
the code files. The actual run-time interactions are shown as Client Request and Service

Response (lower right corner).

WSDL
Client Code Calls

RPC Proxies

C/C++ Header File

Specification of

Remote Procedures

C/C++ Source

Code Files

RPC Stubs

WSDL

Importer

gSOAP

Compiler

C/C++

Compiler

TCP Communication

XML+Attachment

Handling

gSOAP Runtime Lib.

U
s
e
r
in
p
u
t

A
u
to
m
a
te
d

Call Return

Serialize Deserialize

Service Response

or Fault

Client

Request

Development Deployment

Figure 7.10: gSOAP Web services run-time.

The gSOAP toolkit includes the following libraries and APIs:

• A WSDL parser wsdl2h to create header files.

• The stub/skeleton compiler soapcpp2. Depending on the SOAP client/server re-
quirements, .C or .CPP files can be generated.

• The run-time library, stdsoap2, serializes and deserializes RPC calls. This library is
the only dependency needed on the target platform.

Chapter 7: Evaluation 128

Compared to the gSOAP toolkit, WSA for J2ME has similar capabilities in terms of
stub generation. However, it is important to note that WSA can only be used to consume
Web services on mobile devices; it cannot provide or host Web services on mobile devices.

7.4.2 Performance Metrics

The aim of our performance study is to compare C++ Web services with Java-based
implementations using the Symbian OS. We evaluate performance in terms of latency
obtained through roundtrip-delay measurements of SOAP/XML messages per second. To
choose a tool for implementing the Web service stack on mobile devices, we need to consider
a number of factors on which we establish our platform choice. In the following, we identify
a number performance metrics and design considerations:

• Average time needed to execute a given request. The average time is calculated as
the average time interval the mobile SOAP stack needs to process a request and the
corresponding response.

• The latency given a number of requests to be executed. Similar to fully featured Web
services toolkits (e.g., for standard hardware and server machines) mobile Web ser-
vices need to process multiple requests concurrently. The request processing latency
is tested by issuing several request to be processed by the mobile device.

• The maximum number of concurrent requests that can be executed. Since mobile de-
vices have limited resources, the maximum number of requests that can be processed
at the same time is limited.

• Overhead of using Java (e.g., multi-threaded Java application) in terms of startup
overhead, CPU usage and memory consumption (i.e., allocation given a number of
requests to be executed).

In our following performance study, we focus on a client or Web services consumer
scenario. However, discussions have analog significance for service providers implemented
on mobile devices.

7.4.3 Methodology

Performance estimates can be obtained through analytical modeling and simulation or by
performing an empirical study to obtain measurements in the real system. For example,
we can measure the roundtrip delay of time-stamped messages. In addition, various pro-
filers are available to analyze the performance and bottlenecks of Java-based applications
at runtime. Parameters include memory overhead or function calls. In our study, we use a
black box approach and measure roundtrip delay obtained through time-stamped messages

Chapter 7: Evaluation 129

as we do not assume any detailed knowledge of the server’s configuration or load. In addi-
tion, we use Java profiling tools available in Sun’s WTK 2.2 to obtain “offline” information
about the Java SOAP runtime. We gather information by utilizing the memory monitor
and the method invocation graph. Notice, WTK profiling tools are available for the wire-
less terminal emulator. However, the Java profiler adds significant CPU load and memory
overhead to the observed system, and should therefore not be used for a comparative online
performance study.

7.4.3.1 Approach

A straightforward way to obtain packet statistics is to ping remote hosts by sending ICMP
packets. For a given packet size, we measure the roundtrip delay (roundtrip time RTT)
for each packet and statistics such minimum, maximum and average RTT in millisecond.
In our experiments, we take a similar approach and add time-stamps to each SOAP re-
quest/response invocation pair. To trace a request, we add a time stamp (i) t1 when
invoking a method at the SOAP client, (ii) t2 upon sending the SOAP message through
the socket interface, (iii) t3 when receiving a response at the socket interface, and (iv) t4
when getting the result of a SOAP call.

7.4.3.2 Calculations

The network is typically governed by various random variables; for example, by the actual
load of the network. Additionally, by using Java, we add an time-offset caused by the Java-
socket to native interface. We denote this time interval by t′. We calculate the following
time intervals: TIwstack(t2− t1) to obtain the time needed to create a SOAP message (time
spent in the Web services stack), TInetwork(t3 − (t2 + t′)) to calculate the time to receive a
response at the socket interface and TIwstack(t4− t3) to calculate the processing time of the
response message in the stack. The time offset t′ will not be included in our measurements.
Furthermore, we calculate

• Maximum time interval: TIstack max = max(TIreq)− avg(TInetwork)

• Average time interval: TIstack avg = avg(TIreq)− avg(TInetwork)

• Minimum time interval:

TIstack min =

{

min(TIreq)− avg(TInetwork) , if min(TI)− avg(TI) > 0
min(TIreq)−min(TInetwork) , otherwise

These calculations will be used in our experimental study as shown in Fig. 7.11 (c).

Chapter 7: Evaluation 130

Symbol Meaning

TI Time interval measured in the Web services stack when processing a SOAP
message.

t′ Time offset governed by random network delay and overhead at Java native
interface.

Table 7.11: Performance evaluation of mobile Web services and related symbols.

7.4.4 Setup and Implementation

We use a Symbian OS v8.0a based device6 to invoke Web services. For example, a SOAP-
based search service. Using the aforementioned Symbian platform, the choice of the toolkit
is limited to Java and C++. The goal of our architecture to measure performance of
mobile Web services toolkits is to execute multiple requests concurrently. Therefore, we use
multiple threads — called RThread in Symbian’s API — to achieve non-blocking operation.
We have the following options to develop concurrent applications on Symbian:

• CActive: Suitable when all objects run within the same thread. The RequestStatus
is used to receive asynchronous notifications. This API object cannot be used in our
experiments as it would block all Web service calls until they return (i.e., finished
execution of request by receiving corresponding response).

• RThread: These are standard threads on the Symbian platform. We use RThreads

and the shared memory model to execute concurrent requests.

• RProcess: The kernel object on Symbian. Threads that belong to different processes
do not share the same address space. The RProcess object is “expensive” in terms of
CPU overhead and cannot by used when access to a shared memory space is needed.

On J2ME, standard Java threads can be used to accomplish concurrent execution of
requests. The total number of request in execution (at the same time) can be limited
depending on the thread pool’s configuration. Limiting the size of thread pools has im-
portant implications that are based on the memory constraints of devices. Indeed, the
Java-based thread pool is more limited in terms of the maximum number of threads that
can be executed concurrently.

7.4.4.1 Using Web Services Toolkits in Performance Study

We modify both SOAP stacks, kSOAP and gSOAP, to include a performance “context”.
In gSOAP, we modify the stack by adding time-stamps when calling the soap begin send

and soap begin recv methods. In kSOAP, we modify the method ”call” in the
HttpTransport class.

6S60 2nd Edition FP 2 developer platform.

Chapter 7: Evaluation 131

Remark on the generation of stubs in gSOAP: The gSOAP toolkit supports
automatic generation of client side stubs based on WSDLs. In particular, C++ stubs can
be generated by using wsdl2h and soapcpp2. However, there was one shortcoming in
gSOAP (at the time of working on the performance study): in some cases modifications in
the automatically generated stub code were needed because XML schema type definitions
(e.g., xsd:string) were not correctly added as input parameters to gSOAP’s soap out xsd

functions.

Remark on RPC binding support in WSA (WTK 2.2): When we tried to
consume Web services that used the RPC-binding style, WSA’s stub generation tool failed
because of the unsupported RPC-binding style. However, the document style is typically
more often used in today’s Web services.

7.4.4.2 Code Optimization

In general, Java-based Web services stacks show larger deviations in terms of minimum and
maximum execution time of requests (min/max values). The reason is non-deterministic
garbage collection of the Java Kilobyte Virtual Machine (KVM) and code optimization
techniques at run-time. In particular, repeatedly executed parts of the code (called hotspts)
are optimized. This gives up to 50% faster execution of subsequent requests when compared
to the initial requests which were not optimized by the KVM.

7.4.5 Results

Our results are based on measurements over a one-week time period. We collected statistics
of about 2000 test cases. The presented results were calculate based on the Google search
service. The figures in 7.11 are based on the number of requests concurrently in execution.
For example, 4 to 16 requests denote the amount of concurrent requests that were issued
at the same time. In our experiments, the maximum number of concurrent requests that
can be issued in gSOAP was significantly higher than in kSOAP. This is a quite intuitive
observation because gSOAP is implemented in native C/C++ code. However, in order
to obtain comparable measurements (e.g., time needed to execute multiple requests), we
limited the maximum number of requests to be executed — in gSOAP as well as kSOAP
— to a maximum of 16 (i.e., the thread pool size in Java).

In Fig. 7.11, we show the direct comparison of C++ and Java-based toolkits for different
request rates (depending on the maximum threshold between 4 and 16). The performance
figures show average time values for TIsend, the time interval to create a request; TIreceive,
the time interval to receive the corresponding response; TInetwork, the network latency;
TIreq, total time required to execute a given request and receiving the corresponding re-
sponse (without TInetwork); and finally TItotal which is the total time needed to process
requests and responses (including TInetwork).

Chapter 7: Evaluation 132

C++ 4 Req J2ME 4 Req C++ 8 Req J2ME 8 Req C++ 16 Req
0

2000

4000

6000

8000

10000

12000

14000

15000

M
ea

su
re

m
en

ts
 [

m
s]

avg(send)
avg(network)
avg(receive)
request time
total

C++ 4 Req J2ME 4 Req C++ 8 Req J2ME 8 Req C++ 16 Req J2ME 16 Req
0

2000

4000

6000

8000

10000

12000

14000

(a) (b)

C++ 4 Req J2ME 4 Req C++ 8 Req J2ME 8 Req C++ 16 Req J2ME 16 Req
0

500

1000

1500

2000

2500

3000

3500

M
ea

su
re

m
en

ts
 [

m
s]

max
min
avg

(c) (d)

Figure 7.11: (a) Time intervals showing the maximum throughput and (b) using a fixed
number of threads. Java (kSOAP) performs better in creating a request TIsend, but is
slower in receiving a response TIreceive. Slow SOAP response processing becomes more
apparent when executing the Java application on the WTK emulator. On average, the
C++ toolkit is faster in executing a number of requests TItotal and faster in executing a
given request TIreq. (c) Deviations of measurements in performance study showing best,
worst and average processing time, given a number of requests to be executed. In this
diagram, the net processing time in the Web services stack is shown (i.e., we do not add
TInetwork). (d) KVM profiler showing memory monitor (KVM profiling in WTK 2.2). We
see the monitor while executing eight concurrent requests with a given thread pool size
of 4. The emulated Java test application on the mobile device, however, may crash due
to the allocation of large amounts of memory. In this example, the current memory al-
location of the emulator is 67068 bytes, given a maximum memory size of 419468 bytes.
We observed a sawtooth behavior where memory allocation hits the maximum memory
limit, dashed line indicating maximum memory usage, and thus resulting in runtime ex-
ceptions on the KVM and unpredictable execution of our performance test application.
Parsing responses takes a very long time due to the method calls readUnknown in kSOAP’s
SoapSerializationEnvelope; the main bottleneck in the kSOAP stack.

Chapter 8

Conclusion

We believe that Human-Provided Services will become increasingly important in human-
centered systems. Service-oriented architectures can no longer be designed in a top-down
manner because human interactions in SOA demand for flexibility.

The presented HPS framework was developed with the objective of enabling the user-
driven approach to the design and provisioning of HPSs. The application scenarios of HPS
range from ad-hoc collaborations, semi-structured processes, and human interactions in
formalized processes. In this work, the focus was the architectural design and implemen-
tation of a framework supporting ad-hoc interactions in open and dynamic collaboration
environments. The prototype has to address many different areas including the integration
of existing Web services technologies and standards. Thus, aspects such as compositions
of HPS and software services as well as interaction rules have been discussed at the con-
ceptual level. The integration with B4P engines has to be addressed in our future work.
Also, legal or privacy issues were not addressed at this stage.

The most promising direction for future research and development of the HPS frame-
work is the automatic generation of HPS interfaces based on user skills and profile infor-
mation. Furthermore, a detailed analysis of DSARank in networks of human and software
services is part of our future work. An important task will be the aggregation of metrics
in more general scoring functions.

133

References

Adamic, L., J. Zhang, E. Bakshy, and M. Ackerman (2008). Knowledge sharing and
yahoo answers: Everyone knows something. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, pp. 665–674. ACM.

Adams, M., A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst (2006).
Worklets: A service-oriented implementation of dynamic flexibility in workflows. In
OTM Conferences (1), pp. 291–308.

Agrawal, A., M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. König, F. Ley-
mann, R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen, M. Rowley,
P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller (2007). WS-BPEL Extension for
People (BPEL4People), Version 1.0.

Aiello, M. and S. Dustdar (2008). Are our homes ready for services? a domotic in-
frastructure based on the web service stack. Pervasive and Mobile Computing 4 (4),
506–525.

Aleman-Meza, B., U. Bojars, H. Boley, J. G. Breslin, M. Mochol, L. J. Nixon, A. Polleres,
and A. V. Zhdanova (2007, June). Combining RDF vocabularies for expert finding.
In 4th European Semantic Web Conference (ESWC2007), pp. 235–250. Springer.

Alonso, G., F. Casati, H. Kuno, and V. Machiraju (2003, November). Web Services -
Concepts, Architectures and Applications. Springer.

Amend, M., M. Das, M. Ford, C. Keller, M. Kloppmann, D. König, F. Leymann,
R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen, M. Rowley,
P. Schmidt, I. Trickovic, A. Yiu, and M. Zeller (2007). Web Services Human Task
(WS-HumanTask), Version 1.0.

Andreozzi, S., P. Ciancarini, D. Montesi, and R. Moretti (2006). An approach to the
quantitative evaluation of grid services. Concurr. Comput.: Pract. Exper. 18 (8),
827–836.

Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, , and S. Weerawarana (2003). Busi-
ness process execution language for web services, version 1.1. oasis.

Barabási, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. Na-
ture 435, 207.

134

Bibliography 135

Barabási, A.-L. (2007). The architecture of complexity: from network structure to human
dynamics. IEEE Control Systems Magazine 27 (4), 33–42.

Barabasi, A.-L. and R. Albert (1999). Emergence of scaling in random networks. Sci-
ence 286, 509.

Becerra-Fernandez, I. (2006). Searching for experts on the Web: A review of contempo-
rary expertise locator systems. ACM Trans. Inter. Tech. 6 (4), 333–355.

Berkhin, P. (2005). A survey on PageRank computing. Internet Mathematics 2 (1), 73–
120.

Bianchini, M., M. Gori, and F. Scarselli (2005, February). Inside pagerank. ACM Trans.
Inter. Tech. 5 (1), 92–128.

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web search
engine. Comput. Netw. ISDN Syst. 30 (1-7), 107–117.

Brinkmeier, M. (2006). PageRank revisited. ACM Transaction on Internet Technolo-
gies 6 (3), 257–279.

Butler, D. (2006, January). Mashups mix data into global service. 439 (7072), 6–7.

Byde, A., H. Wan, and S. Cayzer (2007, March). Personalized tag recommendations
via tagging and content-based similarity metrics. In Proceedings of the International
Conference on Weblogs and Social Media.

Caldarelli, G. (2007, May). Scale-Free Networks: Complex Webs in Nature and Technol-
ogy (Oxford Finance). Oxford University Press, USA.

Cattuto, C., V. Loreto, and L. Pietronero (2007, January). Semiotic dynamics and
collaborative tagging. PNAS 104 (5), 1461–1464.

Chakrabarti, S. (2007). Dynamic personalized pagerank in entity-relation graphs. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web,
New York, NY, USA, pp. 571–580. ACM.

Constantin, C., B. Amann, and D. Gross-Amblard (2006). A Link-Based Ranking Model
for Services. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, pp. 327–344. Springer Berlin / Heidelberg.

Conyon, M. J. and M. R. Muldoon (2006, April). Ranking the importance of boards of
directors. Mims eprint, Manchester Institute for Mathematical Sciences, University
of Manchester.

Crawley, E., O. de Weck, S. Eppinger, C. Magee, J. Moses, W. Seering, J. Schindall,
D. Wallace, and D. Whitney (2004, March). The influence of architecture in engi-
neering systems (monograph).

Cugola, G., E. D. Nitto, A. Fuggetta, and C. Ghezzi (1996). A framework for formalizing
inconsistencies and deviations in human-centered systems. ACM Trans. Softw. Eng.
Methodol. 5 (3), 191–230.

Bibliography 136

Dezsö, Z., E. Almaas, A. Lukács, B. Rácz, I. Szakadát, and A.-L. Barabási (2006, June).
Dynamics of information access on the web. Physical Review E 73.

Dom, B., I. Eiron, A. Cozzi, and Y. Zhang (2003). Graph-based ranking algorithms
for e-mail expertise analysis. In DMKD ’03: Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, New York,
NY, USA, pp. 42–48. ACM.

Dorn, C., D. Schall, and S. Dustdar (2006). Granular context in collaborative mo-
bile environments. In International Workshop on Context-Aware Mobile Systems
(CAMS’06), Montpellier, France. Springer.

Dorn, C., D. Schall, and S. Dustdar (2008, Oct.). Achieving team-awareness in scientific
grid environments. In GCC2008: 7th International Conference on Grid and Cooper-
ative Computing (GCC2008) and Second EchoGRID Conference, Shenzhen, China.
IEEE Computer Society.

Dorn, C., D. Schall, R. Gombotz, and S. Dustdar (2007). A view-based analysis of
distributed and mobile teams. In WETICE ’07: Proceedings of the 16th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Washington, DC, USA, pp. 198–203. IEEE Computer Society.

Dujmovic, J. J. (2007). Continuous preference logic for system evaluation. In IEEE
Transactions on Fuzzy Systems, Volume 15, pp. 1082–1099. IEEE Computer Society.

Dustdar, S. (2004). Caramba a process-aware collaboration system supporting ad hoc
and collaborative processes in virtual teams. Distrib. Parallel Databases 15 (1), 45–
66.

Dustdar, S. and T. Hoffmann (2007). Interaction pattern detection in process oriented
information systems. Data Knowl. Eng. 62 (1), 138–155.

Dustdar, S., T. Hoffmann, and W. M. van der Aalst (2005). Mining of ad-hoc business
processes with teamlog. Data Knowl. Eng. 55 (2), 129–158.

Eagle, N. and A. S. Pentland (2006). Reality mining: sensing complex social systems.
Personal Ubiquitous Comput. 10 (4), 255–268.

Engelen, R. A. (2003a). Pushing the SOAP Envelope with Web Services for Scientific
Computing. The International Conference on Web Services ICWS .

Engelen, R. A. (2003b). SOAP/XML Web Service Performance.
http://www.cs.fsu.edu/ engelen/soapperformance.html.

Engelen, R. A. (2004). gSOAP: C/C++ Web Services Toolkit. Available from
http://gsoap2.sourceforge.net/.

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures. Ph. D. thesis.

Fogaras, D., K. Csalogany, B. Racz, and T. Sarlos (2005). Towards scaling fully person-
alized pagerank: Algorithms, lower bounds, and experiments. Internet Mathemat-
ics 2 (3), 333–358.

Bibliography 137

Garlan, D., V. Poladian, B. R. Schmerl, and J. P. Sousa (2004). Task-based self-
adaptation. In WOSS, pp. 54–57.

Gekas, J. (2006). Web Service Ranking in Service Networks. In 3rd European Semantic
Web Conference (ESWC 2006). Springer Berlin / Heidelberg.

Gentry, C., Z. Ramzan, and S. Stubblebine (2005). Secure distributed human compu-
tation. In EC ’05: Proc. of the 6th ACM conference on Electronic commerce, New
York, NY, USA, pp. 155–164. ACM.

Golder, S. and B. A. Huberman (2006). Usage patterns of collaborative tagging systems.
Journal of Information Science 32 (2), 198–208.

Gombotz, R., D. Schall, C. Dorn, and S. Dustdar (2006, Nov.). Relevance-based context
sharing through interaction patterns. Collaborative Computing: Networking, Appli-
cations and Worksharing, 2006. CollaborateCom 2006. International Conference on,
1–7.

Guimerà, R., L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas (2003, Dec.). Self-
similar community structure in a network of human interactions. Physical Review
E 68 (6).

Guimerà, R., M. Sales-Pardo, and L. A. N. Amaral (2007). Module identification in
bipartite and directed networks. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics) 76 (3), 036102.

Günther, C., S. Rinderle, M. Reichert, W. M. van der Aalst, and J. Recker (2008). Using
process mining to learn from process changes in evolutionary systems. International
Journal of Business Process Integration and Management 3 (1), 61–79.

Haveliwala, T. H. (2002). Topic-sensitive pagerank. In International Conference on
World Wide Web, pp. 517–526.

Heymann, P., D. Ramage, and H. Garcia-Molina (2008). Social tag prediction. In SIGIR
’08: Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, pp. 531–538. ACM.

Holmes, T., M. Vasko, and S. Dustdar (2008). Viebop: Extending bpel engines with
bpel4people. Parallel, Distributed, and Network-Based Processing, Euromicro Con-
ference on 0, 547–555.

IBM (2005). An architectural blueprint for autonomic computing (whitepaper).

Jammes, F., A. Mensch, and H. Smit (2005). Service-Oriented device communications
using the devices profile for web services. In MPAC ’05: Proceedings of the 3rd
international workshop on Middleware for pervasive and ad-hoc computing, pp. 1–8.
ACM Press.

Jäschke, R., L. B. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme (2007). Tag
recommendations in folksonomies. In Knowledge Discovery in Databases: PKDD
2007, Volume 4702 of Lecture Notes in Computer Science, Berlin, Heidelberg, pp.
506–514. Springer.

Bibliography 138

Jeh, G. and J. Widom (2003). Scaling personalized web search. In WWW ’03: Proceed-
ings of the 12th international conference on World Wide Web, New York, NY, USA,
pp. 271–279. ACM.

Karagiannis, T. and M. Vojnovic (2008). Email Information Flow in Large-Scale Enter-
prises. Technical report, Microsoft Research.

Kassoff, M., D. Kato, and W. Mohsin (2003). Creating GUIs for Web Services. IEEE
Internet Computing 07 (5), 66–73.

Kim, E. and Y. Lee (2005). Oasis web services quality model tc, version 2.0. oasis.
http://www.oasis-open.org.

Kleinberg, J. (2008). The convergence of social and technological networks. Commun.
ACM 51 (11), 66–72.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of
the ACM 46, 668–677.

Kolmogorov, A. N. (1983). Combinatorial foundations of information theory and the
calculus of probability. Russian Mathematical Surveys 38, 29–40.

Kosorukoff, A. and D. E. Goldberg (2001). Genetic Algorithms for Social Innovation and
Creativity. Technical report, University of Illinois at Urbana-Champaign.

Kumar, A., W. M. P. V. D. Aalst, and E. Verbeek (2002). Dynamic work distribution in
workflow management systems: How to balance quality and performance. J. Manage.
Inf. Syst. 18 (3), 157–193.

Levis, A. (1999). System architectures. pp. 427–454.

Leymann, F. (2006). Workflow-based coordination and cooperation in a service world.
On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE , 2–16.

Li, X., L. Guo, and Y. E. Zhao (2008). Tag-based social interest discovery. In WWW
’08: Proceeding of the 17th international conference on World Wide Web, New York,
NY, USA, pp. 675–684. ACM.

Lieberman, E., C. Hauert, and M. A. Nowak (2005, January). Evolutionary dynamics
on graphs. Nature 433, 312–316.

Liu, Y., A. H. Ngu, and L. Z. Zeng (2004). Qos computation and policing in dynamic
web service selection. In WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, New York, NY, USA, pp.
66–73. ACM.

MacKay, D. J. C. (2003). Information Theory, Inference, and
Learning Algorithms. Cambridge University Press. Available from
http://www.inference.phy.cam.ac.uk/mackay/itila/.

Maximilien, E., A. Ranabahu, and K. Gomadam (2008, Sept.). An online platform for
web apis and service mashups. 12 (5), 32–43.

Bibliography 139

Maximilien, E. M. and M. P. Singh (2004). Toward autonomic web services trust and
selection. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, New York, NY, USA, pp. 212–221. ACM.

Mendling, J., K. Ploesser, and M. Strembeck (2008). Specifying separation of duty con-
straints in bpel4people processes. In Proceedings of the 11th Int’l Conference on
Business Information Systems (BIS 2008), LNBIP, Innsbruck, Austria, pp. 273–284.
Springer Verlag.

Milo, R., , S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon
(2002, October). Network motifs: simple building blocks of complex networks. Sci-
ence 298 (5594), 824–827.

Milo, R., S. Itzkovitz, N. Kashtan, R. Levitt, S. S. Orr, I. Ayzenshtat, M. Sheffer,
and U. Alon (2004). Superfamilies of evolved and designed networks. Science 303,
1538–1542.

Moody, P., D. Gruen, M. J. Muller, J. Tang, and T. P. Moran (2006). Business Activity
Patterns: A New Model for Collaborative Business Applications. 45 (4), 683–694.

Naor, M. (1996). Verification of a human in the loop or identification via the turing test.

Newman, M., A.-L. Barabasi, and D. J. Watts (2006). The Structure and Dynamics of
Networks (Princeton Studies in Complexity). Princeton, NJ, USA: Princeton Univer-
sity Press.

Newman, M. E. J. (2006, June). Modularity and community structure in networks.
PNAS 103 (23).

Nowak, M. A. (2006, December). Five rules for the evolution of cooperation. Sci-
ence 314 (5805), 1560–1563.

Oliveira, J. and A.-L. Barabási (2005). The Correspondence Patterns of Darwin and
Einstein. Nature 437, 1251.

Onnela, J.-P., J. Saramäki, J. Hyvönen, G. Szabó, M. A. de Menezes, K. Kaski, A.-
L. Barabási, and J. Kertész (2007). Analysis of a large-scale weighted network of
one-to-one human communication. New Journal of Physics 9 (6), 179.

Onnela, J.-P., J. Saramäki, J. Kertész, and K. Kaski (2005). Intensity and coherence of
motifs in weighted complex networks. Physical Review E (Statistical, Nonlinear, and
Soft Matter Physics) 71 (6).

Page, L., S. Brin, R. Motwani, and T. Winograd (1998). The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report, Stanford Digital Library Tech-
nologies Project.

Pandurangan, G., P. Raghavan, and E. Upfal (2006). Using pagerank to characterize
web structure. Internet Mathematics 3 (1).

Papazoglou, M. P., P. Traverso, S. Dustdar, and F. Leymann (2007). Service-Oriented
Computing: State of the Art and Research Challenges. IEEE Computer 40 (11),
38–45.

Bibliography 140

Pham, L. and G. Gehlen (2005, Apr). Realization and Performance Analysis of a SOAP
Server for Mobile Devices. Volume 02, pp. 791–797. VDE Verlag.

Ramakrishnan, R. and A. Tomkins (2007, Aug.). Toward a PeopleWeb. Computer 40 (8),
63–72.

Ran, S. (2003). A model for web services discovery with qos. SIGecom Exch. 4 (1), 1–10.

Rellermeyer, J. and G. Alons (2007). Services everywhere: Osgi in distributed environ-
ments. EclipseCon 2007 .

Richardson, M. and P. Domingos (2002). The intelligent surfer: Probabilistic combina-
tion of link and content information in pagerank. In Advances in Neural Information
Processing Systems 14, pp. 1441–1448. MIT Press.

Riolo, R. L., M. D. Cohen, and R. Axelrod (2001, November). Evolution of cooperation
without reciprocity. Nature 414 (6862), 441–443.

Rodrigues, J. F., H. Tong, A. J. M. Traina, C. Faloutsos, and J. Leskovec (2006). Gmine:
a system for scalable, interactive graph visualization and mining. In VLDB’2006:
Proceedings of the 32nd international conference on Very large data bases, pp. 1195–
1198. VLDB Endowment.

Rosenberg, F., C. Platzer, and S. Dustdar (2006). Bootstrapping performance and de-
pendability attributes ofweb services. In ICWS ’06: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS’06), Washington, DC, USA, pp. 205–212.
IEEE Computer Society.

Rosvall, M. and C. T. Bergstrom (2008). Maps of random walks on complex networks
reveal community structure. PNAS 105 4, 1118–1123.

Rosvall, M. and K. Sneppen (2006). Self-assembly of information in networks. Euro-
physics Letters 74, 1109.

Russell, N. and W. M. P. V. D. Aalst (2007). Evaluation of the bpel4people and ws-
humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Technical
report, BPM Center Brisbane/Eindhoven.

Russell, S. J. and P. Norvig (2003). Artificial Intelligence: A Modern Approach. Pearson
Education.

Schall, D., M. Aiello, and S. Dustdar (2006). Web services on embedded devices.
IJWIS 2 (1), 45–50.

Schall, D., C. Dorn, and S. Dustdar (2007a). Context-aware mobile computing. Ency-
clopedia of Wireless and Mobile Communications, edited by Borko Furht .

Schall, D., C. Dorn, and S. Dustdar (2007b). Wireless internet applications. Encyclopedia
of Wireless and Mobile Communications, edited by Borko Furht .

Schall, D., C. Dorn, S. Dustdar, and I. Dadduzio (2008). VieCAR - Enabling Self-
adaptive Collaboration Services. In 34th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA). IEEE Computer Society.

Bibliography 141

Schall, D., R. Gombotz, C. Dorn, and S. Dustdar (2007). Human Interactions in Dynamic
Environments through Mobile Web Services. In International Conference on Web
Services (ICWS’07), Salt Lake City, USA, pp. 912–919. IEEE Computer Society.

Schall, D., R. Gombotz, and S. Dustdar (2006, Nov.). Discovering Service-Interaction
Patterns - Methods and Mining Algorithms. Technical report, Vienna University of
Technology.

Schall, D., R. Gombotz, and S. Dustdar (2007). Pattern-based collaboration in ad-hoc
teams through message annotation. In J. Cardoso, J. Cordeiro, and J. Filipe (Eds.),
ICEIS (4), pp. 84–91.

Schall, D., H.-L. Truong, and S. Dustdar (2008a, July). The Human-provided Services
Framework. In IEEE 2008 Conference on Enterprise Computing, E-Commerce and
E-Services (EEE ’08), Crystal City, Washington, D.C., USA. IEEE Computer Soci-
ety.

Schall, D., H.-L. Truong, and S. Dustdar (2008b). Unifying Human and Software Services
in Web-Scale Collaborations. IEEE Internet Computing 12 (3), 62–68.

Sheng, Q. Z., B. Benatallah, Z. Maamar, M. Dumas, and A. H. H. Ngu (2004). Enabling
personalized composition and adaptive provisioning of web services. In CAiSE, pp.
322–337.

Shetty, J. and J. Adibi (2005). Discovering important nodes through graph entropy the
case of enron email database. In LinkKDD ’05: Proceedings of the 3rd international
workshop on Link discovery, New York, NY, USA, pp. 74–81. ACM.

Shi, X., M. Bonner, L. A. Adamic, and A. C. Gilbert (2008). The very small world of
the well-connected. In HT ’08: Proceedings of the nineteenth ACM conference on
Hypertext and hypermedia, New York, NY, USA, pp. 61–70. ACM.

Song, K. and K.-H. Lee (9-13 July 2007). An Automated Generation of XForms Inter-
faces for Web Services. Web Services, 2007. ICWS 2007. IEEE International Con-
ference on, 856–863.

Su, Q., D. Pavlov, J.-H. Chow, and W. C. Baker (2007). Internet-scale collection of
human-reviewed data. In WWW ’07: Proc. of the 16th int. conference on World
Wide Web, New York, NY, USA, pp. 231–240. ACM Press.

Tang, J., J. Zhang, D. Zhang, L. Yao, C. Zhu, and J.-Z. Li (2007). Arnetminer: An
expertise oriented search system for web community. In Semantic Web Challenge.

Thomas, J., F. Paci, E. Bertino, and P. Eugster (2007). User Tasks and Access Control
over Web Services. In Int. conf. on Web Services (ICWS’07), Salt Lake City, USA,
pp. 60–69. IEEE Computer Society.

Tierno, J. and C. Campo (2005). Smart Camera Phones: Limits and Applications. IEEE
Pervasive Computing 04 (2), 84–87.

Bibliography 142

Tilly, M., H. Q. Yu, D. Schall, and S. Peray (2007, July). Design and Implementation of
Monitoring and Aggregation Mechanisms for Context-based Services – Version 1.0.
Technical report, inContext Consortium.

Tilly, M., H. Q. Yu, D. Schall, and S. Peray (2008, April). Design and implementation
of monitoring and aggregation mechanisms for context-based services – version 2.0.
Technical report, inContext Consortium.

Treiber, M. and S. Dustdar (2007). Active web service registries. IEEE Internet Com-
puting 11 (5), 66–71.

Vamos, T. (1983, Aug.). Cooperative systems an evolutionary perspective. IEEE Control
Systems Magazine 3 (3).

van Dongen, B., A. A. de Medeiros, H. Verbeek, A. Weijters, and W. van der Aalst
(2005). The prom framework: A new era in process mining tool support. Application
and Theory of Petri Nets 2005 3536, 444–454.

van Dongen, B. F. and W. van der Aalst (2005). A meta model for process mining
data. In Proceedings of the CAiSE’05 Workshops (EMOI-INTEROP Workshop), pp.
309–320. ACM Press.

Vázquez, A., J. G. Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor, and A.-L. Barabási (2006).
Modeling bursts and heavy tails in human dynamics. Physical Review E 73.

von Ahn, L. (2006). Games with a Purpose. IEEE Computer 39 (6), 92–94.

Wang, X., T. Tao, J.-T. Sun, A. Shakery, and C. Zhai (2008). Dirichletrank: Solving
the zero-one gap problem of pagerank. ACM Trans. Inf. Syst. 26 (2), 1–29.

Wasserman, S. and K. Faust (1994, November). Social Network Analysis : Methods and
Applications. Cambridge University Press.

Watts, D. J. (1999, August). Small Worlds. Princeton University Press.

Watts, D. J. and S. H. Strogatz (1998, June). Collective dynamics of small-world net-
works. Nature 393 (6684), 440–442.

White, S. and P. Smyth (2003). Algorithms for estimating relative importance in net-
works. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 266–275. ACM Press.

Wu, C. and E. Chang (2007). An Atom-based Architecture for Web services Discovery.
Service Oriented Computing and Applications 1 (2), 97–116.

Yang, J., L. Adamic, and M. Ackerman (2008). Competing to share expertise: the taskcn
knowledge sharing community. In International Conference on Weblogs and Social
Media.

Zhang, J., M. S. Ackerman, and L. Adamic (2007). Expertise networks in online commu-
nities: structure and algorithms. In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, New York, NY, USA, pp. 221–230. ACM.

Appendix A

Screenshots

The first screenshot in Fig. A.1 shows the Web 2.0-based activity management user inter-
face implemented in the inContext project by Softeco Sismat. This screenshot illustrates
the hierarchical structure of activity-based work items.

Figure A.1: Activity management GUI screenshot.

By selecting an activity (e.g., preparation meeting), activity details are shown such
as name, date, and progress. Furthermore, the Activity Actors and their roles are shown.
Each activity may have multiple services associated with it. For example, in this screenshot
we see the document, meeting scheduling, and map service.

In Fig. A.2, an example screenshot of context-based discovery of HPSs is shown. A
particular HPS is provided by multiple human actors. The requester queries the HPS
lookup (e.g., location-based search — text box and Go! button) to retrieve a set of HPSs.

143

Appendix 144

Figure A.2: Context-based discovery of HPSs.

The lookup result is shown in Listing A.1.
� �

<entry>

< t i t l e>My HPS Review Se rv i c e</ t i t l e>

<author><name>Danie l S cha l l</name></ author>
<category term=”/ s e r v i c e s / r e v i ew s e r v i c e#WSDL”

schema=” ht tp : // schemas . xmlsoap . org / soap/http ”/>
<category term=”/ s e r v i c e s / r e v i ew s e r v i c e#WADL” l a b e l=” j son ”/>
<g e o : l a t>48.19766</ g e o : l a t>
<geo : l ong>16.37146</ geo : l ong>

</ entry >
� �

Listing A.1: Personal service description of review service.

Filters can be applied to retrieve (i) a certain type of HPSs — expertise-based lookup,
(ii) time constraints — the availability of HPSs (depicted as Time Mapping), and (iii)
location constraints — services at a certain location. The requester has the following
options: (1) HPS-based interactions using forms as illustrated by the popup window (right-
hand side) in Fig. A.2 or (2) create new task announcements to denote the need for HPSs.
Such announcements can be associated with one or more Service Category.

Appendix B

XML Listings

We give a detailed example of an HPS, which can be defined by using HPS design tools.
An alternative way of defining an HPS is the definition of predefined services and user
interfaces, which are deployed within the framework without requiring the user to go
through the design process.

In Listing B.1 we show a WSDL that defines types, mapping to HPS, and interactions
with HAL. The corresponding XML schema instance document is shown in Listing B.2 and
the XHtml displaying the form in Listing B.3 (we abbreviated long XPath statements).
Finally, we provide an excerpt of type definitions in Listing B.4.

B.1 Review Service WSDL

� �

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<w s d l : d e f i n i t i o n s targetNamespace=” . . . / r e v i ew s e r v i c e ”

xmlns:wsa=” ht tp : // schemas . xmlsoap . org /ws/2004/08/ addre s s ing ”
xmlns : tns=” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e ”
xmlns :http=” ht tp : // schemas . xmlsoap . org /wsdl / http /”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns:soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”
xmlns:wsdl=” ht tp : // schemas . xmlsoap . org /wsdl /”
xmlns : r t=” ht tp : // schemas . datacont rac t . org /2004/07/ r e v i ew s e r v i c e ”>

<wsdl :documentat ion>Review HPS</wsdl :documentat ion>
<wsd l : type s>
<xsd:schema elementFormDefault=” q u a l i f i e d ”

targetNamespace=” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e ”>
<xsd:complexType name=”Gener icResource ”>
<xsd : sequence>
<xsd :e l ement name=”Locat ion ” type=”xsd:anyURI”>

145

Appendix 146

</ xsd :e l ement>
<xsd :e l ement name=” Expires ” type=”xsd:dateTime”

maxOccurs=”1” minOccurs=”0”>
</ xsd :e l ement>
<xsd :e l ement name=”Tags” type=” tns :Category ”

maxOccurs=”unbounded” minOccurs=”0”>
</ xsd :e l ement>
</ xsd : sequence>
</xsd:complexType>
<xsd:complexType name=”Category”>
<xsd : sequence>
<xsd :e l ement name=”term” type=” x s d : s t r i n g ”></ xsd :e l ement>
<xsd :e l ement name=”scheme” type=”xsd:anyURI”></ xsd :e l ement>
<xsd :e l ement name=” l a b e l ” type=” x s d : s t r i n g ”></ xsd :e l ement>
</ xsd : sequence>
</xsd:complexType>
<xsd :e l ement name=”ReviewRequest ” type=” tns :Request ”>
</ xsd :e l ement>
<xsd:complexType name=”Request ”>
<xsd : sequence>
<xsd :e l ement name=”ReviewResource” type=” tns :Gener i cResource ”

minOccurs=”1” maxOccurs=”1”></ xsd :e l ement>
<xsd :e l ement name=”Comments” type=” x s d : s t r i n g ”

minOccurs=”0” maxOccurs=”unbounded”></ xsd :e l ement>
</ xsd : sequence>
</xsd:complexType>
<xsd :e l ement name=”ReviewReply” type=” tns :Rep ly ”></ xsd :e l ement>
<xsd:complexType name=”Reply”>
<xsd : sequence>
<xsd :e l ement name=”ReplyResource ” type=” tns :Gener i cResource ”

minOccurs=”1” maxOccurs=”unbounded”></ xsd :e l ement>
<xsd :e l ement name=”Comments” type=” x s d : s t r i n g ”

minOccurs=”0” maxOccurs=”unbounded”></ xsd :e l ement>
</ xsd : sequence>
</xsd:complexType>
<xsd :e l ement name=”AckReviewRequest” type=” x s d : s t r i n g ”>
</ xsd :e l ement>
<xsd :e l ement name=”GetReviewReply” type=” x s d : s t r i n g ”>
</ xsd :e l ement>
</xsd:schema>

</ wsd l : type s>
<wsdl :message name=”GetReview”>
<wsd l :pa r t name=”part1 ” element=” tns:ReviewRequest ” />

Appendix 147

</wsdl :message>
<wsdl :message name=”AckReviewRequest”>
<wsd l :pa r t name=”part1 ” element=” tns:AckReviewRequest ”>
</ wsd l :pa r t>
</wsdl :message>
<wsdl :message name=”GetReviewReply”>
<wsd l :pa r t name=”part1 ” element=” tns:GetReviewReply ” />
</wsdl :message>
<wsdl :message name=”GetReviewReplyResponse”>
<wsd l :pa r t name=”part1 ” element=” tns:ReviewReply ”></ wsd l :pa r t>
</wsdl :message>
<wsdl :portType name=”HPSReviewPortType”>
<wsd l : ope ra t i on name=”GetReview”>
<wsd l : i nput

xmlns:wsaw=” ht tp : //www.w3 . org /2006/05/ addre s s ing /wsdl ”
message=” tns:GetReview” wsaw:Action=”urn:GetReview” >

</ wsd l : i nput>
<wsdl :output message=” tns:AckReviewRequest ”>
</ wsdl :output>
</ wsd l : ope ra t i on>
<wsd l : ope ra t i on name=”GetReviewReply”>
<wsd l : i nput

xmlns:wsaw=” ht tp : //www.w3 . org /2006/05/ addre s s ing /wsdl ”
message=” tns:GetReviewReply ” wsaw:Action=”urn:GetReviewReply”/>

<wsdl :output message=” tns:GetReviewReplyResponse ”></ wsdl :output>
</ wsd l : ope ra t i on>
</wsdl :portType>
<wsd l :b ind ing name=”HALSOAPBinding” type=”tns:HPSReviewPortType”>
<soap :b ind ing s t y l e=”document”

t ranspor t=” ht tp : // schemas . xmlsoap . org / soap/http ” />
<wsd l : ope ra t i on name=”GetReview”>
<s oap : ope ra t i on
soapAction=” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e /GetReview”/>
<wsd l : i nput>
<soap:body use=” l i t e r a l ” />
</ wsd l : i nput>
<wsdl :output>
<soap:body use=” l i t e r a l ” />
</ wsdl :output>
</ wsd l : ope ra t i on>
<wsd l : ope ra t i on name=”GetReviewReply”>
<s oap : ope ra t i on soapAction=

” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e /GetReviewReply”/>

Appendix 148

<wsd l : i nput>
<soap:body use=” l i t e r a l ” />
</ wsd l : i nput>
<wsdl :output>
<soap:body use=” l i t e r a l ” />
</ wsdl :output>
</ wsd l : ope ra t i on>

</ wsd l :b ind ing>
<wsd l : s e r v i c e name=”ReviewService ”>
<wsd l :po r t name=”HALSOAPBinding http”

binding=”tns:HALSOAPBinding”>
<soap :addre s s l o c a t i o n=”” />
</ wsd l :po r t>
</ w sd l : s e r v i c e>
</ w s d l : d e f i n i t i o n s>
� �

Listing B.1: Excerpt XML schema review service WSDL (flattened).

B.2 XML Schema Instance

� �

<?xml version=” 1 .0 ” encoding=”ASCII”?>
<soapenv:Envelope soapenv : encod ingSty l e=

” ht tp : // schemas . xmlsoap . org / soap/ encoding /”
xmlns:wsa=” ht tp : // schemas . xmlsoap . org /ws/2004/08/ addre s s ing ”
xmlns:soapenv=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>

<soapenv:Header xmlns :x s i=
” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”>
<wsa:From>ht tp : //www. myhps . org / hal / id1</wsa:From>
<wsa:To></wsa:To>
<wsa:Action>ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e /GetReview
</wsa:Action>
</ soapenv:Header>
<soapenv:Body xmlns :x s i=

” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”>
<r ev i ewserv i ce :Rev i ewReques t xm ln s : r ev i ews e rv i c e=

” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e ”
type=” r ev i ews e rv i c e :Reque s t ”>

<r ev i ewse rv i c e :Rev i ewResource type=
” r ev i ewse rv i c e :Gene r i cRe sou r c e ”>
<r e v i ew s e r v i c e : Lo c a t i on type=”xsd:anyURI”/>

Appendix 149

<r e v i ew s e r v i c e :Exp i r e s type=”xsd:dateTime”>2008−05−14T09:59:37Z
</ r e v i ew s e r v i c e :Exp i r e s>
<r ev i ews e rv i c e :Tag s type=” r ev i ews e rv i c e :Ca t ego ry ”>
<r e v i ews e r v i c e : t e rm type=” x s d : s t r i n g ”/>
<r ev i ewse rv i c e : s cheme type=”xsd:anyURI”/>
<r e v i e w s e r v i c e : l a b e l type=” x s d : s t r i n g ”/>
</ r ev i ews e rv i c e :Tag s>
</ rev i ewse rv i c e :Rev i ewResource>
<reviewservice :Comments type=” x s d : s t r i n g ”>Free Text Comments
</ reviewservice :Comments>
</ rev i ewserv i ce :Rev i ewReques t>
</ soapenv:Body>
</ soapenv:Envelope>
� �

Listing B.2: Excerpt XML schema instance of a review HPS.

B.3 XHTML Input Form

� �

<?xml version=” 1 .0 ” encoding=”ASCII”?>
<html xmlns=” ht tp : //www.w3 . org /1999/ xhtml”

xmlns:ev=” ht tp : //www.w3 . org /2001/xml−events ”
xmlns:xforms=” ht tp : //www.w3 . org /2002/ xforms”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmln s : r ev i ews e rv i c e=” ht tp : // s e r v i c e s . myhps . org / r e v i ew s e r v i c e ”
xmlns:soapenv=” ht tp : // schemas . xmlsoap . org / soap/ envelope /”
xmlns:wsa=” ht tp : // schemas . xmlsoap . org /ws/2004/08/ addre s s ing ”>

<head>
< t i t l e>GetReview</ t i t l e>
<xforms:model id=”model Envelope ”>
<x f o rms : i n s t anc e id=” instance mode l Enve lope ”

s r c=”GetReview . xml”/>
<xforms : submiss ion id=” submit model Envelope ” ac t i on=””

method=”post ” mediatype=” text /xml” r ep l a c e=” in s t ance ”>
<x f o rms : t ogg l e ev : event=”xforms−submit−done” case=” response ”/>
</ x forms : submiss ion>
</ xforms:model>
< l i n k h r e f=” s t y l e . c s s ” r e l=” s t y l e s h e e t ”/>

</head>
<body>
<x f o rms : l a b e l>Message Header</ x f o rms : l a b e l>

Appendix 150

<xforms:group>
<x forms : input r e f=”/ soapenv:Envelope / soapenv:Header /wsa:From”

model=”model Envelope ”>
<x f o rms : l a b e l>From</ x f o rms : l a b e l>
</ x forms : input>
<x forms : input r e f=”/ soapenv:Envelope / soapenv:Header /wsa:To”

model=”model Envelope ”>
<x f o rms : l a b e l>To</ x f o rms : l a b e l>
</ x forms : input>
</ xforms:group>
<x fo rms : sw i t ch>
<x fo rms : ca s e id=” reque s t ” s e l e c t e d=” true ”>
<x f o rms : l a b e l>ReviewResource</ x f o rms : l a b e l>
<xforms:group>
<x forms : input

r e f=”/ soapenv:Envelope / soapenv:Body/ r e v i ew s e r v i c e : . . . ”
model=”model Envelope ”>

<x f o rms : l a b e l>Locat ion</ x f o rms : l a b e l>
</ x forms : input>
<x forms : input

r e f=”/ soapenv:Envelope / soapenv:Body/ r e v i ew s e r v i c e : . . . ”
model=”model Envelope ”>

<x f o rms : l a b e l>Expires</ x f o rms : l a b e l>
</ x forms : input>

< !−− Remaining e lements omit ted −−>
<xforms:submit submiss ion=” submit model Envelope ”>
<x f o rms : l a b e l>Submit</ x f o rms : l a b e l>
<xforms:message ev : event=”xforms−submit−done”

ev : ob s e r v e r=” submit model Envelope ”
l e v e l=”modal”>Submission s u c c e s s f u l .</ xforms:message>

<xforms:message ev : event=”xforms−submit−e r r o r ”
ev : ob s e r v e r=” submit model Envelope ”
l e v e l=”modal”>Ensure that a l l entry f i e l d s are va l i d .

</ xforms:message>
</ xforms:submit>
</ x fo rms : ca s e>
<x fo rms : ca s e id=” response ”>
<xforms:output r e f=
”/ soapenv:Envelope / soapenv:Body/ rev iewserv ice :AckReviewRequest ”
model=”model Envelope ”>

<x f o rms : l a b e l>Get Review Response</ x f o rms : l a b e l>
</ xforms:output>
</ x fo rms : ca s e>

Appendix 151

</ x fo rms : sw i t ch>
</body>
</html>
� �

Listing B.3: Excerpt XHTML input form for review HPS.

B.4 Predefined XML Types

� �

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<xsd:schema targetNamespace=” ht tp : // types . myhps . org / t /2008/03”

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”
xmlns : tns=” ht tp : // types . myhps . org / t /2008/03”
elementFormDefault=” q u a l i f i e d ” attr ibuteFormDefau l t=” q u a l i f i e d ”>
<xsd:s impleType name=” app l i c a t i on ”>
<x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
<xsd:enumerat ion value=” app l i c a t i on / j a v a s c r i p t ”/>
<xsd:enumerat ion value=” app l i c a t i on / octet−stream”/>
<xsd:enumerat ion value=” app l i c a t i on / soap+xml”/>
< !−− Remaining e lements omit ted −−>

</ x s d : r e s t r i c t i o n>
</ xsd:s impleType>
<xsd:s impleType name=”message”>
<x s d : r e s t r i c t i o n base=” x s d : s t r i n g ”>
<xsd :annotat ion>
<xsd:documentat ion xml:lang=”en”>

Email message i n c l ud ing any headers
</ xsd:documentat ion>
</ xsd :annotat ion>
<xsd:enumerat ion value=”message/ r f c 822 ”></ xsd:enumerat ion>

</ x s d : r e s t r i c t i o n>
</ xsd:s impleType>
<xsd:complexType name=”Mediatype”/>
<xsd:complexType name=” Ar t i f a c t ”/>

</xsd:schema>
� �

Listing B.4: Excerpt XML schema predefined types (reusable in various activities).

Appendix 152

B.5 Meta Model for Interface Mappings

• Simple (String)

– XSD: <xs:element/> Simple Type xs:string

– Form: <xf:input ref=""/>

– Restriction/Model: <xs:length value="$model" />

parameter //*[@value=’Text’]/prop[@name=’length’]/@value

• Simple (Textarea)

– XSD: <xs:element/> Simple Type xs:string

– Form: <xf:textarea ref=""/>

– Restriction/Model: <xs:length value="$model" />

parameter //*[@value=’Paragraph’]/prop[@name=’length’]/@value

• Complex

– XSD: <xs:complexType/>

– Form: -

– Restriction/Model: Recursive inspection of schema particle and construction of
comprising elements as form

• Choice

– XSD: <xs:choice/>

– Form: <xf:select1 ref="" appearance="$model"/>with appearance as $model
parameter (“full” or “compact”)

– Restriction/Model: //*[@value=’Choice’]/prop[@name=’type’]/@value and
<xs:choice minOccurs="$model" maxOccurs="$model"> with $model as pa-
rameters (minOccurs and maxOccurs being ”1”)

• Enumeration (Select1)

– XSD: <xs:enumeration/>

– Form: <xf:select1 ref="" appearance="minimal">

– Restriction/Model: //*[@value=’List’]/prop[@name=’type’]/@value maps
a list to enumeration

• Enumeration (Select)

– XSD: <xs:choice/>

Appendix 153

– Form: <xf:select ref="" appearance="full">

– Restriction/Model: //*[@value=’Checkboxes’]/prop[@name=’type’]/@value
and <xs:choice minOccurs="$model" maxOccurs="$model"> with $model as
parameters (minOccurs=”0” and maxOccurs=”unbounded”)

Appendix C

Model Diagrams

bodies

FK1 messageid

body

hpsentities

PK hpsid

U1 entityid

FK1,U1 typeid

interactiongraph

PK,FK1 messageid

PK linkid

sender

receiver

relatesto

relationship

users

PK personid

email

shortname

firstname

surname

FK1 profile

profiles

PK profileid

name

profiletype

profilepath

profilevalue

headers

PK headerid

FK1 messageid

headername

headervalue

tags

PK tagid

U1 term

U1 scheme

U1 label

fingerprints

U1 entityid

U1 tag

score

ppv

type

messages

PK messageid

messagenum

halidentifier

messagedt

contenttype

messagetype

action

targetnamespace

hpsactivities

PK hpsactivityid

FK2,U1 hpsid

FK1,U1 activityid

activitytagmap

FK1,U1 hpsactivityid

FK2,U1 tagid

actiontagmap

FK1,U1 actionid

FK2,U1 tagid

FK1 messageid

accounttypes

PK typeid

typename

accounturi

rankings

PK entityid

rank

activities

PK activityid

U1 name

U1 scheme

description

activityuri

Figure C.1: Database schema designed for HAL.

154

Appendix 155

PersonPerson

FirstName [1..1] string

LastName [1..1] string

Title string

Email [1..1] anyURI

Phone string

Org ORG

Interests Interest

Competencies Competency

MemberOf MemberShip

Activities ProfessionalActivity

LinkToResume anyURI

Geo GEO

Meta MetaProfile

ORGORG

Name string

Department string

Group string

Address [1..1] Address

InterestInterest

Name string

Description string

Link anyURI

CompetencyCompetency

Name string

Description string

Weight [1..1] CompetencyWeight

Classifications Classification

Evidences Evidence

MemberShipMemberShip

Name string

Link anyURI

ProfessionalActivityProfessionalActivity

Name string

Description string

Link anyURI

Start date

End date

Location Address

GEOGEO

Long long

Lat long

Time time

MetaProfileMetaProfile

REV dateTime

Version float

Status CLASS

Lang string

PublicKey string

Figure C.2: Model for HPS profiles.

Appendix D

Weight Profiles

Metric weights can be adjusted based on the requirements of various collaboration use
cases. We illustrate some HPS use cases and define a method to find useful metric weights
based on

• Find expert for collaboration: emphasizing long-term collaboration scenarios. The
dominant metric is SE. SE is a model to determine the skill level of a user.

• Require input from best available expert: this use case targets process-human inter-
actions with the requirement of finding an expert who can provide input in a timely
fashion.

• Require input from best informed expert: in this case we demand input or expertise
from a user who is highly involved in a particular context. Thus, IIL plays an
important role since intensities in a given context indicate best informed users.

We calculate the weights for different application scenarios as the area underneath a
function which establishes the relationship between above mentioned queries. In a straight-
forward manner, we define linear functions to determine different levels of importance. Let
us start with the basic definition of WMR

as the integral over the entire set of metrics:

WMR
=

∫

wm

f(wm)dwm =

∫

wm1

f(wm1)dwm1 + . . .+

∫

wmn

f(wmn)dwmn (D.1)

For linear f(wm), WMR
simplifies to

WMR
=

∫

wm

(a · wm + b)dwm =
1

3a
(a · wm + b)2 (D.2)

156

Appendix 157

• Immediate response from best available expert yields equal importance for each metric
(b = 1/|MR|), Find expert for collaboration demands high importance in SE. The
linear function is 2/a2 + b (i.e., a2 = |MR| and b = 0 7→ 2/9 · wm).

• Require input from best available expert demands equal importance in availability, SE
(we abandon IIL) and Require input from best informed expert using −2/a2 + b (i.e.,
a2 = |MR| and b = 2/|MR| 7→ −2/9 · wm + 2/3).

We provide calculations and descriptions in Table D.1. These queries can be extended
based on different application requirements which can be modeled using other relationship
functions. However, to discuss our approach to determine weight-profiles, it is sufficient to
use linear models. The column SE depicts the sum of context-dependent SE rankings.

Profile ID availability IIL SE Description

01 0.5 0.5 n/a Basic DSARank for dynamics in human inter-
actions.

02 n/a n/a 1 Skill-based DSARank. LL depends on user
query and preferences vector.

03 1/3 1/3 1/3 Immediate response from best available ex-
pert.

04 1/9 1/3 5/9 Find expert for collaboration.
05 1/2 0 1/2 Require input from best available expert.
06 5/9 1/9 1/3 Require input from best informed expert.

Table D.1: Metric-weight profiles (piecewise integration over metric interval).

Appendix E

Task Rewarding Example

Let us define the input set {~vα1
} obtained in Mα1

as {(0.3, 0.0202)s1
, (0.5, 0.4273)s2

,
(0.7, 0.9921)s3

, (0.9, 0.9999)s4
}. Table E.1 shows the corresponding data sets that are cal-

culated in Mα2
with reference to Mα1

.

~vα2
~pα1,2

cosϕ
∥

∥~pα1,2

∥

∥

∥

∥(pα1,2,x, vα2,y)
∥

∥ sc

s1 (0.8, 0.9723) (0.3, 0.0795) 0.784831 0.3330 1.0247 3.0774
s2 (0.2, 0.0154) (0.5, 0.4539) 0.781440 0.6655 0.4869 0.7316
s3 (0.9, 0.9922) (0.7, 0.9548) 0.998065 1.1958 1.2260 1.0252
s4 (0.6, 0.7343) (0.9, 0.9977) 0.995865 1.3685 1.1902 0.8697

Table E.1: Task data set in Mα2
.

Similarly, Table E.2 shows a data set in Mα3
with reference to Mα2

.

~vα3
~pα2,3

cosϕ
∥

∥~pα2,3

∥

∥

∥

∥(pα2,3,x, vα3,y)
∥

∥ sc

s1 (1.0, 0.9419) (0.8, 0.8305) 0.998713 1.1235 1.2082 1.0754
s2 (0.7, 0.7605) (0.2, 0.1350) 0.970740 0.2413 0.7864 3.2587
s3 (0.4, 0.3983) (0.9, 0.8972) 0.997610 1.2359 0.9387 0.7595
s4 (0.8, 0.8390) (0.6, 0.6116) 0.999919 0.8383 1.0162 1.2122

Table E.2: Task data set in Mα3
.

These datasets were generated for the task processing time PT (0.2 ≤ PT ≤ 1.0)1.
The task reward is calculated by the functions fT 〈Mα〉 , α ∈ {α1, α2, α3}.

We assume that the task reward trij(Mα2
) can be calculated with reference to tri−1j(Mα1

)
and tri+1j(Mα3

) with reference to trij(Mα2
). Note that it is also possible to calculate the

trend tri+1j(Mα3
) based on trij(Mα2

). The illustrated dataset, however, assumes a series
of tasks such that ∃{tri−1j, trij, tri+1j}∀j ∈ {HT (s)}.

1The assumption is that HT (s) are statistically independent.

158

Appendix 159

To handle situations where such a series not always exists, we can calculate the mean
trend. Let us define trendα(Mαn

) = (
∏N

1 e
iϕ)1/N , N = |{tr(Mαn

)}| to calculate the mean
trend as the mean of the angles ϕ. Thus, we have trij(Mαn

) = trij trendα(Mαn
).

Figure E shows rewards obtained in Mα1
, Mα2

, and Mα3
. In particular, Mα1

shows the
rewards tr as defined in the set {~vα1

}. Similarly, tr(Mα2
) is given by ~vα2

in Table E.1 and
~vα3

in Table E.2 denotes tr(Mα3
). We see in Table E.3 the computation of tr, given the

aforementioned dataset. The divergence ↑↓ is calculated as (trendα−eiϕ)/ trendα.

sign(log(c)) eiϕ ↑↓ tr tr Rank(tr) Rank(tr)

Mα2
s1 1 1.9511 -97% 0.9723 1.8970 3 4
s2 -1 0.5098 49% 0.0154 0.0078 1 1
s3 1 1.0642 -7% 0.9922 1.0559 4 3
s4 -1 0.9130 8% 0.7343 0.6705 2 2

Mα3
s1 1 1.0521 1% 0.9419 0.9909 4 4
s2 1 1.2744 -20% 0.7605 0.9692 2 3
s3 -1 0.9332 12% 0.3983 0.3717 1 1
s4 1 1.0128 5% 0.8390 0.8498 3 2

Table E.3: Calculating task trend for Mα2
and Mα3

.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HT(s)

f
T

M1
M3
M2

Figure E.1: Rewarding example to illustrate different models for fT 〈Mα〉.

Appendix F

Code Listing Ranking Service

F.1 Experimental Implementation

Setting up environment for mathematical analysis: We use Matlab as a tool to test and
evaluate ranking algorithms. Matlab offers a scripting environment and thus makes it easy
to run experiments and evaluate different ranking strategies. The Matlab environment
can be configured so researchers can interact with data stored in an SQL database. In
particular, we configured and used the MySQL database in our experiments1. We can then
execute commands, for example SQL queries, by using mysql function.

Setting up database: The next step is to setup a suitable database schema for exper-
imental evaluation of interaction-based ranking algorithms. Listing F.1 shows two tables
containing information regarding interaction links and a table holding rankings informa-
tion. The interaction links table captures service interaction links (invocations) and de-
scribes such interactions as a graph.

>> mysql (’ desc i n t e r a c t i o n l i n k s ’)

F i e ld Type Nul l Key Defau l t Extra
+−−−−−−−−−−+ +−−−−−−−−−−−+ +−−−−+ +−−−+ +−−−−−−−+ +−−−−−+

s e r v i c e i d varchar (45) NO
consumerid varchar (45) YES
weight double YES
timestampe varchar (45) YES

>> mysql (’ desc rankings ’)

F i e ld Type Nul l Key Defau l t Extra
+−−−−−−−−−+ +−−−−−−−−−−−+ +−−−−+ +−−−+ +−−−−−−−+ +−−−−−+

1http://www.mmf.utoronto.ca/resrchres/mysql/

160

Appendix 161

s e r v i c e i d varchar (45) NO PRI
rank double YES
timestamp varchar (45) YES

Listing F.1: Database tables.

F.2 Ranking Algorithm in Matlab

We now disuss an experimental implementation of a PageRank-based ranking algorithm
that analysis and calculates the rank of a services based on captured interaction links.

� �

1 % compute s t a t i ona ry d i s t r i b u t i o n o f markov chain
2 % us ing power i t e r a t i o n
3 f o r n = 1 : l ength (s e r v i c e i d s)
4 ranksum = 0.0
5 id = s e r v i c e i d s (n , 1)
6 q = s p r i n t f (’ s e l e c t consumerid from i n t e r a c t i o n l i n k s
7 where s e r v i c e i d = ’ ’%s ’ ’ ’ ,
8 s p r i n t f (’%s ’ , id { : }))
9 consumers = mysql (q)

10 f o r m = 1 : l ength (consumers)
11 consumerid = consumers (m, 1)
12 fromrank = 0 .0
13 q = s p r i n t f (’ s e l e c t rank from rank ings
14 where s e r v i c e i d = ’ ’%s ’ ’ ’ ,
15 s p r i n t f (’%s ’ , consumerid { : }))
16 fromrank = mysql (q)
17 q = s p r i n t f (’ s e l e c t count (∗) from i n t e r a c t i o n l i n k s
18 where consumerid = ’ ’%s ’ ’ ’ ,
19 s p r i n t f (’%s ’ , consumerid { : }))
20 indeg = mysql (q)
21 i f l ength (fromrank) == 0
22 ranksum = ranksum + 0.85 ∗ (0 . 125 / indeg)
23 e l s e
24 ranksum = ranksum + 0.85 ∗ (fromrank / indeg)
25 end
26 end
27
28 u = s p r i n t f (’ update rank ings SET rank = %d , timestamp = ’ ’%s ’ ’
29 where s e r v i c e i d = ’ ’%s ’ ’ ’ , ranksum , ’ empty ’ ,
30 s p r i n t f (’%s ’ , id { : }))
31 mysql (u)

Appendix 162

32 end
� �

Listing F.2: Matlab code ranking algorithm.

Plotting rankings results in Matlab.
� �

1 % query f o r rank ings
2 q = s p r i n t f (’ s e l e c t s e r v i c e i d , rank from rankings ’)
3 % s e l e c t from rank ings
4 [s id , rank] = mysql (q)
5 % p lo t as d i s c r e t e sequence data
6 stem (rank , ’ DisplayName ’ , ’ rank ’) ;

� �

Listing F.3: Plot rankings script.

F.3 Ranking Algorithm in Java

public class ServiceRankAlgorithm {

public void eva luate (int numIterat ions) {
4 i f (isRunning () == true)

return ;
else {

updateStatus (1) ;
}

9 i n i t () ;

try {
createConnect ion () ;
statement = connect ion . createStatement () ;

14

for (int i t e r a t i o n = 0 ; i t e r a t i o n < numIterat ions ; i t e r a t i o n++) {
Resu l tSet r e s u l t = statement

. executeQuery (” s e l e c t s e r v i c e i d from ”
+ Database .RANKINGS) ;

19

ArrayList<Str ing> s e r v i c e s = new ArrayList<Str ing >() ;

while (r e s u l t . next ()) {
s e r v i c e s . add (r e s u l t . g e tS t r i ng (1)) ;

24 }
r e s u l t . c l o s e () ;

for (S t r ing s : s e r v i c e s) {

Appendix 163

double ranksum = 0 . 1 5 ;
29

r e s u l t = statement
. executeQuery (” s e l e c t consumerid from ”

+ Database . LINKS + ” where s e r v i c e i d = ’ ”
+ s + ” ’ ”) ;

34

ArrayList<Str ing> consumers = new ArrayList<Str ing >() ;

while (r e s u l t . next ()) {
consumers . add (r e s u l t . g e tS t r i ng (1)) ;

39 }
r e s u l t . c l o s e () ;

for (S t r ing consumer : consumers) {
double fromrank = 0 . 0 ;

44 r e s u l t = statement . executeQuery (” s e l e c t rank from ”
+ Database .RANKINGS + ” where s e r v i c e i d = ’ ”
+ consumer + ” ’ ”) ;

i f (r e s u l t . next ()) {
fromrank = r e s u l t . getDouble (1) ;

49 } else {
fromrank = 0 . 1 2 5 ;

}

r e s u l t = statement . executeQuery (” s e l e c t count (∗) from ”
54 + Database . LINKS + ” where consumerid = ’ ”

+ consumer + ” ’ ”) ;

i f (r e s u l t . next ()) {
ranksum += 0.85 ∗ (fromrank / r e s u l t . g e t In t (1)) ;

59 }

r e s u l t . c l o s e () ;
}

64 statement . executeUpdate (”update ” + Database .RANKINGS
+ ” SET rank = ” + ranksum + ” , timestamp = ’ ”
+ System . cur r entT imeMi l l i s ()
+ ” ’ where s e r v i c e i d = ’ ” + s + ” ’ ”) ;

}
69 }

statement . c l o s e () ;
c lo seConnect ion () ;

Appendix 164

} catch (Exception e) {
74 e . pr intStackTrace () ;

} f ina l ly {
updateStatus (0) ;

}
}

79

private void updateStatus (int s t a tu s) {
try {

createConnect ion () ;
84 statement = connect ion . createStatement () ;

statement . executeUpdate (”update ” + Database .HISTORY
+ ” se t running = ” + s ta tu s) ;

statement . c l o s e () ;
c lo seConnect ion () ;

89 } catch (Exception e) {
e . pr intStackTrace () ;

}
}

94 private boolean isRunning () {
boolean running = fa l se ;
try {

createConnect ion () ;
statement = connect ion . createStatement () ;

99 Resu l tSet r e s u l t = statement
. executeQuery (” s e l e c t running from ” + Database .HISTORY) ;

i f (r e s u l t . next () && r e s u l t . g e t In t (1) == 1)
running = true ;

104

r e s u l t . c l o s e () ;
statement . c l o s e () ;
c lo seConnect ion () ;

} catch (Exception e) {
109 e . pr intStackTrace () ;

}
return running ;

}

114 private void i n i t () {
try {

createConnect ion () ;
statement = connect ion . createStatement () ;

Appendix 165

statement . executeUpdate (” d e l e t e from rank ings ”) ;
119

Resu l tSet r e s u l t = statement
. executeQuery (

” s e l e c t d i s t i n c t s e r v i c e i d from ” + Database . LINKS) ;
ArrayList<Str ing> s e r v i c e s = new ArrayList<Str ing >() ;

124

while (r e s u l t . next ()) {
s e r v i c e s . add (r e s u l t . g e tS t r i ng (1)) ;

}
r e s u l t . c l o s e () ;

129

for (S t r ing s : s e r v i c e s) {
statement . executeUpdate (” i n s e r t i n to ” + Database .RANKINGS

+ ” va lue s (’ ” + s + ” ’ , ” + 1 .0 + ” , ’ ”
+ System . cur r entT imeMi l l i s () + ” ’) ”) ;

134 }

r e s u l t . c l o s e () ;
statement . c l o s e () ;
c lo seConnect ion () ;

139 } catch (Exception e) {
e . pr intStackTrace () ;

}
}

144 public void generateTestData (int vertexCount , int i t e r a t i o n s) {
try {

ArrayList<Str ing> nodes = new ArrayList<Str ing >() ;

for (int i = 0 ; i < vertexCount ; i++) {
149 nodes . add (UUID. randomUUID () . t oS t r i ng ()) ;

}

createConnect ion () ;
statement = connect ion . createStatement () ;

154

for (int i = 0 ; i < i t e r a t i o n s ; i++) {
Random rand = new Random () ;
int s index = rand . next Int (nodes . s i z e ()) ;
int c index = rand . next Int (nodes . s i z e ()) ;

159

i f (s index == cindex) {
continue ;

}

Appendix 166

164 St r ing s e r v i c e = nodes . get (s index) ;
S t r ing consumer = nodes . get (c index) ;

Resu l tSet r e s u l t = statement . executeQuery (” s e l e c t ∗ from ”
+ Database . LINKS + ” where s e r v i c e i d = ’ ” + s e r v i c e

169 + ” ’ and consumerid = ’ ” + consumer + ” ’ ”) ;

i f (r e s u l t . next ()) {
continue ;

}
174

statement . executeUpdate (
” i n s e r t i n to ” + Database . LINKS + ” va lue s (’ ”
+ s e r v i c e + ” ’ , ’ ” + consumer + ” ’ , ” + 1 + ” , ’ ”
+ System . cur r entT imeMi l l i s () + ” ’) ”) ;

179 }

statement . c l o s e () ;
c lo seConnect ion () ;

} catch (Exception e) {
184 e . pr intStackTrace () ;

}
}

}
Listing F.4: Basic ranking algorithm

F.4 Ranking Web Service

public class RankingService {
public Result ge tResu l t (S t r ing s e r v i c e I d) {

3 Result r e s u l t = null ;

for (Result myResult : new Serv iceRankResults () . g e tResu l t s ()) {
i f (r e s u l t . g e tS e r v i c e I d () . equa l s IgnoreCase (s e r v i c e I d))

r e s u l t = myResult ;
8 }

return r e s u l t ;
}

public Result [] g e tResu l t s () {
13 return new Serv iceRankResults () . g e tResu l t s () ;

}

Appendix 167

public void updateRankings () {
new ServiceRankAlgorithm () . eva luate (2 0) ;

18

new Thread () {
public void run () {

new ServiceRankAlgorithm () . eva luate (2 0) ;
}

23 } . s t a r t () ;
}

}

Listing F.5: Basic ranking service

public class Serv iceRankResults {
public Result [] g e tResu l t s () {

ArrayList<Result> r e s u l t L i s t = new ArrayList<Result >() ;

5 try {
createConnect ion () ;
statement = connect ion . createStatement () ;

Resu l tSet r e s u l t = statement . executeQuery (
10 ” s e l e c t ∗ from ”

+ Database .RANKINGS + ” order by rank desc ”) ;

int pos = 0 ;
while (r e s u l t . next ()) {

15 Result rank ingResu l t = new Result () ;
rank ingResu l t . s e t S e r v i c e I d (r e s u l t . g e tS t r i ng (1)) ;
rank ingResu l t . s e tPo s i t i o n (pos++);
rank ingResu l t . s e tSco r e (r e s u l t . getDouble (2)) ;
r e s u l t L i s t . add (rank ingResu l t) ;

20 }

for (Result rank ingResu l t : r e s u l t L i s t) {
r e s u l t = statement . executeQuery (

” s e l e c t count (∗) from ” + Database . LINKS
25 + ” where s e r v i c e i d = ’ ” + rank ingResu l t . g e tS e r v i c e I d ()

+ ” ’ ”) ;

i f (r e s u l t . next ()) {
rank ingResu l t . s e t Indeg r e e (r e s u l t . g e t In t (1)) ;

30 }
}

Appendix 168

r e s u l t . c l o s e () ;

35 statement . c l o s e () ;
c lo seConnect ion () ;

} catch (Exception e) {
e . pr intStackTrace () ;

}
40

return r e s u l t L i s t . toArray (new Result [r e s u l t L i s t . s i z e ()]) ;
}

}

Listing F.6: Ranking service result

