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Abstract—Advanced wearable sensor devices have enabled the
recording of vast amounts of movement data from individuals
regarding their physical activities. This data offers valuable
insights that enhance our understanding of how physical activities
contribute to improved physical health and overall quality of life.
Consequently, there is a growing need for efficient methods to
extract significant insights from these rapidly expanding real-time
datasets. This paper presents a methodology to efficiently extract
substantial insights from these expanding datasets, focusing on
professional sports but applicable to various human activities.
By utilizing data from Inertial Measurement Units (IMU) and
Global Navigation Satellite Systems (GNSS) receivers, athletic
performance can be analyzed using directed graphs to encode
knowledge of complex movements. Our approach is demonstrated
on biathlon data and detects specific points of interest and
complex movement sequences, facilitating the comparison and
analysis of human physical performance.

Index Terms—Human Activity Recognition, IoT, GNSS,
Graphs

I. INTRODUCTION

Throughout human evolution, our bodies and brains learned
the ever-increasing motion complexity. Even decades into
the computer and machine-powered area, it is still hard for
machines to solve supposedly easy tasks like manipulating a
Rubik’s cube [1]. This means humans and all living things
have the unique ability to move their bodies accurately and
efficiently. With more and more wearable sensors available,
such movements can be measured precisely and gain insights
into efficiency. The wearable technology market is predicted
to grow at a compound annual growth rate of 14.6% from
2023 to 2030 [2]. This includes using standard hardware like
”Cardiovascular Monitoring Using Earphones and a Mobile
Device” [3] or ”A Wearable Sensor for Measuring Sweat
Rate” [4]. There are even sensors that act as little radar to
detect human activities based on millimeter-waves [5]. All
these sensors generate a large amount of data with a common
objective: detecting physical activities and extracting insights.
This field of study is known as Human Activity/Action Recog-
nition (HAR) [6].

The HAR field researches how to identify and understand
human activities using technology. Despite the progress made
in this field, crucial aspects should be addressed to signifi-
cantly transform how individuals interact with mobile devices
and other devices. In the last few years, there have been

extensive studies in multiple areas, such as 3D Convolutional
Neural Networks (CNN) for HAR. Ji et al. [7] demonstrated
how image-based activity recognition is possible. In contrast,
Bia et al. [8] showcases how a wearable sensor and a CNN can
detect human activity like walking, sitting, or climbing stairs.
Another approach is a statistical analysis of given data and
trying to classify the activities [9]. The current research aims
to interpret datasets without prior knowledge, meaning that
they do not describe what movements look like to the system.
Meanwhile, most of these approaches are resource-intensive
(using neural networks) or are difficult to set up. Therefore,
our goal in this paper is to use domain-specific knowledge (i.e.,
anatomy of a movement sequence) obtained by experts (e.g.,
trainers) and encoded into a directed graph to quickly and
reliably detect motion sequences (i.e., movements). Further-
more, we emphasize using existing algorithms, which make
analyzing big datasets efficient and resource-friendly. Never-
theless, our approach is limited to human activity recognition;
however, it can also be used in any time data series.

In this paper, we propose an approach that aims to represent
complex athletes’ movements as a directed graph. The goal is
to find an efficient method for identifying critical points in a
multi-sensor dataset and detecting complex movements. This
approach is versatile and can be applied to any movement.
For illustration, we will focus on biathlon, a demanding sport
that combines two very different activities: fast skiing on
various terrains and precise target shooting while stationary.
Speed is crucial in biathlon, so finding the most effective and
efficient body movement techniques is essential. This involves
determining the best approach for uphill, flat, or downhill
sections and maximizing shooting accuracy. Moreover, we aim
to identify a data structure capable of capturing body move-
ments and developing an algorithm that can efficiently detect
these movements using multiple wearable sensors. Ultimately,
we will obtain performance indicators specific to different
movements that can be compared with others. This will enable
professional athletes, sports enthusiasts, and rehabilitation
patients to enhance their physical movements. Note that this
work focuses on the technological challenges associated with
detecting user-defined motion sequences, and any sports sci-
ence insights provided in this article are purely for illustrative
purposes and may not be scientifically grounded.

The remaining sections are structured as follows. A moti-
vation example and related work are presented in Section II.
Section III presents the proposed approach and an example
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to illustrate how to represent a sequence of movements in a
directed graph. Evaluation results are discussed in Section IV.
Lastly, we conclude our discussion with possible future actions
in Section V.

II. MOTIVATION AND RELATED WORK

A. Motivation Scenario

Understanding and improving athlete performance is criti-
cal in professional sports (i.e., especially in disciplines like
biathlon). Biathlon combines cross-country skiing and rifle
shooting, demanding peak physical condition and precision.
Coaches and sports researchers constantly seek new methods
to analyze and optimize the performance of athletes. Imagine
a biathlon team preparing for the winter sports. The team’s
performance analytics division provides detailed insights into
each athlete’s performance to identify strengths and areas for
improvement.

Analyzing transitions between race stages helps to identify
athlete delays and fatigue signs (e.g., observing how athletes
manage the shift from starting to tackling the uphill challenge,
and then from the uphill to the shooting range). Traditional
performance analysis methods are time-consuming and often
lack the granularity to make such fine-tuned adjustments.
Using IMUs and GNSS receivers, the responsible team can
collect detailed movement data from athletes during training
and competitions. Directed graphs allow encoding complex
movement sequences, which in return allows the team to (i)
capture detailed movement patterns, (ii) identify possible per-
formance bottlenecks, (iii) optimize training, or (iv) compare
athlete performances.

B. Related Work

HAR is a rapidly evolving field with various approaches
to tracking and interpreting human actions [10]. A common
methodology involves analyzing images and videos to detect
and extract human figures and their movements [11]–[13].
The authors present a real-time system for 3D human pose
estimation, tracking, and recognition from RGB-D video se-
quences using a generative structured framework. Kaya et al.
[14] proposed a new 1D-CNN-based deep learning approach
for sensor-based HAR using raw accelerometer and gyroscope
data. The proposed work showed the impact of using individ-
ual sensor data versus combined data while finding that the
model performed better with concurrent sensor data. Liu et al.
[15] applied the Bayesian structural time series framework to
biomedical sensor data, demonstrating its ability to accurately
assess the significance of health interventions while accounting
for complex covariate structures. The developed tool called
MhealthCI processes and registers diverse biomedical data for
personalized medicine applications. Kumar et al. [16] propose
a novel Deep-HAR model that combines CNNs for feature
extraction and Recurrent Neural Networks (RNNs) for pattern
recognition in time-series data. On the contrary to these works,
the innovative technique utilizes WiFi technology to ascertain
human presence without the need for cameras or sensors [17].

Contrary to the above-mentioned works, our approach fo-
cuses on the most common way to use inertial sensors in
wearable devices. The majority of research is concerned with
classification, but very little is done in extracting more than
just classes from datasets. Therefore, we aim to take it a
step further and not only classify activities (e.g., smartwatches
or smartphones classify human activities [18]) but also be
able to extract user-defined performance metrics like forces
applied to the body during certain tasks, etc. Our proposed
approach requires domain-specific knowledge, requiring an
understanding of how to break down a complex movement into
key points. In contrast to other research works, our proposed
graph-based method combined with domain-specific knowl-
edge enables complex movement detection in a resource-
efficient manner. Furthermore, our approach generates explain-
able results (meaning it is possible to reason (i.e., results
are traceable and how they were calculated), which most
approaches, especially ones using neural networks, lack. The
advantages of our approach arise from the combination of a
strict rule set driven by domain-specific knowledge and the
expressive capabilities of graphs. This unique combination
provides key benefits to our approach.

III. THE PROPOSED APPROACH

A. An overview of the approach

In Figure 1, we outline the concept of the proposed ap-
proach. The first step is to break down a specific movement
into smaller parts that make up the movement. This is done
with the help of an expert (i.e., typically trainers or sports
scientists). This step, e.g., includes trainers setting up virtual
gates on a map or defining triggers for acceleration data.
The temporal dependency between those parts is encoded
into a directed graph. Movements are recorded with wearable
devices featuring many sensors (e.g., IMU, GNSS, heart rate
sensor, etc.). The data is then processed by our proposed
approach (i.e., described in the next sections) and trainers
receive insights about the movements of interest.

Fig. 1: An overview of the proposed approach.

B. Encoding complex movements into a directed graph

Biathlon and any other movements can be modeled as
sections of movement that can be divided into smaller and
smaller subsections. The macro-view (see Figure 2) tells us
the shooting sequence consists of entering the shooting range



Fig. 2: A typical biathlon racetrack layout.

Fig. 3: Acceleration data from an uphill section.

followed by a shooting period and ending by exiting the
shooting range and starting running the uphill section. If the
uphill section is divided into multiple subsections, the analysis
can be done at a micro level (refer to Figure 3). It shows
the precise sequence of motion to complete one uphill step.
First, the arms of the athletes are moved forward, then the
upper body leans forward, and the feet follow. This sequence
always happens in the same order but with different forces and
duration. Such insight gained represents the knowledge of this
movement and should be encoded in a directed graph.

After a brief analysis of motion in biathlon, the sequence of
movements and their temporal dependency emerge as perfect
properties for describing motion sequences. The simplest
movement consists of two actions (i.e., referred to as points
of interest) and can be noted as A → B, which means A is
a condition for B (or simply said, A needs to happen before
B). Taking the example from above, one can write UE → UL
where UE = uphill enter and UL = uphill leave/exit, meaning
that exiting the uphill section could only happen after the
uphill section was entered in the first place. This way, all
temporal dependencies are simply defined as:

Definitions:
S Start
UE Enter uphill
UL Exit/leave uphill
P Penalty round
F Finish
RE Enter shooting range
SS Start shooting
SF Finish shooting
RL Leave/exit shooting range

Dependencies:

S → UE (Start to entering uphill)
UE → UL (Entering uphill to exiting uphill)
UL→ RE (Exiting uphill to entering shooting range)
UL→ F (Exiting uphill to finish line)
RE → RL (Entering shooting range to leaving shooting r.)
RE → SS (Entering shooting range to start shooting)
SS → SF (Start shooting to finish shooting)
SF → RL (Finish shooting to leaving shooting range)
RL→ P (Leaving shooting range to penalty round)
P → P (Penalty round to another penalty round)
P → UE (Penalty round to entering uphill)

Those dependencies can be placed into one of the most
common and well-studied data structures in computer science
known as graphs [19]. In this case, directed graphs will be
utilized to encode the temporal dependencies. A directed graph
is defined as an ordered pair G = (V,E) where

• V is a set whose elements are called vertices or nodes.
The representations will be used to depict actions or
points of interest, such as reaching a specific speed or
experiencing acceleration in a particular direction.

• E is a set of ordered pairs of vertices called directed
edges. The representations will be used to illustrate the
temporal dependencies of the points of interest mentioned
in the example with macro and micro-views in biathlon.

Fig. 4: Macro-view of biathlon. Turning sequence of events
into a directed graph.

Nodes represent specific points of interest, like entering
or exiting an area or the start of a specific movement. The
directed edges encode the order depending on time. In this
manner, any sequence and, thus, any kind of human activity
can be encoded into a data structure well understood by
computers.

C. Detection of points of interest in multi-sensor datasets
With datasets consisting of millions of data points, it is very

inefficient to analyze each data point. The goal is to identify



specific points in time that signal the occurrence of events
required to detect a more complex motion. Given that most
wearables record data from various sensors, it is important
to develop methods for detecting both generic events and
sensor-specific events. The most common sensor consists of
an inertial measurement unit (IMU) sensor (which delivers
acceleration and angular velocity data) and a global navigation
satellite system (GNSS) receiver (which delivers position and
speed data). The following triggers are helpful to detect points
of interest in big data sets:

1) Generic triggers:
• Edge detection: Falling, rising, or change (both rising

and falling) edge commonly used in signal processing.
Used in devices like oscilloscopes to detect events. The

Fig. 5: Edge detection anatomy.

simplest implementation looks at a specific threshold.
Mathematically, this function can be described as:

f(x) =

{
1 x ≥ threshold

0 otherwise

• Peak detection: Detects peaks by comparing local min-
ima/maxima with neighboring values. There are many

Fig. 6: Peak detection anatomy.

different algorithms to detect peaks. Some relevant exam-
ples are focused on electrocardiography [20], and there
are even specialized ones [21] on detecting heartbeats.
Nevertheless, we will not go into details about their inner
workings as this is out of the scope of this work. Note that
generic triggers can be used on any numerical dataset.

2) Sensor-specific triggers:
• Location-based detection: Detects when a line (virtual

gate) is crossed (intersection), or areas are entered/exited.
Note that sensor-specific triggers can only be used on
specific datasets.
There are multiple ways to calculate intersections. It
depends on the given coordinates. In a Cartesian co-
ordinate system, the two line equations y = ax + c

Fig. 7: Location-based detection anatomy.

Fig. 8: Virtual gates track layout.

and y = bx + d are checked with simple rearranging
and substitutions if and where those lines intersect. The
complexity increases when considering the geographic
coordinate system used in GNSS coordinates. Hence,
it is essential to consider the model used to represent
Earth. The Earth is commonly depicted as an ellipsoid,
often with the WGS84 model, which is also used by
the Global Positioning System (GPS) [22]. For example,
a simple formula to calculate the distance on a sphere
is the Haversine formula [23]. One can also project the
geographic coordinates to a Cartesian coordinate system
and do calculations as mentioned above, but this only
works for small distances.

To measure a typical biathlon race, location-based detec-
tions, often referred to as virtual gates, are utilized. To better
illustrate how the proposed algorithm works, the following
sample data set will be used. The virtual gate S in Figure 8
marks the start line. Next will be the uphill section consisting
of gates 1 and 2. Then, athletes will enter the range enclosed
by gates 3 and 4. The shooting section in the range will be
detected based on the measurement of the speed when lying
down (lower than 1m/s) and getting back up again (higher
than 1m/s). Then, for each missed shot out of 5 total shots,
athletes need to run the penalty round. So, if an athlete misses
2 out of 5, he must do two penalty rounds. Gate number 4 is
special in that it marks the beginning/ending of a lap. In total,
six laps were done. Shooting is only done every 2nd lap.

A point of interest (POI) refers to a specific moment in time
(timestamp) of an event that is being measured. For example,
gate 1 will produce a POI each time the athlete crosses the



Fig. 9: Triggers plotted in chart with speed data (m/s).

virtual line. The following notation is used for a POI: St =
point of interest S (start) was triggered at timestamp t.

Figure 9 shows all POIs (vertical lines) plotted with athlete
speed in m/s. All POIs are triggered by virtual lines except
start/end shooting. The speed information triggers those. If
athletes move more than 1m/s, it will trigger on the falling
edge (start shooting) or rising edge (end shooting). A closer
look at the first and last POI shows that those are ”wrongly”
start and end shooting triggers because triggers are unaware
of any temporal dependency (as previously described).

D. A direct graph to recognize complex movements

Up to now, the complex movement of interest is encoded
into a directed graph and points of interest from our dataset.
It is a matter of applying the graph to the points of interest
to recognize our complex movement. In order to accomplish
this, the graph needs to be traversed based on the points of
interest. This problem can be translated into a Deterministic
Finite Automaton (DFA) to explain this step more clearly.
A DFA is described by a five-element tuple (Q,

∑
, δ, q0, F )

[24]:

Q states∑
input alphabet

δ transition functions
q0 the starting state
F accepting states

The standard definition of q0 needs to be modified to
allow for multiple starting states, considering the possibility of
having multiple start nodes. A start node is defined as a node
in our directed graph (as shown in Figure 4) marked with a
”start” flag. The following DFA is deduced from our example
of biathlon:

DFABiathlon(Q,
∑

, δ, q0, F )

Firstly, Q = {S,UE,UL, P,RE,RL, SS, SF, F} rep-
resents all nodes of the directed graph. Secondly,

∑
=

{SF163, S175, UE214, UL235, . . .} represent all points of in-
terest from Section III-B. Lastly, δ = {S → UE,UE →
UL,UL → RE,UL → F,RE → RL,RE → SS, SS →
SF, SF → RL,RL → P, P → P, P → UE} represent all
edges of the directed graph. To make it more readable, the
notation A → B is used to represent the transition function
δ(A,Bt) = B where A and B represent a state and At
represents any POI triggered by B. All transition functions
that are not mentioned will have no effect and can be defined
as δ(Y,Xt) = Y . q0 = {S} represent all nodes in the

Fig. 10: All points of interest from start nodes – in our
example, only one.

Fig. 11: POIs from different nodes used as input alphabet for
our DFA.

directed graph, which are start nodes. Furthermore, F = {F}
represents all nodes in the directed graph that are finished
nodes.

Starting points are defined as all points of interest triggered
by a start node. Figure 10 shows the POIs of the start node
in the biathlon example. The presented Algorithm 1 describes
this step.

Algorithm 1 Searching for solutions starts at each start node.
solutions← []
startNodes← [node | node.start == True]
for all s ∈ startNodes do

poi← fetchPointsOfInterestForNode(s)
for all p ∈ poi do
sol← findPartialSolution(s, p)
solutions.append(sol)

end for
end for
return solutions

The DFA runs until it hits an accepting state, leading to
”a partial solution”. A partial solution consists of the taken
paths and timestamps and describes one detected movement.
It is defined as only partial to ensure the detection of all
movements in the dataset. The final or total solution will be
built in the algorithm’s last step and constructed from multiple
partial solutions.

After the automaton reaches an accepting state, the path
taken and timestamps will be logged as a partial solution
and then returned. The operation is described in Algorithm 2.
Currently, each POI of a specific node is used as input and
attempts to find a partial solution; however, there are specific
cases where certain restrictions need to be applied.

In our example, let’s consider the gate labeled as ”S” (start).
As shown in the map view of Figure 12, the athlete crossed
the virtual start gate S several times before the race started.
This might happen during the warm-up phase or the course
inspection. Our approach would take those false triggers and
build a valid solution. To avoid this scenario, users might
specify a minimum or maximum duration for an edge. In this
case, a maximum 60-second restriction is set for the path from



Algorithm 2 The search for solutions starts at every starting
node.

Function FINDPARTIALSOLUTION(start, point, solution)

solutions← []
startNodes← [node | node.start == True]
for all s ∈ startNodes do
poi← fetchPointsOfInterestForNode(s)
for all p ∈ poi do
sol← findPartialSolution(s, p)
solutions.append(sol)
FINDPARTIALSOLUTION(start, point, solution)

end for
end for
if len(solutions) == 0 and len(solution) > 0 then

if lastNodeInSolution.finish == True then
return [solution]

end if
end if
return solutions

Fig. 12: Start gate ”S” was triggered multiple times. In this
case, only the last start trigger is valid.

gate S (start) to gate 1 (enter uphill). It is a method to narrow
down the solution space to only valid solutions according to
training or race rules, reducing space and time complexity.

E. Combine partial solutions to find multiple total solutions

Only connected ones are found in the search for partial
solutions, indicating a valid POI sequence followed by another
sequence. Imagine a break between two sequences: One partial
solution will be found for the first sequence and another for
the second sequence.

All partial solutions should be combined in all possible
valid ways. ”Valid” means that overlapping sequences cannot

Fig. 13: Five partial solutions displayed by their temporal
coverage. Note that each color represents a different partial
solution.

Fig. 14: Combining partial solutions to form valid total solu-
tions.

happen simultaneously. Temporal order must be preserved,
and solutions cannot be moved on the time axis. A list of
solutions will be obtained, while a single solution may consist
of one or multiple partial solutions. Each partial solution is
also considered a valid solution.

F. Find optimal total solution

After identifying all potential solutions, establishing a met-
ric for comparing and ranking them is essential. The specific
metric will vary depending on the particular use case, but
reasonable assumptions can be made to strike a balance
between different approaches. Let’s examine some of these
approaches:

1) Maximize number of partial solutions: The most obvious
would be maximizing the number of partial solutions in one
solution. Let pi be the partial solution of s with index i and
n, which is the partial solution in s. The solution s is ranked
by:

rankBy(s) =

n∑
i=0

1

The disadvantage would be that many short solutions would
be ranked at the top. This leads to a fragmented solution shown
in Figure 15.

Fig. 15: Fragmented solution vs. de-fragmented solution.

Fragmented solutions tend to lead to wrong solutions as
false triggers in Section III-C are promoted. This is because
maximizing the number of partial solutions minimizes the
duration covered by each partial solution. The algorithm in
Section III-D produces partial solutions with short coverage
(i.e., especially when false triggers occur). In general, there is
no way of determining the ”correct” trigger. It might be the
first one, but it could also be the second one. Suppose multiple
solutions have the same number of partial solutions. In that



Fig. 16: Two solutions with each two partial solutions but
different total duration.

Fig. 17: Last solution will be taken.

case, the result will be an undefined behavior as it’s impossible
to determine the ”best” solution (as shown in Figure 16).

2) Maximize the covered duration: To mitigate a frag-
mented solution, the total duration is maximized and covered
in the solution. The total duration of a solution is the sum of
all durations of partial solutions. Let duration be a function
to calculate the duration (end time – start time), and then the
total duration is the sum of it. The solution s is ranked by:

rankBy(s) =

n∑
i=0

duration(pi)

3) Combination: Both approaches will inevitably lead to
non-deterministic behavior as there will be a lot of solutions
with the same number of partial solutions or covered duration.
The best approach is to combine both methods. First, rank for
the maximum covered duration and then maximize the number
of partial solutions(as illustrated in Figure 17).

IV. EVALUATION

A. Implementation, Testbed, and Dataset

In this paper, sample data was collected in biathlon by
a wearable IMU sensor and GNSS receiver. The sensor
”OCULUS” is made by the Austrian company Lympik1, a
sports technology company focused on professional sports
analytics. The accelerometer was configured at 50Hz and
capable of measuring up to 16G (i.e., gravitational force). The
gyroscope was also configured at 50Hz and an upper limit of
2000 degrees per second. The GNSS receiver was configured
to record at 10Hz in multi-constellation (i.e., GPS, Galileo,
GLONASS) mode, and Satellite-based Augmentation Systems
(SBAS) were also enabled.

Our test subjects were three professional athletes. The data
was recorded in the summer when the biathlon was simulated
on special rollers. The wearable was mounted on the athlete
with a special shirt while the rifle was carried above the sensor
to avoid disturbing it while taking it off and picking it up.

1Lympik, (https://www.lympik.com)

Fig. 18: OCULUS tracking device mounted on biathlon ath-
lete.

Fig. 19: Lympik sensor studio for analyzing sensor data.

Data analytics and visualization were done in Lympik
Sensor Studio1, a software service that quickly analyzes multi-
sensor data. All functions used in the Studio are easily
reproducible with simple scripts. The test implementation
was done using Python. The raw binary sensor data was
converted to standard units and signal processing was done
with Scipy 2. The location-based trigger is based on a simple
line intersection in an Euclidean system.

For the detection of POI in our datasets, two kinds of
triggers are used: Edge detection based on speed (i.e., the
threshold was set to 1m/s) for detecting shooting start/finish
and location-based triggers, which were positioned as shown
in Figure 8. The domain-specific knowledge was encoded
into a graph as presented in Figure 4. The resulting POIs
were applied to our DFA as described in Section III-D. The
path taken was recorded, and each edge was color-coded to
recognize each segment easily. The segmentation is shown in
a bar chart where the x-axis represents the time axis.

B. Experiments and Results

Our experiments were done with three biathlon athletes.
This experiment aimed to test our approach to handling large
datasets. Each dataset contains around 200k GNSS data points
and 500k IMU data points3. The IMU of one tracker was
configured at 200hz to test different dataset sizes as well.
The knowledge of the track was obtained from a professional

2https://scipy.org/
3https://doi.org/10.5281/zenodo.13208678

https://www.lympik.com
https://scipy.org/
https://doi.org/10.5281/zenodo.13208678


Fig. 20: Athlete A - dataset 191.9k GNSS data points, 503.1k
IMU data points.

Fig. 21: Athlete B - dataset 197.6k GNSS data points, 493.7k
IMU data points.

trainer and encoded into the graph as described in Section
III-B.

In total, each athlete did six laps. Shooting was done only
every 2nd lap; so, the athletes passed the shooting range
without shooting in the 1st, 3rd and 5th. In the 6th and final
lap, the athletes also skipped the shooting range and went to
the finish. The raw GNSS data and virtual gates are visualized
on a map. The chart displays the POIs triggered by each virtual
gate, and the bar chart presents the optimal solution generated
by the algorithm.

All three datasets were correctly segmented and found the
optimal solution. Based on each segment, further calculations
were made, such as calculating the average speed or maximum
forces applied to the athlete. In dataset A (see Figure 20),
the bar chart clearly shows the number of penalty rounds the
athlete takes in pink P → P . In the first shooting, the athlete
missed two shots and took two penalty rounds, and in the 2nd

shooting missed one. Athlete B, shown in Figure 21, did one

Fig. 22: Athlete C - dataset 205.5k GNSS data points, 2.1M
IMU data points.

Dataset Lap Range time Shooting time Shooting Z-accel.
Athlete A 2 57.53s 33.90s 0.33G
Athlete A 4 54.49s 30.80s -0.03G
Athlete B 2 53.47s 29.00s 0.27G
Athlete B 4 46.85s 22.90s -0.07G
Athlete C 2 53.67s 30.60s 0.49G
Athlete C 4 51.11s 28.10s 0.18G

TABLE I: Duration and acceleration measured in shooting
range.

penalty round in the first shooting and none in the 2nd. Results
from Athlete C in Figure 22 show that the athlete missed one
shot each time.

Upon closer examination, the numerical data in Table I
reveals an interesting observation. All athletes show a faster
range time (RE → SS → SF → RL) in the 4th lap than
the 2nd. Also, the Z-acceleration while shooting is different.
The easy explanation for this correlation is that in the 2nd lap,
athletes were told to shoot in a lying position while in the
4th, they had to stand. Standing results in a faster range time
overall and different acceleration information.

Another experiment was to test the penalty round, which
marks a special case. In this case, the athlete crosses multiple
times (i.e., depending on the missed shots) the same line,
and the segmentation still needs to work correctly (i.e., the
penalty gate trigger in orange in the line chart). As shown
in Figure 23, the three vertical lines indicate that the athlete
crossed this gate three times. One can see the penalty was also
correctly segmented (i.e., the bar chart in pink). The bar chart
segmentation aligns perfectly with the line chart representing
the POIs in this example taken from athlete A’s dataset.

C. Discussion, Limitations, and Future Work

All results presented in Section IV were calculated on
datasets with a few hundred thousand data points within
1-2 milliseconds on a one vCPU machine on the Google
Cloud Platform with 2GiB of memory. Compared to other
solutions utilizing neural networks (i.e., examples mentioned



Fig. 23: A detailed view of the penalty round.

in the introduction), this method uses well-optimized and
highly efficient analytic approaches combined with domain-
specific knowledge to detect complex movements in a fast
and resource-efficient way. There was no significant difference
in processing time between datasets (i.e., dataset C had four
times more IMU data than the others), further solidifying our
approach for big datasets. Furthermore, no big datasets for
training are needed, and traceability is a further advantage of
the proposed approach.

The limitation of the proposed approach is the required
domain-specific knowledge. One needs to know how a com-
plex movement can be split into points of interest. A further
challenge is posed by movement sequences, in which athletes
do not perform the same way every time. In the future, we
plan to parallelize the search for sub-solutions in Section
III-D. One potential area to explore is the potential to remove
the necessity for domain-specific knowledge. This could be
achieved by utilizing a neural network or federated learning
concepts (i.e., as presented in [25]) to embody domain-specific
insights from extensive datasets and construct a graph based
on the acquired knowledge. Future work remains investigating
possibilities for real-time insights while enabling data process-
ing in a distributed manner in the computing continuum [26],
[27]. Lastly, we will explore integrating advanced sensor data
analytics with AI planning techniques [28] in edge computing
environments [29] to enhance the real-time performance and
scalability of physical activity monitoring systems.

V. CONCLUSION

Integrating advanced wearable sensor devices has revolu-
tionized capturing detailed movement data during physical
activities. Such capability provides invaluable insights into
performance metrics, learning fatigue points, and tracking
movement efficiency. The proposed approach leverages sensor
data and, via graph-based, captures and analyzes detailed
movement data from individuals during various physical ac-
tivities. This methodology offers a comprehensive solution for
identifying critical performance metrics and fatigue points.
Visualizing these data through graphs enables a clear and
intuitive understanding of where and why performance drops
occur. Nevertheless, this paper outlines just the initial stage
of operationalizing the framework. In future work, we aim to
develop a comprehensive technical framework and provide a
thorough evaluation.
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