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Abstract—Federated Learning (FL) has emerged as a promis-
ing paradigm to train machine learning models collaboratively
while preserving data privacy. However, its widespread adoption
faces several challenges, including scalability, heterogeneous data
and devices, resource constraints, and security concerns. Despite
its promise, FL has not been specifically adapted for commu-
nity domains, primarily due to the wide-ranging differences
in data types and context, devices and operational conditions,
environmental factors, and stakeholders. In response to these
challenges, we present a novel framework for Community-based
Federated Learning called CommunityAI. CommunityAI enables
participants to be organized into communities based on their
shared interests, expertise, or data characteristics. Community
participants collectively contribute to training and refining learn-
ing models while maintaining data and participant privacy
within their respective groups. Within this paper, we discuss
the conceptual architecture, system requirements, processes, and
future challenges that must be solved. Finally, our goal within this
paper is to present our vision regarding enabling a collaborative
learning process within various communities.

Index Terms—Federated Learning; Artificial Intelligence; Ma-
chine Learning; Edge-Cloud Computing;

I. INTRODUCTION

In recent years, Federated Learning (FL) has emerged as

a promising paradigm in machine learning (ML), offering

a unique solution to the problem of balancing data privacy

and collaborative model training. FL enables ML models

to be trained collaboratively across distributed devices while

protecting sensitive data held by these devices. This approach

has found applications in various domains, from healthcare

to finance, aiming to harness the collective intelligence of

decentralized data sources. However, the widespread adoption

of FL faces multifaceted challenges such as encompassing

scalability, data heterogeneity, security and privacy concerns,

and resource constraints [1].

Traditionally, training high-quality learning models requires

well-labeled large datasets (i.e., data points are tagged or

categorized). However, these datasets often contain sensitive

information, making it impractical or insecure to share with

centralized servers for machine learning purposes. FL, as first

introduced by McMahan et al. [2], addresses this challenge

by providing a privacy-preserving approach for knowledge

sharing among collaborative devices. The primary objective

of FL is to enable knowledge transfer in the form of model

parameters (e.g., the weights) between devices and without

exposing the raw data. Each participating device trains a

model locally using its data. Once locally trained, these models

are uploaded to a central server which aggregates the model

parameters (i.e., often by averaging them) and creates a global

model with the knowledge of participating devices [3].

Members within communities can work together to tackle

shared challenges [4], and FL offers a technological solution

that preserves data privacy and fosters collective intelligence.

Community domains typically refer to specific areas or sectors

within a community or society that share common interests,

characteristics, or concerns. These domains can vary widely

and may include fields such as wellness, health monitoring,

education, healthcare, local government, nonprofit organiza-

tions, social services, and more. Essentially, community do-

mains are the different aspects or sectors of community life

where individuals and organizations work together to address

specific needs and issues within that community. Nevertheless,

a community is not limited only to social aspects; a community

can be created even from a group of devices or sensors

that aims to address specific issues (e.g., anomaly detection,

fault classification, etc.). However, the large differences across

community data sources are mostly the reason for the difficulty

in implementing FL in such scenarios [5]. These differences

encompass variations in data types, contextual intricacies,

device heterogeneity, operational conditions, environmental

factors, and the varied interests of involved stakeholders.

Despite its potential, FL has not been tailored to address

the specific demands of community-based domains [6]. In

a community context, FL assumes a high degree of data

similarity across all FL tasks. This means that the data

collected and utilized by different participants or devices in

the community share common patterns, characteristics, or

features that make them suitable for collaborative machine

learning. For instance, let’s assume the Fitness and Wellness

Community where participants aim to weight loss and adopt

healthier lifestyles. The community members use a variety of

wearable devices such as smartwatches, fitness trackers, and

health monitors. These devices collect data on metrics like

heart rate, steps taken, sleep quality, and more. Each device

may produce different data structures. Moreover, devices even

from the same manufacturer and version may produce various

results due to the heterogeneous environmental and operation

conditions. In some cases, the data collected or available for

training may not be very similar in terms of content, charac-

teristics, or patterns. As a result, such potential data variations

can lead to negative knowledge transfer which may affect

model performance. Therefore, there is a need for adapted
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approaches for FL that accommodate data heterogeneity by

allowing specialized submodels for groups of devices that

share similar data structures or characteristics.

In the literature, few works attempted to address the above-

discussed challenges. For example, Hiessl et. al. [7], [8]

introduced an industrial FL, where knowledge exchange can

be performed based on data similarities in manufacturing

industry data. This approach enables clients to select ML

models according to their preferences for FL for industrial

time series data. Their approach can recognize identical data,

and distribute them accordingly. However, a few characteristics

can be used to identify identical data. Nevertheless, this

method does not specify the community identification process.

In addition, the accuracy of identifying similar communities

has not been verified. Moreover, this work is designed for

industrial applications and has not been verified for other

applications such as healthcare and smart cities.

In response to these challenges, we introduce a novel frame-

work called CommunityAI that seeks to organize participants

into communities based on shared interests, expertise, data

similarities, or characteristics. These communities collectively

contribute to the training and refinement of ML models while

ensuring the utmost protection of data and participant privacy

within their respective groups. We assume that stakehold-

ers have the ability to establish diverse FL communities,

where they provide their respective ML models, tasks, and

metadata. FL communities are then created based on similar

configurations (i.e., such as device types, FL algorithms, ML

models, and objectives). In order to address potential data

dissimilarities and prevent negative knowledge transfer caused

by model updates, we use the concept of FL cohorts (i.e.,

FL community subsets). This approach allows knowledge

sharing exclusively within these cohorts and among models

that relate to a community, where multiple characteristics

are considered. These characteristics not only identify data

similarity, but also consider multiple characteristics like shared

interests, expertise, data similarity or characteristics, device

location, or application. The community detection can be done

autonomously and on-the-fly, which further enhances model

learning speed. In this context, the major contributions of this

paper are summarized as follows:

• We introduce a conceptual architecture and explore sys-

tem requirements and underlying processes. The proposed

architecture is designed by considering the distributed

nature of three-tier infrastructures [9], [10].

• We outline various applications across different domains

that can leverage the advantages offered by the Commu-

nityAI framework.

• We present potential research directions that can foster

novel studies in this field and overcome the current

limitations.

The remaining sections are structured as follows. Section

II gives a brief overview of community domains and FL,

data source heterogeneity, and possible applications that may

benefit from the CommunityAI framework. Section III gives

an overview of the CommunityAI framework, system require-

ments, and the architecture and processes of the proposed

framework. In Section IV, we outline research challenges and

future directions. Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

This section gives an overview of (i) community domains

and FL, (ii) data sources, and (iii) CommunityAI appli-

cations.

A. Community Domains and FL

In Figure 1, we name a few possible domains that can

be formed and cater to community needs. Several software

services can be developed for each such domain, which can be

categorized as personalized or general services. For instance,

the Wellness and Fitness Community domain may encompass

physical, mental, or emotional health aspects within a com-

munity. This could involve (sub-)communities such as fitness,

sports activities, stress management, and more. Essentially,

such a community gathers virtually individuals with a common

interest in promoting a healthy and active lifestyle. It brings

together fitness trainers, wearable device users, nutritionists,

and health enthusiasts who aim to harness the power of tech-

nology and data to enhance their well-being. Users can access

personalized guidance, collaborate with trainers, and benefit

from data-driven insights to improve their health. However,

when considering FL approaches, the difficulty arises from

various data sources and data structure heterogeneity. FL

typically involves multiple distributed data contributors, such

as humans, wearable devices, sensors, and different fitness

trackers.
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Fig. 1: Community domains.

The traditional FL approaches can be challenging because

they may not adequately capture nuanced variations and indi-

vidual users’ preferences. For example, one user’s heart rate
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data from a high-end smartwatch may differ significantly from

another user’s data collected from a basic fitness tracker. Con-

sequently, a single model might struggle to provide accurate

and personalized recommendations for both users. By allowing

specialized submodels (i.e., cohorts) for groups of devices

that share similar data structures or characteristics, users

may receive more accurate and relevant recommendations for

their devices and data sources. Furthermore, these specialized

submodels reduce the computational load on each device, as

they only need to communicate with their respective submodel

rather than the global model. As a result, the system should

scale more effectively to accommodate more communities,

more users, and data sources.

B. Data sources

Embedded computing devices (ECD) are mechanical or

electronic devices programmed to perform a specific task

[11], and they are the primary source for data in computing

continuum systems. In our daily lives, we use ECDs such as

microwaves, embedded washing machines, engineering calcu-

lators, digital cameras, digital door locks, health care devices,

vehicle components, etc. These devices are designed with

multiple hardware components including sensors and actua-

tors, communication modules, power supply, tiny memory, and

processors (either microcontroller (MC) or microprocessor)

[12]. Due to high Internet availability, ECDs enable Internet

connection further increasing remote accessibility. The Internet

also helps to store a large amount of device activity data

in the cloud. This further increases predictive maintenance,

working conditions such as performance and downtimes. Fur-

ther, depending on their hardware availability and range of

features, they are divided into small-scale (using 8-bit MCs),

medium-scale (using 16-bit or 32-bit MCs, or multiple 8-bit

MCs), or sophisticated-scale (with complex software codes

and hardware components). These enhancements and complex

hardware and software features have attracted attention from

many fields in recent days, and wearable devices are rapidly

gaining popularity.

For example, wearable devices are becoming more common

these days, as they are part of our daily lives. They can

capture data by interacting with users and other devices

through equipped sensors, processors, and connectivity fea-

tures ranging from wearable devices such as smartwatches,

fitness trackers, smart shoes, augmented reality glasses, and

many more as shown in Figure 2 [13]. Figure 2 also shows

various wearable devices, their data similarities (i.e., high-

lighted with green color) and differences, along with their

benefits. Wearable devices monitor several metrics, including

physical activity, regular health metrics (such as heart rate,

sleep, blood pressure, and stress levels), and provide quick

access to information through notifications. Their portability

and constant presence make them ideal for bridging users with

a wide network of devices. In addition to convenience, these

devices can monitor fitness and health, track mood swings,

communicate with people and other devices remotely, provide

real-time analytics, and ensure safety monitoring [14]. Recent
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Fig. 2: An overview of wearable ECD and their benefits.

statistics (by GlobalData1) show that the wearable devices

market is generated $59 billion in 2020. These studies also

confirm that this growth will continue to more than $156

billion by 2024 with a 24.6% growth rate. The limitations of

these devices in terms of memory and computation further

make them dependent on other devices such as the edge,

mobile phones, or cloud centers.

C. CommunityAI Applications

The CommunityAI does not limit itself to specific applica-

tions, and it supports a large number of applications, whereas

only a few are discussed here.

1) Wellness and Fitness Application: Staying fit and healthy

has become a top priority for many individuals. A cutting-

edge system has emerged where people get daily recom-

mendations for their health and fitness journeys. End-users,

via their dedicated apps installed on their smartphones, may

join various communities provided by the CommunityAI (e.g.,

Wellness and Fitness Community), actively contribute their

data to this collaborative effort, and get personalized sport

and activity suggestions based on data collected from various

wearable devices. These devices allow users to provide context

information and many metrics, including heart rate, steps

taken, sleep quality, and more data that might be provided

from other nearby wearable devices (as illustrated in Fig. 2).

The CommunityAI aggregates and analyzes data, trans-

forming it into actionable insights. By employing learning

algorithms, it builds individualized user profiles that consider

factors such as fitness levels, health objectives, and even

daily schedules. This comprehensive understanding enables the

system to offer recommendations that are not only effective

but also adaptive, taking into account a user’s ever-changing

fitness journey. For instance, a high-intensity enthusiast might

1https://www.medicaldevice-network.com/comment/
wearable-technology-iot, Last accessed: September 20, 2023
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receive guidance on rigorous High-intensity interval training

(HIIT) workouts. At the same time, someone focused on

weight loss might be directed towards a combination of

calorie-conscious dietary plans and cardio exercises.

2) Governing Computing Continuum Systems: Computing

continuum systems are more heterogeneous since they include

a variety of devices. Besides computing business data, these

devices also generate a huge amount of data through logs. This

data is analyzed to monitor their conditions, so that they can

be used more efficiently while avoiding downtime. However,

these systems generate a greater variety of data. For example,

this system consists of custom logs for devices, network

information, infrastructure details and location information

[15]. In this case, each of these categories can be considered

a distinct community. Further, each of these categories can be

subcommunities because of their heterogeneity. For example,

a computing continuum system contains a variety of devices

including EDCs, sensor nodes, IoT, Edge/Fog nodes and cloud

servers. It is important to recognize that each device has

its own characteristics and capabilities. The same applies

to network infrastructure. Based on the requirements, it can

use LoRa, Bluetooth, WiFi, 4G, 5G, or 6G communication

mediums. In this scenario, it is not feasible to use the same

learning approach. Also, it is not efficient to generate a model

by combining all these data. In this case, CommunityAI can

offer more advantages, such as an efficient way of generating

the model and analyzing the data.

3) Industrial Automation: Industrial automation is the ap-

plication of technology and control systems to simplify man-

ufacturing with minimal human intervention while enhancing

efficiency and productivity. Because of the coexistence of

different equipment, machinery, and systems, this application

was heterogeneous. This diversity can be challenging to man-

age since there are so many communication protocols, data

formats, and interfaces to deal with. Using all these diverse

data to train the model may result in an inefficient learning

process. The accuracy of models, however, is more likely to

lead to the highest productivity, which further enhances profits

in the industry. It is not possible to get high-accuracy models

from existing learning models because they are not efficient at

fulfilling the current demands of industrial automation. Never-

theless, Hiessl et. al. [7] designed a model entitled Industrial

federated learning to address this challenge, but this model

needs many predetermined setups. One such requirement is to

define FL cohorts and populations, but there are no specific

methods for doing so. This model still needs to be enhanced

to be more adaptive and dynamic in real-time. Nevertheless,

CommunityAI can define these partitions autonomously in

run-time based on the type of information. For example, the

FL cohort in CommunityAI can be performed according to

Data Distribution Service (DDS) principles [16].

4) Healthcare: Healthcare is another interesting field in

which diverse data can be seen. The structures, formats, and

sources of a wide range of healthcare data types-ranging

from electronic health records (EHRs) to medical imaging

and genomic data strikingly varied in this domain. While

EHRs contain structured data fields, unstructured physician

notes, and diagnostic images, genomic data contains DNA

sequences and genetic variations. Moreover, data originates

from a wide variety of healthcare facilities, such as hospitals,

clinics, laboratories, and wearables, each adhering to unique

standards and storage methods. Healthcare faces formidable

challenges due to heterogeneous data. Unlike previously dis-

cussed applications, healthcare data is processed separately.

For example, there are a variety of models to evaluate only

physician notes, and various algorithms for DNA sequences.

There is no common platform in the healthcare industry where

all patient data can be analyzed. So, patient reports may not

be received on time due to multiple platforms and the fact that

they are not all available at one location. This opens the doors

for all a patient’s or multiple patients’ data to be analyzed

using a common platform with parallel computing nodes. This

further simplifies the analyzing process for different metrics to

decide the root cause of a patient’s disease. Considering this

scenario, the CommunityAI model would be more appropriate,

since it can automatically determine where the data will be

computed and produce accurate models based on the data.

III. COMMUNITYAI: REQUIREMENTS, ARCHITECTURE,

AND PROCESS

This section gives an overview of the CommunityAI frame-

work. We discuss (i) system requirements (i.e., notations,

stakeholders, and metadata), (ii) FL within CommunityAI,

and (iii) the architecture and processes of the proposed

framework.

A. Notations, Stakeholders, and Metadata

The CommunityAI foundational terminology is built upon

the FL notation originally proposed by Bonawitz et al. [17].

This notation encompasses critical elements, such as devices,

FL servers, FL tasks, FL populations, and FL plans. Devices

represent various hardware platforms, including edge devices

and mobile phones, equipped with FL clients that carry out

the computational tasks required for training and assessing

learning models. An FL client establishes communication with

the CommunityAI to execute FL tasks associated with a spe-

cific FL population (i.e., we refer also as FL Community). FL

population refers to a globally unique identifier representing

a shared learning objective across multiple FL tasks. The

CommunityAI aggregates outcomes, which are model updates,

stores the global model and then distributes it to FL clients

within the designated FL population. Furthermore, an FL plan

is associated with an FL task and serves as the instructions for

its federated execution. Such a plan guides the CommunityAI

and the participating FL clients on federated execution. Later,

we consider FL cohorts (i.e., as in the proposed approach [7])

to enable that group multiple FL tasks within the same FL

population and with similarities in data structure (described in

Section III-B).

Within the CommunityAI framework, several stakeholders

are involved in creating and managing communities. These

stakeholders include:
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• Users or Participants: Users are the core stakeholders

who join and actively participate in communities based

on their interests, expertise, or data characteristics. They

contribute data, engage in collaborative model training,

and benefit from the insights and recommendations gen-

erated within their respective communities. Furthermore,

participants can include domain experts, data scientists,

fitness trainers, healthcare professionals, or individuals

with specialized knowledge.

• Sensory Data Contributors: Devices and sensors are

active stakeholders as sensory data contributors. They

generate valuable data shared within the community for

collaborative ML. These devices play a critical role in

providing the raw data that forms the foundation of

insights and recommendations. More details about data

sources are discussed in Subsection II-B.

• Community Creators: Community creators are individuals

or organizations responsible for initiating and establish-

ing communities within the CommunityAI framework.

They define each community’s purpose, objectives, ML

models, tasks, and guidelines and often lead in guiding

community activities.

Several requirements exist in the CommunityAI framework

that must be fulfilled before fully operationalization. In order

to facilitate collaboration among FL clients, we recognize

the need to disseminate metadata that describes all involved

stakeholders within the CommunityAI framework. First, we

assume that manufacturers provide metadata that describes

sensors and devices. On the other side, human contributors

can create and set their personal data information on their

own profiles. Second, community creators and FL clients may

have specific criteria for collaborating with other clients. This

could include requirements such as data quality, expertise

level, trustworthiness, or alignment with particular objectives.

Therefore, without proper collaboration criteria, the FL system

may not effectively filter and select appropriate participants,

leading to inefficient or potentially harmful collaborations.

B. FL Communities

FL client choice is a critical aspect in the FL process, which

shortens processes like training and evaluation [18]. We con-

sider that stakeholders can form various FL communities. This

means that a stakeholder for an FL community provides ML

models, tasks, metadata, etc. The next step enables creating

and assigning submitted tasks to their respective populations.

Essentially, an FL population is built with tasks with the

same configurations (e.g., device type, FL algorithm, ML

model, objectives, etc.). When the configuration of a new

task matches the existing population, it is included within the

same population. Otherwise, a new population is created. It is

essential to take into account a valid FL setup, where identical

algorithms and models must be applied to the common data

format. We do consider as a potential solution the proposed

approach in [8], where a population is split into cohorts

representing clusters of tasks with similar data distributions.

In this way, within an FL community, FL clients exclusively

exchange updates with a subset of FL clients whose submitted

FL tasks are in alignment with the same FL communities and

cohort. Note that the proposed approach [8] considers only an

industrial domain and data similarity aspects. In our approach,

we extend FL community selection based on multiple metrics

instead of data similarity, such as shared interests, expertise,

and data characteristics. For the data similarity, a potential

solution can be topic modeling [19] for achieving highly

accurate community separation.
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Fig. 3: FL within CommunityAI.

From a practical point of view, consider a group of devices

that work together to solve a specific learning problem. This

shared learning objective is typically related to a particular

task, such as anomaly detection, natural language processing,

recommendation systems, improving accuracy and device per-

formance, etc. For example, consider a smartwatch or bracelet

where the manufacturer may want to improve heart rate

monitoring results based on individual and environmental con-

ditions in which a device operates. Let’s say two individuals

wearing identical smartwatches from the same manufacturer

and version while participating in a physical activity like

running. The heart rate monitoring effectiveness on a wrist-

based device depends on the skin contact quality, skin tone

and tattoos, or the fit of the device. For instance, skin tone

and the presence of tattoos can affect the optical sensors’

ability to measure heart rate accurately. Darker skin tones and

tattoos may require additional data or produce less accurate

readings. More specifically, the environment plays a significant

role in the accuracy of data collected by the smartwatch or

bracelet. Nevertheless, manufacturers strive for consistency

and accuracy while individual variations and environmental

factors can lead to different results between two devices of

the same version and manufacturer.
Regarding the above-mentioned example, Figure 3 presents

a scenario of FL within CommunityAI where communities
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are created from devices with the same data structures, e.g.,

aiming to improve heart rate monitoring results via anomaly

detection (i.e., learning tasks). Embedded sensors or devices

generate data for learning tasks for an FL community (i.e.,

health monitoring community). In the presented scenario,

an FL population corresponds to all tasks with the same

configurations (i.e., M2.1 and M2.2 belong to FL population
2, and since they belong to the same Community C2). As we

witnessed in the example, environmental factors can lead to

different results between two devices of the same version and

manufacturer. This can cause a negative knowledge transfer

by the model updates and decrease the overall model perfor-

mance. Therefore, FL cohorts are considered subsets of an FL

population (as explained in [7], [8]). This enables knowledge

sharing exclusively within, e.g., FL cohort 2, including M2.2
models. Lastly, sharing updates between FL clients dealing

with the same data characteristics and environmental condi-

tions enhances the accuracy of their individual models.

C. Architecture and Processes

As illustrated in Figure 4, Edge Computing serves as a

critical architectural intermediary layer between the cloud

and end-users. When it comes to a platform for enabling

training and deploying a ML model, it can harness the de-

centralized characteristics of such infrastructures. Furthermore,

such infrastructures can support handling the massive data

transfer, which may overcome latency issues. Therefore, the

CommunityAI is designed as a three-tier architecture where

software components can be deployed within the Edge-Cloud

infrastructure.

The CommunityAI architecture is composed of (i) server-

side software components (i.e., which can be deployed and

run in cloud and fog layers) and (ii) client-side software

components (i.e., which can be deployed and run in client

devices such as smartphones or edge/fog devices in proximity

to an end-user). From the infrastructure perspective, the cloud

environment offers ”unlimited” resources and advanced capa-

bilities for orchestration, model execution, and managing the

resources required. The fog layer comprises a set of station-

ary and powerful devices which can be physical or virtual,

featuring various hardware configurations such as CPU, GPU,

storage, and more. This layer has a supportive role in storing,

training, and keeping often-used models near clients. The edge

layer consists of low-powered devices that can make requests

to the system (i.e., users ask for recommendations) or act

as participating client device that contributes their local data

and computational resources to the FL training process. These

devices typically have limited resources, relying on CPUs

and batteries for power, but often, they possess sufficient

hardware capabilities to execute model training operations.

Within the edge layer, we have embedded computing devices

that generate various data information about the environment

or data for specific purposes. As illustrated in Figure 4, the

server-side software components are (i) run-time Orchestra-

tion,(ii) FL Scheduler, (iii) Community Management,

(iii) Adaptation Management, (iv) FL Processing, (v)

ML Base and Trained Models, (vi) Coordinator, and (vii)
FL Community. First, we describe software components that

deal with architecture considerations such as run-time aspects,

deployment, monitoring, adaptation, and resource manage-

ment. Secondly, we explain the software components related

to the FL process within the CommunityAI framework. Lastly,

we describe the client-side software components.

1) Software Architecture Considerations: The run-time or-

chestration component determines the optimal software com-

ponent placement to ensure reliable and low-latency service

delivery to end-users. Software components (e.g., adaptation

management software sub-components) can be deployed geo-

graphically closer to end-users, such as fog devices for better

service delivery. Furthermore, this component monitors the

overall system and deployment of software components in

the Edge-Cloud infrastructure. In addition, the run-time or-

chestration component determines where to deploy often-used

ML models in proximity to clients so that the communication

cost is optimized. The community management component

provides an API that allows various stakeholders to create

communities. The stakeholders are trustable end-users who

can create various communities, define their metadata (e.g.,

collaboration criteria, preferences, etc.), and submit tasks using

the provided API. Both device/community metadata files and

ML base models are stored within their respective databases.

The adaptation management component enhances flexibility

and responsiveness to changing conditions and user needs.

More specifically, it automatically allocates computational

resources to scale up or down based on the user number,

data volume, and processing demands. In other words, it

provides several functions, such as resource allocation and

scaling (i.e., elasticity [20]), identifying and responding to

security breaches or unauthorized access attempts, and ensur-

ing the system remains efficient and responsive. Lastly, the

coordinator component is responsible for several tasks within

the CommunityAI framework. First, this component enables

communication with other devices and users, registering them

to the system, and getting metadata files from these resources.

Secondly, the coordinator component shares a requested ML-

base model with the registered clients (i.e., the sharing process

is explained in Section III-C2). Essentially, the coordinator

component provides a communication channel for transmit-

ting the model weights between the central server and the

participating clients in a secure way.

2) FL Components and Process: FL components within

the server-side of the CommunityAI are (i) FL Scheduler,

(ii) FL Processing, and (iii) FL Community. A detailed

lifecycle of a trained model in an FL system is given in [3].

Initially, a typical FL workflow is typically driven by a model

engineer (i.e., a stakeholder) who defines the problem to be

solved and develops a suitable model architecture for FL.

Clients generate the data for model training as well as submit

FL tasks with metadata (i.e., including details such as targeted

devices - device or resource a task is meant to operate on).

The FL Scheduler component is responsible for mapping the

task into the corresponding FL population and then providing
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scheduling instructions to initiate FL task execution with that

FL population. FL Processing component converts the FL task

to an FL plan. After translating the FL task into a plan, the FL

Processing generates a global ML model suitable for the task.

This model is typically created based on the specifics of the

FL plan. Afterward, with the global ML model in place, the

FL Processing initiates the FL process for a given FL cohort

by establishing connections with all the FL clients within

that cohort who have FL tasks to perform. FL Community

component is responsible for maintaining such information.

On the other side, similar to the FL Processing that operates

on the server-side, there is a corresponding component on the

client-side (see Section III-C3). The resulting metrics from

these client-side operations are provided to the FL Community

component and used to update and manage cohorts.

3) CommunityAI Client: The client-side software com-

ponents are composed of four software components (i)
CommunityAI Client, (ii) Runtime Management, (iii)
FL Management, and (iv) Community Manager. Runtime

Management contains a set of crucial responsibilities essen-

tial for maintaining the efficient operation of a device or

system. More specifically, it continuously monitors internal

hardware metrics, discovers and monitors nearby resources

such as sensors, etc. Moreover, it gets metadata files from

other nearby devices and shares them with the coordinator via

the CommunityAI Client component. The FL Management

component provides a set of software tools that enable the

execution of instructions provided by the FL Processing. These

instructions typically pertain to tasks such as training or

evaluating machine learning models on local edge devices.

Essentially, the FL Management component plays a role

similar to the FL Processing but is responsible for tasks on in-

dividual client devices. When client devices execute evaluation

plans specified in the FL plan, they generate performance met-

rics or measurements. The Community Manager shares these

metrics with the FL processing component via the coordinator.

The FL Processing shares these metrics as well as with the

FL Community (i.e., server-side components). Furthermore,

training can also be delegated to nearby edge devices through

CommunityAI Client. Outsourcing or offloading a training

process to these trusted edge devices with available resources

becomes a practical solution. It ensures that additional training

or computation can continue without overburdening a single-

edge device. Lastly, note that a CommunityAI Client can be

a stakeholder who initiates a community (i.e., submits tasks,

models, etc.), or a user with data that joins a community and
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participates in the training process and subsequently uses such

models on their machines.

IV. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

CommunityAI aims to facilitate the seamless sharing and

knowledge transfer within FL communities. This can involve

information dissemination, expertise, and best practices, help-

ing community participants learn from each other. In other

words, CommunityAI aims to harness AI power by enabling

collaboration to enhance the way communities function, en-

abling them to thrive, adapt, and address complex challenges.

Nevertheless, forming FL communities using FL techniques

and orchestrating architecture components in dynamic envi-

ronments introduces several challenges. We identify four main

research directions that must be further investigated in the

future:

1) Metadata Model and Sharing Protocol: Metadata refers

to information about communities, devices, data, or clients that

is not the raw data itself but provides context or criteria for

collaboration. In the FL context, this could include information

about the types of data a client has, its expertise, its willingness

to collaborate, or any specific criteria it requires for partici-

pating in FL tasks. Furthermore, such metadata information

should be represented in a structured way, such as the format,

attributes, and semantics of the metadata that FL clients can

share with each other. Such a model would allow stakeholders

to describe themselves and their collaboration preferences

standardized and securely. Another important aspect is sharing

protocol. Essentially, sharing protocol is a set of rules and

procedures dictating how FL clients securely and selectively

exchange metadata. Hence, it is important to explore methods,

communication channels, and security approaches that might

be involved in the exchange process.

2) Advanced Community Filtering: The CommunityAI

framework organizes participants into communities based on

shared interests, expertise, data similarities, or characteristics.

However, there is a need for more advanced and adaptive

methods to identify and establish such communities. More-

over, it is crucial to acknowledge that participants within

communities may change their characteristics over time. These

changes can result from evolving interests, skill development,

shifting device usage, etc. Therefore, it is important to ex-

plore advanced community detection algorithms that consider

multiple characteristics as well as adapt to evolving partici-

pant characteristics. Additionally, verifying the accuracy and

effectiveness of community identification processes remains

an important issue that must be addressed.

3) Predicting Negative Knowledge Transfer: Negative

knowledge transfer may occur when information from one

participant adversely affects the performance of another par-

ticipant’s model. This can result in decreased model quality.

By predicting such instances, FL communities can proactively

take steps to mitigate these effects, ensuring high model

quality. Therefore, it is worth exploring methods that detect

potential negative knowledge transfer early, preventing unnec-

essary training iterations, data exchanges, and resource usage.

This enhances the efficiency of the FL process, particularly

on resource-constrained devices. However, developing accu-

rate methods for predicting negative knowledge transfer is a

significant challenge.

4) Privacy-preserving CommunityAI: FL effectively tackles

privacy concerns through local data storage; however, sup-

plementary privacy-preserving methods are needed to guar-

antee the non-disclosure of sensitive information during the

model aggregation phase. Hence, it is important to explore

methods for designing resilient and privacy-conscious models

that can exhibit strong performance across various domains

while safeguarding the sensitive data of individual clients or

domains. Furthermore, trust establishment within a community

represents another significant challenge that requires further

exploration in developing advanced methods.

V. CONCLUSION

CommunityAI is an FL-based framework designed to group

participants into communities based on shared interests, exper-

tise, or data characteristics, fostering collaboration in various

domains like health, education, industrial automation, and

other domains. Participants within the framework range from

computing devices and sensors to humans working together in

these communities to train and improve machine learning mod-

els collaboratively. Notably, the FL approach and collaborative

process prioritizes data and participant privacy by ensuring

that data is shared and used only within their respective

groups or communities. Within this paper, we presented vision

aspects and represented an initial step toward introducing the

CommunityAI framework. In our forthcoming research, our

goal is to deliver a comprehensive technical framework that

encompasses both technical and architectural elements. Ad-

ditionally, the research challenges we have identified require

thorough investigation in the future.
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