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Abstract—“Computing continuum” systems are expected to
sculpt our future society through a manifold of applications,
most of them leveraging artificial intelligence systems. How-
ever, their inherent complexity, brought by their dependency
on their underlying infrastructure, requires to propose new
methodologies for managing them. The methodologies that are
now in place are founded on the first Internet systems and they
are not able to cope with the complexity of these systems.
In this article we first develop the idea of the complexity
on these “computing continuum” systems that have Edge
Intelligence applications running on them. Then we present
our vision on how to represent and manage these emerging
systems. Based on a use case, we highlight the system’s inherent
complexity and we finally sketch how our vision would work
on the showcased system.

Keywords-Distributed Systems, Computing continuum, Edge
Intelligence, Markov Blanket

I. INTRODUCTION

A new type of Internet computing systems are recently

emerging, these are known to require concurrent execution

on multiple computing tiers. These systems are referred

as “computing continuum” systems and they are executed

simultaneously on the Internet of Things (IoT), Edge, Fog

and Cloud tiers [1], [2].

These systems enable applications that will sculpt our future

societies as they allow the development of applications

related with all the “smart-systems”, such as Smart-cities or

Smart-industry, and also healthcare applications to control

future possible pandemics or they will enable the use of

autonomous vehicles.

“Computing continuum” systems take the best from each

tier and avoid their limitations by developing an ad-hoc

architecture [3]. Simply put, they can use the Cloud

infrastructure to perform heavy computations that do not

have real-time constraints, the Edge or Fog infrastructures

for those services were response latency needs to be at a

minimum, and use the IoT devices directly for AI inference

to keep privacy as a cornerstone.

In this regard, Edge Intelligence (EI) is becoming a key

technology to be accommodated within the “computing

continuum” domain. Nevertheless, EI has hard requirements

in terms of computation, latency and privacy, which

increases the level of complexity for “computing continuum”

systems.

Currently, the architectures and management methodologies

for these new systems are built based on the first

Internet systems, founded on client-server architectures.

The appearance of Cloud computing has provided new

features for these management methodologies [4], but still

within the rigidity of the first systems. Now, the scale

of these systems, their variety of components, their strict

functional requirements and their mixture of topologies

make “computing continuum” systems completely different

from their germinal systems.

Whereas the first Internet systems could be completely

specified by the application software. The emerging

“computing continuum” systems do not allow a perfect

specification from the application level. Furthermore, their

characteristics are completely dependent on their underlying

infrastructure, as “computing continuum” systems are

seamlessly blending application and infrastructure. This

implies that the responsibility of the application rely in both

the application software and the underlying infrastructure

software. Hence, this new actor requires a higher level

of responsibility, as it is of utmost importance for their

definition and success.

Simply put, due to the characteristics of their underlying

infrastructure, these systems behave similarly as complex

systems. In this regard, we focus our approach on two

complementary methodologies to address their definition

and management. First we use the Markov Blanket [5]

concept to specify the causality relations between the

components of the system, forcing that the state of the

system is the central node of this representation. And

second, we use ideas from the Free Energy Principle [6],

which comes from neuroscience, to provide adaptive means

to the system leveraging the Markov Blanket representation.

This article presents our vision for dealing with these new

systems. We aim at breaking with previous methodologies

and present a new way to define and manage the computing

continuum systems that is fostered by their current

characteristics.

The rest of the paper is organized as follows, section II

provides our arguments to develop a new management

methodology for “computing continuum” systems.

Then, section III develops our vision for the proposed

methodology. Section IV describes an application to
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provide an example of the characteristics of the systems

that are being targeted, then, section V describes the

infrastructure needed to develop such a system and ends

with a short example about what we would expect from our

methodology. We finish the article in section VI with the

conclusions and future steps foreseen to develop our vision.

II. BACKGROUND

This section develops the ground for the need of new

methodologies for managing “computing continuum” sys-

tems. To do so, we first present the shared characteristics

observed on all these systems, and then, we also develop

the main requirement for EI applications.

A. Computing continuum

There are several common characteristics of these sys-

tems, which stem from their underlying infrastructure, that

require to be taken into account in order to properly under-

stand and tackle their needs.

• They are geographically distributed in large envi-
ronments. It can range from a city street to an entire

country. Actually, they can even be internationally

distributed, for instance considering production and

distribution chains or applications to control pandemic

outbursts.

• They encompass multitude of components. Only to

develop a system to control street traffic, there can be

several cameras in each street intersection, other sensors

on the traffic lights, on the pedestrians crossings, around

the cycling way, etc. But this are only sensors, it also

requires computing units, gateways and many other

components.

• Their components are largely varied in character-
istics and capacities. Just on the edge, there can be

found IoT sensors, edge gateways, cloudlets or single

board computers (SBCs). Actually, components on the

cloud tier can be considered homogeneous, but as a

system is developed towards the Edge or IoT tiers the

heterogeneity of components is manifold.

• There are many dependent interconnections be-
tween their components. These applications can be

seen as ecosystems of components gathering, distribut-

ing and analysing data to create knowledge for users or

other parts of the same application. This creates a large

set of dependencies among components, which requires

to be handled with precaution not to develop a fragile

system.

• They are influenced by the environment (open sys-
tems). Their performance can be affected by external

or environmental effects. One can not assume that

the system will continuously and indefinitely operate

as designed without any intervention. The system can

be affected by network issues, some components can

become unavailable due to many reasons, it can suffer

security threats, it can encounter corrupted data or it can

suffer from unbalanced requests due to its geographical

distribution.

The first idea drawn from the previous set of characteristics

is that “computing continuum” systems mainly depend on

the infrastructure where they are deployed. Hence, it is

required that the underlying infrastructure software takes the

responsibility of the system’s performance. In this regard,

our vision emphasizes the role of the infrastructure over the

application from an overall system perspective.

The second idea worth highlighting is that the “computing

continuum” systems behave similarly to any complex sys-

tems as they share many characteristics. Actually, a system
is complex if its behavior crucially depends on the details
of the system as said in [7]. In this regard, the new approach

has to embrace the idea that the system is complex and has

to take advantage of the technologies and methodologies

develop for this type of systems [8].

B. Edge Intelligence

In general, EI makes reference to both AI on Edge and AI

for Edge [9], where the first references using AI applications

at the Edge tier and the second to use AI to enable the Edge

tier. In this regard, we are focusing on the needs to have AI

on the Edge, for the remaining of the article we are using

this interpretation of EI.

EI applications are characterized by an important interaction

between the different computing tiers [9]. In this regard,

EI proposes to solve various problems derived from cloud

centered architectures, such as latency issues in model infer-

ence, the processing of sensitive data and saving bandwidth

by preprocessing the raw data at the origin.

Therefore, EI systems have hard constraints on the following

characteristics:

• Latency. Interactive applications that require a smooth

mixed reality for the user experience are very latency

sensitive.

• Performance. Video-based analysis applications have

high computational requirements.

• Privacy. Inference on sensitive data requires clear

and trustworthy data pipelines to ensure high privacy

standards.

• Context awareness. Geographic awareness for mo-

bility applications is needed or energy awareness for

optimizing performance on remote deployments.

From the previous set of requirements that this type of

systems face, we can, again, draw two main conclusions.

First, they require adaptive capabilities on the underlying

infrastructure. Given their distribution, complexity and scale

the only way to ensure that they are compliant with the

application requirements, if an external perturbation affects

the system, is to allow the system to autonomously adapt to

181

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:54:01 UTC from IEEE Xplore.  Restrictions apply. 



its own underlying infrastructure.

Second, the management mechanisms for these systems need

to be proactive, this means that they have to adapt before the

harm from the perturbation is done. Again, the complexity

of these systems can make not feasible to autonomously fix

an issue once it has spread as this type of systems can suffer

from cascade failures.

III. VISION

This section describes our high-level vision to define and

manage the emerging systems of the “computing contin-

uum”. We are concerned that specifying this type of systems

with static architectures, as it has been done since the first

client/server Internet architectures, is not enough for dealing

with them. Therefore, we propose a managing methodology

that goes beyond any specific architecture of the system, and

develops tools that can autonomously control “computing

continuum” systems.

A. System representation

The complexity of these systems requires high level

abstractions to describe the state of the application. Their

representation has to encode its complexity but not to expose

it. Otherwise, taking management decisions within such

complexity becomes not feasible. At this point, it can be

argued that deep learning models could take that complex

input in order to select the best adaptive mechanism, how-

ever, due to explainability issues that would not be suited

for many systems.

Furthermore, the system state representation has to be high-

level and abstracted, so that it can be used in different

application domains from healthcare, to retail or autonomous

vehicles.

Our vision uses similar state variables that the ones proposed

in [4] for cloud systems, these are Resources, Quality and

Cost. They provide a high-level representation and a clear

understanding of the system state which, additionally, can be

related to the underlying infrastructure used. Nevertheless,

they require to be further developed given the heterogeneity

inside ”computing continuum” systems, as already identified

in [10].

Now, it is required to set the high-level system variables

in a framework that allows retrieving them from practical

observations. In other words, how can we know the values

for Resources, Quality and Cost directly from system obser-

vation?

This can be achieved by leveraging the Markov Blanket [5]

concept. In general terms, it consist of inferring the value

of a random variable, the system state variables, from only

those variables that provide meaningful information about

it. This means, that if we relate a set of meaningful system

metrics with the application state variables, their observation

will be enough to infer the overall system state.

This set of metrics, as well as their precise relation with

the system state variables, needs to be specified through

the application requirements given that depending on the

application domain some relations or metrics can be more

relevant for the overall system. Hence, from one side this set

of metrics relate to the system state variables, and from the

other side, these relate with the actual computing-continuum

resources. In other words, the underlying infrastructure of

the system is aggregated and filtered through a set of specific

metrics, determined by the application requirements, which

are then related with high level system state variables that

provide a comprehensive view of the overall system state.

The Markov Blanket is usually represented as a directed

acyclic graph (DAG). Therefore, it can encode causality

relations between the nodes of the graph. This provides

mechanisms to obtain the causes of the system state change,

which is useful to take actions with respect to that. Further-

more, encoding causality also provides a temporal dimension

to the system description, allowing to develop concepts such

as system evolution.

Another benefit, obtained from using a Markov Blanket to

represent the system, is that it can be set as a causality

filter in order to determine the scope of the problem. In this

regard, we set the Markov Blanket centered over the system

state variables, so that the specific metrics are its Markov

Blanket, but the resources from the underlying infrastructure

lay outside, which provides a more manageable scope for the

methodology.

Additionally, due to the system’s scale and complexity

the representation has to be able to allow nested systems’

representation, in which the same methodological analysis

can be used at different scales. In this regard, the concept

of the Markov Blanket, as well as, its DAG representation

allows to focus on the entire application, or to have lens and

observe a smaller part.

To sum up, we have presented how to represent and relate

the system state of a “computing continuum” system with

a set of metrics without losing contact with the underlying

infrastructure. This way our management methodology en-

codes causality relations between them, allowing to precisely

identify issues on the system. Nevertheless, we haven’t yet

defined means for the system to adapt to this disturbances

or perturbations.

B. System adaptation

The perturbations that any “computing continuum” appli-

cation can suffer mostly come from the dynamic behavior of

the characteristics of its underlying infrastructure, which de-

rive from its intrinsically complex nature. Hence, leveraging

the causality filter provided by the Markov Blanket allows

to analyze the underlying infrastructure of the system as if it

is the environment. Therefore, this perspective allows us to

address a “computing continuum” system as an entity that

requires being adapted to its environment, which is dynamic

and causes perturbations on the system’s performance.

182

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 16,2022 at 06:54:01 UTC from IEEE Xplore.  Restrictions apply. 



Leveraging the temporal dimension of the system state

provided by the causality relations, it is possible to define

the concept of system equilibrium, which provides a new

approach for these systems to decide when an adaptive

mechanism is required. In this regard, if the system’s equi-

librium is disturbed then the system requires to perform an

action to recover its equilibrium. It is worth mentioning that

we tie an equilibrium state with a specific configuration

of its underlying infrastructure, therefore another system

equilibrium will have another infrastructure configuration,

which can lead to a different operation mode for the ap-

plication. Nevertheless, the requirements for the application

are embedded in the system relations, therefore a different

operation mode does not mean that the requirements are not

fulfilled.

Hence, we can now complete the DAG representation of

the system’s Markov Blanket with the children nodes of the

high-level representation of the system’s state, as nodes that

represent the state of the possible actions that the system can

perform over the underlying infrastructure. It is important to

remark that doing this comes at a cost, given the Markov

Blanket definition, these new action nodes that are children

of the system state are also required to infer its values.

Simply put, they define the configuration of the underlying

infrastructure with respect to the application, and this is

needed to understand the system’s state.

This action nodes can also be understood as valves, that due

to a change of pressure upstream, given by the values of

their parent nodes, they are induced to change their state. In

that case, it would motivate a different path for the gas or

liquid that they are routing. For the sake of completeness,

these action states can have other parents, besides the system

state variables. These can be both, a node from the set of

metrics or the underlying infrastructure, as seen in Figure 1.

Figure 1. Complete DAG of a generic “computing continuum” system
representation. M represents the set of specific metrics, R,Q,C are the
three high-level system state variables, A are the action states and finally
E represents an environment state that can directly affect an A.

It is important to remark that leaving the underlying infras-

tructure as a part of the environment is not contradictory

with the idea that we also want to emphasize here: the un-

derlying infrastructure requires higher level of responsibility

on the system performance. However, it is more practical to

provide these mechanisms to the infrastructure through the

system actions rather than involving the entire underlying

infrastructure on the system’s definition. Additionally, this

lets the door open to provide means to different systems

for sharing components of the underlying infrastructure.

Figure 2 provides a schema for the representation described.

Figure 2. The schema shows a “computing continuum” system represented
through a Markov Blanket showing its relation with the environment, or
its underlying infrastructure. It also can be seen the temporal dimension
of the system that relates consecutive configurations of the underlying
infrastructure with the system’s evolution and its equilibrium states.

Interestingly, there is work in neuroscience that has been

inspirational to develop our vision for the managing method-

ology of “computing continuum” systems. This develops a

model of the brain using a Markov Blanket and derives

the Free Energy Principle (FEP) [6] in order to mimic

the behavior of the brain, which consists on minimizing

the free energy of the system, not the free energy from

thermodynamics, but the difference between an expected

observation and the obtained one. In this regard, it is not

yet clear if the FEP can help on defining the best action for

our system to take, as there are unresolved issues, such as

defining generative models for the expected observations, as

precised in [11], but it is a promising field to explore.

C. System intelligence

At this point our vision has presented a new representation

for “computing continuum” systems that provides mecha-

nisms for them to adapt to perturbations coming from the

environment, which has been defined as their underlying

infrastructure. However, as exposed in Section II these are

complex systems, hence, it is not realistic to assume that for

each situation the precise tool to trigger is known; even if,

it is specified by the free energy or a metric that, in general,

grasps the behavior of the system. Therefore, it is required

to provide also the system with tools for learning about the

environment, itself and its actions.

In this regard, our vision places the system’s Markov Blanket

in the same framework that any agent for reinforcement
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learning is placed, as can be seen from Figure 3. Therefore,

by exploiting this well-known paradigm, it will be possible

to provide knowledge to the system on three axes. The

Figure 3. Reinforcement learning schema for computing continuum
applications.

first axis will develop the system’s knowledge about its

environment, to better specify the relations between the

underlying infrastructure and the system metrics. Also, it

will develop knowledge on the general behavior of its

infrastructure, so that it can predict or foresee when some

infrastructure resources might appear or vanish. The second

axis will focuses on the system itself, so that the relations

between the metrics and the system state can be further

specified, or the system state can be better linked to the

requirements specified by the application, improving the

overall performance. It will also learn the relation with the

action states and, eventually, define new possible adaptation

mechanisms. The third axis will deal with the relation

between the actions of the system and its environment,

simply put, it will focus on model the effect of an action on

the environment.

IV. USE CASE

This section describes a use case that crosses domain

boundaries and is settled in Food Computing, Smart City

as well as Smart Health. We aim to showcase the different

devices, requirements and data flows between cloud and

edge to illustrate the complexity on “computing continuum”

systems. The use case revolves around Smart Retail and

illustrates a scenarios in which we explain how customers

can interact with the store, and additionally how the store

can react to the customers’ actions. The former showcases

different applications that can help the customer navigating

throughout the store and recommend products. It is meant

to depict typical situations while visiting a store and how

different applications can act together to improve the overall

experience. Also, it emphasizes the store’s abilities to iden-

tify and react to accidents that happen daily in supermarkets

around the world.
Shopping trip. It starts when the customer enters the

store, upon which the customer’s smartphone recognizes

Store

Compute
Unit 

Compute
Unit 

Figure 4. Different compute elements and actors in store

the specific store and connects to the local access point in

order to retrieve the store’s map. At the same time, the store

recognizes the user due to the user’s active membership and

can record the shopping trip for later analysis in a centralized

and large cloud of the company, which ingests anonymized

data, and also to provide personalized recommendations for

the customer computed on a local edge cluster to preserve

data privacy.

During the shopping trip, users can get support from Aug-

mented Reality (AR) applications. These could be integrated

into smart wearables (i.e., Smart Glasses), smartphone or

the shopping cart. Smart Glasses offer the user to get

unobtrusive recommendations during their stay. Customers

can profit from several recommendations that all can stem

from different sources. For example, the store might offer

a discount on soon-to-be-perished products in order to

save food wastage. Personalized pricing can be offered by

the customer’s loyalty or previous shopping trips. Activity

recognition and awareness of medical conditions or dietary

preferences further widen the spectrum of possible inputs.

However, in this field privacy requirements have to follow

the highest standards. Health based recommendations can

be classified into short term or long term. That the customer

may purchase protein-rich products after training is short

term, while recommending healthy food due to chronic

diseases or allergies are seen as long term.

To engage and increase customer trust, augmented reality

(AR) applications can inform customers of these recommen-

dations that are safely processed either on edge nodes in the

store or even on-device. Shopping carts also offer possible

interactions, by tracking the items that are put into them

and displaying recommendations on small mounted displays.

These screens can act as personalised surfaces [12] and offer

contextual information based on the customer. Personalized
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spaces can also be found on shelves or fridges and detect

users in near proximity. These actions (advertisements) can

be categorized as hyper targeting and can have a negative

impact on the customer [13]. In contrast to highly person-

alized recommendations, that require coordinated process to

satisfy privacy concerns, there exist other data sources that

can efficiently predict the user’s desire. Seasonal patterns

of vegetable growth can be learned for regions and societal

preferences. Additionally observations and learning based

on restricted areas (i.e., district) can lead to fine-grained

demand forecasts. In the same manner, business’ can adapt

marketing strategies in order to show advertisements based

on environmental factors. After selecting different items

from the shop, the user can checkout via a self-checkout

and are aided by an avatar [14].

We can further expand the scenario showing what possible

sequence of events are triggered in case an article falls from

a shelve onto the floor and causes spillage or, in case of a jar,

creates a dangerous environment for customers. We assume

that cameras are installed throughout the shop to monitor the

entire floor. Real time video analytics pose a big problem

due to large bandwidth needs, low latency requirements

and privacy concerns [15]. Therefore, edge nodes in the

store can process the video stream and send anonymized

pre-processed data back to the cloud, where big data jobs

can extract patterns from the video and perform analysis

[16]. Analytics at the edge also allows the shop to identify

customers that are in near proximity of the accident and can

in this case warn them [17]. The store can upon detection

automatically act on these events. For example, the light can

be changed in this part of the shop and a cleaning brigade

is sent. Due to the emergence of vacuum cleaning robots

in households, we believe that this cleaning brigade can be

supported by machines. Through the advances in AI and

the combination of compute power at the edge, robots can

coordinate themselves and use sophisticated AI models in

real time [18], [19].

This scenario highlighted how users can interact with

the store (i.e., AR) but also how the store can interact

with customers. It depicts the typical shopping trip of many

people but we also want to showcase technologies that can

react to more unusual events that require the store to act and

prevent possible injuries.

V. SOLUTION

This section first describes the required system to develop

the use case depicted in Section IV. Then, it proposes a

managing scenario for the use case, in order to provide an

idea of how the proposed methodology would work on that

example. The latter will help deriving the first required steps

to pursue this research.

A. System

Based on our use case, we explain the different layers and

components that are necessary to implement our vision of

a Smart Store. The description is split into two parts. First,

we introduce the compute continuum, its layers and their

advantages as well as disadvantages. Second, based on the

bottom layer, the sensors and users, common components

are explained and put into context of the use case.

1) Compute continuum: We divide the continuum into

four layers that vary in network latency, performance and

privacy guarantees, see Figure 5. The cloud has been es-

Edge

embedded
AI SBCCloudlet

MEC Basestation

Server 
w/

GPU

Server 
w/

GPU

Server 
w/

GPU

Cloud

Cloud
VM

Cloud
VM

Cloud
VM
w/

GPU

Cloud
VM
w/

TPU

...

...

Unlimited  
resources 

High latency 

Privacy  
concerns 

Multi-tenancy

Low latency 

IoT/Sensors/Users

Smartphone Smart
Wearables 

Limited  
resources 

On-premise

Low latency 

On-device

Highest  
privacy 

Lowest comp.
Power 

Data Source 

Data center border 

Shop

Figure 5. Compute continuum over four layers. Each layer is characterized
through high level advantages as well as disadvantages.

tablished over the last years as unlimited pool of compute

resources. Platforms offer nowadays a variety of compute

units (e.g., CPU & GPU) and make them suitable to train in

a centralized manner AI models [20]. Though we examine

several disadvantages that hinder the implementation of

applications that require low latency and with high privacy

requirements. Our use case showcases applications that fit
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into the cloud paradigm to perform intensive computational

task efficiently, but also highlights applications that require

low latency and guaranteed privacy oriented computation.

The next layer is based on the Mobile Edge Comput-

ing paradigm, which considers deployment of compute re-

sources in mobile network basestations (i.e, 5G) [21]. These

basestations can act as internet backhauls for stores and

offer computational resources. Due to the low latency and

high bandwidth, computational offloading to these stations

offers several advantages for our use case. For example, base

stations can be equipped with moderately powerful compute

units, including modern hardware accelerators, and therefore

offering low latency inference required for video analytics.

A caveat is that resources are not unlimited, as in the cloud,

and smart resource management is necessary in order to

fulfill all requests. Further, the basestations are operated by

telcom providers and therefore privacy guarantees may not

be fully transparent, especially when considering that many

other customers can make use of the hardware, allowing

malicious attempts to possibly intercept traffic [22], [23].

We title the next layer Edge and summarize in this layer

all dedicated compute units that are directly at the edge. In

our example, compute units located in-store fall into this

category. The store owners have full governance over this

hardware and therefore can fulfill privacy concerns that are

required for several applications from our use case (i.e.,

user entry registration, spillage detection). We consider the

resources even more limited, but offer through local Wi-Fi

the lowest latency and highest privacy guarantees. The last

layer compounds the Internet of Things (i.e., temperature

sensors) and user devices (i.e., smartphone). This layer has

the highest trade-off in terms of performance versus privacy

as well as network latency. On-device computation can be

used to train models in a Federated Learning setup on highly

sensitive data without exposing sensitive data [24].

The proposed layer describe the compute continuum and

include all requirements that we encounter in our use case.

A distributed computation model, that varies in layer, is

required to fulfill all needs, concerning network latency,

performance and privacy guarantees.

2) Store components: After describing all layers and their

characteristics, we want to focus on the last layer. This is

where the data is generated and selected computational tasks

are executed on. In the first step a set of components is

described that are deployed in the store, while afterwards

the focus is on user specific equipment. Further, this section

is dedicated to show the rich diversity of sensors and

highlights the compute continuum’s ability to consume the

heterogeneous data.

Accordingly to our use case, we start at the entrance of

the shop, where cameras are placed to possibly recognize

loyal customers. Recognition can also be done via NFC

or card readers. The entrance also triggers the smartphone

to download the local map and metadata to show location

specific details and guidelines. The corridors contain various

sensors (i.e., cameras and light) to observe the state in order

to trigger events. For example, a camera can detect spillage,

which results in the dispatching of a cleaning unit. Shelves

register the items and can be read from customers via RFID

to visualize additional information (i.e., nutritional). Fridges

monitor their state via temperature, door and power sensors

and can report anomalies (i.e., temperature drop) to the

system. During the shopping trip, users can use shopping

baskets to carry products around the store. They also support

customers by showing information based on the products in

the basket. We envision that baskets are equipped with RFID

readers, Wi-Fi connection and a screen. They connect to the

store and offer visual guidance to users. Further, Bluetooth

can be used to connect smartphones and buying baskets for

a seamless and safe integration of personalized applications.

At the checkout customers can choose between low and high

social presence [14] alternatives: a RFID-based automated

paying system or a robot that acts as an employer and

represents an avatar. The latter option requires microphone,

speakers and a screen to communicate with the customer.

A diverse set of sensors is required in the store in order

to realize our proposed use case. Additionally, we identify

in the next step a set of components that users provide (see

Figure 6). Whereas we split it into two sections: sensors and

smartphone. Sensors represents distinct components, while

the smartphone itself offers various components necessary

for our use case. While Smartphones are already ubiquitous,

Smart Belt, Smart Glasses and other smart wearables [25]

have yet to arrive in the general public. Though, they allow

the development of new pervasive applications that can

support people in their everyday lives. Especially Virtual

and Augmented Reality, enabled through Smart Glasses and

similar, can guide and help customers during their stay. The

Smartphone represents the source for private and sensitive

data, which requires on-device computation and thus must

not leave the form (at least not prior to anonymization). Ac-

tivity recognition and private data (i.e., dietary preferences)

can improve recommendations.

B. Illustrative example

The previous subsection presents a typical solution based

on the “computing continuum” paradigm for the use case

presented in section IV. Now our intention is provide a

flavor on how this can be translated to our vision to manage

“computing continuum” systems.

Let’s suppose that we have been able to represent the

described system using the representation developed. Hence,

the system state is represented with Resources, Quality and

Cost and it is the center of a Markov Blanket, which encode

the causality relations between its components. The analysis

of the state shows that the overall Cost of the system is

increasing, endangering the system’s equilibrium. Then, by

leveraging the causality relations on the representation, we
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Figure 6. Components encountered in the use case. The top collection
represents distinct sensors in the store, while the bottom one shows personal
user equipment.

are able to localize the issue affecting the system’s Cost.
Now, instead on dealing with the entire system, we can

focus on the system’s part that is risking the equilibrium

of the system due to the increase on Cost by using the

nested capacity of the Markov Blanket. This part is in charge

of an application running in the cloud that performs AI-

based inference for the store’s recommendation system. This

process is monitored through several metrics, one of them is

cost-effectiveness [26], [27] which provides an idea of how

resources and cost are linked, which can be easily mapped

to the central state of this system.

In this regard, the value of the metric is deviating from its

specified value given by the application requirements due

to the large amount of customers visiting the shop, and

the consequent increase of requests for the recommendation

system. Hence, Cost is increasing risking the system’s equi-

librium. Therefore, an action state is activated triggered by

this equilibrium change, and it modifies the way data from

customers are gathered, lowering its granularity. Therefore,

inference is performed less frequently, which decreases the

application’s accuracy but not below its requirements, and

more importantly, it is able to return Cost to an acceptable

value recovering the system’s equilibrium.

It is obvious that this is only a possible solution that the

framework could provide. Similarly, another action state

could have been triggered moving this coarser inference

from the Cloud to an Edge Cloudlet providing a better

impact on cost but limiting the availability of low latency

resources. The complexity of this second solution shows that

a learning framework is required on top of the system in

order to develop these solutions for the system.

VI. CONCLUSION

This article presents our vision for the required method-

ology to manage “computing continuum” systems. We have

shown that the complexity inherent to their underlying in-

frastructure, as well as, the hard requirements of developing

AI system on the Edge make obsolete the previous managing

techniques for distributed Internet systems.

Then, we explain our vision for the required methodology,

that takes advantage of the Markov Blanket concept in order

to create a framework to represent the system and to develop

its adaptive mechanisms through a scheme similar to the one

used for reinforcement learning.

Through a smart retail use case we showcase the complex-

ity of “computing continuum” systems by explaining its

functional features and developing a typical implementation.

Finally, we are providing a glance on how we would our

methodology to manage these systems.

The fulfilment of this vision still require many steps, but

we take this endeavor convinced that it is the needed

path to provide society with these “computing continuum”

applications that will sculpt our future. In this regard, future

work will be centered on developing the representation of

these systems by leveraging learning techniques to develop

directed acyclic graphs from data and specific constraints.
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