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Abstract—In the past few years, researchers from academia
and industry stakeholders suggest adding more computational
resources (i.e., storage, networking, and processing) closer to
the end-users and IoT domain, respectively, at the edge of the
network. Such computation entities perceived as edge devices
aim to overcome high-latency issues between the cloud and
the IoT domain. Thus, processing IoT data streams closer to
the end-users and IoT domain can solve several operational
challenges. Since then, a plethora of application-specific IoT
systems are introduced, mainly hard-coded, inflexible, and limited
extensibility for future changes. Additionally, most IoT systems
maintain a centralized design to operate without considering
the dynamic nature of edge networks. In this paper, we discuss
some of the research issues, challenges, and potential solutions
to enable: i) deploying edge functions on edge resources in a
distributed manner and ii) deploying and scaling edge applica-
tions on-premises of Edge-Cloud infrastructure. Additionally, we
discuss in detail the three-tier Edge-Cloud architecture. Finally,
we introduce a conceptual framework that aims to enable easy
configuration and deployment of edge-based systems on top of
heterogeneous edge infrastructure and present our vision within
a smart city scenario.

Index Terms—Edge-Cloud Continuum, Edge-based Systems,
Distributed Edge Functions

I. INTRODUCTION

The Internet of Things (IoT) is becoming more prominent

in our daily life and today’s society overall. Many services in

various domains such as Industrial Manufacturing, Healthcare,

Lifestyle, Automotive, and Smart Building are built on the top

of IoT technologies. At the same time, it is well accepted that

a centralized architecture does not scale well regarding the

enormous number of devices. Even though central computers’

system infrastructure processing those data has improved by

cloud computing technologies, satisfying IoT applications’

stringent requirements has become challenging for a cloud-

centric architecture. Sending continuously huge amounts of

sensory data to the cloud results in high-latency than the

expected IoT systems response. In sharp contrast to a fully

distributed and decentralized architecture (e.g., peer-to-peer

network), many IoT services need to maintain a partially

centralized design to operate the service. The distributed and

decentralized architecture promise to satisfy stringent require-

ments (i.e., high availability, performance, or privacy) of any

contemporary IoT system deployed at the edge.
One prominent approach that has recently emerged is

to combine the edge, fog, and cloud infrastructures to en-

able providing low-latency services [1]. Specifically, three-

tier architecture shows a seamless opportunity for various

applications (e.g., industrial, health, etc.) where low-latency,

QoS, reliability, and scalability are their critical requirements.

In essence, the three-tier architecture allows distributing a

significant portion of decentralization by delegating functions

from central servers to fog or edge devices [2].

Edge and fog are positioned as important architectural tiers

between the cloud and the IoT domain. Edge devices are low-

powered computers placed much closer to the sensors and mo-

bile devices. Such devices enable processing the data streams

generated by end-devices. In contrast, fog nodes (physical

or virtual) are more powerful computation entities that also

provide their computation and storage resources to the other

computation entities or IoT resources. Generally speaking,

both computation entities aim to reduce the latency (i.e.,

request or response) between application services and the IoT

domain (i.e., sensors, mobile devices, etc.). Specifically, both

computation entities can be utilized to process data streams

pumped into an IoT system. Thus, such processing can be

achieved by providing various analytic capabilities and various

decision functions at the edge. For instance, a particular system

component (e.g., scheduler) generates eligible deployment

plans specifying where to process sensory data produced from

an IoT resource (e.g., processing may occur at edge, fog, or

cloud infrastructure). Throughout the paper, we refer to an IoT

system deployed at the edge as an edge-based system and its

components as edge functions.

The heterogeneity of IoT components is another significant

aspect of the IoT era. Many IoT vendors provide different

products not only across different layers but also for the

same type of components. In essence, different products

may have different operating systems, available support for

programming languages, resource constraints, etc. In contrast

to our expectations, each edge device’s functions are hard-

coded in most of the current implementations. This causes

inflexibility and limited extensibility for future changes. This

leads to a plethora of point-to-point solutions being developed

based on proprietary protocols. For instance, any change being

made to one IoT component leads to many possible changes

in many other components or in the whole IoT system [3].

Thus, leading to a situation which resembles the state of

software infrastructure in the age of enterprise computing

before the emergence of Web services and Service Oriented

Architectures and their respective middleware infrastructure

such as Enterprise Service Bus. This intuition led us to

design novel edge systems into a distributed, decentralized
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architecture that is not only scalable in numbers but also

concerning its heterogeneity, expandability and enhancement

in terms of edge functionalities.

In the past few years, researchers, computer scientists, and

system engineers have been mostly focused on proposing mul-

tiple centralized techniques for scheduling, controlling, and

monitoring edge applications (i.e., IoT applications) deployed

at the edge. To overcome challenges with resource-constrained

edge networks and to fully utilize available resources at

the edge, edge applications (i.e., service) are divided into a

set of independently deployable software components (i.e.,

microservices). Most of the resource management techniques

are often deployed on cloud entities or statically placed on

a powerful device such as a local server or a fog device

residing at the edge [4], [5]. However, placing a set of complex

functions on a single edge device is impractical and may

produce high latencies than expected. Furthermore, shifting

various system functions closer to the edge also requires

dynamically placing them in the most suitable nodes. Besides

that, edge networks’ dynamic nature requires introducing new

edge functions continuously and the continuous re-evaluation

of placement decisions for the edge functions. Thus, edge-

based systems require to cope with the environment’s dynam-

icity and uncertainty, and support expandability with new edge

functions.

To that end, this paper identifies some of the research issues

and discusses challenges that are not yet fully investigated,

such as i) deploying edge functions at the edge, and ii) deploy-

ing and scaling edge applications on-premises of the Edge-

Cloud infrastructure. These derive mostly from the fact that

many aspects of edge computing require further investigation

to realize edge computing’s underlying premise. Thus, to assist

in this process, we propose a conceptual framework at the

edge tier that aims to enable easy configuration, deployment,

and operation of edge functions and applications on top of

heterogeneous edge infrastructure. Furthermore, we advocate

decentralization as the system can operate without a static

entity for deploying applications at the edge. In essence, the

system core functions are distributed over the edge devices

available on edge. A self-adaptive mechanism determines

the most suitable edge node to enable the system’s core

functions (i.e., the edge-based system’s resource manager and

control mechanism). Moreover, the system’s core functions

assists and provides information (i.e., infrastructure-specific or

application-specific metrics) to other system functions running

on other edge devices.

The rest of the paper is structured as follows. Section II

gives an overview of Edge-Cloud architecture. In Section III,

we describe a use case by emphasizing the benefits of the

Edge-Cloud continuum and the need for distributed edge

applications at the edge. In Section IV, we discuss some

of the research challenges that the novel edge systems must

conquer to run distributed functions on edge infrastructure.

Section V, presents our conceptual framework to orchestrate

edge applications in the Edge-Cloud infrastructure and the

vision of the future smart cities. Finally, Section VI concludes

the paper and outlines future work directions.

II. AN OVERVIEW OF EDGE-CLOUD CONTINUUM

Edge computing is positioned as one important architectural

tier in addition to Fog and Cloud. The model makes it

easier to deploy distributed, latency-aware applications at the

edge. Furthermore, it can be considered as paramount to

systems including (but not limited to) IoT deployments and

the cloud, providing data and control facilities to participating

IoT devices. So far, several surveys have been conducted to

explain the model of Edge computing and its challenges [6].

However, recent studies emphasize three-tier architecture as a

useful way to enable more devices closer to the IoT domain

[7]. To that end, the Edge-Cloud architecture [1] is split into

three tiers: the cloud tier, fog tier, and edge tier (as illustrated

in Figure 1). In this section, a comprehensive description of

each tier is presented.

Fog node
Service Providers

Cloud Tier

Fog Tier

Edge Tier

Fog ServersFog Servers
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Fig. 1. An overview of Edge-Cloud architecture.

A. The Edge Tier

The edge tier represents the lowest tier of the three-tier ar-

chitecture. In essence, this tier represents the closest available

computation entities called edge devices to the IoT domain.

As can be denoted in Figure 1, various domains such as smart

city, intelligent transportation, or smart factories can benefit

from available computation devices closer to the IoT domain.

Essentially, this leads to having various edge networks formed

for different contexts. Generally speaking, edge networks are

highly dynamic, heterogeneous, and resource-constrained en-

vironments. Such environments are composed of a set of low-

powered edge devices with various computation capabilities

(e.g., smartphones, smartwatches, Raspberry Pis, etc.) and IoT

resources (e.g., sensors, actuators, etc.) connected to them or

available on their surroundings.

Edge devices provide their computation and storing capa-

bilities to process the IoT data streams with very low-latency
generated by IoT resources. Essentially, these devices allow

data streams to be processed as close as possible to the data
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sources and to handle the most significant network traffic that

may occur. Resource-constrained edge devices, however, do

not have the ability to process large volumes of data. As a

consequence, processing such an amount of data on a single

edge device may cause device overloading resulting in high-

latency and poor overall performance. In order to address

these challenges raised by resource-constrained devices, the

distribution of processes (i.e., edge functions or edge appli-

cation tasks) at the edge is a critical feature. Specifically, the

spectrum of resources is increased by forming peer-to-peer

edge networks, and the ability to spread processes between

devices becomes feasible.

An edge network provides a seamless opportunity for

placing edge functions and deploy various edge applications

closer to the end-users. Such an approach results in creating

more autonomous environments and less dependent on the

external environments (i.e., cloud or fog). For instance, in a

smart home, residents should control their devices and process

data locally without depending on the cloud resources. This

means that the edge-based system must provide functionalities

enabling to achieve such a user goal. Furthermore, the user

may deploy an edge application (e.g., smart health app) to

provide services for processing residents’ health data transmit-

ted from their wearable devices. However, it is worth noting

that even though extending resource scope through edge-

to-edge collaboration provides many benefits, there are still

many complex tasks that cannot be divided into sub-tasks and

processed at this tier. Thus, in such situations, the edge devices

must forward their processing to the upper tiers (i.e., fog or

cloud). Moreover, in the general sense, the number of devices

expected at this tier can reach millions.

B. The Fog Tier

The fog tier includes a collection of powerful (physical

or virtual) devices responsible for managing, communicating,

and exchanging resources between different edge networks.

The core component of the fog tier is the fog node. This tier

essentially represents the fog infrastructure (e.g., smart city

network) where several fog devices are connected, offering

various services, including computation and storage resources

for edge networks and roaming end-devices in proximity. In

sharp contrast to the edge networks, the fog infrastructure

appears to be composed of stationary and powerful devices

(typically managed and provided by Telco operators). In the

tier, several functionalities can be deployed at this tier. For ex-

ample, processing data streams, caching, device management,

and privacy protection.

According to [8], fog computing provides similar service

model implementation as in the traditional cloud computing

model. Thus, the following types of service models can be

implemented:

• Software as a Service (SaaS). The fog service providers

may host various services (i.e., similar to the cloud com-

puting Software as a Service (SaaS)) on fog infrastruc-

ture. In essence, a fog service end-user (i.e., customer)

may use providers’ service running on fog infrastructure,

specifically, on a cluster of federated nodes managed by

the provider.

• Platform as a Service (PaaS). The fog service providers

allow the end-user to deploy their application onto the

platforms (i.e., similar to the cloud computing Platform

as a Service (PaaS)) on fog infrastructure. In essence,

the end-user controls and configures their deployed ap-

plications and running environment. However, they do not

control and manage the fog platform(s) and infrastructure.

• Infrastructure as a Service (IaaS). The fog service

providers allow the end-user to provision processing, stor-

age, and other infrastructure-specific resources available

on fog infrastructure (i.e., similar to the cloud comput-

ing Infrastructure as a Service (IaaS)). In essence, the

customer can deploy and run various software, while the

consumer may control and manage the storage, operating

system, and deployed applications.

One can notice that edge and fog tiers provide almost similar

features. Both paradigms foresee enabling more computation

resources in proximity to the end-users and the IoT domain.

However, the most significant difference between the two tiers

is administrative differences and responsibilities. Furthermore,

fog nodes (e.g., deployed in base stations) may provide their

services for larger geographical areas. For instance, intelligent

transportation systems may benefit from connecting and pro-

cessing vehicle data in fog infrastructure. Nonetheless, both

tiers provide low-latency services since the end-devices are

closer to the source where the data is produced and consumed.

C. The Cloud Tier

The cloud tier provides ”unlimited” computational and

storage resources. This tier includes cloud servers that are

deployed far away from the end devices and the IoT do-

main. In essence, cloud-based servers perform computer-

intensive operations obtained from the architecture’s lower

tiers. These environments have advanced features for both

service providers and service consumers. For instance, service

consumers can configure their runtime environment, configure

deployed applications, security control, and so on. Along

these lines, the cloud computing utility has been seen as a

critical component for designing, deploying, and executing IoT

platforms that promise to meet the general population’s daily

needs.

Despite the numerous resources and advanced features pro-

vided, this paradigm faces increasing challenges in meeting

new IoT applications’ stringent requirements. Specifically,

geographically distributed IoT devices with intensive data

generation cannot efficiently utilize resources available in

cloud environments [1]. On the one hand, transferring such

intense and large amounts of data to a centralized cloud over

Wide Area Networks (WAN) generates latencies. Additionally,

service unavailability due to the non-persistent connectivity or

eventually scheduled system maintenance (i.e., cloud-side) is

another challenge that critical IoT systems may face during

their runtime. On the other hand, real-time distributed apps

require quick response time, high-availability, and increased
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privacy, often not met by a centralized environment such as

the cloud.

III. A USE CASE OF EDGE-CLOUD SYSTEMS

Understanding the current and future edge application re-

quirements from various domains is critical for any contem-

porary edge-based systems’ success. Thus, through careful

analysis of real-world IoT scenarios from various domains,

we show the importance of shifting various processes closer

to the edge, dynamically placing them in the most suitable

nodes, and the necessity to bring the elasticity features at the

edge.

A. Smart Health Application

To motivate our subsequent discussion, we consider the

well-known falling asleep problem and the smart health

application. The falling asleep problem has been discussed

previously in many research papers [9]–[11] and used as

a motivating example for various proposed solutions. This

problem generally belongs to the scenarios that are categorized

into residents’ comfort and convenience category. Suppose a

resident has a smart health application running on his phone

responsible for monitoring the resident’s vital signs. The health

application essentially collects data from a wearable ECG

sensor attached to the human body through a smartwatch [12].

Specifically, the health application monitors the incoming

data generated by the wearable device and reacts in real-

time when a critical event occurs. Usually, for this type of

application, a system architecture composed of a smartwatch

and a smartphone represents a reasonable choice. However,

since smartphones have limited battery energy, shifting data

(i.e., health applications [13]) to the nearest edge device may

be required when the battery level decreases at a critical level.

Nonetheless, transferring data to the cloud directly consumes

smartphone energy even faster.

E1

E4

E3

E5

E2

Data stream

A2 A3

A1

IoT Resources
(sensors, etc.)

Fig. 2. Smart home health application.

In this scenario, it is assumed that a person in a living

room, sitting on a sofa and watching TV, gradually falls asleep.

Multiple edge devices deployed in rooms are responsible for

changing surroundings accordingly such that the resident can

get a comfortable living. In this case, it is the edge device’s

responsibility in the living room to change surroundings and

ensure that the resident can sleep comfortably. These changes

include turning off TV, lights, changing air conditioner set-

tings, and locking the entrance door (e.g., see resource coor-

dination [14]). Meanwhile, as the resident forgets plugging the

smartphone into power, the battery nearly runs out. Therefore,

the smartphone requests the nearest edge device to handle

and process the generated data from wearable devices (as

illustrated in Figure 2).

Our nearest edge device in the living room utilizes almost

all its own processing capabilities to ensure that the resident

sleeps comfortably (i.e., measuring room temperature, etc.) as

well as runs a similar health application A1. Since the health

application at the edge was idle, it requires more processing

power and memory after the data is pumped into the system

by the wearable device. Nevertheless, the edge device doesn’t

have enough computation capabilities to execute both appli-

cations concurrently. Thus, the health application faces higher

latency to accept and process incoming data. Meanwhile, other

edge devices in the smart home may remain idle. To overcome

such a gap, the health application should create new instances

(e.g., A2, and A3) and deploy on other edge devices or on-

premises of Edge-Cloud infrastructure to meet application

demands at runtime. Thus, it is evident that bringing the

elasticity features at the edge is crucial.

IV. DISTRIBUTED EDGE FUNCTIONS AND EDGE

APPLICATIONS RUNTIME

This section identifies current system architectures, chal-

lenges, and discusses potential solutions for deploying edge

functions in a distributed and decentralized manner on edge.

Then, we discuss edge application elastic requirements and po-

tential solutions that enable application executing and scaling

in the Edge-Cloud infrastructure. Finally, we discuss potential

solutions for application runtime which is responsible for

executing the configured edge application on an Edge device

or in the Cloud.

A. Distributed Edge Functions on Edge

Researchers and computer scientist in edge and fog com-

puting have been mostly focused on proposing multiple tech-

niques for resource allocation problem aiming to minimize

various trade-offs such as latency, bandwidth, energy con-

sumption, or maximizing the utilization of resources at the

edge. In general, edge applications are deployed according

to the following models [15]: i) everything in the cloud, ii)

everything in the edge, and iii) hybrid edge-cloud model.
Essentially, allocation techniques may deploy software com-

ponents entirely on a single environment (e.g., cloud or edge)

or components are deployed and executed in both cloud and

edge [16].

As we explore new edge systems, edge applications, and

the heterogeneous edge networks, distributing system compo-
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nents and application processes among various computation

entities becomes increasingly apparent [17]. For instance, an

edge system can comprise a set of dependent functions (i.e.,

controlling module, scheduler, resource manager, etc.) that can

be deployed individually on multiple edge devices. Thus, we

analyze and discuss the pros and cons of three main edge

system architectures at the edge: i) centralized, ii) distributed,

and iii) decentralized.

In the centralized architecture, a single edge device acts as

a master device responsible for monitoring and distributing

tasks among other available computation entities in the Edge-

Cloud continuum. In essence, the master device includes a

set of functionalities placed statically on a single edge device.

Generally speaking, edge systems with centralizing architec-

ture may be feasible in the context of small and non-dynamic

edge networks (e.g., smart homes). However, a centralized

architecture’s main challenges are that it does not scale easily,

the central node requires to run on a resource-constrained

device, and the dynamic nature of the edge network makes

it impractical. In sharp contrast, the distributed architecture

treats all edge devices equally in terms of their system re-

sponsibilities. In an edge network without a master device,

edge devices in proximity are coordinated and agreed upon to

some SLA agreement to execute system functions. Essentially,

such coordination can be achieved by using consensus-based

algorithms. In practice, distributed solutions may face latency

issues when nodes need to find consensus to distribute func-

tions. Moreover, the main challenge is the small number of

nodes considered in the network topology. Along these lines,

regardless of the approach, both solutions may have plenty of

advantages in various IoT scenarios.

In the decentralized architecture, the master device func-

tionalities may be placed statically (i.e., at design time) or

dynamically (i.e., with self-adaptive capabilities). However,

the dynamic nature of edge networks requires the continuous

re-evaluation of placement decisions for such functionalities.

Thus, a feasible approach to overcome such a gap is placing

such functionalities dynamically at the edge. To that end, a

possible solution is considering election based algorithms. For

instance, through initiating an election between edge devices,

the most suitable node (e.g., in terms of computation power) is

elected as a master device. Specifically, nodes in the network

arrive at the same outcome independently by sharing election

results. Such a solution denotes a very decentralized approach

to elect the master device automatically. Moreover, dynam-

ically placing such functionalities overcomes the challenges

introduced by mobile devices and possible device failures in

edge networks. Besides that, novel techniques are needed to

address the barriers to deploy such functions on resource-

constrained edge devices. For instance, the elected master

device must delegate various functionalities to other nodes to

handle the computation and network overheads.

To overcome such aforementioned challenges, a possible

solution is to introduce new coordinators (i.e., superpeers [18])

in the system. A coordinator manages a set of nodes perceived

as cluster. As the network size expands, new coordinators are

introduced to the system as well as new clusters are formed. In

particular, coordinators provide almost similar functionalities

as the master device. The master device becomes a supervising

node responsible for managing coordinators, monitoring, and

distributing edge functions as well as edge applications among

coordinators. For instance, a user can submit a request to the

master device for edge application deployment. The master

device examines his/her geographically location and asks the

closest coordinators to determine if their cluster can meet the

edge application requirements. The coordinator who fulfills

application demands gets the application and distributes it to

the cluster’s edge devices.

B. Elasticity as an Edge Function

Future edge-based systems for the described Edge-Cloud

architecture need to hide their operational complexity from

application developers as well as from the end-users. Specifi-

cally, application developers should not have to deal with the

heterogeneity, dynamicity, and expandability of the edge net-

work setting. Developers should be able to express the context

in which edge application components are allowed to run, their

system dependencies, and their requirements (e.g., QoS, elastic

requirements, etc.) in a high-level way [19]. For instance,

an application developer may specify the elastic requirements

of an edge application (e.g., health application). To interpret

these requirements and enforce required operations in order

to keep the desired service quality, we require the elasticity
function at the edge. In essence, the elasticity function provides

a runtime mechanism that interprets elastic requirements given

by the developer. Such function is deployed and enabled

automatically at the edge-based system after the user deploys

the mentioned edge application.

Resource elasticity
Software / human-based

computing elements,
multiple clouds

Quality elasticity
Non-functional parameters e.g.,

performance, quality of data,
service availability, human

trust

Costs & Benefit elasticity
rewards, incentives

App1

2

1

Elasticity space

Fig. 3. Elasticity space at the Edge-Cloud architecture.

Bringing elasticity properties to the edge is crucial for the

future of edge applications. In the Edge-Cloud architecture,

elasticity targets not just resources and their capacity to

scale, but also their relations with the different types of

costs and quality (as illustrated in Figure 5) [19]. In this

context, various stakeholders may be involved in specifying

elastic requirements. For instance, the developer could specify

that the latency between application components must not

reach 20ms without carrying how many resources should be
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used to achieve the desired state. The edge network provider

could specify its resource utilization schema, for example, that

when overall utilization at the edge is higher than 90%, it

enables scaling out the edge. As a potential candidates for

defining these requirements are SYBL: Simple Yet Beautiful
Language [20] and SLOC: Service Level Objectives for Next
Generation Cloud Computing [21]. In this paper, we consider

the SYBL language and its runtime mechanism for controlling

elasticity in edge applications.

SYBL enables the user to specify elastic requirements at

different granularities and enables applications to scale in

elasticity space (cost, resources, and quality). In particular,

SYBL allows the user to: i) specify monitoring metrics re-

quired to be monitored, ii) specifying constraints through

which the monitored metrics are allowed to oscillate, iii)

specifying strategies representing actions to be taken when a

constraint is violated, and iv) specifying constraint priorities
required to be executed first. Additionally, SYBL allows the

developer and the user to achieve various trade-offs, such as

specifying demands on the relation between cost, resources,

and quality (as illustrated in Figure 5). To simplify developing

such specifications, a user-centric interface can be integrated

into the development platform through which developers and

end-users describe their edge applications for deployment in

the Edge-Cloud infrastructure.

C. Runtime Platform for Edge Applications

Executing edge application software components in het-

erogeneous environments is another significant challenge. An

essential requirement is to enable executing components on

a homogeneous runtime platform that follows the ”run once,
run anywhere” model. Furthermore, the platform must enable

our system components (i.e., resource manager and control

mechanism) to access, govern, and orchestrate edge applica-

tions. To that end, as a potential candidate for executing edge

applications, we consider Docker1 or Java-based OSGi2. In

essence, the runtime mechanism is responsible for executing

the configured edge application on an edge device, fog device,

or in the cloud.

V. TOWARDS DISTRIBUTED EDGE-BASED SYSTEMS

In our conception, an edge network comprises a set of

geographically distributed edge networks, as introduced in [1],

[22]. A concrete example is a smart city edge network, as

illustrated in Figure 4. Various edge networks called edge
neighborhoods can be formed and join the city’s edge network

backbone. Generally speaking, such edge neighborhoods can

be formed in smart buildings, smart factories, hospitals, etc.

Edge neighborhoods offer a seamless opportunity for the

end-users to customize their environments with various ser-

vices to support their daily activities and improve their living

comfort. In essence, an edge neighborhood is formed by con-

necting multiple edge devices in proximity to each other. The

end-users may deploy various edge applications and customize

1Docker, https://www.docker.com/
2OSGi, https://www.osgi.org/

Fig. 4. An overview of Edge-Cloud infrastructure.

their edge neighborhoods based on their needs. For instance,

in a smart home, residents may deploy an edge application

that provides them a service to back up their smartphones

automatically when they’re home. Or in a smart building (e.g.,

museum environments), the system administrator may deploy

an edge application that provides a service for visitors to

interact with their surrounding objects through virtual reality

(VR) [23].

Even though the computation scope is expanded with form-

ing edge neighborhoods, one should note that edge neigh-

borhoods cannot always provide enough resources to execute

edge applications (e.g., tasks regarding image processing, etc.).

In essence, these environments are resource-constrained and

with limited resources. Specifically, resource-demands for a

particular running edge application or task may change over

time. For instance, the backup service at a smart home cannot

provide the desired service quality when the service is used

simultaneously by more than three residents. Consequently,

this may cause poor overall performance and higher latency

than the expected response time in edge applications. To that

end, we require a lightweight framework that can be easily

deployed on low-powered edge devices and support extending

its system functionalities with new edge functions.

To fill this technological gap, we describe the role of each

tier involved in the platform design. The cloud tier provides

several types of services and contains edge application models

that users can download to their edge neighborhoods. An edge

application model essentially describes in detail application

components and their resource requirements (i.e., hardware

requirements and elastic requirements) from the developer per-

spective. Furthermore, this tier assists edge neighborhoods in

identifying the closest fog devices (e.g., location coordinates)

as well as provides storing and computation resources. The

particular fog services enable for connecting and authenticat-

ing newly edge neighborhoods (i.e., authenticated to the city’s

edge network backbone). The fog tier may provide several

types of services (as mentioned in Section II). For instance,

a fog-based blockchain platform may provide service to edge

neighborhoods to rent their resources.

To achieve the aforementioned objectives, we introduce a

conceptual framework at the edge tier that enables easy con-
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figuration, deployment, and operation of edge functions and

edge applications on top of heterogeneous edge infrastructure

(as presented in Figure 5). The proposed framework aims to

equip edge devices with core functions such as i) self-adaptive

mechanism, ii) application manager and scheduler, iii) edge

functions and resource manager, iv) edge monitoring agent,

and v) gateway module. We propose that each edge device

needs to have such a set of functionalities.

Fig. 5. An overview of a conceptual edge framework.

In edge networks, a critical task (1) is to determine which

node should take the responsibility to act as a resource
manager and control mechanism, respectively, to have enabled

the master module as presented in Figure 5. The master

module essentially provides a set of unique functionalities

responsible for monitoring available resources (i.e., IoT re-

sources and edge devices) at the edge neighborhood. The

resource manager provides infrastructure-specific (i.e., current

resource utilization and availability) to the application manager

and scheduler. The self-adaptive mechanism provides func-

tionalities for determining which node should have enabled

the master module. For this reason, we can consider our

efficient approach in [24] to determine the master module in

a decentralized manner in dynamic edge neighborhoods. The

proposed approach dynamically adapts to the network changes

and activates the master module on the most suited edge device

in terms of computation and network capabilities.

After the master module is determined, the user may au-

tomatically download various edge functions at the edge. In

essence, some applications in order to be executed at the edge

may require additional and specific system functionalities.

For instance, resource coordination service [14] at the edge

requires specific functions (e.g., SMT [25]) to generate valid

coordination plans that will enable the service to achieve

its goals. Or, the edge neighborhood can be expanded with

new IoT resources communicating with specific protocols.

Thus, the edge-based system needs to be extended with new

functions to support IoT resource operation. Furthermore, the

user may download an edge application from the cloud and

deploy it to the edge neighborhood. In essence, each edge

device runs an application manager and a scheduler module

(2). This means that the user may request each edge device to

deploy an edge application. The edge device that generates the

deployment plans also becomes the orchestrator for that edge

application. This means that the edge device controls the elas-

ticity requirements and enforce various scaling operation when

it is required. Nevertheless, before the deployment, the owner

may extend the following user-perspective requirements: i)

elastic requirements and ii) application criticality.

The edge application critical requirements determine ap-

plication dependencies (i.e., on edge functions) specified by

the application developer. For instance, to interpret the SYBL

elastic requirements, the application developer specifies that

the elasticity function should be deployed and available on

the edge neighborhood. Such a function can be downloaded

after user approval. Further, the edge application critical

requirements can be extended by the user with user-specific

application configuration settings. For instance, the user may

specify where the data is allowed to be processed (i.e., edge,

fog, or cloud). Essentially, it determines where the edge appli-

cation is allowed to run. For instance, the user may specify one

of the following deployment models described in Section IV.

Furthermore, the user may extend elastic requirements with

new user-requirements. This means that the user may specify

that to keep the desired service quality all the time, the edge

application can scale to the cloud (i.e., paying for the cost

of using it). Nevertheless, some users might be unwilling to

process their private data at the cloud or edge network (i.e.,

publicly available resource at the edge).

Along these lines, the scheduler considers all the above-

mentioned requirements, gets the infrastructure state from the

resource manager, and then generates an eligible deployment

plan (if exists) (3-4). Thus, it determines where the edge

application components and data need to be processed such

that their requirements are fulfilled. To generate such de-

ployments plans in the Edge-Cloud infrastructure, we can

consider the approach in [26]. Furthermore, the monitoring

agents deployed at each edge device periodically updates

the resource manager with infrastructure-specific metrics (i.e.,

CPU, storage, etc.) and application-specific metrics (i.e., non-

functional parameters). The application-specific metrics are

real-time values that the elasticity function uses to control

whether the edge applications’ elasticity aligns with the elastic

requirements defined.

The gateway module implements all necessary mechanisms

to enable communication between edge devices and connect

them with external networks (i.e., cloud and fog). Specifically,

it enables edge devices to connect in a peer-to-peer manner

and automatically discover edge neighborhood resources (e.g.,

IoT resources, etc.). Furthermore, the edge neighborhood

owner configures the gateway mechanism on how to connect

to the cloud. After the successful configuration, the cloud

returns a list of closest fog devices (i.e., fog services) to the

edge neighborhood. The edge neighborhood is automatically

registered in the edge network (e.g., smart city’s edge network)

with a unique neighborhood ID. Afterward, the owner may

download and install specific edge functions, e.g., to enable
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resource renting such as computation power or storage along

with the payment term. For instance, blockchain platforms

(e.g., distributed storage3,4 or distributed computation power5)

deployed on fog infrastructure enable edge neighborhood own-

ers to earn money by renting their unused storage and idle CPU

cycles to those in need. The premise is simple: the edge owner

installs a specific edge function (e.g., blockchain function)

on its own edge network and configures it to connect to the

fog’s blockchain platform. In essence, the owner list resources

along with payment terms and get paid when other users

in the platform utilize them (i.e., through smart contracts).

The mentioned edge function synchronizes continuously such

information with the fog’s blockchain platform.

VI. CONCLUSION

Edge computing is considered a fundamental enabler for

the proliferation of the Internet of Things (IoT). Compute

and storage resources placed at the edge of the network

are used to bridge the gap between the Cloud and the IoT

domain. Such computation entities perceived as edge devices
can be used to analyze high-volume IoT data streams and, at

the same time, provide control facilities to participating IoT

devices. In essence, a wide range of available resources at

the edge provides a seamless opportunity to deploy various

edge applications providing their services with low-latency.

However, for edge applications to operate properly, different

edge functions are needed at the edge (e.g., elasticity function).

To that end, in this paper, we discussed some of the research

issues, challenges, and potential solutions to enable: i) deploy-

ing edge functions on edge resources in a distributed manner

and ii) deploying and scaling edge applications on-premises

of Edge-Cloud infrastructure. However, with the introduced

conceptual framework, the edge-based systems deployed at the

edge can be easily extended with new edge functions. Thus,

distributing edge functions at the edge paves the way for uti-

lizing available resources, leading to the promised high-quality

and low-latency edge-based system solutions. Nevertheless,

a challenging task remains to provide a full solution stack

for edge applications that are dynamically distributed, elastic,

resilient, and executed natively in the Edge–Cloud continuum.
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