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Abstract—In today’s IoT infrastructures, increasingly newly
added computational resources at the edge of a network are
added to acquire faster response and increased privacy. Such edge
networks bring an opportunity for deploying edge application
services in proximity to IoT domains and the end-users. In this
paper, we consider the problem of utilizing various computational
resources established by multiple heterogeneous edge devices
in dynamic edge networks. A new lightweight decentralized
mechanism (i.e., configurator) is required to monitor an edge
infrastructure to enable deploying, orchestrating, and monitoring
edge applications at the edge. In this setting, one critical task
is to determine the node where the configurator should be
placed (deployed) and run (executed) at the edge. In this paper,
we propose an efficient approach that solves the configurator’s
placement problem on the most suited edge device in a given
dynamic edge network. Our approach supports the system coping
with the dynamicity and uncertainty of the environment and
adapts based on the configurator’s service quality. We discuss
the architecture, processes of the approach, and the simulations
we conducted to validate its feasibility.

Index Terms—Edge Computing, Internet of Things, Decentral-
ized, Resource Management

I. INTRODUCTION

The emergence of Edge computing has introduced edge

devices as an intermediary entity between applications and

the Internet of Things (IoT) deployments, providing data or

control facilities to the participating IoT devices. The Edge

computing paradigm enables to shift processing from the cloud

to the edge devices located at the logical extremes of a network

- close to the user [1]. Accordingly, these intermediate devices

take responsibility for processing data promising to satisfy the

stringent requirements prevalent in IoT systems, including high

availability, performance, and privacy [2]. However, edge de-

vices are usually considered resource-constrained with limited

resources, referring to their different computational capabil-

ities, including storage or processing facilities. For instance,

providing a service for image processing or deploying edge ap-

plications (i.e., IoT applications) on a single edge device poses

many limitations and a set of challenges in terms of processing

capabilities, storage, and communication bandwidth. To this

end, edge devices do not exist in isolation and must be able to

collaborate with other edge devices. Thereby, interaction with

other edge devices enables extending the scope of available

resources and satisfying the computational requirements of

real-time edge applications at the edge of the network.

To overcome these shortcomings, edge devices found nearby

can form an edge-to-edge network, respectively, an edge

overlay network. Edge-to-edge collaboration provides many

benefits. First, edge devices can exchange information about

available resources within their scope in a peer-to-peer (P2P)

manner. For example, several edge devices deployed in a

smart neighborhood will share their functionality descriptions

based on their privacy preferences. Thereby, each edge device

will be able to utilize available resources at the edge of the

network [3]. Second, multiple edge devices provide a seamless

opportunity to enable deploying edge applications at the edge.

For example, an edge application divided into multiple services
can be mapped in the edge network where participating

nodes may run a particular service and satisfy application

requirements [4]. Thereby, forming such edge networks enable

relieving complex processings by distributing application ser-

vices among available edges. However, such edge networks are

heterogeneous and very volatile environments. This introduces

new challenges where edge devices may require to migrate ap-

plication services to other edge devices to fulfill continuously

changing application demands. Hence, deploying applications

in such heterogeneous infrastructures require novel techniques

for resource management at edge.

A common approach for resource allocation in edge infras-

tructures is to assign services to the available edge devices

by considering several factors such as processing capability,

bandwidth, or energy. Such techniques often employ central-

ized architecture where a static edge device is a master device
that acts as a gateway, monitors resources, and runs scheduling

algorithms for generating deployment strategies. Similarly,

several approaches have been proposed to enable application

placement in edge networks [5], [6]. However, many research

papers determine the master device statically. They do not

address issues when the Quality of Service (QoS) between

the master device and the other client nodes is degraded due

to the high utilization or high end-to-end latency. In contrast

to the mentioned works, a distributed approach [7] inspired

by the functionality of an auction house has been proposed

to enable IoT application deployment at the edge. However,

the proposed solution faces latency issues, and it considers a

limited number of nodes in the topology.

In practice, statically placing a set of functionalities (e.g.,

planning, controlling, or monitoring resources) on a single de-
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vice may be feasible in small and non-dynamic edge networks.

However, in dynamic and large-scale edge networks, such an

assumption is rarely accurate and may result in inefficient

resource utilization and network overheads. This often occurs

due to the dynamicity of edge networks, which may change

continuously over time. Such changes are caused by unex-

pected node joining/leaving, high utilization, or node and link

failures. Thus, to ensure efficient deployment and orchestration

of edge applications (e.g., elasticity and migrating services),

we require real-time controlling and monitoring of the edge in-

frastructures (i.e., node hardware values). Hence, to overcome

these challenges, we need a decentralized mechanism that acts

as a resource manager and a control mechanism closer to

the edge. Such a decentralized mechanism enables deploying

and orchestrating applications and monitoring infrastructure at

dynamic edge networks. From now onwards, we refer to this

mechanism as the configurator (explained in Section II-C).

In this setting, a critical task is to determine the node

where the configurator should be deployed and executed at

the edge. Therefore, in this paper, we propose an efficient

decentralized approach that identifies the most suitable node

to run the configurator in dynamic edge networks (Section II-

B). Our approach consists of an architecture and processes

that enable the placement of the configurator. The proposed

method allows the execution of the configurator on the edge

device with the highest computing performance, the lowest

workload, and the best overall bandwidth. An edge device that

executes the configurator mechanism becomes a configurator

node. Notably, when the configurator node is overwhelmed,

a custom event is triggered to find another suitable node that

can handle the current workload. To validate the feasibility and

scalability of the approach, we have implemented a prototype

and simulate the configurator’s placement at the edge.

The rest of the paper is structured as follows. Section II

gives an overview of our Edge-Cloud ecosystem, the con-

figurator, and motivation. Related work is considered in

Section III. Section IV describes the architecture modeling,

resource utilization modeling, and the makespan to run and

transfer the configurator at the edge. Section V describes

in detail the proposed algorithms in charge of determining

configurator in manager mode in the edge network. Section VI

provides the simulation results to evaluate the proposed solu-

tion. Finally, Section VII concludes the paper and outlines

future work directions.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of the

Edge-Cloud ecosystem and the edge neighborhood. Then, we

give a short overview of the configurator’s aim in edge net-

works. Finally, we present our motivation scenario. Note that

throughout the paper, we may use interchangeable notations

for edge networks such as edge neighborhoods.

A. Edge-Cloud Ecosystem

We consider our proposed edge ecosystem [3], [8], which

is composed of a three-tier layer architecture: edge, fog, and
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Fig. 1. An overview of the Edge-Cloud ecosystem.

cloud, respectively. The proposed ecosystem aims to enable

collaboration between edge devices, information, and people

to create an IoT platform that supports the development of

new edge applications. Figure 1 shows three types of collabo-

ration in our proposed ecosystem: edge-to-edge, edge-to-fog,

and cloud-to-fog collaboration. The edge layer represents the

internal environment where several edge devices connect and

form an edge neighborhood. In this layer, each such device

contains various resources that could aid in building different

edge applications.

The network’s upper layer represents the external envi-

ronment where several fog nodes are connected, offering

computation and storage resources for edge neighborhoods.

In the edge-to-fog scenario, an edge device that executes the

configurator enables the communication between the internal

network (edge neighborhood) and external network (fog net-

work). Whenever there are not enough resources at the edge

neighborhood, the configurator node may request to use the

fog network’s external resources.

The third layer of the network represents the platform’s

environment, and edge applications can be downloaded and

deployed in edge neighborhoods. Additionally, the third layer

serves as an environment where heavy tasks that cannot be

computed at the edge or fog are moved to the cloud for further

processing. In this paper, we aim to solve the challenges

introduced at the proposed ecosystem’s edge layer.

B. Edge Neighborhood

A typical Edge computing system includes heterogeneous,

resource-constrained, and geographically distributed comput-

148

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 28,2021 at 09:59:21 UTC from IEEE Xplore.  Restrictions apply. 



ing resources [9]. Several approaches have been proposed

aiming to build and organize computation nodes in the edge

network [10]. To meet our desired objectives, we consider a

similar organization type of the edge network proposed in [11].

In the mentioned paper, nodes are organized in clusters, and

the network can easily scale. Moreover, the maximum cluster

sizes are configurable and the number of clusters to which one

node may belong. We assume that each cluster has a limited

number of nodes in our system, and each node belongs to

only one cluster. We limit the number of nodes in clusters in

order to handle the complexity introduced when monitoring

nodes in the edge infrastructure [12]. It is worth noting that

to orchestrate edge applications at the edge, we require to

monitor hardware resources at different edge nodes or their

end-to-end latency between them. In Figure 2, we present an

example of an edge neighborhood comprised of twenty nodes

organized in three clusters.

Cluster 3

Cluster 1 Cluster 2

B

C

A

Fig. 2. An example of an edge neighborhood comprised of twenty nodes
organized in three clusters.

In Figure 2, each cluster have a leader node (e.g., node A,

node B, node C). We assume that leaders act as superpeers

[13], and each of them stores contact details (i.e., IP address,

etc.) of the other leaders. Leaders may store some other

information regarding the other nodes in the neighborhood.

Similarly, edge nodes that belong to the same cluster store

information for each other and know their cluster leader and

the configurator node at any time. In Section V-A, we explain

in detail the process of finding the cluster leader. Note that

we treat an edge neighborhood as already given, and to build

the edge network is out of the scope of this paper. Our

focus is on determining the most suitable node to place and

execute the configurator on heterogeneous and dynamic edge

infrastructures. Therefore, issues related to the edge network,

such as joining/leaving nodes, organizing nodes in clusters,

and operational aspects are orthogonal to our approach. In

future work, similar to the method mentioned above, we

plan to build the edge neighborhood based on the Kademlia

Protocol [14].

C. The Configurator

To enable application deployment in a decentralized manner,

each edge device will require information regarding an edge

infrastructure’s current condition. However, it is computation-

ally demanding to monitor resources from each edge device

throughout the network. Therefore, in this paper, we provide a

solution to determine which node must take the responsibility

to act as a resource manager as well as a control mech-
anism for controlling deployment aspects and orchestrating

applications at the edge. We refer to this mechanism as the

configurator, and the method proposed in this paper is one

of the main components of the configurator. The configurator

is a decentralized mechanism which is a lightweight software

application aiming to enable deploying, orchestrating edge ap-

plications (i.e., elasticity, migration), and monitoring resources

at the edge. To achieve such objectives in a decentralized

manner, we conclude that each edge device needs to have a set

of functionalities embedded through a configurator. Therefore,

we define two operation modes of the configurator: i) manager
mode (i.e., resource manager and control mechanism) and ii)

edge mode (i.e., worker node).

In an edge neighborhood, there is one and only one config-

urator running in the manager mode. The configurator node

instantiates a local edge agent on each cluster leader nodes

to enable monitoring resources and orchestrating applications

locally. Such a local agent provides information to the config-

urator node regarding the available resources on its cluster.

Once the user requests installing an edge application (i.e.,

downloaded from the cloud), the configurator node determines

which cluster meets the application requirements and deploys

it in a specific group (if the cluster is not specified beforehand).

Additionally, the configurator helps to orchestrate applications

between clusters, fog, and cloud whenever they cannot scale

locally due to the limited resources. Nonetheless, it remains

the future work to provide a complete solution for the config-

urator and a full solution stack for edge applications that are

dynamically distributed, elastic, resilient, and run natively in

the Edge–Cloud continuum.

D. Motivation

We envision a smart city scenario where city administrators

can build and customize edge networks by deploying various

services. In this scenario, the edge infrastructure is structured

based on the districts in the city. Each district represents an

edge neighborhood where thousand of computation nodes are

deployed as well as sensors, actuators, and mobile devices.

An edge neighborhood can be composed of multiple groups

of nodes (i.e., each group may represent a neighborhood in the

district). This brings an opportunity to customize environments

depending on the available resources, e.g., if there are sensors

for gathering air quality data in a particular neighborhood, a

specific monitoring service can be deployed. For example, in a

particular neighborhood, residents may complain about noise

pollution. Thereby, city administrators may add new sensors

connected to edge devices for gathering real-time data about

the noise pollution in the affected area. Afterward, an edge
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application can be deployed closer as possible to the data

source enabling monitoring noise pollution, processing data,

and notifying the relevant authorities if noise exceeds the upper

bound limit [15]. A situation may arise when the application

QoS requirements are violated (e.g., node failures, overloaded

devices, high end-to-end latency, etc.). Thus, the application

services need to be scaled/moved in other nodes. Notably,

controlling and monitoring mechanisms in such environments

remains a challenging task to implement. These issues arise

due to excessive peculiarities of the edge network (i.e.,

heterogeneity, unavailability, and limited resources). Thus,

it is evident that we require proper techniques that enable

orchestrating, monitoring applications, and monitoring edge

infrastructure in a decentralized and dynamic manner. Our

proposed approach aims to shift such functionalities closer to

the edge and dynamically placing them in the most suitable

nodes.

III. RELATED WORK

Current literature in Edge computing recognizes and briefly

discusses types of communication [16]. Notably, P2P ap-

proaches have shown great potential to handle edge infras-

tructures in a scalable manner [17]. Therefore, a lot of re-

search has been conducted in this context, resulting in many

approaches that aim at organizing edge nodes using different

communication types [18]. In contrast to the mentioned papers,

Yi et al. [5] proposes Latency-Aware Video Edge Analytics

(LAVEA) system and discuss factors that impact the feasibility

of realizing practical Edge computing systems.

According to [10], the communication type of a platform

affects the functionality of the final applications deployed

at the edge infrastructure. In networks organized in P2P, it

is assumed that participating nodes are equal in terms of

their computation capabilities. In such an organization type,

resource heterogeneity is not taken into account. Notably,

such environments have attracted many research papers to

propose various fault-tolerance systems (e.g., [19]). In contrast

to the proposed approaches, hierarchical communication type

organizes nodes in layers according to the node resource

capabilities [20]. In this type of organization, the node in

the highest level of the hierarchy is responsible for the

network’s global coordination. Similarly, in [21], fog nodes

in the network are organized hierarchically. However, such

approaches determine a coordinator statically, which resides in

the cloud. In contrast, we propose a solution that automatically

determines configurator placement in dynamic edge networks.

Resource allocation and management have been widely

studied both in cloud and fog computing [16]. In Fog com-

puting many factors have been considered including time

(e.g., computation [22], communication time [23]), cost (e.g.,

networking [24]), deployment [25], resource coordination [26],

or execution [27], which have been found to play important

roles in resource and service provisioning. Skarlat et al. [28]

proposes a framework called FogFrame, which aims to deploy

and execute various workloads in the fog infrastructure. The

proposed approach organizes nodes in the network with the

cloud residing in the hierarchy’s highest level.

Notably, none of these approaches considers the dynamic

nature of edge networks. Scheduler and monitoring compo-

nents are placed statically in the highest level of the hierarchy

(i.e., cloud or fog devices) that are assumed to be powerful

devices. However, when such nodes are fog devices, they may

suffer from being overwhelmed and fail to process further

deployment requests or fail to monitor edge infrastructure.

Moreover, the QoS between the master and the other nodes

may be degraded due to the high utilization or high end-to-

end latency. As a result, our proposed solution aims to shift

orchestrate and monitor functionalities closer to the edge and

dynamically place them in the most suitable nodes. Such a

solution makes edge networks autonomous environments and

less dependent on centralized nodes that are located far away.

IV. ARCHITECTURE AND RESOURCE UTILIZATION

MODELING

This section discusses architecture modeling, resource uti-

lization modeling, and the makespan to run and transfer

the configurator at the edge. Our assumption is that edge

devices are single-core processors. We consider only single-

core processors avoiding the need for local mapping of multi-

core processors in edge devices. This is attributed to the

different workloads that each core may have in time.

A. Architecture Modelling

We model our neighborhood as a graph G = {V, E},

where V is a set of vertices that represent clusters, and E
is a set of edges that captures the physical link between the

vertices. We assume that the graph G is connected, i.e., there is

always at least one path for every pair of vertices that connects

them. Each vertex νi ∈ V is a cluster (see Section II-B). A

cluster νi is composed of a set of nodes Γi with individual

functionalities. Each node γj ∈ Γi is assumed to be a single-

core processor that has workload denoted with wj and a

computation factor denoted with cfj . A computation factor

cf determines how fast the received data can be processed on

the device (i.e., represent the core’s clock speed).

We assume that the nodes in a cluster are connected in

a P2P manner. We define a function < Wi, cfi >= P(νi)
which finds the leader ρi in the cluster νi that has the lowest

workload. The function returns the Wi and cfi of the cluster

leader (see Section V-A). The workload w of the device is

the value that shows how much the CPU core is utilized. We

use the Worst-Case Execution Time (WCET) to determine the

maximum time it takes to execute a given piece of code (i.e.,

task) on a given device with cfi. For instance, consider a task

with the WCET of 2 ms and runs on a device with a core with

the cf1 = 0.8. The WCET of the task would be 1.6 ms. Thus,

devices with a higher cf execute tasks faster rather than those

with lower ones.

Each edge ε ∈ E is a full-duplex physical link and associated

with a bandwidth βε. We also define a function < R, αi,j >=
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O(νi, νj) which returns a path R between the clusters νi
and νj which has the maximum total bandwidth αi,j .

We model the configurator as a single task with a known

WCET, which can be scaled for a given core with the

associated computation factor. We use T for the WCET of

the configurator, and the size of the configurator is denoted

with L. An example of conceptual architecture is depicted in

Figure 3, and details of the nodes are described in Table I.

Notice, the bandwidth values in Table I are given in Mbps.

TABLE I
CONCEPTUAL ARCHITECTURE SHOWN IN FIGURE 3

Cluster (V) Comp. factor cfi Available Bandwidth (αi,j)

ν1 1.1 α1,2 =22.67 α1,3 =32
ν2 1.0 α2,1 =22.67 α2,3 =1000
ν3 1.7 α3,1 =32 α3,2 =1000

Physical link

Data flow

Legend

31

2

ρ2

< 
R, α

(1
,2

) >

< R, α(1,3) >
< R, α

(2,3) >

ρ1 ρ3

Fig. 3. Conceptual architecture.

The conceptual architecture has three clusters (i.e., cluster

leader) that are connected with three links. Each link is

associated with a bandwidth value, as presented in Table I. The

values for the bandwidth of links αi,j are randomly assigned

(see in Table II). This assumption can be replaced with a

function relying on Assolo [29], which enables collecting

bandwidth probes.

TABLE II
THE QOS PROFILES OF COMMUNICATION LINKS [30]

Profile Latency Download Upload

4G 53 ms 22.67 Mbps 16.97 Mbps
VDSL 60 ms 60 Mbps 6 Mbps
WLAN 15 ms 32 Mbps 32 Mbps
Fiber 5 ms 1000 Mbps 1000 Mbps

B. Modelling Resource Utilization

Edge networks are loosely coupled distributed systems

and heterogeneous environments. Resource utilization of edge

devices may change rapidly. Each edge device is equipped with

limited physical resources such as computational processing,

memory, and network bandwidth. The current resource uti-

lization of edge devices (i.e., CPU, RAM, and storage) can be

calculated with various approaches, as presented in research

works [31], [32]. Such hardware information can be collected

using Hyperic Sigar [33]. To meet our desired objectives,

we adopt a similar approach based on the fuzzy theory [32],

which represents the current utilization of resources through

utilization scores (see in Table III).

TABLE III
NODES IN THE ARCHITECTURE SHOWN IN FIG.3

Leader Current workload W Utilization Score Uw

ρ1 90% 0.90
ρ2 52% 0.52
ρ3 18% 0.18

We use a similar membership function to represent the

utilization of resources defined as follows:

• Uw - The fuzzy subset and node CPU utilization score is

represented as:

– Light : (0.1 < Uw < 0.49),
– Medium : (0.49 < Uw < 0.89),
– Heavy : (0.9 < Uw < 1.0).

• Uβ - The fuzzy subset for bandwidth utilization is calcu-

lated as a percentage used from the total available band-

width. Similar to the CPU utilization score, bandwidth

utilization is represented as light, medium, and heavy.

The scores Uw and Uβ are randomly generated and used in

a function which determines when to trigger an event to start

the process for placing configurator in a most suitable node

(Section V).

C. Makespan

The WCET of the configurator is calculated for a base

CPU, which has the computation factor cfj . If the configurator

is submitted to the node (edge device) γj with the cfj , the

execution time CW
j can be calculated as in the given equation

(1).

CW
j =

T
cfj

(1)

We consider Ct
νi,j

to be the commutation time for transfer-

ring the configurator of size L from νi to νj which is calculated

with given equation (2)

Ct
νi,j

=
L
αi,j

(2)

The time required to execute the configurator and to transfer

data between the edge devices is the makespan measured as

in the formula (3).

C = CW
j + Ct

νi,j
(3)
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D. Cost Function

We define a cost function for choosing the most suited

cluster in the neighborhood. The cost function gets the

time required to execute the configurator CW
i on the cluster

leader νi, the time required to transfer the configurator from

the current cluster νj to the cluster νi denoted with Ct
νi,j

, and

the workload of the cluster leader νi denoted with Wi. The

most suited cluster in the neighborhood has the minimum cost.

The coefficients c1, c2 and c3 are determined at design time.

φ = c1 × CW
j + c2 × Ct

νi,j
+ c3 ×Wi. (4)

V. THE APPROACH

In this section, we present two main processes of the

proposed approach: i) the process of finding the leader node

in a cluster (i.e., we refer to as the Cluster Leader Algorithm),

and ii) the process of determining configurator placement (i.e.,

we refer as the Mapper Algorithm). The proposed method

represents one of the main components of the configurator.

Afterward, we discuss the scalability of the configurator.

Finally, we present an example of the approach through a

demonstration.

A. The Cluster Leader Algorithm

The cluster leader algorithm chooses a cluster leader, which

is assumed to have a limited number of nodes. The first

participant node of the cluster is automatically elected as a

leader node. There are three ways on how the algorithm can be

triggered: i) by the configurator node, ii) the cluster leader, and

iii) by the cluster nodes. An election is triggered by a cluster

leader when it suffers constant high processor utilization and

wants to transfer leadership to another node. The algorithm

uses control messages to check all the nodes in the cluster

and find the minimum workload. In case the leader node fails,

each node can start an election on its own at any time. The

initiating node sends a control message with a predefined value

for T to all nodes that will participate in the election; typically,

those are all nodes associated with the local node’s cluster.

Otherwise, when the configurator node triggers the algorithm,

it sends the current value T and finds the most suitable node

to execute the configurator in the manager mode. The reason

behind bounding the number of nodes in clusters has been

already explained in Section II-B.

The cluster leader algorithm, as presented in Algorithm 1,

runs on each cluster node separately. Essentially, the algorithm

gets the current workload W (line 2), the computation factor

of the core cf (line 3), and then updates the workload of the

core as if it runs the configurator (line 4). Besides, a unique

random signature (i.e., SHA-1 hash) is used to be broadcast

along with the prediction of workload to all the nodes in the

cluster (lines 5-6). Such a random number called Signature,

helps to make the process and transmitted messages unique.

We refer to the transmitted message as a control message.

The cluster leader algorithm determines whether the leader

is itself or not in the limited time (e.g., 100 ms), and it

is defined as a Deadline (line 8). The deadline value is

Algorithm 1: Cluster Leader.

Input : νi
Output: Wi, cfi

1 t ← 0
2 W ← GetcoreWorkload()
3 cf ← Getcorecf()
4 W ← W + T

cf

5 Signature ← Random()
6 Broadcast To All(W, Signature)
7 Solution Found ← False
8 while t < Deadline OR !Solution Found do
9 I ← Receive Message()

10 if getWorkload(I) < W then
11 Solution Found ← True
12 else if I =W then
13 M ← Received Signature(I)
14 if M < Signature then
15 Solution Found ← True
16 end
17 end
18 end
19 if !Solution Found then
20 return W, cf
21 end

specified at system design time. If the leader is not found

in the given period, then the previous leader continues to

lead the cluster unless if the leader has failed. Nevertheless,

when a message from another node is received I (line 9),

then the algorithm compares the workload of the received

message with the workload of itself W (line 10). Once the

received message has a better workload than the node itself,

the algorithm stops since a better node is known in the cluster.

In case of equal workload, the signature helps choose the

leader node as given in (line 14). The cluster leader node

is the one on which the algorithm is still running since it

has the lowest workload. Afterward, the algorithm returns Wi

and cfi of it as an output. It is worth noting that we consider

energy-powered edge devices in the edge neighborhood. For

environments with energy-restricted devices, the number of

nodes in clusters should be kept lower, or a more lightweight

solution can be considered to elect a cluster leader (e.g., the

Bully Algorithm [34]).

B. The Mapper Algorithm

We design the mapper algorithm by considering the edge

device’s current workload, bandwidth, and the current configu-

rator workload. The algorithm finds the solution for executing

the configurator in the manager mode in the most suitable

node (see Algorithm 2). The problem we have is formulated

as follows. Essentially, we have given i) a network graph G , ii)
a configurator, iii) a function P for finding the cluster leader,

and iv) a function O which returns a path R with maximum

bandwidth between two clusters.
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Algorithm 2: Mapper.

Input : G, O, R
Output: νbest

1 νthis ← getCurrentCluster()
2 νbest ← null
3 φbest ← 0
4 for each νi ∈ E and νi �= νthis do
5 < Wi, cfi >= P(νi)
6 CW

νi
= T

cfi

7 < R, αi,this >= O(νi, νthis)
8 Ct

νthis,i
= L

αi,this

9 Ci = Ct
νthis,i

+ CW
νi
+Wi

10 if νbestis Null then
11 φbest ← φi

12 νbest ← νi
13 else if φbest ≥ φi then
14 φbest ← φi

15 νbest ← νi
16 end
17 end
18 Set(νthis, EdgeMode)
19 Set(νbest,ManagerMode)

A triggered event causes the overloading of the configurator

node (i.e., the processor is overloaded). Such an event triggers

our algorithms’ execution, which seeks to determine the most

suitable cluster νbest where the configurator should be mapped

to and be executed on in the manager mode.

The most suitable cluster νbest should be determined such

that i) there is always one and only one configurator running

in the manager mode on the network, ii) the most suitable

cluster νbest has a good workload and the minimum execution

time Tej , and iii) the most suitable cluster νbest has a good

available bandwidth Cβ and minimum transferring time for the

configurator Cei,j . The leader of the most suitable cluster νbest,
denoting with ρbest is captured with P(νbest).

When the mapper algorithm is triggered, the configurator

checks all clusters in the neighborhood (line 17) for a node

that can host the configurator. The algorithm calls the func-

tion P , which executes Algorithm 1 for getting the cluster

leader (line 5). In case the cluster leader cannot respond, it

starts a new election and finds the leader of the cluster (see

Section V-A). The cluster leader’s computation factor is used

to calculate the configurator’s execution time on it (line 6).

The function O is called to find the path from the cluster that

currently runs the configurator to the cluster being checked

(line 7). The total available bandwidth of the path αi,this is

used to calculate the configurator’s transfer time (line 8). The

total transfer time and execution time of the configurator are

calculated in line 9. Afterward, the algorithm finds the most

suitable cluster, which has the minimum execution and transfer

time for the configurator, as well as the maximum available

bandwidth and minimum workload (line 13). Eventually, if the

determined cluster is not the existing one, the configurator will

be set to the ManagerMode.

The process is activated each time when the configurator

node in the manager mode is overwhelmed. It’s worth noting

that the CPU of an edge device may fluctuate up and down

due to the various workloads. We consider a threshold to

avoid such a situation. The default threshold is configured

to alert when CPU utilization exceeds 90% for more than

30 seconds. Therefore, to identify to what degree an edge

device is overloaded, we define rules in the fuzzy database.

The rules are given as follows: whenever the CPU hits heavy
utilization (see Table III) or heavy bandwidth utilization, the

mapper algorithm is triggered to find a new edge device that

can run configurator with the current workload.

C. Scalability

We propose the notion of the cluster to make the mapper

algorithm scalable. The proposed method breaks the process

of finding the most suitable node in the network into: i) finding

the leader of the cluster, and ii) finding the most suitable

cluster. The mapper algorithm can map the configurator to

the best cluster, respectively, to the cluster leader in the

finite time, as the network becomes bigger. As shown in

Section IV-D, the most suitable cluster is the one that has

relatively good available bandwidth that can be used to transfer

the configurator too. In Section VI, we show that the time

required to transfer and activate the configurator on the most

suitable cluster even when the number of nodes and clusters

increases is in limited time.

D. Demonstration of the Mapper Algorithm

In this part, we present an example of our proposed ap-

proach; respectively, we demonstrate the mapper algorithm

(Algorithm 2). In our example, we assumed three clusters

create a neighborhood. The cluster ν1 is hosting the config-

urator, i.e., configurator in the manager mode, respectively,

configurator node ρbest. At the same time, the other clusters

are running the configurator in edge mode. Let us assume

that the current workload of the configurator node ρbest of the

cluster ν1 is 34%, the available bandwidth is 84 Mbps, and

the computation factor is 1.1.

TABLE IV
CONFIGURATOR IN THE OVERLOADED NODE ρbest IN CLUSTER νbest

Leader (ρ) Workload (W) Configurator Cost (φbest)

ν1(ρbest) 94% Manager 0.921
ν2(ρ2) 53% Edge 0.641
ν3(ρ3) 34% Edge 0.457

Initially, an event makes the cluster ν1 overloaded, respec-

tively, the workload on the configurator node ρbest exceeds

94% of processor utilization as given in Table IV. After

the CPU remains utilized for more than 30 seconds, another

event is triggered, alerting the processor’s heavy usage. Such

an event triggers the mapper algorithm on the configurator
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node ρbest in the cluster ν1. The algorithm iterates over all the

network clusters, namely the cluster ν2 and ν3. The algorithm

finds its leader for each cluster, using the function P , its

workload, and its bandwidth. For the cluster ν2, the leader

is the node ρ2, and its workload is 53% and has 90 Mbps of

available bandwidth, with the computation factor of 1. For the

cluster ν3, the output would be the leader node ν3 with the

workload of 34%, the available bandwidth of 45 Mbps, and

the computation factor of 1.05.

We assume that the current size of the configurator is 10

Mbits, the current utilization is 10%, and coefficients for the

cost function are equal to 1 (see eq. 4 in Section IV-D). The

algorithm chooses the cluster ν3 with the lowest total cost of

0.457 compared to the cost of 0.641 for the cluster ν2. Finally,

the algorithm sets itself to the EdgeMode as well as it sets the

configurator running on the cluster ν3 to the ManagerMode.

VI. EVALUATION

In this section, we first introduce our evaluation setup envi-

ronment, prototype details, and limitations. Next, we experi-

mentally evaluate the effectiveness of the approach by running

multiple experiments and checking the mapper algorithm’s

behavior in different situations.

A. Setup, Prototype Details, and Limitations

For evaluating the proposed approach, we develop a pro-

totype that implements core functionalities to determine con-

figurator placement at the edge. The prototype is written in

MATLAB, and it is deployed on a laptop with a Core i7

CPU at 2.8 GHz and 16 GB of RAM. For the evaluation, we

run 100 experiments per number of clusters and show results

from various cases. These results are in terms of: i) analyzing

the scalability and time required to determine configurator

placement, ii) analyzing the overhead for transferring and

execution time of the configurator, and iii) analyzing the

overhead of bandwidth usage (Section VI-B).

The current version of the prototype shows the feasibility of

the proposed approach in determining the configurator place-

ment at the edge. However, some values such as measuring

bandwidth, hardware related metrics, and configurator data

size are randomly generated. Notably, such parameters are

not necessary for this simulation since our goal is to show

the feasibility and the scalability of the configurator without

causing overheads. The current version of the prototype does

not provide the configurator’s failure mechanism. In future

work, we plan to adopt a similar approach [19], where the

configurator data is stored in a distributed manner among the

edge nodes.

B. Experiments and Results

We evaluate our proposed method on five test cases which

have different sizes. The size of test cases progressively

increases and reaches 200 clusters that have at least 28000

nodes. For simplicity, in this work, we assume that the

maximum number of nodes in clusters is defined not to be

more than 250 nodes. Thus, for each experiment, we generate

a random number of nodes in the clusters. In the smallest

test case, we have 10 clusters with 1864 nodes, and in the

largest test case, we have 200 clusters with 28255 nodes.

The five test cases and their relative number of clusters,

including the number of nodes, are depicted in Figure 4. The

blue box shows the minimum number of nodes in a cluster,

the red box shows the average, and the green box shows

the maximum number of nodes generated randomly for 100

iterations. Figure 4 is an objective of the proposed approach,

as discussed in Section V-C, which advocates the scalability

of the configurator at the edge neighborhood.
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Fig. 4. The number of clusters and their nodes in five test cases. The test
cases have respectively 10, 25, 50, 100, 200 clusters, and for each test case,
we iterate the simulation 100 times.

Fig. 5. The WCET of the configurator executed on the most suitable cluster
leader in the neighborhood. The minimum and average WCETs are almost
the same for the five test cases, though the maximum differs, which implies
bandwidth’s impact on choosing the most suitable cluster.

We also evaluate the WCETs of the configurator executed on

the most suitable cluster leader. The result of the evaluation

is depicted in Figure 5. The results show that the proposed

algorithm has almost found the core that has the most suitable

computation resources in all test cases. The average WCET of

the configurator on the test cases are nearly the same and has

the value of 657 ms. However, the WCET of the configurator

reaches almost 1700 ms in test cases with 25 clusters and with
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an average of 3153 nodes. Notably, the result shows also to

have the best cost function that imposes to have an excellent

available bandwidth.

In Figure 6, we show the maximum and minimum band-

width usage during all simulations in the edge neighborhood.

The maximum and minimum values vary depending on the

test case, though the results match the relevant results of

the WCETs. Evidently, these experiments’ results show that

adding more edge devices/clusters in the problem instance

does not increase the network and computation consumption.

This is in line with the recent literature review [35], which

suggests that the edge-based systems need to operate at large-

scale networks.

Fig. 6. The total bandwidth usage in five test cases in the edge neighborhood.
The average values are almost the same.

Fig. 7. The time required to activate and transfer configurator data on the
hosting node. The average values are almost the same.

We evaluate the proposed algorithm in terms of the acti-

vation time of the configurator. The results are depicted in

Figure 7. The activation time is the required time for the

configurator to be transferred to the most suitable cluster leader

and executed on it as a manager. We measure this duration by

having the neighborhood’s topology, routing, and the relative

bandwidth of the links and the leader’s computation factor.

The results show that the activation time is bounded and

has almost the same value in all test cases. Even when the

number of clusters and the nodes is progressively increased,

the activation time is bounded. Notably, the activation time

varies marginally in all test cases and iterations, implying the

configurator’s scalability.

VII. CONCLUSION AND FUTURE WORK

Compute and storage resources at the edge of the net-

work are used to bridge the gap between the Cloud and

IoT domains to facilitate low-latency and highly resilient

applications. However, the broad range of IoT application

requirements concerning latency and QoS, combined with the

heterogeneous and dynamic nature of edge networks, make

it particularly challenging to orchestrate, deploy, and operate

such applications. To overcome these challenges, we introduce

a decentralized mechanism called configurator. In this setting,

one critical task is to determine configurator placement at

the edge. Therefore, in this paper, we propose an efficient

decentralized approach that determines the most suited edge

device to execute the configurator in a given dynamic edge

network. We have implemented a prototype and evaluate

the proposed approach’s feasibility by simulating configurator

placement at the edge.

We claim that the configurator at the edge paves the way

for utilizing available resources, leading to accomplish the

promised high quality and low-latency services. Despite the

promising results, this paper is only a small step towards the

configurator’s operationalization, aiming to achieve efficient

resource utilization in edge networks. Regarding future work,

we first plan to build the edge neighborhood based on the

Kademlia. It remains to provide a complete solution for the

configurator and a full solution stack for edge applications that

are dynamically distributed, elastic, resilient, and run natively

in the Edge–Cloud continuum. Finally, some assumptions

made regarding workloads and the bandwidth will be replaced

with the mentioned approaches in future work.
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